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Abstract 

Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo 

(Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution 

across the weld. Tensile testing integrated with the optical image correlation Instron® system 

indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total 

elongation of the weldment were respectively 88 %, 87 %, and 69 % of the corresponding base 

material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform 

distribution of the main alloying elements across the weld. The hardness raised increasingly from 

the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher  

volume fraction in HAZ and acicular ’ martensite formation in the FZ. Because of the higher 

hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be 

expected. However, the lower YS as well as the lower UTS of the weldment can be explained by 
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presence of some porosity and underfill in the FZ. The lower total elongation of the weldment 

compared to the BM can be related to the higher hardness of the HAZ and FZ.  

Keywords: Titanium alloy; laser welding; mechanical properties; microstructure; EPMA 

1. Introduction 

Ti6242 is a near- titanium alloy used as the key structural components in the hot section 

of power generation and aircraft gas turbines as disks, impellers, and sheet metal components 

such as afterburner cans and hot airframes with a service temperature of up to 538 °C [1]. These 

applications require an excellent combination of high strength-to-weight ratio and adequate 

corrosion/oxidation resistance at room and elevated temperatures. The nominal chemical 

composition of the Ti6242 alloy by weight percent (wt. %) is: 6.20 Al, 1.95 Sn, 3.80 Zr, 2 Mo, 

0.08 Si, 0.021 C, 0.008 N, 0.06 O, 0.0016 H, and balance Ti [2, 3]. The alloy has a bi-modal 

microstructure and consists of  and β phases with crystal structures of hexagonal close packed 

(HCP) and body centered cubic (BCC), respectively. The  to β transformation temperature or β-

transus in Ti6242 is about 993 °C [4]. Al and interstitials (O, N, and C) are  stabilizer, i.e., they 

raise the β-transus while Mo is β stabilizer [5]. In contrast, Zr and Sn have slight effect on β-

transus but they strengthen the  phase by solid-solution strengthening mechanism [5]. The  

phase has a higher strength and lower ductility compared to the β phase [4] and thus, is the main 

strengthening phase in this alloy. The oxidation and corrosion resistance of the alloy in different 

oxidizing/corrosive environments is supplied primarily by Ti, through formation of a protective 

TiO2 oxide film [5].  

As a result of the high reactivity of molten Ti with oxygen, hydrogen, and nitrogen 

leading to deterioration of mechanical properties of the weld metal, it is essential to perform the 
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welding under protective inert gas or vacuum environment. Accordingly, advanced fusion 

welding techniques such as laser and electron beam welding have been extensively employed to 

join or repair various titanium alloy components used in gas turbines. Specifically, laser welding 

is attractive for welding of difficult-to-join Ti alloys because this welding technology provides 

high welding speed, high energy density, low heat-input, a narrow FZ and HAZ, low distortion, 

low residual stresses, and ease of automation [6, 7].  

  In general, welding of Ti alloys can be associated with some metallurgical problems. 

For instance in gas tungsten arc welded Ti–6Al–2Sn–4Zr–6Mo(Ti6246), the elongation of the 

weld metal is reported to be 0.4 % [8]. This weld brittleness is related to the formation of brittle 

phases (e.g., formation of extremely fine lamellar  phase), precipitation of hard and brittle 

particles and formation of hydrides in the weld metal [6, 9, 10]. The post-weld heat treatment 

(PWHT) can slightly improve the ductility in brittle Ti alloy welds [8]. Similarly, in laser welded 

Ti–6Al–4V (Ti64), an  + β titanium alloy, it is reported that the hardness in the FZ is 140 HV 

higher than that of the BM [11]. This increase in the FZ hardness is related to the formation of ’ 

(martensite) due to the high cooling rates upon weld metal solidification [9, 11]. Furthermore, 

loss of alloying elements in the weld metal due to evaporation is another issue in welding of Ti 

alloys. For instance, in electron beam welded Ti–5Al–5V–5Mo–3Cr (Ti–5553), the Al content 

was reduced to 4.66 wt. % from the BM value of 4.95 wt. % [9].  

As discussed above, the mechanical property and microstructure of several laser or 

electron beam welded Ti alloys such as Ti64 [11], Ti5553 [9], and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si 

[12] have been well investigated and reported  in the literature. However, little data are available 

in literature on the microstructure and mechanical properties of laser welded Ti6242 and even 
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less on the variation in the chemical composition across the weld. Accordingly, this study has 

been undertaken to map variation in mechanical properties, microstructure, and chemical 

composition across the weld in laser welded Ti6242. Such investigation will provide key data 

which will be useful for maximizing the integrity of the laser welded Ti6242. 

