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ABSTRACT

Cardiovascular disease (CVD) is a major cause of morbidity and mortality. However,
current widely used regression models are known to have a number of drawbacks,
including prediction inaccuracy for individuals and for other cohorts, inflexibility of
handling intervention, requirement of complete clinical data, deficiency of dealing with

inaccurate, vague and uncertain data, and poor explanatory capacity.

Therefore, this research developed a novel prediction model named CRISK—short for
CVD Risk—for predicting 10-year risk of CVD. The model was developed based on a
combination of fuzzy ontology and case-based reasoning (CBR). Fuzzy ontology can help
handle and store vague and uncertain data, which is common in real life. Retrieving the
closest cases to the input case, CBR could contribute to the development of a personalised
prediction model. The CRISK model retrieves the seven closest cases to the input case
and generates prediction outcomes from these seven closest cases. To do this, three
algorithms, Retrieve, Reuse, and Revise, were developed. The CRISK model uses 13 risk
factors: total cholesterol, low-density lipoprotein (LDL) cholesterol, very-low-density
lipoprotein (VLDL) cholesterol, systolic blood pressure (SBP), triglycerides, diastolic
blood pressure (DBP), glucose, number of cigarettes smoked a day, high-density
lipoprotein (HDL) cholesterol, hematocrit, body mass index (BMI), and lactate
dehydrogenase (LDH). Moreover, the model introduced a new way to represent and
interpret CVD prediction outcomes when compared with existing models. In CRISK, the
prediction outcomes are represented as fuzzy membership values of the “High CVD Risk”
and “Low CVD Risk” fuzzy sets. Depending on the fuzzy membership value, a different
level of attention is given to the input case. Using this method, not only the predicted risk

category but also the prediction of when CVD would happen is provided.

The CRISK model achieved reasonably good predictions. For internal validation, the
prediction performance results were True Positive Rate (TPR)=0.8733 (CI=0.0102), True
Negative Rate (TNR)=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), Fi-
value=0.3574 (C1=0.0147), and Negative Prediction Value (NPV)=0.9913 (CI=0.0029)
where Cl is the 95% confidence interval. These performance results were obtained from
experiments using the Framingham Heart Study (FHS) Offspring Cohort Exam 1 dataset,
which was the dataset used to develop the CRISK model. For external validation,

experiments on the FHS Original Cohort Exam 11 dataset were performed. This dataset



had two missing risk factors: triglycerides and LDH. The prediction results obtained for
this external validation were TPR=0.8167 (C1=0.0434), TNR=0.5041 (CI=0.0560),
Precision=0.2866 (CI=0.0507), Fi-value=0.4242 (CI=0.0554), and NPV=0.9185
(C1=0.0307) where ClI is the 95% confidence interval. In addition, the CRISK model was
analysed to be able to solve or partially solve five out of eight limitations of regression
models identified in this research. Moreover, CRISK gave a better prediction

performance in comparison with two high-profile existing CVD prediction models.

This research has shown the usefulness of fuzzy ontology CBR approaches in CVD
prediction. The achievements from the research are promising. Therefore, it would be
worth investing more into fuzzy ontology CBR approaches in building CVD prediction
models specifically and in building chronic disease prediction models generally.
However, it would not be that a prediction model is built once and used forever. It is
rather to continuously perform experimentation and update the model when new datasets
arrive, especially datasets from different ethnic groups. These would help keep improving
the prediction performance for the model and keep the model up to date.
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1.1 RATIONALE AND SIGNIFICANCE OF THE STUDY

Cardiovascular disease (CVD), aka heart disease, is the number one cause of death
worldwide [1]. In 2016, an estimated 17.9 million people died from CVD, accounting for
31% of all global deaths in the year [1]. This means that one in three people would pass
away as a result of heart disease. In New Zealand, the 2018 statistics from the Heart
Foundation website! report that 33% of deaths annually are caused by heart disease, one
in twenty adults are living with heart disease, and every 90 minutes a New Zealander dies
from heart disease. According to European Cardiovascular Disease Statistics 2017 [2],
CVD accounted for 45% of all deaths in Europe and 37% of all deaths in the European
Union (EU).

CVD not only places immense health burdens but also massive economic burdens [1, 3].
The total cost of CVD is estimated to be around 210 billion EUR on the EU economy
annually [2]. Of this total cost, 53% (111 billion EUR) is for healthcare costs, 26% (54
billion EUR) is due to productivity losses, and 21% (45 billion EUR) is to informal care
of people with CVD. In the US, it is projected that in 2035, more than 130 million adults
in the nation’s population (45.1%) will have some form of heart disease, and the total

costs for CVD in the year are expected to reach 1.1 trillion USD [3].

Interestingly, the majority of CVD cases can be controlled by addressing behavioural risk

factors [1]. Examples of these risk factors are smoking, unhealthy diet, and physical

1 https://www.heartfoundation.org.nz/
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inactivity [1]. As CVD events typically appear suddenly and often result in fatality before
medical care can be given [4], early detection of high CVD risk people would be greatly
beneficial in preventing CVD events by allowing early intervention for those at high risk.
Therefore, with accurate early CVD prediction, a healthy population could be maintained

resulting in markedly reduced health and economic burdens [5].

However, the CVD prediction problem remains unsolved despite the numerous prediction
models that have been developed. In a systematic review published in 2016 [6], 363
prediction models prior to June 2013 were identified and reviewed. In terms of prediction
techniques, most of the developed models use regression methods: Cox proportional
hazards modelling (n=160, 44%), accelerated failure time analysis (n=77, 21%), and
logistic regression (n=71, 20%). But, according to the authors, the usefulness of most of
these models remains unclear. Besides regression, machine learning (ML) has become
more and more popular in the medical community generally and in the domain of CVD
prediction specifically [7]. Though ML is reported to improve CVD prediction accuracy
when compared to traditional established statistical models, there are still certain
limitations related to the developed ML models including poor interpretability? and
overfitting [8]. Therefore, further investigation of the feasibility and acceptability of ML
applications is needed before they can be employed in day-to-day clinical workflows [7,
8].

Recently, new approaches using fuzzy ontologies and case-based reasoning (CBR) for
prediction of chronic diseases, such as diabetes [9, 10] and chronic kidney disease [11],
have been explored. Fuzzy ontologies have been known to be able to represent the
vagueness and uncertainty of data [12]. This representation may possibly help resolve the
limitations of regression models that are in widespread use but unable to deal with missing
or unreliable values [12]. On the other hand, CBR may be an important approach in health
care [13, 14]. A CBR system provides a solution for a new case based on the solutions of
similar past cases [15, 16]. Therefore, a combination of fuzzy ontology and CBR

approaches for CVD prediction would be worth investigating.

Z Interpretability refers to the ability to understand the causality, i.e. relationships between risk factors and

outcomes



1.2 RESEARCH AIM, OBJECTIVES, AND RESEARCH

QUESTIONS

This study aims to develop a fuzzy ontology CBR model called CRISK (Cardiovascular
disease RISK) for prediction of CVD within 10 years that would possibly be a candidate
to be used in daily clinical practice. Ten years is chosen because this is the common CVD
prediction time interval. To be suitable for daily clinical practice the developed model
should be able to resolve limitations of the current in-use models and/or perform better in

terms of prediction performance.

To achieve this aim, followed objectives need to be achieved. Firstly, current CVD
prediction problems need to be identified and thoroughly analysed. Secondly, the
developed model must employ techniques that can address the current CVD prediction
problems. Thirdly, experiments and validation are used to find which risk factors are

important.

The following six research questions (RQs) are proposed for this study. How these

research questions were formulated is explained in section 2.2.6.

RQ1. Can a CVD prediction model be developed using a combination of fuzzy
ontology and CBR?

RQ2. What risk factors are important in the prediction of CVD using this method?

RQ3. How does the developed model perform in terms of prediction performance?

RQ4. How does the developed model perform in terms of external validation?

RQ5. How does the developed model overcome the limitations of current widely
used regression models?

RQ6. How does the developed model compare with current widely used regression

models in terms of prediction performance?

Chapter 4, Chapter 5 and Chapter 6 in this body of work help answer the first three
research questions (RQ1, RQ2, and RQ3). The content of Chapter 7 is used to answer
RQ4. In Chapter 8, section 8.1 helps answer RQ5 and section 8.3 helps answer RQ6.
Descriptions of the answers are given in section 9.1.1 in Chapter 9.



1.3 CONTRIBUTIONS OF THIS STUDY

This study provides several contributions to the existing knowledge. These contributions

are summarized below.

1. An extensive literature review on the topic of CVD prediction is provided. The
literature review gives the current status of the topic as well as highlighting the
drawbacks of the existing mainstream regression models. Details of the literature

review on CVD prediction are in section 2.2.

2. The CRISK prediction model (Chapter 4) and its associated CRISK system
(Chapter 5) are developed and documented. The developed model achieves good
prediction performance (section 6.3) and solves or partially solves five out of the
eight problems of current regression models (section 8.1). The CRISK system
provides modules for creating ontologies, running experiments, and giving CVD

prediction for an individual case (Chapter 5).

3. This research shows that fuzzy ontology CBR approaches are useful in CVD
prediction. This should encourage future researchers to spend more effort for
fuzzy ontology CBR approaches in CVD prediction specifically and in chronic
disease prediction generally.

4. This research contributes a new way to represent and interpret CVD prediction
outcomes, using fuzzy membership values of “High CVD Risk” and “Low CVD
Risk” defined in this thesis. With this new way, not only the predicted risk
category but also the prediction of when CVD would occur is provided. Details

can be found in section 3.4.2 and section 8.3.

5. This study proposes the idea of continuous experimentation and updates for a
CVD prediction model. This would help keep improving the model’s prediction

performance. Details can be found in section 9.2.5.

1.4 THESIS ORGANISATION

The rest of the thesis is organised into the following ten chapters:



Chapter 2 first reviews existing CVD prediction models. The models are classified into
different categories and reviewed focusing on prediction methods, risk factors, datasets,
prediction performance, and limitations. From the review, problems with existing
prediction models, and potential and gaps of fuzzy ontology CBR approaches in CVD
prediction are identified and these lead to formation of research questions for this body
of work. The chapter then covers related information about fuzzy ontology for this body
of work. This includes the theories of type-1 and type-2 fuzzy sets, definition of fuzzy
ontology, and the advantages of using it. Moreover, state-of-the-art languages and tools
for building and managing fuzzy ontologies are provided. Finally, the chapter introduces
CBR, popular techniques used for CBR, and tools for building CBR systems. This
includes explaining what CBR is, describing the four activities in a CBR cycle, and
providing details of three common techniques used for CBR. In addition, well-known

tools for building CBR systems are reported.

Chapter 3 explains how the research was approached and carried out. This includes
deciding on a research paradigm, employing a research methodology, forming a research
framework and research guidelines, and creating strategies and plans to develop the
CRISK prediction model. In addition, it covers dataset collection, dataset selection,
experimentation design, and data preparation accordingly to the experimentation design.
Besides, it describes an evaluation protocol created to assess the developed CRISK
prediction model. The protocol consists of evaluation metrics, external validation, and

comparison to existing models.

Chapter 4 describes the CRISK prediction model. It first gives an overview of the
architecture of the model. It then explains in detail each component of the model. In

addition, the main algorithms developed for the model are described as pseudo-code.

Chapter 5 explains the developed CRISK system. Details include how the system was
developed, especially focusing on the structure of the CRISK system. The system consists
of four modules: Constructor, Experimenter, Batch Experimenter, and Predictor. The

purpose and details of each module are also described.

Chapter 6 describes experimentation and the results. The chapter first explains in detail
how the experimentation was done. It then reports the results, focusing on finding whether
it is worth creating separate prediction models for men and women, and how the
prediction performance could be possibly improved in the future. In addition, other
findings derived from the experimentation results are also reported.

5



Chapter 7 gives details of external validation of this research. The chapter first describes
how external datasets was prepared. It then explains how prepared datasets were tested.
After that, the chapter reports testing results and findings from the testing results.

Chapter 8 is a discussion chapter. It refers back to the list of problems of current
regression models and discusses how these problems have been addressed by the
developed CRISK model. It then discusses personalised prediction using the CRISK
model. After that, CRISK is compared with three high-profile existing CVD prediction
models. Finally, the possibility of applying CRISK in daily practice is raised.

Chapter 9 concludes the thesis. Achievements of the study are described. After that,

limitations in this research and future directions for it are provided.
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2.1 INTRODUCTION

This chapter first reviews the current status of CVD prediction (section 2.2). This includes
giving an overview of CVD, reviewing existing well-known prediction models, finding
problems with current regression models, and reviewing current fuzzy logic, fuzzy
ontology, and CBR approaches in CVD prediction. From this review, research questions

(stated in section 1.2) are formulated for this study (section 2.2.6).

The chapter then provides an investigation of fuzzy ontology in section 2.3. This section
first gives an overview of type-1 and type-2 fuzzy sets. It then provides an overview of
fuzzy ontology including the benefits of using it. Finally, the section gives a summary of
the languages and tools commonly used to create and maintain fuzzy ontologies.
Information from this section is based on in decision making for building the CRISK
model, which helps answer RQ1, in section 3.4. Decisions involve whether to use type-1
or to use type-2 fuzzy sets and which languages and tools should be used to develop fuzzy
ontologies for CRISK.

After that, the chapter provides an investigation of CBR in section 2.4. First, this section
explains what CBR is and gives an update on research activities and application of CBR
in various domains. It then provides details of common techniques used in CBR systems.
Finally, the section summarises popular CBR tools for developing CBR applications,
focusing on programming language used and whether the tool supports ontologies and
fuzzy ontologies. From the investigation presented in this section, decisions on whether
to use existing tools or developing an own CBR application for CRISK, which helps

answer RQ1, and on what techniques to employ are made (section 3.4).

2.2 CARDIOVASCULAR DISEASE PREDICTION

2.2.1 An Overview of CVD

CVD is a group of diseases pertaining to the heart, the vascular system of the brain, or
blood vessels [17]. It is estimated that 17.9 million people died from CVD in 2016,
representing 31% of deaths globally [1]. CVD includes coronary heart disease (CHD),
cerebrovascular disease, peripheral arterial disease (PAD), rheumatic heart disease
(RHD), congenital heart disease, and deep vein thrombosis and pulmonary embolism
(DVT & PE) [18]. Among these six types of CVD, four are caused by arteriosclerosis of

8



the blood vessels, that is hardening of the arteries. Arteriosclerosis of the blood vessels
providing blood to the heart muscle causes CHD [19]. Arteriosclerosis in the blood
vessels providing blood to the brain causes cerebrovascular disease [20]. When
arteriosclerosis happens in the blood vessels providing blood to the arms and legs, it
results in PAD [21]. If arteriosclerosis happens at a vein deep in the body, usually in the
lower legs or thighs, and creates a blood clot, the resulting condition is known as DVT
[22]. The blood clot restricts or can completely block the blood flow. The blood clot can
sometimes dislodge, travel to the heart and then lungs, forming blockages in arteries
supplying blood to the lungs. This condition is called a PE [22]. On the other hand, RHD
Is a disease in which the heart muscle and heart valves are damaged from rheumatic fever,
which is caused by streptococcal bacteria [23]. Finally, congenital heart disease refers to
malformations in the cardiovascular structure that occur before birth [24]. In these six
types of CVD, coronary heart disease (CHD), also known as ischemic heart disease [19],
is the most common type of CVD [25]. Globally, CHD accounts for 7.4 million deaths,
which is about 43% of deaths caused by CVD, in 2012 [18].

Prediction plays a significant role in reducing disability and premature death caused by
CVD. The underlying pathology is atherosclerosis, which develops over years and is
usually advanced by the time symptoms occur. Acute coronary and cerebrovascular
events typically appear suddenly and can be fatal before medical care can be given [4].
Therefore, CVD prediction techniques have been extensively researched and developed

for decades, aiming to provide early intervention for those at risk.

Existing well-known CVD prediction models are identified and classified into the
following categories: conventional Framingham models, augmented Framingham
models, and alternatives to Framingham models [26]. Sections 2.2.2, 2.2.3, and 2.2.4

review those prediction models.

2.2.2 Conventional Framingham Models

Conventional Framingham models [27-32] were developed as part of the Framingham
Heart Study (FHS). This study started in 1948 and had the aim of observing, and as a
consequence, understanding risk factors that cause heart disease [33]. Originally, the
Framingham Study followed a cohort of 5,209 men and women living in Framingham,
Massachusetts, in the United States of America (USA) [27]. The study continuously

monitored morbidity and mortality, and medical examinations were carried out every two



years to record a variety of characteristics, including blood chemistry, blood pressure, and
electrocardiogram [27]. In 1971, the study enrolled a second generation of 5,124
participants, who were children of the first cohort and those children’s spouses, called the
Framingham Offspring Cohort [28, 34]. As these two cohorts were predominantly white
of European descent, 506 ethnic minority residents of Framingham were recruited for the
Omni 1 Cohort in 1994 followed by another 410 ethnic minority participants for the Omni
2 Cohort a decade later [33]. In 2002, investigators created the Third Generation Cohort
with 4,095 participants, who were children of the Offspring Cohort. One year later, 103
residents, who were spouses of Offspring Cohort participants who were not initially
enrolled in the study but had at least two children in the Third Generation Cohort, were
signed up for the New Offspring Spouse Cohort [33].

The first Framingham model [27] was developed by Kannel and colleagues in 1976. The
study used data of people from the Original Cohort who were initially free of CHD,
congestive heart failure, cerebrovascular disease, intermittent claudication, and rheumatic
heart disease. It produced risk functions to predict CHD, brain infarction, intermittent
claudication, hypertensive heart failure, and total CVD within eight years. Each risk
function was a logistic regression model where dependent variables (risk factors) were
sex, age, systolic blood pressure (SBP), cigarette smoking, electrocardiographic evidence
of left ventricular hypertrophy (ECG-LVH), glucose intolerance, and serum cholesterol.
Total CVD prediction includes disease classified to either CHD, brain infarction
(cerebrovascular disease), intermittent claudication (PAD), or hypertensive heart failure
(congestive heart failure in the absence of coronary or rheumatic heart disease). For each
risk function, two different sets of regression coefficients were developed for men and
women respectively. Regression coefficients were calculated using the method of
Walker-Duncan [35]. Figure 2-1 illustrates the relationships among the prediction model,

predicted diseases, risk factors used, and cohorts that the study based on.
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Figure 2-1: Mappings of Kannel et al. [27] model, disease types, risk factors, and cohorts

In 1991, two studies were published by Anderson and colleagues. The first one was an
updated CHD risk profile [28] of Kannel’s original CHD risk profile [27]. Though only
people who were free from CVD were included in the first study [28], the dataset used
was larger and more recent as it combined both the Original Cohort and the Offspring
Cohort. In addition, another risk factor, high-density lipoprotein (HDL) cholesterol, was
added to the regression function for prediction. Risk estimation was done using a
parametric regression model, an accelerated failure time regression model [36], where
parameters were calculated using a computer software program that implemented the
maximum likelihood method and was developed by one of the authors.

A further study [29], based on the updated CHD risk profile [28], aimed to develop
equations for predicting additional outcomes. This study also selected members from both
the Original and the Offspring cohorts who were free of CVD and cancer, and presented
prediction equations for myocardial infarction, CHD, death from CHD, stroke, CVD, and
death from CVD. Risk factors used in this study were sex, age, blood pressure, total
cholesterol, HDL cholesterol, smoking, glucose intolerance, and left ventricular

hypertrophy. Again, the accelerated failure time regression model [36] was used to predict
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probabilities for each of the outcomes. The parameters were also estimated by using the
maximum likelihood method. Figure 2-2 shows mappings among the two models,
predicted diseases, risk factors used, and cohorts that the studies are based on.
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Figure 2-2: Mappings of Anderson et al.’s [28] & [29] models, disease types, risk factors, and cohorts

One advantage of the models developed by Anderson and colleagues [28, 29] over the
original model developed by Kannel and colleagues [27] is that the user can specify the
number of years (from 4 to 12) ahead that they wish to predict within. This capability to
specify prediction interval is a result of using the accelerated failure time regression
model [36] rather than a logistic regression model. Unlike logistic regression, this
accelerated failure time regression model can provide predictions for different lengths of
time [29].

In 1998, Wilson and colleagues developed another Framingham risk profile for CHD [30]
using categorical variables that had become part the framework of the Joint National
Committee (JNC-V) blood pressure and the National Cholesterol Education Program

(NCEP) cholesterol programs in USA. Wilson’s study also used data from the Original
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and Offspring cohorts and produced recommended guidelines to predict CHD risk based
on sex, age, blood pressure, diabetes, total cholesterol, and low-density lipoprotein (LDL)
cholesterol. The model provides a similar result to Anderson et al.’s first model [28] that
used continuous variables. However, Wilson and colleagues’ prediction formulation [28]
is much simpler than the one used by Anderson et al. [26]. Wilson et al. presented the
prediction formulation as score sheets with steps to follow to calculate CHD risk points.
Their score sheets were developed from those in the Cox proportional hazards modeling
[37]. Wilson et al.’s prediction algorithm was adopted and used by The National
Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of
High Blood Cholesterol in Adults (Adult Treatment Panel 111) (NCEP/ATP III) to
estimate a person’s 10-year risk of developing CHD, in which three levels of risk were
defined: less than 10%, 10% to 20%, and greater than 20% [38]. Figure 2-3 displays
mappings among Wilson et al.’s model, predicted diseases, risk factors used, and cohorts

that the study was based on.
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Figure 2-3: Mappings of Wilson et al. [30] model, disease types, risk factors, and cohorts

Later in 2008, D’Agostino and co-authors reported on the development of a gender-

specific multivariable risk factor algorithm [31] that can be used to predict total CVD risk
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and risk of individual CVD events (coronary, cerebrovascular, peripheral arterial disease,
and heart failure). The study used more participants (8,491) from the Original and
Offspring cohorts than previous studies. The Cox proportional hazard regression method
[37] was used to relate risk factors to the incidence of a first CVD event. The authors
ended up providing two versions of CVD risk prediction. The first version was based on
eight traditional risk factors: sex, age, SBP, treatment for hypertension, cigarette smoking,
diabetes, total cholesterol, and HDL cholesterol. In contrast, the second version included
non-laboratory-based predictors—body mass index (BMI) was used instead of total
cholesterol and HDL cholesterol. Figure 2-4 connects the two model versions from the

study with predicted diseases, risk factors, and cohorts.
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Figure 2-4: Mappings of D’ Agostino et al. [31] models, disease types, risk factors, and cohorts

In 2009, Pencina et al. [32] published a model to primarily estimate the 30 year risk of
“hard” CVD (coronary death, myocardial infarction, stroke) and secondarily estimate the
30 year risk of "general" (“full” or “total”) CVD (coronary death, myocardial infarction,

coronary insufficiency, angina, ischemic stroke, hemorrhagic stroke, transient ischemic
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attack, peripheral artery disease, heart failure). Since the majority of existing models
predict risk within the < 10-year risk time frame, this model is a good addition as it
provides longer-term estimation and therefore could be more suitable for prediction for
people at younger ages and also possibly increase life expectancy. The authors developed
the model using a modified Cox regression that allows adjustment for competing risks of
non-cardiovascular death. The prediction model has two versions. The first version is
based on sex, age, SBP, diabetes, smoker, treated hypertension, total cholesterol, and
HDL cholesterol risk factors while the second version replaced total cholesterol and HDL
cholesterol with BMI. The simpler version (the second version) performed reasonably
well, not far below the performance of the first version [32]. Figure 2-5 connects the two
versions of Pencina et al.”s model with predicted diseases, risk factors, and cohorts.

— — — — — — — — — — — — — — — — — — — — — — ——

( \ '] k. i A
| Disease type | | Model | | Risk factor |
I I | | | |
- S
| | | | | - |
| | I | | |
| Total CVD -« | | I Age |
| | | | | I
| | I _ | i SBP |
| | l Pencinaetal. | | | |
| | | [32] | | I
| Coronary death [ | | | Treated |
| | | A | | hypertension |
I | I | | I
| | | | i Smoker |
| | I | | I
| Myocardial n | | | : |
| infarction N/ | Pencina et al. | | Diabetes |
| | i simpler version | | |
| | | [32] | | Total cholesterol | |
I | I | | I
| | I | | I
| Stroke -« | | | HDL cholesterol |
I | | | | I
I I | I | BMI I
\ _‘) \ . ) \ _F_)
{ / <" Cohort = \
\ Offspring }
\ /
N, e

Figure 2-5: Mappings of Pencina et al. [32] models, disease types, risk factors, and cohorts

Table 2-1 summarizes conventional Framingham CVD prediction models in terms of

method, number of participants, age, and prediction interval.
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Table 2-1: Conventional Framingham CVD prediction models

Model Method No. of participants Age (years) Prediction Interval
Kannel et al., 1976 Logistic regression [35] 5,209 35-74 8 years
[27]
Anderson et al., Accelerated failure time 5,573 30-74 4-12 years
1991 [28] regression [36] (2,590 men and

2,983 women)
Anderson et al., Accerlerated failure time 5,573 30-74 4-12 years
1991 [29] regression [36] (2,590 men and

2,983 women)
Wilson et al., 1998 Categorical variable score 5,345 30-74 10 years
[30] sheet, Cox proportional (2,489 men and

hazards modeling [37] 2,856 women)

D’Agostino et al.,  Cox proportional hazards 8,491 30-74 10 years
2008 [31] modeling [37] (3,969 men and

4,522 women)
D’Agostino et al. ~ Cox proportional hazards 8,491 30-74 10 years
simpler version, modeling [37] (3,969 men and
2008 [31] 4,522 women)
Pencina et al., 2009 A modified Cox model 4,506 20-59 30 years
[32] (2,173 men and

2,333 women)

The FHS currently recommends models for CVD prediction on their official website.®
For 10-year CHD risk prediction the Wilson et al. [30] model is recommended. For 10-
year general CVD risk prediction, the D’ Agostino et al. [31] model and its simpler version
should be used while for 30 year general CVD risk prediction, the Pencina et al. [32]

model and its simpler version are suggested.

A common limitation of all six Framingham studies [27-32] was that they were solely
restricted to white cohorts (Original and/or Offspring) to develop their models. This
potentially limits the generalizability to other ethnic groups [32]. Therefore, application

of the Framingham models in other populations needed to be verified. Consequently, a

3 https://www.framinghamheartstudy.org/fhs-risk-functions/cardiovascular-disease-10-year-risk/
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number of studies, reported in the literature, were carried out to test the Framingham risk

functions in different geographical areas and with different ethnic cohorts.

Despite being pioneers in the field of CVD prediction, the most well-known, and the most
commonly used both in USA and globally [33, 39], the Framingham models have been
shown to overestimate or underestimate risk when applied to populations other than the

original cohorts.

The Anderson et al. [28] model was found to overestimate CHD risk (4%) for men in the
French PCV-METRA cohort when compared with the risk estimated by the localised
French model (2%) [40]. The Anderson et al. [29] model also substantially overestimated
CHD risk in German MONICA Augsburg and PROCAM cohorts for both genders [41].
It was reported that the risk predicted by Anderson et al.’s model was double the risk
observed in these two cohorts [41]. The Wilson et al. [30] model was found to
overestimate CHD risk in an Italian population [42]. Anderson et al.’s [28] and [29]
models were also confirmed to significantly overestimate CHD risk for people in the
United Kingdom [43]. On the other hand, the Wilson et al. [30] model was reported to
underestimate CHD risk in Czech men [44]. These findings indicate that while the
Framingham models may be accurate when applied to Framingham cohorts they are

probably not as accurate when applied to other cohorts or other populations in the World.

2.2.3 Augmented Framingham Models

To overcome the deficiencies of Framingham equations, researchers have tried to add
new variables to them. Usually, one or more biomarkers are included as additional risk
factors to the equation [26]. One popular biomarker is the C-reactive protein (hsCRP), a
plasma protein synthesised by the liver in response to inflammation [45]. A systematic
review by Danesh et al. [46] stated that C-reactive protein is a relatively moderate
predictor of CHD; however recommendations for using it in predicting CHD need to be
reviewed. Just two years later, Lloyd-Jones et al. [47] found no proof that the including
C-reactive protein adds substantial predictive value to CHD prediction over employing
the conventional risk factors. Lloyd-Jones’s findings are further supported in a later
review by McNeill et al. [45] who concluded that the C-reactive protein is unimportant in
CHD prediction.
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Other biomarkers that have been investigated by researchers include: fibrinogen [48],
homocysteine [49], N-terminal fragment brain natriuretic peptide (NT-pro-BNP) [50, 51],
small dense lipoproteins [52], apolipoproteins [53, 54], lipoprotein-associated
phospholipase A2 [55], lipoprotein (a) [56], cystatin C [57], uric acid [58-60], alanine
aminotransferase [61], and gamma-glutamyltransferase [62, 63]. However, in a
systematic review by Dent [45], it was suggested that these biomarkers’ performances in
CVD prediction are inconsistent from study to study and they do not really add value to

the prediction.

Another trend in amendment to the Framingham equations was to create different
presentations based on the Framingham equations. Examples include the New Zealand
risk tables [64], the Joint European Societies’ charts [65], and the second Joint British
Societies’ recommendations [66]. The New Zealand risk tables [64] were based on the
Framingham model of Anderson et al. [29] to estimate 5-year CVD risk. A cell in a table
Is identified for a person based on risk factors. Each cell has a colour that represents the
risk level. Similarly, the joint European Societies’ charts [65], based on the Framingham
model of Anderson et al. [28], also divide the charts into different coloured cells mapping
to different CHD risk levels within 10 years. The second Joint British Societies’
recommendations [66] were also based on the Framingham model of Anderson et al. [28]
but replaced CHD risk with CVD risk to predict the 10-year CVD risk for a person. The
CVD risk prediction algorithm was represented as charts, where a chart’s area was
divided into different coloured contours representing different risk levels. Nevertheless,
these table and chart-based approaches gave visual and easier to understand
representations of the prediction algorithms but did not improve prediction accuracy nor
resolved the problems mentioned in the previous section 2.2.2 of the conventional

Framingham models.

2.2.4 Alternatives to Framingham Models

Besides the FHS, researchers around the World have also built up different study cohorts
to identify the risk factors associated with CVD and to develop prediction models. Well-
known CVD prediction models derived from these studies include the PROCAM model
[67], the SCORE model [68], the ASSIGN model [69], the two Reynolds models [70] and
[71], the two QRISK models [72] and [73], the 2013 Pooled Cohort Equation (PCE)
model [74], the Globorisk model [75], the PREDICT-1° model [76], and the 2018 PCE
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model [77]. Table 2-2 gives a summary of these models by publication year, prediction

disease, dataset, risk factors, method, and prediction interval.

These eleven models can be grouped into three categories: using a pool of cohorts,
including additional biomarkers, and including ethnicity/family/social-economic factors.
SCORE, 2013 PCE, Globorisk, and 2018 PCE belong to the first category as their datasets
are collections of different cohorts. ASSIGN (used family history and social deprivation),
QRISK 1 (used family history and area measure of deprivation), QRISK 2 (used ethnicity,
family history, and deprivation score), PREDICT-1° (used ethnicity, family history,
socioeconomic deprivation), and 2018 PCE (used ethnicity) belong to the third category.
PROCAM and the two Reynolds models employed both “additional biomarkers” and
“family/social-economic factors” and therefore can be classified as belonging to both the
second and the third categories. PROCAM used triglycerides and family history of
premature myocardial infarction (MI). The Reynolds model for women used several
additional biomarkers (HbAzc, Lp(a), apolipoprotein B-100, hsCRP, and apolipoprotein
A-1) and parental history of MI before age 60 years. The Reynolds model for men used

hsCRP and parental history of MI before age 60 years.

All eleven models have the common characteristic of using regression prediction
methods. Among these models, SCORE was developed using the Weibull proportional
hazards model [78] while the rest were developed using the Cox proportional hazards
model [37]. Regression prediction models have been found in both existing literature and
in this study to have common limitations that are explained in detail in the next section
(section 2.2.5).
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Table 2-2: Alternatives to Framingham prediction models

Model Publication  Disease Dataset Risk Factors Method Prediction
Year Interval

PROCAM 2002 CHD e Name: PROCAM Age, low-density lipoprotein cholesterol Cox proportional 10 years
Assmann et LDL-C), smoking, high-density lipoprotein hazards modellin
( e Location: Germany ( ) th ey .
al. [67]) cholesterol (HDL-C), SBP, family history of [37]

o Size: 5,389 men premature  myocardial infarction (M),

o Age: 3565 diabetes, triglycerides
SCORE 2003 CVvD e Name: a pool from 12 cohorts Sex, age, smoking, SBP, either total cholesterol  Weibull proportional 10 years
(Conroy et al. . (TC) or total cholesterol / high-density hazards modelling

e Location: Europe
[68]) lipoprotein cholesterol (TC/HDL-C) [78]

e Size: 205,178 people (88,080 women)

e Age: 19-80
ASSIGN 2007 CVD e Name: ASSIGN Sex, age, social deprivation, family history, Cox proportional 10 years
(Woodward et . diabetes, smoking, SBP, total cholesterol, hazards modelling

e Location: Scotland
al. [69]) HDL-C [37]

e Size: 13,297 people (6,540 men)

o Age: 30-74
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Reynolds risk
score for
women

(Ridker et al.
[70])

Reynolds risk
score for men
(Ridker et al.

[71])

QRISK 1

(Hippisley-
Cox et al.

[72])

QRISK 2

(Hippisley-
Cox et al.

[73])

2007

2008

2007

2008

CvD

CVvD

CvD

CVvD

Name: Renolds (women)
Location: US
Size: 24,558 women

Age: > 45

Name: Renolds (men)
Location: US
Size: 10,724 men

Age: 50-79

Name: QRISK 1

Location: UK

Size: 1.28 million people (Of these, 50.4%

were women)

Age: 35-74

Name: QRISK 2
Location: England and Wales
Size: 1,535,583 people (773,291 women)

Age: 35-74
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Age, HbA. (% with diabetes), SBP, smoking,
Lp(a), apolipoprotein B-100, hsCRP (C-
reactive protein), apolipoprotein A-1, parental

history of MI before age 60 years

Age, SBP, smoking, total cholesterol, HDL-C,
hsCRP, parental history of MI before age 60

years

Sex, age, smoking, SBP, TC/HDL-C, BMI,
family history of CHD in first degree relative
aged less than 60, area measure of deprivation,

existing treatment with antihypertensive agent

Ethnicity, sex, age, smoking, SBP, TC/HDL-C,
BMI, family history of CHD in first degree
relative aged less than 60, deprivation score,
treated hypertension, type-2 diabetes, renal

disease, atrial fibrillation, rheumatoid arthritis

Cox proportional 10 years
hazards modelling

[37]

Cox proportional 10 years
hazards modelling

[37]

Cox proportional 10 years
hazards modelling

[37]

Cox proportional 10 years
hazards modelling

[37]



2013 PCE
(Goff et al.

[74])

Globorisk
(Hajifathalian
etal. [75])

PREDICT-1°
(Pylypchuk et
al. [76])

2013

2015

2018

CvD

CVvD

CvD

Name: pooled cohorts (including ARIC
[79], Cardiovascular Health Study [80],
CARDIA [81], Framingham Original [82],
and Framingham Offspring [83] cohorts)

Location: USA

Size: 24,626 people (11,240 white women,
9,098 white men, 2,641 African-American

women, and 1,647 African-American men)

Age: 40-79

Name: a pool of 8 cohorts
Location: USA
Size: 50,129 people (33,323 men)

Age: >40

Name: PREDICT
Location: New Zealand
Size: 401,752

Age: 30-74
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Age, sex, total cholesterol, HDL-C, SBP, use

of antihypertensive therapy, diabetes, smoking

Sex, age, SBP, total cholesterol, diabetes,

smoking

Age, ethnicity, NZ index of socioeconomic
deprivation, family history of premature CVD,
smoking, diabetes, history of atrial fibrillation,
SBP, TC/HDL-C, blood pressure lowering
medication, lipid lowering  medication,

antithrombotic medication

Cox proportional 10 years and

hazard modelling lifetime
[37]
Cox proportional 10 years

hazards modelling
[37]

Cox proportional 5 years
hazard modelling
[37]



2018 PCE 2018 CVvD e Name: pooled cohorts from 6 longitudinal Age, sex, race, total cholesterol, HDL-C, SBP, Cox proportional 10 years and
(Yadlowsky et cohort studies, ARIC (Atherosclerosis Risk  treatment for high blood pressure, diabetes, hazard modelling lifetime
al. [77]) in Communities Study, 1987 to 2011), CHS ~ smoking [37]

(Cardiovascular Health Study, 1989 to

1999), CARDIA (Coronary Artery Risk

Development in Young Adults Study, 1983

to 2006), FHS offspring cohort (1971 to

2014), JHS (Jackson Heart Study, 2000 to

2012), and MESA (Multi-Ethnic Study of

Atherosclerosis, 2000 to 2012

e Location: USA
e Size: 26,689 people

e Age: 40-79
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2.2.5 Problems with current regression prediction models

Despite trying to improve the Framingham models by introducing additional biomarkers
to the equations or carrying out research on different cohorts, existing regression
prediction models suffer from common limitations. These limitations can be attributed to
several fundamental issues associated with using traditional regression techniques to
build a disease prediction model. Firstly, a statistical regression technique tries to find a
mathematical function that best fits the data. Thus, it uses the same function with the same
number of fixed independent variables and the same coefficients for all cases. However
different cases might need to have different coefficient values to have better predictions
of the outcomes. For example, smoking might have a greater impact on the CVD risk in
one group but little impact on another group. Secondly, these statistical methods are
limited to using a small number of predictors [84] and therefore might miss other factors
that are important to the outcomes. Thirdly, the relationships between covariates and risk
may be too complex to be presented by a regression function [85]. Another issue is that,
over time, new cases arrive, and the original regression function might be no longer
suitable as changes in society occur, such as migration, behaviour changes, environmental
changes and different models of health care delivery. Table 2-3 lists and explains the

common limitations of regression models.
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Table 2-3: Limitations with current regression models

Limitation# Name Explanation
Limitation 1 Inaccuracy for A model can be accurate for the population but
individual inaccurate for an individual [86].
Limitation 2 Inaccuracy for other A model can perform well for a certain cohort but
cohorts turns out to overestimate or underestimate for other
cohorts, escpecially cohorts of different racial groups
[87].
Limitation 3  Inflexibility of How will the prediction result change if the person

Limitation 4

Limitation 5

Limitation 6

Limitation 7

Limitation 8

handling intervention

Requirement of

complete clinical data

Deficiency of
handling inaccurate

data or result

Deficiency of
handling vagueness of

data or result

Deficiency of
handling uncertainty

of data or result

Poor explanatory

capacity

stops smoking, starts having treatment, etc.? [12]

To build a regression model, a complete dataset is
required while in reality there are often missing data
[12].

Clinical recorded data might be inaccurate [12]. With
models where prediction results are crisp values, a
small error in prediction might completely shift the
person to a wrong category, such as from “high risk”

to “low risk”

For example, when a person says that they smoke “a
lot of cigarettes” a day. It is unknown exactly how

many cigarettes they actually smoke a day.

For example, if the prediction result for a person is
85% chance of belonging to the high risk group, does
it mean the chance is exactly 85% or somehere
between 80% and 90%?

Regression methods are built with complex
equations that are not easy to vizualise or to

understand how they are formed.
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2.2.6 Current fuzzy logic, fuzzy ontology, and CBR approaches

To overcome the problems of regression prediction models, a few studies have tried to
use fuzzy logic and fuzzy ontology approaches to CVD prediction. In 2012, Pal and co-
authors [88] described developing an expert system for screening that would help detect
CHD at an early stage. The paper focused on rules formulation from doctors and a fuzzy
expert system approach was used to cope with uncertainty present in the medical domain.
In 2013, Parry and MacRae [12] introduced an approach that used a fuzzified ontology to
both improve CVD prediction accuracy and provide personalised predictive capacity. In
2014, Kim et al. [89] proposed a model named Fuzzy Rule-based Adaptive Coronary
Heart Disease Prediction Support Model that gave content recommendation to CHD
patients. The model consists of three parts: a fuzzy membership function, a rule set, and
a fuzzy inference. In 2015, Kim et al. [90] used a hybrid approach combining both fuzzy
logic and CART decision tree to build their model for prediction of CHD within 10 years.

CBR has been suggested as an important niche for disease prediction [13, 14]. A CBR
system solves a new problem from the solutions of existing similar past cases [15, 16].
There has been some success in healthcare using CBR [15, 91-93]. However, according
to a 2011 survey by Begum et al. [94], most of these systems were still at the prototype
stage and not available in the market as commercial products. Later, in 2016, in another
survey by Choudhury and Begum [95], the number of CBR systems in the healthcare
domain was found to have increased significantly. Nevertheless, most of the systems do
not include an adaptation step and leave the adaptation task to human experts. Details of
CBR are explained in section 2.4.

CBR has not been widely used in CVD prediction. In a 2014 review by Sutano et al. [96]
only one model, which was developed by Guessoum et al. [97] for the diagnosis of
chronic obstructive pulmonary disease, was related to CVD. The survey by Choudhury
and Begum [95] in 2016 found two more models, by Koton [98] and Reategui et al. [99],
for the diagnosis of heart disease using CBR. More recently, Kalavai [100] proposed a
heart disease prediction model that utilised CBR in an image similarity search. However,
these models were all for diagnosing heart disease rather than predicting it in a future time
interval. To my knowledge, there have not been any models reported that combine fuzzy

ontology and CBR as a model for the prediction of CVD.

Fuzzy ontology CBR systems have been used in other domains. In the domain of collision

avoidance systems in marine environments, in 2007, Park et al. [101] reported on an
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ontology-based fuzzy CBR support system for ship collision avoidance. Their system
operates in two steps. The first step identifies any dangerous ships and indexes those new
cases. The second step retrieves similar cases from the ontology and produces the solution
(the new heading) to take to avoid collision. Recently, Ali et al. [102] proposed a type-2
fuzzy ontology to provide accurate information about collision risk and the marine
environment during real-time marine operations. The type-2 fuzzy ontology-based
approach was proposed as the existing type-1 fuzzy ontology-based approach was not
capable of extracting sufficient information to offer solutions due to the intensively

blurred image data that results from the hazy marine environment.

In the domain of depression diagnosis, in 2012, Ekong et al. [103] presented a neuro-
fuzzy CBR model as a decision support system for the diagnosis of depression based on
the overall severity of symptoms. Neuro-fuzzy inference systems provide self-learning

intelligent systems that are capable of handling uncertainties in a diagnosis process [104].

In Education, in 2013, Inyang et al. [105] developed a fuzzy clustering technique based
on the Fuzzy c-Means (FCM) algorithm to identify at-risk students at an early stage in
their academic career. FCM is a method of clustering which allows one piece of data to
belong to two or more clusters. Later, in 2015, Vo et al. [106] introduced an algorithmic
framework for incomplete educational data clustering using a nearest prototype strategy.
Their framework was found to be able to perform data clustering on datasets with large

numbers of missing values.

In 2015, in diabetes diagnosis, EI-Sappagh et al. [9] proposed a fuzzy-ontology-oriented
case-base reasoning framework for semantic diabetes diagnosis. They compared their
framework with existing traditional CBR systems and a set of five machine-learning
classifiers. The authors claimed that their system outperformed all those systems.
However, several limitations are found from their study. First, their dataset consisted of
only 60 real diabetes cases. This is quite a small population. To have more confidence in
their approach, a larger cohort is needed. Second, the system has not been validated
against other diverse population datasets. Third, in this system (relied in the existing
jColibri2 CBR framework [107]), risk factor values were recorded as instances while they
should actually be represented as literals in the ontology. However, despite the limitations
of El Sappagh et al.’s work, their study has shown the potential of fuzzy ontology CBR

approaches in the medical diagnosis domain.
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As there has not been a fuzzy ontology CBR model for the prediction of CVD yet while
fuzzy ontology and CBR have been used and have shown usefulness in other domains, it
is interested to know if a CVD prediction model can be developed using a combination
of fuzzy ontology and CBR, what risk factors this developed model uses, and the model
prediction performance. Hence, the first three research questions (RQ1, RQ2, and RQ3)

below are formed.

RQ1. Can a CVD prediction model be developed using a combination of fuzzy
ontology and CBR?
RQ2. What risk factors are important in the prediction of CVD using this method?

RQ3. How does the developed model perform in terms of prediction performance?

