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ABSTRACT 

Cardiovascular disease (CVD) is a major cause of morbidity and mortality. However, 

current widely used regression models are known to have a number of drawbacks, 

including prediction inaccuracy for individuals and for other cohorts, inflexibility of 

handling intervention, requirement of complete clinical data, deficiency of dealing with 

inaccurate, vague and uncertain data, and poor explanatory capacity. 

Therefore, this research developed a novel prediction model named CRISK—short for 

CVD Risk—for predicting 10-year risk of CVD. The model was developed based on a 

combination of fuzzy ontology and case-based reasoning (CBR). Fuzzy ontology can help 

handle and store vague and uncertain data, which is common in real life. Retrieving the 

closest cases to the input case, CBR could contribute to the development of a personalised 

prediction model. The CRISK model retrieves the seven closest cases to the input case 

and generates prediction outcomes from these seven closest cases. To do this, three 

algorithms, Retrieve, Reuse, and Revise, were developed. The CRISK model uses 13 risk 

factors: total cholesterol, low-density lipoprotein (LDL) cholesterol, very-low-density 

lipoprotein (VLDL) cholesterol, systolic blood pressure (SBP), triglycerides, diastolic 

blood pressure (DBP), glucose, number of cigarettes smoked a day, high-density 

lipoprotein (HDL) cholesterol, hematocrit, body mass index (BMI), and lactate 

dehydrogenase (LDH). Moreover, the model introduced a new way to represent and 

interpret CVD prediction outcomes when compared with existing models. In CRISK, the 

prediction outcomes are represented as fuzzy membership values of the “High CVD Risk” 

and “Low CVD Risk” fuzzy sets. Depending on the fuzzy membership value, a different 

level of attention is given to the input case. Using this method, not only the predicted risk 

category but also the prediction of when CVD would happen is provided. 

The CRISK model achieved reasonably good predictions. For internal validation, the 

prediction performance results were True Positive Rate (TPR)=0.8733 (CI=0.0102), True 

Negative Rate (TNR)=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), F1-

value=0.3574 (CI=0.0147), and Negative Prediction Value (NPV)=0.9913 (CI=0.0029) 

where CI is the 95% confidence interval. These performance results were obtained from 

experiments using the Framingham Heart Study (FHS) Offspring Cohort Exam 1 dataset, 

which was the dataset used to develop the CRISK model. For external validation, 

experiments on the FHS Original Cohort Exam 11 dataset were performed. This dataset 
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had two missing risk factors: triglycerides and LDH. The prediction results obtained for 

this external validation were TPR=0.8167 (CI=0.0434), TNR=0.5041 (CI=0.0560), 

Precision=0.2866 (CI=0.0507), F1-value=0.4242 (CI=0.0554), and NPV=0.9185 

(CI=0.0307) where CI is the 95% confidence interval. In addition, the CRISK model was 

analysed to be able to solve or partially solve five out of eight limitations of regression 

models identified in this research. Moreover, CRISK gave a better prediction 

performance in comparison with two high-profile existing CVD prediction models. 

This research has shown the usefulness of fuzzy ontology CBR approaches in CVD 

prediction. The achievements from the research are promising. Therefore, it would be 

worth investing more into fuzzy ontology CBR approaches in building CVD prediction 

models specifically and in building chronic disease prediction models generally. 

However, it would not be that a prediction model is built once and used forever. It is 

rather to continuously perform experimentation and update the model when new datasets 

arrive, especially datasets from different ethnic groups. These would help keep improving 

the prediction performance for the model and keep the model up to date. 
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1.1 RATIONALE AND SIGNIFICANCE OF THE STUDY 

Cardiovascular disease (CVD), aka heart disease, is the number one cause of death 

worldwide [1]. In 2016, an estimated 17.9 million people died from CVD, accounting for 

31% of all global deaths in the year [1]. This means that one in three people would pass 

away as a result of heart disease. In New Zealand, the 2018 statistics from the Heart 

Foundation website1 report that 33% of deaths annually are caused by heart disease, one 

in twenty adults are living with heart disease, and every 90 minutes a New Zealander dies 

from heart disease. According to European Cardiovascular Disease Statistics 2017 [2], 

CVD accounted for 45% of all deaths in Europe and 37% of all deaths in the European 

Union (EU). 

CVD not only places immense health burdens but also massive economic burdens [1, 3]. 

The total cost of CVD is estimated to be around 210 billion EUR on the EU economy 

annually [2]. Of this total cost, 53% (111 billion EUR) is for healthcare costs, 26% (54 

billion EUR) is due to productivity losses, and 21% (45 billion EUR) is to informal care 

of people with CVD. In the US, it is projected that in 2035, more than 130 million adults 

in the nation’s population (45.1%) will have some form of heart disease, and the total 

costs for CVD in the year are expected to reach 1.1 trillion USD [3]. 

Interestingly, the majority of CVD cases can be controlled by addressing behavioural risk 

factors [1]. Examples of these risk factors are smoking, unhealthy diet, and physical 

 

1 https://www.heartfoundation.org.nz/ 

https://www.heartfoundation.org.nz/
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inactivity [1]. As CVD events typically appear suddenly and often result in fatality before 

medical care can be given [4], early detection of high CVD risk people would be greatly 

beneficial in preventing CVD events by allowing early intervention for those at high risk. 

Therefore, with accurate early CVD prediction, a healthy population could be maintained 

resulting in markedly reduced health and economic burdens [5]. 

However, the CVD prediction problem remains unsolved despite the numerous prediction 

models that have been developed. In a systematic review published in 2016 [6], 363 

prediction models prior to June 2013 were identified and reviewed. In terms of prediction 

techniques, most of the developed models use regression methods: Cox proportional 

hazards modelling (n=160, 44%), accelerated failure time analysis (n=77, 21%), and 

logistic regression (n=71, 20%). But, according to the authors, the usefulness of most of 

these models remains unclear. Besides regression, machine learning (ML) has become 

more and more popular in the medical community generally and in the domain of CVD 

prediction specifically [7]. Though ML is reported to improve CVD prediction accuracy 

when compared to traditional established statistical models, there are still certain 

limitations related to the developed ML models including poor interpretability2 and 

overfitting [8]. Therefore, further investigation of the feasibility and acceptability of ML 

applications is needed before they can be employed in day-to-day clinical workflows [7, 

8]. 

Recently, new approaches using fuzzy ontologies and case-based reasoning (CBR) for 

prediction of chronic diseases, such as diabetes [9, 10] and chronic kidney disease [11], 

have been explored. Fuzzy ontologies have been known to be able to represent the 

vagueness and uncertainty of data [12]. This representation may possibly help resolve the 

limitations of regression models that are in widespread use but unable to deal with missing 

or unreliable values [12]. On the other hand, CBR may be an important approach in health 

care [13, 14]. A CBR system provides a solution for a new case based on the solutions of 

similar past cases [15, 16]. Therefore, a combination of fuzzy ontology and CBR 

approaches for CVD prediction would be worth investigating. 

2 Interpretability refers to the ability to understand the causality, i.e. relationships between risk factors and 

outcomes 
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1.2 RESEARCH AIM, OBJECTIVES, AND RESEARCH 

QUESTIONS 

This study aims to develop a fuzzy ontology CBR model called CRISK (Cardiovascular 

disease RISK) for prediction of CVD within 10 years that would possibly be a candidate 

to be used in daily clinical practice. Ten years is chosen because this is the common CVD 

prediction time interval. To be suitable for daily clinical practice the developed model 

should be able to resolve limitations of the current in-use models and/or perform better in 

terms of prediction performance. 

To achieve this aim, followed objectives need to be achieved. Firstly, current CVD 

prediction problems need to be identified and thoroughly analysed. Secondly, the 

developed model must employ techniques that can address the current CVD prediction 

problems. Thirdly, experiments and validation are used to find which risk factors are 

important. 

The following six research questions (RQs) are proposed for this study. How these 

research questions were formulated is explained in section 2.2.6. 

RQ1. Can a CVD prediction model be developed using a combination of fuzzy 

ontology and CBR? 

RQ2. What risk factors are important in the prediction of CVD using this method? 

RQ3. How does the developed model perform in terms of prediction performance? 

RQ4. How does the developed model perform in terms of external validation? 

RQ5. How does the developed model overcome the limitations of current widely 

used regression models? 

RQ6. How does the developed model compare with current widely used regression 

models in terms of prediction performance? 

Chapter 4, Chapter 5 and Chapter 6 in this body of work help answer the first three 

research questions (RQ1, RQ2, and RQ3). The content of Chapter 7 is used to answer 

RQ4. In Chapter 8, section 8.1 helps answer RQ5 and section 8.3 helps answer RQ6. 

Descriptions of the answers are given in section 9.1.1 in Chapter 9. 
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1.3 CONTRIBUTIONS OF THIS STUDY 

This study provides several contributions to the existing knowledge. These contributions 

are summarized below. 

1. An extensive literature review on the topic of CVD prediction is provided. The 

literature review gives the current status of the topic as well as highlighting the 

drawbacks of the existing mainstream regression models. Details of the literature 

review on CVD prediction are in section 2.2. 

 

2. The CRISK prediction model (Chapter 4) and its associated CRISK system 

(Chapter 5) are developed and documented. The developed model achieves good 

prediction performance (section 6.3) and solves or partially solves five out of the 

eight problems of current regression models (section 8.1). The CRISK system 

provides modules for creating ontologies, running experiments, and giving CVD 

prediction for an individual case (Chapter 5). 

 

3. This research shows that fuzzy ontology CBR approaches are useful in CVD 

prediction. This should encourage future researchers to spend more effort for 

fuzzy ontology CBR approaches in CVD prediction specifically and in chronic 

disease prediction generally. 

 

4. This research contributes a new way to represent and interpret CVD prediction 

outcomes, using fuzzy membership values of “High CVD Risk” and “Low CVD 

Risk” defined in this thesis. With this new way, not only the predicted risk 

category but also the prediction of when CVD would occur is provided. Details 

can be found in section 3.4.2 and section 8.3. 

 

5. This study proposes the idea of continuous experimentation and updates for a 

CVD prediction model. This would help keep improving the model’s prediction 

performance. Details can be found in section 9.2.5. 

1.4 THESIS ORGANISATION 

The rest of the thesis is organised into the following ten chapters: 
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Chapter 2 first reviews existing CVD prediction models. The models are classified into 

different categories and reviewed focusing on prediction methods, risk factors, datasets, 

prediction performance, and limitations. From the review, problems with existing 

prediction models, and potential and gaps of fuzzy ontology CBR approaches in CVD 

prediction are identified and these lead to formation of research questions for this body 

of work. The chapter then covers related information about fuzzy ontology for this body 

of work. This includes the theories of type-1 and type-2 fuzzy sets, definition of fuzzy 

ontology, and the advantages of using it. Moreover, state-of-the-art languages and tools 

for building and managing fuzzy ontologies are provided. Finally, the chapter introduces 

CBR, popular techniques used for CBR, and tools for building CBR systems. This 

includes explaining what CBR is, describing the four activities in a CBR cycle, and 

providing details of three common techniques used for CBR. In addition, well-known 

tools for building CBR systems are reported. 

Chapter 3 explains how the research was approached and carried out. This includes 

deciding on a research paradigm, employing a research methodology, forming a research 

framework and research guidelines, and creating strategies and plans to develop the 

CRISK prediction model. In addition, it covers dataset collection, dataset selection, 

experimentation design, and data preparation accordingly to the experimentation design. 

Besides, it describes an evaluation protocol created to assess the developed CRISK 

prediction model. The protocol consists of evaluation metrics, external validation, and 

comparison to existing models. 

Chapter 4 describes the CRISK prediction model. It first gives an overview of the 

architecture of the model. It then explains in detail each component of the model. In 

addition, the main algorithms developed for the model are described as pseudo-code. 

Chapter 5 explains the developed CRISK system. Details include how the system was 

developed, especially focusing on the structure of the CRISK system. The system consists 

of four modules: Constructor, Experimenter, Batch Experimenter, and Predictor. The 

purpose and details of each module are also described. 

Chapter 6 describes experimentation and the results. The chapter first explains in detail 

how the experimentation was done. It then reports the results, focusing on finding whether 

it is worth creating separate prediction models for men and women, and how the 

prediction performance could be possibly improved in the future. In addition, other 

findings derived from the experimentation results are also reported. 
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Chapter 7 gives details of external validation of this research. The chapter first describes 

how external datasets was prepared. It then explains how prepared datasets were tested. 

After that, the chapter reports testing results and findings from the testing results. 

Chapter 8 is a discussion chapter. It refers back to the list of problems of current 

regression models and discusses how these problems have been addressed by the 

developed CRISK model. It then discusses personalised prediction using the CRISK 

model. After that, CRISK is compared with three high-profile existing CVD prediction 

models. Finally, the possibility of applying CRISK in daily practice is raised. 

Chapter 9 concludes the thesis. Achievements of the study are described. After that, 

limitations in this research and future directions for it are provided.  
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2.1 INTRODUCTION 

This chapter first reviews the current status of CVD prediction (section 2.2). This includes 

giving an overview of CVD, reviewing existing well-known prediction models, finding 

problems with current regression models, and reviewing current fuzzy logic, fuzzy 

ontology, and CBR approaches in CVD prediction. From this review, research questions 

(stated in section 1.2) are formulated for this study (section 2.2.6). 

The chapter then provides an investigation of fuzzy ontology in section 2.3. This section 

first gives an overview of type-1 and type-2 fuzzy sets. It then provides an overview of 

fuzzy ontology including the benefits of using it. Finally, the section gives a summary of 

the languages and tools commonly used to create and maintain fuzzy ontologies. 

Information from this section is based on in decision making for building the CRISK 

model, which helps answer RQ1, in section 3.4. Decisions involve whether to use type-1 

or to use type-2 fuzzy sets and which languages and tools should be used to develop fuzzy 

ontologies for CRISK. 

After that, the chapter provides an investigation of CBR in section 2.4. First, this section 

explains what CBR is and gives an update on research activities and application of CBR 

in various domains. It then provides details of common techniques used in CBR systems. 

Finally, the section summarises popular CBR tools for developing CBR applications, 

focusing on programming language used and whether the tool supports ontologies and 

fuzzy ontologies. From the investigation presented in this section, decisions on whether 

to use existing tools or developing an own CBR application for CRISK, which helps 

answer RQ1, and on what techniques to employ are made (section 3.4). 

2.2 CARDIOVASCULAR DISEASE PREDICTION 

2.2.1 An Overview of CVD 

CVD is a group of diseases pertaining to the heart, the vascular system of the brain, or 

blood vessels [17]. It is estimated that 17.9 million people died from CVD in 2016, 

representing 31% of deaths globally [1]. CVD includes coronary heart disease (CHD), 

cerebrovascular disease, peripheral arterial disease (PAD), rheumatic heart disease 

(RHD), congenital heart disease, and deep vein thrombosis and pulmonary embolism 

(DVT & PE) [18]. Among these six types of CVD, four are caused by arteriosclerosis of 
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the blood vessels, that is hardening of the arteries. Arteriosclerosis of the blood vessels 

providing blood to the heart muscle causes CHD [19]. Arteriosclerosis in the blood 

vessels providing blood to the brain causes cerebrovascular disease [20]. When 

arteriosclerosis happens in the blood vessels providing blood to the arms and legs, it 

results in PAD [21]. If arteriosclerosis happens at a vein deep in the body, usually in the 

lower legs or thighs, and creates a blood clot, the resulting condition is known as DVT 

[22]. The blood clot restricts or can completely block the blood flow. The blood clot can 

sometimes dislodge, travel to the heart and then lungs, forming blockages in arteries 

supplying blood to the lungs. This condition is called a PE [22]. On the other hand, RHD 

is a disease in which the heart muscle and heart valves are damaged from rheumatic fever, 

which is caused by streptococcal bacteria [23]. Finally, congenital heart disease refers to 

malformations in the cardiovascular structure that occur before birth [24]. In these six 

types of CVD, coronary heart disease (CHD), also known as ischemic heart disease [19], 

is the most common type of CVD [25]. Globally, CHD accounts for 7.4 million deaths, 

which is about 43% of deaths caused by CVD, in 2012 [18]. 

Prediction plays a significant role in reducing disability and premature death caused by 

CVD. The underlying pathology is atherosclerosis, which develops over years and is 

usually advanced by the time symptoms occur. Acute coronary and cerebrovascular 

events typically appear suddenly and can be fatal before medical care can be given [4]. 

Therefore, CVD prediction techniques have been extensively researched and developed 

for decades, aiming to provide early intervention for those at risk. 

Existing well-known CVD prediction models are identified and classified into the 

following categories: conventional Framingham models, augmented Framingham 

models, and alternatives to Framingham models [26]. Sections 2.2.2, 2.2.3, and 2.2.4 

review those prediction models. 

2.2.2 Conventional Framingham Models 

Conventional Framingham models [27-32] were developed as part of the Framingham 

Heart Study (FHS). This study started in 1948 and had the aim of observing, and as a 

consequence, understanding risk factors that cause heart disease [33]. Originally, the 

Framingham Study followed a cohort of 5,209 men and women living in Framingham, 

Massachusetts, in the United States of America (USA) [27]. The study continuously 

monitored morbidity and mortality, and medical examinations were carried out every two 
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years to record a variety of characteristics, including blood chemistry, blood pressure, and 

electrocardiogram [27]. In 1971, the study enrolled a second generation of 5,124 

participants, who were children of the first cohort and those children’s spouses, called the 

Framingham Offspring Cohort [28, 34]. As these two cohorts were predominantly white 

of European descent, 506 ethnic minority residents of Framingham were recruited for the 

Omni 1 Cohort in 1994 followed by another 410 ethnic minority participants for the Omni 

2 Cohort a decade later [33]. In 2002, investigators created the Third Generation Cohort 

with 4,095 participants, who were children of the Offspring Cohort. One year later, 103 

residents, who were spouses of Offspring Cohort participants who were not initially 

enrolled in the study but had at least two children in the Third Generation Cohort, were 

signed up for the New Offspring Spouse Cohort [33]. 

The first Framingham model [27] was developed by Kannel and colleagues in 1976. The 

study used data of people from the Original Cohort who were initially free of CHD, 

congestive heart failure, cerebrovascular disease, intermittent claudication, and rheumatic 

heart disease. It produced risk functions to predict CHD, brain infarction, intermittent 

claudication, hypertensive heart failure, and total CVD within eight years. Each risk 

function was a logistic regression model where dependent variables (risk factors) were 

sex, age, systolic blood pressure (SBP), cigarette smoking, electrocardiographic evidence 

of left ventricular hypertrophy (ECG-LVH), glucose intolerance, and serum cholesterol. 

Total CVD prediction includes disease classified to either CHD, brain infarction 

(cerebrovascular disease), intermittent claudication (PAD), or hypertensive heart failure 

(congestive heart failure in the absence of coronary or rheumatic heart disease). For each 

risk function, two different sets of regression coefficients were developed for men and 

women respectively. Regression coefficients were calculated using the method of 

Walker-Duncan [35]. Figure 2-1 illustrates the relationships among the prediction model, 

predicted diseases, risk factors used, and cohorts that the study based on. 
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Figure 2-1: Mappings of Kannel et al. [27] model, disease types, risk factors, and cohorts 

In 1991, two studies were published by Anderson and colleagues. The first one was an 

updated CHD risk profile [28] of Kannel’s original CHD risk profile [27]. Though only 

people who were free from CVD were included in the first study [28], the dataset used 

was larger and more recent as it combined both the Original Cohort and the Offspring 

Cohort. In addition, another risk factor, high-density lipoprotein (HDL) cholesterol, was 

added to the regression function for prediction. Risk estimation was done using a 

parametric regression model, an accelerated failure time regression model [36], where 

parameters were calculated using a computer software program that implemented the 

maximum likelihood method and was developed by one of the authors. 

A further study [29], based on the updated CHD risk profile [28], aimed to develop 

equations for predicting additional outcomes. This study also selected members from both 

the Original and the Offspring cohorts who were free of CVD and cancer, and presented 

prediction equations for myocardial infarction, CHD, death from CHD, stroke, CVD, and 

death from CVD. Risk factors used in this study were sex, age, blood pressure, total 

cholesterol, HDL cholesterol, smoking, glucose intolerance, and left ventricular 

hypertrophy. Again, the accelerated failure time regression model [36] was used to predict 



12 

probabilities for each of the outcomes. The parameters were also estimated by using the 

maximum likelihood method. Figure 2-2 shows mappings among the two models, 

predicted diseases, risk factors used, and cohorts that the studies are based on. 

Figure 2-2: Mappings of Anderson et al.’s [28] & [29] models, disease types, risk factors, and cohorts 

One advantage of the models developed by Anderson and colleagues [28, 29] over the 

original model developed by Kannel and colleagues [27] is that the user can specify the 

number of years (from 4 to 12) ahead that they wish to predict within. This capability to 

specify prediction interval is a result of using the accelerated failure time regression 

model [36] rather than a logistic regression model. Unlike logistic regression, this 

accelerated failure time regression model can provide predictions for different lengths of 

time [29]. 

In 1998, Wilson and colleagues developed another Framingham risk profile for CHD [30] 

using categorical variables that had become part the framework of the Joint National 

Committee (JNC-V) blood pressure and the National Cholesterol Education Program 

(NCEP) cholesterol programs in USA. Wilson’s study also used data from the Original 
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and Offspring cohorts and produced recommended guidelines to predict CHD risk based 

on sex, age, blood pressure, diabetes, total cholesterol, and low-density lipoprotein (LDL) 

cholesterol. The model provides a similar result to Anderson et al.’s first model [28] that 

used continuous variables. However, Wilson and colleagues’ prediction formulation [28] 

is much simpler than the one used by Anderson et al. [26]. Wilson et al. presented the 

prediction formulation as score sheets with steps to follow to calculate CHD risk points. 

Their score sheets were developed from those in the Cox proportional hazards modeling 

[37]. Wilson et al.’s prediction algorithm was adopted and used by The National 

Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of 

High Blood Cholesterol in Adults (Adult Treatment Panel III) (NCEP/ATP III) to 

estimate a person’s 10-year risk of developing CHD, in which three levels of risk were 

defined: less than 10%, 10% to 20%, and greater than 20% [38]. Figure 2-3 displays 

mappings among Wilson et al.’s model, predicted diseases, risk factors used, and cohorts 

that the study was based on. 

 

Figure 2-3: Mappings of Wilson et al. [30] model, disease types, risk factors, and cohorts 

Later in 2008, D’Agostino and co-authors reported on the development of a gender-

specific multivariable risk factor algorithm [31] that can be used to predict total CVD risk 
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and risk of individual CVD events (coronary, cerebrovascular, peripheral arterial disease, 

and heart failure). The study used more participants (8,491) from the Original and 

Offspring cohorts than previous studies. The Cox proportional hazard regression method 

[37] was used to relate risk factors to the incidence of a first CVD event. The authors 

ended up providing two versions of CVD risk prediction. The first version was based on 

eight traditional risk factors: sex, age, SBP, treatment for hypertension, cigarette smoking, 

diabetes, total cholesterol, and HDL cholesterol. In contrast, the second version included 

non-laboratory-based predictors—body mass index (BMI) was used instead of total 

cholesterol and HDL cholesterol. Figure 2-4 connects the two model versions from the 

study with predicted diseases, risk factors, and cohorts. 

 

Figure 2-4: Mappings of D’Agostino et al. [31] models, disease types, risk factors, and cohorts 

In 2009, Pencina et al. [32] published a model to primarily estimate the 30 year risk of 

“hard” CVD (coronary death, myocardial infarction, stroke) and secondarily estimate the  

30 year risk of "general" (“full” or “total”) CVD (coronary death, myocardial infarction, 

coronary insufficiency, angina, ischemic stroke, hemorrhagic stroke, transient ischemic 
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attack, peripheral artery disease, heart failure). Since the majority of existing models 

predict risk within the ≤ 10-year risk time frame, this model is a good addition as it 

provides longer-term estimation and therefore could be more suitable for prediction for 

people at younger ages and also possibly increase life expectancy. The authors developed 

the model using a modified Cox regression that allows adjustment for competing risks of 

non-cardiovascular death. The prediction model has two versions. The first version is 

based on sex, age, SBP, diabetes, smoker, treated hypertension, total cholesterol, and 

HDL cholesterol risk factors while the second version replaced total cholesterol and HDL 

cholesterol with BMI. The simpler version (the second version) performed reasonably 

well, not far below the performance of the first version [32]. Figure 2-5 connects the two 

versions of Pencina et al.’s model with predicted diseases, risk factors, and cohorts. 

Figure 2-5: Mappings of Pencina et al. [32] models, disease types, risk factors, and cohorts 

Table 2-1 summarizes conventional Framingham CVD prediction models in terms of 

method, number of participants, age, and prediction interval. 
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Table 2-1: Conventional Framingham CVD prediction models 

Model Method No. of participants Age (years) Prediction Interval 

Kannel et al., 1976 

[27] 

Logistic regression [35]  5,209 35–74 8 years 

Anderson et al., 

1991 [28] 

Accelerated failure time 

regression [36] 

5,573 

(2,590 men and 

2,983 women) 

30–74 4–12 years 

Anderson et al., 

1991 [29] 

Accerlerated failure time 

regression [36] 

5,573 

(2,590 men and 

2,983 women) 

30–74 4–12 years 

Wilson et al., 1998 

[30] 

Categorical variable score 

sheet, Cox proportional 

hazards modeling [37] 

5,345 

(2,489 men and 

2,856 women) 

30–74 10 years 

D’Agostino et al., 

2008 [31] 

Cox proportional hazards 

modeling [37] 

8,491 

(3,969 men and 

4,522 women) 

30–74 10 years 

D’Agostino et al. 

simpler version, 

2008 [31] 

Cox proportional hazards 

modeling [37] 

8,491 

(3,969 men and 

4,522 women) 

30–74 10 years 

Pencina et al., 2009 

[32] 

A modified Cox model 4,506  

(2,173 men and 

2,333 women) 

20–59 30 years 

 

The FHS currently recommends models for CVD prediction on their official website.3 

For 10-year CHD risk prediction the Wilson et al. [30] model is recommended. For 10-

year general CVD risk prediction, the D’Agostino et al. [31] model and its simpler version 

should be used while for 30 year general CVD risk prediction, the Pencina et al. [32] 

model and its simpler version are suggested. 

A common limitation of all six Framingham studies [27-32] was that they were solely 

restricted to white cohorts (Original and/or Offspring) to develop their models. This 

potentially limits the generalizability to other ethnic groups [32]. Therefore, application 

of the Framingham models in other populations needed to be verified. Consequently, a 

 

3 https://www.framinghamheartstudy.org/fhs-risk-functions/cardiovascular-disease-10-year-risk/ 

https://www.framinghamheartstudy.org/fhs-risk-functions/cardiovascular-disease-10-year-risk/


 

17 

number of studies, reported in the literature, were carried out to test the Framingham risk 

functions in different geographical areas and with different ethnic cohorts. 

Despite being pioneers in the field of CVD prediction, the most well-known, and the most 

commonly used both in USA and globally [33, 39], the Framingham models have been 

shown to overestimate or underestimate risk when applied to populations other than the 

original cohorts. 

The Anderson et al. [28] model was found to overestimate CHD risk (4%) for men in the 

French PCV-METRA cohort when compared with the risk estimated by the localised 

French model (2%) [40]. The Anderson et al. [29] model also substantially overestimated 

CHD risk in German MONICA Augsburg and PROCAM cohorts for both genders [41]. 

It was reported that the risk predicted by Anderson et al.’s model was double the risk 

observed in these two cohorts [41]. The Wilson et al. [30] model was found to 

overestimate CHD risk in an Italian population [42]. Anderson et al.’s [28] and [29] 

models were also confirmed to significantly overestimate CHD risk for people in the 

United Kingdom [43]. On the other hand, the Wilson et al. [30] model was reported to 

underestimate CHD risk in Czech men [44]. These findings indicate that while the 

Framingham models may be accurate when applied to Framingham cohorts they are 

probably not as accurate when applied to other cohorts or other populations in the World. 

2.2.3 Augmented Framingham Models 

To overcome the deficiencies of Framingham equations, researchers have tried to add 

new variables to them. Usually, one or more biomarkers are included as additional risk 

factors to the equation [26]. One popular biomarker is the C-reactive protein (hsCRP), a 

plasma protein synthesised by the liver in response to inflammation [45]. A systematic 

review by Danesh et al. [46] stated that C-reactive protein is a relatively moderate 

predictor of CHD; however recommendations for using it in predicting CHD need to be 

reviewed. Just two years later, Lloyd-Jones et al. [47] found no proof that the including 

C-reactive protein adds substantial predictive value to CHD prediction over employing 

the conventional risk factors. Lloyd-Jones’s findings are further supported in a later 

review by McNeill et al. [45] who concluded that the C-reactive protein is unimportant in 

CHD prediction. 
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Other biomarkers that have been investigated by researchers include: fibrinogen [48], 

homocysteine [49], N-terminal fragment brain natriuretic peptide (NT-pro-BNP) [50, 51], 

small dense lipoproteins [52], apolipoproteins [53, 54], lipoprotein-associated 

phospholipase A2 [55], lipoprotein (a) [56], cystatin C [57], uric acid [58-60], alanine 

aminotransferase [61], and gamma-glutamyltransferase [62, 63]. However, in a 

systematic review by Dent [45], it was suggested that these biomarkers’ performances in 

CVD prediction are inconsistent from study to study and they do not really add value to 

the prediction. 

Another trend in amendment to the Framingham equations was to create different 

presentations based on the Framingham equations. Examples include the New Zealand 

risk tables [64], the Joint European Societies’ charts [65], and the second Joint British 

Societies’ recommendations [66]. The New Zealand risk tables [64] were based on the 

Framingham model of Anderson et al. [29] to estimate 5-year CVD risk. A cell in a table 

is identified for a person based on risk factors. Each cell has a colour that represents the 

risk level. Similarly, the joint European Societies’ charts [65], based on the Framingham 

model of Anderson et al. [28], also divide the charts into different coloured cells mapping 

to different CHD risk levels within 10 years. The second Joint British Societies’ 

recommendations [66] were also based on the Framingham model of Anderson et al. [28] 

but replaced CHD risk with CVD risk to predict the 10-year CVD risk for a person. The 

CVD risk prediction algorithm was represented as charts, where a chart’s area was 

divided into different coloured contours representing different risk levels. Nevertheless, 

these table and chart-based approaches gave visual and easier to understand 

representations of the prediction algorithms but did not improve prediction accuracy nor 

resolved the problems mentioned in the previous section 2.2.2 of the conventional 

Framingham models. 

2.2.4 Alternatives to Framingham Models 

Besides the FHS, researchers around the World have also built up different study cohorts 

to identify the risk factors associated with CVD and to develop prediction models. Well-

known CVD prediction models derived from these studies include the PROCAM model 

[67], the SCORE model [68], the ASSIGN model [69], the two Reynolds models [70] and 

[71], the two QRISK models [72] and [73], the 2013 Pooled Cohort Equation (PCE) 

model [74], the Globorisk model [75], the PREDICT-1° model [76], and the 2018 PCE 
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model [77]. Table 2-2 gives a summary of these models by publication year, prediction 

disease, dataset, risk factors, method, and prediction interval. 

These eleven models can be grouped into three categories: using a pool of cohorts, 

including additional biomarkers, and including ethnicity/family/social-economic factors. 

SCORE, 2013 PCE, Globorisk, and 2018 PCE belong to the first category as their datasets 

are collections of different cohorts. ASSIGN (used family history and social deprivation), 

QRISK 1 (used family history and area measure of deprivation), QRISK 2 (used ethnicity, 

family history, and deprivation score), PREDICT-1° (used ethnicity, family history, 

socioeconomic deprivation), and 2018 PCE (used ethnicity) belong to the third category. 

PROCAM and the two Reynolds models employed both “additional biomarkers” and 

“family/social-economic factors” and therefore can be classified as belonging to both the 

second and the third categories. PROCAM used triglycerides and family history of 

premature myocardial infarction (MI). The Reynolds model for women used several 

additional biomarkers (HbA1c, Lp(a), apolipoprotein B-100, hsCRP, and apolipoprotein 

A-I) and parental history of MI before age 60 years. The Reynolds model for men used

hsCRP and parental history of MI before age 60 years. 

All eleven models have the common characteristic of using regression prediction 

methods. Among these models, SCORE was developed using the Weibull proportional 

hazards model [78] while the rest were developed using the Cox proportional hazards 

model [37]. Regression prediction models have been found in both existing literature and 

in this study to have common limitations that are explained in detail in the next section 

(section 2.2.5).
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Table 2-2: Alternatives to Framingham prediction models 

Model Publication 

Year 

Disease Dataset Risk Factors Method Prediction 

Interval 

PROCAM 

(Assmann et 

al. [67]) 

2002 CHD • Name: PROCAM 

• Location: Germany 

• Size: 5,389 men 

• Age: 35–65 

Age, low-density lipoprotein cholesterol 

(LDL-C), smoking, high-density lipoprotein 

cholesterol (HDL-C), SBP, family history of 

premature myocardial infarction (MI), 

diabetes, triglycerides 

Cox proportional 

hazards modelling 

[37] 

10 years 

SCORE 

(Conroy et al. 

[68]) 

2003 CVD • Name: a pool from 12 cohorts 

• Location: Europe 

• Size: 205,178 people (88,080 women) 

• Age: 19–80 

Sex, age, smoking, SBP, either total cholesterol 

(TC) or total cholesterol / high-density 

lipoprotein cholesterol (TC/HDL-C) 

Weibull proportional 

hazards modelling 

[78] 

10 years 

ASSIGN 

(Woodward et 

al. [69]) 

2007 CVD • Name: ASSIGN 

• Location: Scotland 

• Size: 13,297 people (6,540 men) 

• Age: 30–74 

Sex, age, social deprivation, family history, 

diabetes, smoking, SBP, total cholesterol, 

HDL-C 

Cox proportional 

hazards modelling 

[37] 

10 years 
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Reynolds risk 

score for 

women 

(Ridker et al. 

[70]) 

2007 CVD • Name: Renolds (women) 

• Location: US 

• Size: 24,558 women 

• Age: ≥ 45 

Age, HbA1c (% with diabetes), SBP, smoking, 

Lp(a), apolipoprotein B-100, hsCRP (C-

reactive protein), apolipoprotein A-I, parental 

history of MI before age 60 years 

Cox proportional 

hazards modelling 

[37] 

10 years 

Reynolds risk 

score for men 

(Ridker et al. 

[71]) 

2008 CVD • Name: Renolds (men) 

• Location: US 

• Size: 10,724 men 

• Age: 50–79 

Age, SBP, smoking, total cholesterol, HDL-C, 

hsCRP, parental history of MI before age 60 

years 

Cox proportional 

hazards modelling 

[37] 

10 years 

QRISK 1 

(Hippisley-

Cox et al. 

[72]) 

2007 CVD • Name: QRISK 1 

• Location: UK 

• Size: 1.28 million people (Of these, 50.4% 

were women) 

• Age: 35–74 

Sex, age, smoking, SBP, TC/HDL-C, BMI, 

family history of CHD in first degree relative 

aged less than 60, area measure of deprivation, 

existing treatment with antihypertensive agent 

Cox proportional 

hazards modelling 

[37] 

10 years 

QRISK 2 

(Hippisley-

Cox et al. 

[73]) 

2008 CVD • Name: QRISK 2 

• Location: England and Wales 

• Size: 1,535,583 people (773,291 women) 

• Age: 35–74 

Ethnicity, sex, age, smoking, SBP, TC/HDL-C, 

BMI, family history of CHD in first degree 

relative aged less than 60, deprivation score, 

treated hypertension, type-2 diabetes, renal 

disease, atrial fibrillation, rheumatoid arthritis 

Cox proportional 

hazards modelling 

[37] 

10 years 
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2013 PCE 

(Goff et al. 

[74]) 

2013 CVD • Name: pooled cohorts (including ARIC 

[79], Cardiovascular Health Study [80], 

CARDIA [81], Framingham Original [82],  

and Framingham Offspring [83] cohorts) 

• Location: USA 

• Size: 24,626 people (11,240 white women, 

9,098 white men, 2,641 African-American 

women, and 1,647 African-American men) 

• Age: 40–79 

Age, sex, total cholesterol, HDL-C, SBP, use 

of antihypertensive therapy, diabetes, smoking 

Cox proportional 

hazard modelling 

[37] 

10 years and 

lifetime 

Globorisk 

(Hajifathalian 

et al. [75]) 

2015 CVD • Name: a pool of 8 cohorts 

• Location: USA 

• Size: 50,129 people (33,323 men) 

• Age: ≥ 40 

Sex, age, SBP, total cholesterol, diabetes, 

smoking 

Cox proportional 

hazards modelling 

[37] 

10 years 

PREDICT-1° 

(Pylypchuk et 

al. [76]) 

2018 CVD • Name: PREDICT 

• Location: New Zealand 

• Size: 401,752 

• Age: 30–74 

Age, ethnicity, NZ index of socioeconomic 

deprivation, family history of premature CVD, 

smoking, diabetes, history of atrial fibrillation, 

SBP, TC/HDL-C, blood pressure lowering 

medication, lipid lowering medication, 

antithrombotic medication 

Cox proportional 

hazard modelling 

[37] 

5 years 
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2018 PCE 

(Yadlowsky et 

al. [77]) 

2018 CVD • Name: pooled cohorts from 6 longitudinal

cohort studies, ARIC (Atherosclerosis Risk

in Communities Study, 1987 to 2011), CHS

(Cardiovascular Health Study, 1989 to

1999), CARDIA (Coronary Artery Risk

Development in Young Adults Study, 1983

to 2006), FHS offspring cohort (1971 to

2014), JHS (Jackson Heart Study, 2000 to

2012), and MESA (Multi-Ethnic Study of

Atherosclerosis, 2000 to 2012

• Location: USA

• Size: 26,689 people

• Age: 40–79

Age, sex, race, total cholesterol, HDL-C, SBP, 

treatment for high blood pressure, diabetes, 

smoking 

Cox proportional 

hazard modelling 

[37] 

10 years and 

lifetime 
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2.2.5 Problems with current regression prediction models 

Despite trying to improve the Framingham models by introducing additional biomarkers 

to the equations or carrying out research on different cohorts, existing regression 

prediction models suffer from common limitations. These limitations can be attributed to 

several fundamental issues associated with using traditional regression techniques to 

build a disease prediction model. Firstly, a statistical regression technique tries to find a 

mathematical function that best fits the data. Thus, it uses the same function with the same 

number of fixed independent variables and the same coefficients for all cases. However 

different cases might need to have different coefficient values to have better predictions 

of the outcomes. For example, smoking might have a greater impact on the CVD risk in 

one group but little impact on another group. Secondly, these statistical methods are 

limited to using a small number of predictors [84] and therefore might miss other factors 

that are important to the outcomes. Thirdly, the relationships between covariates and risk 

may be too complex to be presented by a regression function [85]. Another issue is that, 

over time, new cases arrive, and the original regression function might be no longer 

suitable as changes in society occur, such as migration, behaviour changes, environmental 

changes and different models of health care delivery. Table 2-3 lists and explains the 

common limitations of regression models. 
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Table 2-3: Limitations with current regression models 

Limitation # Name Explanation 

Limitation 1 Inaccuracy for 

individual  

A model can be accurate for the population but 

inaccurate for an individual [86]. 

Limitation 2 Inaccuracy for other 

cohorts 

A model can perform well for a certain cohort but 

turns out to overestimate or underestimate for other 

cohorts, escpecially cohorts of different racial groups 

[87]. 

Limitation 3 Inflexibility of 

handling intervention 

How will the prediction result change if the person 

stops smoking, starts having treatment, etc.? [12] 

Limitation 4 Requirement of 

complete clinical data  

To build a regression model, a complete dataset is 

required while in reality there are often missing data 

[12]. 

Limitation 5 Deficiency of 

handling inaccurate 

data or result 

Clinical recorded data might be inaccurate [12]. With 

models where prediction results are crisp values, a 

small error in prediction might completely shift the 

person to a wrong category, such as from “high risk” 

to “low risk” 

Limitation 6 Deficiency of 

handling vagueness of 

data or result  

For example, when a person says that they smoke “a 

lot of cigarettes” a day. It is unknown exactly how 

many cigarettes they actually smoke a day. 

Limitation 7 Deficiency of 

handling uncertainty 

of data or result  

For example, if the prediction result for a person is 

85% chance of belonging to the high risk group, does 

it mean the chance is exactly 85% or somehere 

between 80% and 90%? 

Limitation 8 Poor explanatory 

capacity 

Regression methods are built with complex 

equations that are not easy to vizualise or to 

understand how they are formed. 
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2.2.6 Current fuzzy logic, fuzzy ontology, and CBR approaches 

To overcome the problems of regression prediction models, a few studies have tried to 

use fuzzy logic and fuzzy ontology approaches to CVD prediction. In 2012, Pal and co-

authors [88] described developing an expert system for screening that would help detect 

CHD at an early stage. The paper focused on rules formulation from doctors and a fuzzy 

expert system approach was used to cope with uncertainty present in the medical domain. 