2. Experimental Material and Procedures 

Rectangular bars of Ti6242 with dimensions of 160 mm  76 mm  76 mm 

(length  width  thickness) were received. The bars were forged and subsequently annealed at 

temperatures below the β-transus by the manufacturer. The bars were sliced into 1.6 mm thick 

sheets along the length  width plane by wire electro-discharge machining (EDM). To remove 

any previous oxides and/or surface contaminations that may adversely affect the integrity of the 

weldments, the surfaces to be welded were brushed and then cleaned with ethanol. The sheets 

were then laser welded autogenously at a power of 3 kW, Argon gas shielding of 20 to 30 L/min, 

and travelling speed of 100 mm/sec. To examine the integrity of the laser welded Ti6242 by 

tensile testing, as schematically illustrated in Fig. 1, three subsize ASTM E8 flat dog-bone 

tensile samples were extracted from the laser welded sheets transverse to the weld line in the as-

welded condition by wire EDM. It is noteworthy that the weld line was located in the middle of 

the gage length in the flat tensile samples. The EDM can generate a recast layer on the surface of 

tensile samples which can lead to premature failure during tensile loading. Therefore, prior to 

tensile testing the tensile gage section was ground using 800-grit SiC paper.  

For tensile testing, the tensile axis was perpendicular to the weld line. Tensile tests were 

carried out at room temperature based on the ASTM E8-13a standard at an initial strain rate of 

310
-3

 s
-1

 using a 30 kN Instron 5567 universal tensile testing machine integrated with an 

Instron® digital image correlation system. The latter is a non-contact optical system that captures 

real-time images during tensile testing to determine the elongation distribution for every 

deformation stage. The system uses a CCD camera capable of capturing 50 frames per second 

(fps) and needs a speckle pattern consisting of white dots randomly sprayed on the grey flat 

surface of the gage length in the tensile sample. In this study 2 fps was used during testing and 
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the analysis of the captured images were performed by the Instron® dedicated software to obtain 

the elongation distribution for each deformation step.   

In addition to mapping the elongation distribution, this Instron® digital imaging system 

is also capable to work at the same time as an optical extensometer. To this end, prior to tensile 

testing, in addition to the speckle pattern, two larger white dots were marked on the same side of 

the tensile sample to distinguish the gage region (32 mm) by the optical extensometer during 

tensile testing. To attain the stress-strain curves and the related tensile properties (YS, UTS, and 

total elongation), the load data, recorded by the tensile testing machine, were used to calculate 

the engineering stress, while the elongation was determined from the data recorded by the optical 

extensometer. In order to compare the tensile properties of the weldments with those of the BM, 

tensile samples with the same geometry were prepared from the as-received BM Ti6242 sheet by 

wire EDM and then tensile tested under the same conditions as the weldments.  
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To map the variation in the chemical composition, measure the microhardness, and 

characterize the microstructure, further sections through a plane perpendicular to the weld line 

(Fig. 1) were prepared from the welded sheets by wire EDM. At the initial stages of this study, it 

was found that metallographic sample preparation for the welded Ti6242 alloy was challenging; 

however, an effective metallography procedure was developed for this alloy. The details of this 

procedure are provided in Table 1. For grinding, 320 and 600 SiC papers were respectively used. 

After grinding, the samples were polished on a low nap cloth for one minute using 6 μm 

diamond suspension polishing solution. The polishing was continued for another one minute 

using a high nap cloth and 1 µm aluminum oxide polishing solution. Subsequent polishing was 

performed using a medium nap cloth and 0.3 µm aluminum oxide for 2 minutes. Final polishing 

of the samples was carried out on a medium nap cloth for 2 minutes using 0.05 µm silicon 

dioxide polishing solution. After each grinding/polishing step, the sample surface was cleaned 

with cotton and water, and then flushed with ethanol and finally dried. The developed 

metallography procedure was used to prepare the hot mounted metallographic samples for 

mapping chemical composition variation, microhardness testing, and microstructural 

examination across the weld. To examine the variation in the chemical composition across the 

weld, EPMA was performed on the as-polished samples using a JEOL 733 SuperProbe operated 

at 10 kV and 50 nA. For EPMA the weld-cross section was scanned at the mid-thickness as 

shown in Fig. 2.  

To assess variation in the mechanical properties across the weld, Vickers microhardness 

measurement was carried out on the as-polished samples with a surface finish of 0.05 m under a 

load of 300 g and a dwell time of 13 s using a Leco® Microhardness Tester LM248AT with a 

Vickers diamond pyramid indenter. The microhardness measurements extended from FZ to HAZ 

and BM on both sides. Microhardness was determined on three lines spaced ~ 415 m along the 

sheet thickness as shown in Fig. 2. Also, along each line in the x direction (Fig. 2) the distance 

between each indent was 200 m, i.e., at least five times the indent diameter (40 m on average). 

In total 30 hardness measurements were executed on each line and the results for each line is 

reported in this study.  