Besides, the developed model should also be tested using external datasets and this step
is called external validation [108]. Otherwise, the model may not be trusted to be used in

daily clinical practice [109]. Therefore, the RQ4 below is formulated in this research.
RQ4. How does the developed model perform in terms of external validation?

In addition, it is also interested to know how the developed model solves the limitations
of current widely used regression models and how it compares with those existing models
on prediction performance. As a result, the further two research questions (RQ5 and RQ6)

below are created for this research.

RQ5. How does the developed model overcome the limitations of current widely
used regression models?
RQ6. How does the developed model compare with current widely used regression

models in terms of prediction performance?

2.3 Fuzzy ONTOLOGY

2.3.1 Type-1 Fuzzy Sets

Type-1 fuzzy sets were introduced by Zadeh in 1965 [110]. Unlike crisp sets where an
element has a membership of 0 (does not belong to) or 1 (belongs to), each element in a
fuzzy set has a degree of membership which is represented by a real number in the interval
[0, 1]. Professor Zadeh defined a type-1 fuzzy set as:
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Let X be a space of points (objects), with a generic element of X denoted by x. Thus,
X = {x}.

A fuzzy set (class) A in X is characterized by a membership (characteristic) function
fa(x) which associates with each point in X a real number in the interval [0, 1], with
the value of fa(x) at x representing the “grade of membership” of x in A. Thus, the
nearer the value of fa(x) to unity, the higher the grade of membership of x in A.
When A is a set in the ordinary sense of the term, its membership function can take
on only two values 0 and 1, with fa(x) = 1 or 0 according as x does or does not
belong to A. [110, p. 339]

The concept of a type-1 fuzzy set, as defined above, can be illustrated in the following
example of youngness, which is defined to answer the question “to what degree is a
person young?”. X is the universe of discourse, which is a set of all ages, A is the subset
of young ages, X is the age of the person, and fa(x) is the degree of youngness of age x. If
fa(x) equals to 1, x is 100% belongs to A. If fa(x) equals to 0, x is 0% belongs to A. If fa(x)
equals to 0.3, x is 30% belongs to A. In this example, the membership function fa(x) is
defined as in Equation (1) and is illustrated by the graph in Figure 2-6.

1 x <25
f200) = { (35 —x)/10 25 <x <35 (1)
0 x =35
1.2 %D
3
1
0.8
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0.2
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0
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Figure 2-6: Degree of youngness based on age
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The membership function is the significant component of a fuzzy set such that operations
with fuzzy sets are defined via their membership functions [111]. In practice, the most
common types of membership functions are triangular, trapezoidal, bell-shaped, gaussian,
and sigmoidal [112, 113].

2.3.2 Type-2 Fuzzy Sets

In 1975, Zadeh introduced type-2 fuzzy sets [114]. Type-2 fuzzy sets allow the
incorporation of uncertainty of membership functions into fuzzy set theory. In type-1
fuzzy sets, membership functions are totally crisp [115]. In a type-2 fuzzy set, a
membership degree is also fuzzy and can be defined by a type-1 fuzzy set [116].

Therefore, type-2 fuzzy sets can model uncertainty. On the other hand, type-1 fuzzy sets
can model vagueness (having a degree of membership), but not uncertainty (the degree
of membership is also fuzzy). The membership of the membership (secondary
membership) of a type-2 fuzzy set is also fuzzy. ldeally, type oo fuzzy sets must be used
to completely represent uncertainty. However, this is not practical [117]. All the literature

found in this research only deals with type-1 and type-2 fuzzy sets.

By default, a type-2 fuzzy set is called a general type-2 fuzzy set to distinguish it from an
interval type-2 fuzzy set. In interval type-2 fuzzy sets, secondary membership functions
are interval sets (i.e. the secondary memberships are either zero or one). A reason for
having interval type-2 fuzzy sets is that general type-2 fuzzy sets are computationally
intensive [118]. It is much simpler to use interval type-2 fuzzy sets than general type-2
fuzzy sets [115]. In fact, interval type-2 fuzzy sets are the most widely used type-2 fuzzy
sets in practice [115, 119].

2.3.3 An Overview of Fuzzy Ontology
Although there have been a number of definitions of ontology [120], it can be defined as:

Ontology is an explicit specification of conceptualization [121, p. 199]. In computer
science, ontology is a formal representation of the knowledge by a set of concepts

within a domain and the relationships among those concepts [122, p. 43].

There have also been several definitions of fuzzy ontology in the literature [120]. In

essence, a fuzzy ontology is an ontology that contains fuzzy concepts (each fuzzy concept
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is a fuzzy set). In a general sense, “a fuzzy ontology is a shared model of some domain
which is often conceived as a hierarchical data structure containing all concepts,
properties, individuals, and their relationships in the domain, where these concepts,
properties and so on may be defined imprecisely” [123, p. 91]. Formally, a fuzzy ontology
can be represented as a quintuple F=<I, C, T, N, X> [124, p. 13] where:

e | isthe set of individuals (objects), also called instances of the concepts.
e C is the set of fuzzy concepts (classes of individuals, or categories, or types).
Each concept is a fuzzy set on the domain of instances.
e The set of entities of fuzzy ontology is defined by E=C U1.
e T denotes the fuzzy taxonomy relations among the set of concepts C. It organizes
concepts into sub-(super-) concept tree structures. The taxonomic relationship
T(i, j) indicates that the child j is a conceptual specification of the parent i with
a certain degree.
e N denotes the set of non-taxonomy fuzzy associative relationships that relate
entities across tree structures, for example:
o Naming relationships, describing the names of concepts
o Locating relationships, describing the relative location of concepts
o Functional relationships, describing the functions (or properties) of
concepts
e X s the set of axioms expressed in a proper logical language, i.e., predicates
that constrain the meaning of concepts, individuals, relationships and functions.

Ontology brings several advantages over other traditional methods of data management,
such as relational database schemas. Using ontologies offers knowledge sharing, reuse of
existing knowledge, and information integration [120]. As such, ontology plays a
prominent role in the Semantic Web and in other forms of knowledge management [125].
In addition, automated reasoning, which has been the focus from the very start of
Acrtificial Intelligence (Al) [126], is enabled by ontologies. Automated reasoning can be
conducted using inference rules [127]. Berners-Lee et al. [127] gave an example of the

power of inference rules with real-world data below:

If a city code is associated with a state code, and an address uses that city code,
then that address has the associated state code. A program could then readily
deduce, for instance, that a Cornell University address, being in Ithaca, must be in
New York State, which is in the U.S., and therefore should be formatted to U.S.
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standards. The computer does not truly “understand” any of this information, but
it can now manipulate the terms much more effectively in ways that are useful and

meaningful to the human user. [127, p. 10]

Fuzzy ontology, which incorporates fuzzy concepts into an ontology, provides additional
advantages to the use of ontology. Fuzzy ontology can represent vague and uncertain
information, which is common in real-world scenarios. For example, “the guest house is
a cheap, small and more hospitable hotel” [120, p. 64]. Therefore, fuzzy ontology can
help represent real world knowledge, which is not always crisp but often vague and

imprecise.

The following arguments are based on [128]. With a wealth of literature, fuzzy ontology
has proved to be very useful in many application domains, including information
retrieval, semantics extraction and analysis, knowledge mining, clustering, integration,
decision making, and knowledge representation and reasoning. However, research on
fuzzy ontology is still in the development stage and important challenges remain such as
construction, mapping, integration, query, and storage. These challenges and strategies

for overcoming them need to be more deeply investigated.

2.3.4 Fuzzy Ontology Representation Languages

RDFS (Resource Description Framework Schema) and OWL (Web Ontology Language)
are the most widely used languages for describing ontologies [128]. RDF (Resource
Description Framework) is a model that describes things as triples; each triple is in the
form of <subject><predicate><object>, for example “CVD is the number one cause of
death”. RDFS is considered to be a primitive language providing basic elements for
writing ontologies; however, a more powerful language is needed to deal with complex
relationships among objects [129]. OWL was built on top of RDF and RDFS adding
semantic richness that allows reasoning. For example, if there is an RDF statement
“Professor A teaches the Data Mining class”, then with OWL, it is also implied that “the
Data Mining class is taught by Professor A” [130]. In fact, OWL is the standard language
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for writing ontologies recommended by W3C (World Wide Web Consortium) [128]. The
current version of OWL is OWL 2 [131].4

To describe fuzzy ontologies, several approaches have been proposed. These include
fuzzy extensions of RDF/RDFS [132-137], fuzzy extensions of OWL 1 [138-140], and
frameworks to represent fuzzy ontologies using OWL 2 [141]. The fuzzy extensions of
RDF generally allow the addition of a degree of truth to an RDF triple, such as “Auckland
is a big city to degree 0.8 [128]. There is not enough richness to fully represent fuzzy
ontologies in these approaches. The fuzzy extensions of OWL 1 introduce new syntax,
and thus current ontology editors cannot be used [141]. Recently, the approach by Bobillo
and Straccia [141] of representing fuzzy ontologies using OWL 2 annotation properties
has received significant attention [128]. In addition to the framework to represent fuzzy
ontologies using the existing OWL 2 language, Bobillo and Straccia also developed a
plugin for Protégé to create and edit fuzzy ontologies, and three parsers to read and
transform those created fuzzy ontologies into formats that can be read by fuzzy DL
reasoners, such as fuzzyDL [142] and DeLorean [143]. Details of the Protégé plugin and
the parsers are mentioned in the next section (section 2.3.5); however, it should be noticed
that all the approaches mentioned currently support only type-1 fuzzy logic, not type-2

fuzzy logic.

2.3.5 Fuzzy Ontology Tools

The number of tools for construction and management of fuzzy ontologies seems, based
on this investigation, to be low. In addition, all the tools to my knowledge only support
type-1 fuzzy logic. Well known tools include:

e Fuzzy OWL 2 Protégé plugin: Bobillo and Straccia [141] developed this plugin to
make the syntax of the annotations transparent to users when creating fuzzy
ontologies. This means that users do not need to know and type the annotations
but instead use the plugin’s GUI (graphic user interface) to create fuzzy
ontologies. As part of this doctoral research, this plugin was verified as being

compatible with Protégé versions 4.1 and 4.3. As mentioned previously, Bobillo

4 To avoid confusion in this body of work, OWL 1 means the first version of OWL; OWL 2 means the
second version of OWL; Using OWL without a version number means the versions can be ignored in the

context.
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and Straccia also developed three parsers (one general parser and two specific
parsers) to translate the fuzzy ontologies created using the plugin into formats
suitable for existing fuzzy DL reasoners. The general parser can be customised
for any specific fuzzy DL reasoner. Bobillo and Straccia adapted the general
parser to create the two specific parsers, one for fuzzyDL and the other one for
DeLorean. It should be noted that this plugin and the parsers support type-1 fuzzy
sets only, not type-2 fuzzy sets. The parsers are written in Java and use the OWL
API 3 [144], a well-known Java API for working with OWL 2 ontologies. The
Protégé plugin and the parsers are publicly available for download on their

website.®

e Fuzzy Protégé plugin: Ghorbel et al. [145] created a plugin for Protégé 3.3.1 to
build fuzzy concepts and roles, and allow automatic computing of membership
degrees. In addition, this plugin allows querying the created fuzzy ontologies
based on fuzzy criteria. However, it seems that this plugin is no longer available

for download and installation into Protégé.

e Fuzzy KAON: Calegari and Ciucci [139, 146] developed a way to define and
manage fuzziness directly in the KAON ontology editor. However, KAON is
based on RDFS and therefore it is not possible to represent all the constructors
and axioms of their developed Fuzzy-OWL, a fuzzy extension of OWL 1 [139].
Therefore, it would be necessary and more useful to define and implement a way
to represent fuzzy ontologies in KAON2, a successor to the KAON project
(KAON1). KAON?2 is based on OWL-DL, a sublanguage of OWL. Both KAON
and KAON2 can be downloaded from websites.®

S http://www.umbertostraccia.it/cs/software/FuzzyOWL/index.html

6 https://sourceforge.net/projects/kaon/ for KAON, and http://kaon2.semanticweb.org/ for KAON2
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2.4 CASE-BASED REASONING

2.4.1 An Overview of CBR

Case-based reasoning (CBR) is a problem solving paradigm that resolves a problem using
the specific knowledge of previously experienced cases [16]. This paradigm is associated
with a CBR cycle (methodology’). The CBR cycle is comprised of four activities [147,
p. 303]:

Retrieve similar cases to the problem description.
Reuse a solution suggested by a similar case.

Revise or adapt that solution to better fit the new problem if necessary.

A e

Retain the new solution once it has been confirmed or validated.

As CBR is only a problem-solving paradigm accompanied by the CBR methodology,
actual techniques are needed to build CBR systems to solve real-world problems.
Common techniques include nearest neighbours, fuzzy logic, and database technology
[147]. Details of these techniques are described in section 2.4.2.

Research on CBR has been gaining momentum with more and more practical applications
produced in a variety of domains [148]. Some examples of those domains are law [149],
education [150], marine [101], software engineering [151], and health care [9]. As the
CBR methodology helps provide computational models very close to human reasoning,
which mostly uses past experiences to solve daily problems [152], it is reasonable for

such high research interest in CBR and the applicability of CBR in various domains.

2.4.2 Common techniques used for CBR

2.4.2.1 Nearest neighbour
Nearest neighbour is perhaps the most widely used technique in CBR to retrieve similar
cases [147]. Nearest neighbour algorithms calculate the similarity (distance) between the

problem (target) case and an existing case in the case base (case library). The calculation

7 A system of methods for how things are proceeded
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is repeated for every case in the case base to identify k nearest neighours. Outcomes for

the target case are decided based on these k nearest neighbours using majority voting.

Among the distance functions (such as Euclidean, Cosine Similarity [153], Minkowsky
[154], and Chi-square [155]) used in k nearest neighbours (KNN), Euclidean is the most
widely used [156]. The Euclidean distance between A and B is generally represented by
Equation (2).

diSt(A,B) = \/Zi (.X'i — yi)Z (2)

where A and B are feature vectors A = (X1, X2, ..., xm) and B = (y1, Y2, ..., Ym), m is the
number of features of A and B.

Distances are usually normalised to fall within the [0, 1] range [147]. This helps deal with
the issue of sensitivity to a broad range of values in a single feature that may govern the
distance. The normalised Euclidean distance is generally represented by Equation (3)
[156]. In this case, all features x; and yi are unit normals in the [0, 1] range.

Zzl(xi - ¥i)? ©)

m

dist(A,B) = \/

2.4.2.2 Fuzzy logic

Fuzzy logic becomes helpful for a CBR system to deal with qualitative terms, lack of
certainty in information, or sudden changes in outcome categories due to small changes
in features (e.g. risk factors). In a CBR system, numerical features (crisp values) can be
converted into qualitative terms (fuzzy values) for indexing and retrieval [157]. In
addition, a major task in CBR is to measure similarities, which are inherently fuzzy in
nature [157]. For example, colour matching is defined as excellent, good, fair, or poor in
a CBR system created by General Electric to determine what colourants to use [158].
Moreover, information can be uncertain in real world scenarios and therefore it would be
more appropriate to represent it as fuzzy data. For example, smoking status can be
represented as light, medium, or heavy smoking as a person may not know exactly how
many cigarettes they smoke in a day. On the other hand, many existing prediction models
(e.g. CVD risk prediction models) represent outcomes as categories (e.g. low, moderate,

high) which are in fact crisp representations. The issue in this case is that small changes

36



in risk factors may move the outcome between categories [12]. As a result, a totally
inappropriate treatment plan for the person may be recommended. In this situation, fuzzy

logic can smooth the transition in the outcome categories.

2.4.2.3 Database technology

Using database technology to build a CBR system is perhaps the simplest form [147].
Relational Database Management Systems (RDBMS) have proven to be an appropriate
means to store and retrieve large volumes of data as they have been widely used in the
software industry. The SQUAD system [159] developed by NEC Japan as a software
quality control advisory system is an example of using database technology to build CBR

systems.

243 CBR Tools

There have been several tools for building CBR systems [148, 160]. Popular tools are
CBR Shell [161], FreeCBR [162], jCOLIBRI [107], myCBR [163], eXiTCBR [164], and
IUCBR [165]. Although there may be unknown or unpopular tools that have not been
identified in this research, the number of CBR tools is perhaps still low when considering

the high research interest in CBR systems and the applicability of CBR to a wide variety

of domains.
Table 2-4: CBR tool summary
Tool Programming language  Support ontology  Support fuzzy ontology
CBR Shell  Java No No
FreeCBR Java No No
JCOLIBRI  Java Yes No
myCBR Java No No
eXiTCBR  Java No No
IUCBR Java No No

Table 2-4 provides a summary of the CBR tools based on the criteria for this research.
These criteria are development programming language, whether the tool supports

ontology, and whether the tool supports fuzzy ontology. All six tools evaluated were
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developed in Java. Java is a cross-platform, mainstream programming language and is
favoured by open-source and academic communities. Only JCOLBRI has the features
needed to work with cases stored in ontologies. None of the tools support fuzzy

ontologies.

2.5 CHAPTER SUMMARY

2.5.1 Cardiovascular Disease Prediction

There are a large number of existing CVD prediction models. In this study, well-known
ones are identified and classified as conventional Framingham models, augmented
Framingham models, and alternatives to Framingham [26]. The conventional
Framingham models [27-32] were developed as part of the FHS. The augmented
Framingham models tried to add additional risk factors, especially biomarkers such as C-
reactive protein, into the Framingham equations, and/or create different presentations for
Framingham equations e.g. represented as charts or tables. The alternatives to
Framingham [67-77] are models developed from cohorts not from the FHS.

In terms of prediction methods, the majority of the existing models used regression-based
techniques, in which Cox proportional hazards modelling [37] dominated. However,
regression-based prediction models are known to have limitations. These are inaccuracy
for individuals, inaccuracy for other cohorts, inflexibility of handling interventions,
requirement of complete clinical data, deficiency of handling inaccurate data or results,
deficiency of handling vagueness and uncertainty of data or results, and poor explanatory

capacity.

As the problem of CVD prediction has not been solved, this thesis investigates new
approaches of using fuzzy ontology and CBR for chronic disease prediction, including
CVD prediction. Though there has been no fuzzy ontology CBR system in the CVD
prediction domain yet, there are a few studies of such approaches in other domains, for
example El-Sappagh et al. [9] in diabetes diagnosis. Therefore, fuzzy ontology CBR
approaches appear worthy of investigation. From these, six research questions (stated in

section 1.2) were created for this study.
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2.5.2 Fuzzy Ontology

A fuzzy ontology is an ontology whose content contains fuzzy concepts (each fuzzy
concept is a fuzzy set). Typical types of fuzzy sets are Type-1 and Type-2. A type-1 fuzzy
set is different from a crisp set in that the membership value can be any real number in
[0, 1]. In a type-2 fuzzy set, the membership value is also fuzzy and can be represented

as a type-1 fuzzy set.

A number of approaches have been proposed to describe fuzzy ontologies. These include
fuzzy extensions of RDF/RDFS, fuzzy extensions of OWL 1, and methods to represent
fuzzy ontologies using OWL 2. Among these approaches, the recent approach by Bobillo
and Straccia [141] to describe fuzzy ontologies using OWL 2 annotation properties has

been in the spotlight.

However, there is still a lot of room for research and development in terms of languages
and tools to create and maintain fuzzy ontologies. The number of tools is still limited.

Moreover, none of the existing languages and tools appear to support type-2 fuzzy sets.

The Fuzzy OWL 2 Protégé plugin developed by Bobillo and Straccia [141] was chosen

for creating fuzzy ontologies in this study (section 3.4.4).

2.5.3 Case-Based Reasoning

Case-based reasoning (CBR) is a problem-solving paradigm that solves a problem using
the solutions of similar past problems. Its cycle involves four activities: Retrieve, Reuse,
Revise, and Retain. Popular techniques for building CBR systems include nearest

neighbour, fuzzy logic, and database technology.

Though research interest in CBR is high and the applications for CBR are numerous, tools
for building a CBR system are still limited. Moreover, to my knowledge, none of the

current tools support fuzzy ontologies.
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3.1 INTRODUCTION

This chapter explains in detail the research methods used and their application in this
study. It starts with a description of the choice to adopt a positivist research paradigm,
whose beliefs about the world led to the formation of the research questions and guided
how the study should be approached. An explanation of how Design Science was chosen
as the research methodology is then provided, outlining the systematic way in which this
research was carried out. Alongside Design Science, a conceptual research framework,
implementing the Design Science methodology in Information Research, customised for
this study, and guidelines are also introduced. Next, the chapter describes the strategies
and plans to develop the CRISK prediction model with the aim of solving the CVD
prediction problem. After that, there is a description of how datasets were collected and
selected, how the experiments were designed, and how data were prepared. Finally, an
evaluation protocol consisting of evaluation metrics, external validation, and comparison

to existing models to assess the developed CRISK model is described.

3.2 RESEARCH PARADIGM

The positivist paradigm was chosen to shape this study. The reason was that it was
believed that, in this research that aims to develop a CVD prediction model, knowledge
could be discerned using appropriate scientific methods [166]. As such, the results of the
research approach can be objectively tested for accuracy and other measures. In terms of

data collection and analysis, quantitative methods were used [167].

3.3 METHODOLOGY, FRAMEWORK, AND GUIDELINES

As this research aims to develop a novel CVD prediction model, which can be seen as a
new and innovative artifact serving human purposes, Design Science was chosen as a
suitable methodology for this research [168]. In Design Science, the research activities
are twofold: build and evaluate [169]. Build refers to the activity of constructing the
artifact for a specific purpose, showing that such an artifact can be made. Evaluate is the
activity of developing criteria and assessing the performance of the created artifact against
those criteria [169].
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To understand, execute, and evaluate Design Science research in Information Systems
(1S), a conceptual framework for this body of work was created. This research framework
is depicted in Figure 3-1. It was adapted from the Information System Research
Framework (ISRF) introduced by Hevner et al. [169] to suit this research. The two
activities of the Design Science methodology, forming a spiral model, are seen in the
centre of the framework. A spiral model allows ease of management as problems can be
identified early and appropriate actions can be taken quickly [170].

As can be seen in Figure 3-1, this research used applicable knowledge from the
Knowledge Base to develop an artifact (a CVD prediction model) for business needs from
the Environment. The Environment contains goals/tasks/problems/opportunities of CVD
prediction that define the business needs. The artifact resulting from the research must be
relevant to the business needs of the Environment. The Knowledge Base includes
foundations, methodologies, and tools. The research process must be rigorous which can

be achieved by utilising appropriate knowledge from the Knowledge Base.
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Figure 3-1: Research framework (adapted from Hevner et al. [169])
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Hevner et al. [169] also suggested seven guidelines (Table 3-1) to assist researchers,
reviewers, editors, and readers to understand the requirements of effective Design Science

research.

Table 3-1: Design Science research guidelines (adapted from Hevner et al. [169])

Guideline Description
Guideline 1: Design as an Design Science research must produce a viable artifact in
Acrtifact the form of a construct, a model, a method, or an

instantiation.

Guideline 2: Problem Relevance The objective of Design Science research is to develop
technology based solutions to important and relevant

business problems.

Guideline 3: Design Evaluation  The utility, quality, and efficacy of a design artifact must

be rigorously demonstrated via well executed evaluation

methods.
Guideline 4: Research Effective Design Science research must provide clear and
Contributions verifiable contributions in the areas of the design artifact,

design foundations, and/or design methodologies.

Guideline 5: Research Rigour Design Science research relies upon the application of
rigorous methods in both the construction and evaluation of

the design artifact.

Guideline 6: Design as a Search  The search for an effective artifact requires utilising
Process available means to reach desired ends while satisfying laws

in the problem environment.

Guideline 7: Communication of  Design Science research must be presented effectively both
Research to technology oriented as well as management-oriented

audiences.

Next, section 3.4 describe strategies and plans to develop the CRISK prediction model,
which helps answer RQ1, RQ2, RQ3, and RQ5.
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3.4 STRATEGIES AND PLANS TO DEVELOP THE CRISK

PREDICTION MODEL

3.4.1 CRISK as a CBR system whose case base is a fuzzy ontology

| decided to develop the CRISK prediction model as a CBR system whose case base is a
fuzzy ontology. Fuzzy ontologies are able to represent the vagueness and uncertainty of
data [12]. On the other hand, CBR has been recommended as being useful in disease
prediction [13, 14]. Fuzzy ontology CBR systems have been used in a number of domains
and have shown the potential in the medical diagnosis domain (section 2.2.6). A recent
study [9] followed this approach of combining fuzzy ontology and CBR and did well in
diabetes diagnosis. Therefore, it would be worth trying a combination of fuzzy ontology
and CBR in developing the CRISK model for CVD prediction.

Type-1 fuzzy ontology was decided to be used for the case base. There were two reasons
for this decision. | would like to start with something simple first (type-1 fuzzy ontology
is simpler than type-2 fuzzy ontology, as explained in section 2.3). Another reason for the
decision of using type-1 fuzzy ontology was based on the knowledge that none of the
existing fuzzy ontology tools support type-2 fuzzy sets (section 2.3.5). Developing a
fuzzy ontology tool that supports type-2 fuzzy sets would be not feasible in the three-year

timeframe of a PhD.

Table 3-2 restates the problems with current regression models identified in Table 2-3
and adds arguments explaining how a combination of fuzzy ontology and CBR might be

able to resolve them.
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Table 3-2: Possible solutions for the problems with the current regression models

Limitation# Name Might be solved by

Explanation

Limitation 1

Limitation 2

Limitation 3

Limitation 4

Limitation 5

Limitation 6

Limitation 7

Inaccuracy for CBR

individual

Inaccuracy for CBR

other cohorts

Inflexibility of  N/A
handling

intervention

Requirement CBR
of complete

clinical data

Deficiency of  Fuzzy ontology
handling
inaccurate data

or result

Deficiency of  Fuzzy ontology
handling
vagueness of

data or result

Deficiency of  Fuzzy ontology
handling
uncertainty of

data or result
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CBR targets on individuals, not on
populations as generating a solution
for a new case based on the solutions

of the most similar existing cases.

A CBR approach will be able to
incorporate examples from new
cohorts into the case base, or even
replace the case base completely
when dealing with different

populations.

Not sure if CBR or fuzzy ontology
would be able to address this

limitation at this stage

Even there is missing data, it is still
possible to retrieve the closest cases

to the input case using CBR

Fuzzy ontology usage can help deal
with vagueness and uncertainty of
data. In addition, representing
prediction results using fuzzy sets
can tolerate prediction errors. With
models where prediction results are
fuzzy wvalues, a small error in
prediction might increase or
descrease membership values of the
prediction outcomes but does not
completely shift the person to a
wrong category, such as from “high

risk” to “low risk”.



Limitation 8  Poor CBR and fuzzy Fuzzy ontology shows relationships
explanatory ontology among risk factors, individuals, and
capacity CVD outcomes while the usage of

CBR helps explain why those
outcomes are prediction results

based on the closest cases retrieved

3.4.2 A new way to define “high risk” and “low risk” categories

Time before the CVD event (CVD Interval) is important. When a person undergoes an
examination that includes calculating their CVD risk, | think they would like to know
about when they would have CVD. Thus, it is reasonable that when someone asking what
their CVD risk is would be satisfied with a representation that said a CVD event soon
means “high risk” and that a CVD event in a long time or no CVD at all can be called
“low risk”. Adding this CVD Interval and the memberships of the low risk and high risk

categories may provide useful information.

This is not the same as most approaches, e.g. a regression model. A typical regression
model, such as D’Agostino et al. [31], calculates the probability (risk) of having CVD
within e.g. 10 years for a person, then classifies them into a risk category by comparing
this risk value to a threshold value, e.g. 20%. This means that if the risk value is greater
than or equal to 20%, the person is assigned to the “high risk” category, otherwise the
“low risk” category. With this way, the question of “when the person would have CVD”

cannot be answered.

| defined CVD Interval as the time interval from the examination to when the first CVD

event happens (Figure 3-2).

CVD Interval
«-— - — — — — — — — — — — >
| |
| |
Time at the Time when the first
examination CVD event happens

Figure 3-2: Definition of CVD Interval

| defined two fuzzy sets, “High CVD Risk” and “Low CVD Risk”, whose membership

functions base on CVD Interval, to represent CVD prediction outcomes for a person. The
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membership functions of these two fuzzy sets are described in Equations (4) and (5)
respectively and are illustrated by the graphs in Figure 3-3, where x is CVD Interval in
the year unit, Unigh cvo Rrisk OF HH is the “High CVD Risk” membership value, and PLow cvp

Risk O ML 1s the “Low CVD Risk” membership value.

The reason for using fuzzy sets to represent CVD prediction outcomes was to make
transitions between risk categories less abrupt. With risk categories represented by crisp
sets, a small change in the prediction result can completely shift an individual between
two categories, e.g. from low risk to high risk. Fuzzy sets help mitigate this issue as

having overlapping areas between categories (e.g. Figure 3-3).

The reason for defining two risk categories was based on the aim of this research to
develop a model for prediction of CVD within 10 years (section 1.2). This simplest
approach is to have two risk categories: one category for people who develop CVD within

10 years and another one for those who do not.

The reason for defining “High CVD Risk” and “Low CVD Risk” as trapezoidal
membership functions (Figure 3-3) is explained as follows. | assume that when CVD
Interval < 5 years, the person completely belongs to the high risk category, as the
threshold is 10 years (prediction for within 10 years). Similarly, I assume that when CVD
Interval > 15 years, the person completely belongs to the low risk category. Among the
five common types of membership functions (triangular, trapezoidal, bell-shaped,
gaussian, and sigmoidal), mentioned in section 2.3.1, only trapezoidal is suitable to
represent this way of thinking about “High CVD Risk” and “Low CVD Risk”.

The reason | chose 5 years as the benchmark to start decreasing the high risk membership
value from 1 and increasing the low risk membership value from 0 (Figure 3-3) was that
5 years is in the middle of 0 and 10 years. Different values other than 5 years (e.g. 6 years)
could have been chosen and that would likely have resulted in different testing results of

prediction performance.

The reason for choosing 15 years as the benchmark where the high risk membership gets
down to 0 and the low risk membership reaches 1 (Figure 3-3) is explained as follows.
Fifteen years was chosen for symmetry and because this results in the intersection point
of the “High CVD Risk” and “Low CVD Risk” graphs having the x coordinate of 10
years, which is needed to conclude if the person will develops CVD within 10 years by
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comparing the high risk membership with the low risk membership (if p+ > p, the person

will develop CVD within 10 years).

1 x<5
X

Waigh cvp risk(X) = Hp(X) = —1—0+ 1.5 5 <x <15 4)

0 x =215

0 x<5

X

Heow cvp risk () = W (x) = 10~ 0.5 5 <x <15 (5)

1 x =215

u(x)
) High CVD Risk Low CVD Risk
CVD Interval (years)
0 5 10 15 20 X

Figure 3-3: High CVD Risk and Low CVD Risk membership functions for this research

When dealing with data whose outcomes are known, a person is assigned to the “High
CVD Risk” set (category) or the “Low CVD Risk” set, or to both sets depending on their
CVD Interval. Interpretation is below:

If the person has a CVD event within 5 years, they only belong to the “High CVD
Risk” set with the membership values px = 1 and p. = 0.

If the person has no CVD event within 15 years, they only belong to the “Low CVD

Risk™ set with the membership value g = 1

If the person has a CVD event between 5 and 15 years’ time, they belong to both “High
CVD Risk” and “Low CVD Risk” sets. In this case, 0 <pn <land 0 < p_<1.

If the person has a CVD event at exactly 10 years’ time, their “High CVD Risk”

membership value equals their “Low CVD Risk” membership value, py = pe = 0.5.
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3.4.3 Prediction Process Strategies for CRISK

CRISK will calculate the predicted risk class, pn, pe, and CVD Interval for a new case

based on using membership functions and nearest neighbours. Strategies for the

prediction process are below:

A fuzzy KNN algorithm proposed by Keller et al. [171] is based on to retrieve
closest cases to the input case

From these closest cases, pH, and p. are calculated for the input case using the
above fuzzy KNN algorithm. Then, the risk category is decided for the input case
based on pn and po (if pn > e then “High CVD Risk”, otherwise “Low CVD
Risk™)

Defuzzification to get the predicted CVD Interval

The prediction process of CRISK is explained in more details in section 4.2.

3.4.4 Plans to develop CRISK

The CRISK prediction system was decided to have four modules as follows:

1. The Constructor module: for creating fuzzy ontologies

2. The Experimenter module: for experimentation of different datasets, which are

fuzzy ontologies created by the Constructor module, to evaluate prediction
performance

The Batch Experimenter module: a command line module designed to run long
and repetitive experimentation jobs, for example to find a combination of
predictors that creates the most accurate prediction model

The Predictor module: for predicting CVD risk for each single case (person)

Details of each module are further explained in Chapter 5.

Figure 3-4 gives a summary of the plans to develop the CRISK prediction model. These

plans were made based on results from the analysis of existing foundations,

methodologies, and tools in the Knowledge Base (Figure 3-1), CVD prediction

goals/tasks/problems/opportunities in the Environment (Figure 3-1), and with

consideration of the time constraint of three years for PhD research.
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Create CRISK fuzzy

Fuzﬁ; OWL [ UP dg&}f X;rlkswuh ontology (case base)  je—| PrOWZET lfuz.zy
2 library ¥ template OWL 2 Plugin
Eclipse IDE OWL API 5 Updated Fuzzy Fuzzy Ontology Dataset (FHS Case base template CBR Fuzzy KNN
(Java) OWL 2 library Offspring exam 1) (base.owl)

Develop CRISK System

Y

CRISK System
Constructor Experimenter Batch Experimenter Predictor
Module Module Module
Core algorithms
Retrieve Reuse Revise Retain

Case base (fuzzy ontology)
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Figure 3-4: Plans to develop the CRISK system




The decision was made to implement the CRISK system from scratch instead of using or
extending an existing CBR tool. The main reason for this decision was that there are no
existing CBR tools available that support fuzzy ontology (section 2.4.3).

The process for developing the CRISK system can be summarised as follows:

First, a case base template (base.owl) was created using Protégé 4.3 with the Fuzzy
OWL 2 plugin [141]. Details of the base.owl file can be found in section 5.2. It is this
template which the CRISK system uses to generate the case base. The template is a
type-1 fuzzy ontology containing basic components including the fuzzy concepts of
“High CVD Risk” and “Low CVD Risk”. The dataset used for creating the case base
was decided to be the FHS Offspring Exam 1 dataset (see section 3.6 for justification

of the decision).

Next, the Fuzzy OWL 2 library containing the parsers [141] was updated to work with
OWL API 5, which was the latest OWL API at the time that the case base template

was designed and created.

After that, the CRISK system was implemented in the Java programming language
(Java 8) using Eclipse IDE (version 2018-09). The CRISK application used the OWL
API 5 and the updated Fuzzy OWL 2 library to create and manipulate fuzzy ontologies.
Core algorithms of the application were designed according to the CBR cycle:
Retrieve, Reuse, Revise, and Retain. The Fuzzy KNN algorithm [171] was based on
to develop the Retrieve, Reuse, and Revise algorithms. In Figure 3-4, the Retain
algorithm is grayed out because it is out of the scope of this research (section 4.8).

Details of these algorithms are from section 4.5 to section 4.8.
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3.5 DATASET COLLECTION

N N
| FHS Original
- " Cohort
Study Protocol
Y
— = | FHS Offspri
— [N | = . spring
—_ > % Download > Cohort
Pr 1E1ar,y ov US National Heart, Lung, and
researchers Blood Institute’s website
— .| FHS Gen III
= h " Cohort
Ethics Approval

Figure 3-5: The formal process to obtain FHS datasets

Three FHS cohort datasets were obtained from the US National Heart, Lung, and Blood
Institute (US-NHLBI) in June 2017. These were Original, Offspring, and Third
Generation (Gen I1lI) cohorts. To obtain these cohorts, a formal request process (Figure
3-5) was undertaken through the website of the US-NHLBI.8 To start this process, a user
account had to be created. The request form requires a study protocol, an ethics approval,
and the CV of the primary researcher. After that, an RMDA (Research Materials
Distribution Agreement) form issued by the US-NHLBI must be signed before the
datasets can be accessed and downloaded. The ethics approval and the signed RMDA
form can be found in Appendix A and Appendix B respectively.

FHS datasets were used for this research. The FHS has been broadly recognised as a
premier longitudinal study whose background and design were reviewed by a large
number of studies [172]. The participants in the FHS went through examinations every
two years. Justification for fit-for-purpose is listed in [173] as below:

1. The Framingham town was of adequate size to provide enough participants for
the study.

2. It was compact enough that the study population could be observed conveniently.

8 https://biolincc.nhlbi.nih.gov/studies/framcohort/
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3. It contained a variety of socioeconomic and ethnic subgroups to provide
contrasting groups for analysis.

4. The population was relatively stable to enable adequate follow-up for a long time.
This was partly due to stable economy supported by a diversity of employment
opportunities.

5. The town was located near a medical center which could provide consultations
and the opportunity for educational development of the staff.

6. The physicians and other medical professionals in the town were highly
supportive of the study and cooperated fully with its objectives.

7. Framingham contained two general hospitals at the beginning of the study.
However, one closed shortly after the study began, SQ that a major portion of the
medical care was provided by a single hospital.

8. Framingham, like most towns in Massachusetts, maintained an annual list of its
residents.

9. The staff of a well-organised health department helped to provide death certificate
information and other vital statistics.

10. Framingham had been the site of a community study of tuberculosis nearly 30
years before that had had successful participation by the townspeople. It was
believed that this spirit of cooperation was still present in 1948.

3.6 DATASET SELECTION
FHS Original
Cohort o
s Offpring |/ e
(Internal dataset) e Internal Validation
FHS Offspring Dataset Selection
Cohort Process
Cigfﬂ(giﬁai 1 External Validation
FHS Gen 1T (External dataset)
Cohort

Figure 3-6: Dataset selection process

As the aim of this research was to build a model for prediction of CVD within 10 years,

it was necessary to choose cohorts whose follow-ups were not less than 10 years. To know

how long the follow-ups were, the column named “cvddate” was used. This date (the
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number of days since the first exam) was the date that the participant was diagnosed with
CVD or, in the case of no CVD occurrence, the date of censoring (the last known date the
participant did not have CVD). Figure 3-6 summarises the dataset selection process.

The FHS Original cohort was selected to go to the next step, data preparation. It was
initiated in 1948, consisted of 5,079 participants, and went through 32 medical exams.
Among these 5,079 participants, 3,189 people developed CVD and 1,890 people were
recorded as not having CVD. The CVD dates of those who developed CVD ranged from
0to 22,301 while ones of the latter ranged from 0 to 22,670. These made the FHS Original
cohort eligible for this research as the follow-up had met the 10-year threshold (3,652.4
days).

The FHS Offspring cohort was also selected to go to the next step, data preparation. It
was initiated in 1971, consisted of 5,013 participants, and went through 9 exams. Among
these 5,013 participants, 1,372 people developed CVD and 3,641 people were recorded
as not having CVD. The CVD dates of those who developed CVD ranged from —992 to
14,231 while ones of the latter ranged from 0 to 14,353. These made the FHS Original
cohort eligible for this research as the follow-up was more than 10 years after the first

medical examination.

The FHS Gen 111 cohort was eliminated from the data for this research. The FHS Gen 111
dataset had 4,078 participants. The CVD date values ranged from —8,824 to 3,196. These
made the FHS Gen 111 cohort ineligible for this research as the last follow-up had occurred

within less than 10 years.

Between the two eligible cohorts, the FHS Offspring Cohort dataset collected based on
Exam 1 was decided to be used as the main dataset for building the model. The reasons
for this decision included the fact that more attributes related to CVD development such
as HDL cholesterol [31, 32] were collected early, from Exam 1, for the FHS Offspring
Cohort. In addition, in the course of this research, it was found that there was more
missing data in the FHS Original Cohort than in the FHS Offspring Cohort.

The FHS Original Cohort dataset based on Exam 11 was chosen as a dataset for external
validation. The reason for choosing Exam 11 was that eleven out of the thirteen predictor
attributes chosen for the CRISK prediction model (section 6.5) could be found in this
exam. The two predictor attributes missing in Exam 11 were triglycerides and lactate
dehydrogenase (LDH). Other exams in the FHS Original Cohort did not do as well as
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Exam 11 in terms of providing predictor attributes for the external validation purpose for
the developed CRISK prediction model. In addition, the time gap between Exam 11 and
the latest exam, Exam 32, of the Original Cohort is about 42 years, which is sufficient for

a 10-year CVD study.

3.7 EXPERIMENTAL DESIGN

Mixed sex
dataset
(Test set)

Run experiments (Train-

Test-LOOCYV) for mixed
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Figure 3-7: Experimental Design for the development of CRISK

Figure 3-7 summarises this research’s experimental design for the development of the
CRISK prediction model. Data from FHS Offspring Cohort Exam 1 went through the
Data Preparation step (section 3.8) to produce three datasets, mixed sex dataset, male
dataset and female dataset, and their “SMOTEJ” datasets prepared by applying the
Synthetic Minority Over-sampling Technique (SMOTE) [174] to handle dataset
imbalance issues. The reason for choosing SMOTE is given in section 3.8.10. After that,
the developed CRISK prediction model was run against each dataset to produce
corresponding prediction performance results (Chapter 6). These results were then
analysed to determine which combination of predictors and number of nearest neighbours
yielded the best prediction accuracy for each model. These results were also used to

determine whether or not there should be separate prediction models for men and women.
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There were a couple of reasons for experimenting with a mixed sex model, a male model,
and a female model. In the FHS Offspring Cohort dataset, there are attributes applicable
to women only, such as “ovaries removed”, “hysterectomy”, and “periods have stopped
1 year or more”. In addition, from the literature review, there were a number of sex
specific models, for example the PROCAM model for men [67], the Reynolds risk score
for women [70], and the Reynolds risk score for men [71]. And most importantly,
experimentation on mixed sex, male, and female models would help to decide for this

research if it is the best to have sex specific prediction models or just a mixed sex model.

Details of the experiments for each prediction model are explained in Chapter 6. In
essence, there were two dimensions to the experiment: the number of predictors n and the
number of nearest neighbours k. For the first dimension, a backward elimination
technique was used to decrease the number of predictors by 1 each time, i.e. starting with
n, then n — 1, and finally 1 predictor. The predictors were ranked in order of the most
important to the least important. For the second dimension, the number of nearest
neighbours k was trialled with odd numbers from 1 to 17. The main reason for choosing
odd numbers was to avoid ties i.e. two class labels having the same number of votes.
Later, from the experimentation results in Table 6-3, that k = 7, 7, and 15 respectively
were chosen for the mixed sex model, the male model, and the female model indicated
that it was not needed to trial with k > 17. If k had been 17 to yield best prediction
performance for any of those three models, it should have been needed to trial with k >
17.

The Train-Test-LOOCV method was used for experimental validation in this research.
LOOCV stands for leave-one-out-cross-validation. Each dataset was used as the test set
while its “SMOTEJ” dataset was used as the training set (the case base). Though there is
no training step for a nearest neighbour algorithm, the “training set” terminology is used
in this body of work to indicate the case base, not the test set. As each test set was a subset
of the training set (“SMOTEJd”), for each case from the test set, its instance presenting in
the training set needed to be removed. Therefore, the validation method was named Train-

Test-LOOCYV in this research. More details of this method can be found in section 5.3.

3.8 DATA PREPARATION

As detailed in the experimental design (section 3.7), data from the chosen FHS Offspring

Cohort Exam 1 were used to prepare three datasets: a mixed sex dataset, a male dataset
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and a female dataset. For the mixed sex dataset and the male dataset, attributes that were
present only for females were removed. For the male dataset, cases belonging to female
participants were eliminated and vice versa. Other than these, the process to prepare data
for each dataset was the same. Therefore, the following subsections only describe the
steps used to prepare data for the mixed sex dataset. Data preparation for the other two
datasets was undertaken in a similar manner and details can be found in Appendix F,
Appendix G, Appendix H, Appendix I, Appendix L, Appendix M, Appendix N, and
Appendix O.

3.8.1 Attribute Collection

First, from the FHS Offspring cohort raw data downloaded, attributes from multiple CSV
files were combined to create an initial dataset containing 139 attributes. This was carried
out based on the IDTYPE and PID columns in each individual CSV file. The IDTYPE
column identified the cohort (e.g. the value 0 for the Original Cohort and the value 1 for
the Offspring cohort). The PID column identified the participant within a cohort.
Therefore, IDTYPE and PID together uniquely identified a participant in the FHS.