In 2013, Parry and MacRae [12] introduced an approach that used a fuzzified ontology to 

both improve CVD prediction accuracy and provide personalised predictive capacity. In 

2014, Kim et al. [89] proposed a model named Fuzzy Rule-based Adaptive Coronary 

Heart Disease Prediction Support Model that gave content recommendation to CHD 

patients. The model consists of three parts: a fuzzy membership function, a rule set, and 

a fuzzy inference. In 2015, Kim et al. [90] used a hybrid approach combining both fuzzy 

logic and CART decision tree to build their model for prediction of CHD within 10 years. 

CBR has been suggested as an important niche for disease prediction [13, 14]. A CBR 

system solves a new problem from the solutions of existing similar past cases [15, 16]. 

There has been some success in healthcare using CBR [15, 91-93]. However, according 

to a 2011 survey by Begum et al. [94], most of these systems were still at the prototype 

stage and not available in the market as commercial products. Later, in 2016, in another 

survey by Choudhury and Begum [95], the number of CBR systems in the healthcare 

domain was found to have increased significantly. Nevertheless, most of the systems do 

not include an adaptation step and leave the adaptation task to human experts. Details of 

CBR are explained in section 2.4. 

CBR has not been widely used in CVD prediction. In a 2014 review by Sutano et al. [96] 

only one model, which was developed by Guessoum et al. [97] for the diagnosis of 

chronic obstructive pulmonary disease, was related to CVD. The survey by Choudhury 

and Begum [95] in 2016 found two more models, by Koton [98] and Reategui et al. [99], 

for the diagnosis of heart disease using CBR. More recently, Kalavai [100] proposed a 

heart disease prediction model that utilised CBR in an image similarity search. However, 

these models were all for diagnosing heart disease rather than predicting it in a future time 

interval. To my knowledge, there have not been any models reported that combine fuzzy 

ontology and CBR as a model for the prediction of CVD. 

Fuzzy ontology CBR systems have been used in other domains. In the domain of collision 

avoidance systems in marine environments, in 2007, Park et al. [101] reported on an 
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ontology-based fuzzy CBR support system for ship collision avoidance. Their system 

operates in two steps. The first step identifies any dangerous ships and indexes those new 

cases. The second step retrieves similar cases from the ontology and produces the solution 

(the new heading) to take to avoid collision. Recently, Ali et al. [102] proposed a type-2 

fuzzy ontology to provide accurate information about collision risk and the marine 

environment during real-time marine operations. The type-2 fuzzy ontology-based 

approach was proposed as the existing type-1 fuzzy ontology-based approach was not 

capable of extracting sufficient information to offer solutions due to the intensively 

blurred image data that results from the hazy marine environment. 

In the domain of depression diagnosis, in 2012, Ekong et al. [103] presented a neuro-

fuzzy CBR model as a decision support system for the diagnosis of depression based  on 

the overall severity of symptoms. Neuro-fuzzy inference systems provide self-learning 

intelligent systems that are capable of handling uncertainties in a diagnosis process [104]. 

In Education, in 2013, Inyang et al. [105] developed a fuzzy clustering technique based 

on the Fuzzy c-Means (FCM) algorithm to identify at-risk students at an early stage in 

their academic career. FCM is a method of clustering which allows one piece of data to 

belong to two or more clusters. Later, in 2015, Vo et al. [106] introduced an algorithmic 

framework for incomplete educational data clustering using a nearest prototype strategy. 

Their framework was found to be able to perform data clustering on datasets with large 

numbers of missing values. 

In 2015, in diabetes diagnosis, El-Sappagh et al. [9] proposed a fuzzy-ontology-oriented  

case-base reasoning framework for semantic diabetes diagnosis. They compared their 

framework with existing traditional CBR systems and a set of five machine-learning 

classifiers. The authors claimed that their system outperformed all those systems. 

However, several limitations are found from their study. First, their dataset consisted of 

only 60 real diabetes cases. This is quite a small population. To have more confidence in 

their approach, a larger cohort is needed. Second, the system has not been validated 

against other diverse population datasets. Third, in this system (relied in the existing 

jColibri2 CBR framework [107]), risk factor values were recorded as instances while they 

should actually be represented as literals in the ontology. However, despite the limitations 

of El Sappagh et al.’s work, their study has shown the potential of fuzzy ontology CBR 

approaches in the medical diagnosis domain. 
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As there has not been a fuzzy ontology CBR model for the prediction of CVD yet while 

fuzzy ontology and CBR have been used and have shown usefulness in other domains, it 

is interested to know if a CVD prediction model can be developed using a combination 

of fuzzy ontology and CBR, what risk factors this developed model uses, and the model 

prediction performance. Hence, the first three research questions (RQ1, RQ2, and RQ3) 

below are formed. 

RQ1. Can a CVD prediction model be developed using a combination of fuzzy 

ontology and CBR? 

RQ2. What risk factors are important in the prediction of CVD using this method? 

RQ3. How does the developed model perform in terms of prediction performance? 

Besides, the developed model should also be tested using external datasets and this step 

is called external validation [108]. Otherwise, the model may not be trusted to be used in 

daily clinical practice [109]. Therefore, the RQ4 below is formulated in this research. 

RQ4. How does the developed model perform in terms of external validation? 

In addition, it is also interested to know how the developed model solves the limitations 

of current widely used regression models and how it compares with those existing models 

on prediction performance. As a result, the further two research questions (RQ5 and RQ6) 

below are created for this research. 

RQ5. How does the developed model overcome the limitations of current widely 

used regression models? 

RQ6. How does the developed model compare with current widely used regression 

models in terms of prediction performance? 

2.3 FUZZY ONTOLOGY 

2.3.1 Type-1 Fuzzy Sets 

Type-1 fuzzy sets were introduced by Zadeh in 1965 [110]. Unlike crisp sets where an 

element has a membership of 0 (does not belong to) or 1 (belongs to), each element in a 

fuzzy set has a degree of membership which is represented by a real number in the interval 

[0, 1]. Professor Zadeh defined a type-1 fuzzy set as: 
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Let X be a space of points (objects), with a generic element of X denoted by x. Thus, 

X = {x}. 

A fuzzy set (class) A in X is characterized by a membership (characteristic) function 

fA(x) which associates with each point in X a real number in the interval [0, 1], with 

the value of fA(x) at x representing the “grade of membership” of x in A. Thus, the 

nearer the value of fA(x) to unity, the higher the grade of membership of x in A. 

When A is a set in the ordinary sense of the term, its membership function can take 

on only two values 0 and 1, with fA(x) = 1 or 0 according as x does or does not 

belong to A. [110, p. 339] 

The concept of a type-1 fuzzy set, as defined above, can be illustrated in the following 

example of youngness, which is defined to answer the question “to what degree is a 

person young?”. X is the universe of discourse, which is a set of all ages, A is the subset 

of young ages, x is the age of the person, and fA(x) is the degree of youngness of age x. If 

fA(x) equals to 1, x is 100% belongs to A. If fA(x) equals to 0, x is 0% belongs to A. If fA(x) 

equals to 0.3, x is 30% belongs to A. In this example, the membership function fA(x) is 

defined as in Equation (1) and is illustrated by the graph in Figure 2-6. 

 𝑓𝐴(𝑥) =  {
1                                             𝑥 < 25
(35 − 𝑥)/10            25 ≤ 𝑥 < 35

  0                                             𝑥 ≥ 35 
 (1) 

 

Figure 2-6: Degree of youngness based on age 
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The membership function is the significant component of a fuzzy set such that operations 

with fuzzy sets are defined via their membership functions [111]. In practice, the most 

common types of membership functions are triangular, trapezoidal, bell-shaped, gaussian, 

and sigmoidal [112, 113]. 

2.3.2 Type-2 Fuzzy Sets 

In 1975, Zadeh introduced type-2 fuzzy sets [114]. Type-2 fuzzy sets allow the 

incorporation of uncertainty of membership functions into fuzzy set theory. In type-1 

fuzzy sets, membership functions are totally crisp [115]. In a type-2 fuzzy set, a 

membership degree is also fuzzy and can be defined by a type-1 fuzzy set [116]. 

Therefore, type-2 fuzzy sets can model uncertainty. On the other hand, type-1 fuzzy sets 

can model vagueness (having a degree of membership), but not uncertainty (the degree 

of membership is also fuzzy). The membership of the membership (secondary 

membership) of a type-2 fuzzy set is also fuzzy. Ideally, type ∞ fuzzy sets must be used 

to completely represent uncertainty. However, this is not practical [117]. All the literature 

found in this research only deals with type-1 and type-2 fuzzy sets. 

By default, a type-2 fuzzy set is called a general type-2 fuzzy set to distinguish it from an 

interval type-2 fuzzy set. In interval type-2 fuzzy sets, secondary membership functions 

are interval sets (i.e. the secondary memberships are either zero or one). A reason for 

having interval type-2 fuzzy sets is that general type-2 fuzzy sets are computationally 

intensive [118]. It is much simpler to use interval type-2 fuzzy sets than general type-2 

fuzzy sets [115]. In fact, interval type-2 fuzzy sets are the most widely used type-2 fuzzy 

sets in practice [115, 119]. 

2.3.3 An Overview of Fuzzy Ontology 

Although there have been a number of definitions of ontology [120], it can be defined as: 

Ontology is an explicit specification of conceptualization [121, p. 199]. In computer 

science, ontology is a formal representation of the knowledge by a set of concepts 

within a domain and the relationships among those concepts [122, p. 43]. 

There have also been several definitions of fuzzy ontology in the literature [120]. In 

essence, a fuzzy ontology is an ontology that contains fuzzy concepts (each fuzzy concept 
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is a fuzzy set). In a general sense, “a fuzzy ontology is a shared model of some domain 

which is often conceived as a hierarchical data structure containing all concepts, 

properties, individuals, and their relationships in the domain, where these concepts, 

properties and so on may be defined imprecisely” [123, p. 91]. Formally, a fuzzy ontology 

can be represented as a quintuple F=<I, C, T, N, X> [124, p. 13] where: 

• I is the set of individuals (objects), also called instances of the concepts.

• C is the set of fuzzy concepts (classes of individuals, or categories, or types).

Each concept is a fuzzy set on the domain of instances.

• The set of entities of fuzzy ontology is defined by E = C ∪ I.

• T denotes the fuzzy taxonomy relations among the set of concepts C. It organizes

concepts into sub-(super-) concept tree structures. The taxonomic relationship

T(i, j) indicates that the child j is a conceptual specification of the parent i with

a certain degree.

• N denotes the set of non-taxonomy fuzzy associative relationships that relate

entities across tree structures, for example:

o Naming relationships, describing the names of concepts

o Locating relationships, describing the relative location of concepts

o Functional relationships, describing the functions (or properties) of

concepts

• X is the set of axioms expressed in a proper logical language, i.e., predicates

that constrain the meaning of concepts, individuals, relationships and functions.

Ontology brings several advantages over other traditional methods of data management, 

such as relational database schemas. Using ontologies offers knowledge sharing, reuse of 

existing knowledge, and information integration [120]. As such, ontology plays a 

prominent role in the Semantic Web and in other forms of knowledge management [125]. 

In addition, automated reasoning, which has been the focus from the very start of 

Artificial Intelligence (AI) [126], is enabled by ontologies. Automated reasoning can be 

conducted using inference rules [127]. Berners-Lee et al. [127] gave an example of the 

power of inference rules with real-world data below: 

If a city code is associated with a state code, and an address uses that city code, 

then that address has the associated state code. A program could then readily 

deduce, for instance, that a Cornell University address, being in Ithaca, must be in 

New York State, which is in the U.S., and therefore should be formatted to U.S. 
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standards. The computer does not truly “understand” any of this information, but 

it can now manipulate the terms much more effectively in ways that are useful and 

meaningful to the human user. [127, p. 10] 

Fuzzy ontology, which incorporates fuzzy concepts into an ontology, provides additional 

advantages to the use of ontology. Fuzzy ontology can represent vague and uncertain 

information, which is common in real-world scenarios. For example, “the guest house is 

a cheap, small and more hospitable hotel” [120, p. 64]. Therefore, fuzzy ontology can 

help represent real world knowledge, which is not always crisp but often vague and 

imprecise. 

The following arguments are based on [128]. With a wealth of literature, fuzzy ontology 

has proved to be very useful in many application domains, including information 

retrieval, semantics extraction and analysis, knowledge mining, clustering, integration, 

decision making, and knowledge representation and reasoning. However, research on 

fuzzy ontology is still in the development stage and important challenges remain such as 

construction, mapping, integration, query, and storage. These challenges and strategies 

for overcoming them need to be more deeply investigated. 

2.3.4 Fuzzy Ontology Representation Languages 

RDFS (Resource Description Framework Schema) and OWL (Web Ontology Language) 

are the most widely used languages for describing ontologies [128]. RDF (Resource 

Description Framework) is a model that describes things as triples; each triple is in the 

form of <subject><predicate><object>, for example “CVD is the number one cause of 

death”. RDFS is considered to be a primitive language providing basic elements for 

writing ontologies; however, a more powerful language is needed to deal with complex 

relationships among objects [129]. OWL was built on top of RDF and RDFS adding 

semantic richness that allows reasoning. For example, if there is an RDF statement 

“Professor A teaches the Data Mining class”, then with OWL, it is also implied that “the 

Data Mining class is taught by Professor A” [130]. In fact, OWL is the standard language 
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for writing ontologies recommended by W3C (World Wide Web Consortium) [128]. The 

current version of OWL is OWL 2 [131].4 

To describe fuzzy ontologies, several approaches have been proposed. These include 

fuzzy extensions of RDF/RDFS [132-137], fuzzy extensions of OWL 1 [138-140], and 

frameworks to represent fuzzy ontologies using OWL 2 [141]. The fuzzy extensions of 

RDF generally allow the addition of a degree of truth to an RDF triple, such as “Auckland 

is a big city to degree 0.8” [128]. There is not enough richness to fully represent fuzzy 

ontologies in these approaches. The fuzzy extensions of OWL 1 introduce new syntax, 

and thus current ontology editors cannot be used [141]. Recently, the approach by Bobillo 

and Straccia [141] of representing fuzzy ontologies using OWL 2 annotation properties 

has received significant attention [128]. In addition to the framework to represent fuzzy 

ontologies using the existing OWL 2 language, Bobillo and Straccia also developed a 

plugin for Protégé to create and edit fuzzy ontologies, and three parsers to read and 

transform those created fuzzy ontologies into formats that can be read by fuzzy DL 

reasoners, such as fuzzyDL [142] and DeLorean [143]. Details of the Protégé plugin and 

the parsers are mentioned in the next section (section 2.3.5); however, it should be noticed 

that all the approaches mentioned currently support only type-1 fuzzy logic, not type-2 

fuzzy logic. 

2.3.5 Fuzzy Ontology Tools 

The number of tools for construction and management of fuzzy ontologies seems, based 

on this investigation, to be low. In addition, all the tools to my knowledge only support 

type-1 fuzzy logic. Well known tools include: 

• Fuzzy OWL 2 Protégé plugin: Bobillo and Straccia [141] developed this plugin to 

make the syntax of the annotations transparent to users when creating fuzzy 

ontologies. This means that users do not need to know and type the annotations 

but instead use the plugin’s GUI (graphic user interface) to create fuzzy 

ontologies. As part of this doctoral research, this plugin was verified as being 

compatible with Protégé versions 4.1 and 4.3. As mentioned previously, Bobillo 

 

4 To avoid confusion in this body of work, OWL 1 means the first version of OWL; OWL 2 means the 

second version of OWL; Using OWL without a version number means the versions can be ignored in the 

context. 
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and Straccia also developed three parsers (one general parser and two specific 

parsers) to translate the fuzzy ontologies created using the plugin into formats 

suitable for existing fuzzy DL reasoners. The general parser can be customised 

for any specific fuzzy DL reasoner. Bobillo and Straccia adapted the general 

parser to create the two specific parsers, one for fuzzyDL and the other one for 

DeLorean. It should be noted that this plugin and the parsers support type-1 fuzzy 

sets only, not type-2 fuzzy sets. The parsers are written in Java and use the OWL 

API 3 [144], a well-known Java API for working with OWL 2 ontologies. The 

Protégé plugin and the parsers are publicly available for download on their 

website.5 

• Fuzzy Protégé plugin: Ghorbel et al. [145] created a plugin for Protégé 3.3.1 to

build fuzzy concepts and roles, and allow automatic computing of membership

degrees. In addition, this plugin allows querying the created fuzzy ontologies

based on fuzzy criteria. However, it seems that this plugin is no longer available

for download and installation into Protégé.

• Fuzzy KAON: Calegari and Ciucci [139, 146] developed a way to define and

manage fuzziness directly in the KAON ontology editor. However, KAON is

based on RDFS and therefore it is not possible to represent all the constructors

and axioms of their developed Fuzzy-OWL, a fuzzy extension of OWL 1 [139].

Therefore, it would be necessary and more useful to define and implement a way

to represent fuzzy ontologies in KAON2, a successor to the KAON project

(KAON1). KAON2 is based on OWL-DL, a sublanguage of OWL. Both KAON

and KAON2 can be downloaded from websites.6

5 http://www.umbertostraccia.it/cs/software/FuzzyOWL/index.html 

6 https://sourceforge.net/projects/kaon/ for KAON, and http://kaon2.semanticweb.org/ for KAON2 

https://sourceforge.net/projects/kaon/
http://kaon2.semanticweb.org/
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2.4 CASE-BASED REASONING 

2.4.1 An Overview of CBR 

Case-based reasoning (CBR) is a problem solving paradigm that resolves a problem using 

the specific knowledge of previously experienced cases [16]. This paradigm is associated 

with a CBR cycle (methodology7). The CBR cycle is comprised of four activities [147, 

p. 303]:

1. Retrieve similar cases to the problem description.

2. Reuse a solution suggested by a similar case.

3. Revise or adapt that solution to better fit the new problem if necessary.

4. Retain the new solution once it has been confirmed or validated.

As CBR is only a problem-solving paradigm accompanied by the CBR methodology, 

actual techniques are needed to build CBR systems to solve real-world problems. 

Common techniques include nearest neighbours, fuzzy logic, and database technology 

[147]. Details of these techniques are described in section 2.4.2. 

Research on CBR has been gaining momentum with more and more practical applications 

produced in a variety of domains [148]. Some examples of those domains are law [149], 

education [150], marine [101], software engineering [151], and health care [9]. As the 

CBR methodology helps provide computational models very close to human reasoning, 

which mostly uses past experiences to solve daily problems [152], it is reasonable for 

such high research interest in CBR and the applicability of CBR in various domains. 

2.4.2 Common techniques used for CBR 

2.4.2.1 Nearest neighbour 

Nearest neighbour is perhaps the most widely used technique in CBR to retrieve similar 

cases [147]. Nearest neighbour algorithms calculate the similarity (distance) between the 

problem (target) case and an existing case in the case base (case library). The calculation 

7 A system of methods for how things are proceeded 
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is repeated for every case in the case base to identify k nearest neighours. Outcomes for 

the target case are decided based on these k nearest neighbours using majority voting. 

Among the distance functions (such as Euclidean, Cosine Similarity [153], Minkowsky 

[154], and Chi-square [155]) used in k nearest neighbours (KNN), Euclidean is the most 

widely used [156]. The Euclidean distance between A and B is generally represented by 

Equation (2). 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) =  √∑ (𝑥𝑖 −  𝑦𝑖)2
𝑚

𝑖=1

(2) 

where A and B are feature vectors A = (x1, x2, …, xm) and B = (y1, y2, …, ym), m is the 

number of features of A and B. 

Distances are usually normalised to fall within the [0, 1] range [147]. This helps deal with 

the issue of sensitivity to a broad range of values in a single feature that may govern the 

distance. The normalised Euclidean distance is generally represented by Equation (3) 

[156]. In this case, all features xi and yi are unit normals in the [0, 1] range. 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) =  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑚

𝑖=1

m
(3) 

2.4.2.2 Fuzzy logic 

Fuzzy logic becomes helpful for a CBR system to deal with qualitative terms, lack of 

certainty in information, or sudden changes in outcome categories due to small changes 

in features (e.g. risk factors). In a CBR system, numerical features (crisp values) can be 

converted into qualitative terms (fuzzy values) for indexing and retrieval [157]. In 

addition, a major task in CBR is to measure similarities, which are inherently fuzzy in 

nature [157]. For example, colour matching is defined as excellent, good, fair, or poor in 

a CBR system created by General Electric to determine what colourants to use [158]. 

Moreover, information can be uncertain in real world scenarios and therefore it would be 

more appropriate to represent it as fuzzy data. For example, smoking status can be 

represented as light, medium, or heavy smoking as a person may not know exactly how 

many cigarettes they smoke in a day. On the other hand, many existing prediction models 

(e.g. CVD risk prediction models) represent outcomes as categories (e.g. low, moderate, 

high) which are in fact crisp representations. The issue in this case is that small changes 
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in risk factors may move the outcome between categories [12]. As a result, a totally 

inappropriate treatment plan for the person may be recommended. In this situation, fuzzy 

logic can smooth the transition in the outcome categories. 

2.4.2.3 Database technology 

Using database technology to build a CBR system is perhaps the simplest form [147]. 

Relational Database Management Systems (RDBMS) have proven to be an appropriate 

means to store and retrieve large volumes of data as they have been widely used in the 

software industry. The SQUAD system [159] developed by NEC Japan as a software 

quality control advisory system is an example of using database technology to build CBR 

systems. 

2.4.3 CBR Tools 

There have been several tools for building CBR systems [148, 160]. Popular tools are 

CBR Shell [161], FreeCBR [162], jCOLIBRI [107], myCBR [163], eXiTCBR [164], and 

IUCBR [165]. Although there may be unknown or unpopular tools that have not been 

identified in this research, the number of CBR tools is perhaps still low when considering 

the high research interest in CBR systems and the applicability of CBR to a wide variety 

of domains. 

Table 2-4: CBR tool summary 

Tool Programming language Support ontology Support fuzzy ontology 

CBR Shell Java No No 

FreeCBR Java No No 

jCOLIBRI Java Yes No 

myCBR Java No No 

eXiTCBR Java No No 

IUCBR Java No No 

Table 2-4 provides a summary of the CBR tools based on the criteria for this research. 

These criteria are development programming language, whether the tool supports 

ontology, and whether the tool supports fuzzy ontology. All six tools evaluated were 



 

38 

developed in Java. Java is a cross-platform, mainstream programming language and is 

favoured by open-source and academic communities. Only jCOLBRI has the features 

needed to work with cases stored in ontologies. None of the tools support fuzzy 

ontologies. 

2.5 CHAPTER SUMMARY 

2.5.1 Cardiovascular Disease Prediction 

There are a large number of existing CVD prediction models. In this study, well-known 

ones are identified and classified as conventional Framingham models, augmented 

Framingham models, and alternatives to Framingham [26]. The conventional 

Framingham models [27-32] were developed as part of the FHS. The augmented 

Framingham models tried to add additional risk factors, especially biomarkers such as C-

reactive protein, into the Framingham equations, and/or create different presentations for 

Framingham equations e.g. represented as charts or tables. The alternatives to 

Framingham [67-77] are models developed from cohorts not from the FHS. 

In terms of prediction methods, the majority of the existing models used regression-based 

techniques, in which Cox proportional hazards modelling [37] dominated. However, 

regression-based prediction models are known to have limitations. These are inaccuracy 

for individuals, inaccuracy for other cohorts, inflexibility of handling interventions, 

requirement of complete clinical data, deficiency of handling inaccurate data or results, 

deficiency of handling vagueness and uncertainty of data or results, and poor explanatory 

capacity. 

As the problem of CVD prediction has not been solved, this thesis investigates new 

approaches of using fuzzy ontology and CBR for chronic disease prediction, including 

CVD prediction. Though there has been no fuzzy ontology CBR system in the CVD 

prediction domain yet, there are a few studies of such approaches in other domains, for 

example El-Sappagh et al. [9] in diabetes diagnosis. Therefore, fuzzy ontology CBR 

approaches appear worthy of investigation. From these, six research questions (stated in 

section 1.2) were created for this study. 
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2.5.2 Fuzzy Ontology 

A fuzzy ontology is an ontology whose content contains fuzzy concepts (each fuzzy 

concept is a fuzzy set). Typical types of fuzzy sets are Type-1 and Type-2. A type-1 fuzzy 

set is different from a crisp set in that the membership value can be any real number in 

[0, 1]. In a type-2 fuzzy set, the membership value is also fuzzy and can be represented 

as a type-1 fuzzy set. 

A number of approaches have been proposed to describe fuzzy ontologies. These include 

fuzzy extensions of RDF/RDFS, fuzzy extensions of OWL 1, and methods to represent 

fuzzy ontologies using OWL 2. Among these approaches, the recent approach by Bobillo 

and Straccia [141] to describe fuzzy ontologies using OWL 2 annotation properties has 

been in the spotlight. 

However, there is still a lot of room for research and development in terms of languages 

and tools to create and maintain fuzzy ontologies. The number of tools is still limited. 

Moreover, none of the existing languages and tools appear to support type-2 fuzzy sets. 

The Fuzzy OWL 2 Protégé plugin developed by Bobillo and Straccia [141] was chosen 

for creating fuzzy ontologies in this study (section 3.4.4). 

2.5.3 Case-Based Reasoning 

Case-based reasoning (CBR) is a problem-solving paradigm that solves a problem using 

the solutions of similar past problems. Its cycle involves four activities: Retrieve, Reuse, 

Revise, and Retain. Popular techniques for building CBR systems include nearest 

neighbour, fuzzy logic, and database technology. 

Though research interest in CBR is high and the applications for CBR are numerous, tools 

for building a CBR system are still limited. Moreover, to my knowledge, none of the 

current tools support fuzzy ontologies. 
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3.1 INTRODUCTION 

This chapter explains in detail the research methods used and their application in this 

study. It starts with a description of the choice to adopt a positivist research paradigm, 

whose beliefs about the world led to the formation of the research questions and guided 

how the study should be approached. An explanation of how Design Science was chosen 

as the research methodology is then provided, outlining the systematic way in which this 

research was carried out. Alongside Design Science, a conceptual research framework, 

implementing the Design Science methodology in Information Research, customised for 

this study, and guidelines are also introduced. Next, the chapter describes the strategies 

and plans to develop the CRISK prediction model with the aim of solving the CVD 

prediction problem. After that, there is a description of how datasets were collected and 

selected, how the experiments were designed, and how data were prepared. Finally, an 

evaluation protocol consisting of evaluation metrics, external validation, and comparison 

to existing models to assess the developed CRISK model is described. 

3.2 RESEARCH PARADIGM 

The positivist paradigm was chosen to shape this study. The reason was that it was 

believed that, in this research that aims to develop a CVD prediction model, knowledge 

could be discerned using appropriate scientific methods [166]. As such, the results of the 

research approach can be objectively tested for accuracy and other measures. In terms of 

data collection and analysis, quantitative methods were used [167]. 

3.3 METHODOLOGY, FRAMEWORK, AND GUIDELINES 

As this research aims to develop a novel CVD prediction model, which can be seen as a 

new and innovative artifact serving human purposes, Design Science was chosen as a 

suitable methodology for this research [168]. In Design Science, the research activities 

are twofold: build and evaluate [169]. Build refers to the activity of constructing the 

artifact for a specific purpose, showing that such an artifact can be made. Evaluate is the 

activity of developing criteria and assessing the performance of the created artifact against 

those criteria [169]. 
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To understand, execute, and evaluate Design Science research in Information Systems 

(IS), a conceptual framework for this body of work was created. This research framework 

is depicted in Figure 3-1. It was adapted from the Information System Research 

Framework (ISRF) introduced by Hevner et al. [169] to suit this research. The two 

activities of the Design Science methodology, forming a spiral model, are seen in the 

centre of the framework. A spiral model allows ease of management as problems can be 

identified early and appropriate actions can be taken quickly [170]. 

As can be seen in Figure 3-1, this research used applicable knowledge from the 

Knowledge Base to develop an artifact (a CVD prediction model) for business needs from 

the Environment. The Environment contains goals/tasks/problems/opportunities of CVD 

prediction that define the business needs. The artifact resulting from the research must be 

relevant to the business needs of the Environment. The Knowledge Base includes 

foundations, methodologies, and tools. The research process must be rigorous which can 

be achieved by utilising appropriate knowledge from the Knowledge Base. 
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Figure 3-1: Research framework (adapted from Hevner et al. [169])
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Hevner et al. [169] also suggested seven guidelines (Table 3-1) to assist researchers, 

reviewers, editors, and readers to understand the requirements of effective Design Science 

research. 

Table 3-1: Design Science research guidelines (adapted from Hevner et al. [169]) 

Guideline Description 

Guideline 1: Design as an 

Artifact 

Design Science research must produce a viable artifact in 

the form of a construct, a model, a method, or an 

instantiation. 

Guideline 2: Problem Relevance The objective of Design Science research is to develop 

technology based solutions to important and relevant 

business problems. 

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design artifact must 

be rigorously demonstrated via well executed evaluation 

methods. 

Guideline 4: Research 

Contributions 

Effective Design Science research must provide clear and 

verifiable contributions in the areas of the design artifact, 

design foundations, and/or design methodologies. 

Guideline 5: Research Rigour Design Science research relies upon the application of 

rigorous methods in both the construction and evaluation of 

the design artifact. 

Guideline 6: Design as a Search 

Process 

The search for an effective artifact requires utilising 

available means to reach desired ends while satisfying laws 

in the problem environment. 

Guideline 7: Communication of 

Research 

Design Science research must be presented effectively both 

to technology oriented as well as management-oriented 

audiences. 

Next, section 3.4 describe strategies and plans to develop the CRISK prediction model, 

which helps answer RQ1, RQ2, RQ3, and RQ5. 
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3.4 STRATEGIES AND PLANS TO DEVELOP THE CRISK 

PREDICTION MODEL 

3.4.1 CRISK as a CBR system whose case base is a fuzzy ontology 

I decided to develop the CRISK prediction model as a CBR system whose case base is a 

fuzzy ontology. Fuzzy ontologies are able to represent the vagueness and uncertainty of 

data [12]. On the other hand, CBR has been recommended as being useful in disease 

prediction [13, 14]. Fuzzy ontology CBR systems have been used in a number of domains 

and have shown the potential in the medical diagnosis domain (section 2.2.6). A recent 

study [9] followed this approach of combining fuzzy ontology and CBR and did well in 

diabetes diagnosis. Therefore, it would be worth trying a combination of fuzzy ontology 

and CBR in developing the CRISK model for CVD prediction. 

Type-1 fuzzy ontology was decided to be used for the case base. There were two reasons 

for this decision. I would like to start with something simple first (type-1 fuzzy ontology 

is simpler than type-2 fuzzy ontology, as explained in section 2.3). Another reason for the 

decision of using type-1 fuzzy ontology was based on the knowledge that none of the 

existing fuzzy ontology tools support type-2 fuzzy sets (section 2.3.5). Developing a 

fuzzy ontology tool that supports type-2 fuzzy sets would be not feasible in the three-year 

timeframe of a PhD. 

Table 3-2 restates the problems with current regression models identified in Table 2-3 

and adds arguments explaining how a combination of fuzzy ontology and CBR might be 

able to resolve them. 

  



46 

Table 3-2: Possible solutions for the problems with the current regression models 

Limitation # Name Might be solved by Explanation 

Limitation 1 Inaccuracy for 

individual 

CBR CBR targets on individuals, not on 

populations as generating a solution 

for a new case based on the solutions 

of the most similar existing cases. 

Limitation 2 Inaccuracy for 

other cohorts 

CBR A CBR approach will be able to 

incorporate  examples  from new 

cohorts into the case base, or even 

replace the case base completely 

when dealing with different 

populations. 

Limitation 3 Inflexibility of 

handling 

intervention 

N/A Not sure if CBR or fuzzy ontology 

would be able to address this 

limitation at this stage 

Limitation 4 Requirement 

of complete 

clinical data 

CBR Even there is missing data, it is still 

possible to retrieve the closest cases 

to the input case using CBR 

Limitation 5 Deficiency of 

handling 

inaccurate data 

or result 

Fuzzy ontology Fuzzy ontology usage can help deal 

with vagueness and uncertainty of 

data. In addition, representing 

prediction results using fuzzy sets 

can tolerate prediction errors. With 

models where prediction results are 

fuzzy values, a small error in 

prediction might increase or 

descrease membership values of the 

prediction outcomes but does not 

completely shift the person to a 

wrong category, such as from “high 

risk” to “low risk”. 

Limitation 6 Deficiency of 

handling 

vagueness of 

data or result 

Fuzzy ontology 

Limitation 7 Deficiency of 

handling 

uncertainty of 

data or result 

Fuzzy ontology 
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Limitation 8 Poor 

explanatory 

capacity 

CBR and fuzzy 

ontology 

Fuzzy ontology shows relationships 

among risk factors, individuals, and 

CVD outcomes while the usage of 

CBR helps explain why those 

outcomes are prediction results 

based on the closest cases retrieved 

3.4.2 A new way to define “high risk” and “low risk” categories 

Time before the CVD event (CVD Interval) is important. When a person undergoes an 

examination that includes calculating their CVD risk, I think they would like to know 

about when they would have CVD. Thus, it is reasonable that when someone asking what 

their CVD risk is would be satisfied with a representation that said a CVD event soon 

means “high risk” and that a CVD event in a long time or no CVD at all can be called 

“low risk”. Adding this CVD Interval and the memberships of the low risk and high risk 

categories may provide useful information. 

This is not the same as most approaches, e.g. a regression model. A typical regression 

model, such as D’Agostino et al. [31], calculates the probability (risk) of having CVD 

within e.g. 10 years for a person, then classifies them into a risk category by comparing 

this risk value to a threshold value, e.g. 20%. This means that if the risk value is greater 

than or equal to 20%, the person is assigned to the “high risk” category, otherwise the 

“low risk” category. With this way, the question of “when the person would have CVD” 

cannot be answered. 

I defined CVD Interval as the time interval from the examination to when the first CVD 

event happens (Figure 3-2). 

 

Figure 3-2: Definition of CVD Interval 

I defined two fuzzy sets, “High CVD Risk” and “Low CVD Risk”, whose membership 

functions base on CVD Interval, to represent CVD prediction outcomes for a person. The 
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membership functions of these two fuzzy sets are described in Equations (4) and (5) 

respectively and are illustrated by the graphs in Figure 3-3, where x is CVD Interval in 

the year unit, µHigh CVD Risk or µH is the “High CVD Risk” membership value, and µLow CVD 

Risk or µL is the “Low CVD Risk” membership value. 

The reason for using fuzzy sets to represent CVD prediction outcomes was to make 

transitions between risk categories less abrupt. With risk categories represented by crisp 

sets, a small change in the prediction result can completely shift an individual between 

two categories, e.g. from low risk to high risk. Fuzzy sets help mitigate this issue as 

having overlapping areas between categories (e.g. Figure 3-3). 

The reason for defining two risk categories was based on the aim of this research to 

develop a model for prediction of CVD within 10 years (section 1.2). This simplest 

approach is to have two risk categories: one category for people who develop CVD within 

10 years and another one for those who do not. 

The reason for defining “High CVD Risk” and “Low CVD Risk” as trapezoidal 

membership functions (Figure 3-3) is explained as follows. I assume that when CVD 

Interval ≤ 5 years, the person completely belongs to the high risk category, as the 

threshold is 10 years (prediction for within 10 years). Similarly, I assume that when CVD 

Interval ≥ 15 years, the person completely belongs to the low risk category. Among the 

five common types of membership functions (triangular, trapezoidal, bell-shaped, 

gaussian, and sigmoidal), mentioned in section 2.3.1, only trapezoidal is suitable to 

represent this way of thinking about “High CVD Risk” and “Low CVD Risk”. 

The reason I chose 5 years as the benchmark to start decreasing the high risk membership 

value from 1 and increasing the low risk membership value from 0 (Figure 3-3) was that 

5 years is in the middle of 0 and 10 years. Different values other than 5 years (e.g. 6 years) 

could have been chosen and that would likely have resulted in different testing results of 

prediction performance. 

The reason for choosing 15 years as the benchmark where the high risk membership gets 

down to 0 and the low risk membership reaches 1 (Figure 3-3) is explained as follows. 

Fifteen years was chosen for symmetry and because this results in the intersection point 

of the “High CVD Risk” and “Low CVD Risk” graphs having the x coordinate of 10 

years, which is needed to conclude if the person will develops CVD within 10 years by 
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comparing the high risk membership with the low risk membership (if µH ≥ µL, the person 

will develop CVD within 10 years). 

µ𝐻𝑖𝑔ℎ 𝐶𝑉𝐷 𝑅𝑖𝑠𝑘(𝑥) =  µ𝐻(𝑥) =  {

1       𝑥 < 5

−
𝑥

10
+ 1.5  5 ≤ 𝑥 < 15

 0       𝑥 ≥ 15 

(4) 

µ𝐿𝑜𝑤 𝐶𝑉𝐷 𝑅𝑖𝑠𝑘(𝑥) =  µ𝐿(𝑥) =  {

0       𝑥 < 5
𝑥

10
− 0.5  5 ≤ 𝑥 < 15

 1       𝑥 ≥ 15 

(5) 

Figure 3-3: High CVD Risk and Low CVD Risk membership functions for this research 

When dealing with data whose outcomes are known, a person is assigned to the “High 

CVD Risk” set (category) or the “Low CVD Risk” set, or to both sets depending on their 

CVD Interval. Interpretation is below: 

If the person has a CVD event within 5 years, they only belong to the “High CVD 

Risk” set with the membership values µH = 1 and µL = 0. 

If the person has no CVD event within 15 years, they only belong to the “Low CVD 

Risk” set with the membership value µL = 1 

If the person has a CVD event between 5 and 15 years’ time, they belong to both “High 

CVD Risk” and “Low CVD Risk” sets. In this case, 0 < µH < 1 and 0 < µL < 1. 

If the person has a CVD event at exactly 10 years’ time, their “High CVD Risk” 

membership value equals their “Low CVD Risk” membership value, µH = µL = 0.5. 
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3.4.3 Prediction Process Strategies for CRISK 

CRISK will calculate the predicted risk class, µH, µL, and CVD Interval for a new case 

based on using membership functions and nearest neighbours. Strategies for the 

prediction process are below: 

• A fuzzy KNN algorithm proposed by Keller et al. [171] is based on to retrieve 

closest cases to the input case 

• From these closest cases, µH, and µL are calculated for the input case using the 

above fuzzy KNN algorithm. Then, the risk category is decided for the input case 

based on µH and µL (if µH ≥ µL then “High CVD Risk”, otherwise “Low CVD 

Risk”) 

• Defuzzification to get the predicted CVD Interval 

The prediction process of CRISK is explained in more details in section 4.2. 

3.4.4 Plans to develop CRISK 

The CRISK prediction system was decided to have four modules as follows: 

1. The Constructor module: for creating fuzzy ontologies 

2. The Experimenter module: for experimentation of different datasets, which are 

fuzzy ontologies created by the Constructor module, to evaluate prediction 

performance 

3. The Batch Experimenter module:  a command line module designed to run long 

and repetitive experimentation jobs, for example to find a combination of 

predictors that creates the most accurate prediction model 

4. The Predictor module: for predicting CVD risk for each single case (person) 

Details of each module are further explained in Chapter 5. 

Figure 3-4 gives a summary of the plans to develop the CRISK prediction model. These 

plans were made based on results from the analysis of existing foundations, 

methodologies, and tools in the Knowledge Base (Figure 3-1), CVD prediction 

goals/tasks/problems/opportunities in the Environment (Figure 3-1), and with 

consideration of the time constraint of three years for PhD research.
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Figure 3-4: Plans to develop the CRISK system 
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The decision was made to implement the CRISK system from scratch instead of using or 

extending an existing CBR tool. The main reason for this decision was that there are no 

existing CBR tools available that support fuzzy ontology (section 2.4.3). 

The process for developing the CRISK system can be summarised as follows: 

First, a case base template (base.owl) was created using Protégé 4.3 with the Fuzzy 

OWL 2 plugin [141]. Details of the base.owl file can be found in section 5.2. It is this 

template which the CRISK system uses to generate the case base. The template is a 

type-1 fuzzy ontology containing basic components including the fuzzy concepts of 

“High CVD Risk” and “Low CVD Risk”. The dataset used for creating the case base 

was decided to be the FHS Offspring Exam 1 dataset (see section 3.6 for justification 

of the decision). 

Next, the Fuzzy OWL 2 library containing the parsers [141] was updated to work with 

OWL API 5, which was the latest OWL API at the time that the case base template 

was designed and created. 

After that, the CRISK system was implemented in the Java programming language 

(Java 8) using Eclipse IDE (version 2018-09). The CRISK application used the OWL 

API 5 and the updated Fuzzy OWL 2 library to create and manipulate fuzzy ontologies. 