To reveal the microstructure of the different zones by optical microscopy, the as-polished 

samples were immersion etched for five seconds in Kroll’s reagent composed of 3 mL HF, 6 mL 
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HNO3, and 100 mL H2O. The volume fraction of the primary  phase across the weld was 

determined according to the point counting method described in the ASTM E 562-02 standard. 

Moreover, the equivalent diameters of the primary  and the transformed β across the weld were 

measured using the Clemex® image analysis software and reported as their corresponding sizes 

in this study. For volume fraction determination and size measurements at least five micrographs 

were considered for each region of interest across the weld. For size measurements, on each 

image at least 10 primary  and 10 transformed β were sampled.   

To determine the fracture mode and relate it to the mechanical properties of the 

weldments, fractography studies following tensile testing were carried out. To this end, the 

fracture surface of the tensile samples was examined under a Hitachi S-4300 scanning electron 

microscope (SEM) operated at 15 kV in the secondary electron mode. 

 

3. Results and Discussion 

3.1. Average Tensile Properties 

In this study, the integrity of the laser welded Ti6242 was investigated by tensile testing. 

For the as-laser welded Ti6242, the average tensile properties of the weld are tabulated in Table 

2 and plotted in Fig. 3. In Table 2 and Fig. 3, each datum point (YS, UTS and total elongation) 

for weldment is the average of the corresponding tensile property values determined for the three 

dog-bone tensile samples extracted from the laser welded sheet. As a point of reference, the 

tensile properties of the BM in the as-received condition are also provided in Table 2 and Fig. 3. 

The obtained tensile properties for the BM were very close to those reported in Reference [13] as 

can be observed from Table 2. This indicates the reliability of the tensile testing procedure used 

in this study. It is noteworthy that the YS was measured at a point where deviation from a linear 

behavior was observed. Also, the error bars in Table 2 are the standard deviations of the tensile 

properties for the tensile samples.  

Analysis of the results indicated that the average YS, UTS, and total elongation (shown 

by the right hand abscissa in Fig. 3) of the weldment were respectively 88 %, 87 %, and 69 % of 

the BM corresponding values. Of interest in this analysis of the mechanical performance of the 

as-laser welded Ti6242 was also the standard deviation in the tensile properties. The standard 

deviations of YS and UTS were negligible (below 1 %) as can be observed from Table 2. Also, 
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the standard deviation in the total elongation (6 %) was not significant and remained in the range 

of experimental scatter in the data. The basis for the consistency in the mechanical performance 

of the as-laser welded Ti6242 is discussed next. 

 

3.2. Tensile Properties along the Weld Line 

Figure 4 illustrates the tensile properties of the individual samples extracted according to 

Fig. 1 from the as-laser welded Ti6242 sheet. It is noteworthy that the corresponding tensile 

properties of the BM in the as-received condition are depicted as horizontal lines for reference. 

For the YS and UTS (Fig. 4a and b), the individual values for each of the three tensile samples 

were relatively uniform. Therefore, uniform YS and UTS along the weld line explains negligible 

standard deviation in the average YS and UTS (Table 2). By contrast, for the total elongation, the 

value for the third sample (12.5 %) was slightly lower than those of tensile samples 1 and 2 

(respectively 13.4 % and 14.2 %). This slight difference in the elongation along the weld line 

have resulted in a slightly higher standard deviation in the average elongation (Table 2) 

compared to the average YS and UTS. The characteristics of the FZ and HAZ affect the 

mechanical performance, which is discussed in Sections 3.4 to 3.6. 

A typical stress-strain curve for the individual samples extracted from the laser welded 

Ti6242 sheet is compared with that of the BM in Fig. 5. The elastic and plastic behaviors of the 

weld tensile sample are different from those of the BM. This difference can be related to the 

characteristics of the FZ and HAZ (width, hardness, and microstructure) that will be discussed in 

Sections 3.4 to 3.6. However, the area under the stress-strain curves which represents the 

toughness was calculated for the weld and the BM. It was found that the average toughness of 

the weldment, i.e., (11783  544)  10
4
 J/m

3
, was lower than the BM value, i.e. 

(20224)  10
4
 J/m

3
. In other words, the weldment exhibited a toughness 58 % of the BM value. 

The failure location during tensile testing of the individual samples (Fig. 1) extracted from the 

laser welded Ti6242 sheet is reported in Table 2. For samples 1 and 3 failure occurred in the FZ. 