Next, collected attribute names were transformed into meaningful names. The reason for
this was that the original attribute names were coded as e.g. “A3”, “A8”, “A9” etc. The
transformation was done by referencing the “Data Dictionary.pdf” file enclosed in the
downloaded raw data folder. The attribute name was replaced with the more meaningful

corresponding label. Figure 3-8 displays a screenshot of the Data Dictionary file.

Num | Variable | Type | Len | Format | Informat | Label

1|A3 Num 4 SEX

2|A8 Num 5 METROPOLITAN RELATIVE WEIGHT
3 A9 Num 5 TOTAL CHOLESTEROL
41A10 Num 4 HDL CHOLESTEROL

51Al1 Num 5 WVLDL CHOLESTEROL

6|Al2 Num 5 LDL CHOLESTEROL

7|Al13 Num 5 TRIGLYCERIDES

8|Al4 Num 4 WHOLE PLASMA, ORIGIN
91AlS Num 4 WHOLE PLASMA. PRE-BETA
10| Al6 Num 4 TOP FRACTION. ORIGIN
11| A17 Num 4 TOP FRACTION, BETA
12| A18 Num 4 TOP FRACTION. PRE-BETA

Figure 3-8: A screenshot of the Data Dictionary file
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3.8.2 Invalid Case Removal

Next, as this research aimed to build a prediction model to predict an CVD event in future
for people who are free of CVD, 115 cases having CVDDATE values of less than or equal
to 0 (range from —992 to 0) were removed. The CVDDATE attribute recorded the date of
CVD status as the number of days since Exam 1. After this removal, the dataset contained
5,013 — 115 = 4,898 cases.

3.8.3 Attribute Reduction

Next, data analysis was done to remove 16 columns, resulting in a dataset containing 123
attributes (ref. Appendix C). Four steps to eliminate these 16 attributes were performed.
The first step was to remove the four columns with more than 80% of their data missing.
This left 135 attributes with the highest percentage of missing data being 33.85%. Next,
SBP and diastolic blood pressure (DBP) measured by nurses were excluded as the
duplicate readings taken by physicians had fewer missing data. The third step was to
eliminate the eight attributes belonging to females only. Finally, the “QUETELET
INDEX”, the “METROPOLITAN RELATIVE WEIGHT”, and the “H.C.T” columns
were removed. “QUETELET INDEX” is a duplicate of the “BMI” column.
“METROPOLITAN RELATIVE WEIGHT” is so highly correlated with BMI that these
measures of body fatness can be considered to be identical [175]. “H.C.T” is a duplicate
of the HEMATOCRIT column.

3.8.4 Raw Data Value Transformation

Next, the collected raw data values were transformed into desired forms. Numeric values
representing nominal values (e.g. 1 for Male and 2 for Female) were replaced by the actual
nominal values (e.g. “Male” and “Female”). This was done by referencing the coding
manuals supplied with the dataset package. For simplification, nominal attributes having
more than two values (except “weight compared with 1 month ago” and “weight
compared with 1 year ago”) were converted into binary nominal values. Examples are
shown in Figure 3-9. For “weight compared with 1 month ago” and “weight compared
with 1 year ago” attributes, three nominal values of “about same”, “5+ Ibs lighter” and

“5+ lbs heavier” were kept. The reason was that “lighter” and “heavier” go into two
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opposite directions from “about same” and therefore it would not be appropriate to turn

these values into binary nominal values.

WHOLE PLASMA, ORIGIN**

FREDERICKSON CLASSIFICATION

WHOLE PLASMA, ORIGIN**

0 NO ' 0 NO
1 YES 1 YES
2 TRACE 2 YES

FREDERICKSON CLASSIFICATION

0 NORMAL 0 NORMAL
2 LIPOPROTEIN TYPE 2A 2 ABNORMAL
3 LIPOPROTEIN TYPE 3 — 3 ABNORMAL
4 LIPOPROTEIN TYPE 4 4 ABNORMAL
5 LIPOPROTEIN TYPE 5 5 ABNORMAL
6 LIPOPROTEIN TYPE 2B 6 ABNORMAL

Figure 3-9: Conversion of nominal values into binary nominal values

3.8.5 Prediction Attribute Preparation

Next, two prediction attributes, cvd10 and cvdinterval were created. Their values were
derived from the two of the collected attributes namely CVD and CVDDATE. An
intermediary attribute called CVDYear was also created. Eventually, the CVD,
CVDDATE, and CVDYear columns were removed. Table 3-3 gives a description for
each attribute and explains the logic to calculate the values for the two created prediction
attributes, cvd10 and cvdlinterval. The logic is based on the definitions of “High CVD
Risk” and “Low CVD Risk” described in Equations (4) and (5), and their interpretation
provided in section 3.4.2.

161 cases having CVD = “No” and follow-up time < 15 years were removed. After the

removal, the dataset contained 4,898 — 161 = 4,737 cases.
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Table 3-3: Prediction attribute preparation

Attribute

Description

Logic for value calculation

CvD

CVDDATE

CVDYear

cvdl0

cvdInterval

Cardiovascular Disease (CVD)
status (0 : No, 1 : Yes)

Date of CVD status (Number of
days since Exam 1). This date
corresponds to the date the
participant had CVD or the date of
censoring (last known date the
participant did not have CVD). This

is an integer number data type.

Year of CVD status (Number of
years since Exam 1). The value was
calculated from the CVDDATE
value and how many days in a year.

This is a real number data type.

CVD status within 10 years since
Exam 1 (No or Yes)

Year of CVD status (Number of
years since Exam 1). The value was
decided from CVD, CVDYear, and
cvd10. This is a real number data

type.

When CVD = “No”, CVDDATE is
the last known date the participant
did not have CVD. Therefore, in this
situation, only keep the case if the
follow-up time > 15 years to ensure
that the High CVD Risk
membership and Low CVD Risk
membership are known (un =0 and
pL = 1). Otherwise, the memberhip

values are unknown.

N/A. The values (Os and 1s) were already in the
downloaded dataset, and were already transformed

into No and Yes values in section 3.8.4.

N/A. The values are already in the downloaded

dataset.

CVDYear = CVDDATE / 365.242199

If CVD =“Yes” Then

If CVDYear <10 Then
cvd10 = “Yes”
cvdInterval = CVDYear

Else
cvd10 = “No”
cvdInterval = CVDYear

End If

Else /* CVD = “No” ¥/
If CVDYear < 15 Then

Remove the case /* Follow-up less than 15 years */

Else
cvd10 = “No”
cvdInterval = *" /* Don’t have CVD Interval”*/
End If
End If
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3.8.6 Attribute Value Range Analysis

In the next phase of data preparation, attribute value range analysis was undertaken. The
result was that all attribute value ranges were within acceptable ranges. This analysis was
undertaken using Weka 3.8.3 to visually examine each attribute in the dataset along with
their respective descriptive statistics (Figure 3-10). In addition, the value ranges were also
checked against the FHS Offspring Cohort Exam 1 Coding Manual (enclosed in the
dataset package obtained). This analysis confirmed that the data was ready for the next

step, feature selection.

Current relation ~ Selected attribute
Relation: FramOfSpring?... Aftributes: 122 Mame: AGE Type: Mumeric
Instances: 4737 Sum of weights: 4737 Missing: 0 (0%) Distinct: 50 Unigque: 0 (0%)
Attributes Statistic | Value |
' ' Minimum 13
Maximum 62
[ Al || Mone || Invertt || Pattern | Mean 35.791
StdDev 10.214
M. | | Name |

111 || NON-SPECIFIC T-WAVE ABMORMALI... _"‘
112 || NON-SPECIFIC S-T SEGMENT ABMNO...
113 || ECG CLINICAL READIMNG

114 | ALCOHOL INDEX ICIEISS: cvd10 (Mom) T][ Visualize All |
115 || HGT
116 | | WGETGP
118 || BMI

119 || Treatment for Diabetes
120 [] Diabetes )
121 | cvd10

122 | | cvdinterval ]

Figure 3-10: Attribute value range analysis in Weka

3.8.7 Feature Selection

Initially, 34 predictor attributes (risk factors) were selected. This was done by using
Weka’s InfoGainAttributeEval attribute evaluator with the Ranker search method (Figure
3-11) to rank the 119 predictor attributes in the prepared dataset. InfoGainAttributeEval
evaluates the worth of an attribute by measuring the information gain with respect to the
class (cvd10). The highest ranked attribute was “age” with an information gain value of
0.041558. The cut-off value was chosen to be 0.004, which was about one tenth of this
highest information gain value. This means that attributes having info gain values less

than 0.004 were eliminated. Later, the result of using only 13 predictors for the CRISK
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model from section 6.4 proves that the cut-off value was chosen adequately, i.e. small
enough to not missing out predictors. Appendix D contains the attribute selection output
resulting from Weka.

[ Preprocess T Classify I Cluster I Associate I Select attributes T Visualize ]

Attribute Evaluator

l Choose J|Inquainn.ttrihuteEual |

Search Method

l Choose J|Ranker -T-1.797693134862315FE308 -N -1 |

Attribute Selection Mode Attribute selection output
(®) Use full training set 2
() Crossvalidaion  Folds 10 Search Method: s
Attribute ranking.
Seed 1
Attribute Ewaluator (supervised, Class (nominal): 120 cw]
Information Gain Ranking Filter
[ (Mom) cvd10 -
Banked attributes:
Start Stop 0.04155809 116 RGE
0.02085707 2 TOTAL CHOLESTEROL
Result list {right-click for options) 0.01658859 4 VLDL CHOLESTEROL
0.0165287¢0 5 LDL CHOLESTEROL
21:46:04 - Ranker + InfoGainAttributeEs 0.01627317 33 PHYSICIAN SYSTOLIC BLOOD PRESSURE
0.01371721 34 PHYSICIAN DIASTOLIC BLOOD PRESSURE
0.01291542 ¢ TRIGLYCERIDES
0.01133067 §2 USUAL # OF CIGRRRETTE SMOKE NOW/EVER
0.00974304 23 GLUCOSE
0.008933589 3 HDL CHOLESTERCL
0.0028535835 117 BMI b
0.00795268 79 DYSPNER ON EXERTICN v
ELS TV a7 T

Figure 3-11: Feature selection using Weka

Table 3-4 displays 34 selected features and their Weka computed information gain

rankings in descending numerical order.

Table 3-4: Selected features and their information gain rakings

Attribute Information gain
AGE 0.04155809
TOTAL CHOLESTEROL 0.02066707
VLDL CHOLESTEROL 0.01658859

LDL CHOLESTEROL 0.0165876
SYSTOLIC BLOOD PRESSURE 0.01627317
DIASTOLIC BLOOD PRESSURE 0.01371721
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TRIGLYCERIDES

USUAL # OF CIGARETTES SMOKE NOW/EVER

GLUCOSE

HDL CHOLESTEROL

BMI

DYSPNEA ON EXERTION
SEX

LDH

ALKALINE PHOSPHOTASE
URIC ACID

WGTGP

HISTORY OF HYPERTENSION
SMOKED AT LEAST 1 YEAR
HEMATOCRIT

WHITE BLOOD COUNT
FREDERICKSON CLASSIFICATION
Diabetes

DYSPNEA INCREASE IN PAST 2 YEARS
H.G.B.

TOP FRACTION PRE-BETA
RED BLOOD COUNT

A QRS

SMOKES CIGARETTES
HYPOGLYCEMIC AGENTS
Treatment for Diabetes
PRE-BETA BAND
HYPOTENSIVES

WHOLE PLASMA PRE-BETA

0.01291542

0.01133067

0.00974304

0.00893359

0.00853935

0.00798268

0.00758577

0.00752456

0.00731425

0.00697716

0.00626734

0.00617897

0.00606969

0.00593551

0.0057986

0.00570935

0.00566588

0.00564343

0.00560985

0.00547475

0.005308

0.00528462

0.00519749

0.00489626

0.00489626

0.00416658

0.0041151

0.00406476
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3.8.8 Missing Data Removal

After retaining only attributes selected via Weka’s InfoGainAttributeEval method, 666
cases having missing data were removed. This left a dataset of 4,071 cases. Of these, 221
cases have cvd10 = “Yes” and 3,850 cases have cvd10 = “No” (Figure 3-12). Among
those 3,850 cases having cvd10 = “No”, 2,950 cases do not have CVD Interval.

Current relation ~ Selected attribute
Relation: FramOff3pri... Aftributes: 37 Mame: cvd10 Type: Mominal
Instances: 4071 Sum of weights: 4071 Missing: 0(0%) Distinct 2  Unique: 0(0%)
Attributes Mo. | Label | Count | Weight |
i : 1 No 3850 3850.0
2 Yes 221 221.0

l All Jl None Jl Invert JLF‘aﬂemJ

Mo, || Name |
Z5 [ ] UTSPNER UIN EXERTIUN
26 || DYSPMEA INCREASE IN PAST 2 .
27 || WHITE BLOOD COUNT
28 |_| RED BLOOD COUNT
29| | HGE.
30| | AQRS
31 WGTGP
32 || AGE

33| BMI
34 || Treatment for Diabetes
35 || Diabetes

37 | cvdinterval hd

e

[CIass: cvd10 (Mom) T]L Visualize All J

231
I

Figure 3-12: Data distribution of the cvd10 attribute (the class attribute) visualised in Weka

This posed the issue of dataset imbalance for the cvd10 class where the classification
categories are not equally represented [176]. If no action was taken to address this issue,
classification performance would be affected. When dataset imbalance happens,
classifiers tend to have good accuracy on the majority class but very poor accuracy on the
minority class [177].

3.8.9 Feature Ranking

After missing data were removed, the selected attributes were ranked again using Weka
(Appendix E). This produced more accurate rankings of the predictors than that of the
original rankings (Table 3-4) which was undertaken when there was still missing data in

the dataset. Table 3-5 provides these final rankings of the selected attributes, which were
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used as input for the backward elimination experimentation that is described in detail in
Chapter 6.

Table 3-5: Selected features and their final information gain rakings (done after missing data removal)

Attribute Information gain
AGE 0.04384
TOTAL CHOLESTEROL 0.02324
LDL CHOLESTEROL 0.0184
VLDL CHOLESTEROL 0.01733
SYSTOLIC BLOOD PRESSURE 0.01562
TRIGLYCERIDES 0.01392
DIASTOLIC BLOOD PRESSURE 0.01286
GLUCOSE 0.0119
USUAL # OF CIGARETTES SMOKE NOW/EVER  0.01112
HDL CHOLESTEROL 0.01109
HEMATOCRIT 0.00915
BMI 0.00902
LDH 0.00843
SEX 0.00805
WGTGP 0.00741
URIC ACID 0.00736
FREDERICKSON CLASSIFICATION 0.00735
H.G.B. 0.00725
ALKALINE PHOSPHOTASE 0.00719
WHITE BLOOD COUNT 0.00678
DYSPNEA ON EXERTION 0.00673
Diabetes 0.00672
TOP FRACTION PRE-BETA 0.0067
RED BLOOD COUNT 0.00652
SMOKED AT LEAST 1 YEAR 0.00616
Treatment for Diabetes 0.00578
HYPOGLYCEMIC AGENTS 0.00578
A QRS 0.00569
HISTORY OF HYPERTENSION 0.00568
PRE-BETA BAND 0.00543
WHOLE PLASMA PRE-BETA 0.00535
DYSPNEA INCREASE IN PAST 2 YEARS 0.00506
SMOKES CIGARETTES 0.00503
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HYPOTENSIVES 0.00445

3.8.10 Imbalanced Dataset Handling using SMOTE

In order to address the dataset imbalance issue (section 3.8.8), the Synthetic Minority
Over-sampling Technique (SMOTE) [174], available in Weka, was used. To balance
unbalanced datasets, resample techniques (oversampling and/or undersampling) are used.
For this research’s data distribution (Figure 3-12), oversampling rather than
undersampling methods should be chosen because of not having many minority class
samples (only 221 positive cases). In addition, undersampling may remove useful
samples for building the CRISK model [178]. For oversampling, SMOTE is the most
popular oversampling method [179] and has proven successful in variety of applications
and domains [178].

Filter
Choose |[SMOTE-C0-K5-P1600.0-51 Apply
Current relation ~ Selected attribute
Relation: FramOfSpri... Attributes: 37 Mame: cvd10 Type: MNominal
Instances: 7607 Sum of weights: 7607 Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes Mo. | Label | Count | Weight |
i 1 1 No 3850 3850.0
2 Yes 3757 I757.0
[ All J [ Mone J [ Invert J [ Pattern J
Mao. || Name |
Z8 [ UYSFINEA UM EXERTION Fl
26 | DYSPNEAINCREASE INPASTZ . p
27 | WHITE BLOOD COUNT
28 || RED BLOOD COUMT ] T ) -
29 [ | H.G.B. Class: cvd10 (Mom) JL Visualize All J
0 AQRS
31 [ WGTGP
32 [] AGE el 3747
33 BMmI
34 | | Treatment for Diabetes
35 || Diabetes
| 36 @cd0
a7 || cvdinterval ¥

Status

oK ) Log W x0

Figure 3-13: Applying SMOTE in Weka to balance the dataset
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Based on the number of positives and negatives (Figure 3-12), the percentage parameter
was set to 1,600. This setting helped produce a balanced dataset of 3,850 cases of “No”
and 3,757 cases of “Yes” after applying the SMOTE technique (Figure 3-13). Among the
3,850 cases of “No”, 2,950 cases do not have CVD Interval.

An ideal percentage value of 1,642.1 instead of 1,600 could have been calculated and set
for SMOTE to result in having the number of positives equals the number of negatives.
However, this ideal balance would not be how the model would operate in reality. In
reality, it would not practical to always keep the number of positives equal the number of

negatives. Therefore, the percentage value of 1,600 was kept and used.

3.8.11 Input file preparation for experimentation

Finally, four input files in CSV format were created for input into CRISK. They were a
training dataset file, a test dataset file, a predictors file, and a predictors ranking file. An
explanation of these input files is given in Table 3-6.

Table 3-6: Prepared input files for experimentation

File name

Purpose

Explanation

FramOffspring_SMOTE.csv

FramOffSpring.csv

predictors.csv

predictorsRanking.csv

To be used as
the training
dataset

To be used as
the test dataset

To describe
predictors (risk
factors)

To rank the
predictors

Resulting from applying SMOTE in
section 3.8.10

Resulting from missing data removal in
section 3.8.8. This was the actual dataset
with the real data (imbalanced dataset),
before applying SMOTE.

The predictors file is shown in Appendix J.
Detailed explanation of a predictors file is
found in section 5.2.

Resulting from feature ranking in section
3.8.9. The predictors ranking file is
displayed in Appendix K.
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3.9 CRISK MODEL EVALUATION PROTOCOL

3.9.1 Evaluation Metrics

Evaluation metrics to measure the performance of the developed CRISK prediction model
in this research were chosen with consideration of dataset imbalance. The prepared FHS
Offspring Cohort dataset has only about 5% of True Positive (cvd10 = Yes) cases. For a
highly imbalanced dataset like this one, the overall accuracy as in Equation (6) cannot be
used as an evaluation metric because if a model just predicted all cases to be negative
(cvd10 = No), it would achieve about 95% accuracy. Therefore, evaluation metrics other

than the overall accuracy should be considered.

The decision made by binary classification can be represented as a 2 x 2 confusion matrix
in Figure 3-14 [180]. The matrix has four outcomes. True positives (TP) are positive cases
correctly predicted as positive. False negatives (FN) are positive cases incorrectly
predicted as negative. False positives (FP) are negative cases incorrectly predicted as
positive. And, true negatives (TN) are negative cases correctly predicted as negative.

Predicted

Positive | Negative

Positive TP FN
Actual

Negative FP N

Figure 3-14: Confusion matrix

A number of popular evaluation metrics are derived from the above confusion matrix
[180-182]. These include Accuracy, True Positive Rate (TPR), True Negative Rate
(TNR), Precision, F-value, and Negative Predictive Value (NPV). These metrics are
described by Equations (6) to (11).

| ~ TP + TN ©
CeUracy = Tp Y FN + FP + TN
TPR = Recall = Sensitivit _Th__ TP (7)
= Recatl = sensitivt y = P = TP -|—FN
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TN

TNR = Specificit _IN_ (8)
= Specificity =" = TN T Fp
TP
. . - - 9
Precision TP L FP 9)

(14 B?) X Recall x Precision
F —value = 10
vatue B? X Recall + Precision (10)

TN
NPV = ———— 1

v TN + FN (1)
With the exception of Accuracy, these metrics were used to evaluate the performance of
the CRISK prediction model developed in this research. Among them, F-value (the
harmonic mean of recall and precision) may not be entirely straight-forward to interpret.
However, the F-value statistic is a popular evaluation metric for imbalanced datasets
[181]. Usually, the value of B (see Equation (10)) is set to 1 [181]. In this research, B was
also set to 1 and thus the F-value became F1-value whose formula is described in Equation
(12).

2 X Recall X Precision

_ — 12
Fy = value Recall + Precision (12)

When coming to decision making, as to what combination of predictors n and number of
nearest neighbours k yielded the best prediction performance, the F1-value was favoured
over the other four evaluation metrics. The reason was that the Fi-value is a harmonic
mean of Recall and Precision. While Recall tells us about the ability of a model to pick
how many positive cases out of all actual positive cases, Precision tells us about the ability
of a model to pick only relevant cases, meaning how many cases from the ones predicted
to be positive are actually positive. In CVD prediction, if a “High Risk” person is
predicted to be “Low Risk” because of low Recall, that person may miss out on medical
treatment and attention. On the other hand, if a “Low Risk™ person is predicted to be

“High Risk” because of low Precision, unnecessary medical treatment may occur.

However, when two models produce the same or very similar F1-values, Recall should be
considered with a higher priority than Precision. In CVD prediction, the consequence of
missing out a positive case would be a lot worse than wrongly classifying a negative case
as positive. A FN case may not be given further examination, treatment, or attention and

therefore may lead to the worst scenario—death. On the other hand, unnecessary medical
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treatment and attention for a FP case could just cost money and time. Moreover, these
costs might not be entirely wasted as, for example, a FP patient may gain some health
benefits from being advised to consume a healthy diet in order to reduce CVD risk.

This research did not use AUC as an evaluation metric. AUC is abbreviated from Area
Under the Receiver Operating Characteristic (ROC) Curve [183]. It is used as a
performance metric for a number of existing models such as D’Agostino et al. [31],
PROCAM [67], and SCORE [68]. The ROC curve is a two-dimensional graph of False
Positive Rate (FPR = 1 — TNR) on the X axis and TPR on the Y axis. Each point on the
ROC curve corresponds to one decision threshold set for the algorithm used by the model.
For example, in case of a KNN algorithm, the decision threshold (the number of votes)
can be varied from 0 to k to produce the ROC curve. As a result, AUC does not represent
the model operating in the most suitable selected threshold but summarises the
performance of the model over regions of ROC space in which one would rarely operate
[184]. In this research, the decision threshold was set to be the majority vote. The number
of risk factors n and the number of nearest neighbours k were varied instead. Each
combination of n and k produces one single point of FPR and TPR. TPR, TNR, Precision,

F1-value, and NPV were evaluated rather than producing ROCs.

Though the prediction outcomes include CVD Interval, widely used metrics such as Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient
to measure the error of a model in predicting quantitative data were decided not to be used
as performance metrics in this research. The reason is twofold. First, there are many cases
whose CVD Interval and/or predicted CVD Interval are unknown. Second, the focus of
this research, at the current stage, is to correctly predict whether a person will have CVD
within 10 years, not on checking the accuracy of the predicted CVD Interval. However,

RMSE values are reported in Table 6-5.

3.9.2 External Validation

In this research, external validation was planned and conducted to answer RQ4. External
validation means testing a developed model with different cohorts to the one that was
used to build the model [108]. Such validation is critical as a model may perform well for
a certain cohort but may overestimate or underestimate when applied to other cohorts,
especially cohorts of different racial groups [87]. The fact that numerous models have

been published without adequate external validation was highly criticised in the review
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article by Damen et al. [6]. In this study, the FHS Original Cohort Exam 11 dataset was
chosen as a test set for the external validation process. The reasons for choosing this
dataset were explained in section 3.6. Details of the external validation results are

presented in Chapter 7.

3.9.3 Comparison to existing models

For comparison to existing models, three models were chosen: the D’ Agostino et al. [31]
model, the PREDICT-1° [76] model, and the 2018 PCE [77] model. Though two models
were developed in the D’Agostino et al. [31] study, and both of them are currently used
on the FHS website for 10-year CVD risk prediction, only the first model was chosen as
it performed better than its simpler version (the second model). PREDICT-1° was
recently published and was reported to perform better than the 2013 PCE [74] model—a
well-known alternative to conventional Framingham models from the American College
of Cardiology/American Heart Association. The 2018 PCE model was published after
PREDICT-1° and claimed a significant improvement in terms of accuracy in prediction
of CVD. Details of comparison of CRISK to these three existing models are provided in

section 8.3. These details help answer RQ6.

3.10 CHAPTER SUMMARY

This Research Methodology chapter described how this research was approached,
designed, implemented, and evaluated. Design Science was the research methodology for
this study. The methodological process was guided by the beliefs of the positivist
paradigm. The chosen methodology was equipped with a conceptual framework in
Information Research, tailored for this specific study in CVD prediction. In addition, the

study was also assisted by a set of guidelines.

The development of the CRISK prediction model, which was the artifact resulting from
carrying out this Design Science research to solve the CVD prediction problem, was
strategically planned and designed. The prediction model was decided to be a CBR
system whose case base is a fuzzy ontology. The CRISK system was decided to be
implemented from scratch as none of the known existing CBR tools supports fuzzy

ontology. The prediction outcomes from the CRISK system were designed to be
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represented as fuzzy membership values of “High CVD Risk” and “Low CVD Risk”
fuzzy sets.

To have data for the CRISK prediction model development and evaluation, FHS cohorts
were obtained and this process was detailed in this chapter. The FHS Offspring Cohort
Exam 1 dataset was selected to be used for the development of the prediction model. FHS
Original Cohort Exam 11 dataset was determined to be used as the dataset for external
validation. SMOTE was used to address the dataset imbalance issue.

For evaluation of the developed CRISK prediction model, a protocol consisting of
evaluation metrics, external validation, and comparison to existing models was formed.
The evaluation metrics to assess prediction performance included TPR, TNR, Precision,
Fi1-value, and NPV. The developed model was then compared to the D’Agostino et al.
[31] model, the PREDICT-1° [76] model, and the 2018 PCE [77] model (section 8.3).
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Chapter 4
CRISK PREDICTION MODEL
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4.1 INTRODUCTION

This chapter explains the CRISK prediction model. It first provides an account of the
design of the model including input, four CBR activities, the case base, and output. The
design shows how information flows between these components of the model. Each
component of the model is explained in detail with a focus on the algorithms used in each
CBR activity. These algorithms are described using pseudo code. From the information

provided in this chapter, this or a similar CVD risk prediction system can be implemented.

This chapter together with Chapter 5 and Chapter 6 help answer the first three research
questions (RQ1, RQ2, and RQ3). The answers are described in section 9.1.1.

4.2 CRISK PREDICTION MODEL DESIGN
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Figure 4-1: CRISK Prediction Model
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Figure 4-1 shows an overview of the CRISK model that was designed as a CBR system
using fuzzy ontology. Basically, it consists of a case base and four CBR activities,
Retrieve, Reuse, Revise, and Retain. Existing cases are stored in the case base, which is
a fuzzy ontology. Other than those main components, a prediction result (output) is
generated by the model for each new case (input). The prediction process is explained as

below:

1. A new case is input for CVD prediction.

2. The Retrieve algorithm (developed based on the fuzzy KNN algorithm [171]) queries
the Case Base to retrieve k closest cases to the new case (in this research, k is decided
to be 7 from the experimentation results in Chapter 6).

3. The Retrieve algorithm also identifies h matched cases to the new case from the k
closest cases retrieved.

4. k closest cases, including h matched cases identified, are passed from the Retrieve
algorithm to the Reuse algorithm.

5. The Reuse algorithm suggests the h matched cases if h > 0, otherwise the k closest
cases, to the Revise algorithm.

6. If there are matched cases (h > 0), the Revise algorithm calculates the prediction
outcomes (risk class, “High CVD Risk” membership, “Low CVD Risk” membership,
predicted CVD Interval) from these match cases. This includes handling when there
is a tie and when CVD Interval cannot be decided as a single value e.g. 25 years.

7. If there is no matched case (h = 0), the Revise algorithm calculates the prediction
outcomes as follows. First, it calculates the “High CVD Risk” membership pH and
the “Low CVD Risk” membership p. for the new case using Equation (14) in section
4.7. Then, it decides the predicted risk class for the new case based on these
membership values. After that, it calculates the predicted CVD Interval using
EITHER the membership functions declared in Equations (4) and (5) when px and i
are less than 1 OR averaging CVD Intervals of the nearest neighbours when pn or pi
equals 1.

8. The Revise algorithm proposes the prediction outcomes (prediction result) for the

Nnew case.

When there is a need to conclude whether the case develops CVD within 10 years, e.g.
for measuring prediction accuracy of the developed model using a confusion matrix, the

defuzzification process is as follows:
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If the “High CVD Risk” membership value UH is greater than or equal to the “Low
CVD Risk” membership value JL, then the case is considered to belong to “High CVD
Risk” and it is predicted that CVD will develop within 10 years.

Otherwise, the case is considered to belong to “Low CVD Risk™ and it is predicted
that the person will not develop CVD within 10 years.

Details of each component of the model, including the Retrieve, Reuse, and Revise
algorithms, are described in the next sections in this chapter. The Retain activity is out of

scope of this research (explained in section 4.8).

4.3 CASE BASE

Total £8° CVD Interval
cholesterol /
o N, f e
Cholesterol %, q & 10-year CVD
VLDL
Cholesterol LDH
/ 536%?
s
SBP @‘;\66 \ BMI
: :
g ] 2
Triglycerides % 'f;‘}_ “ Hematocrit
@
DBP HDL
Cholesterol

Glucose

No of cigarettes
smoked a day

Figure 4-2: Illustration of a case stored in the CRISK ontology

The case base consists of existing CVD cases that already have follow-up results. It is a
fuzzy ontology (called the CRISK ontology in this body of work). Figure 4-2 illustrates
a case stored in the case base. The case contains 13 risk factors (age, total cholesterol,
LDL cholesterol, very-low-density lipoprotein (VLDL) cholesterol, SBP, triglycerides,
DBP, glucose, number of cigarettes smoked a day, HDL cholesterol, hematocrit, BMI,
and LDH) and two CVD outcomes (“10-year CVD” and “CVD Interval”). The 13 risk
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factors were selected to be the predictor attributes for CVD prediction based on the results

of experiments detailed in Chapter 6.

How a CVD case is stored in the case base is further explained. A case is stored in the
case base as an individual, uniquely identified by the case ID (PID). A case’s attribute
(e.g. “age”) is represented as a data property (e.g. “#age”). The value of a case’s attribute
Is represented as a literal (represented as a rectangular box in Figure 4-2). A literal can be
either a crisp value (e.g. 37) or a membership value of a fuzzy set (e.g. 0.3 of the “young”
set). In the case of a membership value of a fuzzy set, the membership function of the

fuzzy set must be defined.

Among a case’s attributes, “10-year CVD” and “CVD Interval” are prediction attributes
(outcomes). “10-year CVD” is a binary value of either “Yes” or “No” indicating whether
a CVD event happens within 10 years since the examination. “CVD Interval” is the
number of years since the examination that a CVD event happens. Values of “10-year
CVD” and “CVD Interval” are calculated using the rules defined in Table 3-3.

The “10-year CVD” attribute that is represented as a binary value of either “Yes” or “No”
is not directly used to present prediction outcomes; instead, its fuzzy membership values
of “High CVD Risk” and “Low CVD Risk” fuzzy sets are. These fuzzy concepts are
declared in the CRISK ontology (the case base) using Protégé with the Fuzzy OWL 2
plugin [141]. Their membership functions are described in Equations (4) and (5), and
illustrated by Figure 3-3 in section 3.4.2. Conversions between crisp values of CVD
prediction outcomes and fuzzy membership values are explained in the Revise algorithm
(section 4.7).

Though a case in the case base is capable of storing fuzzy membership values, at the
current stage only crisp values are used in this research. In this research, predictor
attributes are not fuzzified. The CVD outcomes (“10-year CVD” and “CVD Interval”)
are also stored in the case base as crisp values, although they are represented as fuzzy
membership values of “High CVD Risk” and “Low CVD Risk” when displaying on the
result screen for users or when involving in the CBR activities’ algorithms. The
algorithms can read the fuzzy concepts declared in the case base and perform the
conversion between crisp and fuzzy membership values instead of directly keeping the
fuzzy membership values in the case base. However, directly storing fuzzy membership

values in the case base is another way and it will achieve the same results.
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4.4 INPUT (NEW CASE)

New case

Age

Total Cholesterol

LDL Cholesterol

VLDL Cholesterol

Systolic BP

Triglycerides

Diastolic BP

Glucose

No of cigarettes smoked a day
HDL Cholesterol

Hematocrit

BMI

Lactate Dehydrogenase (LDH)

Figure 4-3: Illustration of an input (new case)

Figure 4-3 illustrates an input example. The new case contains the 13 risk factors: age,
total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP, glucose,
number of cigarettes smoked a day, HDL cholesterol, hematocrit, BMI, and LDH. These
risk factors are used to predict CVD for the case. If some of these risk factors are missing
from the input case, the CRISK prediction system still provides prediction results.
However, the prediction accuracy may be degraded when a case is missing some of the

input variables.

45 RETRIEVE

The main purpose of the Retrieve activity is to retrieve k closest cases to the input case
from the case base. The other purpose is to find which cases match with the input case
from the list of k closest cases retrieved. To do these, a Retrieve algorithm was developed
in this research based on the fuzzy KNN algorithm [171].

Let C = {cy, C2, C3, ..., Cn} be the case base containing n cases c, Cz, C3, ..., cn. Let ¢ be
the new case whose CVD risk is to be predicted. Let L be the list to contain k nearest
cases (from C) to c. Let M be the list of h (0 <h <k) cases (from C) matched with c. The
Retrieve algorithm is defined as follows:
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Retrieve algorithm

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

1

2
3
4
9
6
7
8
9

/* Get k closest cases from the case base */
ForeachciinC
Calculate distance d; from cito ¢
If L has fewer than k elements
AddcitolL
Else
Get the last element |4 of L
Get/calculate distance d, from Ix1 to ¢
ifdi<d
Remove Iy from L
AddcitolL
End If
End If
Sort L ascendingly
End of For loop

/* Get h matched cases from the list of k closest cases */
For each element I in L
Get/calculate distance d; from i to ¢
ifdi=0
Add lito M
End If
End of For loop

The Retrieve algorithm has two for loops for the two purposes mentioned above. First, it

iterates through the case base C to find k closest cases to the input case and add these k

closest cases into the list L. Second, it iterates through the list L of k closest cases to find

h (0 <h <k) matched cases with the input case and add these h matched cases into the list

M.

To support the Retrieve algorithm, the Distance algorithm was developed to calculate the

distance between a CVD case in the case base and the input case from their risk factors’

values. Let ¢ be the case from the case base, Cinput be the input case, and d be the distance

between them that is needed to be measured. The Distance algorithm is defined as

follows:
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Distance algorithm

1:  |Intitialise d = 0.0
2. For each risk factor r; in Cinput
3 Ifchasr
4: Initialise diff = 0.0
5: If ri is nominal data
6: If the value of r; of Cinput €quals the value of r; of ¢
7. Set diff = 0.0
8: Else
9: Set diff = 1.0
10: End If
1: Else /* Numeric data */
12: Normalise the value of r; of Cinput t0 be Vinput
13: Normalise the value of rof cto be v
14: Set diff = Vinput = v
15: End If
16: Setd =d + diffxdiff
17 End If
18:  End of For loop
19:  d=sqrt(d) /* square root of d */

The normalisation follows the min-max rescaling method to rescale a numeric value into

the range [0, 1]. The normalisation formula is given in Equation (13) below:

, _ x—min(x)

"~ max(x) — min(x)

(13)

where X is the original value and x’ is the normalised value.
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4.6 REUSE

The purpose of the Reuse activity is to suggest either matched cases or closest cases to
the input case. As the Retrieve algorithm in section 4.5 already gets k closest cases and h

matched cases, the Reuse algorithm is defined as below:

Reuse algorithm

Ifh>0 /* There are matched cases */

Suggest the h matched cases

1
2
3: Else /* There is no matched case */
4 Suggest the k closest cases

5

End If

4.7 REVISE

The Revise activity proposes CVD prediction results for the new input case from the
suggested cases output from the Reuse activity. Let h be the number of matched cases to

the input case from these suggested cases. The Revise algorithm is defined as below:

Revise algorithm

1:  Ifh>0 /* There are matched cases */

2 Use “Revise Matched Cases” algorithm
3. Else /* There is no matched case */

4: Use “Revise Closest Cases” algorithm
5 EndIf

Depending on whether there are matched cases or not, the Revise algorithm uses either
the “Revise Matched Cases” algorithm or the “Revise Closest Cases” algorithm to

generate CVD prediction results for the new input case.

Let M be the list of matched cases, pClass and pCVDInterval respectively be the predicted
CVD Class and the predicted CVD Interval for the new input case, pun and . respectively
be the predicted “High CVD Risk” membership and the predicted “Low CVD Risk”
membership for the new input case. The “Revise Matched Cases” algorithm is defined as

follows:
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Revise Matched Cases algorithm

1. Initialise county, count. =0
2:  Initialise sumy, sum. = 0.0
3:  Initialise noCVDlIntervalFlag = false, machineDecidableFlag = true,

cvdIntervalPredictableFlag = true

4:  Foreach case min M
5: If cvd10 of m = Yes /*High CVD Risk */
6: Set county = county + 1
7 Set sumy = sumy + cvdinterval
8: Else /*Low CVD Risk */
9: Set count = count + 1
10: If m has CVD Interval
1: Set sum, = sum, + cvdInterval
12: Else
13: Set noCVDlIntervalFlag = true
14: End If
15: End If
16:  End of For loop
17:
18:  If county = count, /* There is a tie */
19: If noCVDlIntervalFlag = true
20: Set machineDecidableFlag = false
21: Else
22: Set pCVDInterval = (sumy + sum)/h
23: Calculate pn based on pCVDInterval
24: Calculate . based on pCVDlInterval
25: End If
26:  Else If county > county
27: Set pClass = High CVD Risk
28: Set pCVDlInterval = sumy / county
29: Calculate py based on pCVDInterval
30: Calculate . based on pCVDInterval
31:  Else /* county < count, */
32: Set pClass = Low CVD Risk
33: If noCVDIntervalFlag = true
34: Set cvdintervalPredictableFlag = false
35: Setpn=0
36: Setu =1
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37: Else

38: Set pCVDlInterval = sum. / count,
39: Calculate pn based on pCVDInterval
40: Calculate . based on pCVDlInterval
41: End If

42: EndIf

The Revised Matched Cases algorithm iterates through each case in the list of matched
cases M, counting how many “High CVD Risk” cases county, and how many “Low CVD
Risk” cases count. are present in M. While doing that, it also identifies if there are cases
with no CVD Interval. After that, the algorithm bases on the findings to decide CVD
prediction outcomes. There are three types of outcomes: CVD Class and CVD Interval
predictable, only CVD Class predictable (cvdintervalPredictableFlag = false and
machineDecidableFlag = true), and neither CVD Class nor CVD Interval predictable

(machineDecidableFlag = false).
Important notes explaining the Revised Matched Cases algorithm:

e At line 28: The algorithm calculates the predicted CVD Interval (pCVDlInterval)
for the new case by only averaging the matched “High CVD Risk” cases. The
reason for not averaging all h cases” CVD Intervals is because this may result in
a pCVDInterval conflicts with pClass, for example, pClass is “High CVD Risk”
but pCVDInterval is a value greater than 10 years.

e At line 38: The algorithm calculates the predicted CVD Interval (pCVDInterval)
for the new case by only averaging the matched “Low CVD Risk” cases. The
reason for not averaging all h cases’ CVD Intervals is because this may result in
a pCVDiInterval conflicts with pClass, for example, pClass is “Low CVD Risk”
but pCVDInterval is a value less than 10 years.

e At line 35 and 36: when pClass is “Low CVD Risk” and pCVDInterval is
unknown, set un = 0 and gL = 1. Otherwise, if 0 < y. < 1, pCVDInterval can be

calculated using the “Low CVD Risk” membership function.

When there is no matched case found, the Revise algorithm uses the following “Revise
Closest Cases” algorithm to generate CVD prediction results for the new input case.
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Revise Closest Cases algorithm

1: Calculate pn using Equation (14)
2. Calculate . using Equation (14)
3
4:  fun=
5: Set pClass = High CVD Risk
6: fun=1 /*CVD Interval <= 5 years */
7 Calculate pCVDInterval = average of CVD Intervals of nearest High Risk cases
8: Else /* 10 years >= CVD Interval > 5 years */
9: Calculate pCVDInterval from the High CVD Risk membership function
10:  Else
1: Set pClass = Low CVD Risk
12: fu.=1 /*CVD Interval >= 15 years */
13: Calculate pCVDlInterval = average of CVD Intervals of the nearest Low Risk
cases that have CVD Interval. If all the nearest Low Risk cases don’t have CVD
Interval, set cvdIntervalPredictableFlag = false.
14: Else /* 10 years < CVD Interval < 15 years™/
15: Calculate pCVDlInterval from the Low CVD Risk membership function
16:  EndIf

The “Revise Closest Cases” algorithm uses Equation (14), which is the core part of the
fuzzy KNN algorithm [171], to calculate pn and . From these membership values, the
predicted CVD Class can be decided, and the predicted CVD Interval can be calculated.

Equation (14) is defined as below:

Hij
2
' (distance (cj, c))
wi(c) = = (14)
1
2
(distance (cj, c))

j=1

where c is the new input case, ¢;j is a case in the list of k closest cases, pij is the membership
value of ¢j in the i class (in this context, there are two classes, “High CVD Risk” and
“Low CVD Risk™), the distance between cj and c is calculated using the Distance

algorithm detailed in section 4.5.
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Important notes explaining the Revised Closest Cases algorithm:

e Atline 7: When pn = 1, all k closest cases must belong to “High CVD Risk”.
This can be proved by solving Equation (14) to conclude that all wj =1 (i is
associated with the “High CVD Risk” set, j is from 1 to k).

e At line 13: When p. = 1, all k closest cases must belong to “Low CVD Risk”.
This can be proved by solving Equation (14) to conclude that all wj =1 (i is
associated with the “Low CVD Risk” set, j is from 1 to k).

4.8 RETAIN

The purpose of the Retain activity is to save the new case when it has follow-up results
of CVD statuses. As a result, this case becomes an existing case in the case base
contributing to CVD prediction. Though a complete CBR system should have all four
activities, Retrieve, Reuse, Revise, and Retain, only the Retrieve, Reuse, and Revise
activities were developed in this research. The reasons were due to both the time
limitation and the fact that, in conducting this research, existing FHS datasets that already
have follow-up results were used. Therefore, the Retain activity is out of scope for this

research. Neither design nor implementation was undertaken for the Retain activity.

4.9 OUTPUT (PREDICTION RESULT)

The output provides a CVD prediction result including predicted CVD Class, predicted
CVD Interval, predicted High CVD Risk membership, and predicted Low CVD Risk
membership. In addition, the CRISK system also displays on the prediction result screen
all k closest cases. Moreover, any matched cases among these k closest cases are also
marked. The prediction result screen with all these details is designed to assist medical
practitioners (such as doctors) in reviewing and making decision of CVD risk prediction
for the new input case. Two screenshots of the prediction result screen are given in

Figure 5-32 and Figure 5-33 in the next chapter.
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4.10 CHAPTER SUMMARY

The CRISK Prediction model is a CBR system whose case base is a fuzzy ontology. At
this stage, only the outcome “10-year CVD” is fuzzified as membership values of “High
CVD Risk” and “Low CVD Risk” fuzzy sets, whose membership functions are described
in Equations (4) and (5) respectively. Fundamentally based on the Fuzzy KNN algorithm
by Keller et al. [171], the algorithms used for the Retrieve, Reuse, and Revise activities
of the CRISK Prediction model were developed. Main contributions to the original Fuzzy
KNN algorithm include the development of the Distance algorithm, the development of
the “Revise matched cases” algorithm, and the enhancement of the “Revise closest cases”

algorithm to generate not only CVD risk class but also CVD prediction interval.
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Chapter 5
CRISK SYSTEM IMPLEMENTATION
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5.1 INTRODUCTION

This chapter describes how the CRISK system was developed. Java (version 8) was the
programming language and Java Swing was the GUI widget toolkit for the development.
As mentioned previously, the Fuzzy OWL 2 Protégé plugin [141] was used to create the
“High CVD Risk” and “Low CVD Risk” fuzzy data types. This chapter together with
Chapter 4 and Chapter 6 help answer the first three research questions (RQ1, RQ2, and
RQ3). The answers are described in section 9.1.1.