Core algorithms of the application were designed according to the CBR cycle: 

Retrieve, Reuse, Revise, and Retain. The Fuzzy KNN algorithm [171] was based on 

to develop the Retrieve, Reuse, and Revise algorithms. In Figure 3-4, the Retain 

algorithm is grayed out because it is out of the scope of this research (section 4.8). 

Details of these algorithms are from section 4.5 to section 4.8. 
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3.5 DATASET COLLECTION 

Figure 3-5: The formal process to obtain FHS datasets 

Three FHS cohort datasets were obtained from the US National Heart, Lung, and Blood 

Institute (US-NHLBI) in June 2017. These were Original, Offspring, and Third 

Generation (Gen III) cohorts. To obtain these cohorts, a formal request process (Figure 

3-5) was undertaken through the website of the US-NHLBI.8 To start this process, a user

account had to be created. The request form requires a study protocol, an ethics approval, 

and the CV of the primary researcher. After that, an RMDA (Research Materials 

Distribution Agreement) form issued by the US-NHLBI must be signed before the 

datasets can be accessed and downloaded. The ethics approval and the signed RMDA 

form can be found in Appendix A and Appendix B respectively. 

FHS datasets were used for this research. The FHS has been broadly recognised as a 

premier longitudinal study whose background and design were reviewed by a large 

number of studies [172]. The participants in the FHS went through examinations every 

two years. Justification for fit-for-purpose is listed in [173] as below: 

1. The Framingham town was of adequate size to provide enough participants for

the study.

2. It was compact enough that the study population could be observed conveniently.

8 https://biolincc.nhlbi.nih.gov/studies/framcohort/ 
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3. It contained a variety of socioeconomic and ethnic subgroups to provide

contrasting groups for analysis.

4. The population was relatively stable to enable adequate follow-up for a long time.

This was partly due to stable economy supported by a diversity of employment

opportunities.

5. The town was located near a medical center which could provide consultations

and the opportunity for educational development of the staff.

6. The physicians and other medical professionals in the town were highly

supportive of the study and cooperated fully with its objectives.

7. Framingham contained two general hospitals at the beginning of the study.

However, one closed shortly after the study began, SQ that a major portion of the

medical care was provided by a single hospital.

8. Framingham, like most towns in Massachusetts, maintained an annual list of its

residents.

9. The staff of a well-organised health department helped to provide death certificate

information and other vital statistics.

10. Framingham had been the site of a community study of tuberculosis nearly 30

years before that had had successful participation by the townspeople. It was

believed that this spirit of cooperation was still present in 1948.

3.6 DATASET SELECTION 

Figure 3-6: Dataset selection process 

As the aim of this research was to build a model for prediction of CVD within 10 years, 

it was necessary to choose cohorts whose follow-ups were not less than 10 years. To know 

how long the follow-ups were, the column named “cvddate” was used. This date (the 
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number of days since the first exam) was the date that the participant was diagnosed with 

CVD or, in the case of no CVD occurrence, the date of censoring (the last known date the 

participant did not have CVD). Figure 3-6 summarises the dataset selection process. 

The FHS Original cohort was selected to go to the next step, data preparation. It was 

initiated in 1948, consisted of 5,079 participants, and went through 32 medical exams. 

Among these 5,079 participants, 3,189 people developed CVD and 1,890 people were 

recorded as not having CVD. The CVD dates of those who developed CVD ranged from 

0 to 22,301 while ones of the latter ranged from 0 to 22,670. These made the FHS Original 

cohort eligible for this research as the follow-up had met the 10-year threshold (3,652.4 

days). 

The FHS Offspring cohort was also selected to go to the next step, data preparation. It 

was initiated in 1971, consisted of 5,013 participants, and went through 9 exams. Among 

these 5,013 participants, 1,372 people developed CVD and 3,641 people were recorded 

as not having CVD. The CVD dates of those who developed CVD ranged from −992 to 

14,231 while ones of the latter ranged from 0 to 14,353. These made the FHS Original 

cohort eligible for this research as the follow-up was more than 10 years after the first 

medical examination. 

The FHS Gen III cohort was eliminated from the data for this research. The FHS Gen III 

dataset had 4,078 participants. The CVD date values ranged from −8,824 to 3,196. These 

made the FHS Gen III cohort ineligible for this research as the last follow-up had occurred 

within less than 10 years. 

Between the two eligible cohorts, the FHS Offspring Cohort dataset collected based on 

Exam 1 was decided to be used as the main dataset for building the model. The reasons 

for this decision included the fact that more attributes related to CVD development such 

as HDL cholesterol [31, 32] were collected early, from Exam 1, for the FHS Offspring 

Cohort. In addition, in the course of this research, it was found that there was more 

missing data in the FHS Original Cohort than in the FHS Offspring Cohort. 

The FHS Original Cohort dataset based on Exam 11 was chosen as a dataset for external 

validation. The reason for choosing Exam 11 was that eleven out of the thirteen predictor 

attributes chosen for the CRISK prediction model (section 6.5) could be found in this 

exam. The two predictor attributes missing in Exam 11 were triglycerides and lactate 

dehydrogenase (LDH). Other exams in the FHS Original Cohort did not do as well as 
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Exam 11 in terms of providing predictor attributes for the external validation purpose for 

the developed CRISK prediction model. In addition, the time gap between Exam 11 and 

the latest exam, Exam 32, of the Original Cohort is about 42 years, which is sufficient for 

a 10-year CVD study. 

3.7 EXPERIMENTAL DESIGN 

Figure 3-7: Experimental Design for the development of CRISK 

Figure 3-7 summarises this research’s experimental design for the development of the 

CRISK prediction model. Data from FHS Offspring Cohort Exam 1 went through the 

Data Preparation step (section 3.8) to produce three datasets, mixed sex dataset, male 

dataset and female dataset, and their “SMOTEd” datasets prepared by applying the 

Synthetic Minority Over-sampling Technique (SMOTE) [174] to handle dataset 

imbalance issues. The reason for choosing SMOTE is given in section 3.8.10. After that, 

the developed CRISK prediction model was run against each dataset to produce 

corresponding prediction performance results (Chapter 6). These results were then 

analysed to determine which combination of predictors and number of nearest neighbours 

yielded the best prediction accuracy for each model. These results were also used to 

determine whether or not there should be separate prediction models for men and women. 
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There were a couple of reasons for experimenting with a mixed sex model, a male model, 

and a female model. In the FHS Offspring Cohort dataset, there are attributes applicable 

to women only, such as “ovaries removed”, “hysterectomy”, and “periods have stopped 

1 year or more”. In addition, from the literature review, there were a number of sex 

specific models, for example the PROCAM model for men [67], the Reynolds risk score 

for women [70], and the Reynolds risk score for men [71]. And most importantly, 

experimentation on mixed sex, male, and female models would help to decide for this 

research if it is the best to have sex specific prediction models or just a mixed sex model. 

Details of the experiments for each prediction model are explained in Chapter 6. In 

essence, there were two dimensions to the experiment: the number of predictors n and the 

number of nearest neighbours k. For the first dimension, a backward elimination 

technique was used to decrease the number of predictors by 1 each time, i.e. starting with 

n, then n − 1, and finally 1 predictor. The predictors were ranked in order of the most 

important to the least important. For the second dimension, the number of nearest 

neighbours k was trialled with odd numbers from 1 to 17. The main reason for choosing 

odd numbers was to avoid ties i.e. two class labels having the same number of votes. 

Later, from the experimentation results in Table 6-3, that k = 7, 7, and 15 respectively 

were chosen for the mixed sex model, the male model, and the female model indicated 

that it was not needed to trial with k > 17. If k had been 17 to yield best prediction 

performance for any of those three models, it should have been needed to trial with k > 

17. 

The Train-Test-LOOCV method was used for experimental validation in this research. 

LOOCV stands for leave-one-out-cross-validation. Each dataset was used as the test set 

while its “SMOTEd” dataset was used as the training set (the case base). Though there is 

no training step for a nearest neighbour algorithm, the “training set” terminology is used 

in this body of work to indicate the case base, not the test set. As each test set was a subset 

of the training set (“SMOTEd”), for each case from the test set, its instance presenting in 

the training set needed to be removed. Therefore, the validation method was named Train-

Test-LOOCV in this research. More details of this method can be found in section 5.3. 

3.8 DATA PREPARATION 

As detailed in the experimental design (section 3.7), data from the chosen FHS Offspring 

Cohort Exam 1 were used to prepare three datasets: a mixed sex dataset, a male dataset 
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and a female dataset. For the mixed sex dataset and the male dataset, attributes that were 

present only for females were removed. For the male dataset, cases belonging to female 

participants were eliminated and vice versa. Other than these, the process to prepare data 

for each dataset was the same. Therefore, the following subsections only describe the 

steps used to prepare data for the mixed sex dataset. Data preparation for the other two 

datasets was undertaken in a similar manner and details can be found in Appendix F, 

Appendix G, Appendix H, Appendix I, Appendix L, Appendix M, Appendix N, and 

Appendix O. 

3.8.1 Attribute Collection 

First, from the FHS Offspring cohort raw data downloaded, attributes from multiple CSV 

files were combined to create an initial dataset containing 139 attributes. This was carried 

out based on the IDTYPE and PID columns in each individual CSV file. The IDTYPE 

column identified the cohort (e.g. the value 0 for the Original Cohort and the value 1 for 

the Offspring cohort). The PID column identified the participant within a cohort. 

Therefore, IDTYPE and PID together uniquely identified a participant in the FHS. 

Next, collected attribute names were transformed into meaningful names. The reason for 

this was that the original attribute names were coded as e.g. “A3”, “A8”, “A9” etc. The 

transformation was done by referencing the “Data Dictionary.pdf” file enclosed in the 

downloaded raw data folder. The attribute name was replaced with the more meaningful 

corresponding label. Figure 3-8 displays a screenshot of the Data Dictionary file. 

Figure 3-8: A screenshot of the Data Dictionary file 
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3.8.2 Invalid Case Removal 

Next, as this research aimed to build a prediction model to predict an CVD event in future 

for people who are free of CVD, 115 cases having CVDDATE values of less than or equal 

to 0 (range from −992 to 0) were removed. The CVDDATE attribute recorded the date of 

CVD status as the number of days since Exam 1. After this removal, the dataset contained 

5,013 − 115 = 4,898 cases. 

3.8.3 Attribute Reduction 

Next, data analysis was done to remove 16 columns, resulting in a dataset containing 123 

attributes (ref. Appendix C). Four steps to eliminate these 16 attributes were performed. 

The first step was to remove the four columns with more than 80% of their data missing. 

This left 135 attributes with the highest percentage of missing data being 33.85%. Next, 

SBP and diastolic blood pressure (DBP) measured by nurses were excluded as the 

duplicate readings taken by physicians had fewer missing data. The third step was to 

eliminate the eight attributes belonging to females only. Finally, the “QUETELET 

INDEX”, the “METROPOLITAN RELATIVE WEIGHT”, and the “H.C.T” columns 

were removed. “QUETELET INDEX” is a duplicate of the “BMI” column. 

“METROPOLITAN RELATIVE WEIGHT” is so highly correlated with BMI that these 

measures of body fatness can be considered to be identical [175]. “H.C.T” is a duplicate 

of the HEMATOCRIT column. 

3.8.4 Raw Data Value Transformation 

Next, the collected raw data values were transformed into desired forms. Numeric values 

representing nominal values (e.g. 1 for Male and 2 for Female) were replaced by the actual 

nominal values (e.g. “Male” and “Female”). This was done by referencing the coding 

manuals supplied with the dataset package. For simplification, nominal attributes having 

more than two values (except “weight compared with 1 month ago” and “weight 

compared with 1 year ago”) were converted into binary nominal values. Examples are 

shown in Figure 3-9. For “weight compared with 1 month ago” and “weight compared 

with 1 year ago” attributes, three nominal values of “about same”, “5+ lbs lighter” and 

“5+ lbs heavier” were kept. The reason was that “lighter” and “heavier” go into two 
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opposite directions from “about same” and therefore it would not be appropriate to turn 

these values into binary nominal values. 

Figure 3-9: Conversion of nominal values into binary nominal values 

3.8.5 Prediction Attribute Preparation 

Next, two prediction attributes, cvd10 and cvdInterval were created. Their values were 

derived from the two of the collected attributes namely CVD and CVDDATE. An 

intermediary attribute called CVDYear was also created. Eventually, the CVD, 

CVDDATE, and CVDYear columns were removed. Table 3-3 gives a description for 

each attribute and explains the logic to calculate the values for the two created prediction 

attributes, cvd10 and cvdInterval. The logic is based on the definitions of “High CVD 

Risk” and “Low CVD Risk” described in Equations (4) and (5), and their interpretation 

provided in section 3.4.2. 

161 cases having CVD = “No” and follow-up time < 15 years were removed. After the 

removal, the dataset contained 4,898 − 161 = 4,737 cases. 
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Table 3-3: Prediction attribute preparation 

Attribute Description Logic for value calculation 

CVD Cardiovascular Disease (CVD) 

status (0 : No, 1 : Yes) 

N/A. The values (0s and 1s) were already in the 

downloaded dataset, and were already transformed 

into No and Yes values in section 3.8.4. 

CVDDATE Date of CVD status (Number of 

days since Exam 1). This date 

corresponds to the date the 

participant had CVD or the date of 

censoring (last known date the 

participant did not have CVD). This 

is an integer number data type. 

N/A. The values are already in the downloaded 

dataset. 

CVDYear Year of CVD status (Number of 

years since Exam 1). The value was 

calculated from the CVDDATE 

value and how many days in a year. 

This is a real number data type. 

CVDYear = CVDDATE / 365.242199 

cvd10 CVD status within 10 years since 

Exam 1 (No or Yes) 

If CVD = “Yes” Then 

    If CVDYear ≤ 10 Then 

        cvd10 = “Yes” 

        cvdInterval = CVDYear 

    Else 

        cvd10 = “No” 

        cvdInterval = CVDYear 

    End If 

Else /* CVD = “No” */ 

    If CVDYear < 15 Then 

        Remove the case /* Follow-up less than 15 years */ 

    Else 

        cvd10 = “No” 

        cvdInterval = “” /* Don’t have CVD Interval” */ 

    End If 

End If 

cvdInterval Year of CVD status (Number of 

years since Exam 1). The value was 

decided from CVD, CVDYear, and 

cvd10. This is a real number data 

type. 

When CVD = “No”, CVDDATE is 

the last known date the participant 

did not have CVD. Therefore, in this 

situation, only keep the case if the 

follow-up time ≥ 15 years to ensure 

that the High CVD Risk 

membership and Low CVD Risk 

membership are known (µH = 0 and 

µL = 1). Otherwise, the memberhip 

values are unknown. 
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3.8.6 Attribute Value Range Analysis 

In the next phase of data preparation, attribute value range analysis was undertaken. The 

result was that all attribute value ranges were within acceptable ranges. This analysis was 

undertaken using Weka 3.8.3 to visually examine each attribute in the dataset along with 

their respective descriptive statistics (Figure 3-10). In addition, the value ranges were also 

checked against the FHS Offspring Cohort Exam 1 Coding Manual (enclosed in the 

dataset package obtained). This analysis confirmed that the data was ready for the next 

step, feature selection. 

Figure 3-10: Attribute value range analysis in Weka 

3.8.7 Feature Selection 

Initially, 34 predictor attributes (risk factors) were selected. This was done by using 

Weka’s InfoGainAttributeEval attribute evaluator with the Ranker search method (Figure 

3-11) to rank the 119 predictor attributes in the prepared dataset. InfoGainAttributeEval

evaluates the worth of an attribute by measuring the information gain with respect to the 

class (cvd10). The highest ranked attribute was “age” with an information gain value of 

0.041558. The cut-off value was chosen to be 0.004, which was about one tenth of this 

highest information gain value. This means that attributes having info gain values less 

than 0.004 were eliminated. Later, the result of using only 13 predictors for the CRISK 
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model from section 6.4 proves that the cut-off value was chosen adequately, i.e. small 

enough to not missing out predictors. Appendix D contains the attribute selection output 

resulting from Weka. 

 

Figure 3-11: Feature selection using Weka 

Table 3-4 displays 34 selected features and their Weka computed information gain 

rankings in descending numerical order. 

Table 3-4: Selected features and their information gain rakings 

Attribute Information gain 

AGE 0.04155809 

TOTAL CHOLESTEROL 0.02066707 

VLDL CHOLESTEROL 0.01658859 

LDL CHOLESTEROL 0.0165876 

SYSTOLIC BLOOD PRESSURE 0.01627317 

DIASTOLIC BLOOD PRESSURE 0.01371721 
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TRIGLYCERIDES 0.01291542 

USUAL # OF CIGARETTES SMOKE NOW/EVER 0.01133067 

GLUCOSE 0.00974304 

HDL CHOLESTEROL 0.00893359 

BMI 0.00853935 

DYSPNEA ON EXERTION 0.00798268 

SEX 0.00758577 

LDH 0.00752456 

ALKALINE PHOSPHOTASE 0.00731425 

URIC ACID 0.00697716 

WGTGP 0.00626734 

HISTORY OF HYPERTENSION 0.00617897 

SMOKED AT LEAST 1 YEAR 0.00606969 

HEMATOCRIT 0.00593551 

WHITE BLOOD COUNT 0.0057986 

FREDERICKSON CLASSIFICATION 0.00570935 

Diabetes 0.00566588 

DYSPNEA INCREASE IN PAST 2 YEARS 0.00564343 

H.G.B. 0.00560985 

TOP FRACTION PRE-BETA 0.00547475 

RED BLOOD COUNT 0.005308 

A QRS 0.00528462 

SMOKES CIGARETTES 0.00519749 

HYPOGLYCEMIC AGENTS 0.00489626 

Treatment for Diabetes 0.00489626 

PRE-BETA BAND 0.00416658 

HYPOTENSIVES 0.0041151 

WHOLE PLASMA PRE-BETA 0.00406476 
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3.8.8 Missing Data Removal 

After retaining only attributes selected via Weka’s InfoGainAttributeEval method, 666 

cases having missing data were removed. This left a dataset of 4,071 cases. Of these, 221 

cases have cvd10 = “Yes” and 3,850 cases have cvd10 = “No” (Figure 3-12). Among 

those 3,850 cases having cvd10 = “No”, 2,950 cases do not have CVD Interval. 

 

Figure 3-12: Data distribution of the cvd10 attribute (the class attribute) visualised in Weka 

This posed the issue of dataset imbalance for the cvd10 class where the classification 

categories are not equally represented [176]. If no action was taken to address this issue, 

classification performance would be affected. When dataset imbalance happens, 

classifiers tend to have good accuracy on the majority class but very poor accuracy on the 

minority class [177]. 

3.8.9 Feature Ranking 

After missing data were removed, the selected attributes were ranked again using Weka 

(Appendix E). This produced more accurate rankings of the predictors than that of the 

original rankings (Table 3-4) which was undertaken when there was still missing data in 

the dataset. Table 3-5 provides these final rankings of the selected attributes, which were 
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used as input for the backward elimination experimentation that is described in detail in 

Chapter 6. 

Table 3-5: Selected features and their final information gain rakings (done after missing data removal) 

Attribute Information gain 

AGE 0.04384 

TOTAL CHOLESTEROL 0.02324 

LDL CHOLESTEROL 0.0184 

VLDL CHOLESTEROL 0.01733 

SYSTOLIC BLOOD PRESSURE 0.01562 

TRIGLYCERIDES 0.01392 

DIASTOLIC BLOOD PRESSURE 0.01286 

GLUCOSE 0.0119 

USUAL # OF CIGARETTES SMOKE NOW/EVER 0.01112 

HDL CHOLESTEROL 0.01109 

HEMATOCRIT 0.00915 

BMI 0.00902 

LDH 0.00843 

SEX 0.00805 

WGTGP 0.00741 

URIC ACID 0.00736 

FREDERICKSON CLASSIFICATION 0.00735 

H.G.B. 0.00725 

ALKALINE PHOSPHOTASE 0.00719 

WHITE BLOOD COUNT 0.00678 

DYSPNEA ON EXERTION 0.00673 

Diabetes 0.00672 

TOP FRACTION PRE-BETA 0.0067 

RED BLOOD COUNT 0.00652 

SMOKED AT LEAST 1 YEAR 0.00616 

Treatment for Diabetes 0.00578 

HYPOGLYCEMIC AGENTS 0.00578 

A QRS 0.00569 

HISTORY OF HYPERTENSION 0.00568 

PRE-BETA BAND 0.00543 

WHOLE PLASMA PRE-BETA 0.00535 

DYSPNEA INCREASE IN PAST 2 YEARS 0.00506 

SMOKES CIGARETTES 0.00503 
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HYPOTENSIVES 0.00445 

3.8.10 Imbalanced Dataset Handling using SMOTE 

In order to address the dataset imbalance issue (section 3.8.8), the Synthetic Minority 

Over-sampling Technique (SMOTE) [174], available in Weka, was used. To balance 

unbalanced datasets, resample techniques (oversampling and/or undersampling) are used. 

For this research’s data distribution (Figure 3-12), oversampling rather than 

undersampling methods should be chosen because of not having many minority class 

samples (only 221 positive cases). In addition, undersampling may remove useful 

samples for building the CRISK model [178]. For oversampling, SMOTE is the most 

popular oversampling method [179] and has proven successful in variety of applications 

and domains [178]. 

Figure 3-13: Applying SMOTE in Weka to balance the dataset 
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Based on the number of positives and negatives (Figure 3-12), the percentage parameter 

was set to 1,600. This setting helped produce a balanced dataset of 3,850 cases of “No” 

and 3,757 cases of “Yes” after applying the SMOTE technique (Figure 3-13). Among the 

3,850 cases of “No”, 2,950 cases do not have CVD Interval. 

An ideal percentage value of 1,642.1 instead of 1,600 could have been calculated and set 

for SMOTE to result in having the number of positives equals the number of negatives. 

However, this ideal balance would not be how the model would operate in reality. In 

reality, it would not practical to always keep the number of positives equal the number of 

negatives. Therefore, the percentage value of 1,600 was kept and used. 

3.8.11 Input file preparation for experimentation 

Finally, four input files in CSV format were created for input into CRISK. They were a 

training dataset file, a test dataset file, a predictors file, and a predictors ranking file. An 

explanation of these input files is given in Table 3-6. 

Table 3-6: Prepared input files for experimentation 

File name Purpose Explanation 

FramOffspring_SMOTE.csv To be used as 

the training 

dataset 

Resulting from applying SMOTE in 

section 3.8.10 

FramOffSpring.csv To be used as 

the test dataset 

Resulting from missing data removal in 

section 3.8.8. This was the actual dataset 

with the real data (imbalanced dataset), 

before applying SMOTE. 

predictors.csv To describe 

predictors (risk 

factors) 

The predictors file is shown in Appendix J. 

Detailed explanation of a predictors file is 

found in section 5.2. 

predictorsRanking.csv To rank the 

predictors 

Resulting from feature ranking in section 

3.8.9. The predictors ranking file is 

displayed in Appendix K. 
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3.9 CRISK MODEL EVALUATION PROTOCOL 

3.9.1 Evaluation Metrics 

Evaluation metrics to measure the performance of the developed CRISK prediction model 

in this research were chosen with consideration of dataset imbalance. The prepared FHS 

Offspring Cohort dataset has only about 5% of True Positive (cvd10 = Yes) cases. For a 

highly imbalanced dataset like this one, the overall accuracy as in Equation (6) cannot be 

used as an evaluation metric because if a model just predicted all cases to be negative 

(cvd10 = No), it would achieve about 95% accuracy. Therefore, evaluation metrics other 

than the overall accuracy should be considered. 

The decision made by binary classification can be represented as a 2 × 2 confusion matrix 

in Figure 3-14 [180]. The matrix has four outcomes. True positives (TP) are positive cases 

correctly predicted as positive. False negatives (FN) are positive cases incorrectly 

predicted as negative. False positives (FP) are negative cases incorrectly predicted as 

positive. And, true negatives (TN) are negative cases correctly predicted as negative. 

Figure 3-14: Confusion matrix 

A number of popular evaluation metrics are derived from the above confusion matrix 

[180-182]. These include Accuracy, True Positive Rate (TPR), True Negative Rate 

(TNR), Precision, F-value, and Negative Predictive Value (NPV). These metrics are 

described by Equations (6) to (11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
(6) 

𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)
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 𝑇𝑁𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
=  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (8) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 𝐹 − 𝑣𝑎𝑙𝑢𝑒 =  
(1 +  𝛽2) × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 × 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (10) 

 𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (11) 

With the exception of Accuracy, these metrics were used to evaluate the performance of 

the CRISK prediction model developed in this research. Among them, F-value (the 

harmonic mean of recall and precision) may not be entirely straight-forward to interpret. 

However, the F-value statistic is a popular evaluation metric for imbalanced datasets 

[181]. Usually, the value of β (see Equation (10)) is set to 1 [181]. In this research, β was 

also set to 1 and thus the F-value became F1-value whose formula is described in Equation 

(12). 

 𝐹1 − 𝑣𝑎𝑙𝑢𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (12) 

When coming to decision making, as to what combination of predictors n and number of 

nearest neighbours k yielded the best prediction performance, the F1-value was favoured 

over the other four evaluation metrics. The reason was that the F1-value is a harmonic 

mean of Recall and Precision. While Recall tells us about the ability of a model to pick 

how many positive cases out of all actual positive cases, Precision tells us about the ability 

of a model to pick only relevant cases, meaning how many cases from the ones predicted 

to be positive are actually positive. In CVD prediction, if a “High Risk” person is 

predicted to be “Low Risk” because of low Recall, that person may miss out on medical 

treatment and attention. On the other hand, if a “Low Risk” person is predicted to be 

“High Risk” because of low Precision, unnecessary medical treatment may occur. 

However, when two models produce the same or very similar F1-values, Recall should be 

considered with a higher priority than Precision. In CVD prediction, the consequence of 

missing out a positive case would be a lot worse than wrongly classifying a negative case 

as positive. A FN case may not be given further examination, treatment, or attention and 

therefore may lead to the worst scenario—death. On the other hand, unnecessary medical 
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treatment and attention for a FP case could just cost money and time. Moreover, these 

costs might not be entirely wasted as, for example, a FP patient may gain some health 

benefits from being advised to consume a healthy diet in order to reduce CVD risk. 

This research did not use AUC as an evaluation metric. AUC is abbreviated from Area 

Under the Receiver Operating Characteristic (ROC) Curve [183]. It is used as a 

performance metric for a number of existing models such as D’Agostino et al. [31], 

PROCAM [67], and SCORE [68]. The ROC curve is a two-dimensional graph of False 

Positive Rate (FPR = 1 − TNR) on the X axis and TPR on the Y axis. Each point on the 

ROC curve corresponds to one decision threshold set for the algorithm used by the model. 

For example, in case of a KNN algorithm, the decision threshold (the number of votes) 

can be varied from 0 to k to produce the ROC curve. As a result, AUC does not represent 

the model operating in the most suitable selected threshold but summarises the 

performance of the model over regions of ROC space in which one would rarely operate 

[184]. In this research, the decision threshold was set to be the majority vote. The number 

of risk factors n and the number of nearest neighbours k were varied instead. Each 

combination of n and k produces one single point of FPR and TPR. TPR, TNR, Precision, 

F1-value, and NPV were evaluated rather than producing ROCs. 

Though the prediction outcomes include CVD Interval, widely used metrics such as Root 

Mean Squared Error (RMSE),  Mean Absolute Error (MAE), and Correlation Coefficient 

to measure the error of a model in predicting quantitative data were decided not to be used 

as performance metrics in this research. The reason is twofold. First, there are many cases 

whose CVD Interval and/or predicted CVD Interval are unknown. Second, the focus of 

this research, at the current stage, is to correctly predict whether a person will have CVD 

within 10 years, not on checking the accuracy of the predicted CVD Interval. However, 

RMSE values are reported in Table 6-5. 

3.9.2 External Validation 

In this research, external validation was planned and conducted to answer RQ4. External 

validation means testing a developed model with different cohorts to the one that was 

used to build the model [108]. Such validation is critical as a model may perform well for 

a certain cohort but may overestimate or underestimate when applied to other cohorts, 

especially cohorts of different racial groups [87]. The fact that numerous models have 

been published without adequate external validation was highly criticised in the review 
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article by Damen et al. [6]. In this study, the FHS Original Cohort Exam 11 dataset was 

chosen as a test set for the external validation process. The reasons for choosing this 

dataset were explained in section 3.6. Details of the external validation results are 

presented in Chapter 7. 

3.9.3 Comparison to existing models 

For comparison to existing models, three models were chosen: the D’Agostino et al. [31] 

model, the PREDICT-1° [76] model, and the 2018 PCE [77] model. Though two models 

were developed in the D’Agostino et al. [31] study, and both of them are currently used 

on the FHS website for 10-year CVD risk prediction, only the first model was chosen as 

it performed better than its simpler version (the second model). PREDICT-1° was 

recently published and was reported to perform better than the 2013 PCE [74] model—a 

well-known alternative to conventional Framingham models from the American College 

of Cardiology/American Heart Association. The 2018 PCE model was published after 

PREDICT-1° and claimed a significant improvement in terms of accuracy in prediction 

of CVD. Details of comparison of CRISK to these three existing models are provided in 

section 8.3. These details help answer RQ6. 

3.10 CHAPTER SUMMARY 

This Research Methodology chapter described how this research was approached, 

designed, implemented, and evaluated. Design Science was the research methodology for 

this study. The methodological process was guided by the beliefs of the positivist 

paradigm. The chosen methodology was equipped with a conceptual framework in 

Information Research, tailored for this specific study in CVD prediction. In addition, the 

study was also assisted by a set of guidelines. 

The development of the CRISK prediction model, which was the artifact resulting from 

carrying out this Design Science research to solve the CVD prediction problem, was 

strategically planned and designed. The prediction model was decided to be a CBR 

system whose case base is a fuzzy ontology. The CRISK system was decided to be 

implemented from scratch as none of the known existing CBR tools supports fuzzy 

ontology. The prediction outcomes from the CRISK system were designed to be 
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represented as fuzzy membership values of “High CVD Risk” and “Low CVD Risk” 

fuzzy sets. 

To have data for the CRISK prediction model development and evaluation, FHS cohorts 

were obtained and this process was detailed in this chapter. The FHS Offspring Cohort 

Exam 1 dataset was selected to be used for the development of the prediction model. FHS 

Original Cohort Exam 11 dataset was determined to be used as the dataset for external 

validation. SMOTE was used to address the dataset imbalance issue. 

For evaluation of the developed CRISK prediction model, a protocol consisting of 

evaluation metrics, external validation, and comparison to existing models was formed. 

The evaluation metrics to assess prediction performance included TPR, TNR, Precision, 

F1-value, and NPV. The developed model was then compared to the D’Agostino et al. 

[31] model, the PREDICT-1° [76] model, and the 2018 PCE [77] model (section 8.3).  
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4.1 INTRODUCTION 

This chapter explains the CRISK prediction model. It first provides an account of the 

design of the model including input, four CBR activities, the case base, and output. The 

design shows how information flows between these components of the model. Each 

component of the model is explained in detail with a focus on the algorithms used in each 

CBR activity. These algorithms are described using pseudo code. From the information 

provided in this chapter, this or a similar CVD risk prediction system can be implemented. 

This chapter together with Chapter 5 and Chapter 6 help answer the first three research 

questions (RQ1, RQ2, and RQ3). The answers are described in section 9.1.1. 

4.2 CRISK PREDICTION MODEL DESIGN 



 

75 

 

Figure 4-1: CRISK Prediction Model
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Figure 4-1 shows an overview of the CRISK model that was designed as a CBR system 

using fuzzy ontology. Basically, it consists of a case base and four CBR activities, 

Retrieve, Reuse, Revise, and Retain. Existing cases are stored in the case base, which is 

a fuzzy ontology. Other than those main components, a prediction result (output) is 

generated by the model for each new case (input). The prediction process is explained as 

below: 

1. A new case is input for CVD prediction.

2. The Retrieve algorithm (developed based on the fuzzy KNN algorithm [171]) queries

the Case Base to retrieve k closest cases to the new case (in this research, k is decided

to be 7 from the experimentation results in Chapter 6).

3. The Retrieve algorithm also identifies h matched cases to the new case from the k

closest cases retrieved.

4. k closest cases, including h matched cases identified, are passed from the Retrieve

algorithm to the Reuse algorithm.

5. The Reuse algorithm suggests the h matched cases if h > 0, otherwise the k closest

cases, to the Revise algorithm.

6. If there are matched cases (h > 0), the Revise algorithm calculates the prediction

outcomes (risk class, “High CVD Risk” membership, “Low CVD Risk” membership,

predicted CVD Interval) from these match cases. This includes handling when there

is a tie and when CVD Interval cannot be decided as a single value e.g. 25 years.

7. If there is no matched case (h = 0), the Revise algorithm calculates the prediction

outcomes as follows. First, it calculates the “High CVD Risk” membership µH and

the “Low CVD Risk” membership µL for the new case using Equation (14) in section

4.7. Then, it decides the predicted risk class for the new case based on these

membership values. After that, it calculates the predicted CVD Interval using

EITHER the membership functions declared in Equations (4) and (5) when µH and µL

are less than 1 OR averaging CVD Intervals of the nearest neighbours when µH or µL

equals 1.

8. The Revise algorithm proposes the prediction outcomes (prediction result) for the

new case.

When there is a need to conclude whether the case develops CVD within 10 years, e.g. 

for measuring prediction accuracy of the developed model using a confusion matrix, the 

defuzzification process is as follows: 
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If the “High CVD Risk” membership value µH is greater than or equal to the “Low 

CVD Risk” membership value µL, then the case is considered to belong to “High CVD 

Risk” and it is predicted that CVD will develop within 10 years. 

Otherwise, the case is considered to belong to “Low CVD Risk” and it is predicted 

that the person will not develop CVD within 10 years. 

Details of each component of the model, including the Retrieve, Reuse, and Revise 

algorithms, are described in the next sections in this chapter. The Retain activity is out of 

scope of this research (explained in section 4.8). 

4.3 CASE BASE 

 

Figure 4-2: Illustration of a case stored in the CRISK ontology 

The case base consists of existing CVD cases that already have follow-up results. It is a 

fuzzy ontology (called the CRISK ontology in this body of work). Figure 4-2 illustrates 

a case stored in the case base. The case contains 13 risk factors (age, total cholesterol, 

LDL cholesterol, very-low-density lipoprotein (VLDL) cholesterol, SBP, triglycerides, 

DBP, glucose, number of cigarettes smoked a day, HDL cholesterol, hematocrit, BMI, 

and LDH) and two CVD outcomes (“10-year CVD” and “CVD Interval”). The 13 risk 



78 

factors were selected to be the predictor attributes for CVD prediction based on the results 

of experiments detailed in Chapter 6. 

How a CVD case is stored in the case base is further explained. A case is stored in the 

case base as an individual, uniquely identified by the case ID (PID). A case’s attribute 

(e.g. “age”) is represented as a data property (e.g. “#age”). The value of a case’s attribute 

is represented as a literal (represented as a rectangular box in Figure 4-2). A literal can be 

either a crisp value (e.g. 37) or a membership value of a fuzzy set (e.g. 0.3 of the “young” 

set). In the case of a membership value of a fuzzy set, the membership function of the 

fuzzy set must be defined. 

Among a case’s attributes, “10-year CVD” and “CVD Interval” are prediction attributes 

(outcomes). “10-year CVD” is a binary value of either “Yes” or “No” indicating whether 

a CVD event happens within 10 years since the examination. “CVD Interval” is the 

number of years since the examination that a CVD event happens. Values of “10-year 

CVD” and “CVD Interval” are calculated using the rules defined in Table 3-3. 

The “10-year CVD” attribute that is represented as a binary value of either “Yes” or “No” 

is not directly used to present prediction outcomes; instead, its fuzzy membership values 

of “High CVD Risk” and “Low CVD Risk” fuzzy sets are. These fuzzy concepts are 

declared in the CRISK ontology (the case base) using Protégé with the Fuzzy OWL 2 

plugin [141]. Their membership functions are described in Equations (4) and (5), and 

illustrated by Figure 3-3 in section 3.4.2. Conversions between crisp values of CVD 

prediction outcomes and fuzzy membership values are explained in the Revise algorithm 

(section 4.7). 

Though a case in the case base is capable of storing fuzzy membership values, at the 

current stage only crisp values are used in this research. In this research, predictor 

attributes are not fuzzified. The CVD outcomes (“10-year CVD” and “CVD Interval”) 

are also stored in the case base as crisp values, although they are represented as fuzzy 

membership values of “High CVD Risk” and “Low CVD Risk” when displaying on the 

result screen for users or when involving in the CBR activities’ algorithms. The 

algorithms can read the fuzzy concepts declared in the case base and perform the 

conversion between crisp and fuzzy membership values instead of directly keeping the 

fuzzy membership values in the case base. However, directly storing fuzzy membership 

values in the case base is another way and it will achieve the same results. 
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4.4 INPUT (NEW CASE) 

 

Figure 4-3: Illustration of an input (new case) 

Figure 4-3 illustrates an input example. The new case contains the 13 risk factors: age, 

total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP, glucose, 

number of cigarettes smoked a day, HDL cholesterol, hematocrit, BMI, and LDH. These 

risk factors are used to predict CVD for the case. If some of these risk factors are missing 

from the input case, the CRISK prediction system still provides prediction results. 

However, the prediction accuracy may be degraded when a case is missing some of the 

input variables. 

4.5 RETRIEVE 

The main purpose of the Retrieve activity is to retrieve k closest cases to the input case 

from the case base. The other purpose is to find which cases match with the input case 

from the list of k closest cases retrieved. To do these, a Retrieve algorithm was developed 

in this research based on the fuzzy KNN algorithm [171]. 

Let C = {c1, c2, c3, …, cn} be the case base containing n cases c1, c2, c3, …, cn. Let c be 

the new case whose CVD risk is to be predicted. Let L be the list to contain k nearest 

cases (from C) to c. Let M be the list of h (0 ≤ h ≤ k) cases (from C) matched with c. The 

Retrieve algorithm is defined as follows: 
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  Retrieve algorithm 

  1:  /* Get k closest cases from the case base */ 

  2:  For each ci in C 

  3:  Calculate distance di from ci to c 

  4:  If L has fewer than k elements 

  5:   Add ci to L 

  6:  Else 

  7:  Get the last element lk-1 of L 

  8:  Get/calculate distance dl from lk-1 to c 

  9:  If di < dl 

 10:  Remove lk-1 from L 

 11:  Add ci to L 

12:   End If 

 13:  End If 

 14:   Sort L ascendingly 

15:  End of For loop 

16: 

17:  /* Get h matched cases from the list of k closest cases */ 

18:  For each element li in L 

 19:  Get/calculate distance dli from li to c 

 20:  If dli = 0 

 21:  Add li to M 

22:   End If 

23:  End of For loop 

The Retrieve algorithm has two for loops for the two purposes mentioned above. First, it 

iterates through the case base C to find k closest cases to the input case and add these k 

closest cases into the list L. Second, it iterates through the list L of k closest cases to find 

h (0 ≤ h ≤ k) matched cases with the input case and add these h matched cases into the list 

M. 

To support the Retrieve algorithm, the Distance algorithm was developed to calculate the 

distance between a CVD case in the case base and the input case from their risk factors’ 

values. Let c be the case from the case base, cinput be the input case, and d be the distance 

between them that is needed to be measured. The Distance algorithm is defined as 

follows: 
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Distance algorithm 

  1:  Intitialise d = 0.0 

  2:  For each risk factor ri in cinput 

   3:   If c has ri 

   4:    Initialise diff = 0.0 

  5:    If ri is nominal data 

   6:     If the value of ri of cinput equals the value of ri of c 

   7:      Set diff = 0.0  

   8:     Else 

   9:      Set diff = 1.0 

 10:     End If  

11:    Else /* Numeric data */ 

12:     Normalise the value of ri of cinput to be vinput 

13:     Normalise the value of ri of c to be v 

14:     Set diff = vinput − v 

15:    End If 

 16:    Set d = d + diff×diff 

 17:   End If 

18:  End of For loop 

19:  d = sqrt(d)  /* square root of d */ 

 

The normalisation follows the min-max rescaling method to rescale a numeric value into 

the range [0, 1]. The normalisation formula is given in Equation (13) below: 

 𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (13) 

where x is the original value and x’ is the normalised value. 
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4.6 REUSE 

The purpose of the Reuse activity is to suggest either matched cases or closest cases to 

the input case. As the Retrieve algorithm in section 4.5 already gets k closest cases and h 

matched cases, the Reuse algorithm is defined as below: 

Reuse algorithm 

  1:  If h > 0  /* There are matched cases */ 

  2:   Suggest the h matched cases 

  3:  Else  /* There is no matched case */ 

  4:   Suggest the k closest cases 

  5:  End If 

4.7 REVISE 

The Revise activity proposes CVD prediction results for the new input case from the 

suggested cases output from the Reuse activity. Let h be the number of matched cases to 

the input case from these suggested cases. The Revise algorithm is defined as below: 

Revise algorithm 

  1:  If h > 0  /* There are matched cases */ 

  2:   Use “Revise Matched Cases” algorithm 

  3:  Else   /* There is no matched case */ 

  4:   Use “Revise Closest Cases” algorithm 

  5:  End If 

Depending on whether there are matched cases or not, the Revise algorithm uses either 

the “Revise Matched Cases” algorithm or the “Revise Closest Cases” algorithm to 

generate CVD prediction results for the new input case. 