For sample 2, tensile failure occurred exclusively in the BM.  
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3.3. Variation in the Chemical Composition across the Weld 

The results of the EPMA analysis performed for the major alloying elements in Ti6242 

weld are presented in Fig. 6. In the EPMA analysis two approaches were followed. First, as 

schematically presented in Fig. 6a, chemical analysis was carried out across the weld using a 

probe or beam size of 2 m and a step size of 20 µm in the FZ and 50 µm in the HAZ and BM. It 

can be observed that the distribution of the major alloying elements, i.e. Al, Zr, Sn, and Mo, in 

the FZ is relatively uniform. This can be related to the fine and uniform ’ martensitic 

microstructure in the FZ as described in Section 3.5. By contrast, for Al, Zr, and Mo there are 

fluctuation in the distribution of these alloying elements in the HAZ and BM regions. This can 

be explained in terms of presence of  and β phases in the HAZ and BM as will be explained in 

Section 3.5. Indeed, due to a small beam size (2 m) and coarser  and β sizes (e.g., 

13.5  4.8 µm and 18.0  6.2 µm respectively for BM), depending on whether the measurement 

location was on  or β phase, a different chemical composition was read as these alloying 

elements have different affinity for  and β phases. Interestingly, for Sn the chemical 

concentration from FZ to BM is relatively uniform indicating that Sn has an almost equal affinity 

for  and β phases. Also, by determining the average concentration of Al, Mo, and Zr for the BM 

and plotting the data as a horizontal line, it can be observed that the chemical concentration of 

Al, Mo, and Zr in the FZ is very close to the BM corresponding average value (Fig. 6b). Also, in 

HAZ the average chemical concentration of Al, Mo, and Zr is not significantly different from the 

BM corresponding average value. This analysis indicates that variation in the chemical 

composition across the weld for major alloying elements is not significant in laser welded 

Ti6242.  

 In the second EPMA analysis or approach, as schematically presented in Fig. 6a, a larger 

beam size (20 m) was used and measurements were carried out for different ten locations in 

HAZ as well as in the BM. With this beam size it was expected that for each measurement spot 

in BM and HAZ, both  and β phases at least partially were included in the analysis, and thus, 

more average representative results can be obtained. To have even a better characteristic 

analysis, as shown schematically in Fig. 6a, the average of the ten measurements in HAZ as well 

as the BM were determined and reported in Fig. 6c. Again, it can be observed that the 
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distribution of Al, Zr, Sn, and Mo from FZ to BM is uniform. This is a sign of a sound weld 

since losing alloying elements during welding in the FZ due to evaporation is not desirable.  

For Si which is a minor element in Ti6242, the concentration was scattered in the 0.08 to 

0.12 wt. % range in the FZ, HAZ, as well as BM. Of interest in this analysis is the standard 

deviation in the chemical analysis in HAZ and BM (Fig. 6c). For Sn which has almost equal 

affinity for  and β phases, the standard deviation in the measurements presented as error bar 

was negligible, i.e., less than the marker size. In contrast, for Zr, Al, and Mo which have 

progressive affinity in partitioning either in  or β phases, the standard deviation in concentration 

of Zr, Al, and Mo progressively increased.  

 

3.4. Microhardness Evolution 

In order to map the variation in the mechanical properties across the weld, microhardness 

measurements were carried out. The variation in the microhardness across the weld in laser-

welded Ti6242 for three hardness lines (Fig. 2) is plotted in Fig. 7 for the as-welded condition. 

For the BM, the hardness varies from 303 to 363 HV. This variation can be related to the indent 

size and /β size. The average indent diameter was 40 m while  and β had the respective size 

of 13.5  4.8 µm and 18.0  6.2 µm in the BM. Therefore, hardness can be measured either 

mostly on the β phase, or partly on  and partly on β. Since β is softer and more ductile than , 

there will be variation in the measured hardness of the BM. In contrast, in the FZ the 

microstructure was uniform and finer as demonstrated in Section 3.5. Therefore, there is a lower 

degree of scatter in the microhardness data for FZ. The HAZ region can be divided into two 

subregions, i.e., A and B, as shown on microhardness profile and further discussed in Section 

3.5. For both of these regions of HAZ, although the microstructures are to some extent different 

from each other, they are finer compared to the BM (Section 3.5). Hence, for each region the 

hardness data are less scattered compared to the BM.  

According to Fig. 7, by moving from the BM toward the HAZ and FZ the hardness 

increases for all the three hardness profiles. In FZ either a single peak or a small kink in the 

hardness peak leading two smaller hardness peaks was observed for the three hardness lines. 

Also, the variation in the hardness in the FZ is not significant. Moreover, although measured 

from different locations along the sheet thickness (Fig. 2), similar hardness profiles were found 
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for the three hardness lines. Also, almost a symmetric hardness profile was observed for the two 

sides of the weld centerline. The observed symmetry in the microhardness profiles with respect 

to the weld centerline indicates that the two weld part are affected thermally almost in the same 

way.     