The CRISK system consists of four modules: Constructor, Experimenter, Batch
Experimenter, and Predictor. Details of each module are further explained in sections 5.2

to 5.5 respectively.

Figure 5-1 shows the welcome screen of the CRISK application. The Constructor button
launches the Constructor module. The Experimenter button opens both the Experimenter
module and the Batch Experimenter module. The Predictor button starts the Predictor

module.
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@ CRISK — O *

Predictor

Experimenter

CVD Prediction Software Constructor
y 2019 by Son Minh Huynh
uckland University of Technology

Figure 5-1: CRISK welcome screen

5.2 CRISK CONSTRUCTOR MODULE

The Constructor module (Figure 5-2) is used to transform a CVD dataset in CSV format
into a fuzzy ontology file in OWL 2 format for use in the Experimenter, Batch
Experimenter and Predictor modules. The Constructor module takes a dataset file (Figure
5-5) and a predictors file (Figure 5-6) as inputs from the user. Upon clicking on the
“Create Ontology” button, a dialog window is opened asking the user to save the ontology

file to be created (Figure 5-3).

@ CRISK Constructor e
Ontalogy:
Select dataset file...

Select predictors file...

Create Ontology View Ontology

Figure 5-2: CRISK Constructor screen
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|£:| Save the ontology file 1%

Save in: Casebase v e~

Documents '
N File name: crisk.owl
I@ Files of type:

OWL File (*.owl) v Cancel

Figure 5-3: CRISK Constructor—Asking the user to save the ontology file

Figure 5-4 shows the ontology construction process. From the dataset file and the
predictors file input, the Constructor module uses the CRISK fuzzy ontology template

file to create a fuzzy ontology file for the dataset.

Dataset file

Fuzzy

Construct fuzzy ontology ontology file

Predictors file

CRISK fuzzy
ontology
template file

Figure 5-4: CRISK Constructor—Fuzzy ontology construction process

The dataset file is a CSV file containing predictor names as column headings and values
for all cases of the dataset. Each row contains the values of a case. The first column is the
case unique identification. The last two columns are 10-year CVD and CVD Interval (in
years) respectively. The other columns in the middle are predictors. An example of a

dataset file is screenshot below (Figure 5-5).

90



PID sex totalChol frederickson glucose sysBP smoking age bmi cvd10 cvdinterval
2263103 Male 193.2622 Normal 96.136024 129.635275 Yes 60 24.01641 Yes 3.024647
2268318 Male 217.1737 Normal 107.3255984 126.027816 Yes 51 24.931419 Yes 2.785471
2270988 Male 184 Normal 105 110 Yes 25 23.152451 No
2281472 Male 143.4619 Normal 97.96328 135.83984 Yes 49 25.075733 Yes 2.154485
2285110 Male 140 Normal 90 124 Yes 29 23.484421 No 38.963187
3169748 Male 202 Normal 127 180 Yes 38 26.76088 No 35.302953
3180197 Male 219.725 Normal 108.846038 115.299272 Yes 47 26.793399 Yes 1.653939
3182227 Male 235.5269 Normal 109.850531 110.068463 Yes 49 23.134917 Yes 3.105233
3207961 Female 142 Normal 89 98 Yes 25 21.799637 No
6254804 Female 246 Normal 85 124 Yes 46 23.20575 No 34.084232
6256728 Male 194 Normal 110 124 Yes 35 27.064972 No
6261505 Female 162 Normal 100 110 Yes 28 28.342438 No 32.789201
6267687 Male 190 Normal 118 158 No 44 31.279938 No 24.263352
6478823 Female 166 Normal 112 154 No 52 34.365768 No 31.951401
6488762 Male 197 Abnormal 100 108 Yes 35 27.755035 No 24.761651
6506014 Female 245 Normal 115 138 No 52 32.029251 No 21.812923
6507916 Male 185 Normal 102 120 Yes 38 27.262329 No 28.296292
6549180 Male 275.8697 Normal 99.333685 132.456181 Yes 47 27.096853 Yes 7.238416
6553522 Male 267.1242 Normal 94.78446 125.763924 Yes 46 29.180734 Yes 1.007673

Figure 5-5: An example of a dataset file

The predictors file is also a CSV file, used to describe the risk factors. The predictors file
has four columns, Predictor Name, Predictor Description, Data Type, and Value List. The
Predictor Name column lists the predictors from the dataset file in the same order. The
Predictor Description column describes the predictor. The Data Type column indicates
that whether a predictor is a double, an integer, a DataOneOf (nominal) etc. These are
data types in OWL 2. For a predictor whose data type is DataOneOf, a list of values
separated by the vertical bar character must be defined in the Value List column. An

example of a predictors file is screenshot below (Figure 5-6).

Predictor Name Predictor Description Data Type Value List

sex Sex DataOneOf Male|Female
totalChol Total Cholesterol double N/A

frederickson Frederickson Classification DataOneOf Normal|Abnormal
glucose Glucose double N/A

sysBP Systolic Blood Pressure double N/A

smoking Smoking DataOneOf Yes|No

age Age integer N/A

bmi BMI double N/A

Figure 5-6: An example of a predictors file

The CRISK fuzzy ontology template file is stored in the CRISK system as a resource file
named “base.owl”. The content of the file is provided in Appendix P. The file basically
contains two fuzzy data types, a class hierarchy, and two data properties for the two
prediction attributes (cvd10 and cvdlinterval). The two fuzzy data types highCVDRisk

and lowCVDRIisk were created based on the membership functions defined in Equations
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(4) and (5) in section 3.4.2. Figure 5-7 and Figure 5-8 respectively show these two fuzzy
data types viewed in Protégé having the Fuzzy OWL 2 plugin installed. The class
hierarchy (Figure 5-9) defines two classes, CBR_CASE class and its child class
CRISK_CASE. The CRISK_CASE class is where a CVD case belongs. The two data
properties for the two prediction attributes are named cvd10 and cvdInterval. Figure 5-10
and Figure 5-11 respectively show them in Protégé.

Annotation property hierarchy r Datatypes |
Object property hierarchy r Data property hierarchy r Individuals by type |

rAnnutatiuns r Datatype Usage

fuzzyLabel [type: string]

(@ double

® float

® hexBinary
@ highCVDRisk

[»

=fuzzyOwl2 fuzzyType="datatype">
=Datatype type="leftshoulder a="5.0" b="15.0" /=
=ffuzzyOwli2=

®int

® integer
® language —
@ Literal

® long

® lowCVDRisk

<

Fuzzy Owl:

mHE

Fuzzy Datatype

Step 1

Step 2
Select the datatype to annotate

Choose type and parameters

Enter a datatype name Type

I ,
I
liii Add new datatype I
I
® IowCVDRisk A [
| [
@ highCVDRisk !
B |50 !

l—l o a b x
K1 50

Figure 5-7: Viewing highCVDRIisk data type in Protégé with the Fuzzy OWL 2 plugin
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Annotation property hierarchy [ Datatypes | rAnnntatinns |/ = oo
Object propery hierarchy | Data praperty hierarchy | Individuals by type |

F F Annotations

ﬂ ﬂ fuzzyLabel [type: string]

@ double <fuzzyOwl2 fuzzyType="datatype"=

: 1:08; =Datatype type="rightshoulder" a="5.0" b="15.0" j=
exBinary <fuzzyOwl2>

@ highCVDRisk

®int

® integer

® language

® Literal

® long

® lowCWDRisk

&)

Fuzzy Owl:

[»

Fuzzy Datatype

Step 1

Step 2
Select the datatype to annotate

Choose type and parameters

Enter a datatype name

1
I raptshouicer =

Type
® lowCVDRisk A

iii Add new datatype
® highCWDRisk ol ®
B |1sn
8
K2 [150

Figure 5-8: Viewing lowCVDRisk data type in Protégé with the Fuzzy OWL 2 plugin

<4 fovdo (http:/fwww.aut.ac.nz/ontologies/foedo.owl) @ [Chworkspace\ CRISKYE_B_B\sr... — O *

File Edit View Reasoner Tools Refactor Window Help

2| o> |®fcvdn (hitp: lhwww aut .ac nzfontologiesfovdo.owl) v| | |

individuals | OWLViz | DL Query | Fuzzy OAL | OntoGraf | SPARGL Query |
Active Ortology | Ertities | Classes | ObjectProperties | DataProperties |  Annotation Properties |

o | e | search: [
S S [elAalalala alal]

v . CBR_CASE |‘ﬂ
L

= CRISK_CASE

I @ CBR_CASE I

[

[ @ CRISK_CASE ‘

Figure 5-9: Viewing CRISK class hierarchy in Protégé



Individuals | OWLViz | DL Query | OntoGraf | Fuzzy OWL | SPARGL Query |
Active Ontology | Ertties | Classes | ObjectProperties | DataFroperies | Annotation Properties

Data property hierar MBEE r Annotations |/ Usage |

T | =] | g Annatations: cvd10

V--mtopDataProperty| | | Annetations el
""" W cvd10 isDefinedBy  [type: string] g@g@g
~mcvdinterval 10-year CVD (Yes/No) ~

Characte) IEE Description: cvd10

|| Functional Equivalent To

SubProperty Of

mtopDataProperty

Dornains (intersection))

@ CRISK_CASE

Ranges

®{"No" , "Yes"}

Figure 5-10: Viewing cvd10 data property in Protégé

Individusls | OWLViz | DLQuery = OntoGraf | Fuzzy OAL | SPARGL Query |
Active Ortology | Ertities | Classes | ObjectProperties | DataProperties |  Annotation Properties

Data property hierar IBEE r Annotations |/ Usage |

T || o= | | D] Annotations: cvdinterval

¥--mtopDataProperty Annotations ol
~-mevd10 isDefinedBy  [type: string] =
""" = cvdInterval CWD Interval (Years) -

Charactel IEE Description: cvdinterval

|| Functional Erquivalent To

SubProperty Of

@mtopDataProperty

Damains (intersection)

@ CRISK_CASE

Ranges

©®double

Figure 5-11: Viewing cvdInterval data property in Protégé

The output file generated by the CRISK Constructor module is a fuzzy ontology file. Two
fuzzy data types highCVDRIisk and lowCVDRisk are created for the ontology from the
CRISK fuzzy ontology template file. Each risk factor from the CSV dataset file becomes
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a data property in the created fuzzy ontology. The two prediction attributes cvd10 and
cvdInterval are also created for the ontology as data properties using the CRISK fuzzy
ontology template file. Figure 5-12 shows these data properties of a sample fuzzy
ontology created for a sample dataset (Figure 5-5) in Protégé. Each case from the CSV
dataset file becomes an individual in the created fuzzy ontology. Each individual is
uniquely identified by its IRI (Internationalised Resource Identifier) whose value is the
PID of the case. Figure 5-13 displays individuals of the sample fuzzy ontology in Protégé.
These individuals belong to the CRISK_CASE class, whose parent class is CBR_CASE.

individuals | OWLViz | DLQuery = OrtoGraf | Fuzzy OWL | SPARGL Query |
Active Ontology r Entities |/ Classes r Object Properties |/ Data Properties r Annatation Properties |

Data property hierarch B EE

rAnnutstiuns rUsag! |

(=] | X
¥--mtopDataProperty Annotations

------ mage isDefinedBy  [type: string]

----- = bmi

------ wcvdl0 Bl

------ mcvdInterval

------ mfrederickson

""" mglucose Characte B = Jll Description: bmi

------ msex

...... = smoking || Functional Equivalert To

------ msysBP

------ m totalChol

SubProperty Of

mtopDataProperty

Domains (intersection)

@ CRISK_CASE

Ranges

@ double

Figure 5-12: Viewing data properties of the sample fuzzy ontology in Protégé
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& 3207961

& 6254804 Description; 62
® 6256728 | |1,
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Figure 5-13: Viewing individuals of the sample fuzzy ontology in Protégé

5.3 CRISK EXPERIMENTER MODULE

The Experimenter module is used to experiment on a CVD dataset stored as a fuzzy
ontology for prediction performance based on different numbers of nearest neighbours.
The fuzzy ontology input to this model is created using the CRISK Constructor module
(section 5.2). The Experimenter module offers three experimentation types: LOOCV,
Train-Test-LOOCV, and Train-Test.

For the LOOCYV experiment (Figure 5-14), one ontology is selected. The system iterates
through all the CVD cases stored in the ontology. For each case, the system removes the
case from the case base (the selected ontology), performs prediction for the case, and adds

the case back to the case base for the next iteration of the loop.
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W CRISK Experimenter et

Select OWL file...

Run Test View Results

Figure 5-14: CRISK Experimenter—LOOCYV screen

For the Train-Test-LOOCYV experiment (Figure 5-15), two ontologies files are selected.
The testing OWL file is a subset of the training OWL file. This happens when, for
example, the training OWL file is generated from the testing OWL file using SMOTE for
imbalanced dataset. As a result, for each case in the testing set, the system removes the
case from the case base (the training set), performs prediction for the case, and adds the

case back to the case base for the next iteration of the loop.

W CRISK Experimenter et

‘-" Train-Test Batch

Select Training OWL file...

Select Testing QWL file...

Fun Test View Results

Figure 5-15: CRISK Experimenter—Train-Test-LOOCYV screen

For the Train-Test experimentation (Figure 5-16), two ontology files are also selected.
However, the testing and training sets are different sets and contain separate cases.
Therefore, the system iterates through each case in the testing set and performs prediction

for the case without removing any case from the case base (the training set).
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W CRISK Experimenter et

Select Training OWL file. ..

Select Testing QWL file...

Fun Test View Results

Figure 5-16: CRISK Experimenter—Train-Test screen

For each experimentation type, upon clicking on the “Run Test” button, the system opens
a dialog (Figure 5-17) asking the user to select an output folder to store the

experimentation results.

|£| Select the output folder ot

Look in: Qutput w ? w mv

'.-. .‘I'.-:\I ...
ek

Recent Items

Desktop

Documents

L! Folder name: | C:\Experiments\Output

This PC

Files of type: | Al Files w Cancel

Figure 5-17: CRISK Experimenter—Output folder selection screen

Figure 5-18, Figure 5-19, and Figure 5-20 respectively provide a high level view of the
LOOCV, Train-Test-LOOCV, and Train-Test experimentation processes.

Dataset (Fuzzy

ontology file) Test results

Experiment LOOCV

Figure 5-18: CRISK Experimenter—LOOCV experimentation process
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Train set (fuzzy
ontology file)

Test set — a subset of
the train set (fuzzy

ontology file)

Experiment Train-Test-

LOOCV

Test results

Figure 5-19: CRISK Experimenter—Train-Test-LOOCYV experimentation process

Train set (fuzzy

ontology file)

Test set (fuzzy

ontology file)

Experiment Train-Test

Test results

Figure 5-20: CRISK Experimenter—Train-Test experimentation process

The results of each experiment, stored inside the user selected output folder, consist of

nine CSV files and one macro-enabled Excel file (Figure 5-21). Each CSV file contains

the experiment results corresponding to one value of k (the number of nearest

neighbours). The macro-enabled Excel file collects result data from the result CSV files

and produces a summary of prediction performance.

» ThisPC » O5Disk(C] * Experiments » Output

Mame

Bl TestResults.xlsm

TestResults_k1.csv
TestResults_k3.csv
TestResults_k5.csv
TestResults_k7.csv
TestResults_k3.csv
TestResults_k11.cov
TestResults_k13.cov
TestResults_k15.cav
TestResults_k17.cov

Date modified

23/04/2019 10:17 AM
22/04/2019 2:05 PM
22/04/2019 2:09 P
22/04/2019 213 PM
22/04/2019 &16 PM
22/04/2019 220 PM
22/04/2019 227 PM
22/04/2019 &30 PM

22/04/2019 2:34 PM

Type

Microsoft Excel M...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...
Microsoft Excel C...

Microsoft Excel C...

Figure 5-21: CRISK Experimenter—Experiment result files

99




Figure 5-22 displays the content of a result CSV file. The “Case ID” column uniquely
identifies a case. The “CVD Interval” column gives the actual CVD Interval in years
while the “P CVD Interval” is the system predicted CVD Interval in years. The “High”
column is the actual membership value of High CVD Risk while the “P High” is the
predicted membership value of High CVD Risk. It is similarly explained for the “Low”
and “P Low” columns. Finally, the “Class” and “P Class” columns respectively represent
the actual CVD Class, “High CVD Risk” or “Low CVD Risk”, and the predicted CVD
Class of a case. A case belongs to “High CVD Risk” when the “High CVD Risk”
membership value is greater than or equal to the “Low CVD Risk” membership value.
Belonging to “High CVD Risk” also means that the case develops CVD within 10 years
(cvd10 = Yes).

Case ID CVD Interval P CVD Interval High P High Low P Low Class P Class
1835100 0 0 1 1 Low Risk Low Risk
4765857 28.93970091 0 0 1 1 Low Risk Low Risk
9573204 24.33727544 13.96186478 0 0.103814 1 0.896186 Low Risk Low Risk
8827963 3.833072969  5.34383744 1 0.965616 0 0.034384 High Risk High Risk
3441350 14.78489029 0 0.021511 1 0.978489 Low Risk Low Risk
3285972 25.31470905 0 0 1 1 Low Risk Low Risk
6300388 14.43927483 0 0.056073 1 0.943927 Low Risk Low Risk
2934602 12.92073302 0 0.207927 1 0.792073 Low Risk Low Risk
9494258 0 0 1 1 Low Risk Low Risk
1335438 20.04970953 0 0 1 1 Low Risk Low Risk
4674701 10.70007619 0 0.429992 1 0.570008 Low Risk Low Risk

Figure 5-22: CRISK Experimenter—The content inside a result CSV file

Figure 5-23 displays an example of the summary sheet of a result summary macro-
enabled Excel file. The sheet summarises the prediction performance of the CRISK
system for all cases, “High CVD Risk” cases, and “Low CVD Risk” cases, against each
value of the number of nearest neighbours k. In the example shown in this figure, the
number of cases in total was 4,071. Among those, 221 cases were “High CVD Risk” cases
and 3,850 cases were “Low CVD Risk” ones. The “Same” column gives the number of
correctly classified cases while the “Diff” column shows the number of incorrectly
classified cases. The “Accuracy” column provides the prediction accuracy. An RMSE
(Root Mean Squared Error) column gives error measurement for prediction of CVD
Interval, for cases having both CVD Interval and predicted CVD Interval. Other columns
include “TP”, “FN”, “TPR”, “TN”, “FP”, “TNR”, “Precision”, “F1-value”, and “NPV”.
The meanings of these columns can be found in section 3.9.1. Clicking on the “Reload
results” button recollects data from each result CSV file and refreshes the data on the

summary sheet.
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k=3
k=5

k=9

k=11
k=13
k=15
k=17

All
4071
4071
4071
4071
4071
4071
4071
4071
4071

3260
3340
3361
3377
3368
3364
3358
3346
3340

811
731
710
694
703
707
713
725
731

0.8008
0.8204
0.8256
0.8295
0.8273
0.8263
0.8249
0.8219
0.8204

Same Diff Accuracy RMSE

14.3276
13.3559
13.1822
13.1872
13.2813
13.3824
13.3475
13.3591
13.3984

High TP

221
221
221
221
221
221
221
221
221

193
195
193
193
192
194
195
195
191

FN TPR

28
26
28
28
29
27
26
26
30

0.8733
0.8824
0.8733
0.8733
0.8688
0.8778
0.8824
0.8824
0.8643

RMSE

4,1348
3.9858
3.5456
3.6689
3.5989
3.6514
3.7058
3.5407
3.6114

Low TN

3850
3850
3850
3850
3850
3850
3850
3850
3850

Reload Results

3067
3145
3168
3184
3176
3170
3163
3151
3149

FP
783
705
682
666
674
680
687
699
701

TNR
0.7966
0.8169
0.8229
0.8270
0.8249
0.8234
0.8216
0.8184
0.8179

RMSE
16.8171
15.0761
14.7915
14,7369
14.8088
14.8993
14.8332
14.8435
14.8706

Precision Fl-value

0.1977
0.2167
0.2206
0.2247
0.2217
0.2220
0.2211
0.2181
0.2141

0.3225
0.3479
0.3522
0.3574
0.3533
0.3543
0.3536
0.3498
0.3432

NPV

0.9910
0.9918
0.9912
0.9913
0.9910
0.9916
0.9918
0.9918
0.9906

Figure 5-23: CRISK Experimenter—Inside a result summary macro-enabled Excel file
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5.4 CRISK BATCH EXPERIMENTER MODULE

The Batch Experimenter module is used to experiment a CVD dataset stored as a fuzzy
ontology for prediction performance based on different numbers of nearest neighbours
and different combinations of predictors. This also means that the Batch Experimenter
adds one more dimension—the combination of predictors—into the Experimenter
module detailed in section 5.3. The Batch Experimenter runs as a batch process in a
command line window. Usually it takes a long time to run due to the number of
experiments related to the different combinations of predictors, which are ranked by a

predictors ranking file.

Different combinations of predictors are made using a backward elimination technique.
To perform this backward elimination technique, the program begins with all n predictors
in the first iteration. In the second iteration, it experiments with n — 1 predictors by
omitting the least important predictor (the last predictor in the ranking). In the third
iteration, it experiments with n — 2 predictors by omitting the last two predictors.
Eventually, in the last iteration, it runs with only 1 predictor, the first predictor in the

ranking.

W CRISK Experimenter et

LOOCY  Train-Test-LOOCY Train-Test Batch

RunLOOCY Batch | | Run Train-Test1OOCV Batch {  Run Train-TestBatch

Figure 5-24: CRISK Batch Experimenter—Batch Experimenter screen

Figure 5-24 displays the entry GUI to the Batch Experimenter module. It has three buttons
named “Run LOOCV Batch”, “Run Train-Test-LOOCV Batch”, and “Run Train-Test
Batch”. Each button opens a command line window for a batch process for that type of
experimentation. The “LOOCYV Batch” process asks the user to select a dataset file, a
predictors file, a predictors ranking file, and an output folder to store testing results. Both

“Train-Test-LOOCYV Batch” and “Train-Test Batch” processes ask the user to select a
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training dataset file, a test dataset file, a predictors file, a predictors ranking file, and an
output folder. These input files are in CSV format. More information about these files can
be found in Table 3-6.

Figure 5-25, Figure 5-26, and Figure 5-27 respectively provide high level views of the
LOOCV Batch, Train-Test-LOOCV Batch, and Train-Test Batch experimentation
processes. Each dataset file in CSV format is converted into a corresponding fuzzy

ontology file before being experimented for different combination of predictors.

Dataset file |
(CSV)
Construct fuzzy Fuzzy
ontology ontology file
Predictors Experiment Test results
CRISK fuzzy Predictors
ontology ranking file
template file (CSV)

Figure 5-25: CRISK Batch Experimenter—LOOCYV batch experimentation process

Train Train set
dataset file — (fuzzy —
(CSV) ontology file)
Test dataset /" Construct fuzzy Test set - EXp@rlment
file (CSV) ” ontology (fuzzy > Train-Test Test results
ontology file) OOCV Batc
. CRISK fuzzy Predictors
Predictors .
file (CSV) | ontology ranking file
template file (CSV)

Figure 5-26: CRISK Batch Experimenter—Train-Test LOOCV batch experimentation process
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Train Train set
dataset file —> (fuzzy
(CSV) ontology file)
Test dataset ‘m - Test set R EXP?flmeﬂt
file (CSV) v ontology »  (fuzzy > Train-Test Test results
ontology file) Batch
Predictors CRISK fuzzy Preqlctors
file (CSV) | ontology ranking file
template file (CSV)

Figure 5-27: CRISK Batch Experimenter—Train-Test batch experimentation process

Figure 5-28 provides a screenshot of an output folder from a batch experimentation. Each
subfolder is named according to the number of predictors included in the experiment.
Experimentation results for each combination of predictors are stored in that
corresponding subfolder the same way as in the Experimenter module (Figure 5-21). The
Batch Experimenter module also creates inside the output folder a summary file named
“Grand_Summary_TestResults.xIsm”. This is a macro-enabled Excel file to gather result

data from each “TestResults.xlsm” file inside each subfolder.

<« (5Disk (C:) » Experiments » Datasets » FHS_Offspring » Male » Output v @ Search Qu... 0O
| ] | l:5 | L. | L.
1 2 3 4 5 & 7 8
| l:j | L5 | L. | L.
9 10 1 12 13 14 15 16
N L] N L N L] Ly BT
-
17 18 19 20 21 22 23 Grand_Sum
rmary_TestR
esults.xlsm

Figure 5-28: CRISK Batch Experimenter—Output folder

Figure 5-29 shows the content of a Grand Summary Test Results file. It collects prediction
performance data into six sheets, “Accuracy”, “TPR”, “TNR”, “Precision”, “F1-value”,
and “NPV”. Each of these sheets provides the performance results based on the two
dimensions experimented on, the number of predictors n and the number of nearest

neighbours k for that metric.
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k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.8136 0.8055 0.8105 0.8131 0.8146 0.8425 0.8602 0.8612 0.8713
n=2 0.7639 0.7766 0.7857 0.7817 0.7832 0.7812 0.7817 0.7786 0.7776
n=3 0.6814 0.7280 0.7361 0.7391 0.7406 0.7421 0.7401 0.7437 0.7447
n=4 0.7107 0.7599 0.7594 0.7584 0.7523 0.7655 0.7660 0.7614 0.7644
n= 0.7361 0.7736 0.7766 0.7791 0.7837 0.7852 0.7862 0.7837 0.7862
n=6 0.7396 0.7796 0.7847 0.7882 0.7842 0.7898 0.7852 0.7806 0.7756
n= 0.7492 0.7872 0.7847 0.7806 0.7822 0.7877 0.7837 0.7822 0.7746
n=8 0.7670 0.7933 0.8004 0.7964 0.7979 0.7948 0.7928 0.7938 0.7913
n=9 0.7619 0.7923 0.7974 0.7969 0.7898 0.7923 0.7923 0.7888 0.7842
n=10 0.7558 0.7862 0.7918 0.7862 0.7923 0.7867 0.7812 0.7822 0.7796
n=11 0.7563 0.7817 0.7832 0.7812 0.7862 0.7842 0.7801 0.7786 0.7766
n=12 0.7482 0.7801 0.7857 0.7872 0.7796 0.7771 0.7705 0.7675 0.7649
n=13 0.7563 0.7898 0.7913 0.7827 0.7776 0.7741 0.7695 0.7655 0.7639
n=14 0.7523 0.7847 0.7827 0.7801 0.7786 0.7695 0.7700 0.7639 0.7604
n=15 0.7573 0.7882 0.7796 0.7822 0.7781 0.7700 0.7665 0.7604 0.7599
n=16 0.7629 0.7948 0.7872 0.7888 0.7862 0.7796 0.7761 0.7725 0.7715
n=17 0.7538 0.7827 0.7837 0.7842 0.7812 0.7771 0.7746 0.7725 0.7730
n=18 0.7523 0.7817 0.7817 0.7817 0.7791 0.7761 0.7736 0.7700 0.7690
n=19 0.7523 0.7817 0.7812 0.7806 0.7786 0.7761 0.7730 0.7695 0.7700
n=20 0.7452 0.7827 0.7877 0.7842 0.7857 0.7817 0.7801 0.7796 0.7812
n=21 0.7553 0.7857 0.7847 0.7832 0.7877 0.7888 0.7857 0.7827 0.7801
n=22 0.7573 0.7877 0.7852 0.7847 0.7888 0.7888 0.7862 0.7806 0.7796
n=23 0.7619 0.8024 0.8004 0.7938 0.8004 0.7933 0.7867 0.7852 0.7898

VBA | Accuracy | TPR | TNR | Precision | Fl-value | NPV ®

S

Figure 5-29: CRISK Batch Experimenter—Grand Summary Test Results file

The “VBA” sheet (Figure 5-30) contains two buttons named “Reload” and “Refresh
individual Test Result files and Reload”. The first button refreshes data on the other seven
sheets by reloading result data from each individual “TestResults.xIsm” file inside each
subfolder. The second button does two things. It first refreshes data in each
“TestResults.xlsm” file inside each subfolder. It then recollects data from these individual
files to refresh data on the “Accuracy”, “TPR”, “TNR”, “Precision”, “Fi-value”, and
“NPV” sheets.
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Reload

Refresh individual Test Result files and Reload

3 VBA | Accuracy | TPR | TMR | FPR | Precisiol ... (]

Figure 5-30: CRISK Batch Experimenter—Grand Summary Test Results file’s VBA sheet
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5.5 CRISK PREDICTOR MODULE

The Predictor module is used to give prediction for an input case (person) as to whether
that person belongs to the “High CVD Risk” or the “Low CVD Risk” category.

@ CRISK Predictor X
Risk factor Value

Age (years) 40

Total cholesterol (mg/dl) i

LDL cholesterol (mg/dl)

VLDL cholesterol (mg/dl)
Systolic BP (mmHg)
Triglycerides (mEqg/I)

Diastolic BP (mmHg)

Glucose (mg%)

No of cigarrettes smoked a day
HDL cholesterol (mg/dl)
Hematocrit (%)

BMI

Lactate dehydrogenase (LDH) (units per litre)

Reset Predict

Figure 5-31: CRISK Predictor—Input screen

Figure 5-31 shows the input screen of the module. There are 13 risk factors, resulting
from experimentation done in Chapter 6 to find out the best combination of predictors
and the number of nearest neighbours (n = 13, k = 7) for yielding the best prediction
performance. When an invalid value is input, the developed input validation feature
notifies and disallows this. Clicking on the “Reset” button clears all input textbox
components on the screen. Clicking on the “Predict” button executes the CVD prediction

process for the input case.
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@ CRISK Predictor - Result
Membership
High Risk Low Risk

Predicted Risk Class: High Risk

P CVD Interval (years): 8.874716829819413 1
P High Risk Membership: 0.6125283170180587

P Low Risk Membership: 0.3874716829819414

0 5 10 15 20 CVD Interval (years)
Case ID 10-year CVD (Yes/No) CVD Interval (years) Age (years) Total cholesterol (mg/dl) LDL cholesterol (mg/dl) VLDL cholesterol (mg/dl) Systolic BP (mmHg) Triglycerides (mEg/I) Diastolic BP (mn|
Input case: 31 270 212 1 132 264 84
Closest cases: 285183 Yes 8.862612 31.0 271.0 212.0 1.0 132.0 264.0 84.0
2582711 No Unknown 36.0 278.0 220.0 14.0 134.0 516.0 88.0
328520.1934 Yes 6.876834 36.265804 254.20946 196.564018 11.306231 135.461676 306.29995 82.049307
177893.1219 Yes 7.373799 37.36914  261.915883 205.23127 5.629747 130.099858 323.3329 78.638266
282725.84  Yes 8.975925 31.4174  252.523669 205.819413 4.727157 123.207049 404.432563 81.306093
9634220 No Unknown 31.0 285.0 192.0 34.0 136.0 408.0 92.0
328527.5322 Yes 5.663958 37.818676 26/.9/8688 199.040117 8.708235 133.623872 318.062633 80.051979
<
<< Back

Figure 5-32: CRISK Predictor—Prediction Result screen with no matched case
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@ CRISK Predictor - Result

Predicted Risk Class:  Low Risk MemiBarship
P CVD Interval (years): 29.788453 1 High Risk Low Risk
P High Risk Membership: 0.0
P Low Risk Membership: 1.0
0 5 10 15 20 CWD Interval (vears)
Case ID 10-year CVD (Yes/No) CVD Interval (years) Age (years) Total cholesterol (mg/dl) LDL cholesterol (mg/dl) VLDL cholesterol (mg/dl) Systolic BP (mmHg) Triglycerides (mE|
Input case: 26 221 147 35 100 493
Closest cases: matched 2002448 No 29.788453 26.0 221.0 147.0 35.0 100.0 493.0
3845067 No Unknown 28.0 203.0 140.0 19.0 98.0 336.0
7922139 No 27.138157 25.0 208.0 128.0 42.0 110.0 762.0
9653732 No Unknown 26.0 199.0 133.0 27.0 104.0 418.0
7584206 No 17.57464 29.0 206.0 140.0 19.0 112.0 262.0
8399029 No 16.816239 31.0 193.0 141.0 13.0 102.0 52.0
1623775 No Unknown 27.0 215.0 140.0 20.0 106.0 271.0
<
: << Back

Figure 5-33: CRISK Predictor—Prediction Result screen, showing a matched case
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Figure 5-32 shows the prediction result screen. Prediction outcomes include predicted
Risk Class, predicted CVD Interval, predicted High Risk Membership, and predicted Low
Risk Membership. In addition, a graph depicting the “High CVD Risk” and “Low CVD
Risk” functions is also displayed to assist interpretation of the prediction outcomes. The
result screen also displays the input case and the seven closest cases retrieved from the
case base. Among those seven closest cases, if one matches the input case, there is a
“matched” indicator shown next to that case, e.g. in Figure 5-33.

5.6 CHAPTER SUMMARY

The CRISK system, developed in Java, consists of four modules: Constructor,
Experimenter, Batch Experimenter, and Predictor. The Constructor module converts a
dataset in CSV format into a fuzzy ontology file in OWL 2 format that can be used in the
Experimenter, Batch Experimenter and Predictor modules. The Experimenter module
offers three types of experimentation, LOOCV, Train-Test-LOOCV, and Train-Test, to
experiment a dataset for prediction performance based on different values of k (the
number of nearest neighbours). The Batch Experimenter module adds another dimension,
the combination of predictors, into the experimentation. The Predictor module provides
prediction for an input case (a person) for whether that person belongs to “High CVD
Risk” or “Low CVD Risk”.
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Chapter 6
EXPERIMENTATION, RESULTS AND
FINDINGS

6.1  INTRODUCTION ...cutiitiiiitientee et e stee st et e esteesbee st eesbeessbeesbeesmbeesbeeambeesbeeanbeesbeeanneens 111
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0.3 RESULTS .ttt ettt ettt b ettt st e e s bt e e s e e b e e e nb e e nbe e s be e beeentee s 113
G S o N TN OSSPSR 117
6.5 CHAPTER SUMMARY ...coutiiiiiiiieitie st e siee st esiee st esbe et sbeessbeesbeesnbeesbeesnbeesbeesnneens 121

6.1 INTRODUCTION

This chapter reports on the experiments conducted using the CRISK system, the
experimental results, and the overall findings of this research. The experimentation was
carried out on the mixed sex dataset, the male dataset and the female dataset (described
in section 3.8). Two dimensions were explored in these experiments: the combination of
predictors and the number of nearest neighbours. The results of these experiments helped
uncover whether separate prediction models for males and females should or should not
be created. They also helped determine the predictors and the number of nearest
neighbours that yielded the best prediction performance. These results informed the
construction of the CRISK Predictor Module, described in section 5.5. Moreover, other
findings including things that could be done to improve CVD prediction performance,
why some popular risk factors mentioned in other prior research did not make it to the list
of selected predictors in this research, and data distributions of the chosen risk factors,

are also reported in this chapter.

This chapter together with Chapter 4 and Chapter 5 help answer the first three research
questions (RQ1, RQ2, and RQ3). The answers are described in section 9.1.1.
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6.2 EXPERIMENTATION

The experiments were designed in order to find the optimal combination of parameters
(dataset, predictors, and number of nearest neighbours) that yields the best CVD risk
prediction performance. Each of the three datasets, mixed sex dataset, male dataset, and
female dataset, prepared from section 3.8 were experimented using the CRISK Batch
Experimenter Module’s Train-Test-LOOCV function (section 5.4). Though the GUI
module of the CRISK Batch Experimenter could have been run three times for the three
datasets to obtain the same results, a Java class named Experiment was developed to run
the Batch Experimenter module as three threads concurrently to save execution time. This
Java class was run directly in the Eclipse IDE. Figure 6-1 displays the Java code of the
Experiment class. Explanation of the CSV input files for the experimentation can be

found in section 3.8.11.

| Experimentjava &3

1 import nz.ac.aut.crisk.experiment.TrainTestLOOCVBatch;

public class Experiment {

W
I

public static void main(String[] args) {

6 / Experiment mixed sex dataset

7 TrainTestLOOCVBatch mixedExp = new TrainTestLOOCVBatch (
"C:/Experiments/Datasets/FHS_Offspring/Mixed/FramOffSpring_ SMOTE.csv",
9 "C:/Experiments/Datasets/FHS_Offspring/Mixed/FramOffSpring.csv”,

10 "C:/Experiments/Datasets/FHS_Offspring/Mixed/predictors.csv"”,

11 "C:/Experiments/Datasets/FHS_Offspring/Mixed/predictorsRanking.csv"”,
"C:/Experiments/Datasets/FHS_Offspring/Mixed/Output”);

13 mixedExp.start();

) 00

N

W

/ Experiment male dataset

16 TrainTestLOOCVBatch maleExp = new TrainTestLOOCVBatch(

17 "C:/Experiments/Datasets/FHS_Offspring/Male/FramOffSpring SMOTE.csv",
18 "C:/Experiments/Datasets/FHS_Offspring/Male/FramOffSpring.csv”,

19 "C:/Experiments/Datasets/FHS_Offspring/Male/predictors.csv”,

20 "C:/Experiments/Datasets/FHS_Offspring/Male/predictorsRanking.csv”,
21 "C:/Experiments/Datasets/FHS_Offspring/Male/Output”);

22 maleExp.start();

24 // Experiment female dataset

25 TrainTestLOOCVBatch femaleExp = new TrainTestLOOCVBatch(

26 "C:/Experiments/Datasets/FHS_Offspring/Female/FramOffSpring_SMOTE.csv",
R7 "C:/Experiments/Datasets/FHS_Offspring/Female/FramOffSpring.csv”,

28 "C:/Experiments/Datasets/FHS_Offspring/Female/predictors.csv”,

29 "C:/Experiments/Datasets/FHS_Offspring/Female/predictorsRanking.csv”,
30 "C:/Experiments/Datasets/FHS_Offspring/Female/Output”);

31 femaleExp.start();

Figure 6-1: Java class named Experiment developed for experimentation in this research

Table 6-1 below summarises the three datasets. They were all imbalanced with negative

cases overwhelming the positive cases, especially in the female dataset. The ratios of
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negative cases to positive cases for mixed sex, male, and female datasets were 3850/221
=17.42, 1819/155 = 11.74, and 2035/66 = 30.83, respectively. To balance these datasets
for building case bases (training sets), SMOTE was applied to them with the percentages
of 1,600%, 1,050%, and 3,000% respectively (refer to section 3.8.10).

Table 6-1: Summary of mixed sex, male, and female datasets

Mixed sex dataset =~ Male dataset Female dataset
Number of cases 4,071 1,974 2,101
Number of High Risk cases 221 155 66
(positive)
Number of Low Risk cases 3,850 1,819 2,035
(negative)
SMOTE percentage applied to  1,600% 1,050% 3,000%

balance the dataset

6.3 RESULTS

TPR, TNR, Precision, Fi-value, and NPV results for each of the three datasets are reported
in the Appendix Q, Appendix R, and Appendix S respectively. For each evaluation metric
per each dataset (model), there is one table displaying results for each combination of n
(predictors) and k (number of nearest neighbours). Each table is accompanied by a 3D
graph plotting the results. In general, all models achieved higher Recall (TPR) than
Precision. All models performed very well for TNR and NPV. Table 6-2 below reports

the best performance results by metric for each dataset.
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Table 6-2: The best performance results of each model for each metric

Mixed sex dataset

Male dataset

Female dataset

TPR max

TNR max

Precision max

F1-value max

NPV max

0.8824 (n=13, k=3, 13, or 15)

0.9065 (n=33, k=5)

0.2277 (n=18, k=7)

0.3574 (n=13, k=7)

0.9918 (n=13, k=13)

0.8903 (n=12, k=1 or 7)

0.9247 (n=1, k=17)

0.2560 (n=9, k=7)

0.3966 (n=12, k=7)

0.9881 (n=12, k=7)

0.6515 (n=8, k=1)

0.9238 (n=29,k=17)

0.1388 (n=6, k=9)

0.2252 (n=5, k=15)

0.9866 (n=5, k=15)

For the F1-value, which is the metric that is favoured for decision making in this research
(see justification in section 3.9.1), the male model performed the best, followed by the
mixed sex model, and then the female model. The male model achieved the highest Fi-
value of 0.3966 with the combination (n = 12, k = 7). The mixed sex model achieved the
highest Fi-value of 0.3574 with the combination (n = 13, k = 7). The female model

achieved the best Fi-value of 0.2252 with the combination (n =5, k = 15).

Table 6-3: The performance results of each model based on the combinations of n and k that generated

the best F1-values where Cl is the 95% confidence interval.

Mixed sex dataset with

(n=13,k=7)

Male dataset with
(n=12,k=7)

Female dataset with
(n=5,k=15)

TPR

TNR

Precision

Fi-value

NPV

0.8733 (Cl = 0.0102)

0.8270 (CI = 0.0116)

0.2247 (Cl = 0.0128)

0.3574 (Cl = 0.0147)

0.9913 (CI = 0.0029)

0.8903 (CI = 0.0138)

0.7784 (Cl = 0.0183)

0.2551 (CI = 0.0192)

0.3966 (CI = 0.0216)

0.9881 (CI = 0.0048)

0.6364 (CI = 0.0206)

0.8698 (CI = 0.0144)

0.1368 (CI = 0.0147)

0.2252 (Cl = 0.0179)

0.9866 (CI = 0.0049)

Table 6-3 compares the performance results of the three models on the five metrics for
the combinations of n and k that generated the best Fi1-values. For each metric value, a
confidence interval (Cl) value of 95% confidence level is also provided. The confidence
interval value was calculated according to Equation (15). In this formula, v is the

performance metric value and N is the size of the dataset. For the mixed sex dataset, N =
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4,071. For the male dataset, N = 1,974. For the female dataset, N = 2,101. The parameter

value of 1.96 corresponds to the 95% confidence level.

v(1l-v) (15)

interval (CI) = 1.96 X N

Table 6-4 displays the list of predictors that generated the best prediction performance for

each model.

Table 6-4: Lists of predictors that generated the best prediction performance for each model

Model No. of predictors  List of predictors

Mixed sex 13 Age, total cholesterol, LDL cholesterol, VLDL
cholesterol, SBP, triglycerides, DBP, glucose, cigarrettes,
HDL cholesterol, hematocrit, BMI, LDH

Male 12 Age, total cholesterol, first second volume, total vital
capacity, LDL cholesterol, albumin, white blood count,
glucose, triglycerides, total bilirubin, LDH, cigarettes

Female 5 Age, total cholesterol, first second volume, total vital
capacity, LDL cholesterol

The first paragraph of section 6.4 will explain why the CRISK model was decided to be

the mixed sex model withn=13 andk=7.

The confusion matrix of the mixed sex model when n = 13 and k = 7 is shown in Figure
6-2.

Predicted

Positive | Negative

Positive | TP =193 | FN=28

Actual
Negative | FP =666 |TN = 3,184

Figure 6-2: Confusion matrix of the mixed sex model whenn =13 and k=7
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Table 6-5 displays the RMSE values of the mixed sex model, based on different k when
the number of attributes is 13, for the CVD Interval prediction of cases that have both
CVD Interval and predicted CVD Interval. The first column shows the number of nearest
neighbours. The second, third, and last columns display the RMSE values for “All” cases,
“High CVD Risk” cases, and “Low CVD Risk” cases that have both CVD Interval and
predicted CVD Interval, respectively.