Let M be the list of matched cases, pClass and pCVDInterval respectively be the predicted 

CVD Class and the predicted CVD Interval for the new input case, µH and µL respectively 

be the predicted “High CVD Risk” membership and the predicted “Low CVD Risk” 

membership for the new input case. The “Revise Matched Cases” algorithm is defined as 

follows: 
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Revise Matched Cases algorithm 

  1:  Initialise countH, countL = 0 

  2:  Initialise sumH, sumL = 0.0 

  3: Initialise noCVDIntervalFlag = false, machineDecidableFlag = true, 

cvdIntervalPredictableFlag = true 

  4:  For each case m in M 

  5:  If cvd10 of m = Yes /* High CVD Risk */ 

  6:  Set countH = countH + 1 

  7: Set sumH = sumH + cvdInterval 

  8:  Else /* Low CVD Risk */ 

  9: Set countL = countL + 1 

 10:  If m has CVD Interval 

11:  Set sumL = sumL + cvdInterval 

12:  Else 

13:  Set noCVDIntervalFlag = true 

 14:  End If 

15:  End If 

 16:  End of For loop 

17: 

18: If countH = countL /* There is a tie */ 

19:  If noCVDIntervalFlag = true 

20:   Set machineDecidableFlag = false 

 21:  Else 

22: Set pCVDInterval = (sumH + sumL)/h 

 23:  Calculate µH based on pCVDInterval 

24: Calculate µL based on pCVDInterval 

25:   End If 

26:  Else If countH > countL 

27:  Set pClass = High CVD Risk 

28:  Set pCVDInterval = sumH / countH 

 29:  Calculate µH based on pCVDInterval 

30:  Calculate µL based on pCVDInterval 

31:  Else /* countH < countL */ 

32:  Set pClass = Low CVD Risk 

33: If noCVDIntervalFlag = true 

34:  Set cvdIntervalPredictableFlag = false 

35:  Set µH = 0 

36: Set µL = 1 
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 37:   Else 

38:    Set pCVDInterval = sumL / countL 

 39:    Calculate µH based on pCVDInterval 

40:    Calculate µL based on pCVDInterval 

41:   End If 

42:  End If 

 

The Revised Matched Cases algorithm iterates through each case in the list of matched 

cases M, counting how many “High CVD Risk” cases countH, and how many “Low CVD 

Risk” cases countL are present in M. While doing that, it also identifies if there are cases 

with no CVD Interval. After that, the algorithm bases on the findings to decide CVD 

prediction outcomes. There are three types of outcomes: CVD Class and CVD Interval 

predictable, only CVD Class predictable (cvdIntervalPredictableFlag = false and 

machineDecidableFlag = true), and neither CVD Class nor CVD Interval predictable 

(machineDecidableFlag = false). 

Important notes explaining the Revised Matched Cases algorithm: 

• At line 28: The algorithm calculates the predicted CVD Interval (pCVDInterval) 

for the new case by only averaging the matched “High CVD Risk” cases. The 

reason for not averaging all h cases’ CVD Intervals is because this may result in 

a pCVDInterval conflicts with pClass, for example, pClass is “High CVD Risk” 

but pCVDInterval is a value greater than 10 years. 

• At line 38: The algorithm calculates the predicted CVD Interval (pCVDInterval) 

for the new case by only averaging the matched “Low CVD Risk” cases. The 

reason for not averaging all h cases’ CVD Intervals is because this may result in 

a pCVDInterval conflicts with pClass, for example, pClass is “Low CVD Risk” 

but pCVDInterval is a value less than 10 years. 

• At line 35 and 36: when pClass is “Low CVD Risk” and pCVDInterval is 

unknown, set µH = 0 and µL = 1. Otherwise, if 0 < µL < 1, pCVDInterval can be 

calculated using the “Low CVD Risk” membership function. 

When there is no matched case found, the Revise algorithm uses the following “Revise 

Closest Cases” algorithm to generate CVD prediction results for the new input case. 
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Revise Closest Cases algorithm 

  1: Calculate µH using Equation (14) 

  2:  Calculate µL using Equation (14) 

  3: 

  4:  If µH ≥ µL 

  5:  Set pClass = High CVD Risk 

  6: If µH = 1 /* CVD Interval <= 5 years */ 

7:       Calculate pCVDInterval = average of CVD Intervals of nearest High Risk cases     

  8:  Else   /* 10 years >= CVD Interval > 5 years */ 

  9: Calculate pCVDInterval from the High CVD Risk membership function 

 10:  Else 

11:  Set pClass = Low CVD Risk 

12: If µL = 1 /* CVD Interval >= 15 years */ 

13:  Calculate pCVDInterval = average of CVD Intervals of the nearest Low Risk 

cases that have CVD Interval. If all the nearest Low Risk cases don’t have CVD 

Interval, set cvdIntervalPredictableFlag = false. 

14: Else   /* 10 years < CVD Interval < 15 years*/ 

15: Calculate pCVDInterval from the Low CVD Risk membership function 

16:  End If 

The “Revise Closest Cases” algorithm uses Equation (14), which is the core part of the 

fuzzy KNN algorithm [171], to calculate µH and µL. From these membership values, the 

predicted CVD Class can be decided, and the predicted CVD Interval can be calculated. 

Equation (14) is defined as below: 

µ𝑖(𝑐) =

∑
µ𝑖𝑗

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑗 , 𝑐))
2

𝑘

𝑗=1

∑
1

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑗 , 𝑐))
2

𝑘

𝑗=1

(14) 

where c is the new input case, cj is a case in the list of k closest cases, µij is the membership 

value of cj in the ith class (in this context, there are two classes, “High CVD Risk” and 

“Low CVD Risk”), the distance between cj and c is calculated using the Distance 

algorithm detailed in section 4.5. 
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Important notes explaining the Revised Closest Cases algorithm: 

• At line 7: When µH = 1, all k closest cases must belong to “High CVD Risk”.  

This can be proved by solving Equation (14) to conclude that all µij = 1 (i is 

associated with the “High CVD Risk” set, j is from 1 to k). 

• At line 13: When µL = 1, all k closest cases must belong to “Low CVD Risk”.  

This can be proved by solving Equation (14) to conclude that all µij = 1 (i is 

associated with the “Low CVD Risk” set, j is from 1 to k). 

4.8 RETAIN 

The purpose of the Retain activity is to save the new case when it has follow-up results 

of CVD statuses. As a result, this case becomes an existing case in the case base 

contributing to CVD prediction. Though a complete CBR system should have all four 

activities, Retrieve, Reuse, Revise, and Retain, only the Retrieve, Reuse, and Revise 

activities were developed in this research. The reasons were due to both the time 

limitation and the fact that, in conducting this research, existing FHS datasets that already 

have follow-up results were used. Therefore, the Retain activity is out of scope for this 

research. Neither design nor implementation was undertaken for the Retain activity. 

4.9 OUTPUT (PREDICTION RESULT) 

The output provides a CVD prediction result including predicted CVD Class, predicted 

CVD Interval, predicted High CVD Risk membership, and predicted Low CVD Risk 

membership. In addition, the CRISK system also displays on the prediction result screen 

all k closest cases. Moreover, any matched cases among these k closest cases are also 

marked. The prediction result screen with all these details is designed to assist medical 

practitioners (such as doctors) in reviewing and making decision of CVD risk prediction 

for the new input case. Two screenshots of the prediction result screen are given in 

Figure 5-32 and Figure 5-33 in the next chapter. 
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4.10 CHAPTER SUMMARY 

The CRISK Prediction model is a CBR system whose case base is a fuzzy ontology. At 

this stage, only the outcome “10-year CVD” is fuzzified as membership values of “High 

CVD Risk” and “Low CVD Risk” fuzzy sets, whose membership functions are described 

in Equations (4) and (5) respectively. Fundamentally based on the Fuzzy KNN algorithm 

by Keller et al. [171], the algorithms used for the Retrieve, Reuse, and Revise activities 

of the CRISK Prediction model were developed. Main contributions to the original Fuzzy 

KNN algorithm include the development of the Distance algorithm, the development of 

the “Revise matched cases” algorithm, and the enhancement of the “Revise closest cases” 

algorithm to generate not only CVD risk class but also CVD prediction interval. 
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Chapter 5 

CRISK SYSTEM IMPLEMENTATION 
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5.1 INTRODUCTION 

This chapter describes how the CRISK system was developed. Java (version 8) was the 

programming language and Java Swing was the GUI widget toolkit for the development. 

As mentioned previously, the Fuzzy OWL 2 Protégé plugin [141] was used to create the 

“High CVD Risk” and “Low CVD Risk” fuzzy data types. This chapter together with 

Chapter 4 and Chapter 6 help answer the first three research questions (RQ1, RQ2, and 

RQ3). The answers are described in section 9.1.1. 

The CRISK system consists of four modules: Constructor, Experimenter, Batch 

Experimenter, and Predictor. Details of each module are further explained in sections 5.2 

to 5.5 respectively. 

Figure 5-1 shows the welcome screen of the CRISK application. The Constructor button 

launches the Constructor module. The Experimenter button opens both the Experimenter 

module and the Batch Experimenter module. The Predictor button starts the Predictor 

module. 
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Figure 5-1: CRISK welcome screen 

5.2 CRISK CONSTRUCTOR MODULE 

The Constructor module (Figure 5-2) is used to transform a CVD dataset in CSV format 

into a fuzzy ontology file in OWL 2 format for use in the Experimenter, Batch 

Experimenter and Predictor modules. The Constructor module takes a dataset file (Figure 

5-5) and a predictors file (Figure 5-6) as inputs from the user. Upon clicking on the 

“Create Ontology” button, a dialog window is opened asking the user to save the ontology 

file to be created (Figure 5-3). 

 

Figure 5-2: CRISK Constructor screen 
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Figure 5-3: CRISK Constructor—Asking the user to save the ontology file 

Figure 5-4 shows the ontology construction process. From the dataset file and the 

predictors file input, the Constructor module uses the CRISK fuzzy ontology template 

file to create a fuzzy ontology file for the dataset. 

 

Figure 5-4: CRISK Constructor—Fuzzy ontology construction process 

The dataset file is a CSV file containing predictor names as column headings and values 

for all cases of the dataset. Each row contains the values of a case. The first column is the 

case unique identification. The last two columns are 10-year CVD and CVD Interval (in 

years) respectively. The other columns in the middle are predictors. An example of a 

dataset file is screenshot below (Figure 5-5). 
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Figure 5-5: An example of a dataset file 

The predictors file is also a CSV file, used to describe the risk factors. The predictors file 

has four columns, Predictor Name, Predictor Description, Data Type, and Value List. The 

Predictor Name column lists the predictors from the dataset file in the same order. The 

Predictor Description column describes the predictor. The Data Type column indicates 

that whether a predictor is a double, an integer, a DataOneOf (nominal) etc. These are 

data types in OWL 2. For a predictor whose data type is DataOneOf, a list of values 

separated by the vertical bar character must be defined in the Value List column. An 

example of a predictors file is screenshot below (Figure 5-6). 

Figure 5-6: An example of a predictors file 

The CRISK fuzzy ontology template file is stored in the CRISK system as a resource file 

named “base.owl”. The content of the file is provided in Appendix P. The file basically 

contains two fuzzy data types, a class hierarchy, and two data properties for the two 

prediction attributes (cvd10 and cvdInterval). The two fuzzy data types highCVDRisk 

and lowCVDRisk were created based on the membership functions defined in Equations 
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(4) and (5) in section 3.4.2. Figure 5-7 and Figure 5-8 respectively show these two fuzzy

data types viewed in Protégé having the Fuzzy OWL 2 plugin installed. The class 

hierarchy (Figure 5-9) defines two classes, CBR_CASE class and its child class 

CRISK_CASE. The CRISK_CASE class is where a CVD case belongs. The two data 

properties for the two prediction attributes are named cvd10 and cvdInterval. Figure 5-10 

and Figure 5-11 respectively show them in Protégé. 

Figure 5-7: Viewing highCVDRisk data type in Protégé with the Fuzzy OWL 2 plugin 
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Figure 5-8: Viewing lowCVDRisk data type in Protégé with the Fuzzy OWL 2 plugin 

 

Figure 5-9: Viewing CRISK class hierarchy in Protégé 
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Figure 5-10: Viewing cvd10 data property in Protégé 

 

Figure 5-11: Viewing cvdInterval data property in Protégé 

The output file generated by the CRISK Constructor module is a fuzzy ontology file. Two 

fuzzy data types highCVDRisk and lowCVDRisk are created for the ontology from the 

CRISK fuzzy ontology template file. Each risk factor from the CSV dataset file becomes 
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a data property in the created fuzzy ontology. The two prediction attributes cvd10 and 

cvdInterval are also created for the ontology as data properties using the CRISK fuzzy 

ontology template file. Figure 5-12 shows these data properties of a sample fuzzy 

ontology created for a sample dataset (Figure 5-5) in Protégé. Each case from the CSV 

dataset file becomes an individual in the created fuzzy ontology. Each individual is 

uniquely identified by its IRI (Internationalised Resource Identifier) whose value is the 

PID of the case. Figure 5-13 displays individuals of the sample fuzzy ontology in Protégé. 

These individuals belong to the CRISK_CASE class, whose parent class is CBR_CASE. 

Figure 5-12: Viewing data properties of the sample fuzzy ontology in Protégé 
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Figure 5-13: Viewing individuals of the sample fuzzy ontology in Protégé 

5.3 CRISK EXPERIMENTER MODULE 

The Experimenter module is used to experiment on a CVD dataset stored as a fuzzy 

ontology for prediction performance based on different numbers of nearest neighbours. 

The fuzzy ontology input to this model is created using the CRISK Constructor module 

(section 5.2). The Experimenter module offers three experimentation types: LOOCV, 

Train-Test-LOOCV, and Train-Test. 

For the LOOCV experiment (Figure 5-14), one ontology is selected. The system iterates 

through all the CVD cases stored in the ontology. For each case, the system removes the 

case from the case base (the selected ontology), performs prediction for the case, and adds 

the case back to the case base for the next iteration of the loop. 
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Figure 5-14: CRISK Experimenter—LOOCV screen 

For the Train-Test-LOOCV experiment (Figure 5-15), two ontologies files are selected. 

The testing OWL file is a subset of the training OWL file. This happens when, for 

example, the training OWL file is generated from the testing OWL file using SMOTE for 

imbalanced dataset. As a result, for each case in the testing set, the system removes the 

case from the case base (the training set), performs prediction for the case, and adds the 

case back to the case base for the next iteration of the loop. 

 

Figure 5-15: CRISK Experimenter—Train-Test-LOOCV screen 

For the Train-Test experimentation (Figure 5-16), two ontology files are also selected. 

However, the testing and training sets are different sets and contain separate cases. 

Therefore, the system iterates through each case in the testing set and performs prediction 

for the case without removing any case from the case base (the training set). 
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Figure 5-16: CRISK Experimenter—Train-Test screen 

For each experimentation type, upon clicking on the “Run Test” button, the system opens 

a dialog (Figure 5-17) asking the user to select an output folder to store the 

experimentation results. 

Figure 5-17: CRISK Experimenter—Output folder selection screen 

Figure 5-18, Figure 5-19, and Figure 5-20 respectively provide a high level view of the 

LOOCV, Train-Test-LOOCV, and Train-Test experimentation processes. 

Figure 5-18: CRISK Experimenter—LOOCV experimentation process 
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Figure 5-19: CRISK Experimenter—Train-Test-LOOCV experimentation process 

Figure 5-20: CRISK Experimenter—Train-Test experimentation process 

The results of each experiment, stored inside the user selected output folder, consist of 

nine CSV files and one macro-enabled Excel file (Figure 5-21). Each CSV file contains 

the experiment results corresponding to one value of k (the number of nearest 

neighbours). The macro-enabled Excel file collects result data from the result CSV files 

and produces a summary of prediction performance. 

Figure 5-21: CRISK Experimenter—Experiment result files 
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Figure 5-22 displays the content of a result CSV file. The “Case ID” column uniquely 

identifies a case. The “CVD Interval” column gives the actual CVD Interval in years 

while the “P CVD Interval” is the system predicted CVD Interval in years. The “High” 

column is the actual membership value of High CVD Risk while the “P High” is the 

predicted membership value of High CVD Risk. It is similarly explained for the “Low” 

and “P Low” columns. Finally, the “Class” and “P Class” columns respectively represent 

the actual CVD Class, “High CVD Risk” or “Low CVD Risk”, and the predicted CVD 

Class of a case. A case belongs to “High CVD Risk” when the “High CVD Risk” 

membership value is greater than or equal to the “Low CVD Risk” membership value. 

Belonging to “High CVD Risk” also means that the case develops CVD within 10 years 

(cvd10 = Yes). 

 

Figure 5-22: CRISK Experimenter—The content inside a result CSV file 

Figure 5-23 displays an example of the summary sheet of a result summary macro-

enabled Excel file. The sheet summarises the prediction performance of the CRISK 

system for all cases, “High CVD Risk” cases, and “Low CVD Risk” cases, against each 

value of the number of nearest neighbours k. In the example shown in this figure, the 

number of cases in total was 4,071. Among those, 221 cases were “High CVD Risk” cases 

and 3,850 cases were “Low CVD Risk” ones. The “Same” column gives the number of 

correctly classified cases while the “Diff” column shows the number of incorrectly 

classified cases. The “Accuracy” column provides the prediction accuracy. An RMSE 

(Root Mean Squared Error) column gives error measurement for prediction of CVD 

Interval, for cases having both CVD Interval and predicted CVD Interval. Other columns 

include “TP”, “FN”, “TPR”, “TN”, “FP”, “TNR”, “Precision”, “F1-value”, and “NPV”. 

The meanings of these columns can be found in section 3.9.1. Clicking on the “Reload 

results” button recollects data from each result CSV file and refreshes the data on the 

summary sheet. 
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Figure 5-23: CRISK Experimenter—Inside a result summary macro-enabled Excel file
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5.4 CRISK BATCH EXPERIMENTER MODULE 

The Batch Experimenter module is used to experiment a CVD dataset stored as a fuzzy 

ontology for prediction performance based on different numbers of nearest neighbours 

and different combinations of predictors. This also means that the Batch Experimenter 

adds one more dimension—the combination of predictors—into the Experimenter 

module detailed in section 5.3. The Batch Experimenter runs as a batch process in a 

command line window. Usually it takes a long time to run due to the number of 

experiments related to the different combinations of predictors, which are ranked by a 

predictors ranking file. 

Different combinations of predictors are made using a backward elimination technique. 

To perform this backward elimination technique, the program begins with all n predictors 

in the first iteration. In the second iteration, it experiments with n − 1 predictors by 

omitting the least important predictor (the last predictor in the ranking). In the third 

iteration, it experiments with n − 2 predictors by omitting the last two predictors. 

Eventually, in the last iteration, it runs with only 1 predictor, the first predictor in the 

ranking. 

Figure 5-24: CRISK Batch Experimenter—Batch Experimenter screen 

Figure 5-24 displays the entry GUI to the Batch Experimenter module. It has three buttons 

named “Run LOOCV Batch”, “Run Train-Test-LOOCV Batch”, and “Run Train-Test 

Batch”. Each button opens a command line window for a batch process for that type of 

experimentation. The “LOOCV Batch” process asks the user to select a dataset file, a 

predictors file, a predictors ranking file, and an output folder to store testing results. Both 

“Train-Test-LOOCV Batch” and “Train-Test Batch” processes ask the user to select a 
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training dataset file, a test dataset file, a predictors file, a predictors ranking file, and an 

output folder. These input files are in CSV format. More information about these files can 

be found in Table 3-6. 

Figure 5-25, Figure 5-26, and Figure 5-27 respectively provide high level views of the 

LOOCV Batch, Train-Test-LOOCV Batch, and Train-Test Batch experimentation 

processes. Each dataset file in CSV format is converted into a corresponding fuzzy 

ontology file before being experimented for different combination of predictors. 

 

Figure 5-25: CRISK Batch Experimenter—LOOCV batch experimentation process 

 

Figure 5-26: CRISK Batch Experimenter—Train-Test LOOCV batch experimentation process 
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Figure 5-27: CRISK Batch Experimenter—Train-Test batch experimentation process 

Figure 5-28 provides a screenshot of an output folder from a batch experimentation. Each 

subfolder is named according to the number of predictors included in the experiment. 

Experimentation results for each combination of predictors are stored in that 

corresponding subfolder the same way as in the Experimenter module (Figure 5-21). The 

Batch Experimenter module also creates inside the output folder a summary file named 

“Grand_Summary_TestResults.xlsm”. This is a macro-enabled Excel file to gather result 

data from each “TestResults.xlsm” file inside each subfolder. 

 

Figure 5-28: CRISK Batch Experimenter—Output folder 

Figure 5-29 shows the content of a Grand Summary Test Results file. It collects prediction 

performance data into six sheets, “Accuracy”, “TPR”, “TNR”, “Precision”, “F1-value”, 

and “NPV”. Each of these sheets provides the performance results based on the two 

dimensions experimented on, the number of predictors n and the number of nearest 

neighbours k for that metric. 
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Figure 5-29: CRISK Batch Experimenter—Grand Summary Test Results file 

The “VBA” sheet (Figure 5-30) contains two buttons named “Reload” and “Refresh 

individual Test Result files and Reload”. The first button refreshes data on the other seven 

sheets by reloading result data from each individual “TestResults.xlsm” file inside each 

subfolder. The second button does two things. It first refreshes data in each 

“TestResults.xlsm” file inside each subfolder. It then recollects data from these individual 

files to refresh data on the “Accuracy”, “TPR”, “TNR”, “Precision”, “F1-value”, and 

“NPV” sheets. 
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Figure 5-30: CRISK Batch Experimenter—Grand Summary Test Results file’s VBA sheet 
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5.5 CRISK PREDICTOR MODULE 

The Predictor module is used to give prediction for an input case (person) as to whether 

that person belongs to the “High CVD Risk” or the “Low CVD Risk” category. 

 

Figure 5-31: CRISK Predictor—Input screen 

Figure 5-31 shows the input screen of the module. There are 13 risk factors, resulting 

from experimentation done in Chapter 6 to find out the best combination of predictors 

and the number of nearest neighbours (n = 13, k = 7) for yielding the best prediction 

performance. When an invalid value is input, the developed input validation feature 

notifies and disallows this. Clicking on the “Reset” button clears all input textbox 

components on the screen. Clicking on the “Predict” button executes the CVD prediction 

process for the input case. 
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Figure 5-32: CRISK Predictor—Prediction Result screen with no matched case 
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Figure 5-33: CRISK Predictor—Prediction Result screen, showing a matched case
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Figure 5-32 shows the prediction result screen. Prediction outcomes include predicted 

Risk Class, predicted CVD Interval, predicted High Risk Membership, and predicted Low 

Risk Membership. In addition, a graph depicting the “High CVD Risk” and “Low CVD 

Risk” functions is also displayed to assist interpretation of the prediction outcomes. The 

result screen also displays the input case and the seven closest cases retrieved from the 

case base. Among those seven closest cases, if one matches the input case, there is a 

“matched” indicator shown next to that case, e.g. in Figure 5-33. 

5.6 CHAPTER SUMMARY 

The CRISK system, developed in Java, consists of four modules: Constructor, 

Experimenter, Batch Experimenter, and Predictor. The Constructor module converts a 

dataset in CSV format into a fuzzy ontology file in OWL 2 format that can be used in the 

Experimenter, Batch Experimenter and Predictor modules. The Experimenter module 

offers three types of experimentation, LOOCV, Train-Test-LOOCV, and Train-Test, to 

experiment a dataset for prediction performance based on different values of k (the 

number of nearest neighbours). The Batch Experimenter module adds another dimension, 

the combination of predictors, into the experimentation. The Predictor module provides 

prediction for an input case (a person) for whether that person belongs to “High CVD 

Risk” or “Low CVD Risk”. 
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6.1 INTRODUCTION 

This chapter reports on the experiments conducted using the CRISK system, the 

experimental results, and the overall findings of this research. The experimentation was 

carried out on the mixed sex dataset, the male dataset and the female dataset (described 

in section 3.8). Two dimensions were explored in these experiments: the combination of 

predictors and the number of nearest neighbours. The results of these experiments helped 

uncover whether separate prediction models for males and females should or should not 

be created. They also helped determine the predictors and the number of nearest 

neighbours that yielded the best prediction performance. These results informed the 

construction of the CRISK Predictor Module, described in section 5.5. Moreover, other 

findings including things that could be done to improve CVD prediction performance, 

why some popular risk factors mentioned in other prior research did not make it to the list 

of selected predictors in this research, and data distributions of the chosen risk factors, 

are also reported in this chapter. 

This chapter together with Chapter 4 and Chapter 5 help answer the first three research 

questions (RQ1, RQ2, and RQ3). The answers are described in section 9.1.1. 
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6.2 EXPERIMENTATION 

The experiments were designed in order to find the optimal combination of parameters 

(dataset, predictors, and number of nearest neighbours) that yields the best CVD risk 

prediction performance. Each of the three datasets, mixed sex dataset, male dataset, and 

female dataset, prepared from section 3.8 were experimented using the CRISK Batch 

Experimenter Module’s Train-Test-LOOCV function (section 5.4). Though the GUI 

module of the CRISK Batch Experimenter could have been run three times for the three 

datasets to obtain the same results, a Java class named Experiment was developed to run 

the Batch Experimenter module as three threads concurrently to save execution time. This 

Java class was run directly in the Eclipse IDE. Figure 6-1 displays the Java code of the 

Experiment class. Explanation of the CSV input files for the experimentation can be 

found in section 3.8.11. 

 

Figure 6-1: Java class named Experiment developed for experimentation in this research 

Table 6-1 below summarises the three datasets. They were all imbalanced with negative 

cases overwhelming the positive cases, especially in the female dataset. The ratios of 
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negative cases to positive cases for mixed sex, male, and female datasets were 3850/221 

= 17.42, 1819/155 = 11.74, and 2035/66 = 30.83, respectively. To balance these datasets 

for building case bases (training sets), SMOTE was applied to them with the percentages 

of 1,600%, 1,050%, and 3,000% respectively (refer to section 3.8.10). 

Table 6-1: Summary of mixed sex, male, and female datasets 

Mixed sex dataset Male dataset Female dataset 

Number of cases 4,071 1,974 2,101 

Number of High Risk cases 

(positive) 

221 155 66 

Number of Low Risk cases 

(negative) 

3,850 1,819 2,035 

SMOTE percentage applied to 

balance the dataset 

1,600% 1,050% 3,000% 

6.3 RESULTS 

TPR, TNR, Precision, F1-value, and NPV results for each of the three datasets are reported 

in the Appendix Q, Appendix R, and Appendix S respectively. For each evaluation metric 

per each dataset (model), there is one table displaying results for each combination of n 

(predictors) and k (number of nearest neighbours). Each table is accompanied by a 3D 

graph plotting the results. In general, all models achieved higher Recall (TPR) than 

Precision. All models performed very well for TNR and NPV. Table 6-2 below reports 

the best performance results by metric for each dataset. 
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Table 6-2: The best performance results of each model for each metric 

Mixed sex dataset Male dataset Female dataset 

TPR max 0.8824 (n=13, k=3, 13, or 15) 0.8903 (n=12, k=1 or 7) 0.6515 (n=8, k=1) 

TNR max 0.9065 (n=33, k=5) 0.9247 (n=1, k=17) 0.9238 (n=29,k=17) 

Precision max 0.2277 (n=18, k=7) 0.2560 (n=9, k=7) 0.1388 (n=6, k=9) 

F1-value max 0.3574 (n=13, k=7) 0.3966 (n=12, k=7) 0.2252 (n=5, k=15) 

NPV max 0.9918 (n=13, k=13) 0.9881 (n=12, k=7) 0.9866 (n=5, k=15) 

For the F1-value, which is the metric that is favoured for decision making in this research 

(see justification in section 3.9.1), the male model performed the best, followed by the 

mixed sex model, and then the female model. The male model achieved the highest F1-

value of 0.3966 with the combination (n = 12, k = 7). The mixed sex model achieved the 

highest F1-value of 0.3574 with the combination (n = 13, k = 7). The female model 

achieved the best F1-value of 0.2252 with the combination (n = 5, k = 15). 

Table 6-3: The performance results of each model based on the combinations of n and k that generated 

the best F1-values where CI is the 95% confidence interval. 

Mixed sex dataset with 

(n = 13, k = 7) 

Male dataset with 

(n = 12, k = 7) 

Female dataset with 

(n = 5, k = 15) 

TPR 0.8733 (CI = 0.0102) 0.8903 (CI = 0.0138) 0.6364 (CI = 0.0206) 

TNR 0.8270 (CI = 0.0116) 0.7784 (CI = 0.0183) 0.8698 (CI = 0.0144) 

Precision 0.2247 (CI = 0.0128) 0.2551 (CI = 0.0192) 0.1368 (CI = 0.0147) 

F1-value 0.3574 (CI = 0.0147) 0.3966 (CI = 0.0216) 0.2252 (CI = 0.0179) 

NPV 0.9913 (CI = 0.0029) 0.9881 (CI = 0.0048) 0.9866 (CI = 0.0049) 

Table 6-3 compares the performance results of the three models on the five metrics for 

the combinations of n and k that generated the best F1-values. For each metric value, a 

confidence interval (CI) value of 95% confidence level is also provided. The confidence 

interval value was calculated according to Equation (15). In this formula, v is the 

performance metric value and N is the size of the dataset. For the mixed sex dataset, N = 
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4,071. For the male dataset, N = 1,974. For the female dataset, N = 2,101. The parameter 

value of 1.96 corresponds to the 95% confidence level. 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐶𝐼) =  1.96 × √
𝑣 (1 − 𝑣)

𝑁
(15) 

Table 6-4 displays the list of predictors that generated the best prediction performance for 

each model. 

Table 6-4: Lists of predictors that generated the best prediction performance for each model 

Model No. of predictors List of predictors 

Mixed sex 13 Age, total cholesterol, LDL cholesterol, VLDL 

cholesterol, SBP, triglycerides, DBP, glucose, cigarrettes, 

HDL cholesterol, hematocrit, BMI, LDH 

Male 12 Age, total cholesterol, first second volume, total vital 

capacity, LDL cholesterol, albumin, white blood count, 

glucose, triglycerides, total bilirubin, LDH, cigarettes 

Female 5 Age, total cholesterol, first second volume, total vital 

capacity, LDL cholesterol 

The first paragraph of section 6.4 will explain why the CRISK model was decided to be 

the mixed sex model with n = 13 and k = 7. 

The confusion matrix of the mixed sex model when n = 13 and k = 7 is shown in Figure 

6-2.

Figure 6-2: Confusion matrix of the mixed sex model when n = 13 and k = 7 
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Table 6-5 displays the RMSE values of the mixed sex model, based on different k when 

the number of attributes is 13, for the CVD Interval prediction of cases that have both 

CVD Interval and predicted CVD Interval. The first column shows the number of nearest 

neighbours. The second, third, and last columns display the RMSE values for “All” cases, 

“High CVD Risk” cases, and “Low CVD Risk” cases that have both CVD Interval and 

predicted CVD Interval, respectively. 

Table 6-5: RMSE values for CVD Interval prediction of cases that have both CVD Interval and predicted 

CVD Interval of the mixed sex model when n = 13 

No. of nearest neighbours RMSE—All 

(years) 

RMSE—High 

(years) 

RMSE—Low 

(years) 

k=1 14.33 4.13 16.82 

k=3 13.36 3.99 15.08 

k=5 13.18 3.55 14.79 

k=7 13.19 3.67 14.74 

k=9 13.28 3.60 14.81 

k=11 13.38 3.65 14.90 

k=13 13.35 3.71 14.83 

k=15 13.36 3.54 14.84 

k=17 13.40 3.61 14.87 

RMSE for the “High CVD Risk” cases is a lot smaller than RMSE for the “Low CVD 

Risk” cases. This could be mainly caused by the fact that the variance of the “High CVD 

Risk” cases is a lot smaller than the variance of the “Low CVD Risk” cases. In the mixed 

sex dataset, a “High CVD Risk” case has the CVD Interval value in [0.24, 9.96] years, 

while a “Low CVD Risk” case has the CVD Interval value in [10.01, 38.96] years. An 

additional cause could be that 2,950 cases out of 3,850 “Low CVD Risk” cases do not 

have CVD Interval (section 3.8.10), while all “High CVD Risk” cases have a CVD 

Interval (section 3.8.5). Having many unknown CVD Interval cases in the k closest cases 

retrieved could affect the predicted CVD Interval for a predicted “Low CVD Risk” case 

with µL = 1. In this case, the predicted CVD Interval is the average of CVD Intervals of 
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the nearest “Low CVD Risk” cases that have CVD Interval—see the “Revise Closest 

Cases” algorithm (section 4.7). When k = 7, RMSE for the “High CVD Risk” cases is 

3.67. 

6.4 FINDINGS 

Based on the experimentation results presented in Table 6-3, the CRISK model was 

decided to be the mixed sex model with the number of predictors n = 13 and the number 

of nearest neighbours k = 7, as this model performed better than the two separate gender 

specific models. For F1-value, though the male model (F1-value = 0.3966) performed a 

little better than the mixed sex model (F1-value = 0.3574), the female model (F1-value = 

0.2252) performed far worse than the mixed sex model. The male model achieved slightly 

better than the mixed sex model in terms of F1-value as a result of performing a little 

better in both Recall (0.8903 to 0.8733) and Precision (0.2551 to 0.2247). However, the 

mixed sex model did somewhat better than the male model in all other two metrics, TNR 

(0.8270 to 0.7784) and NPV (0.9913 to 0.9881). Although it was specified in section 3.9.1 

that the F1-value is favoured among the five performance metrics when comes to decision 

making, this is only applicable when the compared models are run against the same 

dataset. Therefore, the CRISK Predictor module (section 5.5) was decided to be 

developed as a mixed sex model. 

In spite of using SMOTE to balance the datasets, the TPR (Recall), Precision, and F1-

value are still proportional to the P/N (positives/negatives) ratio to some degree. This is 

shown in Table 6-6, accompanied by a chart in Figure 6-3. The male model performed a 

little better than the mixed sex model in Recall, Precision, and thus F1-value. The reason 

might just be that the male dataset had a higher P/N ratio. This examination of the P/N 

ratio reinforced the decision to construct the CRISK Predictor module as a mixed sex 

model instead of separate male and female models. The P/N ratio can be increased in the 

future by, for example, employing more positive cases to the existing case base. 
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Table 6-6: TPR, Precision, and F1-value, and P/N ratio of the three datasets 

Mixed sex dataset Male dataset Female dataset 

TPR 0.8733 0.8903 0.6364 

Precision 0.2247 0.2551 0.1368 

F1-value 0.3574 0.3966 0.2252 

P/N 0.0574 0.0852 0.0324 

Figure 6-3: A visual comparison of TPR, Precision, and F1-value to P/N ratio of the three datasets 

Another way to increase the P/N ratio is to increase the prediction interval from 10 years 

to a longer period, such as 20 years. At first, it may look contradictory to the statistics [1] 

saying that CVD accounts for about 31% of deaths worldwide, while the percentage of 

positive cases in the mixed sex dataset in this study was only 221/4071=5.4%. The reason 

for this discrepancy was that the death statistics were recorded for people across their 

lifetime while this study observed people for only a 10-year period. If the time interval 

had been set for a longer period e.g. 20 years, the number of positive cases would likely 

have been more. 

The TNR and NPV values are inversely proportional to the P/N ratio to some degree, 

especially the TNR. Though being inversely proportional to the P/N ratio, there is not 

much difference in the NPV values of the three datasets. This can be explained from the 
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formula NPV = TN / (TN + FN). For all three datasets, there are very few positive cases 

when compared with the number of negative cases. Therefore, FN is also very small 

compared with TN. Thus, NPV is very close to one for all three datasets. The TNR, NPV, 

and N/P values are provided in Table 6-7. The chart in Figure 6-4 allows a visual 

comparison of these metrics’ values between the three datasets. 

Table 6-7: TNR, NPV, and P/N ratio of the three datasets 

 Mixed sex dataset Male dataset Female dataset 

TNR 0.8270 0.7784 0.8698 

NPV 0.9913 0.9881 0.9866 

P/N 0.0574 0.0852 0.0324 

 

 

Figure 6-4: A visual comparison of TNR and NPV to P/N ratio of the three datasets 

Interestingly, three popular risk factors, sex, diabetes, and smoking, did not make it to the 

list of predictors for all three models. These three risk factors appear in many existing 

models, for example Wilson et al. [30], the two models of D’Agostino et al. [31], the two 

models of Pencina et al. [32], QRISK 2 [73], 2013 PCE [74], Globorisk [75], and 2018 

PCE [77]. The sex attribute is a predictor for all existing mixed sex models reviewed in 

this research, except the PREDICT-1° [76] model. The smoking attribute is a predictor 
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for all of the existing models reviewed in this study. The diabetes attribute is used in 

almost all the models reviewed in this body of work. 

The omission of these common predictors must have occurred for a reason. One possible 

reason could be that sex, diabetes, and smoking are indirect predictors (indirect causes). 

For the sex attribute, direct predictors are actually health parameters such as cholesterol, 

blood pressure, triglycerides, glucose etc. The diabetes attribute is in fact derived from 

glucose, which already made it to the list of predictors for the mixed sex model and the 

male model in this research. Similarly, for the smoking attribute, the cigarettes attribute 

(the number of cigarettes smoked a day) made it to the list of predictors for the mixed sex 

model and the male model instead. It seems reasonable that CVD outcomes would be 

more sensitive to how many cigarettes are smoked per day than simply whether that 

person smokes or not. 

Another interesting finding was that not only sex, diabetes, and smoking, but also none 

of the nominal (categorical) attributes made it to the list of predictors for all three models. 

This may be because, unlike numerical data, nominal data has a very limited number of 

values, for example “male” and “female”, “yes” and “no”, or “black”, “blue”, and 

“brown”. Therefore, when coding for e.g. the Distance algorithm for the Retrieve 

algorithm (section 4.5), the number of distance values for a nominal attribute is also very 

limited. For example, for sex, whose value is either “male” or “female”, there are only 

two possible distance values. The first value is zero, meaning the two cases are of the 

same sex. The second value is set to e.g. one, meaning the two cases are different in sex. 

Therefore, the distance calculation for a nominal attribute is not as fine as for a numerical 

attribute. As a result, nominal attributes may not be as important as numerical attributes 

for a prediction model whose algorithm is developed based on KNN. 

Weka was used to visualise data distributions of the 13 chosen attributes. Univariate 

attribution distribution graphs of these predictors are recorded in Appendix T. Among 

them, only HDL cholesterol is inversely proportional to CVD, i.e. the bigger HDL 

cholesterol (good cholesterol), the smaller the risk of having CVD. Age, LDL cholesterol, 

VLDL cholesterol, SBP, triglycerides, DBP, glucose, cigarettes, hematocrit, BMI, and 

LDH are all proportional to CVD. Total cholesterol is also proportional to CVD in general 

(Figure T-18). However, it is interesting seeing that at around one eighth area of the 

distribution graph, the trend goes in the opposite direction (inversely proportional to 

CVD). This trend may be explained by the fact that total cholesterol is made up of HDL, 
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LDL, and VLDL cholesterols. At this area, the cases having higher levels of total 

cholesterol also had higher levels of HDL cholesterol, which is the good cholesterol, and 

this reduces the risk of having CVD. Summaries of the mixed sex dataset with the 13 risk 

factors chosen for CVD prediction and its “SMOTEd” one are respectively shown in 

Figure U-42 (Appendix U) and Figure V-43 (Appendix V). 

6.5 CHAPTER SUMMARY 

The developed CRISK prediction model achieved prediction performance results of 

TPR=0.8733 (CI=0.0102), TNR=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), 

F1-value=0.3574 (CI=0.0147), and NPV=0.9913 (CI=0.0029) where CI is the 95% 

confidence interval. These results were achieved with the number of predictors n = 13 

and the number of nearest neighbours k = 7 with the mixed sex dataset. Experimentation 

on different combinations of predictors, different numbers of nearest neighbours, and 

different datasets (mixed sex, male, and female) helped make the decision to construct 

the CRISK prediction model as a mixed sex model instead of separating into a male model 

and a female model, and to set n = 13 and k = 7. The 13 predictors selected are age, total 

cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP, glucose, 

cigarettes, HDL cholesterol, hematocrit, BMI, and LDH. They are all numerical data. 