The variation in the average hardness from BM to FZ is presented in Fig. 8. The best fit 

to the data is also depicted as a dotted curve. It can be seen that hardness continuously increases 

from BM (329 13 HV) to HAZ (B: 334  10 and A: 391 4 HV) and FZ (435  6 HV). The 

average hardness in subregion A of HAZ is 1.2 times the BM average hardness value. Similarly, 

the average hardness in FZ is 1.3 times the BM average hardness value. It is noteworthy that due 

to fluctuation in the BM hardness values (Fig. 7), the standard deviation of the BM average 

hardness is higher compared to those of the HAZ and FZ where a more consistent hardness was 

measured. The contribution of the microstructural features to the observed microhardness 

behavior will be discussed in the next section. 

 

3.5. Microstructure Observation across the Weld  

Overall Weld Geometry and Defects: A low magnification EPMA image of the laser 

welded Ti6242 is presented in Fig. 2. Three distinct zones, namely FZ, HAZ, and BM can be 

identified from the contrast and microstructure. The FZ is narrower at the middle and wider in 

the top and bottom regions. The FZ is 466  11 m wide at the middle. As marked on Fig. 2 

some metallurgical defects such underfill and gas porosity (also known as solidification pores) 

can be observed in the FZ. Loss of material from the top surface due to evaporation and 

expulsion of the molten metal is most probably the major cause for the development of the 

underfill defect during laser welding of Ti6242 [14]. Also, rapid cooling of the FZ can lead to 

inadequate filling of the weld gap and thus promote formation of the underfill defect at the top 

[15]. Based on the AWS D17-1 standard, the maximum allowable underfill depth is 7 % of the 

sheet thickness, i.e., 112 m for the current Ti6242 laser welded sheet. The maximum depth of 

the underfill in the current Ti6242 laser weld was determined to be 65 m which is within the 

allowable limit of the AWS D17-1 standard.  

It is well known that porosity is formed in the FZ due to entrapment of gas bubbles that 

cannot escape before solidification. In titanium welds, hydrogen is reported to be the main source 



12 
 

for generation of the gas porosity [16]. Contamination of the weld parts by grease, oil, and dirt 

can supply hydrogen for gas porosity formation. Similar to this work, the presence of underfill 

and porosity in the FZ has been observed for laser welded Ti64 [14] and Ti5553 [9, 17]. As 

discussed in Section 3.6, the presence of underfill and porosity in the FZ of laser welded Ti6242 

can affect the tensile properties. 

Referring back to Fig. 2, a part of HAZ has a brighter contrast compared to the FZ and 

BM. The overall HAZ is 460  9 m wide at the middle on either side of the FZ determined 

based on the microstructure studies detailed below as well as microhardness measurements. It 

can be observed that laser welding generates a narrow FZ and HAZ. The microstructures of BM, 

HAZ, and FZ at higher magnifications are presented in Fig. 9. 

BM Microstructure: For the BM Ti6242 a combination of equiaxed and lamellar 

microstructure was observed. In other words, the BM has a near  bimodal or duplex 

microstructure which consists of equiaxed primary  grains (p: bright phase in Fig. 9a and b) 

distributed in a matrix of transformed β phase (dark phase in Fig. 9a and b). The transformed β 

phase is indeed a lamellar  + β constituent composed of fine acicular  phase in the β matrix (or 

in another word alternate layers of  and β phases), as shown at higher magnification in Fig. 9b. 

For better understanding of the BM microstructure, the location of the Ti6242 in a pseudobinary 

Ti phase diagram is presented in Fig. 10. Usually, Ti6242 is hot deformed in the  + β phase 

field (e.g., at 930 °C) followed by air cooling [18]. Subsequently, the alloy is annealed in the 

 + β phase field (e.g., at 955 °C for 1 h) to attain a considerable volume fraction of equiaxed 

primary  grains [18]. Upon cooling from the hot deformation/annealing temperature,  begins 

to nucleate at the β grain boundaries and grows as a lamellar phase into the prior β grains. In fact, 

the  plates form with their close-packed (basal) plane parallel to a distinct plane in the β matrix 

[19]. Due to a near atomic matching along this common plane, the  phase grows faster along 

this plane but thickens rather sluggishly transverse to this plane [19]. By this means,  plates or 

layers are generated in the β matrix. The  that forms by this mechanism is known as secondary 

 or s. The resulting microstructure is a distribution of primary  grains and a transformed β 

matrix where the latter is actually composed of  and β lamellas with a random orientation (Fig. 

9b). The volume fraction of the primary  in the BM Ti6242 was determined to be 36  1 %. 
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Also, the sizes of the primary  and the transformed β in the BM were 13.5  4.8 µm and 

18.0  6.2 µm, respectively. 