Table 6-5: RMSE values for CVD Interval prediction of cases that have both CVD Interval and predicted

CVD Interval of the mixed sex model when n =13

No. of nearest neighbours RMSE—AIl RMSE—High RMSE—Low

(years) (years) (years)
k=1 14.33 4.13 16.82
k=3 13.36 3.99 15.08
k=5 13.18 3.55 14.79
k=7 13.19 3.67 14.74
k=9 13.28 3.60 14.81
k=11 13.38 3.65 14.90
k=13 13.35 3.71 14.83
k=15 13.36 3.54 14.84
k=17 13.40 3.61 14.87

RMSE for the “High CVD Risk” cases is a lot smaller than RMSE for the “Low CVD
Risk” cases. This could be mainly caused by the fact that the variance of the “High CVD
Risk” cases is a lot smaller than the variance of the “Low CVD Risk™ cases. In the mixed
sex dataset, a “High CVD Risk” case has the CVD Interval value in [0.24, 9.96] years,
while a “Low CVD Risk” case has the CVD Interval value in [10.01, 38.96] years. An
additional cause could be that 2,950 cases out of 3,850 “Low CVD Risk” cases do not
have CVD Interval (section 3.8.10), while all “High CVD Risk” cases have a CVD
Interval (section 3.8.5). Having many unknown CVD Interval cases in the k closest cases
retrieved could affect the predicted CVD Interval for a predicted “Low CVD Risk” case
with g = 1. In this case, the predicted CVD Interval is the average of CVD Intervals of
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the nearest “Low CVD Risk” cases that have CVD Interval—see the “Revise Closest
Cases” algorithm (section 4.7). When k = 7, RMSE for the “High CVD Risk” cases is
3.67.

6.4 FINDINGS

Based on the experimentation results presented in Table 6-3, the CRISK model was
decided to be the mixed sex model with the number of predictors n = 13 and the number
of nearest neighbours k = 7, as this model performed better than the two separate gender
specific models. For Fi-value, though the male model (F:-value = 0.3966) performed a
little better than the mixed sex model (F:-value = 0.3574), the female model (F:-value =
0.2252) performed far worse than the mixed sex model. The male model achieved slightly
better than the mixed sex model in terms of Fi-value as a result of performing a little
better in both Recall (0.8903 to 0.8733) and Precision (0.2551 to 0.2247). However, the
mixed sex model did somewhat better than the male model in all other two metrics, TNR
(0.8270t0 0.7784) and NPV (0.9913 t0 0.9881). Although it was specified in section 3.9.1
that the F1-value is favoured among the five performance metrics when comes to decision
making, this is only applicable when the compared models are run against the same
dataset. Therefore, the CRISK Predictor module (section 5.5) was decided to be

developed as a mixed sex model.

In spite of using SMOTE to balance the datasets, the TPR (Recall), Precision, and F1-
value are still proportional to the P/N (positives/negatives) ratio to some degree. This is
shown in Table 6-6, accompanied by a chart in Figure 6-3. The male model performed a
little better than the mixed sex model in Recall, Precision, and thus Fi-value. The reason
might just be that the male dataset had a higher P/N ratio. This examination of the P/N
ratio reinforced the decision to construct the CRISK Predictor module as a mixed sex
model instead of separate male and female models. The P/N ratio can be increased in the

future by, for example, employing more positive cases to the existing case base.
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Table 6-6: TPR, Precision, and Fi-value, and P/N ratio of the three datasets

Mixed sex dataset Male dataset  Female dataset

TPR 0.8733 0.8903 0.6364
Precision  0.2247 0.2551 0.1368
Fi-value 0.3574 0.3966 0.2252
PIN 0.0574 0.0852 0.0324

A visual comparison of TPR, Precision, and F;-value to P/N
ratio

0.9
0.8
0.7
0.6
0.5
0.4

0.3
0.2 I I
0.1
0 o N

TPR Precision Fl-value P/N

B Mixed sex dataset M Male dataset Female dataset

Figure 6-3: A visual comparison of TPR, Precision, and Fi-value to P/N ratio of the three datasets

Another way to increase the P/N ratio is to increase the prediction interval from 10 years
to a longer period, such as 20 years. At first, it may look contradictory to the statistics [1]
saying that CVD accounts for about 31% of deaths worldwide, while the percentage of
positive cases in the mixed sex dataset in this study was only 221/4071=5.4%. The reason
for this discrepancy was that the death statistics were recorded for people across their
lifetime while this study observed people for only a 10-year period. If the time interval
had been set for a longer period e.g. 20 years, the number of positive cases would likely

have been more.

The TNR and NPV values are inversely proportional to the P/N ratio to some degree,
especially the TNR. Though being inversely proportional to the P/N ratio, there is not

much difference in the NPV values of the three datasets. This can be explained from the
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formula NPV = TN / (TN + FN). For all three datasets, there are very few positive cases
when compared with the number of negative cases. Therefore, FN is also very small
compared with TN. Thus, NPV is very close to one for all three datasets. The TNR, NPV,
and N/P values are provided in Table 6-7. The chart in Figure 6-4 allows a visual

comparison of these metrics’ values between the three datasets.

Table 6-7: TNR, NPV, and P/N ratio of the three datasets

Mixed sex dataset  Male dataset  Female dataset

TNR  0.8270 0.7784 0.8698
NPV 0.9913 0.9881 0.9866
P/N 0.0574 0.0852 0.0324

A visual comparison of TNR and NPV to P/N ratio

TNR NPV P/N

B Mixed sex dataset M Male dataset ™ Female dataset

1.2

0.8

0.6

0.4

0.2

Figure 6-4: A visual comparison of TNR and NPV to P/N ratio of the three datasets

Interestingly, three popular risk factors, sex, diabetes, and smoking, did not make it to the
list of predictors for all three models. These three risk factors appear in many existing
models, for example Wilson et al. [30], the two models of D’ Agostino et al. [31], the two
models of Pencina et al. [32], QRISK 2 [73], 2013 PCE [74], Globorisk [75], and 2018
PCE [77]. The sex attribute is a predictor for all existing mixed sex models reviewed in
this research, except the PREDICT-1° [76] model. The smoking attribute is a predictor

119



for all of the existing models reviewed in this study. The diabetes attribute is used in

almost all the models reviewed in this body of work.

The omission of these common predictors must have occurred for a reason. One possible
reason could be that sex, diabetes, and smoking are indirect predictors (indirect causes).
For the sex attribute, direct predictors are actually health parameters such as cholesterol,
blood pressure, triglycerides, glucose etc. The diabetes attribute is in fact derived from
glucose, which already made it to the list of predictors for the mixed sex model and the
male model in this research. Similarly, for the smoking attribute, the cigarettes attribute
(the number of cigarettes smoked a day) made it to the list of predictors for the mixed sex
model and the male model instead. It seems reasonable that CVD outcomes would be
more sensitive to how many cigarettes are smoked per day than simply whether that

person smokes or not.

Another interesting finding was that not only sex, diabetes, and smoking, but also none
of the nominal (categorical) attributes made it to the list of predictors for all three models.
This may be because, unlike numerical data, nominal data has a very limited number of
values, for example “male” and “female”, “yes” and “no”, or “black”, “blue”, and
“brown”. Therefore, when coding for e.g. the Distance algorithm for the Retrieve
algorithm (section 4.5), the number of distance values for a nominal attribute is also very
limited. For example, for sex, whose value is either “male” or “female”, there are only
two possible distance values. The first value is zero, meaning the two cases are of the
same sex. The second value is set to e.g. one, meaning the two cases are different in sex.
Therefore, the distance calculation for a nominal attribute is not as fine as for a numerical
attribute. As a result, nominal attributes may not be as important as numerical attributes

for a prediction model whose algorithm is developed based on KNN.

Weka was used to visualise data distributions of the 13 chosen attributes. Univariate
attribution distribution graphs of these predictors are recorded in Appendix T. Among
them, only HDL cholesterol is inversely proportional to CVD, i.e. the bigger HDL
cholesterol (good cholesterol), the smaller the risk of having CVD. Age, LDL cholesterol,
VLDL cholesterol, SBP, triglycerides, DBP, glucose, cigarettes, hematocrit, BMI, and
LDH are all proportional to CVD. Total cholesterol is also proportional to CVD in general
(Figure T-18). However, it is interesting seeing that at around one eighth area of the
distribution graph, the trend goes in the opposite direction (inversely proportional to

CVD). This trend may be explained by the fact that total cholesterol is made up of HDL,
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LDL, and VLDL cholesterols. At this area, the cases having higher levels of total
cholesterol also had higher levels of HDL cholesterol, which is the good cholesterol, and
this reduces the risk of having CVD. Summaries of the mixed sex dataset with the 13 risk
factors chosen for CVD prediction and its “SMOTEd” one are respectively shown in
Figure U-42 (Appendix U) and Figure V-43 (Appendix V).

6.5 CHAPTER SUMMARY

The developed CRISK prediction model achieved prediction performance results of
TPR=0.8733 (CI=0.0102), TNR=0.8270 (Cl1=0.0116), Precision=0.2247 (CI=0.0128),
Fi-value=0.3574 (CI=0.0147), and NPV=0.9913 (CI=0.0029) where CI is the 95%
confidence interval. These results were achieved with the number of predictors n = 13
and the number of nearest neighbours k = 7 with the mixed sex dataset. Experimentation
on different combinations of predictors, different numbers of nearest neighbours, and
different datasets (mixed sex, male, and female) helped make the decision to construct
the CRISK prediction model as a mixed sex model instead of separating into a male model
and a female model, and to set n = 13 and k = 7. The 13 predictors selected are age, total
cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP, glucose,

cigarettes, HDL cholesterol, hematocrit, BMI, and LDH. They are all numerical data.

A couple of findings were derived from the experimentation results. One important
finding was that TPR (Recall), Precision, and F1-value were proportional to the P/N ratio
to some degree. This brings the hope to improve the prediction performance for the
developed CRISK prediction model in the future by employing more positive cases into
the case base. Another finding was that sex did not make it into the list of predictors. This
finding was thought to be interesting as sex has been a really popular predictor appearing
in all existing mixed sex CVD prediction models, that were reviewed in this study, except
the PREDICT-1° [76] model. Among the 13 chosen attributes, only HDL cholesterol
decreased CVD risk while the remaining predictors increased CVD risk as the predictor

attributes’ values increased.
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7.1 INTRODUCTION

This chapter reports details of external validation in this study. The details include
external dataset preparation, external dataset testing, results and findings from the results.
For external dataset preparation the preparation steps are described. In addition, the
quality of external datasets e.g. having the full list of predictor attributes or not, is also
reported. The testing results and quality of external datasets helped derive useful findings

for the developed CRISK prediction model when performing on external datasets.

This chapter helps answer RQ4. The answer is described in section 9.1.1.

7.2 EXTERNAL DATASET PREPARATION

The external dataset was prepared from the FHS Original Cohort Exam 11. The reason
for choosing this dataset as an external dataset was explained in section 3.6. Steps for
preparing the external dataset were similar to those for preparing the mixed sex dataset
from FHS Offspring Cohort Exam 1 as detailed in section 3.8. However, there were a
couple of differences. The first one was that the list of predictor attributes was known. It
was the 13 risk factors (age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP,
triglycerides, DBP, glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH),
chosen based on the work reported in Chapter 6, used for the CRISK Predictor module.

However, as FHS Original Cohort Exam 11 did not contain triglycerides and LDH, the
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external dataset prepared contained only eleven predictors. The second one was, when
calculating cvdinterval (section 3.8.5), cases having CVD = “No” and CVDYear < 10
were removed instead of the CVDYear < 15 limit applied for data preparation for the
experiments detailed in Chapter 8. The reason was that, unlike when creating a case base,
there was no need to know py and pie. In this set of experiments there was only interest
in labelling cvd10 as either “Yes” or “No”. Table 7-1 shows the content of the predictors

file describing the predictor attributes of the external dataset.

Table 7-1: Predictors file to describe the predictors of the external dataset

Predictor Name Predictor Description Data Type Value List
age AGE double N/A
bmi BMI double N/A
glucose GLUCOSE double N/A
USUAL # OF CIGARETTES SMOKE
cigarettes NOW/EVER double N/A
sysBP SYSTOLIC BLOOD PRESSURE double N/A
diaBP DIASTOLIC BLOOD PRESSURE double N/A
totalChol TOTAL CHOLESTEROL double N/A
hdIChol HDL CHOLESTEROL double N/A
vidIChol VLDL CHOLESTEROL double N/A
IdIChol LDL CHOLESTEROL double N/A
hematocrit HEMATOCRIT double N/A

Figure 7-1 summarises the external dataset prepared, which has eleven predictors. The
summary descriptive statistics were calculated using R (version 3.6.2). Three attributes
in the external dataset (age, glucose, and HDL cholesterol) had values beyond those
attributes’ value ranges in the case base (Appendix V). While the external dataset
prepared had 537 cases; 231 cases had an age greater than the maximum age (62) in the
case base; three cases had glucose greater than the maximum glucose (310) in the case
base; one case had HDL cholesterol greater than the maximum HDL cholesterol (123) in
the case base. As there were many cases in the external dataset having ages greater than
the maximum age value in the case base, the prediction performance based on KNN

would be affected as not having cases close enough to those out-of-range cases. Figure
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7-2 shows the Weka univariate attribute distribution graph of Age in the prepared external

dataset.
summary (ext)
Age BMI Glucose Cigarettes
Min. 49.00 Min. :16.64 Min. : 60.0 Min. : 0.000
1st Qu.:55.00 1st Qu.:23.43 1st Qu.:101.0 1st Qu.: 0.000
Median :61.00 Median :25.88 Median :125.0 Median : 0.000
Mean :61.58 Mean :26.07 Mean #1331, % Mean : 5.142
3rxrd Qu.:68.00 3rd Qu.:28.21 3rd Qu.:153.0 3xrd Qu.: 5.000
Max. 81.00 Max. 2 40.71 Max. :382.0 Max. :60.000
Systolic.BP Diastolic.BP Total.Cholesterol HDL.Cholesterol
Min. 90.0 Min. 50.00 Min. £3135.0 Min. £ 12.00
1st Qu.:120.0 1st Qu.: 70.00 1st Qu.:202.0 1st Qu.: 41.00
Median :135.0 Median 80.00 Median :227.0 Median 50.00
Mean 2137.3 Mean 2 718,95 Mean :232.4 Mean s 52.66
3rd Qu.:150.0 3xd Qu.: 86.00 3rd Qu.:260.0 3xrd Qu.: 61.00
Max. :220.0 Max. 2122.00 Max. £382.0 Max. :131.00
VLDL.Cholesterol LDL.Cholesterol Hematocrit cvdlO cvdiInterval
Min. 0.00 Min. €60.0 Min. :30.00 No :398 Min. 0.1259
1st Qu.: 14.00 18t Ou.:125.0 1st Qu.:42.00 Yes:139 1st Qu.: 5.9933
Median 24.00 Median :148.0 Median :45.00 Median :13.0270
Mean 28.25 Mean £A51.5 Mean :44.25 Mean :14.7204
3xrd Qu.: 38.00 3rd Qu.:176.0 3rd Qu.:46.00 3rd Qu.:21.7609
Max. :146.00 Max. :293.0 Max. :54.00 Max. :39.5628
NA's :188
Figure 7-1: Summary of the external dataset in R
Current relation Selected attribute
Relation: FramCohor_Ezx... Attributes: 13 MName: Age Type: Mumeric
Instances: 537 Sum of weights: 537 Missing: 0 (0%) Distinct. 33 Unique: 2 (0%)
Attributes Statistic | Value
[ 11| Minimum 49
Maximum a1
l All Jl Mone J[ Irvert Jl Pattern J Mean 61577
StdDev 7.843
Ma. | | Name
2] Bmi
3 [ ] Glucose
4 [ | Cigarettes

5[] systolicBP

6 (| Diastolic BP

7 [ Total Cholesterol
8 [ ] HDL Cholesterol
9 [_] VLDL Cholesteral
10 [ LDL Chaolesteral
11 [_] Hematocrit
12 [ cvd10
13 ] cvdinterval

[Class: ovd10 (Mom)

| v][ Visualize All |

Figure 7-2: Univariate attribute distribution of Age in the external dataset
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Therefore, another version of the external dataset was created, from the already prepared
external dataset, by removing cases having predictor attribute values out of their ranges
present in the case base. From here on, the first version of the external dataset will be
referred to as External Dataset 1 and the second version as External Dataset 2. Both
versions will be used to undertake a comparative evaluation of the prediction performance
of the developed CRISK prediction model. Figure 7-3 gives a summary of External
Dataset 2.

summary (ext2)
Age BMI Glucose Cigarettes

Min. 149,00 Min. :18.18 Min. : 65.00 Min. : 0.000

1st Qu.:52.00 1st Qu.:23.41 1st Qu.: 95.25 1st Qu.: 0.000

Median :55.00 Median :25.91 Median :118.00 Median : 0.000

Mean :55.76 Mean :26.14 Mean :122.82 Mean €.804

3rd Qu.:59.00 3rd Qu.:28.30 3rd Qu.:140.75 3rd Qu.:11.500

Max. :162.00 Max. :40.71 Max. :310.00 Max. :60.000

Systolic.BP Diastolic.BP Total.Cholesterol HDL.Cholesterol

Min. : 92.0 Min. : 50.00 Min. :135.0 Min. : 12.0

lst Qu.:120.0 l1st Qu.: 71.25 lst Qu.:203.0 lst Qu.: 42.0

Median :130.0 Median : 80.00 Median :227.5 Median : 52.0

Mean :133.1 Mean : 79.54 Mean 232.4 Mean : 53.1

3rd Qu.:144.0 3rd Qu.: 85.00 3rd Qu.:260.0 3rd Qu.: 62.0

Max. :220.0 Max. :122.00 Max. 382.0 Max. :115.0
VLDL.Cholesterol LDL.Cholesterol Hematocrit cvdlO cvdInterval
Min. : 0.00 Min. : €0.0 Min. :34.00 No :246¢ Min. : 0.1862
lst Qu.: 13.00 lst Qu.:122.2 lst Qu.:42.00 Yes: &0 lst Qu.: 9.2302
Median : 23.00 Median :149.0 Median :45.00 Median :17.5295
Mean : 27.43 Mean :151.9 Mean 144,17 Mean :17.9344
3rd Qu.: 36.00 3rd Qu.:179.0 3rd Qu.:46.00 3rd Qu.:26.9184
Max. :146.00 Max. :1293.0 Max. :54.00 Max. :39.5628

NA's 1106

Figure 7-3: Summary of External Dataset 2 in R

The CRISK Constructor module was used to create two ontologies from the two external
datasets. Figure 7-4 displays the screenshot of the ontology construction step for External

Dataset 1. Ontology construction for External Dataset 2 was carried out in the same way.
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W CRISK Constructor X

Ontology

Select dataset file... nalDataset\FramCohortExam11\FramCohort_Exam11_8.csv

E Select predictors file... 1 ternalDataset\FramCohortExam11\predictors_Exam11.csv

Create Ontology View Ontology

Figure 7-4: Ontology construction for External Dataset 1 using the CRISK Constructor module

7.3 EXTERNAL DATASET TESTING

The CRISK Experimenter module (Train-Test experimentation type) was used to test the
two external datasets. Figure 7-5 displays a screenshot of this testing step. The testing
OWL file was an ontology file created in section 7.2. The training OWL file was the case
base used for the CRISK Predictor module.

W CRISK Experimenter X

LOOCY Train-Test-LOOCY Train-Test Batch

Select Training OWL file... | |C:\Experiments\Casebase\crisk.owl

E Select Testing OWL file... ] \ExternalDataset\FramCohortExam11\framOrigExam11.owl

Run Test View Results

Figure 7-5: External dataset testing using the CRISK Experimenter module

7.4 RESULTS

The prediction performance results of the developed CRISK prediction model on the two

external datasets, External Dataset 1 and External Dataset 2, are displayed in Table 7-2.
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Table 7-2: External validation results where Cl is the 95% confidence interval

External Dataset 1 External Dataset 2
TPR 0.7410 (CI = 0.0371) 0.8167 (CI = 0.0434)
TNR 0.4472 (Cl = 0.0421) 0.5041 (CI = 0.0560)
Precision 0.3189 (Cl = 0.0394) 0.2866 (CI = 0.0507)
Fi-value  0.4459 (CI = 0.0420) 0.4242 (C1 = 0.0554)
NPV 0.8318 (CI = 0.0316) 0.9185 (CI = 0.0307)

Prediction performance on External Dataset 2 could be concluded to be better than on
External Dataset 1. It was better in terms of TPR, TNR, and NPV. However, it was worse
for Precision and slightly worse for Fi-value. This can be explained as resulting from
differences in the dataset sizes and P/N ratios. The External Dataset 1 had P = 139 and N
= 398 while the External Dataset 2 had P = 60 and N = 246. As Precision is computed as
TP / (TP + FP), Precision can achieve a high value when the TP is high. Though the TPR
for External Dataset 1 is lower than for External Dataset 2, the TP value is a lot higher
for External Dataset 1 than for External Dataset 2 as P is much higher in External Dataset
1. Moreover, P/N = 0.35 for External Dataset 1, which is greater than P/N = 0.24 for
External Dataset 2. As noted in section 6.4, the Fi-value is proportional to the P/N ratio.
Therefore, prediction performance on External Dataset 2 could be concluded to be better

than on External Dataset 1 regardless of having a smaller Fi-value.

7.5 FINDINGS

The developed CRISK prediction model achieved good results on positive cases but
terrible results on negative cases. CRISK performed reasonably well based on TPR
(0.7410 and 0.8167) and very well on NPV (0.8318 and 0.9185). However, TNR was
undesirable (0.4472 and 0.5041).
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Case lIiZ‘ CcvD lntervalE P CVD Interval E High E P High E Low E P Low E Class E P Class@

-

7 112363227 16.03045874 9.978761847 0 0.502124 0.497876 Low Risk High Risk
8 112711730 13.6840705 9.191141516 0.131593 0.580886 0.868407 0.419114 Low Risk High Risk
11 12535890 7.730276046 0 0.726972 1 0.273028 Low Risk High Risk
1§ 16263102 19.97031017 7.852932347 0 0.714707 1 0.285293 Low Risk High Risk
17 116715414 6.366501515 0 0.86335 1 0.13665 Low Risk High Risk
18 /17145973  20.02506835 6.686109353 0 0.831389 1 0.168611 Low Risk High Risk
ZE 13081822 30.4729301 8.995470777 0 0.600453 1 0.399547 Low Risk High Risk
ZE 15588712 7.212162481 0 0.778784 1 0.221216 Low Risk High Risk
Zi 15797675 10.05634072 8.16570813 0.494366 0.683429 0.505634 0.316571 Low Risk High Risk
ZE 15503903 9.627977882 0 0.537202 1 0.462798 Low Risk High Risk
31 12354098  15.67453053 9.773657853 0 0.522634 1 0.477366 Low Risk High Risk
32114928529 10.41226893 6.768825575 0.458773 0.823117 0.541227 0.176883 Low Risk High Risk
35115689797  20.12637099 7.059266694 0 0.794073 1 0.205927 Low Risk High Risk
41 16053735  24.29073098 7.600191221 0 0.739981 1 0.260019 Low Risk High Risk
42 14274188  32.20055085 8.033369301 0 0.696663 1 0.303337 Low Risk High Risk
4§ 11013156  22.12778267 7.368372639 0 0.763163 1 0.236837 Low Risk High Risk
47 | 16443661 7.175966027 0 0.782403 1 0.217597 Low Risk High Risk
51 10296724  21.64043482 8.299601403 0 0.67004 1 0.32996 Low Risk High Risk
5{ 15942198 10.68058404 7.021316308 0.431942 0.797868 0.568058 0.202132 Low Risk High Risk
55|17673311  17.40215128 8.111836122 0 0.688816 1 0.311184 Low Risk High Risk
5{ 12298283  15.31860233 9.956610107 0 0.504339 1 0.495661 Low Risk High Risk
59 /13399628 12.12346222 9.08518069 0.287654 0.591482 0.712346 0.408518 Low Risk High Risk

Figure 7-6: Details of prediction results for External Dataset 2

Details of the test results (the CSV file for k = 7) for External Dataset 2 were examined
to find a possible explanation for the poor performance observed on negative cases.
Figure 7-6 shows a screenshot of FP cases from the test result file. The “P CVD Interval”
column for all FP cases was examined. Its histogram is shown in Figure 7-7.

Histogram of Predicted CVD Intervals for FP cases
35
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Figure 7-7: Histogram of Predicted CVD Intervals for FP cases in External Dataset 2

128



The predicted CVD Interval values for 122 FP cases in External Dataset 2 ranged from
5.1 to 9.98 years. It was good to see that none of FP cases had a predicted CVD Interval
of less than 5 years. This also means that all FP cases were predicted to belong to both
“High CVD Risk” and “Low CVD Risk” classes; however, [ is greater than p. Sixty-
five (more than a half) of the FP cases had a predicted CVD Interval greater than 7.77
years. Just a small shift to the right of these predicted CVD Interval values means those
cases shift from being FP to TN and this shift would result in an increase in the TNR.
Taking into account that two predictors (triglycerides and LDH) were missing in the
external dataset, it could be possible that if these predictors had not been missing, the
TNR may have been higher and therefore prediction performance would have been

improved.

7.6 CHAPTER SUMMARY

Though two out of thirteen predictor attributes were missing from the external dataset,
external validation achieved the TPR values of 0.7410 and 0.8167 for External Dataset 1
and External Dataset 2 (resulting from removing value-out-of-range cases from External
Dataset 1), respectively. Besides, the resulting NPV values were 0.8318 and 0.9185 for

External Dataset 1 and External Dataset 2, respectively.

Having out-of-range predictor attribute values (when compared to the ranges in the case
base) in the test dataset decreases the prediction performance. This was illustrated by
examining the prediction performance results of External Dataset 1 and External Dataset
2. The underlining cause of this decrease in predictive power seems to be related to the
fact that the case base did not provide enough close enough neigbours to those value-out-

of-range cases rather than directly to the CRISK model itself.
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Chapter 8
DISCUSSION

8.1 HAs THE CRISK MODEL SOLVED PROBLEMS WITH THE CURRENT REGRESSION

PREDICTION MODELS? ..vtuvtutestatesteieseatesteseesessessesessessestesassessessssessessesessessessesessessenensessenes 131
8.2 PERSONALISED PREDICTION ....cceitiiiutiateeaiteesieessteesieessaesseessseessesssseessesssessssesnsenns 135
8.3  COMPARISON TO EXISTING MODELS ....ccocviiiiieieriniesieieie sttt nes 135
8.4  CLINICAL APPLICABILITY OF THE CRISK MODEL.......cccciiiiiiiiiiie e 142

To answer the six research questions stated in section 1.2, a system named CRISK was
developed based on fuzzy ontology and CBR. The case base of the system is a fuzzy
ontology constructed from the FHS Offspring Cohort Exam 1 dataset. The CRISK model
achieved prediction performance results of TPR=0.8733, TNR=0.8270,
Precision=0.2247, F1-value=0.3574, and NPV=0.9913. Important risk factors were found
to be age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP,
glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH. External validation on
the FHS Original Cohort Exam 11 dataset (External Dataset 2), which had two missing
risk factors (triglycerides and LDH), achieved TPR=0.8167, TNR=0.5041,
Precision=0.2866, F1-value=0.4242, and NP\VV=0.9185.

This chapter introduces and discusses four discussion points related to the CRISK model
developed in this research. The first one is whether the model has solved the problems of
current widely used regression models. This discussion point also helps answer RQ5. The
second point is about that CRISK supports personalised prediction. The third one is to
compare CRISK to existing CVD prediction models. This third point also helps answer
RQ6 (the answers to RQ5 and RQ6 are described in section 9.1.1). Finally, clinical
applicability of the CRISK model is discussed in the fourth discussion point.
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8.1 HAS THE CRISK MODEL SOLVED PROBLEMS WITH THE
CURRENT REGRESSION PREDICTION MODELS?

The CRISK model designed and implemented as part of this research has possibly solved

or at least partially solved five of the eight limitations of the current regression models

stated in Table 2-3 in section 2.2.5. Table 8-1 provides justifications for this answer in

detail by limitation.
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Table 8-1: Which limitations of current regression models have possibly been solved by the CRISK model?

Limitation

Solved?

Explanation

Inaccuracy for

individuals

Inaccuracy for other

cohorts

Inflexibility of handling

intervention

Requirement of

complete clinical data

Yes

N/A

No

Partially
Yes

The developed CRISK model first retrieves seven closest cases for an input case. It then generates prediction for the input
case based on the CVD outcomes of these seven closest cases. Therefore, unlike regression models that are known to

predict for populations [86], the CRISK model was designed to predict for individuals.

There is not yet an answer to this problem. This could not be addressed in this research because there was insufficient
testing undertaken on external datasets and insufficent data. The only external dataset collected for this research was the
FHS Original Cohort Exam 1. However, this dataset had two missing risk factors, triglycerides and LDH. In addition,
the FHS Original Cohort belongs to the same racial group as the case base constructed from FHS Offspring Cohort, so
there was a lack of diversity in the cases available. In future, the CRISK model should also be tested on cohorts from

different racial and geographical groups.

At this stage, the CRISK model does not handle intervention factors such as the person quits smoking, or the person starts

having treatment for CVD or related conditions.
The CRISK model was designed to allow for missing data. Missing data can be both in the case base and in the input
case. While the system can make a prediction, missing data may affect the prediction accuracy. This is reasonable.

There is currently no automatic mechanism in the system for handling missing data. The system currently just ignores
these missing risk factors and retrieves the closest cases based on the risk factors that have values in the input case.

Therefore, doctors are the ones responsible for making judgement calls based on the system’s CVD prediction outcomes,
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5

6

Deficiency of handling

inaccurate data or result

Deficiency of handling
vagueness of data or

result

Partially
Yes

Partially
Yes

keeping in mind the potential impact of the missing data. More information about missing data handling is given in

section 9.2.7.

In the CRISK system, the case base is a fuzzy ontology capable of storing both crisp and fuzzy data. When fuzzified, an
inaccurate crisp data value could still belong to the correct fuzzy set. For example, a person smokes 45 cigarettes per day
but this is inaccurately recorded as 55 cigarettes per day. When fuzzified, smoking 45 cigarettes per day or smoking 55

cigarettes per day could belong to the same fuzzy set e.g. “heavy smoking”.

Currently, in the CRISK system, only the CVD prediction outcomes are fuzzy. All values of risk factors are stored in the
case base as crisp values. In addition, the current version of the Retrieve algorithm also only works with crisp-valued risk
factors. However, with not much effort, the Retrieve algorithm could be updated to work with fuzzy-valued predictors in
the future.

The CRISK system displays CVD prediction results including membership values of two fuzzy sets “High CVD Risk”
and “Low CVD Risk”. Therefore, a case can be predicted to belong to both “High CVD Risk” and “Low CVD Risk”
with, most of the time, different membership values. As a result, a FP or FN case may still “be paid attention to” as
having a positive membership value belongs to the other fuzzy set (the correct set). Real examples for this were mentioned

in section 7.5.

Currently the CRISK system works with type-1 fuzzy ontology and therefore can handle vagueness of data or result.
However, as noted in Limitation #5, in the current CRISK system, only CVD outcomes are fuzzy. Hence this limitaton

is only partially addressed.
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Deficiency of handling  No In its current version, the CRISK system is not capable of working with type-2 fuzzy ontology, which is known to handle

uncertainty of data or uncertainty of data.

result

Poor explanatory Yes The CRISK system displays the seven closest cases together with prediction outcomes for the input case in order to
capacity enhance the system’s explanatory capacity. This extra detail helps the user interpret the CVD prediction outcomes

generated by the system.
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8.2 PERSONALISED PREDICTION

The CRISK model built based on CBR is for personalised prediction. Unlike many
existing models e.g. regression models, a formula is created based on the whole dataset.
After that, the same formula is used to give predictions for new people. The formula was
created to separate as many people in the dataset as possible into correct classes, focusing
on the whole population rather than an individual. Therefore, such models are considered
to predict for populations [86]. On the other hand, the CRISK model always tries to
retrieve the seven closest cases to the input case first. Then, it generates CVD prediction
outcomes for the input case based on CVD outcomes of these seven closest cases.
Therefore, it can be considered as a model for personalised prediction (individualised

prediction) rather than as population based.

Personalised prediction should be the focus for building a disease prediction model.
However, so far, it has not been given enough attention, especially in CVD prediction.
None of the CVD prediction models reviewed in this research were designed to be a
pesonalised model. Recently, in 2019, there was a PhD dissertation [185] completed that
introduced a competing-risk adjusted model called LIFE-CVD to estimate the benefit
from lipid-lowering, blood pressure-lowering, and anti-thrombotic therapy and smoking
cessation in people without prior CVD. Individual therapy-benefit is expressed as 10-year
risk reduction, lifetime-risk reduction, and CVD-free life expectancy. In essence, this is
also a regression model adding individualised therapy-benefit estimation. Different
individual may have different therapy and therefore may have different CVD risk

reduction.

8.3 COMPARISON TO EXISTING MODELS

Table 8-2 gives a general comparison of the developed CRISK model to three existing
prediction models, D’Agostino et al. [31], PREDICT-1° [76], and 2018 PCE [77].
Reasons for choosing these existing models were given in section 3.9.3. All three existing
models were built using the Cox Proportional Hazards regression method [37]. None of
these studies performed external validation when their models were published. However,
they can all be externally validated as long as there is an external dataset having the same
risk factors, as their CVD risk equations and tools are publicly available for download

and use.
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Table 8-2: A general comparison of CRISK and three chosen existing CVD prediction models

Model Risk factors Method Prediction  Prediction Performance External Comments
Interval Validation
CRISK Age, total cholesterol, LDL-C, VLDL-C, Fuzzy ontology 10 years TPR=0.8733, TNR=0.8270, F;- Yes External validation on a dataset with
SBP, triglycerides, DBP, glucose, cigarettes, CBR value=0.3574, and NPV=0.9913 two missing risk factors achieved
HDL-C, hematocrit, BMI, LDH TPR=0.8167, TNR=0.5041, Fi-
value=0.4242, and NPV=0.9185.
D’Agostino  Age, sex, SBP, treatment for hypertension, Cox proportional- 10 years AUC =0.763 for men and 0.793 No The excel based CVD risk calculator
etal. [31] smoking, diabetes, total cholesterol, HDL-C  hazards modeling for women tool is available for download.
PREDICT- Age, ethnicity, NZ index of socioeconomic Cox proportional 5 years The slopes of regression lines No The model (risk equation) was
1° [76], deprivation, family history of premature hazard modelling comparing predicted and designed to be externally validated by
CVD, smoking, diabetes, history of atrial observed total cardiovascular other studies.
fibrillation, SBP, TC/HDL-C, blood pressure disease risk in deciles were 0.98
lowering  medication, lipid lowering (95% CI 0.93-1.02) for women
medication, antithrombotic medication and 0.98 (0.98-1.01) for men.
2018 PCE Age, sex, race, total cholesterol, HDL-C, Cox proportional 10 years No explicit results but stating No The CVD Risk calculator tool named
[77] SBP, treatment for high blood pressure, hazard modelling and that the updated 2018 PCE “ACC/AHA Excel-Based CV Risk
diabetes, smoking lifetime improved accuracy among all Calculator” is available for download.

race and sex groups comparing
to the 2013 PCE.
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Nevertheless, for prediction performance comparison against CRISK, only the
D’Agostino model and the 2018 PCE model were selected. The reason for choosing these
two existing models was twofold. First, all their risk factors were available in the FHS
Offspring Cohort Exam 1 dataset, a dataset that was available in this research. Second,
their prediction intervals are 10 years, the same as CRISK. On the other hand, PREDICT-
1° was not chosen for performance comparison because it not only predicts CVD within
5 years but also uses risk factors that were not available in the datasets of this research.

The test dataset preparation process for performance comparison is summarised in Figure
8-1. First of all, a dataset was prepared to have all the risk factors used by the three
models. The way to do this was to collect more risk factors that are used by the existing
models into the dataset that was prepared from the FHS Offspring Cohort Exam 1 dataset
for CRISK in this research. For “race” (used by 2018 PCE), this risk factor was added,
and its value was set to “WH”. The 2018 PCE model uses “race” and accepts two values,
“AA” (for African Americans) and “WH” (for whites or others). The FHS Offspring
Cohort is known as a Caucasian cohort and therefore the value “WH”. After all additional
columns were added, it was checked to remove cases having missing values; however,
there was no such case. Next, as each of the existing models has different acceptable
ranges of risk factor values, two comparison scenarios were defined. Test dataset
preparation was carried out according to these two scenarios. An example of acceptable
ranges of values is that, 2018 PCE only accepts total cholesterol values from 130 to 320

mg/dl.

The first scenario was to have three test datasets for three models. The test dataset for
CRISK was the same as the one prepared from the first step above because all risk factor
values were within acceptable ranges for CRISK. In fact, the model takes any ranges of
values as there was not any acceptable range defined for the model in this research. This
dataset had 4,071 cases (P =221, N = 3,850). The test dataset for the D’ Agostino model
was formed by removing cases outside acceptable ranges of values for the model. This
resulted in a dataset of 2,841 cases (P =211, N = 2,630). In the same way, the test dataset
for the 2018 PCE model was created and had 1,470 cases (P = 166, N = 1,304).
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Figure 8-1: Test dataset preparation process for performance comparison to existing models

The second scenario was to have one test dataset for use in all three models. This was
done by removing cases outside acceptable ranges of values for all three models. The
resulting dataset had 1,470 cases (P = 166, N = 1,304).

Table 8-3 and Table 8-4 show prediction performance testing results from scenario 1 and
scenario 2, respectively, for the three models. The performance metrics given are TPR,
TNR, Precision, Fi-value, and NPV. To have these performance metrics for the
D’ Agostino model and the 2018 PCE model, a confusion matrix was generated for each
model. For D’ Agostino, the threshold to classify “High CVD Risk” and “Low CVD Risk”
from prediction results was 20%. This means that if the predicted 10-year CVD risk
(probability) is 20% or more, the prediction is classified as “High CVD Risk” (or
predicted 10-year CVD is “Yes”). For 2018 PCE, the threshold was 10% for “High CVD
Risk™.
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Table 8-3: Performance comparison of CRISK and existing models—Scenario 1

CRISK D’Agostino 2018 PCE

TPR 0.8733  0.3318 0.4096
TNR 0.8270  0.9422 0.8673
Precision  0.2247  0.3153 0.2822
Fi-value  0.3574  0.3233 0.3342
NPV 0.9913  0.9462 0.9203

Table 8-4: Performance comparison of CRISK and existing models—Scenario 2

CRISK D’Agostino 2018 PCE

TPR 0.9217 0.3675 0.4096
TNR 0.5775 0.8896 0.8673
Precision  0.2173 0.2976 0.2822
Fi-value 0.3517 0.3288 0.3342
NPV 0.9830 0.9170 0.9203

In performance test scenario 1, CRISK can be concluded to perform better than the two
existing models. Its TPR was a lot higher than the other two models (0.8733 c.f. 0.3318
and 0.4096). It also performed better in terms of Fi-value and NPV. For TNR and
Precision, it did a little worse than the other two models. Although the test dataset for
CRISK was a lot less balanced than the test datasets for the other two models (P/N =
221/3850 c.f. 211/2603 and 166/1304), CRISK still achieves a better Fi-value than the
two existing D’Agostino and 2018 PCE models (0.3574 c.f. 0.3233 and 0.3342).

In performance test scenario 2, CRISK can also be concluded to perform better than the
two existing models. Its TPR was also a lot higher than the other two models (0.9217 c.f.
0.3675 and 0.4096). It also performed better in terms of F1-value and NPV. For Precision,
it did a little worse than the other two models (0.2173 c.f. 0.2976 and 0.2822).
Interestingly, for TNR, CRISK performed a lot worse than the other two models (TNR =
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0.5775 c.f. 0.8896 and 0.8673). As the three models were run against the same dataset,
F1-value is the decisive metric, followed by Recall (TPR), for decision making (section
3.9.1). Therefore, CRISK can be determined to perform the best among the three models
(F1-value = 0.3517 c.f. 0.3288 and 0.3342, TPR = 0.9217 c.f. 0.3675 and 0.4096).

That CRISK performed badly in TNR in scenario 2 is worth exploring. Its test dataset in
scenario 2 was a subset of the test dataset employed in scenario 1. In scenario 1, the test
dataset’s age range was from 13 to 62 years. In scenario 2, the test dataset’s age range
was from 40 to 62 years, as cases less than 40 years old were removed to be within
acceptable ranges of values for all three models. Looking at the age distribution of the
case base in Figure T-17, it can be seen there are a lot more positives than negatives.
Therefore, the whole case base was balanced but for the age range from 40 to 62, it was
imbalanced and skewed towards positive cases. This could be one of the main reasons for
CRISK performing well as determined by TPR but badly in terms of TNR in this age
range. This finding is of interest and could lead to future work of dividing the whole
dataset into different age ranges and applying SMOTE for each individual age range

instead of for the whole dataset.

Besides prediction performance, another focus for comparing these models is how
prediction outcomes are presented. Figure 8-2 depicts how CVD prediction outcomes are
presented from the D’ Agostino model. The other two existing models also provide similar
prediction outcome presentations. They all generate prediction outcomes as probabilities
for developing CVD within 10 years. For example, in Figure 8-2, the probability of having
10-year CVD is 2.4%. This reaffirms that prediction using regression-based method
models is a prediction for populations. In this case, the person does not know whether
they belong to the 2.4% of people who would develop CVD or belongs to the 97.6% of
people who would not develop CVD within 10 years. Interpretation of the CVD
prediction result as conveyed to the person would be that they should try to lower their
risk to the normal level and even better to the optimal level.
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10 Year Risk

I Your risk 2.4%
Normal 1.3%
Optimal 0.7%

Figure 8-2: An example of CVD prediction outcomes presentation of a regression model

The CRISK model generates and presents CVD prediction outcomes differently from the
three existing prediction models. This can be seen in Figure 5-32 and Figure 5-33 in
section 5.5. The results include predicted Risk Class, predicted CVD Interval, predicted
High Risk Membership, predicted Low Risk Membership, a graph depicting “High CVD
Risk” and “Low CVD Risk” fuzzy sets, and the seven closest cases to the input case.
Information contained in the seven closest cases may help doctors make a decision as to
whether to accept or reject the system’s prediction result. This information, from the
closest seven cases, may also help doctors find useful additional insights into the specific

case under consideration.

Need high attention  Need medium attention Need low attention
N > > >
ey | |
| [High CVD Risk 'Low CVD Risk
\ \
| |
\ \
\ \
\ \
\ \
\ \
} } CVD Interval (years)
0 5 10 15 20 X

Figure 8-3: Possible interpretation of CVD prediction outcomes from the CRISK model

For interpretation of the CVD prediction result by the CRISK model, a possible way to
respond to the prediction result is proposed as illustrated in Figure 8-3. When the result
falls into the left (red) area, i.e. un = 1, the person needs high attention. When the result
falls into the middle (orange) area, i.e. 0 < pn < 1and 0 < pL <1, the person needs medium
attention. When the result falls into the right (blue) area, i.e. p = 1, the person needs low

attention. The person should aim to shift their CVD prediction result towards the right
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(the blue area). With this new way to interpret the prediction result, a wrongly classified
case (FP or FN) may still be paid attention to and therefore not be missed out as may still
have a positive membership value belongs to the correct fuzzy set (see real examples in

section 7.5).

8.4 CLINICAL APPLICABILITY OF THE CRISK MODEL

The CRISK model could be possibly applied in day-to-day operations in healthcare
clinics. There are several reasons for this belief. First, for prediction performance, it
achieves TPR=0.8733 and TNR=0.8270 (section 6.3), and performs better than two
existing high-profile models (section 8.3). Second, it is designed to predict for an
individual, not for a population. Third, besides the prediction result, the system also
displays the closest cases to the input case. This information would be useful for e.g.
manual checking and manual decision-making by doctors. In addition, it provides a new
way to interpret the CVD prediction result using fuzzy set memberships. This new way
would be worth further investigation as it may possibly provide more useful and accurate
information than the traditional way of using risk probabilities (see justification in section
8.3). Moreover, the CRISK system was designed to be continuously updated. Updates
include enriching the case base, updating the list of risk factors, and updating the number
of nearest neighbours. Updates of the list of risk factors and the number of nearest
neighbours can be achieved using the developed experimentation framework (CRISK
Experimenter Module).
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This chapter gives a concise and engaging conclusion to this body of work. It first gives
a summary of the research achievements. These include providing answers to the research
questions, giving reflection on the research, and showing the contribution of the study.

Finally, limitations and future directions for this research are provided.

9.1 RESEARCH ACHIEVEMENTS

9.1.1 Answers to Research Questions

As there was no existing fuzzy ontology CBR model for the CVD prediction domain, this
research set out to build a fuzzy ontology CBR model for prediction of 10-year CVD
(reported in Chapter 4, Chapter 5 and Chapter 6), plus performing external validation

(reported in Chapter 7) and having discussions (reported in Chapter 8) to answer the six
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research questions defined in section 1.2. As a result, this research has given answers to

these six research questions, restated below:

RQ1. Can a CVD prediction model be developed using a combination of fuzzy
ontology and CBR?