A couple of findings were derived from the experimentation results. One important 

finding was that TPR (Recall), Precision, and F1-value were proportional to the P/N ratio 

to some degree. This brings the hope to improve the prediction performance for the 

developed CRISK prediction model in the future by employing more positive cases into 

the case base. Another finding was that sex did not make it into the list of predictors. This 

finding was thought to be interesting as sex has been a really popular predictor appearing 

in all existing mixed sex CVD prediction models, that were reviewed in this study, except 

the PREDICT-1° [76] model. Among the 13 chosen attributes, only HDL cholesterol 

decreased CVD risk while the remaining predictors increased CVD risk as the predictor 

attributes’ values increased.  
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7.1 INTRODUCTION 

This chapter reports details of external validation in this study. The details include 

external dataset preparation, external dataset testing, results and findings from the results. 

For external dataset preparation the preparation steps are described. In addition, the 

quality of external datasets e.g. having the full list of predictor attributes or not, is also 

reported. The testing results and quality of external datasets helped derive useful findings 

for the developed CRISK prediction model when performing on external datasets. 

This chapter helps answer RQ4. The answer is described in section 9.1.1. 

7.2 EXTERNAL DATASET PREPARATION 

The external dataset was prepared from the FHS Original Cohort Exam 11. The reason 

for choosing this dataset as an external dataset was explained in section 3.6. Steps for 

preparing the external dataset were similar to those for preparing the mixed sex dataset 

from FHS Offspring Cohort Exam 1 as detailed in section 3.8. However, there were a 

couple of differences. The first one was that the list of predictor attributes was known. It 

was the 13 risk factors (age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, 

triglycerides, DBP, glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH), 

chosen based on the work reported in Chapter 6, used for the CRISK Predictor module. 

However, as FHS Original Cohort Exam 11 did not contain triglycerides and LDH, the 
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external dataset prepared contained only eleven predictors. The second one was, when 

calculating cvdInterval (section 3.8.5), cases having CVD = “No” and CVDYear < 10 

were removed instead of the CVDYear < 15 limit applied for data preparation for the 

experiments detailed in Chapter 8. The reason was that, unlike when creating a case base, 

there was no need to know µH and µL. In this set of experiments there was only interest 

in labelling cvd10 as either “Yes” or “No”. Table 7-1 shows the content of the predictors 

file describing the predictor attributes of the external dataset. 

Table 7-1: Predictors file to describe the predictors of the external dataset 

Predictor Name Predictor Description Data Type Value List 

age AGE double N/A 

bmi BMI double N/A 

glucose GLUCOSE double N/A 

cigarettes 

USUAL # OF CIGARETTES SMOKE 

NOW/EVER double N/A 

sysBP SYSTOLIC BLOOD PRESSURE double N/A 

diaBP DIASTOLIC BLOOD PRESSURE double N/A 

totalChol TOTAL CHOLESTEROL double N/A 

hdlChol HDL CHOLESTEROL double N/A 

vldlChol VLDL CHOLESTEROL double N/A 

ldlChol LDL CHOLESTEROL double N/A 

hematocrit HEMATOCRIT double N/A 

Figure 7-1 summarises the external dataset prepared, which has eleven predictors. The 

summary descriptive statistics were calculated using R (version 3.6.2). Three attributes 

in the external dataset (age, glucose, and HDL cholesterol) had values beyond those 

attributes’ value ranges in the case base (Appendix V). While the external dataset 

prepared had 537 cases; 231 cases had an age greater than the maximum age (62) in the 

case base; three cases had glucose greater than the maximum glucose (310) in the case 

base; one case had HDL cholesterol greater than the maximum HDL cholesterol (123) in 

the case base. As there were many cases in the external dataset having ages greater than 

the maximum age value in the case base, the prediction performance based on KNN 

would be affected as not having cases close enough to those out-of-range cases. Figure 
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7-2 shows the Weka univariate attribute distribution graph of Age in the prepared external 

dataset. 

 

Figure 7-1: Summary of the external dataset in R 

 

Figure 7-2: Univariate attribute distribution of Age in the external dataset 
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Therefore, another version of the external dataset was created, from the already prepared 

external dataset, by removing cases having predictor attribute values out of their ranges 

present in the case base. From here on, the first version of the external dataset will be 

referred to as External Dataset 1 and the second version as External Dataset 2. Both 

versions will be used to undertake a comparative evaluation of the prediction performance 

of the developed CRISK prediction model. Figure 7-3 gives a summary of External 

Dataset 2. 

 

Figure 7-3: Summary of External Dataset 2 in R 

The CRISK Constructor module was used to create two ontologies from the two external 

datasets. Figure 7-4 displays the screenshot of the ontology construction step for External 

Dataset 1. Ontology construction for External Dataset 2 was carried out in the same way. 
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Figure 7-4: Ontology construction for External Dataset 1 using the CRISK Constructor module 

7.3 EXTERNAL DATASET TESTING 

The CRISK Experimenter module (Train-Test experimentation type) was used to test the 

two external datasets. Figure 7-5 displays a screenshot of this testing step. The testing 

OWL file was an ontology file created in section 7.2. The training OWL file was the case 

base used for the CRISK Predictor module. 

 

Figure 7-5: External dataset testing using the CRISK Experimenter module 

7.4 RESULTS 

The prediction performance results of the developed CRISK prediction model on the two 

external datasets, External Dataset 1 and External Dataset 2, are displayed in Table 7-2.  
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Table 7-2: External validation results where CI is the 95% confidence interval 

 External Dataset 1 External Dataset 2 

TPR 0.7410 (CI = 0.0371) 0.8167 (CI = 0.0434) 

TNR 0.4472 (CI = 0.0421) 0.5041 (CI = 0.0560) 

Precision 0.3189 (CI = 0.0394) 0.2866 (CI = 0.0507) 

F1-value 0.4459 (CI = 0.0420) 0.4242 (CI = 0.0554) 

NPV 0.8318 (CI = 0.0316) 0.9185 (CI = 0.0307) 

 

Prediction performance on External Dataset 2 could be concluded to be better than on 

External Dataset 1. It was better in terms of TPR, TNR, and NPV. However, it was worse 

for Precision and slightly worse for F1-value. This can be explained as resulting from 

differences in the dataset sizes and P/N ratios. The External Dataset 1 had P = 139 and N 

= 398 while the External Dataset 2 had P = 60 and N = 246. As Precision is computed as 

TP / (TP + FP), Precision can achieve a high value when the TP is high. Though the TPR 

for External Dataset 1 is lower than for External Dataset 2, the TP value is a lot higher 

for External Dataset 1 than for External Dataset 2 as P is much higher in External Dataset 

1. Moreover, P/N = 0.35 for External Dataset 1, which is greater than P/N = 0.24 for 

External Dataset 2. As noted in section 6.4, the F1-value is proportional to the P/N ratio. 

Therefore, prediction performance on External Dataset 2 could be concluded to be better 

than on External Dataset 1 regardless of having a smaller F1-value. 

7.5 FINDINGS 

The developed CRISK prediction model achieved good results on positive cases but 

terrible results on negative cases. CRISK performed reasonably well based on TPR 

(0.7410 and 0.8167) and very well on NPV (0.8318 and 0.9185). However, TNR was 

undesirable (0.4472 and 0.5041). 
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Figure 7-6: Details of prediction results for External Dataset 2 

Details of the test results (the CSV file for k = 7) for External Dataset 2 were examined 

to find a possible explanation for the poor performance observed on negative cases. 

Figure 7-6 shows a screenshot of FP cases from the test result file. The “P CVD Interval” 

column for all FP cases was examined. Its histogram is shown in Figure 7-7. 

 

Figure 7-7: Histogram of Predicted CVD Intervals for FP cases in External Dataset 2 
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The predicted CVD Interval values for 122 FP cases in External Dataset 2 ranged from 

5.1 to 9.98 years. It was good to see that none of FP cases had a predicted CVD Interval 

of less than 5 years. This also means that all FP cases were predicted to belong to both 

“High CVD Risk” and “Low CVD Risk” classes; however, µH is greater than µL. Sixty-

five (more than a half) of the FP cases had a predicted CVD Interval greater than 7.77 

years. Just a small shift to the right of these predicted CVD Interval values means those 

cases shift from being FP to TN and this shift would result in an increase in the TNR. 

Taking into account that two predictors (triglycerides and LDH) were missing in the 

external dataset, it could be possible that if these predictors had not been missing, the 

TNR may have been higher and therefore prediction performance would have been 

improved. 

7.6 CHAPTER SUMMARY 

Though two out of thirteen predictor attributes were missing from the external dataset, 

external validation achieved the TPR values of 0.7410 and 0.8167 for External Dataset 1 

and External Dataset 2 (resulting from removing value-out-of-range cases from External 

Dataset 1), respectively. Besides, the resulting NPV values were 0.8318 and 0.9185 for 

External Dataset 1 and External Dataset 2, respectively. 

Having out-of-range predictor attribute values (when compared to the ranges in the case 

base) in the test dataset decreases the prediction performance. This was illustrated by 

examining the prediction performance results of External Dataset 1 and External Dataset 

2. The underlining cause of this decrease in predictive power seems to be related to the

fact that the case base did not provide enough close enough neigbours to those value-out-

of-range cases rather than directly to the CRISK model itself. 
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Chapter 8 

DISCUSSION 
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To answer the six research questions stated in section 1.2, a system named CRISK was 

developed based on fuzzy ontology and CBR. The case base of the system is a fuzzy 

ontology constructed from the FHS Offspring Cohort Exam 1 dataset. The CRISK model 

achieved prediction performance results of TPR=0.8733, TNR=0.8270, 

Precision=0.2247, F1-value=0.3574, and NPV=0.9913. Important risk factors were found 

to be age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, triglycerides, DBP, 

glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH. External validation on 

the FHS Original Cohort Exam 11 dataset (External Dataset 2), which had two missing 

risk factors (triglycerides and LDH), achieved TPR=0.8167, TNR=0.5041, 

Precision=0.2866, F1-value=0.4242, and NPV=0.9185. 

This chapter introduces and discusses four discussion points related to the CRISK model 

developed in this research. The first one is whether the model has solved the problems of 

current widely used regression models. This discussion point also helps answer RQ5. The 

second point is about that CRISK supports personalised prediction. The third one is to 

compare CRISK to existing CVD prediction models. This third point also helps answer 

RQ6 (the answers to RQ5 and RQ6 are described in section 9.1.1). Finally, clinical 

applicability of the CRISK model is discussed in the fourth discussion point. 
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8.1 HAS THE CRISK MODEL SOLVED PROBLEMS WITH THE 

CURRENT REGRESSION PREDICTION MODELS? 

The CRISK model designed and implemented as part of this research has possibly solved 

or at least partially solved five of the eight limitations of the current regression models 

stated in Table 2-3 in section 2.2.5. Table 8-1 provides justifications for this answer in 

detail by limitation.
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Table 8-1: Which limitations of current regression models have possibly been solved by the CRISK model? 

# Limitation Solved? Explanation 

1 Inaccuracy for 

individuals 

Yes The developed CRISK model first retrieves seven closest cases for an input case. It then generates prediction for the input 

case based on the CVD outcomes of these seven closest cases. Therefore, unlike regression models that are known to 

predict for populations [86], the CRISK model was designed to predict for individuals. 

2 Inaccuracy for other 

cohorts 

N/A There is not yet an answer to this problem. This could not be addressed in this research because there was insufficient 

testing undertaken on external datasets and insufficent data. The only external dataset collected for this research was the 

FHS Original Cohort Exam 1. However, this dataset had two missing risk factors, triglycerides and LDH. In addition, 

the FHS Original Cohort belongs to the same racial group as the case base constructed from FHS Offspring Cohort, so 

there was a lack of diversity in the cases available. In future, the CRISK model should also be tested on cohorts from 

different racial and geographical groups. 

3 Inflexibility of handling 

intervention 

No At this stage, the CRISK model does not handle intervention factors such as the person quits smoking, or the person starts 

having treatment for CVD or related conditions. 

4 Requirement of 

complete clinical data  

Partially 

Yes 

The CRISK model was designed to allow for missing data. Missing data can be both in the case base and in the input 

case. While the system can make a prediction, missing data may affect the prediction accuracy. This is reasonable. 

There is currently no automatic mechanism in the system for handling missing data. The system currently just ignores 

these missing risk factors and retrieves the closest cases based on the risk factors that have values in the input case. 

Therefore, doctors are the ones responsible for making judgement calls based on the system’s CVD prediction outcomes, 
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keeping in mind the potential impact of the missing data. More information about missing data handling is given in 

section 9.2.7. 

5 Deficiency of handling 

inaccurate data or result 

Partially 

Yes 

In the CRISK system, the case base is a fuzzy ontology capable of storing both crisp and fuzzy data. When fuzzified, an 

inaccurate crisp data value could still belong to the correct fuzzy set. For example, a person smokes 45 cigarettes per day 

but this is inaccurately recorded as 55 cigarettes per day. When fuzzified, smoking 45 cigarettes per day or smoking 55 

cigarettes per day could belong to the same fuzzy set e.g. “heavy smoking”. 

Currently, in the CRISK system, only the CVD prediction outcomes are fuzzy. All values of risk factors are stored in the 

case base as crisp values. In addition, the current version of the Retrieve algorithm also only works with crisp-valued risk 

factors. However, with not much effort, the Retrieve algorithm could be updated to work with fuzzy-valued predictors in 

the future. 

The CRISK system displays CVD prediction results including membership values of two fuzzy sets “High CVD Risk” 

and “Low CVD Risk”. Therefore, a case can be predicted to belong to both “High CVD Risk” and “Low CVD Risk” 

with, most of the time, different membership values. As a result, a FP or FN case may still “be paid attention to” as 

having a positive membership value belongs to the other fuzzy set (the correct set). Real examples for this were mentioned 

in section 7.5. 

6 Deficiency of handling 

vagueness of data or 

result  

Partially 

Yes 

Currently the CRISK system works with type-1 fuzzy ontology and therefore can handle vagueness of data or result. 

However, as noted in Limitation #5, in the current CRISK system, only CVD outcomes are fuzzy. Hence this limitaton 

is only partially addressed. 
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7 Deficiency of handling 

uncertainty of data or 

result 

No In its current version, the CRISK system is not capable of working with type-2 fuzzy ontology, which is known to handle 

uncertainty of data. 

8 Poor explanatory 

capacity 

Yes The CRISK system displays the seven closest cases together with prediction outcomes for the input case in order to 

enhance the system’s explanatory capacity. This extra detail helps the user interpret the CVD prediction outcomes 

generated by the system. 
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8.2 PERSONALISED PREDICTION 

The CRISK model built based on CBR is for personalised prediction. Unlike many 

existing models e.g. regression models, a formula is created based on the whole dataset. 

After that, the same formula is used to give predictions for new people. The formula was 

created to separate as many people in the dataset as possible into correct classes, focusing 

on the whole population rather than an individual. Therefore, such models are considered 

to predict for populations [86]. On the other hand, the CRISK model always tries to 

retrieve the seven closest cases to the input case first. Then, it generates CVD prediction 

outcomes for the input case based on CVD outcomes of these seven closest cases. 

Therefore, it can be considered as a model for personalised prediction (individualised 

prediction) rather than as population based. 

Personalised prediction should be the focus for building a disease prediction model. 

However, so far, it has not been given enough attention, especially in CVD prediction. 

None of the CVD prediction models reviewed in this research were designed to be a 

pesonalised model. Recently, in 2019, there was a PhD dissertation [185] completed that 

introduced a competing-risk adjusted model called LIFE-CVD to estimate the benefit 

from lipid-lowering, blood pressure-lowering, and anti-thrombotic therapy and smoking 

cessation in people without prior CVD. Individual therapy-benefit is expressed as 10-year 

risk reduction, lifetime-risk reduction, and CVD-free life expectancy. In essence, this is 

also a regression model adding individualised therapy-benefit estimation. Different 

individual may have different therapy and therefore may have different CVD risk 

reduction. 

8.3 COMPARISON TO EXISTING MODELS 

Table 8-2 gives a general comparison of the developed CRISK model to three existing 

prediction models, D’Agostino et al. [31], PREDICT-1° [76], and 2018 PCE [77]. 

Reasons for choosing these existing models were given in section 3.9.3. All three existing 

models were built using the Cox Proportional Hazards regression method [37]. None of 

these studies performed external validation when their models were published. However, 

they can all be externally validated as long as there is an external dataset having the same 

risk factors, as their CVD risk equations and tools are publicly available for download 

and use.
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Table 8-2: A general comparison of CRISK and three chosen existing CVD prediction models 

Model Risk factors Method Prediction 

Interval 

Prediction Performance External 

Validation 

Comments 

CRISK Age, total cholesterol, LDL-C, VLDL-C, 

SBP, triglycerides, DBP, glucose, cigarettes, 

HDL-C, hematocrit, BMI, LDH 

Fuzzy ontology 

CBR 

10 years TPR=0.8733, TNR=0.8270, F1-

value=0.3574, and NPV=0.9913 

Yes External validation on a dataset with 

two missing risk factors achieved 

TPR=0.8167, TNR=0.5041, F1-

value=0.4242, and NPV=0.9185. 

D’Agostino 

et al. [31] 

Age, sex, SBP, treatment for hypertension, 

smoking, diabetes, total cholesterol, HDL-C 

Cox proportional-

hazards modeling 

10 years AUC = 0.763 for men and 0.793 

for women 

No The excel based CVD risk calculator 

tool is available for download. 

PREDICT-

1° [76], 

Age, ethnicity, NZ index of socioeconomic 

deprivation, family history of premature 

CVD, smoking, diabetes, history of atrial 

fibrillation, SBP, TC/HDL-C, blood pressure 

lowering medication, lipid lowering 

medication, antithrombotic medication 

Cox proportional 

hazard modelling 

5 years The slopes of regression lines 

comparing predicted and 

observed total cardiovascular 

disease risk in deciles were 0.98 

(95% CI 0.93–1.02) for women 

and 0.98 (0.98–1.01) for men. 

No The model (risk equation) was 

designed to be externally validated by 

other studies. 

2018 PCE 

[77] 

Age, sex, race, total cholesterol, HDL-C, 

SBP, treatment for high blood pressure, 

diabetes, smoking 

Cox proportional 

hazard modelling 

10 years 

and 

lifetime 

No explicit results but stating 

that the updated 2018 PCE 

improved accuracy among all 

race and sex groups comparing 

to the 2013 PCE. 

No The CVD Risk calculator tool named 

“ACC/AHA Excel-Based CV Risk 

Calculator” is available for download. 
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Nevertheless, for prediction performance comparison against CRISK, only the 

D’Agostino model and the 2018 PCE model were selected. The reason for choosing these 

two existing models was twofold. First, all their risk factors were available in the FHS 

Offspring Cohort Exam 1 dataset, a dataset that was available in this research. Second, 

their prediction intervals are 10 years, the same as CRISK. On the other hand, PREDICT-

1° was not chosen for performance comparison because it not only predicts CVD within 

5 years but also uses risk factors that were not available in the datasets of this research. 

The test dataset preparation process for performance comparison is summarised in Figure 

8-1. First of all, a dataset was prepared to have all the risk factors used by the three 

models. The way to do this was to collect more risk factors that are used by the existing 

models into the dataset that was prepared from the FHS Offspring Cohort Exam 1 dataset 

for CRISK in this research. For “race” (used by 2018 PCE), this risk factor was added, 

and its value was set to “WH”. The 2018 PCE model uses “race” and accepts two values, 

“AA” (for African Americans) and “WH” (for whites or others). The FHS Offspring 

Cohort is known as a Caucasian cohort and therefore the value “WH”. After all additional 

columns were added, it was checked to remove cases having missing values; however, 

there was no such case. Next, as each of the existing models has different acceptable 

ranges of risk factor values, two comparison scenarios were defined. Test dataset 

preparation was carried out according to these two scenarios. An example of acceptable 

ranges of values is that, 2018 PCE only accepts total cholesterol values from 130 to 320 

mg/dl. 

The first scenario was to have three test datasets for three models. The test dataset for 

CRISK was the same as the one prepared from the first step above because all risk factor 

values were within acceptable ranges for CRISK. In fact, the model takes any ranges of 

values as there was not any acceptable range defined for the model in this research. This 

dataset had 4,071 cases (P = 221, N = 3,850). The test dataset for the D’Agostino model 

was formed by removing cases outside acceptable ranges of values for the model. This 

resulted in a dataset of 2,841 cases (P = 211, N = 2,630). In the same way, the test dataset 

for the 2018 PCE model was created and had 1,470 cases (P = 166, N = 1,304). 
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Figure 8-1: Test dataset preparation process for performance comparison to existing models 

The second scenario was to have one test dataset for use in all three models. This was 

done by removing cases outside acceptable ranges of values for all three models. The 

resulting dataset had 1,470 cases (P = 166, N = 1,304). 

Table 8-3 and Table 8-4 show prediction performance testing results from scenario 1 and 

scenario 2, respectively, for the three models. The performance metrics given are TPR, 

TNR, Precision, F1-value, and NPV. To have these performance metrics for the 

D’Agostino model and the 2018 PCE model, a confusion matrix was generated for each 

model. For D’Agostino, the threshold to classify “High CVD Risk” and “Low CVD Risk” 

from prediction results was 20%. This means that if the predicted 10-year CVD risk 

(probability) is 20% or more, the prediction is classified as “High CVD Risk” (or 

predicted 10-year CVD is “Yes”). For 2018 PCE, the threshold was 10% for “High CVD 

Risk”. 
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Table 8-3: Performance comparison of CRISK and existing models—Scenario 1 

CRISK D’Agostino 2018 PCE 

TPR 0.8733 0.3318 0.4096 

TNR 0.8270 0.9422 0.8673 

Precision 0.2247 0.3153 0.2822 

F1-value 0.3574 0.3233 0.3342 

NPV 0.9913 0.9462 0.9203 

Table 8-4: Performance comparison of CRISK and existing models—Scenario 2 

CRISK D’Agostino 2018 PCE 

TPR 0.9217 0.3675 0.4096 

TNR 0.5775 0.8896 0.8673 

Precision 0.2173 0.2976 0.2822 

F1-value 0.3517 0.3288 0.3342 

NPV 0.9830 0.9170 0.9203 

In performance test scenario 1, CRISK can be concluded to perform better than the two 

existing models. Its TPR was a lot higher than the other two models (0.8733 c.f. 0.3318 

and 0.4096). It also performed better in terms of F1-value and NPV. For TNR and 

Precision, it did a little worse than the other two models. Although the test dataset for 

CRISK was a lot less balanced than the test datasets for the other two models (P/N = 

221/3850 c.f. 211/2603 and 166/1304), CRISK still achieves a better F1-value than the 

two existing D’Agostino and 2018 PCE models (0.3574 c.f. 0.3233 and 0.3342). 

In performance test scenario 2, CRISK can also be concluded to perform better than the 

two existing models. Its TPR was also a lot higher than the other two models (0.9217 c.f. 

0.3675 and 0.4096). It also performed better in terms of F1-value and NPV. For Precision, 

it did a little worse than the other two models (0.2173 c.f. 0.2976 and 0.2822). 

Interestingly, for TNR, CRISK performed a lot worse than the other two models (TNR = 
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0.5775 c.f. 0.8896 and 0.8673). As the three models were run against the same dataset, 

F1-value is the decisive metric, followed by Recall (TPR), for decision making (section 

3.9.1). Therefore, CRISK can be determined to perform the best among the three models 

(F1-value = 0.3517 c.f. 0.3288 and 0.3342, TPR = 0.9217 c.f. 0.3675 and 0.4096). 

That CRISK performed badly in TNR in scenario 2 is worth exploring. Its test dataset in 

scenario 2 was a subset of the test dataset employed in scenario 1. In scenario 1, the test 

dataset’s age range was from 13 to 62 years. In scenario 2, the test dataset’s age range 

was from 40 to 62 years, as cases less than 40 years old were removed to be within 

acceptable ranges of values for all three models. Looking at the age distribution of the 

case base in Figure T-17, it can be seen there are a lot more positives than negatives. 

Therefore, the whole case base was balanced but for the age range from 40 to 62, it was 

imbalanced and skewed towards positive cases. This could be one of the main reasons for 

CRISK performing well as determined by TPR but badly in terms of TNR in this age 

range. This finding is of interest and could lead to future work of dividing the whole 

dataset into different age ranges and applying SMOTE for each individual age range 

instead of for the whole dataset. 

Besides prediction performance, another focus for comparing these models is how 

prediction outcomes are presented. Figure 8-2 depicts how CVD prediction outcomes are 

presented from the D’Agostino model. The other two existing models also provide similar 

prediction outcome presentations. They all generate prediction outcomes as probabilities 

for developing CVD within 10 years. For example, in Figure 8-2, the probability of having 

10-year CVD is 2.4%. This reaffirms that prediction using regression-based method 

models is a prediction for populations. In this case, the person does not know whether 

they belong to the 2.4% of people who would develop CVD or belongs to the 97.6% of 

people who would not develop CVD within 10 years. Interpretation of the CVD 

prediction result as conveyed to the person would be that they should try to lower their 

risk to the normal level and even better to the optimal level. 
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Figure 8-2: An example of CVD prediction outcomes presentation of a regression model 

The CRISK model generates and presents CVD prediction outcomes differently from the 

three existing prediction models. This can be seen in Figure 5-32 and Figure 5-33 in 

section 5.5. The results include predicted Risk Class, predicted CVD Interval, predicted 

High Risk Membership, predicted Low Risk Membership, a graph depicting “High CVD 

Risk” and “Low CVD Risk” fuzzy sets, and the seven closest cases to the input case. 

Information contained in the seven closest cases may help doctors make a decision as to 

whether to accept or reject the system’s prediction result. This information, from the 

closest seven cases, may also help doctors find useful additional insights into the specific 

case under consideration. 

 

Figure 8-3: Possible interpretation of CVD prediction outcomes from the CRISK model 

For interpretation of the CVD prediction result by the CRISK model, a possible way to 

respond to the prediction result is proposed as illustrated in Figure 8-3. When the result 

falls into the left (red) area, i.e. µH = 1, the person needs high attention. When the result 

falls into the middle (orange) area, i.e. 0 < µH < 1 and 0 < µL < 1, the person needs medium 

attention. When the result falls into the right (blue) area, i.e. µL = 1, the person needs low 

attention. The person should aim to shift their CVD prediction result towards the right 
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(the blue area). With this new way to interpret the prediction result, a wrongly classified 

case (FP or FN) may still be paid attention to and therefore not be missed out as may still 

have a positive membership value belongs to the correct fuzzy set (see real examples in 

section 7.5). 

8.4 CLINICAL APPLICABILITY OF THE CRISK MODEL 

The CRISK model could be possibly applied in day-to-day operations in healthcare 

clinics. There are several reasons for this belief. First, for prediction performance, it 

achieves TPR=0.8733 and TNR=0.8270 (section 6.3), and performs better than two 

existing high-profile models (section 8.3). Second, it is designed to predict for an 

individual, not for a population. Third, besides the prediction result, the system also 

displays the closest cases to the input case. This information would be useful for e.g. 

manual checking and manual decision-making by doctors. In addition, it provides a new 

way to interpret the CVD prediction result using fuzzy set memberships. This new way 

would be worth further investigation as it may possibly provide more useful and accurate 

information than the traditional way of using risk probabilities (see justification in section 

8.3). Moreover, the CRISK system was designed to be continuously updated. Updates 

include enriching the case base, updating the list of risk factors, and updating the number 

of nearest neighbours. Updates of the list of risk factors and the number of nearest 

neighbours can be achieved using the developed experimentation framework (CRISK 

Experimenter Module). 
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This chapter gives a concise and engaging conclusion to this body of work. It first gives 

a summary of the research achievements. These include providing answers to the research 

questions, giving reflection on the research, and showing the contribution of the study. 

Finally, limitations and future directions for this research are provided. 

9.1 RESEARCH ACHIEVEMENTS 

9.1.1 Answers to Research Questions 

As there was no existing fuzzy ontology CBR model for the CVD prediction domain, this 

research set out to build a fuzzy ontology CBR model for prediction of 10-year CVD 

(reported in Chapter 4, Chapter 5 and Chapter 6), plus performing external validation 

(reported in Chapter 7) and having discussions (reported in Chapter 8) to answer the six 
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research questions defined in section 1.2. As a result, this research has given answers to 

these six research questions, restated below: 

RQ1. Can a CVD prediction model be developed using a combination of fuzzy 

ontology and CBR? 

RQ2. What risk factors are important in the prediction of CVD using this method? 

RQ3. How does the developed model perform in terms of prediction performance? 

RQ4. How does the developed model perform in terms of external validation? 

RQ5. How does the developed model overcome the limitations of current widely 

used regression models? 

RQ6. How does the developed model compare with current widely used regression 

models in terms of prediction performance? 

The answer to RQ1 is “Yes”. A way to develop CRISK using a combination of fuzzy 

ontology and CBR is summarised as follows. Existing cases are stored in a case base 

which is a fuzzy ontology. The model has four main algorithms Retrieve, Reuse, Revise, 

and Retain associated with the four CBR activities. The output (prediction result) includes 

predicted CVD Class, predicted CVD Interval, predicted High CVD Risk membership, 

and predicted Low CVD Risk membership. Details of the CRISK model and the 

implemented CRISK system can be found in Chapter 4 and Chapter 5, respectively. 

The answer to RQ2 is age, total cholesterol, LDL cholesterol, VLDL cholesterol, SBP, 

triglycerides, DBP, glucose, cigarettes, HDL cholesterol, hematocrit, BMI, and LDH. 

However, this answer was based on the case base built from the FHS Offspring Cohort 

dataset. This list of values might change when data from other datasets are included in 

the case base. Details of the experiments to find the list of risk factors for the CRISK 

model can be found in Chapter 6. 

For answering RQ3, the CRISK model achieved prediction performance results of 

TPR=0.8733 (CI=0.0102), TNR=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), 

F1-value=0.3574 (CI=0.0147), and NPV=0.9913 (CI=0.0029) where CI is the 95% 

confidence interval. Details of the experiments and the prediction performance results are 

in Chapter 6. 

For answering RQ4, the CRISK model achieved TPR=0.8167 (CI=0.0434), TNR=0.5041 

(CI=0.0560), Precision=0.2866 (CI=0.0507), F1-value=0.4242 (CI=0.0554), and 

NPV=0.9185 (CI=0.0307) where CI is the 95% confidence interval for external validation 
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using the FHS Original Cohort Exam 11 dataset. Two risk factors, triglycerides and LDH, 

were missing in this external dataset. More details of external validation are in Chapter 7. 

To answer RQ5, an analysis was done and it concluded that CRISK was able to solve or 

partially solve five out of eight limitations identified for regression models. A 

combination of fuzzy ontology and CBR helped build a model that provided several 

advantages over the current mainstream regression models. Using CBR, the developed 

model supported personalised prediction by focusing on closest cases to the input case. 

Moreover, retrieving and showing the closest cases alongside the CVD prediction 

outcomes helped give a good explanatory capability to the model. Using type-1 fuzzy 

ontology meant that the CRISK model could handle inaccurate and vague input data and 

prediction results. In addition, the CRISK model developed was designed to allow for 

missing data in both input cases and the case base. More details of the analysis can be 

found in section 8.1. 

For answering RQ6, CRISK was compared to two high-profile CVD prediction models, 

D’Agostino et al. [31] and 2018 PCE [77]. CRISK outperformed these two models in 

terms of prediction performance when testing on the FHS Offspring Cohort Exam 1 

dataset. More details on comparing CRISK to existing models are in section 8.3. 

9.1.2 Research Contributions 

There are several contributions this research has added to the existing base of knowledge. 

They are summarised below: 

• The thesis contributed an in-depth literature review of CVD prediction models,

including conventional Framingham models, augmented Framingham models,

and alternatives to Framingham models. In addition, the literature review

identified eight problems with current mainstream regression models. It also

reviewed current fuzzy logic, fuzzy ontology and CBR approaches in CVD

prediction. Moreover, it provided the reasons why a combination of fuzzy

ontology and CBR would be able to solve the problems of regression models and

would be worth investigating for CVD prediction.

• The main contribution of this research was the design, implementation and

evaluation of the CRISK prediction model and its associated CRISK system. The

CRISK model achieved prediction performance results of TPR=0.8733
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(CI=0.0102), TNR=0.8270 (CI=0.0116), Precision=0.2247 (CI=0.0128), F1-

value=0.3574 (CI=0.0147), and NPV=0.9913 (CI=0.0029) where CI is the 95% 

confidence interval. These results are reasonably good for a CVD prediction 

model. In addition, the CRISK model was shown to solve or partially solve five 

out of the eight problems of current mainstream regression models. Moreover, 

CRISK performed better when compared to two high-profile existing models, 

D’Agostino et al. [31] and 2018 PCE [77], by testing all the models against the 

same dataset—the FHS Offspring Cohort Exam 1. The CRISK system contains 

modules for creating ontologies, running experiments with different datasets, 

number of nearest neighbours, and number of risk factors for different scenarios, 

and providing CVD prediction for an individual case. 

• This research showed that fuzzy ontology CBR approaches are useful in CVD

prediction. Fuzzy ontology helps deal with vagueness and uncertainty of data.

CBR is suitable for personalised prediction. These advantages should encourage

future researchers to invest fuzzy ontology CBR approaches in CVD prediction

specifically and in chronic disease prediction generally.

• This research contributed a new way to represent and interpret CVD prediction

outcomes. The prediction outcomes are represented as fuzzy membership values

of “High CVD Risk” and “Low CVD Risk” fuzzy sets. Depending on the fuzzy

membership values, different attention is given to the input case. This new way of

representing and interpreting CVD prediction outcomes is different from the

widely used regression models. A typical regression model displays prediction

outcomes as probabilities e.g. 5% probability of developing CVD within 10 years.

• Finally, this research proposed the idea of continuous experimentation and

updates for a CVD prediction model and provided a system that enables this

process. So far, it has been that a model developed from a cohort turns out to

perform poorly on different cohorts. Therefore, it seems reasonable to keep

experimenting on new datasets to update the model in order to continuously

improve the prediction performance of the model.

9.1.3 Reflection on the Research 

One factor that helped arrive at a successful outcome to this programme of research was 

a properly defined research methodology. The Design Science methodology was 

accompanied by a research framework, research guidelines, and research strategies and 
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plans. In addition, dataset collection, dataset selection, experimentation design, data 

preparation, and an evaluation protocol were also defined and documented in detail. This 

made the research journey go smoothly and resulted in the CRISK model, which is a new 

and innovative artifact that harnesses the strengths of fuzzy ontology and CBR for CVD 

prediction. This artifact’s success led to prediction performance results that helped 

successfully answer the six research questions. 

This body of work can be easily reproduced. Besides a detailed research methodology, 

the model design, implementation, experimentation, and external validation were also 

documented. In particular, the developed Retrieve, Revise, and Reuse algorithms were 

given in this thesis. Moreover, programming language, plugins, and development tools 

were also reported in this thesis. Therefore, following this thesis step by step, other 

researchers can reproduce this research and be able to arrive at the same results. 

9.2 LIMITATIONS AND FUTURE DIRECTIONS 

In this research, there were several limitations opening up areas for future work. These 

limitations were attributed to a number of causes, including the time constraint of this 

three year PhD programme, lack of open and freely available datasets for building and 

validating the CRISK prediction model developed in this research, and that fuzzy 

ontology CBR approaches are new in CVD prediction and thus there is a lack of existing 

resources e.g. algorithms and tools. The following subsections give details of the 

limitations and future directions identified for this study. 

9.2.1 Need for expansion of the current Case Base 

The case base of the CRISK system needs to be continuously expanded. There are a 

couple of reasons for this. Primarily, as it is a CBR system, the richer the case base, the 

more chance for the system to receive closer cases to the input case. The case base was 

built from the FHS Offspring Cohort, which was a majority-Caucasian cohort. 

Racial/ethnic status has been considered as a strong predictor for chronic disease, 

including CVD [186]. Excluding race from a clinical prediction model (CPM) may lead 

to inaccurate prognostication and harmful decision making in minority groups [187, 188]. 

Therefore, the case base needs to be expanded to include cases from other ethnicities. In 
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addition, continuous expansion of the case base will support more experimentation to 

update the CRISK model regularly to continuously improve CVD risk prediction. 

However, to accomplish expansion of the CRISK case base, more datasets need to be 

made available to researchers in the future. In this study, it was difficult to find open 

datasets to build and validate the CRISK model. There are reasons, such as confidentiality 

of healthcare data, for not sharing datasets. However, sharing data freely and openly 

might help accelerate the progress towards achieving a precise and reliable CVD 

prediction model. 

9.2.2 Experimenting different approaches to balance the case base 

As pointed out in section 8.3, the current approach of applying SMOTE to the whole 

imbalanced dataset for building the case base may not be the best approach. Using 

SMOTE may have resulted in the poor TNR observed for senior people. 

Two alternative approaches may be worth exploring. Firstly, dividing the dataset into 

different age ranges, for example [20, 29], [30, 39], [40, 49], [50, 59], and so on. SMOTE 

is then applied to each individual age range separately (refer to section 8.3 for 

justification). The second option is to gather more real positive cases to the dataset and 

remove negative cases from the dataset in order to balance the number of positive and 

negative cases. 

9.2.3 Fuzzification of Predictor Variables 

In this research, fuzzy logic was applied in representing CVD prediction outcomes, but 

not predictor variables. There was no guarantee that fuzzification of predictors would 

yield better prediction for the CRISK model. However, it may be worth trying. A very 

strong candidate for fuzzification among the 13 predictors used in the model is 

“cigarettes”. A person may not know exactly how many cigarettes they smoke a day. The 

number of cigarettes smoked a day could be fuzzified as, for example, “light smoking”, 

“medium smoking”, and “heavy smoking”. Another candidate for fuzzification is “race”. 

“White race” set, “black race” set, and “Asian race” set, for example, could be created. A 

person of mixed race, for example “white” and “black”, could be identified by the degrees 

of membership values, such as µwhite = 0.5, µblack = 0.5, µAsian = 0. 
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9.2.4 Usage of type-2 fuzzy ontology 

In this study, the capability of handling uncertainty of data of type-2 fuzzy sets (see 

section 2.3.2) was not explored. The reason was twofold. First, as type-1 fuzzy sets are 

simpler than type-2 fuzzy sets, type-1 fuzzy sets were chosen to start with in this research 

to see how things go. Second, there was no fuzzy ontology tool that supported type-2 

fuzzy sets. The three-year time constraint of the PhD programme did not allow 

development of such an ontology tool. However, it would be worth exploiting the 

capability of handling data uncertainty of type-2 fuzzy sets to improve CVD prediction 

models in future. 

9.2.5 More Experimentation and Continuous Updates of the CRISK 

model 

As CBR is driven by data, continuous experimentation and updates of the CRISK model 

are recommended. When new cases are added into the case base, the experimentation 

described in Chapter 6 should be carried out. This will help update the number of nearest 

neighbours k and the list of predictors for the CRISK model. Moreover, when having 

enough cases from different races, it might be worth experimenting with different models 

for different races. Results from different experiments should be compared to decide on 

optimal settings for the CRISK model’s parameters. 

Not only the CRISK model, but any model (e.g. a regression model) should be 

continuously updated. In case of a regression model, whose equation was built from a 

certain dataset, having new datasets from different cohorts, if the model was rebuilt from 

a combination of the original dataset and the new datasets, would most likely result in a 

different equation to the original model’s equation. 

There could be an argument asking: “When will this continuous updating process end?” 

or “Is the model never completed?” The answer is that the continuous updating process 

might never end. This process is aimed to periodically improve the CVD prediction 

performance for a model and/or keep the model up to date. These updates reflect changes 

in population health and related environmental factors from which contemporary cases 

are derived. Although a perfect prediction model might never be achieved, continuous 

experimentation and updates to a developed model on new emerging datasets should 

result in continuous improvement of the prediction performance of the model. 
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9.2.6 Introduction of Weights for the Retrieve algorithm 

It may be worth trying to add weights to the Distance algorithm that is part of the Retrieve 

activity (described in section 4.5). Then, line 16 of the Distance algorithm would become 

d = d + weight×weight×diff×diff. As different risk factors have different levels of impact 

on the CVD outcomes (as ranked by Weka’s InfoGainAttributeEval attribute evaluator), 

appropriate weight values could possibly improve the CVD prediction performance for 

the CRISK model. 

9.2.7 Missing Data Handling Mechanism 

It might be good trying to develop an automatic missing data handling mechanism. The 

CRISK system might then be able to set a boundary for missing data. For example, how 

many missing risk factor values and which missing risk factors are acceptable for the 

input case? In addition, the system might also be able to replace missing values from input 

cases with appropriate values computed using an appropriate imputation method. 

Currently, the system simply ignores missing risk factors and retrieves closest cases based 

on risk factors that have values in the input case. As a result, CRISK heavily depends on 

doctors making judgement calls on CVD prediction outcomes for those cases that are 

missing data. 