This type of BM microstructure provides the balanced mechanical properties for the 

Ti6242 alloy. The equiaxed microstructure supplies high ductility and high fatigue resistance 

while the lamellar microstructure provides high fracture toughness, excellent creep resistance, 

and fatigue crack growth resistance [3]. The latter can be related to the deflection of the 

propagating fatigue cracks along various randomly oriented lamellae [3].  

During laser welding the material is heated to temperatures significantly higher than the 

β-transus temperature and cooled down at a very high cooling rates. As the laser source travels 

away, the heat input in the melting pool and HAZ dissipates into the nearby regions quickly 

leading to rapid cooling of the FZ and HAZ. Therefore, the microstructures of the HAZ and FZ 

are expected to be significantly different from that of the BM.  

HAZ Microstructure: According to HAZ microstructure (Fig. 9c), there are two distinct 

subregions in the HAZ: one which has been exposed to temperatures higher than the β-transus 

temperature (subregion A in Fig. 9c: 160  7 µm wide) and one which has experienced 

temperatures mostly in the  + β domain (subregion B in Fig. 9c: 300  10 µm wide). In 

subregion A, the area adjacent to the weld metal pool or more precisely close to the solid-liquid 

interface, the temperature has apparently exceeded the β-transus temperature (993 °C) during 

laser welding. Therefore, the primary  phase and the lamellar  + β constituent would all 

transform into the single β phase according to the phase diagram presented in Fig. 10. Upon 

cooling from this single phase β domain, abundant primary  nucleates and grows rapidly as a 

result of the fast cooling rate and significant degree of under cooling. Thus, the volume fraction 

of the primary  phase would be higher in the subregion A of HAZ compared to the BM as 

illustrated in Fig. 11a. The rest of the HAZ (subregion B) was heated high enough in the  + β 

domain to cause a slight decrease in the primary  volume fraction (Fig. 11a) compared to that 

of the BM. This can be attributed to the fact that during the heating cycle of the laser welding, 

the volume fraction of the primary  phase in subregion B of HAZ decreases according to the 

phase diagram presented in Fig. 10. On the other hand, upon the cooling phase of the laser 

welding, subregion B of HAZ experiences higher cooling rates compared to subregion A as the 

former is close to the cooler BM while the latter is in contact with hot weld metal. As a result, 
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the microstructure in subregion B is somehow similar to a microstructure quenched from the 

 + β domain. Since transformed β phase is the counterpart of the primary  phase, the reverse 

situation exists for the evolution of the transformed β volume fraction in the BM and HAZ 

compared to that of the primary . 

The primary  size in these two subregions of the HAZ is compared to that of the BM in 

Fig. 11b. There is no significant difference in the size of the primary   phase for the 

investigated locations. Due to a higher cooling rate in subregion A of HAZ compared to that of 

the BM through industrial manufacturing, i.e., forging and annealing, the primary  size in 

subregion A of HAZ may be expected to be slightly smaller relative to the BM. This difference 

in the cooling rate can be related partly to the smaller thickness of the laser welded sheet 

compared to the bar from which BM was extracted and partly to thermal cycles in laser welding 

and BM manufacturing. However, due to the presence of the fine and coarse/agglomerated 

primary  in these regions leading to considerable standard deviation in the primary  size in the 

BM and HAZ, this difference is not reflected in the measurements.  

The variation in the transformed β size for BM and HAZ is shown in Fig. 12. The β phase 

in subregion A of HAZ is finer compared to the BM. This can be related to transformation of the 

lamellar  + β constituent (transformed β ) to the single β phase during heating cycle of laser 

welding due to experiencing temperatures over the β-transus (993 °C), and formation of a finer β 

upon cooling cycle of the laser welding. Also, since primary  are normally formed at the prior β 

grain boundaries, the increase in the volume fraction of the primary  in subregion A of HAZ 

compared to the BM leads to a finer β in this subregion relative to the BM. Slightly finer β in 

subregion B of HAZ compared to subregion A can be attributed to higher cooling rate in the 

former as discussed above. Again, the considerable standard deviation in the β size in the BM 

and HAZ is caused by presence of fine and coarse β in these regions. 

A higher volume fraction of the primary  phase in subregion A of HAZ results in a 

higher hardness in this subregion (Fig. 8) compared to the BM and subregion B of HAZ as  is 

harder than β. Also, finer transformed β in subregion A of HAZ compared to the BM contributes 

to the increase in the hardness. The hardness in subregion B of HAZ is slightly higher than that 

of the average BM hardness due to slightly finer transformed β.   
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In the areas far from the melting pool, i.e., the BM, the temperature during laser welding 

remains below the transformation temperatures and thus, the bimodal microstructure of the BM 

was not affected. 