RQ2. What risk factors are important in the prediction of CVD using this method?

RQ3. How does the developed model perform in terms of prediction performance?

RQ4. How does the developed model perform in terms of external validation?

RQ5. How does the developed model overcome the limitations of current widely
used regression models?

RQ6. How does the developed model compare with current widely used regression

models in terms of prediction performance?

The answer to RQ1 is “Yes”. A way to develop CRISK using a combination of fuzzy
ontology and CBR is summarised as follows. Existing cases are stored in a case base
which is a fuzzy ontology. The model has four main algorithms Retrieve, Reuse, Revise,
and Retain associated with the four CBR activities. The output (prediction result) includes
predicted CVD Class, predicted CVD Interval, predicted High CVD Risk membership,
and predicted Low CVD Risk membership. Details of the CRISK model and the
implemented CRISK system can be found in Chapter 4 and Chapter 5, respectively.

The answer to RQ2 is age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP,
triglycerides, DBP, glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH.
However, this answer was based on the case base built from the FHS Offspring Cohort
dataset. This list of values might change when data from other datasets are included in
the case base. Details of the experiments to find the list of risk factors for the CRISK

model can be found in Chapter 6.

For answering RQ3, the CRISK model achieved prediction performance results of
TPR=0.8733 (C1=0.0102), TNR=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128),
Fi-value=0.3574 (C1=0.0147), and NPV=0.9913 (CI=0.0029) where CI is the 95%
confidence interval. Details of the experiments and the prediction performance results are

in Chapter 6.

For answering RQ4, the CRISK model achieved TPR=0.8167 (C1=0.0434), TNR=0.5041
(C1=0.0560), Precision=0.2866 (CI=0.0507), Fi-value=0.4242 (C1=0.0554), and
NPV=0.9185 (C1=0.0307) where Cl is the 95% confidence interval for external validation
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using the FHS Original Cohort Exam 11 dataset. Two risk factors, triglycerides and LDH,

were missing in this external dataset. More details of external validation are in Chapter 7.

To answer RQ5, an analysis was done and it concluded that CRISK was able to solve or
partially solve five out of eight limitations identified for regression models. A
combination of fuzzy ontology and CBR helped build a model that provided several
advantages over the current mainstream regression models. Using CBR, the developed
model supported personalised prediction by focusing on closest cases to the input case.
Moreover, retrieving and showing the closest cases alongside the CVD prediction
outcomes helped give a good explanatory capability to the model. Using type-1 fuzzy
ontology meant that the CRISK model could handle inaccurate and vague input data and
prediction results. In addition, the CRISK model developed was designed to allow for
missing data in both input cases and the case base. More details of the analysis can be

found in section 8.1.

For answering RQ6, CRISK was compared to two high-profile CVD prediction models,
D’Agostino et al. [31] and 2018 PCE [77]. CRISK outperformed these two models in
terms of prediction performance when testing on the FHS Offspring Cohort Exam 1

dataset. More details on comparing CRISK to existing models are in section 8.3.

9.1.2 Research Contributions

There are several contributions this research has added to the existing base of knowledge.

They are summarised below:

e The thesis contributed an in-depth literature review of CVD prediction models,
including conventional Framingham models, augmented Framingham models,
and alternatives to Framingham models. In addition, the literature review
identified eight problems with current mainstream regression models. It also
reviewed current fuzzy logic, fuzzy ontology and CBR approaches in CVD
prediction. Moreover, it provided the reasons why a combination of fuzzy
ontology and CBR would be able to solve the problems of regression models and
would be worth investigating for CVD prediction.

e The main contribution of this research was the design, implementation and
evaluation of the CRISK prediction model and its associated CRISK system. The
CRISK model achieved prediction performance results of TPR=0.8733
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(C1=0.0102), TNR=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), Fi-
value=0.3574 (C1=0.0147), and NPV=0.9913 (C1=0.0029) where CI is the 95%
confidence interval. These results are reasonably good for a CVD prediction
model. In addition, the CRISK model was shown to solve or partially solve five
out of the eight problems of current mainstream regression models. Moreover,
CRISK performed better when compared to two high-profile existing models,
D’Agostino et al. [31] and 2018 PCE [77], by testing all the models against the
same dataset—the FHS Offspring Cohort Exam 1. The CRISK system contains
modules for creating ontologies, running experiments with different datasets,
number of nearest neighbours, and number of risk factors for different scenarios,
and providing CVD prediction for an individual case.

e This research showed that fuzzy ontology CBR approaches are useful in CVD
prediction. Fuzzy ontology helps deal with vagueness and uncertainty of data.
CBR is suitable for personalised prediction. These advantages should encourage
future researchers to invest fuzzy ontology CBR approaches in CVD prediction
specifically and in chronic disease prediction generally.

e This research contributed a new way to represent and interpret CVD prediction
outcomes. The prediction outcomes are represented as fuzzy membership values
of “High CVD Risk” and “Low CVD Risk” fuzzy sets. Depending on the fuzzy
membership values, different attention is given to the input case. This new way of
representing and interpreting CVD prediction outcomes is different from the
widely used regression models. A typical regression model displays prediction
outcomes as probabilities e.g. 5% probability of developing CVD within 10 years.

e Finally, this research proposed the idea of continuous experimentation and
updates for a CVD prediction model and provided a system that enables this
process. So far, it has been that a model developed from a cohort turns out to
perform poorly on different cohorts. Therefore, it seems reasonable to keep
experimenting on new datasets to update the model in order to continuously

improve the prediction performance of the model.

9.1.3 Reflection on the Research

One factor that helped arrive at a successful outcome to this programme of research was
a properly defined research methodology. The Design Science methodology was

accompanied by a research framework, research guidelines, and research strategies and
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plans. In addition, dataset collection, dataset selection, experimentation design, data
preparation, and an evaluation protocol were also defined and documented in detail. This
made the research journey go smoothly and resulted in the CRISK model, which is a new
and innovative artifact that harnesses the strengths of fuzzy ontology and CBR for CVD
prediction. This artifact’s success led to prediction performance results that helped

successfully answer the six research questions.

This body of work can be easily reproduced. Besides a detailed research methodology,
the model design, implementation, experimentation, and external validation were also
documented. In particular, the developed Retrieve, Revise, and Reuse algorithms were
given in this thesis. Moreover, programming language, plugins, and development tools
were also reported in this thesis. Therefore, following this thesis step by step, other

researchers can reproduce this research and be able to arrive at the same results.

9.2 LIMITATIONS AND FUTURE DIRECTIONS

In this research, there were several limitations opening up areas for future work. These
limitations were attributed to a number of causes, including the time constraint of this
three year PhD programme, lack of open and freely available datasets for building and
validating the CRISK prediction model developed in this research, and that fuzzy
ontology CBR approaches are new in CVD prediction and thus there is a lack of existing
resources e.g. algorithms and tools. The following subsections give details of the
limitations and future directions identified for this study.

9.2.1 Need for expansion of the current Case Base

The case base of the CRISK system needs to be continuously expanded. There are a
couple of reasons for this. Primarily, as it is a CBR system, the richer the case base, the
more chance for the system to receive closer cases to the input case. The case base was
built from the FHS Offspring Cohort, which was a majority-Caucasian cohort.
Racial/ethnic status has been considered as a strong predictor for chronic disease,
including CVD [186]. Excluding race from a clinical prediction model (CPM) may lead
to inaccurate prognostication and harmful decision making in minority groups [187, 188].

Therefore, the case base needs to be expanded to include cases from other ethnicities. In
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addition, continuous expansion of the case base will support more experimentation to

update the CRISK model regularly to continuously improve CVD risk prediction.

However, to accomplish expansion of the CRISK case base, more datasets need to be
made available to researchers in the future. In this study, it was difficult to find open
datasets to build and validate the CRISK model. There are reasons, such as confidentiality
of healthcare data, for not sharing datasets. However, sharing data freely and openly
might help accelerate the progress towards achieving a precise and reliable CVD

prediction model.

9.2.2 Experimenting different approaches to balance the case base

As pointed out in section 8.3, the current approach of applying SMOTE to the whole
imbalanced dataset for building the case base may not be the best approach. Using

SMOTE may have resulted in the poor TNR observed for senior people.

Two alternative approaches may be worth exploring. Firstly, dividing the dataset into
different age ranges, for example [20, 29], [30, 39], [40, 49], [50, 59], and so on. SMOTE
is then applied to each individual age range separately (refer to section 8.3 for
justification). The second option is to gather more real positive cases to the dataset and
remove negative cases from the dataset in order to balance the number of positive and

negative cases.

9.2.3 Fuzzification of Predictor Variables

In this research, fuzzy logic was applied in representing CVD prediction outcomes, but
not predictor variables. There was no guarantee that fuzzification of predictors would
yield better prediction for the CRISK model. However, it may be worth trying. A very
strong candidate for fuzzification among the 13 predictors used in the model is
“cigarettes”. A person may not know exactly how many cigarettes they smoke a day. The
number of cigarettes smoked a day could be fuzzified as, for example, “light smoking”,
“medium smoking”, and “heavy smoking”. Another candidate for fuzzification is “race”.
“White race” set, “black race” set, and “Asian race” set, for example, could be created. A
person of mixed race, for example “white” and “black”, could be identified by the degrees

of membership values, such as pwhite = 0.5, Holack = 0.5, Hasian = 0.
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9.2.4 Usage of type-2 fuzzy ontology

In this study, the capability of handling uncertainty of data of type-2 fuzzy sets (see
section 2.3.2) was not explored. The reason was twofold. First, as type-1 fuzzy sets are
simpler than type-2 fuzzy sets, type-1 fuzzy sets were chosen to start with in this research
to see how things go. Second, there was no fuzzy ontology tool that supported type-2
fuzzy sets. The three-year time constraint of the PhD programme did not allow
development of such an ontology tool. However, it would be worth exploiting the
capability of handling data uncertainty of type-2 fuzzy sets to improve CVD prediction

models in future.

9.25 More Experimentation and Continuous Updates of the CRISK

model

As CBR is driven by data, continuous experimentation and updates of the CRISK model
are recommended. When new cases are added into the case base, the experimentation
described in Chapter 6 should be carried out. This will help update the number of nearest
neighbours k and the list of predictors for the CRISK model. Moreover, when having
enough cases from different races, it might be worth experimenting with different models
for different races. Results from different experiments should be compared to decide on

optimal settings for the CRISK model’s parameters.

Not only the CRISK model, but any model (e.g. a regression model) should be
continuously updated. In case of a regression model, whose equation was built from a
certain dataset, having new datasets from different cohorts, if the model was rebuilt from
a combination of the original dataset and the new datasets, would most likely result in a

different equation to the original model’s equation.

There could be an argument asking: “When will this continuous updating process end?”
or “Is the model never completed?” The answer is that the continuous updating process
might never end. This process is aimed to periodically improve the CVD prediction
performance for a model and/or keep the model up to date. These updates reflect changes
in population health and related environmental factors from which contemporary cases
are derived. Although a perfect prediction model might never be achieved, continuous
experimentation and updates to a developed model on new emerging datasets should

result in continuous improvement of the prediction performance of the model.
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9.2.6 Introduction of Weights for the Retrieve algorithm

It may be worth trying to add weights to the Distance algorithm that is part of the Retrieve
activity (described in section 4.5). Then, line 16 of the Distance algorithm would become
d = d + weightxweightxdiffxdiff. As different risk factors have different levels of impact
on the CVD outcomes (as ranked by Weka’s InfoGainAttributeEval attribute evaluator),
appropriate weight values could possibly improve the CVD prediction performance for
the CRISK model.

9.2.7 Missing Data Handling Mechanism

It might be good trying to develop an automatic missing data handling mechanism. The
CRISK system might then be able to set a boundary for missing data. For example, how
many missing risk factor values and which missing risk factors are acceptable for the
input case? In addition, the system might also be able to replace missing values from input
cases with appropriate values computed using an appropriate imputation method.
Currently, the system simply ignores missing risk factors and retrieves closest cases based
on risk factors that have values in the input case. As a result, CRISK heavily depends on
doctors making judgement calls on CVD prediction outcomes for those cases that are

missing data.

9.2.8 CRISK system giving indication for out-of-range input

The developed CRISK system should somehow give indication of when the input case
has risk factor values that are outside of value ranges in the case base. This indication
would help doctors make judgement calls if the input case is not “so much” out-of-range
and accept the prediction outcomes from the system. Out-of-range values proved to affect
the prediction performance as shown in section 7.4—prediction performance on External
Dataset 2 (no out-of-range values) was better than on External Dataset 1 (having out-of-
range values). Implementing this indication feature for the CRISK system would only

take a few days.

9.2.9 Clinical Trials

Clinical trials of the developed CRISK model should be one of the next steps following
the completion of this PhD research. The CRISK Predictor module of the CRISK system
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was designed to be used in day-to-day operation in healthcare clinics. However, the
usefulness and usability of the developed system cannot be fully realised until clinical
trials.
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approval occurs within the parameters outlined in the approved application.
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AUTEC grants ethical approval only. If you require management approval from an
institution or organisation for your research, then you will need to obtain this. If your
research is undertaken within a jurisdiction outside New Zealand, you will need to make
the arrangements necessary to meet the legal and ethical requirements that apply there.

To enable us to provide you with efficient service, we ask that you use the application
number and study title in all correspondence with us. If you have any enquiries about this
application, or anything else, please do contact us at ethics@aut.ac.nz.

All the very best with your research,

H

Kate O’Connor
Executive Secretary
Auckland University of Technology Ethics Committee

Cc:steve.huynh@aut.ac.nz
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Appendix B NHLBI RESEARCH MATERIALS DISTRIBUTION AGREEMENT (RMDA)

NHLBI Research Materials Distribution Agreement (RMDA)
Introduction and Definitions

The National Heart, Lung, and Blood Institute (NHLBI), the RECIPIENT Organization (RECIPIENT) and the Principal Investigator (PI) hereby enter into
this Research Materials Distribution Agreement (RMDA) as of the effective date specified on the final signature page .

The Research Materials and Research Plan covered by this RMDA are:

e Name of Clinical Study: GEN3, FRAMCOHORT, FRAMOFFSPRING

» Title of Research Plan: Fuzzy ontology case base reasoning approaches to prediction of Cardio-vascular disease
s Research Materials Regquested: Data

s ResearchPlan includes 8 Commercial Purpose: No

» Name of Principal Investigator (PI): Dave Parry

» Emalil of Principal Investigator (Pl): dave.parry@aut.ac.nz

+» Name of Other Approved Users at Pl's Institution: Steve Huynh, Jacqueline Whalley

The Research Materials are provided through the Biologic Specimen and Data Repository Information Coordinating Center. The Center was
established by the NHLBI to develop and maintain the infrastructure necessary to facilitate and maximize access to Research Materials from NHLBI-
sponsored studies in accordance with NHLBI approved procedures

The Research Materials were collected as part of the above clinical study, hereafter referred to as "STUDY". They constitute a unique scientific
resource and the NHLBI is committed to making them available in a timely manner, on appropriate terms and conditions, to the largest possible
number of qualified investigators who wish to analyze the materials in & secondary study designed to enhance the public health benefit of the
original work. The RECIPIENT and Pi acknowledge responsibility for ensuring the review of and agreement to the terms within this RMDA and the
appropriate research use of the Research Materials, subject to applicable laws and regulations.
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The RECIPIENT and Pl acknowledge that other researchers are entitled tc access to the Research Matarials on the same terms as RECIPIENT so
that duplication of research may occur. RECIPIENT and Pl also recognize that the STUDY Investigators have made a substantial long-term
contribution in establishing the Research Materials and the NHLBI encourages appropriate collaborative relationships by outside investigators with
the STUDY Investigators and proper acknowledgement of their contributions.,

The NHLBI believes that the confidentiality and privacy of the STUDY participants can best be assured by requiring all who are interested in
accessing the Research Materials to acknowledge their review of this RMDA and agree to adhere to its provisions. Violation of its confidentiality
provisions could lead to legal action on the part of STUDY participants, their families, or the U.5. Government.

Note: RECIPIENT requests access to NHLBl Research Materials for its Pl at its sole risk.
For the purpose of this Agreement

"RECIPIENT" is any organization that is sezeking access to STUDY Research Materials, and may be a: Public/State Controlled Institution of Higher
Education; Private Institution of Higher Education; Nonprofit organization with 801(c)(3) IRS Status (Other than Institution of Higher Education);
Nonprofit Organization without 501{cH{3) IRS Status (Other than Institution of Higher Education); Small Business; For-Profit Organization {(Other than
Small Business); State Government; Government of a U.S. Territory or Possession; Non-demestic {non-U.S.} Entity (Foreign Organization); or Eligible
Agency of the U.S. Government.

"Principal Investigator (P1)" is an individual judged by the RECIPIENT to have the appropriate level of authority and responsibility to lead the
scientific investigation proposed inthe Research Plan using the requested materials, oversee the supperting staff who are provided access to the
Research Materials and contribute to the analytic effort and public disclosure of STUDY results, and assume responsibility for all team merbers’
compliance with the terms and conditions of this RMDA,

*"APPROVED USERS" are all individuals specifically identified in the Research Plan, including the PL Only individuals listed in the Research Plan may
have access to the Research Materials.

"Research Plan" is a description of the proposed research that includes the identities of the investigators participating in the research effort, The
Research Plan must include the project title, the RECIPIENT's name, the PI's name, the name of other APPROVED USERS, and the proposed research
protocol with the research objectives and design. For plans including biospecimens, the biospecimen material type, number, minimum volume, and
required characteristics needed to meet the objectives of the protocol must alsc be included.
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"“Research Materials" are the requested materials covered by this RMDA and may include STUDY data, defined as clinical or epidemiologic
subject data, and/or STUDY biospecimans. STUDY biospecimens may have associated characterization data. Characterization data serve to
describe STUDY biospecimens only and are not considered to be STUDY data; they are exempt from STUDY data requirements that may be
described elsewhere in this RMDA,

*STUDY"is the clinical study that collected the Research Materials described in this RMDA,

"STUDY Investigator"” is a research investigator with a current or previous grant, contract or consulting agreement with the NHLBI, or one of its
contractors, to work on the STUDY.

Terms of Access

1. Research Use

The RECIPIENT and APPROVED USERS agree that they will use the Research Materials solely in connection with the research project
described in the Research Plan named in this RMDA. Substantive modifications to the reseaarch project will require submission of a revised

RMDA,

BiolINCC RMDA V02 1d20120806 Page 1 Date Generated: 20170412

Name of Principal Investigator: Dave Parry

Title of Research Plan: Fuzzy ontology case base reasoning approaches to prediction ofu__{;ﬁ_r_diq_-_vascuiar disease

H i

2. Institutional and Approved User Responsibilities

RECIPIENT and APPROVED USERS acknowledge that RECIPIENT's Institutional Review Board {IRB) has reviewed the Research Plan and either
approved it or determined that it is exempt from review, Access to Research Materials from some STUDIES requires IRB approval and/or
compliance with ather fimitations, and RECIPIENT agrees to abide by all such conditions and limitations on the Research Materials. RECIPIENT
certifies that its IRB is operating under an Office of Human Research Protections (OHRP) « approved Assurance and in accordance with

Department of Health and Human Services regulations at 45 CFR Part 46, RECIPIENT and APPROVED USERS agree to comply fully with all such
conditions,
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RECIPIENT and APPROVED USERS agree to report promptly to the NHLBI any proposed change inthe Research Plan and ary unanticipated
problems invalving risks to subjects or others. Changes to the Research Plan include changes in the APPROVED USERS list. This RDMA is
made in addition to, and does not supersede, any of RECIPIENT's institutional policies or any local, State, and/or Federal laws and regulations
that provide additichal protections for human subjects.

Evidence of local IRB review and/or approval {where appropriate) from an expedited or convened review to conduct the Research Plan with
the requested STUDY data must be included in a supplemental Adobe PDF document that will be upicaded during the application process and
attached to the RMDA form.

. Public Posting of Approved User’s Research Use Statement

The RECIPIENT and Pl agree that information about the proposed research use can be posted on a public web site that describes the
project(s) included in the Research Plan. The information will include the PI's name, RECIPIENT institution, project title, and a brief summary of
the research. In addition, citations resulting from the use of Research Materials may be posted on the Biologic Specimen and Data
Repository Information Coordinating Center Website.

. Non-ldentification

The Plagrees not to use the Research Materials, either alone or in concert with any other information, to identify or contact individual STUDY
subjects without specific approval to contact STUDY subjects obtained from the IRB(s) responsible for the STUDY.

. Non-Transferability of Research Materials

The RECIPIENT and Pl agree to retain control over the Research Materials, and further agree not to release or distribute Research Materials
inany form to any entity or individual unless required by NHLBI policies. The RECIPIENT and PI agree to store Research Material data ona
computer with adequate security controls (see Section 6}, and to maintain appropriate control over the Research Materials at all times.
Research Materials data containing individual-level information, in whole or in part, may not be sold to any entity or individual at any point in
time for any purpose.

The Pl agrees that if his or her relationship with the RECIPIENT terminates and a relationship with a different RECIPIENT is established during
the period of the RMDA, @ new RMDA from the second RECIPIENT wili be submitted and approved befare the Pl resumes use of the Research
Materials. Any versions of Research Material data stored at the first RECIPIENT will be destroyed and their destruction documented. However,
if advance written notice and approval by the NHLBI Program Office is obtained to transfer responsibility for the approved Research Planto a
different P} with a relationship with the first RECIPIENT, the Research Material data may not nead to he destroyed.
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6. Security of Research Materials

The RECIPIENT and Pl agree to store Research Material data on a computer with security controls adequate to protect sensitive or
identifiable information, to ensure that only approved, supervised persons have access to the data, and to maintain appropriate control over
the Research Materials at all times. Hard copies of any Research Material must similarly be stored under conditions sufficiently secure to
avoid inappropriate access, and shredded prior to discarding.

This RMDA will be in effect for a period of three (3) years from its effective date for the requested STUDY data set. At the end of the three (3)
year period, the RECIPIENT and Pi agree to destroy all copies of the STUDY data, and all derivatives that contain individual-level information.
Characterization data associated with the STUDY biospecimens are exempt from this requirement,

An extension of this RMDA may be permitted by the NHLBI upon submission by the Pl and RECIPIENT of evidence of IRB approval for the
extended period.

7. Intellectual Property

By requesting access to the STUDY Research Materials, the REQUESTER and APPROVED USERS acknowledge the intent of the NHLB| to see
that anyone authorized for research access through the attached Research Plan, follow the intellectual property principles within the NIH
GWAS Policy for Data Sharing as summarized below:

Achieving maximum public benefit is the ultimate goal of Research Material distribution through the NHLBI Biclogical and Data
Repository information Coordinating Center. The NIH believes that Research Materials, such as these covered by this RMDA,
should be considered as pre-competitive, and urges APPROVED USERS to avoid making IP claims derived directly from the
STUDY Research Materials. However, the NIH also recognizes the importance of the subsequent development of IP on
downstream discoveries, especially in therapeutics, which will be necessary to support full investment in products to benefit the
public.

it is expected that these NHLBI-provided data, and conclusions derived there from, will remain freely available, without
requirement for licensing, The NIH encourages broad use of shared Research Materials coupled with a responsible approach to
management of intellectual property derived from downstream discoveries in a manner consistent with the NIH's Best Practices
for the ticensing of Genomic Inventions and the NIH Research Tools Policy.
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I Name of Principal Investigator: Dave Parry

8. Acknowledgement of BioLINCC Research Resources

RECIPIENT agrees to acknowledge the contribution of the STUDY in all oral and written presentations, disclosures, or publications resulting
from any analyses conducted on the STUDY Research Materials,

If the Research Plan involves collaboration with STUDY Investigators, then the APPROVED USERS will comply with all policies established by
the STUDY's publications committee. In addition, the APPROVED USERS will acknowledge the source of the data by inciuding language similar
to the foliowing either in the acknowledgment or in the text of the manuscript: "This manuscript was prepared using GEN3, FRAMCOHORT,
FRAMOFFSPRING Research Materials obtained from the NHLBI",

If the Research Plan does not involve collaboration with STUDY Investigators or the STUDY has ended, the RECIPIENT will acknowledge the
source of the data by including language similar to the following either in the acknowledgment or in the text of the manuscript: "This
Manuscript was prepared using GEN3, FRAMCOHORT, FRAMOFFSPRING Research Materials obtained from the NHLBI Biologic Specimen and
Data Repository Information Coordinating Center and does not necessarily reflect the opinions or views of the GEN3, FRAMCOHOQRT,
FRAMOFFSPRING or the NHLBL" Manuscripts and abstracts resulting from the Research Plan should not use the name of the STUDY in the title
of the manuscript/abstract unless the title clearly denotes the source of the Research Materials as being from the NHLBI Biologic Specimen
and Data Repository Infarmation Coordinating Center {e.g., "...An investigation using the <STUDY name and Research Materials>"), The
purpose is to delineate manuscripts from the Research Pi and APPROVED USERS from manuscripts from the STUDY and STUDY Investigators,

The RECIPIENT and Pl agree to ensure that all APPROVED USERS will not include in any manuscripts derived from Research Materials any case
studies that describe the characteristics of individual participants, or a small number or groups of participants.
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9.

10.

11,

12.

Research Use Reporting
Prompt publication or other public disclosure of the results of the Research Plan is encouraged.

When reguested by the NHLB!, the APPROVED USERS agree to provide general comments regarding topics such as the effectiveness of the

NHLBI Biological Specimen and Data Repository Information Coordinating Center Research Material access process {ease of access and use;

appropriateness of STUDY data format; challenges in following the policies; suggestions for improving research material access; or the
program in generall.

Non-Endorsement, Indemnification

The RECIPIENT and Pl acknowledge that although all reasonable efforts have been taken to ensure the accuracy and reliability of Research
Materials, the N®LBI, and STUDY Investigators do not and cannot warrant the results that may he obtained by using any Research Materials
inciuded therein. The NHLB! and all contributars to these Resesarch Materials disclaim all warranties as to performance or fitness of the
Research Materials for any particular purpose,

Na indemnification for any loss, claim, damage or liability is intended or provided by any party under this Agreemsnt. Each party shall be
liable for any loss, claim, damage, or liability that said party incurs as a result of its activities under this Agreement, except that the NIH, as
anagency of the United States, assumes liability only to the extent provided under the Federal Tort Claims Act, 28 US.C. 2671 et seq.

Termination and Vialations

The NHLBI may terminate this Agreement if RECIPIENT or APPROVED USERS are in default of any of its conditions and such default has not
been remedied within 30 days after the date of written notice of such default by an authorized representative of the NHLBI. Past violations
will be taken into consideration by the NHLBI for future requests from the RECIPIENT and APPROVED USERS to access NHLBI Research
Materials,

Amendments

Amendments to this Agreement must be made in writing and signed by authorized representatives of all parties.
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|
H
{ Name of Principal Investigator: Dave Parry

Title of Research Plan: Fuzzy ontolegy case base reasoning approaches to prediction of Cardio-vascular disease

Signatures Page

By submission of the RMDA, the RECIPIENT and Pl attest to the APPROVED USERS qualifications for access to and use of STUDY Research Materials
and certify their Agreement to the NHLBI principles, policies, and procedures for the use of Research Materials as articulated in this document,

: (\(e Cti%&é\@ﬁ

This Agreement is entered into as of: §

BY RECIPIENT:

Name of RECIPIENT Institution: Auckiand University of Technology

Erices %ﬁgwwe;«@j Hoadl o £ School
Gucd T Dean of EnGirneern

e om0 0 1G 0% 2077
Signature and Date of RECIPIENT's Authorized Institutional Business Official: y;

crrico . haecmmer & ovt ac. ng

Name and Title of RECIPIENT's Authorized Institutional Business Official:

E-Mail address of Authorized Institutional Business Official;
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BY PRINCIPAL INVESTIGATOR:

B VoI | oLxC/rD% mL Ccm:;» NSNS PuT

Surface Mail Address: P(L___TT \ F}Wf”\/ LM(O E (~ ’\_\ € kd K—'M’@’\(’
Pudel amel N Zeclond

E-Mail Address: dave parry@aut.ac.nz

emerenmoer_ Tl L2229 )W BT IR .
' Cr Q2 (A ?%@
Signature and“dn-;_;;.-_-’-_\_‘ B ..--—'—-«\ O(WL PN% \ Q\C) iq-

Digitally signed by Sean A. Coady -5
BY NHLBI Authorized Repreksg ot Sea n A DN: c=US, o0=U.5. Government,
. ou=HHS, ou=NIH, ou=People,
Mame and Title: _ cn=Sgan A C:adg s,

0.9.2342.19200300.100.1.1=0010154
0a
Date: 2017.04.21 08:17:47 -04'00°

Sigmnature and Date:

“"Authorized Institutional Business/Signing Official” is an individual with the authority to enter into business transactions on behalf of the
RECIPIENT.
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Appendix C ANALYSIS FOR INITIAL ATTRIBUTE REDUCTION

Table C-1 shows analysis to initially remove 16 unsuitable attributes from the initially

collected dataset (section 3.8.3).

Table C-1: Analysis to initially remove unsuitable attributes

Attribute Percentage of Decision
missing data (%0)

CONFIRMATION TYPE 3 99.95916701 Remove

T4 84.99387505 Remove

PHYSICIAN SYSTOLIC BLOOD 82.48264598 Remove

PRESSURE, 2ND

PHYSICIAN DIASTOLIC BLOOD 82.48264598 Remove

PRESSURE, 2ND

IF STOPPED, AGE STOPPED 33.85055125

AGE START SMOKE CIGARETTE 33.5238873

REGULARLY

WEIGHT AT AGE 25 16.33319722

COMPLETE BLOOD COUNT 11.47407105

WHITE BLOOD COUNT 10.73907717

RED BLOOD COUNT 10.41241323

H.G.B. 10.41241323

M.C.V. 10.41241323

M.C.H. 10.41241323

M.C.H.C. 10.41241323

H.C.T. 6.206614945 Remove (Duplicated
with the
HEMATOCRIT
column)

HEMATOCRIT 5.532870559

CALCIUM 4.838709677

ALBUMIN 4.797876684

PHOSPHORUS 4.757043691
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BUN

TOTAL PROTEIN

LDL

Diabetes

SGOT

ALKALINE PHOSPHOTASE
URIC ACID

GLUCOSE

TOTAL BILIRUBIN
GLOBULIN

WEIGHT COMPARED WITH 1 MONTH
AGO

TOP FRACTION, ORIGIN

TOP FRACTION, BETA

TOP FRACTION, PRE-BETA
BOTTOM FRACTION, PRE-BETA
SINKING PRE-BETA BAND
FREDERICKSON CLASSIFICATION
FASTING 12 HRS OR MORE
PRE-BETA BAND

HDL CHOLESTEROL

VLDL CHOLESTEROL

LDL CHOLESTEROL

WHOLE PLASMA, ORIGIN

WHOLE PLASMA, PRE-BETA

WEIGHT COMPARE WITH 1 YEAR AGO

TRIGLYCERIDES

TOTAL CHOLESTEROL

WHOLE PLASMA APPEARANCE

4757043691

4.757043691

4.757043691

4.654961209

4.430379747

4.389546754

4.287464271

4.205798285

4.205798285

4.185381788

2.53164557

2.164148632

2.164148632

2.164148632

2.123315639

2.102899143

2.102899143

2.082482646

2.041649653

2.021233156

2.021233156

2.021233156

1.93956717

1.919150674

1.837484688

1.714985708

1.674152715

1.674152715



INFRANATE AFTER 12 HRS AT 4
DEGREES

CREAM AFTER 12 HRS OR MORE
USES FILTER

INHALES

ALCOHOL INDEX

COCKTAIL INTAKE

FIRST SECOND VOLUME

TOTAL VITAL CAPACITY

SMOKES CIGARS

PAROXYSMAL NOCTURAL DYSPNEA
BILATERAL ANKLE EDEMA
NOCTURNAL COUGH OR WHEEZING
DYSPNEA ON EXERTION

SMOKES PIPES

RECENT ORTHOPNEA

HISTORY OF ENLARGED HEART
DYSPNEA INCREASE IN PAST 2 YEARS
HISTORY OF HYPOTHYROID DISEASE
WINE INTAKE

BEER INTAKE

HISTORY OF OTHER KIDNEY AILMENT
HISTORY OF NEPHROSIS
BROCHODILATOR OR AEROSOL

NURSE SYSTOLIC BLOOD PRESSURE

NURSE DIASTOLIC BLOOD PRESSURE

TRANQUILIZERS
OTHER (C-V DRUGS)

HISTORY OF HEART MURMUR
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1.674152715

1.674152715

1.53123724

1.347488771

1.06165782

1.041241323

1.020824826

1.020824826

0.979991833

0.979991833

0.979991833

0.979991833

0.959575337

0.93915884

0.93915884

0.918742344

0.918742344

0.898325847

0.898325847

0.857492854

0.816659861

0.796243365

0.755410372

0.734993875

0.734993875

0.714577379

0.694160882

0.694160882

Remove (Use the
physicians’ one)

Remove (Use the
physicians’ one)



DIURETICS FOR BLOOD PRESSURE

HYPOTENSIVES (EXCLUDING
DIURETICS)

ANTI-THYROID
ANTI-COAGULANTS

THYROID

HYPOGLYCEMIC AGENTS (SPECIFY)

LOW CALORIE DIET LAST 2 WEEKS
Treatment for Diabetes
ANTI-CHOLESTEROL AGENTS
DIURETICS FOR FLUID RETENTION
DIABETIC DIET LAST 2 WEEKS

LOW CHOLESTEROL DIET LAST 2
WEEKS

CARDIAC GLYCOSIDES
SMOKES CIGARETTES
NITRITES

QUINIDINE

PREMARIN

SMOKED AT LEAST 1 YEAR

USUAL # OF CIGARRETTE SMOKE
NOW/EVER

OTHER (SPECIFY)

AMOUNT OF FOOD LAST 2 DAYS
AMOUNT OF ALCOHOL
OVARIES REMOVED

HISTORY OF HYPERTENSION

PHYSICIAN SYSTOLIC BLOOD
PRESSURE, 1ST

PHYSICIAN DIASTOLIC BLOOD
PRESSURE, 1ST
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0.653327889

0.592078399

0.551245406

0.551245406

0.53082891

0.510412413

0.510412413

0.510412413

0.489995917

0.46957942

0.449162924

0.408329931

0.387913434

0.387913434

0.367496938

0.367496938

0.367496938

0.347080441

0.347080441

0.326663944

0.326663944

0.326663944

0.306247448

0.183748469

0.163331972

0.163331972

Remove (Female only)

Remove (Female only)

Remove (Female only)



ORAL CONTRACEPTIVE

AGE AT WHICH PERIODS STOPPED

CAUSE OF CESSATION OF MENSES

WOLFF-PARKINSON-WHITE SYNDROME

CHEST DISCOMFORT
P-R INTERVAL

QT INTERAVAL

NON-SPECIFIC T-WAVE ABNORMALITY

NON-SPECIFIC S-T SEGMENT
ABNORMALITY

ECG CLINICAL READING

ECG FINDING SUMMARY
HYSTERECTOMY

VENTRICULAR RATE

QRS INTERVAL

A QRS

RIGHT-INTRAVENTRICULAR BLOCK
LEFT-INTRAVENTRICULAR BLOCK
HEMIBLOCK

BIFASCULAR BLOCK

INCOMPLETE-ATRIOVENTRICULAR
BLOCK

COMPLETE ATRIOVENTRICULAR
BLOCK

PREMATURE BEATS

OTHER ARRHYTHMIA

OTHER ECG ABNORMALITY
TAKING DIGITALIS OR QUINIDINE
MYOCARDIAL INFARCTION

LEFT VENTRICULAR HYPERTROPHY

METROPOLITAN RELATIVE WEIGHT

180

0.163331972

0.102082483

0.102082483

0.102082483

0.081665986

0.06124949

0.06124949

0.06124949

0.06124949

0.06124949

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.040832993

0.020416497

Remove (Female only)
Remove (Female only)

Remove (Female only)

Remove (Female only)



QUETELET INDEX (KG/M SQUARED)

HGT
BMI
PID

SEX

PERIODS HAVE STOPPED 1 YR OR MORE

WGTGP

AGE

CvD

CVDDATE

0.020416497

0.020416497

0.020416497

0

o

Remove (Duplicated
with the BMI column)

Remove (Female only)
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Appendix D MIXED SEX DATASET—FIRST ATTRIBUTE

EVALUATION BY WEKA

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator

to rank 119 risk factors of the mixed sex dataset (section 3.8.7).

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpring9_PreparePredictionAttributes2-
weka.filters.unsupervised.attribute. Remove-R122-weka.filters.unsupervised.attribute.Remove-
R1

Instances: 4737
Attributes: 120
[list of attributes omitted]

Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 120 cvd10):

Information Gain Ranking Filter

Ranked attributes:

0.04155809 116 AGE

0.02066707 2 TOTAL CHOLESTEROL

0.01658859 4 VLDL CHOLESTEROL

0.0165876 5 LDL CHOLESTEROL

0.01627317 33 PHYSICIAN SYSTOLIC BLOOD PRESSURE
0.01371721 34 PHYSICIAN DIASTOLIC BLOOD PRESSURE
0.01291542 6 TRIGLYCERIDES

0.01133067 62 USUAL # OF CIGARRETTE SMOKE NOW/EVER
0.00974304 23 GLUCOSE

0.00893359 3 HDL CHOLESTEROL
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0.00853935 117 BMI

0.00798268 79 DYSPNEA ON EXERTION

0.00758577 1 SEX

0.00752456 31 LDL

0.00731425 30 ALKALINE PHOSPHOTASE
0.00697716 25 URIC ACID

0.00626734 115 WGTGP

0.00617897 41 HISTORY OF HYPERTENSION
0.00606969 56 SMOKED AT LEAST 1 YEAR
0.00593551 20 HEMATOCRIT

0.0057986 86 WHITE BLOOD COUNT

0.00570935 19 FREDERICKSON CLASSIFICATION
0.00566588 119 Diabetes

0.00564343 80 DYSPNEA INCREASE IN PAST 2 YEARS
0.00560985 88 H.G.B.

0.00547475 11 TOP FRACTION PRE-BETA

0.005308 87 RED BLOOD COUNT

0.00528462 96 A QRS

0.00519749 59 SMOKES CIGARETTES

0.00489626 52 HYPOGLYCEMIC AGENTS (SPECIFY)
0.00489626 118 Treatment for Diabetes

0.00416658 17 PRE-BETA BAND

0.0041151 47 HYPOTENSIVES (EXCLUDING DIURETICS)
0.00406476 8 WHOLE PLASMA PRE-BETA
0.00381172 27 ALBUMIN

0.00376564 46 DIURETICS FOR BLOOD PRESSURE
0.00329209 64 INHALES

0.00320043 76 CHEST DISCOMFORT

0.00298447 67 WEIGHT AT AGE 25

0.00284326 35 FIRST SECOND VOLUME

0.00282801 73 COCKTAIL INTAKE

0.00277396 37 ECG FINDING SUMMARY

0.00271187 112 ECG CLINICAL READING

0.00259362 95 QT INTERAVAL

0.00256636 36 TOTAL VITAL CAPACITY

0.00230398 110 NON-SPECIFIC T-WAVE ABNORMALITY
0.00227035 42 CARDIAC GLYCOSIDES

0.00195175 81 RECENT ORTHOPNEA

0.00183344 22 PHOSPHORUS

183




0.001739
0.00146816
0.00131895
0.0012996
0.00128142
0.00127889
0.00125359
0.00120901
0.00116796
0.00115491
0.00115229
0.00094572
0.00093981
0.00078236
0.00062946
0.00061819
0.00058816
0.00049601
0.00048836
0.00046391
0.00046373
0.00044647
0.00041847
0.00039265
0.00032651
0.00030627
0.00027141
0.00027115
0.0002689
0.00025458
0.00025406
0.0002421
0.00021993
0.0001946
0.00018558
0.0001834
0.00017086
0.00015389
0.00013661

24 BUN
107 TAKING DIGITALIS OR QUINIDINE
14 INFRANATE AFTER 12 HRS AT 4 DEGREES
48 ANTI-CHOLESTEROL AGENTS
7 WHOLE PLASMA ORIGIN
9 TOP FRACTION ORIGIN
109 LEFT VENTRICULAR HYPERTROPHY
57 SMOKES CIGARS
111 NON-SPECIFIC S-T SEGMENT ABNORMALITY
43 NITRITES
53 TRANQUILIZERS
13 WHOLE PLASMA APPEARANCE
44 QUINIDINE
55 OTHER (C-V DRUGS)
104 PREMATURE BEATS
106 OTHER ECG ABNORMALITY
84 NOCTURNAL COUGH OR WHEEZING
16 FASTING 12 HRS OR MORE
102 COMPLETE ATRIOVENTRICULAR BLOCK
101 INCOMPLETE-ATRIOVENTRICULAR BLOCK
75 AMOUNT OF ALCOHOL
15 CREAM AFTER 12 HRS OR MORE
74 AMOUNT OF FOOD LAST 2 DAYS
70 DIABETIC DIET LAST 2 WEEKS
82 PAROXYSMAL NOCTURAL DYSPNEA
40 HISTORY OF HYPOTHYROID DISEASE
78 HISTORY OF ENLARGED HEART
83 BILATERAL ANKLE EDEMA
68 LOW CHOLESTEROL DIET LAST 2 WEEKS
18 SINKING PRE-BETA BAND
12 BOTTOM FRACTION PRE-BETA
99 HEMIBLOCK
45 DIURETICS FOR FLUID RETENTION
63 USES FILTER
103 WOLFF-PARKINSON-WHITE SYNDROME
98 LEFT-INTRAVENTRICULAR BLOCK
77 HISTORY OF HEART MURMUR
51 ANTI-COAGULANTS
54 BROCHODILATOR OR AEROSOL
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0.0001234 105 OTHER ARRHYTHMIA

0.00012042 39 HISTORY OF OTHER KIDNEY AILMENT
0.00011912 50 ANTI-THYROID

0.00011001 58 SMOKES PIPES

0.00009091 10 TOP FRACTION BETA

0.00008331 108 MYOCARDIAL INFARCTION
0.00007596 66 WEIGHT COMPARED WITH 1 YEAR AGO
0.00006664 100 BIFASCULAR BLOCK

0.00003568 69 LOW CALORIE DIET LAST 2 WEEKS
0.00003507 65 WEIGHT COMPARED WITH 1 MONTH AGO
0.00001571 38 HISTORY OF NEPHROSIS

0.00000799 97 RIGHT-INTRAVENTRICULAR BLOCK
0.00000292 49 THYROID

0 71 BEER INTAKE

0 114 HGT

0 92 VENTRICULAR RATE

0 113 ALCOHOL INDEX

0 93 P-R INTERVAL

0 94 QRS INTERVAL

0 61 IF STOPPED AGE STOPPED

0 26 TOTAL PROTEIN

0 91 M.C.H.C.

0 28 GLOBULIN

0 21 CALCIUM

0 85 COMPLETE BLOOD COUNT

0 29 TOTAL BILIRUBIN

0 32 SGOT

0 89 M.C.V.

0 90 M.C.H.

0 72 WINE INTAKE

0 60 AGE START SMOKE CIGARETTE REGULARLY

Selected attributes:
116,2,4,5,33,34,6,62,23,3,117,79,1,31,30,25,115,41,56,20,86,19,119,80,88,11,87,96,59,52,118,
17,47,8,27,46,64,76,67,35,73,37,112,95,36,110,42,81,22,24,107,14,48,7,9,109,57,111,43,53,13,
44,55,104,106,84,16,102,101,75,15,74,70,82,40,78,83,68,18,12,99,45,63,103,98,77,51,54,105,3
9,50,58,10,108,66,100,69,65,38,97,49,71,114,92,113,93,94,61,26,91,28,21,85,29,32,89,90,72,6
0:119
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Appendix E MIXED SEX DATASET—SECOND ATTRIBUTE
EVALUATION BY WEKA
Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator

to rank 34 selected risk factors, after removing missing data, of the mixed sex dataset
(section 3.8.9).