9.2.8 CRISK system giving indication for out-of-range input 

The developed CRISK system should somehow give indication of when the input case 

has risk factor values that are outside of value ranges in the case base. This indication 

would help doctors make judgement calls if the input case is not “so much” out-of-range 

and accept the prediction outcomes from the system. Out-of-range values proved to affect 

the prediction performance as shown in section 7.4—prediction performance on External 

Dataset 2 (no out-of-range values) was better than on External Dataset 1 (having out-of-

range values). Implementing this indication feature for the CRISK system would only 

take a few days. 

9.2.9 Clinical Trials 

Clinical trials of the developed CRISK model should be one of the next steps following 

the completion of this PhD research. The CRISK Predictor module of the CRISK system 
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was designed to be used in day-to-day operation in healthcare clinics. However, the 

usefulness and usability of the developed system cannot be fully realised until clinical 

trials. 
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Appendix C ANALYSIS FOR INITIAL ATTRIBUTE REDUCTION 

Table C-1 shows analysis to initially remove 16 unsuitable attributes from the initially 

collected dataset (section 3.8.3). 

Table C-1: Analysis to initially remove unsuitable attributes 

Attribute Percentage of 

missing data (%) 

Decision 

CONFIRMATION TYPE 3 99.95916701 Remove 

T4 84.99387505 Remove 

PHYSICIAN SYSTOLIC BLOOD 

PRESSURE, 2ND 

82.48264598 Remove 

PHYSICIAN DIASTOLIC BLOOD 

PRESSURE, 2ND 

82.48264598 Remove 

IF STOPPED, AGE STOPPED 33.85055125 

AGE START SMOKE CIGARETTE 

REGULARLY 

33.5238873 

WEIGHT AT AGE 25 16.33319722 

COMPLETE BLOOD COUNT 11.47407105 

WHITE BLOOD COUNT 10.73907717 

RED BLOOD COUNT 10.41241323 

H.G.B. 10.41241323 

M.C.V. 10.41241323 

M.C.H. 10.41241323 

M.C.H.C. 10.41241323 

H.C.T. 6.206614945 Remove (Duplicated 

with the 

HEMATOCRIT 

column) 

HEMATOCRIT 5.532870559 

CALCIUM 4.838709677 

ALBUMIN 4.797876684 

PHOSPHORUS 4.757043691 
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BUN 4.757043691 

TOTAL PROTEIN 4.757043691 

LDL 4.757043691 

Diabetes 4.654961209 

SGOT 4.430379747 

ALKALINE PHOSPHOTASE 4.389546754 

URIC ACID 4.287464271 

GLUCOSE 4.205798285 

TOTAL BILIRUBIN 4.205798285 

GLOBULIN 4.185381788 

WEIGHT COMPARED WITH 1 MONTH 

AGO 

2.53164557 

TOP FRACTION, ORIGIN 2.164148632 

TOP FRACTION, BETA 2.164148632 

TOP FRACTION, PRE-BETA 2.164148632 

BOTTOM FRACTION, PRE-BETA 2.123315639 

SINKING PRE-BETA BAND 2.102899143 

FREDERICKSON CLASSIFICATION 2.102899143 

FASTING 12 HRS OR MORE 2.082482646 

PRE-BETA BAND 2.041649653 

HDL CHOLESTEROL 2.021233156 

VLDL CHOLESTEROL 2.021233156 

LDL CHOLESTEROL 2.021233156 

WHOLE PLASMA, ORIGIN 1.93956717 

WHOLE PLASMA, PRE-BETA 1.919150674 

WEIGHT COMPARE WITH 1 YEAR AGO 1.837484688 

TRIGLYCERIDES 1.714985708 

TOTAL CHOLESTEROL 1.674152715 

WHOLE PLASMA APPEARANCE 1.674152715 
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INFRANATE AFTER 12 HRS AT 4 

DEGREES 

1.674152715 

CREAM AFTER 12 HRS OR MORE 1.674152715 

USES FILTER 1.53123724 

INHALES 1.347488771 

ALCOHOL INDEX 1.06165782 

COCKTAIL INTAKE 1.041241323 

FIRST SECOND VOLUME 1.020824826 

TOTAL VITAL CAPACITY 1.020824826 

SMOKES CIGARS 0.979991833 

PAROXYSMAL NOCTURAL DYSPNEA 0.979991833 

BILATERAL ANKLE EDEMA 0.979991833 

NOCTURNAL COUGH OR WHEEZING 0.979991833 

DYSPNEA ON EXERTION 0.959575337 

SMOKES PIPES 0.93915884 

RECENT ORTHOPNEA 0.93915884 

HISTORY OF ENLARGED HEART 0.918742344 

DYSPNEA INCREASE IN PAST 2 YEARS 0.918742344 

HISTORY OF HYPOTHYROID DISEASE 0.898325847 

WINE INTAKE 0.898325847 

BEER INTAKE 0.857492854 

HISTORY OF OTHER KIDNEY AILMENT 0.816659861 

HISTORY OF NEPHROSIS 0.796243365 

BROCHODILATOR OR AEROSOL 0.755410372 

NURSE SYSTOLIC BLOOD PRESSURE 0.734993875 Remove (Use the 

physicians’ one) 

NURSE DIASTOLIC BLOOD PRESSURE 0.734993875 Remove (Use the 

physicians’ one) 

TRANQUILIZERS 0.714577379 

OTHER (C-V DRUGS) 0.694160882 

HISTORY OF HEART MURMUR 0.694160882 
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DIURETICS FOR BLOOD PRESSURE 0.653327889   

HYPOTENSIVES (EXCLUDING 

DIURETICS) 

0.592078399   

ANTI-THYROID 0.551245406   

ANTI-COAGULANTS 0.551245406   

THYROID 0.53082891   

HYPOGLYCEMIC AGENTS (SPECIFY) 0.510412413   

LOW CALORIE DIET LAST 2 WEEKS 0.510412413   

Treatment for Diabetes 0.510412413   

ANTI-CHOLESTEROL AGENTS 0.489995917   

DIURETICS FOR FLUID RETENTION 0.46957942   

DIABETIC DIET LAST 2 WEEKS 0.449162924   

LOW CHOLESTEROL DIET LAST 2 

WEEKS 

0.408329931   

CARDIAC GLYCOSIDES 0.387913434   

SMOKES CIGARETTES 0.387913434   

NITRITES 0.367496938   

QUINIDINE 0.367496938   

PREMARIN 0.367496938 Remove (Female only) 

SMOKED AT LEAST 1 YEAR 0.347080441   

USUAL # OF CIGARRETTE SMOKE 

NOW/EVER 

0.347080441   

OTHER (SPECIFY) 0.326663944 Remove (Female only) 

AMOUNT OF FOOD LAST 2 DAYS 0.326663944   

AMOUNT OF ALCOHOL 0.326663944   

OVARIES REMOVED 0.306247448 Remove (Female only) 

HISTORY OF HYPERTENSION 0.183748469   

PHYSICIAN SYSTOLIC BLOOD 

PRESSURE, 1ST 

0.163331972   

PHYSICIAN DIASTOLIC BLOOD 

PRESSURE, 1ST 

0.163331972   
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ORAL CONTRACEPTIVE 0.163331972 Remove (Female only) 

AGE AT WHICH PERIODS STOPPED 0.102082483 Remove (Female only) 

CAUSE OF CESSATION OF MENSES 0.102082483 Remove (Female only) 

WOLFF-PARKINSON-WHITE SYNDROME 0.102082483  

CHEST DISCOMFORT 0.081665986  

P-R INTERVAL 0.06124949 

QT INTERAVAL 0.06124949 

NON-SPECIFIC T-WAVE ABNORMALITY 0.06124949 

NON-SPECIFIC S-T SEGMENT 

ABNORMALITY 

0.06124949 

ECG CLINICAL READING 0.06124949  

ECG FINDING SUMMARY 0.040832993  

HYSTERECTOMY 0.040832993 Remove (Female only) 

VENTRICULAR RATE 0.040832993  

QRS INTERVAL 0.040832993  

A QRS 0.040832993  

RIGHT-INTRAVENTRICULAR BLOCK 0.040832993  

LEFT-INTRAVENTRICULAR BLOCK 0.040832993  

HEMIBLOCK 0.040832993  

BIFASCULAR BLOCK 0.040832993  

INCOMPLETE-ATRIOVENTRICULAR 

BLOCK 

0.040832993  

COMPLETE ATRIOVENTRICULAR 

BLOCK 

0.040832993 

PREMATURE BEATS 0.040832993 

OTHER ARRHYTHMIA 0.040832993 

OTHER ECG ABNORMALITY 0.040832993 

TAKING DIGITALIS OR QUINIDINE 0.040832993 

MYOCARDIAL INFARCTION 0.040832993 

LEFT VENTRICULAR HYPERTROPHY 0.040832993 

METROPOLITAN RELATIVE WEIGHT 0.020416497 
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QUETELET INDEX (KG/M SQUARED) 0.020416497 Remove (Duplicated 

with the BMI column) 

HGT 0.020416497   

BMI 0.020416497   

PID 0   

SEX 0   

PERIODS HAVE STOPPED 1 YR OR MORE 0 Remove (Female only) 

WGTGP 0   

AGE 0   

CVD 0   

CVDDATE 0   
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Appendix D MIXED SEX DATASET—FIRST ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 119 risk factors of the mixed sex dataset (section 3.8.7). 

=== Run information === 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval 

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring9_PreparePredictionAttributes2-

weka.filters.unsupervised.attribute.Remove-R122-weka.filters.unsupervised.attribute.Remove-

R1 

Instances:    4737 

Attributes:   120 

[list of attributes omitted] 

Evaluation mode:    evaluate on all training data 

=== Attribute Selection on all input data === 

Search Method: 

Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 120 cvd10): 

Information Gain Ranking Filter 

Ranked attributes: 

 0.04155809   116 AGE 

 0.02066707     2 TOTAL CHOLESTEROL 

 0.01658859     4 VLDL CHOLESTEROL 

 0.0165876      5 LDL CHOLESTEROL 

 0.01627317    33 PHYSICIAN SYSTOLIC BLOOD PRESSURE 

 0.01371721    34 PHYSICIAN DIASTOLIC BLOOD PRESSURE 

 0.01291542     6 TRIGLYCERIDES 

 0.01133067    62 USUAL # OF CIGARRETTE SMOKE NOW/EVER 

 0.00974304    23 GLUCOSE 

 0.00893359     3 HDL CHOLESTEROL 
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 0.00853935   117 BMI 

 0.00798268    79 DYSPNEA ON EXERTION 

 0.00758577     1 SEX  

 0.00752456    31 LDL 

 0.00731425    30 ALKALINE PHOSPHOTASE 

 0.00697716    25 URIC ACID 

 0.00626734   115 WGTGP 

 0.00617897    41 HISTORY OF HYPERTENSION 

 0.00606969    56 SMOKED AT LEAST 1 YEAR 

 0.00593551    20 HEMATOCRIT 

 0.0057986     86 WHITE BLOOD COUNT 

 0.00570935    19 FREDERICKSON CLASSIFICATION 

 0.00566588   119 Diabetes 

 0.00564343    80 DYSPNEA INCREASE IN PAST 2 YEARS 

 0.00560985    88 H.G.B. 

 0.00547475    11 TOP FRACTION PRE-BETA 

 0.005308      87 RED BLOOD COUNT 

 0.00528462    96 A QRS 

 0.00519749    59 SMOKES CIGARETTES 

 0.00489626    52 HYPOGLYCEMIC AGENTS (SPECIFY) 

 0.00489626   118 Treatment for Diabetes 

 0.00416658    17 PRE-BETA BAND 

 0.0041151     47 HYPOTENSIVES (EXCLUDING DIURETICS) 

 0.00406476     8 WHOLE PLASMA PRE-BETA 

 0.00381172    27 ALBUMIN 

 0.00376564    46 DIURETICS FOR BLOOD PRESSURE 

 0.00329209    64 INHALES 

 0.00320043    76 CHEST DISCOMFORT 

 0.00298447    67 WEIGHT AT AGE 25 

 0.00284326    35 FIRST SECOND VOLUME 

 0.00282801    73 COCKTAIL INTAKE 

 0.00277396    37 ECG FINDING SUMMARY 

 0.00271187   112 ECG CLINICAL READING 

 0.00259362    95 QT INTERAVAL 

 0.00256636    36 TOTAL VITAL CAPACITY 

 0.00230398   110 NON-SPECIFIC T-WAVE ABNORMALITY 

 0.00227035    42 CARDIAC GLYCOSIDES 

 0.00195175    81 RECENT ORTHOPNEA 

 0.00183344    22 PHOSPHORUS 
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 0.001739      24 BUN 

 0.00146816   107 TAKING DIGITALIS OR QUINIDINE 

 0.00131895    14 INFRANATE AFTER 12 HRS AT 4 DEGREES 

 0.0012996     48 ANTI-CHOLESTEROL AGENTS 

 0.00128142     7 WHOLE PLASMA ORIGIN 

 0.00127889     9 TOP FRACTION ORIGIN 

 0.00125359   109 LEFT VENTRICULAR HYPERTROPHY 

 0.00120901    57 SMOKES CIGARS 

 0.00116796   111 NON-SPECIFIC S-T SEGMENT ABNORMALITY 

 0.00115491    43 NITRITES 

 0.00115229    53 TRANQUILIZERS 

 0.00094572    13 WHOLE PLASMA APPEARANCE 

 0.00093981    44 QUINIDINE 

 0.00078236    55 OTHER (C-V DRUGS) 

 0.00062946   104 PREMATURE BEATS 

 0.00061819   106 OTHER ECG ABNORMALITY 

 0.00058816    84 NOCTURNAL COUGH OR WHEEZING 

 0.00049601    16 FASTING 12 HRS OR MORE 

 0.00048836   102 COMPLETE ATRIOVENTRICULAR BLOCK 

 0.00046391   101 INCOMPLETE-ATRIOVENTRICULAR BLOCK 

 0.00046373    75 AMOUNT OF ALCOHOL 

 0.00044647    15 CREAM AFTER 12 HRS OR MORE 

 0.00041847    74 AMOUNT OF FOOD LAST 2 DAYS 

 0.00039265    70 DIABETIC DIET LAST 2 WEEKS 

 0.00032651    82 PAROXYSMAL NOCTURAL DYSPNEA 

 0.00030627    40 HISTORY OF HYPOTHYROID DISEASE 

 0.00027141    78 HISTORY OF ENLARGED HEART 

 0.00027115    83 BILATERAL ANKLE EDEMA 

 0.0002689     68 LOW CHOLESTEROL DIET LAST 2 WEEKS 

 0.00025458    18 SINKING PRE-BETA BAND 

 0.00025406    12 BOTTOM FRACTION PRE-BETA 

 0.0002421     99 HEMIBLOCK 

 0.00021993    45 DIURETICS FOR FLUID RETENTION 

 0.0001946     63 USES FILTER 

 0.00018558   103 WOLFF-PARKINSON-WHITE SYNDROME 

 0.0001834     98 LEFT-INTRAVENTRICULAR BLOCK 

 0.00017086    77 HISTORY OF HEART MURMUR 

 0.00015389    51 ANTI-COAGULANTS 

 0.00013661    54 BROCHODILATOR OR AEROSOL 
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 0.0001234    105 OTHER ARRHYTHMIA 

 0.00012042    39 HISTORY OF OTHER KIDNEY AILMENT 

 0.00011912    50 ANTI-THYROID 

 0.00011001    58 SMOKES PIPES 

 0.00009091    10 TOP FRACTION BETA 

 0.00008331   108 MYOCARDIAL INFARCTION 

 0.00007596    66 WEIGHT COMPARED WITH 1 YEAR AGO 

 0.00006664   100 BIFASCULAR BLOCK 

 0.00003568    69 LOW CALORIE DIET LAST 2 WEEKS 

 0.00003507    65 WEIGHT COMPARED WITH 1 MONTH AGO 

 0.00001571    38 HISTORY OF NEPHROSIS 

 0.00000799    97 RIGHT-INTRAVENTRICULAR BLOCK 

 0.00000292    49 THYROID 

 0             71 BEER INTAKE 

 0            114 HGT 

 0             92 VENTRICULAR RATE 

 0            113 ALCOHOL INDEX 

 0             93 P-R INTERVAL 

 0             94 QRS INTERVAL 

 0             61 IF STOPPED AGE STOPPED 

 0             26 TOTAL PROTEIN 

 0             91 M.C.H.C. 

 0             28 GLOBULIN 

 0             21 CALCIUM 

 0             85 COMPLETE BLOOD COUNT 

 0             29 TOTAL BILIRUBIN 

 0             32 SGOT 

 0             89 M.C.V. 

 0             90 M.C.H. 

 0             72 WINE INTAKE 

 0             60 AGE START SMOKE CIGARETTE REGULARLY 

 

Selected attributes: 

116,2,4,5,33,34,6,62,23,3,117,79,1,31,30,25,115,41,56,20,86,19,119,80,88,11,87,96,59,52,118,

17,47,8,27,46,64,76,67,35,73,37,112,95,36,110,42,81,22,24,107,14,48,7,9,109,57,111,43,53,13,

44,55,104,106,84,16,102,101,75,15,74,70,82,40,78,83,68,18,12,99,45,63,103,98,77,51,54,105,3

9,50,58,10,108,66,100,69,65,38,97,49,71,114,92,113,93,94,61,26,91,28,21,85,29,32,89,90,72,6

0 : 119 
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Appendix E MIXED SEX DATASET—SECOND ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 34 selected risk factors, after removing missing data, of the mixed sex dataset 

(section 3.8.9). 

=== Run information === 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval 

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring12_RemoveMissingData-

weka.filters.unsupervised.attribute.Remove-R37-weka.filters.unsupervised.attribute.Remove-R1 

Instances:    4071 

Attributes:   35 

SEX 

TOTAL CHOLESTEROL 

HDL CHOLESTEROL 

 VLDL CHOLESTEROL 

LDL CHOLESTEROL 

TRIGLYCERIDES 

WHOLE PLASMA PRE-BETA 

TOP FRACTION PRE-BETA 

PRE-BETA BAND 

FREDERICKSON CLASSIFICATION 

HEMATOCRIT 

 GLUCOSE 

URIC ACID 

ALKALINE PHOSPHOTASE 

LDH 

PHYSICIAN SYSTOLIC BLOOD PRESSURE 

PHYSICIAN DIASTOLIC BLOOD PRESSURE 

HISTORY OF HYPERTENSION 

HYPOTENSIVES (EXCLUDING DIURETICS) 

HYPOGLYCEMIC AGENTS (SPECIFY) 

SMOKED AT LEAST 1 YEAR 

SMOKES CIGARETTES 

USUAL # OF CIGARETTE SMOKE NOW/EVER 

DYSPNEA ON EXERTION 
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              DYSPNEA INCREASE IN PAST 2 YEARS 

              WHITE BLOOD COUNT 

              RED BLOOD COUNT 

              H.G.B. 

              A QRS 

              WGTGP 

              AGE 

              BMI 

              Treatment for Diabetes 

              Diabetes 

              cvd10 

Evaluation mode:    evaluate on all training data 

 

 

 

=== Attribute Selection on all input data === 

 

Search Method: 

 Attribute ranking. 

 

Attribute Evaluator (supervised, Class (nominal): 35 cvd10): 

 Information Gain Ranking Filter 

 

Ranked attributes: 

 0.04384   31 AGE 

 0.02324    2 TOTAL CHOLESTEROL 

 0.0184     5 LDL CHOLESTEROL 

 0.01733    4 VLDL CHOLESTEROL 

 0.01562   16 PHYSICIAN SYSTOLIC BLOOD PRESSURE 

 0.01392    6 TRIGLYCERIDES 

 0.01286   17 PHYSICIAN DIASTOLIC BLOOD PRESSURE 

 0.0119    12 GLUCOSE 

 0.01112   23 USUAL # OF CIGARETTE SMOKE NOW/EVER 

 0.01109    3 HDL CHOLESTEROL 

 0.00915   11 HEMATOCRIT 

 0.00902   32 BMI 

 0.00843   15 LDH 

 0.00805    1 SEX 

 0.00741   30 WGTGP 
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 0.00736   13 URIC ACID 

 0.00735   10 FREDERICKSON CLASSIFICATION 

 0.00725   28 H.G.B. 

 0.00719   14 ALKALINE PHOSPHOTASE 

 0.00678   26 WHITE BLOOD COUNT 

 0.00673   24 DYSPNEA ON EXERTION 

 0.00672   34 Diabetes 

 0.0067     8 TOP FRACTION PRE-BETA 

 0.00652   27 RED BLOOD COUNT 

 0.00616   21 SMOKED AT LEAST 1 YEAR 

 0.00578   33 Treatment for Diabetes 

 0.00578   20 HYPOGLYCEMIC AGENTS (SPECIFY) 

 0.00569   29 A QRS 

 0.00568   18 HISTORY OF HYPERTENSION 

 0.00543    9 PRE-BETA BAND 

 0.00535    7 WHOLE PLASMA PRE-BETA 

 0.00506   25 DYSPNEA INCREASE IN PAST 2 YEARS 

 0.00503   22 SMOKES CIGARETTES 

 0.00445   19 HYPOTENSIVES (EXCLUDING DIURETICS) 

Selected attributes: 

31,2,5,4,16,6,17,12,23,3,11,32,15,1,30,13,10,28,14,26,24,34,8,27,21,33,20,29,18,9,7,25,22,19 : 

34 
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Appendix F MALE DATASET—FIRST ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 118 risk factors of the male dataset. 

=== Run information === 

 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval  

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring10_PreparePredictionAttributes-

weka.filters.unsupervised.attribute.Remove-R1-weka.filters.unsupervised.attribute.Remove-

R120 

Instances:    2256 

Attributes:   119 

              [list of attributes omitted] 

Evaluation mode:    evaluate on all training data 

 

 

 

=== Attribute Selection on all input data === 

 

Search Method: 

 Attribute ranking. 

 

Attribute Evaluator (supervised, Class (nominal): 119 cvd10): 

 Information Gain Ranking Filter 

 

Ranked attributes: 

 0.0592066922   115 AGE 

 0.0275554434    35 TOTAL VITAL CAPACITY 

 0.023543638      1 TOTAL CHOLESTEROL 

 0.0221832382    34 FIRST SECOND VOLUME 

 0.0203427569     4 LDL CHOLESTEROL 

 0.0200335985    26 ALBUMIN 

 0.0133942659    85 WHITE BLOOD COUNT 

 0.0129591726    22 GLUCOSE 

 0.0122847245     5 TRIGLYCERIDES 

 0.0116015904    33 DIASTOLIC BLOOD PRESSURE 
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 0.0102338515    32 SYSTOLIC BLOOD PRESSURE 

 0.0099748177    55 SMOKED AT LEAST 1 YEAR 

 0.0098996084     3 VLDL CHOLESTEROL 

 0.0098467173    61 USUAL # OF CIGARRETTE SMOKE NOW/EVER 

 0.0090644755    58 SMOKES CIGARETTES 

 0.008899552     28 TOTAL BILIRUBIN 

 0.0085976877    30 LDH 

 0.008378051     78 DYSPNEA ON EXERTION 

 0.0076409857    51 HYPOGLYCEMIC AGENTS (SPECIFY) 

 0.0076409857   117 Treatment for Diabetes 

 0.0074232927    95 A QRS 

 0.0074042504   118 Diabetes 

 0.0060329042     2 HDL CHOLESTEROL 

 0.005622893     75 CHEST DISCOMFORT 

 0.0052735685   110 NON-SPECIFIC S-T SEGMENT ABNORMALITY 

 0.0051490572   109 NON-SPECIFIC T-WAVE ABNORMALITY 

 0.0048315193    63 INHALES 

 0.0045464337    18 FREDERICKSON CLASSIFICATION 

 0.004538698     29 ALKALINE PHOSPHOTASE 

 0.004448376     94 QT INTERAVAL 

 0.0041216431    25 TOTAL PROTEIN 

 0.003651327     36 ECG FINDING SUMMARY 

 0.0034912303    40 HISTORY OF HYPERTENSION 

 0.003490247     21 PHOSPHORUS 

 0.003448162     10 TOP FRACTION PRE-BETA 

 0.00335672      16 PRE-BETA BAND 

 0.0032350604     7 WHOLE PLASMA PRE-BETA 

 0.0032248113   111 ECG CLINICAL READING 

 0.0027752659    79 DYSPNEA INCREASE IN PAST 2 YEARS 

 0.0027078788    45 DIURETICS FOR BLOOD PRESSURE 

 0.0025348444    82 BILATERAL ANKLE EDEMA 

 0.0022848854    54 OTHER (C-V DRUGS) 

 0.0022079623    46 HYPOTENSIVES (EXCLUDING DIURETICS) 

 0.0021062347    80 RECENT ORTHOPNEA 

 0.0020648841     6 WHOLE PLASMA ORIGIN 

 0.0020600986     8 TOP FRACTION ORIGIN 

 0.001581056     44 DIURETICS FOR FLUID RETENTION 

 0.0015237592    76 HISTORY OF HEART MURMUR 

 0.0013126402    52 TRANQUILIZERS 
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 0.0008738141    74 AMOUNT OF ALCOHOL 

 0.0008409894    47 ANTI-CHOLESTEROL AGENTS 

 0.0008044509   101 COMPLETE ATRIOVENTRICULAR BLOCK 

 0.0007748173    11 BOTTOM FRACTION PRE-BETA 

 0.0007748173    17 SINKING PRE-BETA BAND 

 0.0007452462    62 USES FILTER 

 0.0007381664    14 CREAM AFTER 12 HRS OR MORE 

 0.0007280777   103 PREMATURE BEATS 

 0.0006743346   108 LEFT VENTRICULAR HYPERTROPHY 

 0.0006574618    83 NOCTURNAL COUGH OR WHEEZING 

 0.0006451987   100 INCOMPLETE-ATRIOVENTRICULAR BLOCK 

 0.0005806095    38 HISTORY OF OTHER KIDNEY AILMENT 

 0.0005695691    56 SMOKES CIGARS 

 0.0005478234    68 LOW CALORIE DIET LAST 2 WEEKS 

 0.0005239122    41 CARDIAC GLYCOSIDES 

 0.0004631239    97 LEFT-INTRAVENTRICULAR BLOCK 

 0.0004060788   105 OTHER ECG ABNORMALITY 

 0.0003593274    13 INFRANATE AFTER 12 HRS AT 4 DEGREES 

 0.0003568099    43 QUINIDINE 

 0.0003568099    42 NITRITES 

 0.0003512771    98 HEMIBLOCK 

 0.0002511922    64 WEIGHT COMPARED WITH 1 MONTH AGO 

 0.0002443124    73 AMOUNT OF FOOD LAST 2 DAYS 

 0.0002424533     9 TOP FRACTION BETA 

 0.0002381329    12 WHOLE PLASMA APPEARANCE 

 0.0002190216    15 FASTING 12 HRS OR MORE 

 0.0002107705    65 WEIGHT COMPARE WITH 1 YEAR AGO 

 0.0001897813    39 HISTORY OF HYPOTHYROID DISEASE 

 0.0001893646    67 LOW CHOLESTEROL DIET LAST 2 WEEKS 

 0.0001541605   107 MYOCARDIAL INFARCTION 

 0.0001463647    81 PAROXYSMAL NOCTURAL DYSPNEA 

 0.0001027499    99 BIFASCULAR BLOCK 

 0.0000943372    50 ANTI-COAGULANTS 

 0.0000811353    57 SMOKES PIPES 

 0.0000729965    77 HISTORY OF ENLARGED HEART 

 0.0000721089    48 THYROID 

 0.0000705051   104 OTHER ARRHYTHMIA 

 0.0000483676    49 ANTI-THYROID 

 0.0000474103    37 HISTORY OF NEPHROSIS 
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 0.0000022624   102 WOLFF-PARKINSON-WHITE SYNDROME 

 0.0000014008    96 RIGHT-INTRAVENTRICULAR BLOCK 

 0.0000000551    53 BROCHODILATOR OR AEROSOL 

 0.0000000394    69 DIABETIC DIET LAST 2 WEEKS 

 0 31 SGOT 

 0 89 M.C.H. 

 0 88 M.C.V. 

 0 91 VENTRICULAR RATE 

 0 87 H.G.B. 

 0 90 M.C.H.C. 

 0 92 P-R INTERVAL 

 0 84 COMPLETE BLOOD COUNT 

 0 113 HGT 

 0 93 QRS INTERVAL 

 0 116 BMI 

 0 114 WGTGP 

 0 86 RED BLOOD COUNT 

 0 72 COCKTAIL INTAKE 

 0 27 GLOBULIN 

 0 71 WINE INTAKE 

 0 23 BUN 

 0 24 URIC ACID 

 0 106 TAKING DIGITALIS OR QUINIDINE 

 0 112 ALCOHOL INDEX 

 0 60 IF STOPPED AGE STOPPED 

 0 20 CALCIUM 

 0 70 BEER INTAKE 

 0 66 WEIGHT AT AGE 25 

 0 19 HEMATOCRIT 

 0 59 AGE START SMOKE CIGARETTE REGULARLY 

Selected attributes: 

115,35,1,34,4,26,85,22,5,33,32,55,3,61,58,28,30,78,51,117,95,118,2,75,110,109,63,18,29,94,25

,36,40,21,10,16,7,111,79,45,82,54,46,80,6,8,44,76,52,74,47,101,11,17,62,14,103,108,83,100,38

,56,68,41,97,105,13,43,42,98,64,73,9,12,15,65,39,67,107,81,99,50,57,77,48,104,49,37,102,96,5

3,69,31,89,88,91,87,90,92,84,113,93,116,114,86,72,27,71,23,24,106,112,60,20,70,66,19,59 : 

118 



193 

Appendix G MALE DATASET—SECOND ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 23 selected risk factors, after removing missing data, of the male dataset. 

=== Run information === 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval 

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring14-weka.filters.unsupervised.attribute.Remove-R1-

weka.filters.unsupervised.attribute.Remove-R25 

Instances:    1974 

Attributes:   24 

TOTAL CHOLESTEROL 

HDL CHOLESTEROL 

VLDL CHOLESTEROL 

LDL CHOLESTEROL 

TRIGLYCERIDES 

GLUCOSE 

ALBUMIN 

TOTAL BILIRUBIN 

LDH 

SYSTOLIC BLOOD PRESSURE 

DIASTOLIC BLOOD PRESSURE 

FIRST SECOND VOLUME 

TOTAL VITAL CAPACITY 

HYPOGLYCEMIC AGENTS (SPECIFY) 

SMOKED AT LEAST 1 YEAR 

SMOKES CIGARETTES 

USUAL # OF CIGARRETTE SMOKE NOW/EVER 

DYSPNEA ON EXERTION 

WHITE BLOOD COUNT 

A QRS 

AGE 

Treatment for Diabetes 

Diabetes 

     cvd10 

Evaluation mode:    evaluate on all training data 
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=== Attribute Selection on all input data === 

Search Method: 

Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 24 cvd10): 

Information Gain Ranking Filter 

Ranked attributes: 

 0.05941   21 AGE 

 0.02679    1 TOTAL CHOLESTEROL 

 0.02532   12 FIRST SECOND VOLUME 

 0.02421   13 TOTAL VITAL CAPACITY 

 0.0224     4 LDL CHOLESTEROL 

 0.02112    7 ALBUMIN 

 0.01598   19 WHITE BLOOD COUNT 

 0.01556    6 GLUCOSE 

 0.01411    5 TRIGLYCERIDES 

 0.01013    8 TOTAL BILIRUBIN 

 0.00976    9 LDH 

 0.00961   17 USUAL # OF CIGARRETTE SMOKE NOW/EVER 

 0.00941   15 SMOKED AT LEAST 1 YEAR 

 0.00937   11 DIASTOLIC BLOOD PRESSURE 

 0.00921    3 VLDL CHOLESTEROL 

 0.00881   16 SMOKES CIGARETTES 

 0.00874   18 DYSPNEA ON EXERTION 

 0.00862   14 HYPOGLYCEMIC AGENTS (SPECIFY) 

 0.00862   22 Treatment for Diabetes 

 0.00806    2 HDL CHOLESTEROL 

 0.00788   10 SYSTOLIC BLOOD PRESSURE 

 0.00779   23 Diabetes 

 0.00685   20 A QRS 

Selected attributes: 21,1,12,13,4,7,19,6,5,8,9,17,15,11,3,16,18,14,22,2,10,23,20 : 23 
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Appendix H FEMALE DATASET—FIRST ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 126 risk factors of the female dataset. 

=== Run information === 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval 

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring9_PreparePredictionAttributes-

weka.filters.unsupervised.attribute.Remove-R129-weka.filters.unsupervised.attribute.Remove-

R1 

Instances:    2481 

Attributes:   127 

[list of attributes omitted] 

Evaluation mode:    evaluate on all training data 

=== Attribute Selection on all input data === 

Search Method: 

Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 127 cvd10): 

Information Gain Ranking Filter 

Ranked attributes: 

 0.02852496   123 AGE 

 0.01869903    56 AGE AT WHICH PERIODS STOPPED 

 0.01760813    55 PERIODS HAVE STOPPED 1 YR OR MORE 

 0.01736669    57 CAUSE OF CESSATION OF MENSES 

 0.01333186    34 FIRST SECOND VOLUME 

 0.01316599    32 SYSTOLIC BLOOD PRESSURE 

 0.01151725    87 DYSPNEA INCREASE IN PAST 2 YEARS 

 0.010896       1 TOTAL CHOLESTEROL 

 0.01079082    86 DYSPNEA ON EXERTION 

 0.00976453     3 VLDL CHOLESTEROL 



196 

 0.00969151    40 HISTORY OF HYPERTENSION 

 0.0091564     35 TOTAL VITAL CAPACITY 

 0.00818991     5 TRIGLYCERIDES 

 0.00808946     4 LDL CHOLESTEROL 

 0.00794315    58 HYSTERECTOMY 

 0.00711604    29 ALKALINE PHOSPHOTASE 

 0.0070442     46 HYPOTENSIVES (EXCLUDING DIURETICS) 

 0.00694056    33 DIASTOLIC BLOOD PRESSURE 

 0.00586272    45 DIURETICS FOR BLOOD PRESSURE 

 0.00544788    79 WINE INTAKE 

 0.00536259    24 URIC ACID 

 0.0050902     22 GLUCOSE 

 0.00493847    41 CARDIAC GLYCOSIDES 

 0.00461508     2 HDL CHOLESTEROL 

 0.00424987   122 WGTGP 

 0.00412152    30 LDH 

 0.00397126    97 M.C.H. 

 0.00392025   121 HGT 

 0.00370363   114 TAKING DIGITALIS OR QUINIDINE 

 0.00349519    10 TOP FRACTION PRE-BETA 

 0.00349136    69 USUAL # OF CIGARRETTE SMOKE NOW/EVER 

 0.0032381     18 FREDERICKSON CLASSIFICATION 

 0.00323324    59 OVARIES REMOVED 

 0.00248442   126 Diabetes 

 0.00245533    42 NITRITES 

 0.00213577   116 LEFT VENTRICULAR HYPERTROPHY 

 0.00212337    88 RECENT ORTHOPNEA 

 0.00197348    60 ORAL CONTRACEPTIVE 

 0.00193088    52 TRANQUILIZERS 

 0.00188409    43 QUINIDINE 

 0.00188145    47 ANTI-CHOLESTEROL AGENTS 

 0.0018661     16 PRE-BETA BAND 

 0.00181642     7 WHOLE PLASMA PRE-BETA 

 0.00168755    77 DIABETIC DIET LAST 2 WEEKS 

 0.00126579   125 Treatment for Diabetes 

 0.00126579    51 HYPOGLYCEMIC AGENTS (SPECIFY) 

 0.00111503   119 ECG CLINICAL READING 

 0.0010974     73 WEIGHT COMPARE WITH 1 YEAR AGO 

 0.00106009    13 INFRANATE AFTER 12 HRS AT 4 DEGREES 
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 0.00100238    90 BILATERAL ANKLE EDEMA 

 0.00099236   113 OTHER ECG ABNORMALITY 

 0.00092967    15 FASTING 12 HRS OR MORE 

 0.00086887    66 SMOKES CIGARETTES 

 0.00086159    63 SMOKED AT LEAST 1 YEAR 

 0.00086123    36 ECG FINDING SUMMARY 

 0.00085272   117 NON-SPECIFIC T-WAVE ABNORMALITY 

 0.00083746    91 NOCTURNAL COUGH OR WHEEZING 

 0.00076227   110 WOLFF-PARKINSON-WHITE SYNDROME 

 0.00075842    50 ANTI-COAGULANTS 

 0.00074358    71 INHALES 

 0.00071828    83 CHEST DISCOMFORT 

 0.00066923    89 PAROXYSMAL NOCTURAL DYSPNEA 

 0.00063807    81 AMOUNT OF FOOD LAST 2 DAYS 

 0.00062922    85 HISTORY OF ENLARGED HEART 

 0.00062846    61 PREMARIN 

 0.00057662    53 BROCHODILATOR OR AEROSOL 

 0.00056414    62 OTHER (SPECIFY) 

 0.00055495    12 WHOLE PLASMA APPEARANCE 

 0.00053141    49 ANTI-THYROID 

 0.000512     111 PREMATURE BEATS 

 0.00041051   104 RIGHT-INTRAVENTRICULAR BLOCK 

 0.00033901    72 WEIGHT COMPARED WITH 1 MONTH AGO 

 0.00025063   112 OTHER ARRHYTHMIA 

 0.00021424    75 LOW CHOLESTEROL DIET LAST 2 WEEKS 

 0.00020537    82 AMOUNT OF ALCOHOL 

 0.00011656    76 LOW CALORIE DIET LAST 2 WEEKS 

 0.00011425    48 THYROID 

 0.00011348    84 HISTORY OF HEART MURMUR 

 0.00010678    39 HISTORY OF HYPOTHYROID DISEASE 

 0.00009143    14 CREAM AFTER 12 HRS OR MORE 

 0.00007469    64 SMOKES CIGARS 

 0.0000681     44 DIURETICS FOR FLUID RETENTION 

 0.00005187    54 OTHER (C-V DRUGS) 

 0.00004595     9 TOP FRACTION BETA 

 0.00003733    65 SMOKES PIPES 

 0.00003717   115 MYOCARDIAL INFARCTION 

 0.00003717   107 BIFASCULAR BLOCK 

 0.00003717   105 LEFT-INTRAVENTRICULAR BLOCK 
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 0.00002137   108 INCOMPLETE-ATRIOVENTRICULAR BLOCK 

 0.00002021    17 SINKING PRE-BETA BAND 

 0.00002       11 BOTTOM FRACTION PRE-BETA 

 0.00001737   118 NON-SPECIFIC S-T SEGMENT ABNORMALITY 

 0.00001407    70 USES FILTER 

 0.00000388    38 HISTORY OF OTHER KIDNEY AILMENT 

 0.00000138   106 HEMIBLOCK 

 0 21 PHOSPHORUS 

 0 120 ALCOHOL INDEX 

 0 20 CALCIUM 

 0 8 TOP FRACTION ORIGIN 

 0 19 HEMATOCRIT 

 0 23 BUN 

 0 124 BMI 

 0 6 WHOLE PLASMA ORIGIN 

 0 92 COMPLETE BLOOD COUNT 

 0 25 TOTAL PROTEIN 

 0 96 M.C.V. 

 0 68 IF STOPPED AGE STOPPED 

 0 78 BEER INTAKE 

 0 74 WEIGHT AT AGE 25 

 0 95 H.G.B. 

 0 26 ALBUMIN 

 0 93 WHITE BLOOD COUNT 

 0 94 RED BLOOD COUNT 

 0 80 COCKTAIL INTAKE 

 0 67 AGE START SMOKE CIGARETTE REGULARLY 

 0 98 M.C.H.C. 

 0 99 VENTRICULAR RATE 

 0 28 TOTAL BILIRUBIN 

 0 27 GLOBULIN 

 0 100 P-R INTERVAL 

 0 31 SGOT 

 0 109 COMPLETE ATRIOVENTRICULAR BLOCK 

 0 37 HISTORY OF NEPHROSIS 

 0 102 QT INTERAVAL 

 0 101 QRS INTERVAL 

 0 103 A QRS 
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Selected attributes: 

123,56,55,57,34,32,87,1,86,3,40,35,5,4,58,29,46,33,45,79,24,22,41,2,122,30,97,121,114,10,69,

18,59,126,42,116,88,60,52,43,47,16,7,77,125,51,119,73,13,90,113,15,66,63,36,117,91,110,50,7

1,83,89,81,85,61,53,62,12,49,111,104,72,112,75,82,76,48,84,39,14,64,44,54,9,65,115,107,105,

108,17,11,118,70,38,106,21,120,20,8,19,23,124,6,92,25,96,68,78,74,95,26,93,94,80,67,98,99,2

8,27,100,31,109,37,102,101,103 : 126 
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Appendix I FEMALE DATASET—SECOND ATTRIBUTE 

EVALUATION BY WEKA 

Below was the result output from using Weka’s InfoGainAttributeEval attribute evaluator 

to rank 33 selected risk factors, after removing missing data, of the female dataset. 