FZ Microstructure: based on the time-temperature-transformation (TTT) diagram 

provided by Donachie [4], the critical cooling rate for attaining a fully ’ martensitic 

microstructure in Ti6242 can be estimated as 1303 °C/s. Also, the start temperature for ’ 

martensite formation in Ti6242 alloy is 800 °C. Additionally, according to Li et al. [20], the 

average cooling rate during laser welding from very high temperatures to 800 °C in the FZ can 

be estimated to be at least 1510 °C/s. Such a cooling rate is significantly higher that the critical 

cooling rate necessary for ’ martensitic formation in Ti6242. Therefore, as the weld metal cools 

down, the single β phase forms from the molten metal. Since the FZ experiences very rapid 

cooling during the solidification process especially in this thin laser welded Ti6242 sheet 

(1.6 mm thick), an acicular ’ martensitic microstructure is formed in the FZ of the as-welded 

Ti6242 (Fig. 9e and f) as a result of the rapid cooling of the columnar β grains. Formation of the 

acicular ’ martensite with an HCP crystal structure in the FZ results in the average 

microhardness of the FZ to be 108 HV higher than that of the BM (Fig. 8).    

3.6. Factors Contributing to the Mechanical Properties  

According to Table 2, the average YS, UTS, and total elongation of the weldment were 

respectively 88 %, 87 %, and 69 % of the BM corresponding values. The tensile properties of the 

weldment are a combination of those of the FZ, HAZ, and BM. Since the hardness in the HAZ 

and FZ are higher than that of the BM (Fig. 8), it is expected that the weldment exhibits a higher 

YS compared to the BM. However, from one aspect, the length of the FZ and HAZ together 

(926 µm) comprises only 3 % of the tensile sample reduced length, i.e., 32 mm. Even with this 

small contribution of the FZ and HAZ to the YS, the YS of the weldment at least should be equal 

to that of the BM since 97 % of the tensile sample reduced section length consists of the BM and 

the rest is FZ+HAZ with a higher hardness compared to the BM. However, the presence of some 

porosity as well as under fill in the FZ (Fig. 2) has resulted in a relatively lower YS in the 

weldment compared to the BM. Porosity and underfill decrease the cross-sectional area through 

thickness in the FZ, which can result in local stress concentration and decrease the YS and 
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fatigue strength of the weld [21]. Such a presence can also contribute to a lower UTS as well as a 

different elastic behavior in weldments compared to BM as can be observed from Fig. 5.  

The lower elongation of the weldment compared to the BM can be related to the lower 

elongation of the HAZ and FZ due to a less ductile (harder) material in these regions. An 

elongation map of the tensile sample 1 at the final stages of the tensile test (just before fracture) 

is presented in Fig. 13. The gradients in color (or shading) specifies different elongation before 

fracture. It can be observed that the total elongation of the FZ and a portion of the HAZ remains 

below 4 %, the pink central area in Fig. 13, due to less ductile material in these regions. The 

maximum length of this pink central area is 8 % of the tensile sample reduced length (gage 

length) in Fig. 13. In the BM area of the weldment, i.e., entire area of the gage section except the 

pink central area, the ductility of the material is much better. However, since the total elongation 

measured along the gage length includes those of the FZ, HAZ and BM as demonstrated 

previously [22, 23], due to lower elongation in the FZ and HAZ, the average total elongation of 

the weldment (13.4 %) is lower than that of the BM (19.4 %). In spite of porosity and underfill 

presence in the FZ (Fig. 2), deformation localization in the FZ is the lowest. This indicates that 

the martensitic structure in the FZ and a higher volume fraction of the primary  phase in the 

HAZ (subregion A) supply strengthening, though at the expense of the ductility. Consequently, 

the strengthening effect of the microstructures in the FZ and HAZ compensates for any 

weakening originating from presence of underfill and porosity.  

 

3.7. Fractography 

As was discussed in Section 3.2, for tensile samples 1 and 3 tensile fractured occurred in 

the FZ whereas for tensile sample 2 fracture occurred in the BM.  The fractography SEM images 

of the tensile samples 2 and 3 are presented respectively in Figs. 14 and 15. It can be observed 

that depending on the fracture location, i.e., FZ or BM, the fracture surface exhibits different 

features. An overview of the fracture surface of the tensile sample 2 is presented in Fig. 14a, b, 

and c. Higher magnification images of the circled areas in Fig. 14b and c are shown in Fig. 14d, 

e, f, g, and h. According to Fig. 14a, b, and c in tensile sample 2 with fracture in the BM, the 

fracture surface can be divided into two regions: (i) smoother topographic fracture surface 

located mostly in the surrounding of the fracture surface and (ii) central uneven topographic 

fracture surface. For both regions, the primary fracture mechanism is microvoid coalescence 
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leading to a dimpled rupture or final transgranular ductile fracture. However, for region (i) the 

microvoids are finer compared to region (ii). For both regions, some transgranular cleavage 

facets (cleavage planes) and tear ridges are also visible. A few cracks can also be observed in 

both regions.  