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpringl2_RemoveMissingData-
weka.filters.unsupervised.attribute.Remove-R37-weka.filters.unsupervised.attribute.Remove-R1

Instances: 4071
Attributes: 35
SEX
TOTAL CHOLESTEROL
HDL CHOLESTEROL
VLDL CHOLESTEROL
LDL CHOLESTEROL
TRIGLYCERIDES
WHOLE PLASMA PRE-BETA
TOP FRACTION PRE-BETA
PRE-BETA BAND
FREDERICKSON CLASSIFICATION
HEMATOCRIT
GLUCOSE
URIC ACID
ALKALINE PHOSPHOTASE
LDH
PHYSICIAN SYSTOLIC BLOOD PRESSURE
PHYSICIAN DIASTOLIC BLOOD PRESSURE
HISTORY OF HYPERTENSION
HYPOTENSIVES (EXCLUDING DIURETICS)
HYPOGLYCEMIC AGENTS (SPECIFY)
SMOKED AT LEAST 1 YEAR
SMOKES CIGARETTES
USUAL # OF CIGARETTE SMOKE NOW/EVER
DYSPNEA ON EXERTION
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DYSPNEA INCREASE IN PAST 2 YEARS
WHITE BLOOD COUNT
RED BLOOD COUNT
H.G.B.

A QRS

WGTGP

AGE

BMI

Treatment for Diabetes
Diabetes

cvdl10

Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 35 cvd10):
Information Gain Ranking Filter

Ranked attributes:

0.04384 31 AGE

0.02324 2 TOTAL CHOLESTEROL

0.0184 5LDL CHOLESTEROL

0.01733 4 VLDL CHOLESTEROL

0.01562 16 PHYSICIAN SYSTOLIC BLOOD PRESSURE
0.01392 6 TRIGLYCERIDES

0.01286 17 PHYSICIAN DIASTOLIC BLOOD PRESSURE
0.0119 12 GLUCOSE

0.01112 23 USUAL # OF CIGARETTE SMOKE NOW/EVER
0.01109 3 HDL CHOLESTEROL

0.00915 11 HEMATOCRIT

0.00902 32 BMI

0.00843 15LDH

0.00805 1SEX

0.00741 30 WGTGP
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0.00736 13 URIC ACID

0.00735 10 FREDERICKSON CLASSIFICATION
0.00725 28 H.G.B.

0.00719 14 ALKALINE PHOSPHOTASE

0.00678 26 WHITE BLOOD COUNT

0.00673 24 DYSPNEA ON EXERTION

0.00672 34 Diabetes

0.0067 8 TOP FRACTION PRE-BETA

0.00652 27 RED BLOOD COUNT

0.00616 21 SMOKED AT LEAST 1 YEAR

0.00578 33 Treatment for Diabetes

0.00578 20 HYPOGLYCEMIC AGENTS (SPECIFY)
0.00569 29 A QRS

0.00568 18 HISTORY OF HYPERTENSION

0.00543 9 PRE-BETA BAND

0.00535 7 WHOLE PLASMA PRE-BETA

0.00506 25 DYSPNEA INCREASE IN PAST 2 YEARS
0.00503 22 SMOKES CIGARETTES

0.00445 19 HYPOTENSIVES (EXCLUDING DIURETICS)

Selected attributes:
31,2,5,4,16,6,17,12,23,3,11,32,15,1,30,13,10,28,14,26,24,34,8,27,21,33,20,29,18,9,7,25,22,19 :
34
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Appendix F MALE DATASET—FIRST ATTRIBUTE

EVALUATION BY WEKA

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator

to rank 118 risk factors of the male dataset.

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpring10_PreparePredictionAttributes-
weka.filters.unsupervised.attribute. Remove-R1-weka.filters.unsupervised.attribute. Remove-
R120

Instances: 2256
Attributes: 119
[list of attributes omitted]

Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 119 cvd10):

Information Gain Ranking Filter

Ranked attributes:

0.0592066922 115 AGE

0.0275554434 35 TOTAL VITAL CAPACITY
0.023543638 1 TOTAL CHOLESTEROL
0.0221832382 34 FIRST SECOND VOLUME
0.0203427569 4 LDL CHOLESTEROL
0.0200335985 26 ALBUMIN

0.0133942659 85 WHITE BLOOD COUNT
0.0129591726 22 GLUCOSE

0.0122847245 5 TRIGLYCERIDES
0.0116015904 33 DIASTOLIC BLOOD PRESSURE
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0.0102338515
0.0099748177
0.0098996084
0.0098467173
0.0090644755
0.008899552
0.0085976877
0.008378051
0.0076409857
0.0076409857
0.0074232927
0.0074042504
0.0060329042
0.005622893
0.0052735685
0.0051490572
0.0048315193
0.0045464337
0.004538698
0.004448376
0.0041216431
0.003651327
0.0034912303
0.003490247
0.003448162
0.00335672
0.0032350604
0.0032248113
0.0027752659
0.0027078788
0.0025348444
0.0022848854
0.0022079623
0.0021062347
0.0020648841
0.0020600986
0.001581056
0.0015237592
0.0013126402

32 SYSTOLIC BLOOD PRESSURE
55 SMOKED AT LEAST 1 YEAR
3 VLDL CHOLESTEROL
61 USUAL # OF CIGARRETTE SMOKE NOW/EVER
58 SMOKES CIGARETTES
28 TOTAL BILIRUBIN
30 LDH
78 DYSPNEA ON EXERTION
51 HYPOGLYCEMIC AGENTS (SPECIFY)
117 Treatment for Diabetes
95 A QRS
118 Diabetes
2 HDL CHOLESTEROL
75 CHEST DISCOMFORT
110 NON-SPECIFIC S-T SEGMENT ABNORMALITY
109 NON-SPECIFIC T-WAVE ABNORMALITY
63 INHALES
18 FREDERICKSON CLASSIFICATION
29 ALKALINE PHOSPHOTASE
94 QT INTERAVAL
25 TOTAL PROTEIN
36 ECG FINDING SUMMARY
40 HISTORY OF HYPERTENSION
21 PHOSPHORUS
10 TOP FRACTION PRE-BETA
16 PRE-BETA BAND
7 WHOLE PLASMA PRE-BETA
111 ECG CLINICAL READING
79 DYSPNEA INCREASE IN PAST 2 YEARS
45 DIURETICS FOR BLOOD PRESSURE
82 BILATERAL ANKLE EDEMA
54 OTHER (C-V DRUGS)
46 HYPOTENSIVES (EXCLUDING DIURETICS)
80 RECENT ORTHOPNEA
6 WHOLE PLASMA ORIGIN
8 TOP FRACTION ORIGIN
44 DIURETICS FOR FLUID RETENTION
76 HISTORY OF HEART MURMUR
52 TRANQUILIZERS
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0.0008738141
0.0008409894
0.0008044509
0.0007748173
0.0007748173
0.0007452462
0.0007381664
0.0007280777
0.0006743346
0.0006574618
0.0006451987
0.0005806095
0.0005695691
0.0005478234
0.0005239122
0.0004631239
0.0004060788
0.0003593274
0.0003568099
0.0003568099
0.0003512771
0.0002511922
0.0002443124
0.0002424533
0.0002381329
0.0002190216
0.0002107705
0.0001897813
0.0001893646
0.0001541605
0.0001463647
0.0001027499
0.0000943372
0.0000811353
0.0000729965
0.0000721089
0.0000705051
0.0000483676
0.0000474103

74 AMOUNT OF ALCOHOL
47 ANTI-CHOLESTEROL AGENTS
101 COMPLETE ATRIOVENTRICULAR BLOCK
11 BOTTOM FRACTION PRE-BETA
17 SINKING PRE-BETA BAND
62 USES FILTER
14 CREAM AFTER 12 HRS OR MORE
103 PREMATURE BEATS
108 LEFT VENTRICULAR HYPERTROPHY
83 NOCTURNAL COUGH OR WHEEZING
100 INCOMPLETE-ATRIOVENTRICULAR BLOCK
38 HISTORY OF OTHER KIDNEY AILMENT
56 SMOKES CIGARS
68 LOW CALORIE DIET LAST 2 WEEKS
41 CARDIAC GLYCOSIDES
97 LEFT-INTRAVENTRICULAR BLOCK
105 OTHER ECG ABNORMALITY
13 INFRANATE AFTER 12 HRS AT 4 DEGREES
43 QUINIDINE
42 NITRITES
98 HEMIBLOCK
64 WEIGHT COMPARED WITH 1 MONTH AGO
73 AMOUNT OF FOOD LAST 2 DAYS
9 TOP FRACTION BETA
12 WHOLE PLASMA APPEARANCE
15 FASTING 12 HRS OR MORE
65 WEIGHT COMPARE WITH 1 YEAR AGO
39 HISTORY OF HYPOTHYROID DISEASE
67 LOW CHOLESTEROL DIET LAST 2 WEEKS
107 MYOCARDIAL INFARCTION
81 PAROXYSMAL NOCTURAL DYSPNEA
99 BIFASCULAR BLOCK
50 ANTI-COAGULANTS
57 SMOKES PIPES
77 HISTORY OF ENLARGED HEART
48 THYROID
104 OTHER ARRHYTHMIA
49 ANTI-THYROID
37 HISTORY OF NEPHROSIS
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0.0000022624 102 WOLFF-PARKINSON-WHITE SYNDROME
0.0000014008 96 RIGHT-INTRAVENTRICULAR BLOCK
0.0000000551 53 BROCHODILATOR OR AEROSOL
0.0000000394 69 DIABETIC DIET LAST 2 WEEKS

0 31 SGOT

89 M.C.H.

88 M.C.V.

91 VENTRICULAR RATE

87 H.G.B.

90 M.C.H.C.

92 P-R INTERVAL

84 COMPLETE BLOOD COUNT

113 HGT

93 QRS INTERVAL

116 BMI

114 WGTGP

86 RED BLOOD COUNT

72 COCKTAIL INTAKE

27 GLOBULIN

71 WINE INTAKE

23 BUN

24 URIC ACID

106 TAKING DIGITALIS OR QUINIDINE

112 ALCOHOL INDEX

60 IF STOPPED AGE STOPPED

20 CALCIUM

70 BEER INTAKE

66 WEIGHT AT AGE 25

19 HEMATOCRIT

59 AGE START SMOKE CIGARETTE REGULARLY

O O O O O O O O O O O O 0O OO0 OO0 o o o o o o o o

Selected attributes:
115,35,1,34,4,26,85,22,5,33,32,55,3,61,58,28,30,78,51,117,95,118,2,75,110,109,63,18,29,94,25
,36,40,21,10,16,7,111,79,45,82,54,46,80,6,8,44,76,52,74,47,101,11,17,62,14,103,108,83,100,38
,56,68,41,97,105,13,43,42,98,64,73,9,12,15,65,39,67,107,81,99,50,57,77,48,104,49,37,102,96,5
3,69,31,89,88,91,87,90,92,84,113,93,116,114,86,72,27,71,23,24,106,112,60,20,70,66,19,59 :
118
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Appendix G MALE DATASET—SECOND ATTRIBUTE

EVALUATION BY WEKA

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator

to rank 23 selected risk factors, after removing missing data, of the male dataset.

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpringl4-weka.filters.unsupervised.attribute.Remove-R1-
weka.filters.unsupervised.attribute.Remove-R25

Instances: 1974

Attributes: 24
TOTAL CHOLESTEROL
HDL CHOLESTEROL
VLDL CHOLESTEROL
LDL CHOLESTEROL
TRIGLYCERIDES
GLUCOSE
ALBUMIN
TOTAL BILIRUBIN
LDH
SYSTOLIC BLOOD PRESSURE
DIASTOLIC BLOOD PRESSURE
FIRST SECOND VOLUME
TOTAL VITAL CAPACITY
HYPOGLYCEMIC AGENTS (SPECIFY)
SMOKED AT LEAST 1 YEAR
SMOKES CIGARETTES
USUAL # OF CIGARRETTE SMOKE NOW/EVER
DYSPNEA ON EXERTION
WHITE BLOOD COUNT
A QRS
AGE
Treatment for Diabetes
Diabetes
cvd10

Evaluation mode: evaluate on all training data
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=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 24 cvd10):

Information Gain Ranking Filter

Ranked attributes:

0.05941 21 AGE

0.02679 1 TOTAL CHOLESTEROL

0.02532 12 FIRST SECOND VOLUME
0.02421 13 TOTAL VITAL CAPACITY
0.0224 4 LDL CHOLESTEROL

0.02112 7 ALBUMIN

0.01598 19 WHITE BLOOD COUNT
0.01556 6 GLUCOSE

0.01411 5TRIGLYCERIDES

0.01013 8 TOTAL BILIRUBIN

0.00976 9 LDH

0.00961 17 USUAL # OF CIGARRETTE SMOKE NOW/EVER
0.00941 15 SMOKED AT LEAST 1 YEAR
0.00937 11 DIASTOLIC BLOOD PRESSURE
0.00921 3 VLDL CHOLESTEROL

0.00881 16 SMOKES CIGARETTES

0.00874 18 DYSPNEA ON EXERTION
0.00862 14 HYPOGLYCEMIC AGENTS (SPECIFY)
0.00862 22 Treatment for Diabetes

0.00806 2 HDL CHOLESTEROL

0.00788 10 SYSTOLIC BLOOD PRESSURE
0.00779 23 Diabetes

0.00685 20 A QRS

Selected attributes: 21,1,12,13,4,7,19,6,5,8,9,17,15,11,3,16,18,14,22,2,10,23,20 : 23
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Appendix H FEMALE DATASET—FIRST ATTRIBUTE

EVALUATION BY WEKA

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator

to rank 126 risk factors of the female dataset.

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpring9_PreparePredictionAttributes-
weka.filters.unsupervised.attribute. Remove-R129-weka.filters.unsupervised.attribute.Remove-
R1

Instances: 2481
Attributes: 127
[list of attributes omitted]

Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 127 cvd10):

Information Gain Ranking Filter

Ranked attributes:

0.02852496 123 AGE

0.01869903 56 AGE AT WHICH PERIODS STOPPED
0.01760813 55 PERIODS HAVE STOPPED 1 YR OR MORE
0.01736669 57 CAUSE OF CESSATION OF MENSES
0.01333186 34 FIRST SECOND VOLUME

0.01316599 32 SYSTOLIC BLOOD PRESSURE
0.01151725 87 DYSPNEA INCREASE IN PAST 2 YEARS
0.010896 1 TOTAL CHOLESTEROL

0.01079082 86 DYSPNEA ON EXERTION

0.00976453 3 VLDL CHOLESTEROL
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0.00969151
0.0091564

0.00818991
0.00808946
0.00794315
0.00711604
0.0070442

0.00694056
0.00586272
0.00544788
0.00536259
0.0050902

0.00493847
0.00461508
0.00424987
0.00412152
0.00397126
0.00392025
0.00370363
0.00349519
0.00349136
0.0032381

0.00323324
0.00248442
0.00245533
0.00213577
0.00212337
0.00197348
0.00193088
0.00188409
0.00188145
0.0018661

0.00181642
0.00168755
0.00126579
0.00126579
0.00111503
0.0010974

0.00106009

40 HISTORY OF HYPERTENSION
35 TOTAL VITAL CAPACITY
5 TRIGLYCERIDES
4 LDL CHOLESTEROL
58 HYSTERECTOMY
29 ALKALINE PHOSPHOTASE
46 HYPOTENSIVES (EXCLUDING DIURETICS)
33 DIASTOLIC BLOOD PRESSURE
45 DIURETICS FOR BLOOD PRESSURE
79 WINE INTAKE
24 URIC ACID
22 GLUCOSE
41 CARDIAC GLYCOSIDES
2 HDL CHOLESTEROL
122 WGTGP
30 LDH
97 M.C.H.
121 HGT
114 TAKING DIGITALIS OR QUINIDINE
10 TOP FRACTION PRE-BETA
69 USUAL # OF CIGARRETTE SMOKE NOW/EVER
18 FREDERICKSON CLASSIFICATION
59 OVARIES REMOVED
126 Diabetes
42 NITRITES
116 LEFT VENTRICULAR HYPERTROPHY
88 RECENT ORTHOPNEA
60 ORAL CONTRACEPTIVE
52 TRANQUILIZERS
43 QUINIDINE
47 ANTI-CHOLESTEROL AGENTS
16 PRE-BETA BAND
7 WHOLE PLASMA PRE-BETA
77 DIABETIC DIET LAST 2 WEEKS
125 Treatment for Diabetes
51 HYPOGLYCEMIC AGENTS (SPECIFY)
119 ECG CLINICAL READING
73 WEIGHT COMPARE WITH 1 YEAR AGO
13 INFRANATE AFTER 12 HRS AT 4 DEGREES
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0.00100238
0.00099236
0.00092967
0.00086887
0.00086159
0.00086123
0.00085272
0.00083746
0.00076227
0.00075842
0.00074358
0.00071828
0.00066923
0.00063807
0.00062922
0.00062846
0.00057662
0.00056414
0.00055495
0.00053141
0.000512
0.00041051
0.00033901
0.00025063
0.00021424
0.00020537
0.00011656
0.00011425
0.00011348
0.00010678
0.00009143
0.00007469
0.0000681
0.00005187
0.00004595
0.00003733
0.00003717
0.00003717
0.00003717

90 BILATERAL ANKLE EDEMA

113 OTHER ECG ABNORMALITY

15 FASTING 12 HRS OR MORE

66 SMOKES CIGARETTES

63 SMOKED AT LEAST 1 YEAR

36 ECG FINDING SUMMARY

117 NON-SPECIFIC T-WAVE ABNORMALITY
91 NOCTURNAL COUGH OR WHEEZING
110 WOLFF-PARKINSON-WHITE SYNDROME
50 ANTI-COAGULANTS

71 INHALES

83 CHEST DISCOMFORT

89 PAROXYSMAL NOCTURAL DYSPNEA

81 AMOUNT OF FOOD LAST 2 DAYS

85 HISTORY OF ENLARGED HEART

61 PREMARIN

53 BROCHODILATOR OR AEROSOL

62 OTHER (SPECIFY)

12 WHOLE PLASMA APPEARANCE

49 ANTI-THYROID

111 PREMATURE BEATS

104 RIGHT-INTRAVENTRICULAR BLOCK
72 WEIGHT COMPARED WITH 1 MONTH AGO
112 OTHER ARRHYTHMIA
75 LOW CHOLESTEROL DIET LAST 2 WEEKS
82 AMOUNT OF ALCOHOL
76 LOW CALORIE DIET LAST 2 WEEKS
48 THYROID
84 HISTORY OF HEART MURMUR
39 HISTORY OF HYPOTHYROID DISEASE
14 CREAM AFTER 12 HRS OR MORE
64 SMOKES CIGARS
44 DIURETICS FOR FLUID RETENTION
54 OTHER (C-V DRUGS)
9 TOP FRACTION BETA
65 SMOKES PIPES
115 MYOCARDIAL INFARCTION
107 BIFASCULAR BLOCK
105 LEFT-INTRAVENTRICULAR BLOCK
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0.00002137
0.00002021
0.00002

0.00001737
0.00001407
0.00000388
0.00000138

108 INCOMPLETE-ATRIOVENTRICULAR BLOCK
17 SINKING PRE-BETA BAND

11 BOTTOM FRACTION PRE-BETA

118 NON-SPECIFIC S-T SEGMENT ABNORMALITY
70 USES FILTER

38 HISTORY OF OTHER KIDNEY AILMENT

106 HEMIBLOCK

0 21 PHOSPHORUS
120 ALCOHOL INDEX
20 CALCIUM
8 TOP FRACTION ORIGIN
19 HEMATOCRIT
23 BUN
124 BMI
6 WHOLE PLASMA ORIGIN
92 COMPLETE BLOOD COUNT
25 TOTAL PROTEIN
96 M.C.V.
68 IF STOPPED AGE STOPPED
78 BEER INTAKE
74 WEIGHT AT AGE 25
95 H.G.B.
26 ALBUMIN

94 RED BLOOD COUNT

80 COCKTAIL INTAKE

67 AGE START SMOKE CIGARETTE REGULARLY
98 M.C.H.C.

99 VENTRICULAR RATE

28 TOTAL BILIRUBIN

27 GLOBULIN

100 P-R INTERVAL

31 SGOT

109 COMPLETE ATRIOVENTRICULAR BLOCK
37 HISTORY OF NEPHROSIS

102 QT INTERAVAL

101 QRS INTERVAL

103 A QRS

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 93 WHITE BLOOD COUNT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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Selected attributes:
123,56,55,57,34,32,87,1,86,3,40,35,5,4,58,29,46,33,45,79,24,22,41,2,122,30,97,121,114,10,69,
18,59,126,42,116,88,60,52,43,47,16,7,77,125,51,119,73,13,90,113,15,66,63,36,117,91,110,50,7
1,83,89,81,85,61,53,62,12,49,111,104,72,112,75,82,76,48,84,39,14,64,44,54,9,65,115,107,105,
108,17,11,118,70,38,106,21,120,20,8,19,23,124,6,92,25,96,68,78,74,95,26,93,94,80,67,98,99,2
8,27,100,31,109,37,102,101,103 : 126
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Appendix | FEMALE DATASET—SECOND ATTRIBUTE

EVALUATION BY WEKA

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator
to rank 33 selected risk factors, after removing missing data, of the female dataset.
However, after the second attribute evaluation, only 29 risk factors were chosen for the

female model as four risk factors had the information gain values of 0.

=== Run information ===

Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

Relation:  FramOffSpringl3-weka.filters.unsupervised.attribute.Remove-R1-
weka.filters.unsupervised.attribute.Remove-R35

Instances: 2101

Attributes: 34
TOTAL CHOLESTEROL
HDL CHOLESTEROL
VLDL CHOLESTEROL
LDL CHOLESTEROL
TRIGLYCERIDES
TOP FRACTION PRE-BETA
FREDERICKSON CLASSIFICATION
GLUCOSE
URIC ACID
ALKALINE PHOSPHOTASE
LDH
SYSTOLIC BLOOD PRESSURE
DIASTOLIC BLOOD PRESSURE
FIRST SECOND VOLUME
TOTAL VITAL CAPACITY
HISTORY OF HYPERTENSION
CARDIAC GLYCOSIDES
DIURETICS FOR BLOOD PRESSURE
HYPOTENSIVES (EXCLUDING DIURETICS)
PERIODS HAVE STOPPED 1 YR OR MORE
AGE AT WHICH PERIODS STOPPED
CAUSE OF CESSATION OF MENSES

200




HYSTERECTOMY

OVARIES REMOVED

USUAL # OF CIGARRETTE SMOKE NOW/EVER
WINE INTAKE

DYSPNEA ON EXERTION

DYSPNEA INCREASE IN PAST 2 YEARS
M.C.H.

TAKING DIGITALIS OR QUINIDINE
HGT

WGTGP

AGE

cvd10

Evaluation mode: evaluate on all training data

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 34 cvd10):
Information Gain Ranking Filter

Ranked attributes:

0.03042 33 AGE

0.01967 21 AGE AT WHICH PERIODS STOPPED
0.01871 20 PERIODS HAVE STOPPED 1 YR OR MORE
0.01871 4 LDL CHOLESTEROL

0.01819 22 CAUSE OF CESSATION OF MENSES
0.01396 1 TOTAL CHOLESTEROL

0.01379 14 FIRST SECOND VOLUME

0.01373 12 SYSTOLIC BLOOD PRESSURE

0.0127 28 DYSPNEA INCREASE IN PAST 2 YEARS
0.01067 3 VLDL CHOLESTEROL

0.00976 27 DYSPNEA ON EXERTION

0.00894 10 ALKALINE PHOSPHOTASE

0.00877 5 TRIGLYCERIDES

0.0082 23 HYSTERECTOMY
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0.00807 15 TOTAL VITAL CAPACITY

0.00766 16 HISTORY OF HYPERTENSION

0.0076 13 DIASTOLIC BLOOD PRESSURE

0.00701 17 CARDIAC GLYCOSIDES

0.0065 19 HYPOTENSIVES (EXCLUDING DIURETICS)
0.00634 26 WINE INTAKE

0.00616 8 GLUCOSE

0.00579 11 LDH

0.00565 30 TAKING DIGITALIS OR QUINIDINE

0.00541 2 HDL CHOLESTEROL

0.00514 9 URIC ACID

0.00421 6 TOP FRACTION PRE-BETA

0.00401 18 DIURETICS FOR BLOOD PRESSURE

0.00395 7 FREDERICKSON CLASSIFICATION

0.00376 24 OVARIES REMOVED

0 25 USUAL # OF CIGARRETTE SMOKE NOW/EVER
0 29 M.C.H.
0 31 HGT

0 32 WGTGP

Selected attributes:
33,21,20,4,22,1,14,12,28,3,27,10,5,23,15,16,13,17,19,26,8,11,30,2,9,6,18,7,24,25,29,31,32 : 33
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Appendix J MIXED SEX DATASET—PREDICTORS FILE

Table J-2 displays the predictors file prepared in section 3.8.11 to describe the predictors
(risk factors) of the dataset, which was used for experimenting the mixed sex model.

Table J-2: Predictors file to describe the predictors of the dataset for the mixed sex model

Predictor Name Predictor Description Data Type Value List
sex SEX DataOneOf Male|Female
totalChol TOTAL CHOLESTEROL double N/A
hdiChol HDL CHOLESTEROL double N/A
vidIChol VLDL CHOLESTEROL double N/A
IdIChol LDL CHOLESTEROL double N/A
triglycerides TRIGLYCERIDES double N/A
wholePlasma WHOLE PLASMA PRE-BETA DataOneOf  Yes|No
topFraction TOP FRACTION PRE-BETA DataOneOf  Yes|No
preBetaBand PRE-BETA BAND DataOneOf  Yes|No
frederickson FREDERICKSON DataOneOf Normal|Abnormal
CLASSIFICATION
hematocrit HEMATOCRIT double N/A
glucose GLUCOSE double N/A
uricAcid URIC ACID double N/A
alkalinePhos ALKALINE PHOSPHOTASE double N/A
Idh LDH double N/A
sysBP SYSTOLIC BLOOD PRESSURE  double N/A
diaBP DIASTOLIC BLOOD double N/A
PRESSURE
hypertension HISTORY OF HYPERTENSION  DataOneOf Yes|No
hypotensives HYPOTENSIVES (EXCLUDING DataOneOf Yes|No
DIURETICS)
hypoglycemic HYPOGLYCEMIC AGENTS DataOneOf Yes|No
smokedlYear SMOKED AT LEAST 1 YEAR DataOneOf  Yes|No
smoking SMOKES CIGARETTES DataOneOf Yes|No
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cigarettes

dyspnea

dyspnealncrease2Yrs

whiteBloodCount
redBloodCount

hgb

aqgrs

wgtgp

age

bmi
treatmentForDiabetes

diabetes

USUAL # OF CIGARETTE

SMOKE NOW/EVER

DYSPNEA ON EXERTION

DYSPNEA INCREASE IN PAST

2 YEARS

WHITE BLOOD COUNT

RED BLOOD COUNT

H.G.B.
A QRS
WGTGP
AGE

BMI

Treatment for Diabetes

Diabetes

double

DataOneOf

DataOneOf

double

double

double

double

double

double

double

DataOneOf

DataOneOf

N/A

Yes|No

Yes|No

N/A
N/A
N/A
N/A
N/A
N/A
N/A
Yes|No

Yes|No
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Appendix K MIXED SEX DATASET—PREDICTORS RANKING

FILE

Table K-3 displays the predictors ranking file prepared in section 3.8.11 to rank the

predictors (risk factors) of the dataset used for experimenting the mixed sex model.

Table K-3: Predictors ranking file to rank the predictors of the dataset for the mixed sex model

No Info Gain Predictor

1 0.04384 age
2 0.02324 totalChol
3 0.0184 IdIChol
4 0.01733 vldIChol
5 0.01562 sysBP
6 0.01392 triglycerides
7 0.01286 diaBP
8 0.0119 glucose
9 0.01112 cigarettes
10 0.01109 hdiChol
11 0.00915 hematocrit
12 0.00902 bmi
13 0.00843 Idh
14 0.00805 sex
15 0.00741 wgtgp
16 0.00736 uricAcid
17 0.00735 frederickson
18 0.00725 hgb
19 0.00719 alkalinePhos
20 0.00678 whiteBloodCount
21 0.00673 dyspnea

22 0.00672 diabetes
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23

24

25

26

27

28

29

30

31

32

33

34

0.0067

0.00652

0.00616

0.00578

0.00578

0.00569

0.00568

0.00543

0.00535

0.00506

0.00503

0.00445

topFraction
redBloodCount
smoked1Year
treatmentForDiabetes
hypoglycemic

aqgrs

hypertension
preBetaBand
wholePlasma
dyspnealncrease2Yrs
smoking

hypotensives
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Appendix L MALE DATASET—PREDICTORS FILE

Table L-4 displays the predictors file prepared to describe the predictors (risk factors) of

the male dataset, which was used for experimenting the male model.

Table L-4: Predictors file to describe the predictors of the dataset for the male model

Predictor Name Predictor Description Data Type Value List
totalChol TOTAL CHOLESTEROL double N/A
hdIChol HDL CHOLESTEROL double N/A
vidIChol VLDL CHOLESTEROL double N/A
IdIChol LDL CHOLESTEROL double N/A
triglycerides TRIGLYCERIDES double N/A
glucose GLUCOSE double N/A
albumin ALBUMIN double N/A
totalBilirubin TOTAL BILIRUBIN double N/A
Idh LDH double N/A
sysBP SYSTOLIC BLOOD PRESSURE double N/A
diaBP DIASTOLIC BLOOD PRESSURE double N/A
firstSecondVolume FIRST SECOND VOLUME double N/A
total VitalCapacity TOTAL VITAL CAPACITY double N/A
hypoglycemic HYPOGLYCEMIC AGENTS DataOneOf  Yes|No
smokedlYear SMOKED AT LEAST 1 YEAR DataOneOf  Yes|No
smoking SMOKES CIGARETTES DataOneOf  Yes|No
cigarettes USUAL # OF CIGARETTE SMOKE  double N/A
NOW/EVER

dyspnea DYSPNEA ON EXERTION DataOneOf  Yes|No
whiteBloodCount WHITE BLOOD COUNT double N/A
aqrs A QRS double N/A
age AGE double N/A
treatmentForDiabetes Treatment for Diabetes DataOneOf  Yes|No
diabetes Diabetes DataOneOf  Yes|No
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Appendix M MALE DATASET—PREDICTORS RANKING FILE

Table M-5 displays the predictors ranking file prepared to rank the predictors (risk
factors) of the dataset used for experimenting the male model.

Table M-5: Predictors ranking file to rank the predictors of the dataset for the male model

No Ranked Predictor

1 0.05941 age
2 0.02679 totalChol
3 0.02532 firstSecondVolume
4 0.02421 totalVitalCapacity
5 0.0224 IdIChol
6 0.02112 albumin
7 0.01598 whiteBloodCount
8 0.01556 glucose
9 0.01411 triglycerides
10 0.01013 totalBilirubin
11 0.00976 Idh
12 0.00961 cigarettes
13 0.00941 smokedlYear
14 0.00937 diaBP
15 0.00921 vldiChol
16 0.00881 smoking
17 0.00874 dyspnea
18 0.00862 hypoglycemic
19 0.00862 treatmentForDiabetes
20 0.00806 hdIChol
21 0.00788 sysBP
22 0.00779 diabetes

23 0.00685 agrs
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Appendix N FEMALE DATASET—PREDICTORS FILE

Table N-6 displays the predictors file prepared to describe the predictors (risk factors) of

the dataset, which was used for experimenting the female model.

Table N-6: Predictors file to describe the predictors of the dataset for the female model

Predictor Name Predictor Description Data Type Value List

totalChol TOTAL CHOLESTEROL double N/A

hdIChol HDL CHOLESTEROL double N/A

vidiChol VLDL CHOLESTEROL double N/A

IdiChol LDL CHOLESTEROL double N/A

triglycerides TRIGLYCERIDES double N/A

topFraction TOP FRACTION PRE- DataOneOf  Yes|No
BETA

frederickson FREDERICKSON DataOneOf  Normal|Abnormal
CLASSIFICATION

glucose GLUCOSE double N/A

uricAcid URIC ACID double N/A

alkalinePhos ALKALINE double N/A
PHOSPHOTASE

Idh LDH double N/A

sysBP SYSTOLIC BLOOD double N/A
PRESSURE

diaBP DIASTOLIC BLOOD double N/A
PRESSURE

firstSecondVolume FIRST SECOND VOLUME double N/A

total VitalCapacity TOTAL VITAL double N/A
CAPACITY

hypertension HISTORY OF DataOneOf  Yes|No
HYPERTENSION

cardiacGlycosides CARDIAC GLYCOSIDES  DataOneOf  Yes|No

diureticsForBP DIURETICS FOR BLOOD  DataOneOf  Yes|No

PRESSURE
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hypotensives

periodsStoppedlyrOrMore

agePStopped

causeOfCessationM

hysterectomy
ovariesRemoved
winelntake
dyspnea

dyspnealncrease2Yrs

dOq

age

HYPOTENSIVES
(EXCLUDING
DIURETICS)

PERIODS HAVE

STOPPED 1 YR OR MORE

AGE AT WHICH PERIODS

STOPPED

CAUSE OF CESSATION

OF MENSES

HYSTERECTOMY

OVARIES REMOVED

WINE INTAKE

DYSPNEA ON EXERTION

DYSPNEA INCREASE IN

PAST 2 YEARS

TAKING DIGITALIS OR

QUINIDINE

AGE

DataOneOf

DataOneOf

double

DataOneOf

DataOneOf

DataOneOf

double

DataOneOf

DataOneOf

DataOneOf

double

Yes|No

Yes|No

N/A

Normal|Abnormal|NotStopped

Yes|No
Yes|No
N/A

Yes|No

Yes|No

Yes|No

N/A
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Appendix O FEMALE DATASET—PREDICTORS RANKING FILE

Table O-7 displays the predictors ranking file prepared to rank the predictors (risk factors)
of the dataset used for experimenting the female model.

Table O-7: Predictors ranking file to rank the predictors of the dataset for the female model

No Ranked Predictor

1 0.03042 age
2 0.01967 agePStopped
3 0.01871 periodsStoppedlyrOrMore
4 0.01871 IdIChol
5 0.01819 causeOfCessationM
6 0.01396 totalChol
7 0.01379 firstSecondVolume
8 0.01373 sysBP
9 0.0127 dyspnealncrease2Yrs
10 0.01067 vldIChol
11 0.00976 dyspnea
12 0.00894 alkalinePhos
13 0.00877 triglycerides
14 0.0082 hysterectomy
15 0.00807 totalVitalCapacity
16 0.00766 hypertension
17 0.0076 diaBP
18 0.00701 cardiacGlycosides
19 0.0065 hypotensives
20 0.00634 winelntake
21 0.00616 glucose
22 0.00579 Idh

23 0.00565 dOq
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24

25

26

27

28

29

0.00541

0.00514

0.00421

0.00401

0.00395

0.00376

hdiChol
uricAcid
topFraction
diureticsForBP
frederickson

ovariesRemoved
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Appendix P CRISK Fuzzy ONTOLOGY TEMPLATE FILE

Below is the CRISK fuzzy ontology template file (base.owl):

<?xml version="1.0"?>

<IDOCTYPE Ontology [
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >
<IENTITY xml "http://www.w3.0rg/XML/1998/namespace" >
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >

1>

<Ontology xmiIns="http://www.w3.0rg/2002/07/owl#"
xml:base="http://www.aut.ac.nz/ontologies/fcvdo.owl"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:xml="http://www.w3.0rg/XML/1998/namespace”
ontologylIRI="http://www.aut.ac.nz/ontologies/fcvdo.owl">
<Prefix name="" IRI="http://www.aut.ac.nz/ontologies/cvdo.owl"/>
<Prefix name="owl" IRI="http://www.w3.0rg/2002/07/owl#"/>
<Prefix name="rdf" IRI="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"/>
<Prefix name="xml" IRI="http://www.w3.0rg/XML/1998/namespace"/>
<Prefix name="xsd" IRI="http://www.w3.0rg/2001/XMLSchema#"/>
<Prefix name="rdfs" IRI="http://www.w3.0rg/2000/01/rdf-schema#"/>
<Annotation>

<AnnotationProperty IRI="#fuzzyLabel"/>

<Literal datatypelRI="&rdf;PlainLiteral">&It;fuzzyOwIl2
fuzzyType=&quot;ontology&quot;&gt;

&lt;FuzzylLogic logic=&quot;zadeh&quot; /&gt;
&lt;/fuzzyOwl2&gt;</Literal>
</Annotation>
<Declaration>
<Class IRI="#CBR_CASE"/>
</Declaration>
<Declaration>
<Class IRI="#CRISK_CASE"/>
</Declaration>
<Declaration>
<DataProperty IRI="#cvd10"/>

</Declaration>
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<Declaration>
<DataProperty IRI="#cvdInterval"/>
</Declaration>
<Declaration>
<AnnotationProperty IRI="#fuzzyLabel"/>
</Declaration>
<Declaration>
<Datatype IRI="#highCVDRIisk"/>
</Declaration>
<Declaration>
<Datatype IRI="#lowCVDRIisk"/>
</Declaration>
<SubClassOf>
<Class IRI="#CRISK_CASE"/>
<Class IRI="#CBR_CASE"/>
</SubClassOf>
<SubDataPropertyOf>
<DataProperty IRI="#cvd10"/>
<DataProperty abbreviatedIRI="owl:topDataProperty"/>
</SubDataPropertyOf>
<SubDataPropertyOf>
<DataProperty IRI="#cvdInterval"/>
<DataProperty abbreviatedIRI="owl:topDataProperty"/>
</SubDataPropertyOf>
<DataPropertyDomain>
<DataProperty IRI="#cvd10"/>
<Class IRI="#CRISK_CASE"/>
</DataPropertyDomain>
<DataPropertyDomain>
<DataProperty IRI="#cvdInterval"/>
<Class IRI="#CRISK_CASE"/>
</DataPropertyDomain>
<DataPropertyRange>
<DataProperty IRI="#cvd10"/>
<DataOneOf>
<Literal datatypelRI="&rdf;PlainLiteral">No</Literal>
<Literal datatypelRI="&rdf;PlainLiteral">Yes</Literal>
</DataOneOf>
</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI="#cvdInterval"/>
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<Datatype abbreviatedIRI="xsd:double"/>
</DataPropertyRange>
<AnnotationAssertion>
<AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/>
<IRI>#cvd10</IRI>
<Literal datatypelRI="&xsd;string">10-year CVD (Yes/No)</Literal>
</AnnotationAssertion>
<AnnotationAssertion>
<AnnotationProperty IRI="#fuzzylLabel"/>
<IRI>#highCVDRIisk</IRI>

<Literal datatypelRI="&rdf;PlainLiteral">&lt;fuzzyOwl2
fuzzyType=&quot;datatype&quot;&gt;

&lt;Datatype type=&quot;leftshoulder&quot; a=&quot;5.0&quot; b=&quot;15.0&quot; /&gt;
&lt;/fuzzyOwl2&gt;</Literal>
</AnnotationAssertion>
<AnnotationAssertion>
<AnnotationProperty IRI="#fuzzyLabel"/>
<IRI>#lowCVDRisk</IRI>

<Literal datatypelRI="&rdf;PlainLiteral">&lt;fuzzyOwI2
fuzzyType=&quot;datatype&quot;&gt;

&lt;Datatype type=&quot;rightshoulder&quot; a=&quot;5.0&quot; b=&quot;15.0&quot; /&gt;
&lt;/[fuzzyOwl2&gt;</Literal>
</AnnotationAssertion>
<AnnotationAssertion>
<AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/>
<IRI>#cvdInterval</IRI>
<Literal datatypelRI="&xsd;string">CVD Interval (Years)</Literal>
</AnnotationAssertion>
<DatatypeDefinition>
<Datatype IRI="#highCVDRIisk"/>
<DatalntersectionOf>
<DatatypeRestriction>
<Datatype abbreviatedIRI="xsd:double"/>
<FacetRestriction facet="&xsd;minInclusive">
<Literal datatypelRI="&xsd;double">5.0</Literal>
</FacetRestriction>
</DatatypeRestriction>
<DatatypeRestriction>
<Datatype abbreviatedIRI="xsd:double"/>
<FacetRestriction facet="&xsd;maxlInclusive">
<Literal datatypelRI="&xsd;double">15.0</Literal>

</FacetRestriction>
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</DatatypeRestriction>
</DatalntersectionOf>
</DatatypeDefinition>
<DatatypeDefinition>
<Datatype IRI="#lowCVDRIisk"/>
<DatalntersectionOf>
<DatatypeRestriction>
<Datatype abbreviatedIRI="xsd:double"/>
<FacetRestriction facet="&xsd;minInclusive">
<Literal datatypelRI="&xsd;double">5.0</Literal>
</FacetRestriction>
</DatatypeRestriction>
<DatatypeRestriction>
<Datatype abbreviatedIRI="xsd:double"/>
<FacetRestriction facet="&xsd;maxInclusive">
<Literal datatypelRI="&xsd;double">15.0</Literal>
</FacetRestriction>
</DatatypeRestriction>
</DatalntersectionOf>
</DatatypeDefinition>

</Ontology>
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Appendix Q MIXED SEX MODEL EXPERIMENTATION
RESULTS

Table Q-8 displays prediction TPR results for experimenting the mixed sex dataset. The
top ten TPR values are in dark-red bold text. The highest TPR values have yellow
highlighted background. The TPR results are plotted as a 3D graph in Figure Q-1.

Table Q-8: Mixed sex model—TPR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.4751 0.4525 0.4434 0.4344 0.4344 0.4072 0.3846 0.3756 0.3710
n=2 0.4842 0.4389 0.4570 0.4661 0.4615 0.4751 0.4796 0.4887 0.4887
n=3 0.6561 0.6290 0.6244 0.6425 0.6335 0.6471 0.6471 0.6516 0.6425
n=4 0.6878 0.6561 0.6787 0.6968 0.6878 0.6923 0.7104 0.7104 0.7195
n=5 0.7647 0.7466 0.7602 0.7602 0.7738 0.7692 0.7738 0.7647 0.7692
n=6 0.7511 0.7647 0.7602 0.7647 0.7692 0.7647 0.7692 0.7511 0.7692
n=7 0.7466 0.7195 0.7104 0.7466 0.7376 0.7511 0.7376 0.7330 0.7511
n=8 0.7828 0.7557 0.7783 0.7738 0.7919 0.7828 0.7738 0.7828 0.7828
n=9 0.7738 0.7783 0.8009 0.8100 0.7919 0.7783 0.7602 0.7828 0.7873
n=10 0.7919 0.7511 0.7964 0.7738 0.8054 0.7919 0.7964 0.7828 0.7783
n=11 0.8371 0.8145 0.8371 0.8190 0.8145 0.8100 0.8190 0.8100 0.7964
n=12 0.8778 0.8778 0.8462 0.8597 0.8507 0.8507 0.8462 0.8416 0.8281
n=13 0.8733 0.8824 0.8733 0.8733 0.8688 0.8778 0.8824 0.8824 0.8643
n=14 0.7195 0.7104 0.7059 0.7149 0.6833 0.6968 0.6968 0.7014 0.6968
n=15 0.7149 0.6878 0.6833 0.6878 0.6968 0.6878 0.6833 0.6787 0.6742
n=16 0.7104 0.7059 0.7014 0.7104 0.7014 0.7014 0.7014 0.6968 0.6923
n=17 0.6606 0.6742 0.6742 0.6697 0.6652 0.6561 0.6561 0.6516 0.6561
n=18 0.6742 0.6652 0.6606 0.6697 0.6606 0.6561 0.6561 0.6471 0.6290
n=19 0.7014 0.6833 0.6606 0.6652 0.6697 0.6561 0.6471 0.6561 0.6516
n=20 0.7014 0.6833 0.6923 0.6742 0.6833 0.6833 0.6923 0.6742 0.6742
n=21 0.6606 0.6380 0.6290 0.6199 0.6199 0.6244 0.6335 0.6290 0.6199
n=22 0.6425 0.5973 0.6018 0.5973 0.5928 0.5928 0.6063 0.6018 0.5973
n=23 0.5566 0.5339 0.5249 0.5294 0.5566 0.5520 0.5475 0.5475 0.5385
n=24 0.5566 0.5430 0.5204 0.5249 0.5475 0.5520 0.5385 0.5385 0.5385
n=25 0.4932 0.4842 0.4842 0.4932 0.5023 0.4977 0.4842 0.4842 0.4842
n=26 0.4932 0.4842 0.4887 0.4887 0.4932 0.4842 0.4751 0.4706 0.4706
n=27 0.4932 0.4842 0.4887 0.4887 0.4977 0.4842 0.4751 0.4661 0.4661
n=28 0.4887 0.4706 0.4796 0.4977 0.4842 0.4661 0.4615 0.4525 0.4570
n=29 0.4299 0.4163 0.4163 0.4163 0.4118 0.4027 0.4072 0.4072 0.3982
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n=30 0.4253 0.4118 0.4072 0.4072 0.4072 0.4027 0.4072 0.4072 0.4027
n=31 0.4253 0.4072 0.4072 0.4072 0.4072 0.4027 0.4072 0.4072 0.4027
n=32 0.4344 0.4118 0.3982 0.4027 0.4027 0.3982 0.4027 0.4118 0.4163
n=33 0.4253 0.4027 0.3891 0.3846 0.3801 0.3756 0.3801 0.3891 0.3982
n=34 0.4299 0.3891 0.3891 0.3846 0.3756 0.3756 0.3710 0.3891 0.3937

Mixed sex model—Plotting TPR
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Figure Q-1: Mixed sex model—Plotting TPR

Table Q-9 displays prediction TNR results for experimenting the mixed sex dataset. The
top ten TNR values are in dark-red bold text. The highest TNR value has yellow
highlighted background. The TNR results are plotted as a 3D graph in Figure Q-2.