However, after the second attribute evaluation, only 29 risk factors were chosen for the 

female model as four risk factors had the information gain values of 0. 

=== Run information === 

Evaluator:    weka.attributeSelection.InfoGainAttributeEval 

Search:       weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     FramOffSpring13-weka.filters.unsupervised.attribute.Remove-R1-

weka.filters.unsupervised.attribute.Remove-R35 

Instances:    2101 

Attributes:   34 

TOTAL CHOLESTEROL 

HDL CHOLESTEROL 

         VLDL CHOLESTEROL 

LDL CHOLESTEROL 

TRIGLYCERIDES 

TOP FRACTION PRE-BETA 

FREDERICKSON CLASSIFICATION 

GLUCOSE 

URIC ACID 

ALKALINE PHOSPHOTASE 

 LDH 

SYSTOLIC BLOOD PRESSURE 

DIASTOLIC BLOOD PRESSURE 

FIRST SECOND VOLUME 

TOTAL VITAL CAPACITY 

HISTORY OF HYPERTENSION 

CARDIAC GLYCOSIDES 

DIURETICS FOR BLOOD PRESSURE 

HYPOTENSIVES (EXCLUDING DIURETICS) 

PERIODS HAVE STOPPED 1 YR OR MORE 

AGE AT WHICH PERIODS STOPPED 

CAUSE OF CESSATION OF MENSES 
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HYSTERECTOMY 

OVARIES REMOVED 

USUAL # OF CIGARRETTE SMOKE NOW/EVER 

WINE INTAKE 

DYSPNEA ON EXERTION 

DYSPNEA INCREASE IN PAST 2 YEARS 

M.C.H.

TAKING DIGITALIS OR QUINIDINE 

        HGT 

WGTGP 

AGE 

cvd10 

Evaluation mode:    evaluate on all training data 

=== Attribute Selection on all input data === 

Search Method: 

Attribute ranking. 

Attribute Evaluator (supervised, Class (nominal): 34 cvd10): 

Information Gain Ranking Filter 

Ranked attributes: 

 0.03042   33 AGE 

 0.01967   21 AGE AT WHICH PERIODS STOPPED 

 0.01871   20 PERIODS HAVE STOPPED 1 YR OR MORE 

 0.01871    4 LDL CHOLESTEROL 

 0.01819   22 CAUSE OF CESSATION OF MENSES 

 0.01396    1 TOTAL CHOLESTEROL 

 0.01379   14 FIRST SECOND VOLUME 

 0.01373   12 SYSTOLIC BLOOD PRESSURE 

 0.0127    28 DYSPNEA INCREASE IN PAST 2 YEARS 

 0.01067    3 VLDL CHOLESTEROL 

 0.00976   27 DYSPNEA ON EXERTION 

 0.00894   10 ALKALINE PHOSPHOTASE 

 0.00877    5 TRIGLYCERIDES 

 0.0082    23 HYSTERECTOMY 
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 0.00807   15 TOTAL VITAL CAPACITY 

 0.00766   16 HISTORY OF HYPERTENSION 

 0.0076    13 DIASTOLIC BLOOD PRESSURE 

 0.00701   17 CARDIAC GLYCOSIDES 

 0.0065    19 HYPOTENSIVES (EXCLUDING DIURETICS) 

 0.00634   26 WINE INTAKE 

 0.00616    8 GLUCOSE 

 0.00579   11 LDH 

 0.00565   30 TAKING DIGITALIS OR QUINIDINE 

 0.00541    2 HDL CHOLESTEROL 

 0.00514    9 URIC ACID 

 0.00421    6 TOP FRACTION PRE-BETA 

 0.00401   18 DIURETICS FOR BLOOD PRESSURE 

 0.00395    7 FREDERICKSON CLASSIFICATION 

 0.00376   24 OVARIES REMOVED 

 0         25 USUAL # OF CIGARRETTE SMOKE NOW/EVER 

 0         29 M.C.H. 

 0         31 HGT 

 0         32 WGTGP 

Selected attributes: 

33,21,20,4,22,1,14,12,28,3,27,10,5,23,15,16,13,17,19,26,8,11,30,2,9,6,18,7,24,25,29,31,32 : 33 
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Appendix J MIXED SEX DATASET—PREDICTORS FILE 

Table J-2 displays the predictors file prepared in section 3.8.11 to describe the predictors 

(risk factors) of the dataset, which was used for experimenting the mixed sex model. 

Table J-2: Predictors file to describe the predictors of the dataset for the mixed sex model 

Predictor Name Predictor Description Data Type Value List 

sex SEX DataOneOf Male|Female 

totalChol TOTAL CHOLESTEROL double N/A 

hdlChol HDL CHOLESTEROL double N/A 

vldlChol VLDL CHOLESTEROL double N/A 

ldlChol LDL CHOLESTEROL double N/A 

triglycerides TRIGLYCERIDES double N/A 

wholePlasma WHOLE PLASMA PRE-BETA DataOneOf Yes|No 

topFraction TOP FRACTION PRE-BETA DataOneOf Yes|No 

preBetaBand PRE-BETA BAND DataOneOf Yes|No 

frederickson FREDERICKSON 

CLASSIFICATION 

DataOneOf Normal|Abnormal 

hematocrit HEMATOCRIT double N/A 

glucose GLUCOSE double N/A 

uricAcid URIC ACID double N/A 

alkalinePhos ALKALINE PHOSPHOTASE double N/A 

ldh LDH double N/A 

sysBP SYSTOLIC BLOOD PRESSURE double N/A 

diaBP DIASTOLIC BLOOD 

PRESSURE 

double N/A 

hypertension HISTORY OF HYPERTENSION DataOneOf Yes|No 

hypotensives HYPOTENSIVES (EXCLUDING 

DIURETICS) 

DataOneOf Yes|No 

hypoglycemic HYPOGLYCEMIC AGENTS DataOneOf Yes|No 

smoked1Year SMOKED AT LEAST 1 YEAR DataOneOf Yes|No 

smoking SMOKES CIGARETTES DataOneOf Yes|No 
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cigarettes USUAL # OF CIGARETTE 

SMOKE NOW/EVER 

double N/A 

dyspnea DYSPNEA ON EXERTION DataOneOf Yes|No 

dyspneaIncrease2Yrs DYSPNEA INCREASE IN PAST 

2 YEARS 

DataOneOf Yes|No 

whiteBloodCount WHITE BLOOD COUNT double N/A 

redBloodCount RED BLOOD COUNT double N/A 

hgb H.G.B. double N/A 

aqrs A QRS double N/A 

wgtgp WGTGP double N/A 

age AGE double N/A 

bmi BMI double N/A 

treatmentForDiabetes Treatment for Diabetes DataOneOf Yes|No 

diabetes Diabetes DataOneOf Yes|No 
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Appendix K MIXED SEX DATASET—PREDICTORS RANKING 

FILE 

Table K-3 displays the predictors ranking file prepared in section 3.8.11 to rank the 

predictors (risk factors) of the dataset used for experimenting the mixed sex model. 

Table K-3: Predictors ranking file to rank the predictors of the dataset for the mixed sex model 

No Info Gain Predictor 

1 0.04384 age 

2 0.02324 totalChol 

3 0.0184 ldlChol 

4 0.01733 vldlChol 

5 0.01562 sysBP 

6 0.01392 triglycerides 

7 0.01286 diaBP 

8 0.0119 glucose 

9 0.01112 cigarettes 

10 0.01109 hdlChol 

11 0.00915 hematocrit 

12 0.00902 bmi 

13 0.00843 ldh 

14 0.00805 sex 

15 0.00741 wgtgp 

16 0.00736 uricAcid 

17 0.00735 frederickson 

18 0.00725 hgb 

19 0.00719 alkalinePhos 

20 0.00678 whiteBloodCount 

21 0.00673 dyspnea 

22 0.00672 diabetes 
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23 0.0067 topFraction 

24 0.00652 redBloodCount 

25 0.00616 smoked1Year 

26 0.00578 treatmentForDiabetes 

27 0.00578 hypoglycemic 

28 0.00569 aqrs 

29 0.00568 hypertension 

30 0.00543 preBetaBand 

31 0.00535 wholePlasma 

32 0.00506 dyspneaIncrease2Yrs 

33 0.00503 smoking 

34 0.00445 hypotensives 
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Appendix L MALE DATASET—PREDICTORS FILE 

Table L-4 displays the predictors file prepared to describe the predictors (risk factors) of 

the male dataset, which was used for experimenting the male model. 

Table L-4: Predictors file to describe the predictors of the dataset for the male model 

Predictor Name Predictor Description Data Type Value List 

totalChol TOTAL CHOLESTEROL double N/A 

hdlChol HDL CHOLESTEROL double N/A 

vldlChol VLDL CHOLESTEROL double N/A 

ldlChol LDL CHOLESTEROL double N/A 

triglycerides TRIGLYCERIDES double N/A 

glucose GLUCOSE double N/A 

albumin ALBUMIN double N/A 

totalBilirubin TOTAL BILIRUBIN double N/A 

ldh LDH double N/A 

sysBP SYSTOLIC BLOOD PRESSURE double N/A 

diaBP DIASTOLIC BLOOD PRESSURE double N/A 

firstSecondVolume FIRST SECOND VOLUME double N/A 

totalVitalCapacity TOTAL VITAL CAPACITY double N/A 

hypoglycemic HYPOGLYCEMIC AGENTS DataOneOf Yes|No 

smoked1Year SMOKED AT LEAST 1 YEAR DataOneOf Yes|No 

smoking SMOKES CIGARETTES DataOneOf Yes|No 

cigarettes USUAL # OF CIGARETTE SMOKE 

NOW/EVER 

double N/A 

dyspnea DYSPNEA ON EXERTION DataOneOf Yes|No 

whiteBloodCount WHITE BLOOD COUNT double N/A 

aqrs A QRS double N/A 

age AGE double N/A 

treatmentForDiabetes Treatment for Diabetes DataOneOf Yes|No 

diabetes Diabetes DataOneOf Yes|No 
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Appendix M MALE DATASET—PREDICTORS RANKING FILE 

Table M-5 displays the predictors ranking file prepared to rank the predictors (risk 

factors) of the dataset used for experimenting the male model. 

Table M-5: Predictors ranking file to rank the predictors of the dataset for the male model 

No Ranked Predictor 

1 0.05941 age 

2 0.02679 totalChol 

3 0.02532 firstSecondVolume 

4 0.02421 totalVitalCapacity 

5 0.0224 ldlChol 

6 0.02112 albumin 

7 0.01598 whiteBloodCount 

8 0.01556 glucose 

9 0.01411 triglycerides 

10 0.01013 totalBilirubin 

11 0.00976 ldh 

12 0.00961 cigarettes 

13 0.00941 smoked1Year 

14 0.00937 diaBP 

15 0.00921 vldlChol 

16 0.00881 smoking 

17 0.00874 dyspnea 

18 0.00862 hypoglycemic 

19 0.00862 treatmentForDiabetes 

20 0.00806 hdlChol 

21 0.00788 sysBP 

22 0.00779 diabetes 

23 0.00685 aqrs 

 



209 

Appendix N FEMALE DATASET—PREDICTORS FILE 

Table N-6 displays the predictors file prepared to describe the predictors (risk factors) of 

the dataset, which was used for experimenting the female model. 

Table N-6: Predictors file to describe the predictors of the dataset for the female model 

Predictor Name Predictor Description Data Type Value List 

totalChol TOTAL CHOLESTEROL double N/A 

hdlChol HDL CHOLESTEROL double N/A 

vldlChol VLDL CHOLESTEROL double N/A 

ldlChol LDL CHOLESTEROL double N/A 

triglycerides TRIGLYCERIDES double N/A 

topFraction TOP FRACTION PRE-

BETA 

DataOneOf Yes|No 

frederickson FREDERICKSON 

CLASSIFICATION 

DataOneOf Normal|Abnormal 

glucose GLUCOSE double N/A 

uricAcid URIC ACID double N/A 

alkalinePhos ALKALINE 

PHOSPHOTASE 

double N/A 

ldh LDH double N/A 

sysBP SYSTOLIC BLOOD 

PRESSURE 

double N/A 

diaBP DIASTOLIC BLOOD 

PRESSURE 

double N/A 

firstSecondVolume FIRST SECOND VOLUME double N/A 

totalVitalCapacity TOTAL VITAL 

CAPACITY 

double N/A 

hypertension HISTORY OF 

HYPERTENSION 

DataOneOf Yes|No 

cardiacGlycosides CARDIAC GLYCOSIDES DataOneOf Yes|No 

diureticsForBP DIURETICS FOR BLOOD 

PRESSURE 

DataOneOf Yes|No 
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hypotensives HYPOTENSIVES 

(EXCLUDING 

DIURETICS) 

DataOneOf Yes|No 

periodsStopped1yrOrMore PERIODS HAVE 

STOPPED 1 YR OR MORE 

DataOneOf Yes|No 

agePStopped AGE AT WHICH PERIODS 

STOPPED 

double N/A 

causeOfCessationM CAUSE OF CESSATION 

OF MENSES 

DataOneOf Normal|Abnormal|NotStopped 

hysterectomy HYSTERECTOMY DataOneOf Yes|No 

ovariesRemoved OVARIES REMOVED DataOneOf Yes|No 

wineIntake WINE INTAKE double N/A 

dyspnea DYSPNEA ON EXERTION DataOneOf Yes|No 

dyspneaIncrease2Yrs DYSPNEA INCREASE IN 

PAST 2 YEARS 

DataOneOf Yes|No 

dOq TAKING DIGITALIS OR 

QUINIDINE 

DataOneOf Yes|No 

age AGE double N/A 
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Appendix O FEMALE DATASET—PREDICTORS RANKING FILE 

Table O-7 displays the predictors ranking file prepared to rank the predictors (risk factors) 

of the dataset used for experimenting the female model. 

Table O-7: Predictors ranking file to rank the predictors of the dataset for the female model 

No Ranked Predictor 

1 0.03042 age 

2 0.01967 agePStopped 

3 0.01871 periodsStopped1yrOrMore 

4 0.01871 ldlChol 

5 0.01819 causeOfCessationM 

6 0.01396 totalChol 

7 0.01379 firstSecondVolume 

8 0.01373 sysBP 

9 0.0127 dyspneaIncrease2Yrs 

10 0.01067 vldlChol 

11 0.00976 dyspnea 

12 0.00894 alkalinePhos 

13 0.00877 triglycerides 

14 0.0082 hysterectomy 

15 0.00807 totalVitalCapacity 

16 0.00766 hypertension 

17 0.0076 diaBP 

18 0.00701 cardiacGlycosides 

19 0.0065 hypotensives 

20 0.00634 wineIntake 

21 0.00616 glucose 

22 0.00579 ldh 

23 0.00565 dOq 



212 

24 0.00541 hdlChol 

25 0.00514 uricAcid 

26 0.00421 topFraction 

27 0.00401 diureticsForBP 

28 0.00395 frederickson 

29 0.00376 ovariesRemoved 
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Appendix P CRISK FUZZY ONTOLOGY TEMPLATE FILE 

Below is the CRISK fuzzy ontology template file (base.owl): 

<?xml version="1.0"?> 

 

<!DOCTYPE Ontology [ 

    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY xml "http://www.w3.org/XML/1998/namespace" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

]> 

 

<Ontology xmlns="http://www.w3.org/2002/07/owl#" 

     xml:base="http://www.aut.ac.nz/ontologies/fcvdo.owl" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

     xmlns:xml="http://www.w3.org/XML/1998/namespace" 

     ontologyIRI="http://www.aut.ac.nz/ontologies/fcvdo.owl"> 

    <Prefix name="" IRI="http://www.aut.ac.nz/ontologies/cvdo.owl"/> 

    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 

    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> 

    <Prefix name="xml" IRI="http://www.w3.org/XML/1998/namespace"/> 

    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 

    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 

    <Annotation> 

        <AnnotationProperty IRI="#fuzzyLabel"/> 

        <Literal datatypeIRI="&rdf;PlainLiteral">&lt;fuzzyOwl2 
fuzzyType=&quot;ontology&quot;&gt; 

&lt;FuzzyLogic logic=&quot;zadeh&quot; /&gt; 

&lt;/fuzzyOwl2&gt;</Literal> 

    </Annotation> 

    <Declaration> 

        <Class IRI="#CBR_CASE"/> 

    </Declaration> 

    <Declaration> 

        <Class IRI="#CRISK_CASE"/> 

    </Declaration> 

    <Declaration> 

        <DataProperty IRI="#cvd10"/> 

    </Declaration> 
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    <Declaration> 

        <DataProperty IRI="#cvdInterval"/> 

    </Declaration> 

    <Declaration> 

        <AnnotationProperty IRI="#fuzzyLabel"/> 

    </Declaration> 

    <Declaration> 

        <Datatype IRI="#highCVDRisk"/> 

    </Declaration> 

    <Declaration> 

        <Datatype IRI="#lowCVDRisk"/> 

    </Declaration> 

    <SubClassOf> 

        <Class IRI="#CRISK_CASE"/> 

        <Class IRI="#CBR_CASE"/> 

    </SubClassOf> 

    <SubDataPropertyOf> 

        <DataProperty IRI="#cvd10"/> 

        <DataProperty abbreviatedIRI="owl:topDataProperty"/> 

    </SubDataPropertyOf> 

    <SubDataPropertyOf> 

        <DataProperty IRI="#cvdInterval"/> 

        <DataProperty abbreviatedIRI="owl:topDataProperty"/> 

    </SubDataPropertyOf> 

    <DataPropertyDomain> 

        <DataProperty IRI="#cvd10"/> 

        <Class IRI="#CRISK_CASE"/> 

    </DataPropertyDomain> 

    <DataPropertyDomain> 

        <DataProperty IRI="#cvdInterval"/> 

        <Class IRI="#CRISK_CASE"/> 

    </DataPropertyDomain> 

    <DataPropertyRange> 

        <DataProperty IRI="#cvd10"/> 

        <DataOneOf> 

            <Literal datatypeIRI="&rdf;PlainLiteral">No</Literal> 

            <Literal datatypeIRI="&rdf;PlainLiteral">Yes</Literal> 

        </DataOneOf> 

    </DataPropertyRange> 

    <DataPropertyRange> 

        <DataProperty IRI="#cvdInterval"/> 
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        <Datatype abbreviatedIRI="xsd:double"/> 

    </DataPropertyRange> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/> 

        <IRI>#cvd10</IRI> 

        <Literal datatypeIRI="&xsd;string">10-year CVD (Yes/No)</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty IRI="#fuzzyLabel"/> 

        <IRI>#highCVDRisk</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">&lt;fuzzyOwl2 
fuzzyType=&quot;datatype&quot;&gt; 

&lt;Datatype type=&quot;leftshoulder&quot; a=&quot;5.0&quot; b=&quot;15.0&quot; /&gt; 

&lt;/fuzzyOwl2&gt;</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty IRI="#fuzzyLabel"/> 

        <IRI>#lowCVDRisk</IRI> 

        <Literal datatypeIRI="&rdf;PlainLiteral">&lt;fuzzyOwl2 
fuzzyType=&quot;datatype&quot;&gt; 

&lt;Datatype type=&quot;rightshoulder&quot; a=&quot;5.0&quot; b=&quot;15.0&quot; /&gt; 

&lt;/fuzzyOwl2&gt;</Literal> 

    </AnnotationAssertion> 

    <AnnotationAssertion> 

        <AnnotationProperty abbreviatedIRI="rdfs:isDefinedBy"/> 

        <IRI>#cvdInterval</IRI> 

        <Literal datatypeIRI="&xsd;string">CVD Interval (Years)</Literal> 

    </AnnotationAssertion> 

    <DatatypeDefinition> 

        <Datatype IRI="#highCVDRisk"/> 

        <DataIntersectionOf> 

   <DatatypeRestriction> 

       <Datatype abbreviatedIRI="xsd:double"/> 

       <FacetRestriction facet="&xsd;minInclusive"> 

    <Literal datatypeIRI="&xsd;double">5.0</Literal> 

       </FacetRestriction> 

   </DatatypeRestriction> 

   <DatatypeRestriction> 

       <Datatype abbreviatedIRI="xsd:double"/> 

       <FacetRestriction facet="&xsd;maxInclusive"> 

    <Literal datatypeIRI="&xsd;double">15.0</Literal> 

       </FacetRestriction> 
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            </DatatypeRestriction> 

        </DataIntersectionOf> 

    </DatatypeDefinition> 

    <DatatypeDefinition> 

        <Datatype IRI="#lowCVDRisk"/> 

        <DataIntersectionOf> 

            <DatatypeRestriction> 

                <Datatype abbreviatedIRI="xsd:double"/> 

                <FacetRestriction facet="&xsd;minInclusive"> 

                    <Literal datatypeIRI="&xsd;double">5.0</Literal> 

                </FacetRestriction> 

            </DatatypeRestriction> 

            <DatatypeRestriction> 

                <Datatype abbreviatedIRI="xsd:double"/> 

                <FacetRestriction facet="&xsd;maxInclusive"> 

                    <Literal datatypeIRI="&xsd;double">15.0</Literal> 

                </FacetRestriction> 

            </DatatypeRestriction> 

        </DataIntersectionOf> 

    </DatatypeDefinition> 

</Ontology> 
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Appendix Q MIXED SEX MODEL EXPERIMENTATION 

RESULTS 

Table Q-8 displays prediction TPR results for experimenting the mixed sex dataset. The 

top ten TPR values are in dark-red bold text. The highest TPR values have yellow 

highlighted background. The TPR results are plotted as a 3D graph in Figure Q-1. 

Table Q-8: Mixed sex model—TPR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.4751 0.4525 0.4434 0.4344 0.4344 0.4072 0.3846 0.3756 0.3710 

n=2 0.4842 0.4389 0.4570 0.4661 0.4615 0.4751 0.4796 0.4887 0.4887 

n=3 0.6561 0.6290 0.6244 0.6425 0.6335 0.6471 0.6471 0.6516 0.6425 

n=4 0.6878 0.6561 0.6787 0.6968 0.6878 0.6923 0.7104 0.7104 0.7195 

n=5 0.7647 0.7466 0.7602 0.7602 0.7738 0.7692 0.7738 0.7647 0.7692 

n=6 0.7511 0.7647 0.7602 0.7647 0.7692 0.7647 0.7692 0.7511 0.7692 

n=7 0.7466 0.7195 0.7104 0.7466 0.7376 0.7511 0.7376 0.7330 0.7511 

n=8 0.7828 0.7557 0.7783 0.7738 0.7919 0.7828 0.7738 0.7828 0.7828 

n=9 0.7738 0.7783 0.8009 0.8100 0.7919 0.7783 0.7602 0.7828 0.7873 

n=10 0.7919 0.7511 0.7964 0.7738 0.8054 0.7919 0.7964 0.7828 0.7783 

n=11 0.8371 0.8145 0.8371 0.8190 0.8145 0.8100 0.8190 0.8100 0.7964 

n=12 0.8778 0.8778 0.8462 0.8597 0.8507 0.8507 0.8462 0.8416 0.8281 

n=13 0.8733 0.8824 0.8733 0.8733 0.8688 0.8778 0.8824 0.8824 0.8643 

n=14 0.7195 0.7104 0.7059 0.7149 0.6833 0.6968 0.6968 0.7014 0.6968 

n=15 0.7149 0.6878 0.6833 0.6878 0.6968 0.6878 0.6833 0.6787 0.6742 

n=16 0.7104 0.7059 0.7014 0.7104 0.7014 0.7014 0.7014 0.6968 0.6923 

n=17 0.6606 0.6742 0.6742 0.6697 0.6652 0.6561 0.6561 0.6516 0.6561 

n=18 0.6742 0.6652 0.6606 0.6697 0.6606 0.6561 0.6561 0.6471 0.6290 

n=19 0.7014 0.6833 0.6606 0.6652 0.6697 0.6561 0.6471 0.6561 0.6516 

n=20 0.7014 0.6833 0.6923 0.6742 0.6833 0.6833 0.6923 0.6742 0.6742 

n=21 0.6606 0.6380 0.6290 0.6199 0.6199 0.6244 0.6335 0.6290 0.6199 

n=22 0.6425 0.5973 0.6018 0.5973 0.5928 0.5928 0.6063 0.6018 0.5973 

n=23 0.5566 0.5339 0.5249 0.5294 0.5566 0.5520 0.5475 0.5475 0.5385 

n=24 0.5566 0.5430 0.5204 0.5249 0.5475 0.5520 0.5385 0.5385 0.5385 

n=25 0.4932 0.4842 0.4842 0.4932 0.5023 0.4977 0.4842 0.4842 0.4842 

n=26 0.4932 0.4842 0.4887 0.4887 0.4932 0.4842 0.4751 0.4706 0.4706 

n=27 0.4932 0.4842 0.4887 0.4887 0.4977 0.4842 0.4751 0.4661 0.4661 

n=28 0.4887 0.4706 0.4796 0.4977 0.4842 0.4661 0.4615 0.4525 0.4570 

n=29 0.4299 0.4163 0.4163 0.4163 0.4118 0.4027 0.4072 0.4072 0.3982 
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n=30 0.4253 0.4118 0.4072 0.4072 0.4072 0.4027 0.4072 0.4072 0.4027 

n=31 0.4253 0.4072 0.4072 0.4072 0.4072 0.4027 0.4072 0.4072 0.4027 

n=32 0.4344 0.4118 0.3982 0.4027 0.4027 0.3982 0.4027 0.4118 0.4163 

n=33 0.4253 0.4027 0.3891 0.3846 0.3801 0.3756 0.3801 0.3891 0.3982 

n=34 0.4299 0.3891 0.3891 0.3846 0.3756 0.3756 0.3710 0.3891 0.3937 

 

 

Figure Q-1: Mixed sex model—Plotting TPR 

Table Q-9 displays prediction TNR results for experimenting the mixed sex dataset. The 

top ten TNR values are in dark-red bold text. The highest TNR value has yellow 

highlighted background. The TNR results are plotted as a 3D graph in Figure Q-2. 

Table Q-9: Mixed sex model—TNR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.7600 0.7577 0.7631 0.7990 0.8016 0.8223 0.8452 0.8512 0.8532 

n=2 0.8262 0.8460 0.8483 0.8447 0.8439 0.8426 0.8423 0.8416 0.8400 

n=3 0.7587 0.7894 0.7870 0.7881 0.7932 0.7945 0.7951 0.7940 0.7935 

n=4 0.7434 0.7849 0.7919 0.7966 0.7943 0.7945 0.7979 0.7956 0.7938 

n=5 0.7460 0.7868 0.7896 0.7823 0.7865 0.7849 0.7865 0.7857 0.7852 

n=6 0.7564 0.7847 0.7925 0.7842 0.7878 0.7896 0.7888 0.7847 0.7862 

n=7 0.7517 0.7935 0.8003 0.8042 0.8060 0.8049 0.8034 0.8036 0.8000 

n=8 0.7675 0.7982 0.8091 0.8104 0.8049 0.8057 0.8031 0.8031 0.7990 
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n=9 0.7974 0.8288 0.8338 0.8325 0.8330 0.8345 0.8353 0.8348 0.8317 

n=10 0.8073 0.8421 0.8405 0.8421 0.8410 0.8400 0.8421 0.8379 0.8400 

n=11 0.7971 0.8265 0.8325 0.8361 0.8384 0.8358 0.8353 0.8351 0.8330 

n=12 0.7995 0.8208 0.8255 0.8257 0.8286 0.8294 0.8255 0.8247 0.8234 

n=13 0.7966 0.8169 0.8229 0.8270 0.8249 0.8234 0.8216 0.8184 0.8179 

n=14 0.8200 0.8418 0.8509 0.8478 0.8499 0.8486 0.8460 0.8434 0.8439 

n=15 0.8291 0.8496 0.8553 0.8553 0.8522 0.8517 0.8506 0.8527 0.8514 

n=16 0.8304 0.8481 0.8527 0.8535 0.8517 0.8514 0.8519 0.8512 0.8538 

n=17 0.8358 0.8577 0.8590 0.8582 0.8613 0.8623 0.8571 0.8597 0.8608 

n=18 0.8400 0.8616 0.8701 0.8696 0.8655 0.8603 0.8621 0.8603 0.8610 

n=19 0.8265 0.8499 0.8571 0.8561 0.8540 0.8545 0.8509 0.8491 0.8483 

n=20 0.8351 0.8574 0.8587 0.8616 0.8597 0.8579 0.8582 0.8543 0.8545 

n=21 0.8358 0.8577 0.8587 0.8610 0.8564 0.8543 0.8543 0.8538 0.8545 

n=22 0.8397 0.8597 0.8608 0.8636 0.8584 0.8561 0.8571 0.8556 0.8561 

n=23 0.8462 0.8717 0.8748 0.8735 0.8719 0.8727 0.8691 0.8660 0.8691 

n=24 0.8483 0.8704 0.8719 0.8701 0.8714 0.8712 0.8686 0.8678 0.8681 

n=25 0.8558 0.8784 0.8810 0.8803 0.8787 0.8790 0.8771 0.8784 0.8774 

n=26 0.8558 0.8792 0.8805 0.8800 0.8792 0.8790 0.8777 0.8784 0.8769 

n=27 0.8561 0.8795 0.8808 0.8800 0.8790 0.8784 0.8769 0.8777 0.8769 

n=28 0.8605 0.8826 0.8852 0.8857 0.8805 0.8823 0.8808 0.8792 0.8782 

n=29 0.8683 0.8943 0.8979 0.8979 0.8945 0.8948 0.8940 0.8945 0.8922 

n=30 0.8686 0.8935 0.8969 0.8969 0.8935 0.8927 0.8927 0.8930 0.8899 

n=31 0.8683 0.8935 0.8969 0.8966 0.8938 0.8927 0.8925 0.8927 0.8894 

n=32 0.8706 0.8943 0.8984 0.8984 0.8948 0.8930 0.8927 0.8930 0.8894 

n=33 0.8766 0.9013 0.9065 0.9042 0.9013 0.9016 0.8995 0.8997 0.8974 

n=34 0.8766 0.9018 0.9062 0.9034 0.9008 0.9010 0.8995 0.8992 0.8971 
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Figure Q-2: Mixed sex model—Plotting TNR 

Table Q-10 displays prediction Precision results for experimenting the mixed sex dataset. 

The top ten Precision values are in dark-red bold text. The highest Precision value has 

yellow highlighted background. The Precision results are plotted as a 3D graph in Figure 

Q-3. 

Table Q-10: Mixed sex model—Precision 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.1020 0.0968 0.0970 0.1103 0.1116 0.1163 0.1248 0.1265 0.1267 

n=2 0.1379 0.1406 0.1474 0.1469 0.1451 0.1477 0.1487 0.1504 0.1492 

n=3 0.1350 0.1463 0.1441 0.1482 0.1496 0.1531 0.1534 0.1537 0.1515 

n=4 0.1333 0.1490 0.1577 0.1644 0.1610 0.1621 0.1679 0.1663 0.1668 

n=5 0.1473 0.1673 0.1718 0.1670 0.1722 0.1703 0.1722 0.1700 0.1705 

n=6 0.1504 0.1693 0.1737 0.1690 0.1722 0.1726 0.1729 0.1668 0.1712 

n=7 0.1472 0.1667 0.1695 0.1795 0.1791 0.1810 0.1772 0.1765 0.1774 

n=8 0.1620 0.1769 0.1896 0.1898 0.1890 0.1878 0.1841 0.1858 0.1827 

n=9 0.1798 0.2070 0.2166 0.2172 0.2139 0.2126 0.2095 0.2138 0.2117 

n=10 0.1908 0.2145 0.2228 0.2195 0.2253 0.2212 0.2245 0.2171 0.2183 

n=11 0.1915 0.2123 0.2229 0.2229 0.2244 0.2207 0.2221 0.2199 0.2149 

n=12 0.2008 0.2195 0.2177 0.2207 0.2217 0.2225 0.2177 0.2160 0.2121 

n=13 0.1977 0.2167 0.2206 0.2247 0.2217 0.2220 0.2211 0.2181 0.2141 
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n=14 0.1866 0.2050 0.2137 0.2124 0.2071 0.2090 0.2062 0.2045 0.2040 

n=15 0.1936 0.2079 0.2133 0.2144 0.2130 0.2102 0.2080 0.2092 0.2067 

n=16 0.1938 0.2105 0.2147 0.2178 0.2135 0.2132 0.2138 0.2118 0.2137 

n=17 0.1877 0.2138 0.2153 0.2133 0.2159 0.2148 0.2086 0.2105 0.2129 

n=18 0.1948 0.2162 0.2260 0.2277 0.2199 0.2123 0.2145 0.2100 0.2062 

n=19 0.1883 0.2071 0.2098 0.2097 0.2085 0.2057 0.1994 0.1997 0.1978 

n=20 0.1962 0.2157 0.2195 0.2185 0.2185 0.2163 0.2189 0.2099 0.2102 

n=21 0.1877 0.2046 0.2035 0.2039 0.1986 0.1974 0.1997 0.1980 0.1966 

n=22 0.1871 0.1964 0.1988 0.2009 0.1938 0.1912 0.1959 0.1930 0.1924 

n=23 0.1720 0.1928 0.1940 0.1937 0.1997 0.1993 0.1936 0.1900 0.1910 

n=24 0.1740 0.1939 0.1891 0.1883 0.1964 0.1974 0.1904 0.1895 0.1898 

n=25 0.1642 0.1861 0.1894 0.1912 0.1920 0.1910 0.1845 0.1861 0.1848 

n=26 0.1642 0.1871 0.1901 0.1895 0.1899 0.1867 0.1823 0.1818 0.1799 

n=27 0.1644 0.1874 0.1905 0.1895 0.1910 0.1861 0.1813 0.1794 0.1785 

n=28 0.1674 0.1871 0.1934 0.2000 0.1887 0.1853 0.1818 0.1770 0.1772 

n=29 0.1578 0.1844 0.1897 0.1897 0.1831 0.1802 0.1807 0.1815 0.1750 

n=30 0.1567 0.1816 0.1848 0.1848 0.1800 0.1773 0.1789 0.1793 0.1735 

n=31 0.1564 0.1800 0.1848 0.1844 0.1804 0.1773 0.1786 0.1789 0.1728 

n=32 0.1616 0.1827 0.1837 0.1854 0.1802 0.1760 0.1773 0.1809 0.1776 

n=33 0.1652 0.1898 0.1928 0.1872 0.1810 0.1797 0.1783 0.1822 0.1822 

n=34 0.1667 0.1853 0.1924 0.1860 0.1785 0.1789 0.1748 0.1814 0.1801 
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Figure Q-3: Mixed sex model—Plotting Precision 

Table Q-11 displays prediction F1-value results for experimenting the mixed sex dataset. 

The top ten F1-values are in dark-red bold text. The highest F1-value has yellow 

highlighted background. The F1-value results are plotted as a 3D graph in Figure Q-4. 

Table Q-11: Mixed sex model—F1-value 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.1680 0.1595 0.1592 0.1760 0.1776 0.1809 0.1885 0.1893 0.1889 

n=2 0.2146 0.2130 0.2230 0.2234 0.2208 0.2253 0.2270 0.2300 0.2286 

n=3 0.2239 0.2374 0.2341 0.2409 0.2420 0.2476 0.2480 0.2487 0.2453 

n=4 0.2234 0.2429 0.2560 0.2660 0.2609 0.2627 0.2716 0.2695 0.2709 

n=5 0.2471 0.2734 0.2802 0.2738 0.2817 0.2789 0.2817 0.2782 0.2791 

n=6 0.2506 0.2773 0.2828 0.2768 0.2815 0.2817 0.2824 0.2730 0.2801 

n=7 0.2459 0.2706 0.2738 0.2895 0.2882 0.2917 0.2857 0.2845 0.2869 

n=8 0.2684 0.2867 0.3050 0.3048 0.3051 0.3030 0.2974 0.3003 0.2962 

n=9 0.2918 0.3270 0.3410 0.3426 0.3369 0.3340 0.3284 0.3359 0.3337 

n=10 0.3076 0.3337 0.3482 0.3420 0.3521 0.3458 0.3502 0.3399 0.3409 

n=11 0.3117 0.3368 0.3520 0.3504 0.3519 0.3469 0.3494 0.3459 0.3385 

n=12 0.3269 0.3511 0.3463 0.3512 0.3517 0.3527 0.3463 0.3438 0.3376 

n=13 0.3225 0.3479 0.3522 0.3574 0.3533 0.3543 0.3536 0.3498 0.3432 
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n=14 0.2964 0.3181 0.3281 0.3275 0.3179 0.3215 0.3182 0.3166 0.3156 

n=15 0.3047 0.3193 0.3251 0.3269 0.3263 0.3220 0.3189 0.3198 0.3163 

n=16 0.3046 0.3243 0.3287 0.3333 0.3273 0.3270 0.3277 0.3249 0.3266 

n=17 0.2923 0.3246 0.3264 0.3235 0.3259 0.3237 0.3166 0.3182 0.3215 

n=18 0.3022 0.3263 0.3368 0.3398 0.3299 0.3208 0.3233 0.3171 0.3106 

n=19 0.2969 0.3179 0.3184 0.3189 0.3179 0.3132 0.3049 0.3062 0.3035 

n=20 0.3066 0.3279 0.3333 0.3300 0.3311 0.3286 0.3326 0.3201 0.3204 

n=21 0.2923 0.3099 0.3075 0.3068 0.3008 0.3000 0.3037 0.3012 0.2985 

n=22 0.2898 0.2956 0.2989 0.3007 0.2921 0.2892 0.2961 0.2923 0.2911 

n=23 0.2628 0.2833 0.2833 0.2836 0.2939 0.2929 0.2861 0.2821 0.2820 

n=24 0.2651 0.2857 0.2774 0.2772 0.2891 0.2908 0.2813 0.2803 0.2807 

n=25 0.2463 0.2688 0.2723 0.2756 0.2778 0.2760 0.2672 0.2688 0.2675 

n=26 0.2463 0.2699 0.2738 0.2731 0.2742 0.2695 0.2635 0.2623 0.2603 

n=27 0.2466 0.2702 0.2741 0.2731 0.2760 0.2688 0.2625 0.2591 0.2581 

n=28 0.2494 0.2677 0.2757 0.2853 0.2716 0.2651 0.2609 0.2545 0.2554 

n=29 0.2309 0.2556 0.2606 0.2606 0.2535 0.2490 0.2503 0.2510 0.2431 

n=30 0.2290 0.2521 0.2542 0.2542 0.2497 0.2462 0.2486 0.2490 0.2425 

n=31 0.2287 0.2497 0.2542 0.2539 0.2500 0.2462 0.2483 0.2486 0.2418 

n=32 0.2356 0.2531 0.2514 0.2539 0.2490 0.2441 0.2462 0.2514 0.2490 

n=33 0.2380 0.2580 0.2579 0.2519 0.2453 0.2430 0.2428 0.2482 0.2500 

n=34 0.2402 0.2511 0.2575 0.2507 0.2420 0.2423 0.2377 0.2475 0.2472 
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Figure Q-4: Mixed sex model—Plotting F1-value 

Table Q-12 displays prediction NPV results for experimenting the mixed sex dataset. The 

top ten NPV values are in dark-red bold text. The highest NPV value has yellow 

highlighted background. The NPV results are plotted as a 3D graph in Figure Q-5. 

Table Q-12: Mixed sex model—NPV 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.9619 0.9602 0.9598 0.9609 0.9611 0.9603 0.9599 0.9596 0.9594 

n=2 0.9654 0.9633 0.9646 0.9650 0.9647 0.9655 0.9658 0.9663 0.9662 

n=3 0.9746 0.9737 0.9733 0.9746 0.9742 0.9751 0.9752 0.9754 0.9748 

n=4 0.9765 0.9755 0.9772 0.9786 0.9779 0.9783 0.9796 0.9795 0.9801 

n=5 0.9822 0.9818 0.9829 0.9827 0.9838 0.9834 0.9838 0.9831 0.9834 

n=6 0.9815 0.9831 0.9829 0.9831 0.9835 0.9832 0.9835 0.9821 0.9834 

n=7 0.9810 0.9801 0.9797 0.9822 0.9817 0.9826 0.9816 0.9813 0.9825 

n=8 0.9840 0.9827 0.9845 0.9842 0.9854 0.9848 0.9841 0.9847 0.9846 

n=9 0.9840 0.9849 0.9865 0.9871 0.9859 0.9850 0.9838 0.9853 0.9855 

n=10 0.9854 0.9833 0.9863 0.9848 0.9869 0.9860 0.9863 0.9853 0.9851 

n=11 0.9884 0.9873 0.9889 0.9877 0.9875 0.9871 0.9877 0.9871 0.9862 

n=12 0.9913 0.9915 0.9894 0.9903 0.9898 0.9898 0.9894 0.9891 0.9882 

n=13 0.9910 0.9918 0.9912 0.9913 0.9910 0.9916 0.9918 0.9918 0.9906 

n=14 0.9807 0.9806 0.9805 0.9811 0.9791 0.9799 0.9798 0.9801 0.9798 

n=15 0.9806 0.9793 0.9792 0.9795 0.9800 0.9794 0.9791 0.9788 0.9785 
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n=16 0.9804 0.9805 0.9803 0.9809 0.9803 0.9803 0.9803 0.9800 0.9797 

n=17 0.9772 0.9787 0.9787 0.9784 0.9782 0.9776 0.9775 0.9773 0.9776 

n=18 0.9782 0.9782 0.9781 0.9787 0.9780 0.9776 0.9776 0.9770 0.9759 

n=19 0.9797 0.9791 0.9778 0.9780 0.9783 0.9774 0.9767 0.9773 0.9770 

n=20 0.9799 0.9792 0.9798 0.9788 0.9793 0.9792 0.9798 0.9786 0.9786 

n=21 0.9772 0.9763 0.9758 0.9753 0.9752 0.9754 0.9760 0.9757 0.9751 

n=22 0.9761 0.9738 0.9741 0.9739 0.9735 0.9734 0.9743 0.9740 0.9737 

n=23 0.9708 0.9702 0.9698 0.9700 0.9716 0.9714 0.9710 0.9709 0.9704 

n=24 0.9709 0.9707 0.9694 0.9696 0.9711 0.9713 0.9704 0.9704 0.9704 

n=25 0.9671 0.9674 0.9675 0.9680 0.9685 0.9682 0.9673 0.9674 0.9674 

n=26 0.9671 0.9674 0.9677 0.9677 0.9680 0.9674 0.9668 0.9666 0.9665 

n=27 0.9671 0.9674 0.9678 0.9677 0.9682 0.9674 0.9668 0.9663 0.9662 

n=28 0.9670 0.9667 0.9674 0.9685 0.9675 0.9664 0.9661 0.9655 0.9657 

n=29 0.9637 0.9639 0.9640 0.9640 0.9636 0.9631 0.9633 0.9634 0.9627 

n=30 0.9634 0.9636 0.9634 0.9634 0.9633 0.9630 0.9633 0.9633 0.9629 

n=31 0.9634 0.9633 0.9634 0.9634 0.9633 0.9630 0.9633 0.9633 0.9629 

n=32 0.9640 0.9636 0.9630 0.9632 0.9631 0.9628 0.9630 0.9636 0.9637 

n=33 0.9637 0.9634 0.9628 0.9624 0.9620 0.9618 0.9619 0.9625 0.9629 

n=34 0.9640 0.9626 0.9627 0.9624 0.9617 0.9617 0.9614 0.9625 0.9627 
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Figure Q-5: Mixed sex model—Plotting NPV 
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Appendix R MALE MODEL EXPERIMENTATION RESULTS 

Table R-13 displays prediction TPR results for experimenting the male dataset. The top 

ten TPR values are in dark-red bold text. The highest TPR values have yellow highlighted 

background. The TPR results are plotted as a 3D graph in Figure R-6. 

Table R-13: Male model—TPR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.3806 0.4194 0.3935 0.3871 0.3806 0.3226 0.2968 0.2774 0.2452 

n=2 0.5355 0.4516 0.4645 0.4710 0.4645 0.4710 0.4774 0.4710 0.4774 

n=3 0.7226 0.6839 0.6903 0.6968 0.6968 0.6968 0.6774 0.6968 0.6968 

n=4 0.7226 0.7355 0.6903 0.7032 0.7226 0.7290 0.7161 0.7226 0.7226 

n=5 0.7290 0.7226 0.6645 0.6839 0.6839 0.7032 0.6903 0.6839 0.6839 

n=6 0.7871 0.8000 0.7871 0.8000 0.7742 0.7548 0.7548 0.7613 0.7484 

n=7 0.8129 0.8000 0.7484 0.7742 0.7806 0.7742 0.7742 0.7806 0.7742 

n=8 0.8387 0.8000 0.7806 0.7742 0.7871 0.7742 0.7677 0.7677 0.7677 

n=9 0.8516 0.8065 0.8065 0.8323 0.8000 0.7935 0.8065 0.8065 0.7871 

n=10 0.8452 0.8194 0.8387 0.8129 0.8516 0.8516 0.8194 0.8194 0.8258 

n=11 0.8710 0.8645 0.8387 0.8258 0.8452 0.8258 0.8323 0.8194 0.8323 

n=12 0.8903 0.8774 0.8710 0.8903 0.8645 0.8645 0.8581 0.8516 0.8516 

n=13 0.8194 0.8065 0.8000 0.8065 0.7806 0.7871 0.7742 0.7677 0.7677 

n=14 0.8452 0.8129 0.7871 0.8065 0.7935 0.7742 0.7806 0.7806 0.7806 

n=15 0.8323 0.8194 0.8129 0.8000 0.8000 0.8000 0.7935 0.7806 0.7806 

n=16 0.7871 0.7677 0.7613 0.7484 0.7484 0.7548 0.7484 0.7419 0.7355 

n=17 0.6581 0.6258 0.6323 0.6065 0.6065 0.6065 0.6065 0.6065 0.6000 

n=18 0.6194 0.6000 0.6000 0.5806 0.5742 0.5677 0.5677 0.5677 0.5613 

n=19 0.6194 0.6000 0.6000 0.5742 0.5677 0.5677 0.5613 0.5613 0.5548 

n=20 0.6323 0.6000 0.6194 0.6065 0.6065 0.6000 0.5742 0.5806 0.5677 

n=21 0.6645 0.6129 0.6258 0.6000 0.6065 0.6129 0.5871 0.5935 0.5871 

n=22 0.6581 0.6129 0.6194 0.6000 0.6129 0.6129 0.5935 0.6000 0.5935 

n=23 0.6645 0.6258 0.6387 0.6000 0.6065 0.5935 0.5613 0.5484 0.5677 
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Figure R-6: Male model—Plotting TPR 

Table R-14 displays prediction TNR results for experimenting the male dataset. The top 

ten TNR values are in dark-red bold text. The highest TNR value has yellow highlighted 

background. The TNR results are plotted as a 3D graph in Figure R-7. 

Table R-14: Male model—TNR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.8505 0.8384 0.8461 0.8494 0.8516 0.8868 0.9082 0.9109 0.9247 

n=2 0.7834 0.8043 0.8131 0.8081 0.8103 0.8076 0.8076 0.8048 0.8032 

n=3 0.6778 0.7317 0.7400 0.7427 0.7444 0.7460 0.7455 0.7477 0.7488 

n=4 0.7097 0.7620 0.7653 0.7631 0.7548 0.7686 0.7702 0.7647 0.7680 

n=5 0.7367 0.7779 0.7861 0.7872 0.7922 0.7922 0.7944 0.7922 0.7949 

n=6 0.7356 0.7779 0.7845 0.7872 0.7850 0.7927 0.7878 0.7823 0.7779 

n=7 0.7438 0.7861 0.7878 0.7812 0.7823 0.7889 0.7845 0.7823 0.7746 

n=8 0.7609 0.7927 0.8021 0.7982 0.7988 0.7966 0.7949 0.7960 0.7933 

n=9 0.7543 0.7911 0.7966 0.7938 0.7889 0.7922 0.7911 0.7872 0.7839 

n=10 0.7482 0.7834 0.7878 0.7839 0.7872 0.7812 0.7779 0.7790 0.7757 

n=11 0.7466 0.7746 0.7784 0.7774 0.7812 0.7806 0.7757 0.7752 0.7719 

n=12 0.7361 0.7719 0.7784 0.7784 0.7724 0.7697 0.7631 0.7603 0.7576 

n=13 0.7510 0.7883 0.7905 0.7806 0.7774 0.7730 0.7691 0.7653 0.7636 

n=14 0.7444 0.7823 0.7823 0.7779 0.7774 0.7691 0.7691 0.7625 0.7587 
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n=15 0.7510 0.7856 0.7768 0.7806 0.7763 0.7675 0.7642 0.7587 0.7581 

n=16 0.7609 0.7971 0.7894 0.7922 0.7894 0.7817 0.7784 0.7752 0.7746 

n=17 0.7620 0.7960 0.7966 0.7993 0.7960 0.7916 0.7889 0.7867 0.7878 

n=18 0.7636 0.7971 0.7971 0.7988 0.7966 0.7938 0.7911 0.7872 0.7867 

n=19 0.7636 0.7971 0.7966 0.7982 0.7966 0.7938 0.7911 0.7872 0.7883 

n=20 0.7548 0.7982 0.8021 0.7993 0.8010 0.7971 0.7977 0.7966 0.7993 

n=21 0.7631 0.8004 0.7982 0.7988 0.8032 0.8037 0.8026 0.7988 0.7966 

n=22 0.7658 0.8026 0.7993 0.8004 0.8037 0.8037 0.8026 0.7960 0.7955 

n=23 0.7702 0.8175 0.8142 0.8103 0.8169 0.8103 0.8059 0.8054 0.8087 

 

 

Figure R-7: Male model—Plotting TNR 

Table R-15 displays prediction Precision results for experimenting the male dataset. The 

top ten Precision values are in dark-red bold text. The highest Precision value has yellow 

highlighted background. The Precision results are plotted as a 3D graph in Figure R-8. 

Table R-15: Male model—Precision 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.1782 0.1811 0.1789 0.1796 0.1793 0.1953 0.2160 0.2098 0.2171 

n=2 0.1740 0.1643 0.1748 0.1730 0.1727 0.1726 0.1745 0.1706 0.1713 

n=3 0.1605 0.1785 0.1845 0.1875 0.1885 0.1895 0.1849 0.1905 0.1912 
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n=4 0.1750 0.2084 0.2004 0.2019 0.2007 0.2116 0.2098 0.2074 0.2097 

n=5 0.1909 0.2171 0.2093 0.2150 0.2190 0.2238 0.2225 0.2190 0.2213 

n=6 0.2023 0.2348 0.2374 0.2427 0.2348 0.2368 0.2326 0.2296 0.2231 

n=7 0.2128 0.2417 0.2311 0.2317 0.2340 0.2381 0.2344 0.2340 0.2264 

n=8 0.2301 0.2475 0.2516 0.2464 0.2500 0.2449 0.2419 0.2429 0.2404 

n=9 0.2280 0.2475 0.2525 0.2560 0.2441 0.2455 0.2475 0.2441 0.2369 

n=10 0.2224 0.2438 0.2519 0.2428 0.2543 0.2491 0.2392 0.2401 0.2388 

n=11 0.2265 0.2463 0.2439 0.2402 0.2476 0.2429 0.2402 0.2369 0.2371 

n=12 0.2233 0.2468 0.2509 0.2551 0.2445 0.2423 0.2358 0.2324 0.2304 

n=13 0.2190 0.2451 0.2455 0.2385 0.2300 0.2280 0.2222 0.2179 0.2168 

n=14 0.2198 0.2414 0.2355 0.2363 0.2330 0.2222 0.2237 0.2188 0.2161 

n=15 0.2216 0.2456 0.2368 0.2371 0.2335 0.2267 0.2228 0.2161 0.2157 

n=16 0.2190 0.2439 0.2355 0.2348 0.2325 0.2276 0.2235 0.2195 0.2176 

n=17 0.1907 0.2073 0.2094 0.2048 0.2022 0.1987 0.1967 0.1950 0.1942 

n=18 0.1825 0.2013 0.2013 0.1974 0.1939 0.1901 0.1880 0.1853 0.1832 

n=19 0.1825 0.2013 0.2009 0.1952 0.1921 0.1901 0.1863 0.1835 0.1826 

n=20 0.1801 0.2022 0.2105 0.2048 0.2061 0.2013 0.1947 0.1957 0.1943 

n=21 0.1929 0.2074 0.2091 0.2026 0.2080 0.2102 0.2022 0.2009 0.1974 

n=22 0.1932 0.2093 0.2082 0.2039 0.2102 0.2102 0.2040 0.2004 0.1983 

n=23 0.1977 0.2261 0.2265 0.2123 0.2201 0.2105 0.1977 0.1936 0.2018 
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Figure R-8: Male model—Plotting Precision 

Table R-16 displays prediction F1-value results for experimenting the male dataset. The 

top ten F1-values are in dark-red bold text. The highest F1-value has yellow highlighted 

background. The F1-value results are plotted as a 3D graph in Figure R-9. 

Table R-16: Male model—F1-value 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.2428 0.2529 0.2460 0.2454 0.2438 0.2433 0.2500 0.2389 0.2303 

n=2 0.2627 0.2410 0.2540 0.2530 0.2517 0.2526 0.2556 0.2504 0.2521 

n=3 0.2626 0.2830 0.2912 0.2955 0.2967 0.2979 0.2905 0.2992 0.3000 

n=4 0.2818 0.3248 0.3106 0.3137 0.3142 0.3280 0.3246 0.3223 0.3251 

n=5 0.3025 0.3338 0.3184 0.3272 0.3318 0.3396 0.3365 0.3318 0.3344 

n=6 0.3219 0.3631 0.3647 0.3724 0.3604 0.3606 0.3556 0.3528 0.3437 

n=7 0.3373 0.3713 0.3531 0.3566 0.3601 0.3642 0.3598 0.3601 0.3504 

n=8 0.3611 0.3780 0.3805 0.3738 0.3795 0.3721 0.3679 0.3690 0.3662 

n=9 0.3597 0.3788 0.3846 0.3915 0.3741 0.3750 0.3788 0.3748 0.3642 

n=10 0.3522 0.3757 0.3875 0.3739 0.3917 0.3854 0.3703 0.3713 0.3705 

n=11 0.3595 0.3834 0.3779 0.3721 0.3830 0.3754 0.3728 0.3676 0.3691 

n=12 0.3571 0.3853 0.3896 0.3966 0.3812 0.3785 0.3700 0.3651 0.3626 

n=13 0.3456 0.3759 0.3758 0.3682 0.3554 0.3536 0.3453 0.3395 0.3381 

n=14 0.3489 0.3722 0.3626 0.3655 0.3602 0.3453 0.3477 0.3418 0.3385 
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n=15 0.3501 0.3780 0.3668 0.3658 0.3615 0.3533 0.3479 0.3385 0.3380 

n=16 0.3427 0.3701 0.3598 0.3575 0.3547 0.3498 0.3442 0.3387 0.3358 

n=17 0.2957 0.3114 0.3146 0.3062 0.3032 0.2994 0.2970 0.2951 0.2934 

n=18 0.2819 0.3015 0.3015 0.2946 0.2899 0.2848 0.2825 0.2794 0.2762 

n=19 0.2819 0.3015 0.3010 0.2913 0.2871 0.2848 0.2797 0.2766 0.2748 

n=20 0.2804 0.3024 0.3142 0.3062 0.3077 0.3015 0.2908 0.2927 0.2895 

n=21 0.2990 0.3100 0.3134 0.3029 0.3097 0.3130 0.3008 0.3002 0.2955 

n=22 0.2987 0.3120 0.3117 0.3044 0.3130 0.3130 0.3036 0.3005 0.2973 

n=23 0.3047 0.3322 0.3345 0.3137 0.3230 0.3108 0.2924 0.2862 0.2978 

 

 

Figure R-9: Male model—Plotting F1-value 

Table R-17 displays prediction NPV results for experimenting the male dataset. The top 

ten NPV values are in dark-red bold text. The highest NPV value has yellow highlighted 

background. The NPV results are plotted as a 3D graph in Figure R-10. 

Table R-17: Male model—NPV 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.9416 0.9443 0.9424 0.9421 0.9416 0.9389 0.9381 0.9367 0.9350 

n=2 0.9519 0.9451 0.9469 0.9472 0.9467 0.9471 0.9477 0.9470 0.9475 
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n=3 0.9663 0.9645 0.9656 0.9664 0.9665 0.9665 0.9644 0.9666 0.9666 

n=4 0.9678 0.9713 0.9667 0.9679 0.9696 0.9708 0.9696 0.9700 0.9701 

n=5 0.9696 0.9705 0.9649 0.9669 0.9671 0.9691 0.9678 0.9671 0.9672 

n=6 0.9759 0.9786 0.9774 0.9788 0.9761 0.9743 0.9742 0.9747 0.9732 

n=7 0.9790 0.9788 0.9735 0.9760 0.9767 0.9762 0.9761 0.9767 0.9758 

n=8 0.9823 0.9790 0.9772 0.9765 0.9778 0.9764 0.9757 0.9757 0.9757 

n=9 0.9835 0.9796 0.9797 0.9823 0.9789 0.9783 0.9796 0.9795 0.9774 

n=10 0.9827 0.9807 0.9829 0.9801 0.9842 0.9841 0.9806 0.9806 0.9812 

n=11 0.9855 0.9853 0.9827 0.9813 0.9834 0.9813 0.9819 0.9805 0.9818 

n=12 0.9875 0.9866 0.9861 0.9881 0.9853 0.9852 0.9844 0.9836 0.9836 

n=13 0.9799 0.9795 0.9789 0.9793 0.9765 0.9771 0.9756 0.9748 0.9747 

n=14 0.9826 0.9800 0.9773 0.9792 0.9779 0.9756 0.9763 0.9761 0.9760 

n=15 0.9813 0.9808 0.9799 0.9786 0.9785 0.9783 0.9775 0.9760 0.9759 

n=16 0.9767 0.9758 0.9749 0.9736 0.9736 0.9740 0.9732 0.9724 0.9717 

n=17 0.9632 0.9615 0.9622 0.9597 0.9596 0.9594 0.9592 0.9591 0.9585 

n=18 0.9593 0.9590 0.9590 0.9572 0.9564 0.9557 0.9555 0.9553 0.9546 

n=19 0.9593 0.9590 0.9590 0.9565 0.9558 0.9557 0.9549 0.9547 0.9541 

n=20 0.9601 0.9590 0.9611 0.9597 0.9598 0.9590 0.9565 0.9571 0.9560 

n=21 0.9639 0.9604 0.9616 0.9591 0.9599 0.9606 0.9580 0.9584 0.9577 

n=22 0.9633 0.9605 0.9610 0.9592 0.9606 0.9606 0.9586 0.9589 0.9583 

n=23 0.9642 0.9625 0.9636 0.9596 0.9606 0.9590 0.9557 0.9544 0.9564 
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Figure R-10: Male model—Plotting NPV 
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Appendix S FEMALE MODEL EXPERIMENTATION RESULTS 

Table S-18 displays prediction TPR results for experimenting the female dataset. The top 

ten TPR values are in dark-red bold text. The highest TPR value has yellow highlighted 

background. The TPR results are plotted as a 3D graph in Figure S-11. 

Table S-18: Female model—TPR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.3939 0.4242 0.4242 0.4242 0.3636 0.3333 0.3182 0.3030 0.3030 

n=2 0.4091 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788 0.3788 

n=3 0.3939 0.3636 0.3636 0.3636 0.3636 0.3636 0.3485 0.3485 0.3485 

n=4 0.5606 0.5303 0.5303 0.5152 0.5303 0.5303 0.5455 0.5606 0.5758 

n=5 0.5303 0.5909 0.6061 0.6061 0.6212 0.6364 0.6364 0.6364 0.6212 

n=6 0.6364 0.5909 0.5758 0.5909 0.5909 0.5909 0.5606 0.5758 0.5455 

n=7 0.5758 0.5758 0.5758 0.5606 0.6061 0.5758 0.5758 0.5909 0.5909 

n=8 0.6515 0.6212 0.6212 0.6212 0.6364 0.6212 0.6061 0.6061 0.6212 

n=9 0.6061 0.4848 0.4848 0.4848 0.5152 0.5000 0.4848 0.5000 0.5000 

n=10 0.6061 0.5152 0.5000 0.5303 0.5152 0.4848 0.5303 0.5000 0.5303 

n=11 0.5606 0.5000 0.5000 0.5152 0.5000 0.5000 0.5152 0.5152 0.5000 

n=12 0.5303 0.5152 0.5000 0.4545 0.5000 0.4697 0.4697 0.4848 0.5000 

n=13 0.5758 0.5152 0.5606 0.5303 0.5152 0.5303 0.5000 0.5152 0.5152 

n=14 0.4697 0.4242 0.4545 0.4394 0.4242 0.4242 0.3636 0.3939 0.3788 

n=15 0.4545 0.4545 0.4091 0.3939 0.3939 0.3636 0.3939 0.3788 0.3636 

n=16 0.3485 0.3939 0.3333 0.3030 0.2576 0.2727 0.3030 0.2879 0.2879 

n=17 0.3788 0.3788 0.3333 0.2727 0.2424 0.2879 0.2576 0.2424 0.2576 

n=18 0.3788 0.3636 0.3333 0.2576 0.2424 0.2879 0.2576 0.2424 0.2576 

n=19 0.3788 0.3485 0.3182 0.2727 0.2424 0.2879 0.2727 0.2576 0.2576 

n=20 0.3939 0.3485 0.3182 0.2727 0.2727 0.2879 0.2727 0.2727 0.2576 

n=21 0.3939 0.3636 0.3333 0.3030 0.2879 0.2879 0.2879 0.2879 0.2727 

n=22 0.4697 0.4091 0.3485 0.3485 0.3182 0.3030 0.3182 0.3030 0.3030 

n=23 0.4697 0.4091 0.3485 0.3485 0.3182 0.3182 0.3182 0.3030 0.3030 

n=24 0.4697 0.4697 0.4091 0.3788 0.3485 0.3333 0.3333 0.3485 0.3485 

n=25 0.4848 0.4545 0.4394 0.3939 0.3636 0.3485 0.3788 0.3939 0.3939 

n=26 0.4545 0.3485 0.3939 0.3788 0.3788 0.3485 0.3333 0.3182 0.2879 

n=27 0.4242 0.3485 0.3939 0.3788 0.3636 0.3485 0.3182 0.3182 0.2879 

n=28 0.3485 0.2727 0.3030 0.3030 0.2879 0.2273 0.2273 0.1970 0.2424 

n=29 0.3030 0.2576 0.2727 0.2576 0.2576 0.2273 0.2273 0.2273 0.2273 
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Figure S-11: Female model—Plotting TPR 

Table S-19 displays prediction TNR results for experimenting the female dataset. The top 

ten TNR values are in dark-red bold text. The highest TNR value has yellow highlighted 

background. The TNR results are plotted as a 3D graph in Figure S-12. 

Table S-19: Female model—TNR 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.8732 0.8826 0.8840 0.8840 0.8973 0.9052 0.9091 0.9096 0.9111 

n=2 0.8845 0.8963 0.8973 0.8963 0.8958 0.8953 0.8958 0.8963 0.8958 

n=3 0.8781 0.8889 0.8914 0.8924 0.8909 0.8929 0.8919 0.8924 0.8924 

n=4 0.8467 0.8536 0.8575 0.8550 0.8536 0.8541 0.8526 0.8521 0.8536 

n=5 0.8678 0.8722 0.8722 0.8713 0.8688 0.8673 0.8678 0.8698 0.8688 

n=6 0.8418 0.8717 0.8781 0.8796 0.8811 0.8806 0.8830 0.8811 0.8840 

n=7 0.8314 0.8575 0.8600 0.8644 0.8654 0.8649 0.8698 0.8683 0.8698 

n=8 0.8319 0.8614 0.8624 0.8683 0.8678 0.8683 0.8698 0.8708 0.8713 

n=9 0.8344 0.8629 0.8639 0.8683 0.8693 0.8693 0.8688 0.8717 0.8698 

n=10 0.8369 0.8644 0.8742 0.8727 0.8757 0.8796 0.8767 0.8840 0.8796 

n=11 0.8472 0.8703 0.8781 0.8786 0.8860 0.8830 0.8811 0.8835 0.8870 

n=12 0.8501 0.8658 0.8771 0.8781 0.8826 0.8885 0.8865 0.8845 0.8855 

n=13 0.8452 0.8698 0.8786 0.8855 0.8904 0.8929 0.8939 0.8904 0.8904 
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n=14 0.8604 0.8899 0.8998 0.9081 0.9106 0.9125 0.9120 0.9101 0.9111 

n=15 0.8595 0.8845 0.9017 0.9081 0.9096 0.9061 0.9032 0.9081 0.9091 

n=16 0.8644 0.8889 0.9032 0.9086 0.9066 0.9052 0.9012 0.9096 0.9106 

n=17 0.8698 0.8870 0.9042 0.9091 0.9091 0.9135 0.9130 0.9174 0.9155 

n=18 0.8717 0.8880 0.9052 0.9091 0.9096 0.9145 0.9140 0.9184 0.9165 

n=19 0.8722 0.8889 0.9052 0.9096 0.9101 0.9150 0.9140 0.9184 0.9165 

n=20 0.8698 0.8870 0.9032 0.9086 0.9071 0.9115 0.9111 0.9140 0.9135 

n=21 0.8688 0.8806 0.9002 0.9022 0.9091 0.9115 0.9101 0.9145 0.9115 

n=22 0.8722 0.8889 0.8973 0.8988 0.8983 0.9012 0.8963 0.8968 0.8978 

n=23 0.8722 0.8889 0.8973 0.8988 0.8983 0.9012 0.8963 0.8968 0.8978 

n=24 0.8717 0.8875 0.8929 0.8963 0.8983 0.8978 0.8998 0.9002 0.9012 

n=25 0.8639 0.8811 0.8860 0.8855 0.8894 0.8894 0.8889 0.8914 0.8934 

n=26 0.8855 0.9052 0.9027 0.9022 0.9022 0.9047 0.9022 0.9047 0.9052 

n=27 0.8865 0.9061 0.9032 0.9017 0.9012 0.9037 0.9002 0.9017 0.9032 

n=28 0.8983 0.9179 0.9150 0.9130 0.9145 0.9179 0.9165 0.9170 0.9199 

n=29 0.9002 0.9199 0.9184 0.9184 0.9199 0.9233 0.9204 0.9224 0.9238 

 

 

Figure S-12: Female model—Plotting TNR 

Table S-20 displays prediction Precision results for experimenting the female dataset. The 

top ten Precision values are in dark-red bold text. The highest Precision value has yellow 

highlighted background. The Precision results are plotted as a 3D graph in Figure S-13. 
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Table S-20: Female model—Precision 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.0915 0.1049 0.1061 0.1061 0.1030 0.1023 0.1019 0.0980 0.0995 

n=2 0.1031 0.1059 0.1068 0.1059 0.1055 0.1050 0.1055 0.1059 0.1055 

n=3 0.0949 0.0960 0.0980 0.0988 0.0976 0.0992 0.0947 0.0950 0.0950 

n=4 0.1060 0.1051 0.1077 0.1033 0.1051 0.1054 0.1071 0.1095 0.1131 

n=5 0.1151 0.1304 0.1333 0.1325 0.1331 0.1346 0.1350 0.1368 0.1331 

n=6 0.1154 0.1300 0.1329 0.1373 0.1388 0.1383 0.1345 0.1357 0.1324 

n=7 0.0997 0.1159 0.1176 0.1182 0.1274 0.1214 0.1254 0.1270 0.1283 

n=8 0.1117 0.1269 0.1277 0.1327 0.1350 0.1327 0.1311 0.1320 0.1353 

n=9 0.1061 0.1029 0.1036 0.1067 0.1133 0.1104 0.1070 0.1122 0.1107 

n=10 0.1075 0.1097 0.1142 0.1190 0.1185 0.1155 0.1224 0.1227 0.1250 

n=11 0.1063 0.1111 0.1174 0.1210 0.1245 0.1218 0.1232 0.1255 0.1255 

n=12 0.1029 0.1107 0.1166 0.1079 0.1213 0.1202 0.1183 0.1199 0.1241 

n=13 0.1076 0.1137 0.1303 0.1306 0.1323 0.1383 0.1325 0.1323 0.1323 

n=14 0.0984 0.1111 0.1282 0.1343 0.1333 0.1359 0.1182 0.1244 0.1214 

n=15 0.0949 0.1132 0.1189 0.1221 0.1238 0.1116 0.1166 0.1179 0.1148 

n=16 0.0769 0.1032 0.1005 0.0971 0.0821 0.0853 0.0905 0.0936 0.0945 

n=17 0.0862 0.0980 0.1014 0.0887 0.0796 0.0974 0.0876 0.0870 0.0899 

n=18 0.0874 0.0952 0.1023 0.0842 0.0800 0.0984 0.0885 0.0879 0.0909 

n=19 0.0877 0.0924 0.0981 0.0891 0.0804 0.0990 0.0933 0.0929 0.0909 

n=20 0.0893 0.0909 0.0963 0.0882 0.0870 0.0955 0.0905 0.0933 0.0881 

n=21 0.0887 0.0899 0.0978 0.0913 0.0931 0.0955 0.0941 0.0984 0.0909 

n=22 0.1065 0.1067 0.0991 0.1004 0.0921 0.0905 0.0905 0.0870 0.0877 

n=23 0.1065 0.1067 0.0991 0.1004 0.0921 0.0946 0.0905 0.0870 0.0877 

n=24 0.1062 0.1192 0.1102 0.1059 0.1000 0.0957 0.0973 0.1018 0.1027 

n=25 0.1036 0.1103 0.1111 0.1004 0.0964 0.0927 0.0996 0.1053 0.1070 

n=26 0.1141 0.1065 0.1161 0.1116 0.1116 0.1060 0.0995 0.0977 0.0896 

n=27 0.1081 0.1075 0.1166 0.1111 0.1067 0.1050 0.0938 0.0950 0.0880 

n=28 0.1000 0.0973 0.1036 0.1015 0.0984 0.0824 0.0811 0.0714 0.0894 

n=29 0.0897 0.0944 0.0978 0.0929 0.0944 0.0877 0.0847 0.0867 0.0882 
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Figure S-13: Female model—Plotting Precision 

Table S-21 displays prediction F1-value results for experimenting the female dataset. The 

top ten F1-values are in dark-red bold text. The highest F1-value has yellow highlighted 

background. The F1-value results are plotted as a 3D graph in Figure S-14. 

Table S-21: Female model—F1-value 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.1486 0.1682 0.1697 0.1697 0.1605 0.1566 0.1544 0.1481 0.1498 

n=2 0.1646 0.1656 0.1667 0.1656 0.1650 0.1645 0.1650 0.1656 0.1650 

n=3 0.1529 0.1519 0.1543 0.1553 0.1538 0.1558 0.1489 0.1494 0.1494 

n=4 0.1783 0.1754 0.1790 0.1722 0.1754 0.1759 0.1791 0.1832 0.1891 

n=5 0.1892 0.2137 0.2186 0.2174 0.2193 0.2222 0.2228 0.2252 0.2193 

n=6 0.1953 0.2131 0.2159 0.2229 0.2248 0.2241 0.2170 0.2197 0.2130 

n=7 0.1700 0.1929 0.1954 0.1953 0.2105 0.2005 0.2060 0.2091 0.2108 

n=8 0.1907 0.2108 0.2119 0.2187 0.2228 0.2187 0.2156 0.2168 0.2222 

n=9 0.1806 0.1698 0.1707 0.1749 0.1858 0.1808 0.1753 0.1833 0.1813 

n=10 0.1826 0.1809 0.1859 0.1944 0.1926 0.1866 0.1989 0.1970 0.2023 

n=11 0.1787 0.1818 0.1902 0.1960 0.1994 0.1958 0.1988 0.2018 0.2006 

n=12 0.1724 0.1823 0.1891 0.1744 0.1953 0.1914 0.1890 0.1922 0.1988 

n=13 0.1814 0.1863 0.2114 0.2096 0.2105 0.2194 0.2095 0.2105 0.2105 

n=14 0.1627 0.1761 0.2000 0.2057 0.2029 0.2059 0.1784 0.1891 0.1838 

n=15 0.1571 0.1813 0.1843 0.1864 0.1884 0.1708 0.1799 0.1799 0.1745 
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n=16 0.1260 0.1635 0.1544 0.1471 0.1245 0.1300 0.1394 0.1413 0.1423 

n=17 0.1404 0.1558 0.1555 0.1338 0.1199 0.1456 0.1308 0.1280 0.1333 

n=18 0.1420 0.1509 0.1566 0.1269 0.1203 0.1467 0.1318 0.1290 0.1344 

n=19 0.1425 0.1460 0.1500 0.1343 0.1208 0.1473 0.1390 0.1365 0.1344 

n=20 0.1457 0.1442 0.1479 0.1333 0.1319 0.1434 0.1358 0.1390 0.1313 

n=21 0.1448 0.1441 0.1512 0.1404 0.1407 0.1434 0.1418 0.1467 0.1364 

n=22 0.1737 0.1693 0.1544 0.1559 0.1429 0.1394 0.1409 0.1351 0.1361 

n=23 0.1737 0.1693 0.1544 0.1559 0.1429 0.1458 0.1409 0.1351 0.1361 

n=24 0.1732 0.1902 0.1736 0.1656 0.1554 0.1486 0.1507 0.1575 0.1586 

n=25 0.1707 0.1775 0.1774 0.1600 0.1524 0.1465 0.1577 0.1661 0.1683 

n=26 0.1824 0.1631 0.1793 0.1724 0.1724 0.1625 0.1533 0.1495 0.1367 

n=27 0.1723 0.1643 0.1799 0.1718 0.1649 0.1614 0.1448 0.1463 0.1348 

n=28 0.1554 0.1434 0.1544 0.1521 0.1467 0.1210 0.1195 0.1048 0.1306 

n=29 0.1384 0.1382 0.1440 0.1365 0.1382 0.1266 0.1235 0.1255 0.1271 

 

 

Figure S-14: Female model—Plotting F1-value 

Table S-22 displays prediction NPV results for experimenting the female dataset. The top 

ten NPV values are in dark-red bold text. The highest NPV value has yellow highlighted 

background. The NPV results are plotted as a 3D graph in Figure S-15. 
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Table S-22: Female model—NPV 

 
k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 

n=1 0.9780 0.9793 0.9793 0.9793 0.9775 0.9767 0.9763 0.9758 0.9758 

n=2 0.9788 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 

n=3 0.9781 0.9773 0.9774 0.9774 0.9774 0.9774 0.9769 0.9769 0.9769 

n=4 0.9834 0.9825 0.9825 0.9819 0.9825 0.9825 0.9830 0.9836 0.9841 

n=5 0.9827 0.9850 0.9856 0.9855 0.9861 0.9866 0.9866 0.9866 0.9861 

n=6 0.9862 0.9850 0.9846 0.9851 0.9852 0.9852 0.9841 0.9846 0.9836 

n=7 0.9837 0.9842 0.9843 0.9838 0.9855 0.9843 0.9844 0.9849 0.9850 

n=8 0.9866 0.9859 0.9860 0.9860 0.9866 0.9860 0.9855 0.9855 0.9861 

n=9 0.9849 0.9810 0.9810 0.9811 0.9822 0.9817 0.9811 0.9817 0.9817 

n=10 0.9850 0.9821 0.9818 0.9828 0.9824 0.9814 0.9829 0.9820 0.9830 

n=11 0.9835 0.9817 0.9819 0.9824 0.9820 0.9820 0.9825 0.9825 0.9820 

n=12 0.9824 0.9822 0.9818 0.9803 0.9820 0.9810 0.9810 0.9815 0.9820 

n=13 0.9840 0.9822 0.9840 0.9831 0.9826 0.9832 0.9822 0.9826 0.9826 

n=14 0.9804 0.9794 0.9807 0.9804 0.9799 0.9799 0.9779 0.9789 0.9784 

n=15 0.9798 0.9804 0.9792 0.9788 0.9788 0.9777 0.9787 0.9783 0.9778 

n=16 0.9761 0.9784 0.9766 0.9757 0.9741 0.9746 0.9755 0.9752 0.9753 

n=17 0.9774 0.9778 0.9766 0.9747 0.9737 0.9753 0.9743 0.9739 0.9744 

n=18 0.9774 0.9773 0.9767 0.9742 0.9737 0.9754 0.9743 0.9739 0.9744 

n=19 0.9774 0.9768 0.9762 0.9747 0.9737 0.9754 0.9748 0.9745 0.9744 

n=20 0.9779 0.9767 0.9761 0.9747 0.9747 0.9753 0.9748 0.9748 0.9743 

n=21 0.9779 0.9771 0.9765 0.9756 0.9752 0.9753 0.9753 0.9754 0.9748 

n=22 0.9807 0.9789 0.9770 0.9770 0.9760 0.9755 0.9759 0.9754 0.9754 

n=23 0.9807 0.9789 0.9770 0.9770 0.9760 0.9761 0.9759 0.9754 0.9754 

n=24 0.9807 0.9810 0.9790 0.9780 0.9770 0.9765 0.9765 0.9771 0.9771 

n=25 0.9810 0.9803 0.9799 0.9783 0.9773 0.9768 0.9778 0.9784 0.9785 

n=26 0.9804 0.9772 0.9787 0.9782 0.9782 0.9772 0.9766 0.9761 0.9751 

n=27 0.9794 0.9772 0.9787 0.9781 0.9776 0.9772 0.9760 0.9761 0.9751 

n=28 0.9770 0.9749 0.9759 0.9758 0.9754 0.9734 0.9734 0.9724 0.9740 

n=29 0.9755 0.9745 0.9750 0.9745 0.9745 0.9736 0.9735 0.9735 0.9736 
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Figure S-15: Female model—Plotting NPV 

 

  

k=1
k=5

k=9
k=13

k=17

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

n
=

1

n
=

3

n
=

5

n
=

7

n
=

9

n
=

1
1

n
=

1
3

n
=

1
5

n
=

1
7

n
=

1
9

n
=

2
1

n
=

2
3

n
=

2
5

n
=

2
7

n
=

2
9

Female model—Plotting NPV

0.9650-0.9700 0.9700-0.9750 0.9750-0.9800 0.9800-0.9850 0.9850-0.9900



243 

Appendix T DATA DISTRIBUTIONS OF THE MIXED SEX 

DATASET AND IT’S “SMOTED” ONE 

The figures in this appendix show comparison of the mixed sex dataset and its 

“SMOTEd” one by comparing Weka univariate attribute distributions of the chosen 13 

predictors. The red and blue colours refer to positive and negative classes respectively. 

Figure T-16: Univariate attribute distribution of Age in the mixed sex dataset 

Figure T-17: Univariate attribute distribution of Age in the “SMOTEd” mixed sex dataset 
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Figure T-18: Univariate attribute distribution of Total Cholesterol in the mixed sex dataset 

 

 

Figure T-19: Univariate attribute distribution of Total Cholesterol in the “SMOTEd” mixed sex dataset 
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Figure T-20: Univariate attribute distribution of LDL Cholesterol in the mixed sex dataset 

 

 

Figure T-21: Univariate attribute distribution of LDL Cholesterol in the “SMOTEd” mixed sex dataset 

 



246 

Figure T-22: Univariate attribute distribution of VLDL Cholesterol in the mixed sex dataset 

Figure T-23: Univariate attribute distribution of VLDL Cholesterol in the “SMOTEd” mixed sex dataset 
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Figure T-24: Univariate attribute distribution of SBP in the mixed sex dataset 

Figure T-25: Univariate attribute distribution of SBP in the “SMOTEd” mixed sex dataset 
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Figure T-26: Univariate attribute distribution of Triglycerides in the mixed sex dataset 

 

 

Figure T-27: Univariate attribute distribution of Triglycerides in the “SMOTEd” mixed sex dataset 
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Figure T-28: Univariate attribute distribution of DBP in the mixed sex dataset 

Figure T-29: Univariate attribute distribution of DBP in the “SMOTEd” mixed sex dataset 
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Figure T-30: Univariate attribute distribution of Glucose in the mixed sex dataset 

Figure T-31: Univariate attribute distribution of Glucose in the “SMOTEd” mixed sex dataset 
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Figure T-32: Univariate attribute distribution of Cigarettes in the mixed sex dataset 

Figure T-33: Univariate attribute distribution of Cigarettes in the “SMOTEd” mixed sex dataset 
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Figure T-34: Univariate attribute distribution of HDL Cholesterol in the mixed sex dataset 

Figure T-35: Univariate attribute distribution of HDL Cholesterol in the “SMOTEd” mixed sex dataset 
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Figure T-36: Univariate attribute distribution of Hematocrit in the mixed sex dataset 

Figure T-37: Univariate attribute distribution of Hematocrit in the “SMOTEd” mixed sex dataset 
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Figure T-38: Univariate attribute distribution of BMI in the mixed sex dataset 

Figure T-39: Univariate attribute distribution of BMI in the “SMOTEd” mixed sex dataset 
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Figure T-40: Univariate attribute distribution of LDH in the mixed sex dataset 

 

 

Figure T-41: Univariate attribute distribution of LDH in the “SMOTEd” mixed sex dataset 
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Appendix U SUMMARY OF THE MIXED SEX DATASET 

Figure U-42 summarises the mixed sex dataset with 13 risk factors chosen to be predictors 

for CVD prediction. The summary was done in R. 

 

Figure U-42: Summary of the mixed sex dataset, with the chosen 13 predictors, in R 
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Appendix V SUMMARY OF THE “SMOTED” MIXED SEX 

DATASET 

Figure V-43 summarises the “SMOTed” mixed sex dataset with 13 risk factors chosen to 

be predictors for CVD prediction. The summary was done in R. 

Figure V-43: Summary of the “SMOTEd” mixed sex dataset, with the chosen 13 predictors, in R 