Table Q-9: Mixed sex model—TNR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.7600 0.7577 0.7631 0.7990 0.8016 0.8223 0.8452 0.8512 0.8532
n=2 0.8262 0.8460 0.8483 0.8447 0.8439 0.8426 0.8423 0.8416 0.8400
n=3 0.7587 0.7894 0.7870 0.7881 0.7932 0.7945 0.7951 0.7940 0.7935
n= 0.7434 0.7849 0.7919 0.7966 0.7943 0.7945 0.7979 0.7956 0.7938
n=5 0.7460 0.7868 0.7896 0.7823 0.7865 0.7849 0.7865 0.7857 0.7852
n=6 0.7564 0.7847 0.7925 0.7842 0.7878 0.7896 0.7888 0.7847 0.7862
n=7 0.7517 0.7935 0.8003 0.8042 0.8060 0.8049 0.8034 0.8036 0.8000
n=8 0.7675 0.7982 0.8091 0.8104 0.8049 0.8057 0.8031 0.8031 0.7990
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Mixed sex model—Plotting TNR
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Figure Q-2: Mixed sex model—Plotting TNR

Table Q-10 displays prediction Precision results for experimenting the mixed sex dataset.
The top ten Precision values are in dark-red bold text. The highest Precision value has

yellow highlighted background. The Precision results are plotted as a 3D graph in Figure
Q-3.

Table Q-10: Mixed sex model—Precision

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.1020 0.0968 0.0970 0.1103 0.1116 0.1163 0.1248 0.1265 0.1267
n=2 0.1379 0.1406 0.1474 0.1469 0.1451 0.1477 0.1487 0.1504 0.1492
n=3 0.1350 0.1463 0.1441 0.1482 0.1496 0.1531 0.1534 0.1537 0.1515
n= 0.1333 0.1490 0.1577 0.1644 0.1610 0.1621 0.1679 0.1663 0.1668
n=5 0.1473 0.1673 0.1718 0.1670 0.1722 0.1703 0.1722 0.1700 0.1705
n=6 0.1504 0.1693 0.1737 0.1690 0.1722 0.1726 0.1729 0.1668 0.1712
n=7 0.1472 0.1667 0.1695 0.1795 0.1791 0.1810 0.1772 0.1765 0.1774
n=8 0.1620 0.1769 0.1896 0.1898 0.1890 0.1878 0.1841 0.1858 0.1827
n=9 0.1798 0.2070 0.2166 0.2172 0.2139 0.2126 0.2095 0.2138 0.2117
n=10 0.1908 0.2145 0.2228 0.2195 0.2253 0.2212 0.2245 0.2171 0.2183
n=11 0.1915 0.2123 0.2229 0.2229 0.2244 0.2207 0.2221 0.2199 0.2149
n=12 0.2008 0.2195 0.2177 0.2207 0.2217 0.2225 0.2177 0.2160 0.2121
n=13 0.1977 0.2167 0.2206 0.2247 0.2217 0.2220 0.2211 0.2181 0.2141
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Mixed sex model—Plotting Precision
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Figure Q-3: Mixed sex model—Plotting Precision

Table Q-11 displays prediction Fi-value results for experimenting the mixed sex dataset.
The top ten Fi-values are in dark-red bold text. The highest Fi-value has yellow

highlighted background. The Fi-value results are plotted as a 3D graph in Figure Q-4.

Table Q-11: Mixed sex model—F;-value

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.1680 0.1595 0.1592 0.1760 0.1776 0.1809 0.1885 0.1893 0.1889
n=2 0.2146 0.2130 0.2230 0.2234 0.2208 0.2253 0.2270 0.2300 0.2286
n=3 0.2239 0.2374 0.2341 0.2409 0.2420 0.2476 0.2480 0.2487 0.2453
n= 0.2234 0.2429 0.2560 0.2660 0.2609 0.2627 0.2716 0.2695 0.2709
n=5 0.2471 0.2734 0.2802 0.2738 0.2817 0.2789 0.2817 0.2782 0.2791
n=6 0.2506 0.2773 0.2828 0.2768 0.2815 0.2817 0.2824 0.2730 0.2801
n=7 0.2459 0.2706 0.2738 0.2895 0.2882 0.2917 0.2857 0.2845 0.2869
n=8 0.2684 0.2867 0.3050 0.3048 0.3051 0.3030 0.2974 0.3003 0.2962
n=9 0.2918 0.3270 0.3410 0.3426 0.3369 0.3340 0.3284 0.3359 0.3337
n=10 0.3076 0.3337 0.3482 0.3420 0.3521 0.3458 0.3502 0.3399 0.3409
n=11 0.3117 0.3368 0.3520 0.3504 0.3519 0.3469 0.3494 0.3459 0.3385
n=12 0.3269 0.3511 0.3463 0.3512 0.3517 0.3527 0.3463 0.3438 0.3376
n=13 0.3225 0.3479 0.3522 0.3574 0.3533 0.3543 0.3536 0.3498 0.3432
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Mixed sex model—Plotting F;-value
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Figure Q-4: Mixed sex model—Plotting F1-value

Table Q-12 displays prediction NPV results for experimenting the mixed sex dataset. The
top ten NPV values are in dark-red bold text. The highest NPV value has yellow
highlighted background. The NPV results are plotted as a 3D graph in Figure Q-5.

Table Q-12: Mixed sex model—NPV

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.9619 0.9602 0.9598 0.9609 0.9611 0.9603 0.9599 0.9596 0.9594
n=2 0.9654 0.9633 0.9646 0.9650 0.9647 0.9655 0.9658 0.9663 0.9662
n=3 09746 0.9737 0.9733 0.9746 0.9742 0.9751 0.9752 0.9754 0.9748
n= 0.9765 0.9755 0.9772 0.9786 0.9779 0.9783 0.9796 0.9795 0.9801
n=5 0.9822 0.9818 0.9829 0.9827 0.9838 0.9834 0.9838 0.9831 0.9834
n=6 0.9815 0.9831 0.9829 0.9831 0.9835 0.9832 0.9835 0.9821 0.9834
n=7 0.9810 0.9801 0.9797 0.9822 0.9817 0.9826 0.9816 0.9813 0.9825
n=8 0.9840 0.9827 0.9845 0.9842 0.9854 0.9848 0.9841 0.9847 0.9846
n=9 0.9840 0.9849 0.9865 0.9871 0.9859 0.9850 0.9838 0.9853 0.9855
n=10 0.9854 0.9833 0.9863 0.9848 0.9869 0.9860 0.9863 0.9853 0.9851
n=11 0.9884 0.9873 0.9889 0.9877 0.9875 0.9871 0.9877 0.9871 0.9862
n=12 0.9913 0.9915 0.9894 0.9903 0.9898 0.9898 0.9894 0.9891 0.9882
n=13 0.9910 0.9918 0.9912 0.9913 0.9910 0.9916 0.9918 0.9918 0.9906
n=14 0.9807 0.9806 0.9805 0.9811 0.9791 0.9799 0.9798 0.9801 0.9798
n=15 0.9806 0.9793 0.9792 0.9795 0.9800 0.9794 0.9791 0.9788 0.9785
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Appendix R MALE MODEL EXPERIMENTATION RESULTS

Table R-13 displays prediction TPR results for experimenting the male dataset. The top
ten TPR values are in dark-red bold text. The highest TPR values have yellow highlighted
background. The TPR results are plotted as a 3D graph in Figure R-6.

Table R-13: Male model—TPR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.3806 0.4194 0.3935 0.3871 0.3806 0.3226 0.2968 0.2774 0.2452
n=2 05355 0.4516 0.4645 0.4710 0.4645 0.4710 0.4774 0.4710 0.4774
n=3 0.7226 0.6839 0.6903 0.6968 0.6968 0.6968 0.6774 0.6968 0.6968
n=4 0.7226 0.7355 0.6903 0.7032 0.7226 0.7290 0.7161 0.7226 0.7226
n=5 0.7290 0.7226 0.6645 0.6839 0.6839 0.7032 0.6903 0.6839 0.6839
n=6 0.7871 0.8000 0.7871 0.8000 0.7742 0.7548 0.7548 0.7613 0.7484
n=7 0.8129 0.8000 0.7484 0.7742 0.7806 0.7742 0.7742 0.7806 0.7742
n=8 0.8387 0.8000 0.7806 0.7742 0.7871 0.7742 0.7677 0.7677 0.7677
n=9 0.8516 0.8065 0.8065 0.8323 0.8000 0.7935 0.8065 0.8065 0.7871
n=10 0.8452 0.8194 0.8387 0.8129 0.8516 0.8516 0.8194 0.8194 0.8258
n=11 0.8710 0.8645 0.8387 0.8258 0.8452 0.8258 0.8323 0.8194 0.8323
n=12 0.8903 0.8774 0.8710 0.8903 0.8645 0.8645 0.8581 0.8516 0.8516
n=13 0.8194 0.8065 0.8000 0.8065 0.7806 0.7871 0.7742 0.7677 0.7677
n=14 0.8452 0.8129 0.7871 0.8065 0.7935 0.7742 0.7806 0.7806 0.7806
n=15 0.8323 0.8194 0.8129 0.8000 0.8000 0.8000 0.7935 0.7806 0.7806
n=16 0.7871 0.7677 0.7613 0.7484 0.7484 0.7548 0.7484 0.7419 0.7355
n=17 0.6581 0.6258 0.6323 0.6065 0.6065 0.6065 0.6065 0.6065 0.6000
n=18 0.6194 0.6000 0.6000 0.5806 0.5742 0.5677 0.5677 0.5677 0.5613
n=19 0.6194 0.6000 0.6000 0.5742 0.5677 0.5677 0.5613 0.5613 0.5548
n=20 0.6323 0.6000 0.6194 0.6065 0.6065 0.6000 0.5742 0.5806 0.5677
n=21 0.6645 0.6129 0.6258 0.6000 0.6065 0.6129 0.5871 0.5935 0.5871
n=22 0.6581 0.6129 0.6194 0.6000 0.6129 0.6129 0.5935 0.6000 0.5935
n=23 0.6645 0.6258 0.6387 0.6000 0.6065 0.5935 0.5613 0.5484 0.5677
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Male model—Plotting TPR
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Figure R-6: Male model—Plotting TPR

Table R-14 displays prediction TNR results for experimenting the male dataset. The top
ten TNR values are in dark-red bold text. The highest TNR value has yellow highlighted
background. The TNR results are plotted as a 3D graph in Figure R-7.

Table R-14: Male model—TNR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.8505 0.8384 0.8461 0.8494 0.8516 0.8868 0.9082 0.9109 0.9247
n=2 0.7834 0.8043 0.8131 0.8081 0.8103 0.8076 0.8076 0.8048 0.8032
n=3 0.6778 0.7317 0.7400 0.7427 0.7444 0.7460 0.7455 0.7477 0.7488
n= 0.7097 0.7620 0.7653 0.7631 0.7548 0.7686 0.7702 0.7647 0.7680
n=5 0.7367 0.7779 0.7861 0.7872 0.7922 0.7922 0.7944 0.7922 0.7949
n=6 0.7356 0.7779 0.7845 0.7872 0.7850 0.7927 0.7878 0.7823 0.7779
n=7 0.7438 0.7861 0.7878 0.7812 0.7823 0.7889 0.7845 0.7823 0.7746
n=8 0.7609 0.7927 0.8021 0.7982 0.7988 0.7966 0.7949 0.7960 0.7933
n=9 0.7543 0.7911 0.7966 0.7938 0.7889 0.7922 0.7911 0.7872 0.7839
n=10 0.7482 0.7834 0.7878 0.7839 0.7872 0.7812 0.7779 0.7790 0.7757
n=11 0.7466 0.7746 0.7784 0.7774 0.7812 0.7806 0.7757 0.7752 0.7719
n=12 0.7361 0.7719 0.7784 0.7784 0.7724 0.7697 0.7631 0.7603 0.7576
n=13 0.7510 0.7883 0.7905 0.7806 0.7774 0.7730 0.7691 0.7653 0.7636
n=14 0.7444 0.7823 0.7823 0.7779 0.7774 0.7691 0.7691 0.7625 0.7587
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Figure R-7: Male model—Plotting TNR

Table R-15 displays prediction Precision results for experimenting the male dataset. The

top ten Precision values are in dark-red bold text. The highest Precision value has yellow

highlighted background. The Precision results are plotted as a 3D graph in Figure R-8.

Table R-15: Male model—Precision

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.1782 0.1811 0.1789 0.1796 0.1793 0.1953 0.2160 0.2098 0.2171
n=2 0.1740 0.1643 0.1748 0.1730 0.1727 0.1726 0.1745 0.1706 0.1713
n=3 0.1605 0.1785 0.1845 0.1875 0.1885 0.1895 0.1849 0.1905 0.1912
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Male model—Plotting Precision
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Figure R-8: Male model—Plotting Precision

Table R-16 displays prediction Fi1-value results for experimenting the male dataset. The
top ten Fi-values are in dark-red bold text. The highest F1-value has yellow highlighted

background. The Fi-value results are plotted as a 3D graph in Figure R-9.

Table R-16: Male model—F;-value

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.2428 0.2529 0.2460 0.2454 0.2438 0.2433 0.2500 0.2389 0.2303
n=2 0.2627 0.2410 0.2540 0.2530 0.2517 0.2526 0.2556 0.2504 0.2521
n=3 0.2626 0.2830 0.2912 0.2955 0.2967 0.2979 0.2905 0.2992 0.3000
n= 0.2818 0.3248 0.3106 0.3137 0.3142 0.3280 0.3246 0.3223 0.3251
n=5 0.3025 0.3338 0.3184 0.3272 0.3318 0.3396 0.3365 0.3318 0.3344
n=6 0.3219 0.3631 0.3647 0.3724 0.3604 0.3606 0.3556 0.3528 0.3437
n=7 03373 0.3713 0.3531 0.3566 0.3601 0.3642 0.3598 0.3601 0.3504
n=8 0.3611 0.3780 0.3805 0.3738 0.3795 0.3721 0.3679 0.3690 0.3662
n=9 0.3597 0.3788 0.3846 0.3915 0.3741 0.3750 0.3788 0.3748 0.3642
n=10 0.3522 0.3757 0.3875 0.3739 0.3917 0.3854 0.3703 0.3713 0.3705
n=11 0.3595 0.3834 0.3779 0.3721 0.3830 0.3754 0.3728 0.3676 0.3691
n=12 0.3571 0.3853 0.3896 0.3966 0.3812 0.3785 0.3700 0.3651 0.3626
n=13 0.3456 0.3759 0.3758 0.3682 0.3554 0.3536 0.3453 0.3395 0.3381
n=14 0.3489 0.3722 0.3626 0.3655 0.3602 0.3453 0.3477 0.3418 0.3385
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n=15 0.3501 0.3780 0.3668 0.3658 0.3615 0.3533 0.3479 0.3385 0.3380
n=16 0.3427 0.3701 0.3598 0.3575 0.3547 0.3498 0.3442 0.3387 0.3358
n=17 0.2957 0.3114 0.3146 0.3062 0.3032 0.2994 0.2970 0.2951 0.2934
n=18 0.2819 0.3015 0.3015 0.2946 0.2899 0.2848 0.2825 0.2794 0.2762
n=19 0.2819 0.3015 0.3010 0.2913 0.2871 0.2848 0.2797 0.2766 0.2748
n=20 0.2804 0.3024 0.3142 0.3062 0.3077 0.3015 0.2908 0.2927 0.2895
n=21 0.2990 0.3100 0.3134 0.3029 0.3097 0.3130 0.3008 0.3002 0.2955
n=22 0.2987 0.3120 0.3117 0.3044 0.3130 0.3130 0.3036 0.3005 0.2973
n=23 0.3047 0.3322 0.3345 0.3137 0.3230 0.3108 0.2924 0.2862 0.2978

Male model—Plotting F,-value
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Figure R-9: Male model—Plotting Fi-value

Table R-17 displays prediction NPV results for experimenting the male dataset. The top
ten NPV values are in dark-red bold text. The highest NPV value has yellow highlighted
background. The NPV results are plotted as a 3D graph in Figure R-10.

Table R-17: Male model—NPV

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.9416 0.9443 0.9424 0.9421 0.9416 0.9389 0.9381 0.9367 0.9350
n=2 0.9519 0.9451 0.9469 0.9472 0.9467 0.9471 0.9477 0.9470 0.9475
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Figure R-10: Male model—Plotting NPV
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Appendix S FEMALE MODEL EXPERIMENTATION RESULTS

Table S-18 displays prediction TPR results for experimenting the female dataset. The top
ten TPR values are in dark-red bold text. The highest TPR value has yellow highlighted
background. The TPR results are plotted as a 3D graph in Figure S-11.

Table S-18: Female model—TPR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.3939 0.4242 0.4242 0.4242 0.3636 0.3333 0.3182 0.3030 0.3030
n=2 0.4091 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788
n=3 0.3939 0.3636 0.3636 0.3636 0.3636 0.3636 0.3485 0.3485 0.3485
n=4 0.5606 0.5303 0.5303 0.5152 0.5303 0.5303 0.5455 0.5606 0.5758
n=5 0.5303 0.5909 0.6061 0.6061 0.6212 0.6364 0.6364 0.6364 0.6212
n=6 0.6364 0.5909 0.5758 0.5909 0.5909 0.5909 0.5606 0.5758 0.5455
n=7 0.5758 0.5758 0.5758 0.5606 0.6061 0.5758 0.5758 0.5909 0.5909
n=8 0.6515 0.6212 0.6212 0.6212 0.6364 0.6212 0.6061 0.6061 0.6212
n=9 0.6061 0.4848 0.4848 0.4848 0.5152 0.5000 0.4848 0.5000 0.5000
n=10 0.6061 0.5152 0.5000 0.5303 0.5152 0.4848 0.5303 0.5000 0.5303
n=11 0.5606 0.5000 0.5000 0.5152 0.5000 0.5000 0.5152 0.5152 0.5000
n=12 0.5303 0.5152 0.5000 0.4545 0.5000 0.4697 0.4697 0.4848 0.5000
n=13 0.5758 0.5152 0.5606 0.5303 0.5152 0.5303 0.5000 0.5152 0.5152
n=14 0.4697 0.4242 0.4545 0.4394 0.4242 0.4242 0.3636 0.3939 0.3788
n=15 0.4545 0.4545 0.4091 0.3939 0.3939 0.3636 0.3939 0.3788 0.3636
n=16 0.3485 0.3939 0.3333 0.3030 0.2576 0.2727 0.3030 0.2879 0.2879
n=17 0.3788 0.3788 0.3333 0.2727 0.2424 0.2879 0.2576 0.2424 0.2576
n=18 0.3788 0.3636 0.3333 0.2576 0.2424 0.2879 0.2576 0.2424 0.2576
n=19 0.3788 0.3485 0.3182 0.2727 0.2424 0.2879 0.2727 0.2576 0.2576
n=20 0.3939 0.3485 0.3182 0.2727 0.2727 0.2879 0.2727 0.2727 0.2576
n=21 0.3939 0.3636 0.3333 0.3030 0.2879 0.2879 0.2879 0.2879 0.2727
n=22 0.4697 0.4091 0.3485 0.3485 0.3182 0.3030 0.3182 0.3030 0.3030
n=23 0.4697 0.4091 0.3485 0.3485 0.3182 0.3182 0.3182 0.3030 0.3030
n=24 0.4697 0.4697 0.4091 0.3788 0.3485 0.3333 0.3333 0.3485 0.3485
n=25 0.4848 0.4545 0.4394 0.3939 0.3636 0.3485 0.3788 0.3939 0.3939
n=26 0.4545 0.3485 0.3939 0.3788 0.3788 0.3485 0.3333 0.3182 0.2879
n=27 0.4242 0.3485 0.3939 0.3788 0.3636 0.3485 0.3182 0.3182 0.2879
n=28 0.3485 0.2727 0.3030 0.3030 0.2879 0.2273 0.2273 0.1970 0.2424
n=29 0.3030 0.2576 0.2727 0.2576 0.2576 0.2273 0.2273 0.2273 0.2273
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Female model—Plotting TPR

0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000

0.0000

1 o

n
n=
n=7
n=9
1
=13
15
n=17
n=19
=21
n=23
n=25
=27
~
I
s
w
~
1)
o
~

k=5
c k%[l_
c

H 0.0000-0.1000 m 0.1000-0.2000 ™ 0.2000-0.3000 m 0.3000-0.4000
1 0.4000-0.5000 = 0.5000-0.6000 ® 0.6000-0.7000

Figure S-11: Female model—Plotting TPR

Table S-19 displays prediction TNR results for experimenting the female dataset. The top
ten TNR values are in dark-red bold text. The highest TNR value has yellow highlighted
background. The TNR results are plotted as a 3D graph in Figure S-12,

Table S-19: Female model—TNR

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.8732 0.8826 0.8840 0.8840 0.8973 0.9052 0.9091 0.9096 0.9111
n=2 0.8845 0.8963 0.8973 0.8963 0.8958 0.8953 0.8958 0.8963 0.8958
n=3 0.8781 0.8889 0.8914 0.8924 0.8909 0.8929 0.8919 0.8924 0.8924
n= 0.8467 0.8536 0.8575 0.8550 0.8536 0.8541 0.8526 0.8521 0.8536
n=5 0.8678 0.8722 0.8722 0.8713 0.8688 0.8673 0.8678 0.8698 0.8688
n=6 0.8418 0.8717 0.8781 0.8796 0.8811 0.8806 0.8830 0.8811 0.8840
n=7 0.8314 0.8575 0.8600 0.8644 0.8654 0.8649 0.8698 0.8683 0.8698
n=8 0.8319 0.8614 0.8624 0.8683 0.8678 0.8683 0.8698 0.8708 0.8713
n=9 0.8344 0.8629 0.8639 0.8683 0.8693 0.8693 0.8688 0.8717 0.8698
n=10 0.8369 0.8644 0.8742 0.8727 0.8757 0.8796 0.8767 0.8840 0.8796
n=11 0.8472 0.8703 0.8781 0.8786 0.8860 0.8830 0.8811 0.8835 0.8870
n=12 0.8501 0.8658 0.8771 0.8781 0.8826 0.8885 0.8865 0.8845 0.8855
n=13 0.8452 0.8698 0.8786 0.8855 0.8904 0.8929 0.8939 0.8904 0.8904
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n=14 0.8604 0.8899 0.8998 0.9081 0.9106 0.9125 0.9120 0.9101 0.9111
n=15 0.8595 0.8845 0.9017 0.9081 0.9096 0.9061 0.9032 0.9081 0.9091
n=16 0.8644 0.8889 0.9032 0.9086 0.9066 0.9052 0.9012 0.9096 0.9106
n=17 0.8698 0.8870 0.9042 0.9091 0.9091 0.9135 0.9130 0.9174 0.9155
n=18 0.8717 0.8880 0.9052 0.9091 0.9096 0.9145 0.9140 0.9184 0.9165
n=19 0.8722 0.8889 0.9052 0.9096 0.9101 0.9150 0.9140 0.9184 0.9165
n=20 0.8698 0.8870 0.9032 0.9086 0.9071 0.9115 0.9111 0.9140 0.9135
n=21 0.8688 0.8806 0.9002 0.9022 0.9091 0.9115 0.9101 0.9145 0.9115
n=22 0.8722 0.8889 0.8973 0.8988 0.8983 0.9012 0.8963 0.8968 0.8978
n=23 0.8722 0.8889 0.8973 0.8988 0.8983 0.9012 0.8963 0.8968 0.8978
n=24 0.8717 0.8875 0.8929 0.8963 0.8983 0.8978 0.8998 0.9002 0.9012
n=25 0.8639 0.8811 0.8860 0.8855 0.8894 0.8894 0.8889 0.8914 0.8934
n=26 0.8855 0.9052 0.9027 0.9022 0.9022 0.9047 0.9022 0.9047 0.9052
n=27 0.8865 0.9061 0.9032 0.9017 0.9012 0.9037 0.9002 0.9017 0.9032
n=28 0.8983 0.9179 0.9150 0.9130 0.9145 0.9179 0.9165 0.9170 0.9199
n=29 0.9002 0.9199 0.9184 0.9184 0.9199 0.9233 0.9204 0.9224 0.9238

Female model—Plotting TNR
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Figure S-12: Female model—Plotting TNR

Table S-20 displays prediction Precision results for experimenting the female dataset. The
top ten Precision values are in dark-red bold text. The highest Precision value has yellow
highlighted background. The Precision results are plotted as a 3D graph in Figure S-13.
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Table S-20: Female model—Precision

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17

n=1 0.0915 0.1049 0.1061 0.1061 0.1030 0.1023 0.1019 0.0980 0.0995
n=2 0.1031 0.1059 0.1068 0.1059 0.1055 0.1050 0.1055 0.1059 0.1055
n=3 0.0949 0.0960 0.0980 0.0988 0.0976 0.0992 0.0947 0.0950 0.0950
n=4 0.1060 0.1051 0.1077 0.1033 0.1051 0.1054 0.1071 0.1095 0.1131
n=5 0.1151 0.1304 0.1333 0.1325 0.1331 0.1346 0.1350 0.1368 0.1331
n=6 0.1154 0.1300 0.1329 0.1373 0.1388 0.1383 0.1345 0.1357 0.1324
n=7 0.0997 0.1159 0.1176 0.1182 0.1274 0.1214 0.1254 0.1270 0.1283
n=8 0.1117 0.1269 0.1277 0.1327 0.1350 0.1327 0.1311 0.1320 0.1353
n=9 0.1061 0.1029 0.1036 0.1067 0.1133 0.1104 0.1070 0.1122 0.1107
n=10 0.1075 0.1097 0.1142 0.1190 0.1185 0.1155 0.1224 0.1227 0.1250
n=11 0.1063 0.1111 0.1174 0.1210 0.1245 0.1218 0.1232 0.1255 0.1255
n=12 0.1029 0.1107 0.1166 0.1079 0.1213 0.1202 0.1183 0.1199 0.1241
n=13 0.1076 0.1137 0.1303 0.1306 0.1323 0.1383 0.1325 0.1323 0.1323
n=14 0.0984 0.1111 0.1282 0.1343 0.1333 0.1359 0.1182 0.1244 0.1214
n=15 0.0949 0.1132 0.1189 0.1221 0.1238 0.1116 0.1166 0.1179 0.1148
n=16 0.0769 0.1032 0.1005 0.0971 0.0821 0.0853 0.0905 0.0936 0.0945
n=17 0.0862 0.0980 0.1014 0.0887 0.0796 0.0974 0.0876 0.0870 0.0899
n=18 0.0874 0.0952 0.1023 0.0842 0.0800 0.0984 0.0885 0.0879 0.0909
n=19 0.0877 0.0924 0.0981 0.0891 0.0804 0.0990 0.0933 0.0929 0.0909
n=20 0.0893 0.0909 0.0963 0.0882 0.0870 0.0955 0.0905 0.0933 0.0881
n=21 0.0887 0.0899 0.0978 0.0913 0.0931 0.0955 0.0941 0.0984 0.0909
n=22 0.1065 0.1067 0.0991 0.1004 0.0921 0.0905 0.0905 0.0870 0.0877
n=23 0.1065 0.1067 0.0991 0.1004 0.0921 0.0946 0.0905 0.0870 0.0877
n=24 0.1062 0.1192 0.1102 0.1059 0.1000 0.0957 0.0973 0.1018 0.1027
n=25 0.1036 0.1103 0.1111 0.1004 0.0964 0.0927 0.0996 0.1053 0.1070
n=26 0.1141 0.1065 0.1161 0.1116 0.1116 0.1060 0.0995 0.0977 0.0896
n=27 0.1081 0.1075 0.1166 0.1111 0.1067 0.1050 0.0938 0.0950 0.0880
n=28 0.1000 0.0973 0.1036 0.1015 0.0984 0.0824 0.0811 0.0714 0.0894
n=29 0.0897 0.0944 0.0978 0.0929 0.0944 0.0877 0.0847 0.0867 0.0882
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Female model—Plotting Precision
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Figure S-13: Female model—Plotting Precision

Table S-21 displays prediction Fi-value results for experimenting the female dataset. The
top ten Fi-values are in dark-red bold text. The highest Fi1-value has yellow highlighted
background. The Fi-value results are plotted as a 3D graph in Figure S-14.

Table S-21: Female model—F;-value

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17
n=1 0.1486 0.1682 0.1697 0.1697 0.1605 0.1566 0.1544 0.1481 0.1498
n=2 0.1646 0.1656 0.1667 0.1656 0.1650 0.1645 0.1650 0.1656 0.1650
n=3 0.1529 0.1519 0.1543 0.1553 0.1538 0.1558 0.1489 0.1494 0.1494
n= 0.1783 0.1754 0.1790 0.1722 0.1754 0.1759 0.1791 0.1832 0.1891
n=5 0.1892 0.2137 0.2186 0.2174 0.2193 0.2222 0.2228 0.2252 0.2193
n=6 0.1953 0.2131 0.2159 0.2229 0.2248 0.2241 0.2170 0.2197 0.2130
n=7 0.1700 0.1929 0.1954 0.1953 0.2105 0.2005 0.2060 0.2091 0.2108
n=8 0.1907 0.2108 0.2119 0.2187 0.2228 0.2187 0.2156 0.2168 0.2222
n=9 0.1806 0.1698 0.1707 0.1749 0.1858 0.1808 0.1753 0.1833 0.1813
n=10 0.1826 0.1809 0.1859 0.1944 0.1926 0.1866 0.1989 0.1970 0.2023
n=11 0.1787 0.1818 0.1902 0.1960 0.1994 0.1958 0.1988 0.2018 0.2006
n=12 0.1724 0.1823 0.1891 0.1744 0.1953 0.1914 0.1890 0.1922 0.1988
n=13 0.1814 0.1863 0.2114 0.2096 0.2105 0.2194 0.2095 0.2105 0.2105
n=14 0.1627 0.1761 0.2000 0.2057 0.2029 0.2059 0.1784 0.1891 0.1838
n=15 0.1571 0.1813 0.1843 0.1864 0.1884 0.1708 0.1799 0.1799 0.1745
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n=16 0.1260 0.1635 0.1544 0.1471 0.1245 0.1300 0.1394 0.1413 0.1423
n=17 0.1404 0.1558 0.1555 0.1338 0.1199 0.1456 0.1308 0.1280 0.1333
n=18 0.1420 0.1509 0.1566 0.1269 0.1203 0.1467 0.1318 0.1290 0.1344
n=19 0.1425 0.1460 0.1500 0.1343 0.1208 0.1473 0.1390 0.1365 0.1344
n=20 0.1457 0.1442 0.1479 0.1333 0.1319 0.1434 0.1358 0.1390 0.1313
n=21 0.1448 0.1441 0.1512 0.1404 0.1407 0.1434 0.1418 0.1467 0.1364
n=22 0.1737 0.1693 0.1544 0.1559 0.1429 0.1394 0.1409 0.1351 0.1361
n=23 0.1737 0.1693 0.1544 0.1559 0.1429 0.1458 0.1409 0.1351 0.1361
n=24 0.1732 0.1902 0.1736 0.1656 0.1554 0.1486 0.1507 0.1575 0.1586
n=25 0.1707 0.1775 0.1774 0.1600 0.1524 0.1465 0.1577 0.1661 0.1683
n=26 0.1824 0.1631 0.1793 0.1724 0.1724 0.1625 0.1533 0.1495 0.1367
n=27 0.1723 0.1643 0.1799 0.1718 0.1649 0.1614 0.1448 0.1463 0.1348
n=28 0.1554 0.1434 0.1544 0.1521 0.1467 0.1210 0.1195 0.1048 0.1306
n=29 0.1384 0.1382 0.1440 0.1365 0.1382 0.1266 0.1235 0.1255 0.1271

Female model—Plotting F,-value
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Figure S-14: Female model—Plotting F;i-value

Table S-22 displays prediction NPV results for experimenting the female dataset. The top
ten NPV values are in dark-red bold text. The highest NPV value has yellow highlighted
background. The NPV results are plotted as a 3D graph in Figure S-15.
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Table S-22: Female model—NPV

k=3

k=5

k=7

k=9

k=11

k=13

k=15

k=17

n=1
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=14
n=15
n=16
n=17
n=18
n=19
n=20
n=21
n=22
n=23
n=24
n=25
n=26
n=27
n=28
n=29

0.9780
0.9788
0.9781
0.9834
0.9827
0.9862
0.9837
0.9866
0.9849
0.9850
0.9835
0.9824
0.9840
0.9804
0.9798
0.9761
0.9774
0.9774
0.9774
0.9779
0.9779
0.9807
0.9807
0.9807
0.9810
0.9804
0.9794
0.9770
0.9755

0.9793
0.9780
0.9773
0.9825
0.9850
0.9850
0.9842
0.9859
0.9810
0.9821
0.9817
0.9822
0.9822
0.9794
0.9804
0.9784
0.9778
0.9773
0.9768
0.9767
0.9771
0.9789
0.9789
0.9810
0.9803
0.9772
0.9772
0.9749
0.9745

0.9793
0.9780
0.9774
0.9825
0.9856
0.9846
0.9843
0.9860
0.9810
0.9818
0.9819
0.9818
0.9840
0.9807
0.9792
0.9766
0.9766
0.9767
0.9762
0.9761
0.9765
0.9770
0.9770
0.9790
0.9799
0.9787
0.9787
0.9759
0.9750

0.9793
0.9780
0.9774
0.9819
0.9855
0.9851
0.9838
0.9860
0.9811
0.9828
0.9824
0.9803
0.9831
0.9804
0.9788
0.9757
0.9747
0.9742
0.9747
0.9747
0.9756
0.9770
0.9770
0.9780
0.9783
0.9782
0.9781
0.9758
0.9745

0.9775
0.9780
0.9774
0.9825
0.9861
0.9852
0.9855
0.9866
0.9822
0.9824
0.9820
0.9820
0.9826
0.9799
0.9788
0.9741
0.9737
0.9737
0.9737
0.9747
0.9752
0.9760
0.9760
0.9770
0.9773
0.9782
0.9776
0.9754
0.9745

0.9767
0.9780
0.9774
0.9825
0.9866
0.9852
0.9843
0.9860
0.9817
0.9814
0.9820
0.9810
0.9832
0.9799
0.9777
0.9746
0.9753
0.9754
0.9754
0.9753
0.9753
0.9755
0.9761
0.9765
0.9768
0.9772
0.9772
0.9734
0.9736

0.9763
0.9780
0.9769
0.9830
0.9866
0.9841
0.9844
0.9855
0.9811
0.9829
0.9825
0.9810
0.9822
0.9779
0.9787
0.9755
0.9743
0.9743
0.9748
0.9748
0.9753
0.9759
0.9759
0.9765
0.9778
0.9766
0.9760
0.9734
0.9735

0.9758
0.9780
0.9769
0.9836
0.9866
0.9846
0.9849
0.9855
0.9817
0.9820
0.9825
0.9815
0.9826
0.9789
0.9783
0.9752
0.9739
0.9739
0.9745
0.9748
0.9754
0.9754
0.9754
0.9771
0.9784
0.9761
0.9761
0.9724
0.9735

0.9758
0.9780
0.9769
0.9841
0.9861
0.9836
0.9850
0.9861
0.9817
0.9830
0.9820
0.9820
0.9826
0.9784
0.9778
0.9753
0.9744
0.9744
0.9744
0.9743
0.9748
0.9754
0.9754
0.9771
0.9785
0.9751
0.9751
0.9740
0.9736
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Female model—Plotting NPV
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Figure S-15: Female model—Plotting NPV
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Appendix T DATA DISTRIBUTIONS OF THE MIXED SEX

DATASET AND IT’S “SMOTED” ONE

The figures in this appendix show comparison of the mixed sex dataset and its
“SMOTEd” one by comparing Weka univariate attribute distributions of the chosen 13

predictors. The red and blue colours refer to positive and negative classes respectively.

Figure T-16: Univariate attribute distribution of Age in the mixed sex dataset

Figure T-17: Univariate attribute distribution of Age in the “SMOTEJ” mixed sex dataset
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Figure T-18: Univariate attribute distribution of Total Cholesterol in the mixed sex dataset
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Figure T-19: Univariate attribute distribution of Total Cholesterol in the “SMOTEd” mixed sex dataset
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Figure T-20: Univariate attribute distribution of LDL Cholesterol in the mixed sex dataset
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Figure T-21: Univariate attribute distribution of LDL Cholesterol in the “SMOTEd” mixed sex dataset
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Figure T-22: Univariate attribute distribution of VLDL Cholesterol in the mixed sex dataset
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Figure T-23: Univariate attribute distribution of VLDL Cholesterol in the “SMOTEJ” mixed sex dataset
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Figure T-24: Univariate attribute distribution of SBP in the mixed sex dataset
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Figure T-25: Univariate attribute distribution of SBP in the “SMOTEd” mixed sex dataset
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Figure T-26: Univariate attribute distribution of Triglycerides in the mixed sex dataset
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Figure T-27: Univariate attribute distribution of Triglycerides in the “SMOTEJ” mixed sex dataset
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Figure T-28: Univariate attribute distribution of DBP in the mixed sex dataset
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Figure T-29: Univariate attribute distribution of DBP in the “SMOTEd” mixed sex dataset
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Figure T-30: Univariate attribute distribution of Glucose in the mixed sex dataset
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Figure T-31: Univariate attribute distribution of Glucose in the “SMOTEd” mixed sex dataset
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Figure T-32: Univariate attribute distribution of Cigarettes in the mixed sex dataset
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Figure T-33: Univariate attribute distribution of Cigarettes in the “SMOTEJ” mixed sex dataset
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Figure T-34: Univariate attribute distribution of HDL Cholesterol in the mixed sex dataset
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Figure T-35: Univariate attribute distribution of HDL Cholesterol in the “SMOTEd” mixed sex dataset
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Figure T-36: Univariate attribute distribution of Hematocrit in the mixed sex dataset
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Figure T-37: Univariate attribute distribution of Hematocrit in the “SMOTEd” mixed sex dataset
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Figure T-38: Univariate attribute distribution of BMI in the mixed sex dataset
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Figure T-39: Univariate attribute distribution of BMI in the “SMOTEd” mixed sex dataset
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Figure T-40: Univariate attribute distribution of LDH in the mixed sex dataset
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Figure T-41: Univariate attribute distribution of LDH in the “SMOTEJ” mixed sex dataset
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Appendix U SUMMARY OF THE MIXED SEX DATASET

Figure U-42 summarises the mixed sex dataset with 13 risk factors chosen to be predictors
for CVD prediction. The summary was done in R.

> summary (off)
Total.Cholesterol HDL.Cholesterol VLDL.Cholesterol LDL.Cholesterol
Min. : 96 Min. : 12.00 Min. : 0.00 Min. s 31
1st Qu.:168 1st Qu.: 40.00 1st Qu.: 11.00 1st Qu.: 99
Median :191 Median : 49.00 Median : 17.00 Median :121
Mean :195 Mean s S0 TE Mean : 20.29 Mean :124
3rd Qu.:219 3rd Qu.: 59.00 3rd Qu.: 25.00 3rd Qu.:145
Max. :403 Max. :123.00 Max. :264.00 Max. :326
Triglycerides Hematocrit Glucose LDH
Min. . 6.0 Min. :27.00 Min. : 60.0 Min. s 55.0
1st Qu.: 160.0 1st Qu.:40.00 1st Qu.: 95.0 1st Qu.:140.0
Median : 248.0 Median :43.00 Median :100.0 Median :160.0
Mean s 31%.8 Mean :42.88 Mean :101.9 Mean :161.8
3rd Qu.: 375.0 3rd Qu.:46.00 3rd Qu.:106.0 3rd Qu.:180.0
Max. :7750.0 Max. :62.00 Max. :310.0 Max. :600.0
Systolic.BP Diastolic.BP Cigarettes Age
Min. : 78.0 Min. : 48.00 Min. s 0:0 Min. :13.00
1st Qu.:110.0 1st Qu.: 70.00 1st Qu.: 0.0 1st Qu.:28.00
Median :120.0 Median : 78.00 Median :10.0 Median :35.00
Mean :3121.3 Mean s 78.17 Mean 2137 Mean $35.81
3rd Qu.:130.0 3rd Qu.: 84.00 3rd Qu.:20.0 3rd Qu.:44.00
Max. :250.0 Max. :156.00 Max. :90.0 Max. :62.00
BMI cvdlO cvdInterval
Min. 1352 No :3850 Min. : 0.2409
ist Ou.:22.14 Yes: 221 1st Qu.:12.3425
Median :24.75 Median :21.7554
Mean 22931 Mean :20.8415
3rd Qu.:27.65 3rd Qu.:29.7583
Max. :54.93 Max. :38.9632
NA's :2950

Figure U-42: Summary of the mixed sex dataset, with the chosen 13 predictors, in R
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Appendix V. SUMMARY OF THE “SMOTED” MIXED SEX

DATASET

Figure V-43 summarises the “SMOTed” mixed sex dataset with 13 risk factors chosen to

be predictors for CVD prediction. The summary was done in R.

> Summary (smote)
Total.Cholesterol HDL.Cholesterol VLDL.Cholesterol LDL.Cholesterol
Min. : 96.0 Min. : 12.00 Min. : 0.0 Min. s 31.0
1st Qu.:182.0 1st Qu.: 37.85 1st Qu.: 14.0 1st Qu.:111.2
Median :207.3 Median : 45.00 Median : 21.0 Median :134.0
Mean :209.2 Mean : 47.66 Mean : 26.1 Mean 2135.5
3rd Qu.:233.0 3rd Qu.: 55.19 3rd Qu.: 31.0 3rd Ou.:157.2
Max. :403.0 Max. :123.00 Max. :264.0 Max. :326.0
Triglycerides Hematocrit Glucose LDH
Min. - 6.0 Min. :27.00 Min. : 60.00 Min. s 55.0
1st Qu.: 200.0 1st Qu.:41.00 1st Qu.: 96.96 1st Qu.:148.0
Median : 311.0 Median :44.00 Median :102.76 Median :165.7
Mean : 405.1 Mean 243.77 Mean :106.55 Mean :167.4
3rd Qu.: 467.4 3rd Qu.:46.20 3rd Qu.:110.00 3rd Qu.:184.3
Max. :7750.0 Max. :62.00 Max. :310.00 Max. :600.0
Systolic.BP Diastolic.BP Cigarettes Age
Min. : 78.0 Min. : 48.0 Min. : 0.000 Min. :13.00
1st Qu.:114.0 1st Qu.: 74.0 1st Qu.: 1.549 1st Qu.:33.00
Median :124.0 Median : 80.0 Median :18.758 Median :42.04
Mean :126.1 Mean ¢ 812 Mean :17.404 Mean :40.48
3rd Qu.:136.0 3rd Qu.: 88.0 3rd Qu.:27.878 3rd Qu.:48.09
Max. :250.0 Max. :156.0 Max. :90.000 Max. :62.00
BMI cvdlo cvdInterval
Min. £13.52 No :3850 Min. : 0.2409
1st Qu.:23.51 Yes:3757 1st Qu.: 4.1821
Median :25.90 Median : 6.3430
Mean :26.18 Mean 9.3270
3rd Qu.:28.37 3rxrd Qu.: 9.2089
Max. :54.93 Max. :38.9632
NA's :2950

Figure V-43: Summary of the “SMOTEd” mixed sex dataset, with the chosen 13 predictors, in R
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