It is well-known that the microvoids from which ductile fracture originates are initiated at 

locations where there is deformation incompatibility. In particular, strain hardening of two 

different phases ( and β in the BM) is different and incompatible. Therefore, interface between 

 and β can be the preferential nucleation sites for the microvoids formation. 

An overview of the fracture surface of the tensile sample 3 with fracture in the FZ is 

presented in Fig. 15a, b, c, and d. Higher magnification images of the circled areas in Fig. 15a, b 

and d are shown in Fig. 15 e, f, g, and h. Compared to tensile sample 2, for tensile sample 3, 

many pores generated during laser welding can be observed. Indeed, these pores divide the 

fracture surface into two regions: (1) uneven topographic fracture surface containing numerous 

pores and (2) smoother topographic fracture surface with less porosity. Regions (1) and (2) are 

respectively located in the left and right side of the fracture surface. For region (1), the fine 

dimples presenting the transgranular ductile fracture are associated with large pores, Fig. 15f. In 

region (2) for which three representative areas are circled as e, g, and h in Fig. 15a to c and 

shown at higher magnification in Fig. 15e, g, and h, respectively, many finer dimples indicating 

microscopic ductility and thus, ductile fracture are visible. A few cracks, tear ridges, and 

transgranular cleavage facets can also be observed for both (1) and (2) regions. Comparing Fig. 

14 and 15 would suggest finer dimples in the FZ relative to the BM which is consistent with the 

fine ’ microstructure of the FZ (Fig. 9). In summary, consistent with the considerable 

elongation of the weldments (13.4 %, Table 2), a ductile fracture behavior for laser welded 

Ti6242 was observed as supported by Figs. 14 and 15. 

 

4. Conclusions 

The quality of the laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet in terms of 

tensile properties, microhardness, chemical composition distribution, presence of defects, and 

microstructure in the as-welded condition was investigated. From this study the following 

conclusions can be drawn: 
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1. The average yield strength (YS), ultimate tensile strength (UTS), and elongation at failure of 

the weldments were respectively 88 %, 87 %, and 69 % of the base material (BM) corresponding 

values. Also, the area under the tensile stress-strain curves, which represents the toughness, was 

smaller (58 %) for laser welded Ti6242 compared to the BM.  

2. Ductile fracture of the tensile samples occurred either in the BM or fusion zone (FZ) as a 

result of transgranular microvoid coalescence. The presence of porosity and underfill in the FZ 

as well as higher hardness (lower ductility) in the FZ and heat affected zone (HAZ) compared to 

the BM contributed to the observed tensile properties. The impact of the former was more 

pronounced on YS and UTS, and the latter on elongation. 

3. For the BM Ti6242 a near  bimodal microstructure consisting of equiaxed primary  grains 

distributed in a matrix of transformed β containing fine acicular  was observed. Rapid 

solidification of the weld pool led to the formation of the acicular ’ martensite and thus, an 

108 HV increase in the average microhardness of the FZ compared to the BM average value 

(328 HV). 

4. Due to exposure to high temperatures, the volume fraction of the primary  phase increased in 

a portion of HAZ leading to a 62 HV increase in the average microhardness relative to the BM. 

5. According to electron probe microanalysis (EPMA), the distribution of the major alloying 

element, i.e., Al, Zr, Sn, and Mo, from the FZ to the BM was uniform. 
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Fig. 1. Schematic presenting the geometry of the laser welded Ti6242 sheet, locations of the tensile 

samples as well as the sample for metallurgical characterization. 
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Fig. 1. Schematic presenting the geometry of the laser welded Ti6242 sheet, locations of the tensile 

samples as well as the sample for metallurgical characterization. 

 

 
Fig. 2. An overview of the FZ geometry, size of the HAZ, EPMA scanning line, microhardness 

measurement along three lines, and the negative (- x) and positive (+ x) distances from the weld 

centerline for microhardness measurements. 
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Fig. 2. An overview of the FZ geometry, size of the HAZ, EPMA scanning line, microhardness 

measurement along three lines, and the negative (- x) and positive (+ x) distances from the weld 

centerline for microhardness measurements. 
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Fig. 3. Average YS, UTS, and total elongation (right hand side vertical axis) of the as-laser welded 

Ti6242 compared to those of the BM. 
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Fig. 3. Average YS, UTS, and total elongation (right hand side vertical axis) of the as-laser welded 

Ti6242 compared to those of the BM. 

 
 

 

 

 

 

 

 

 

Fig. 4. Individual (a) YS, (b) UTS, and (c) total elongation of the three tensile samples extracted from the 

as-laser welded Ti6242 sheet compared to those of the BM. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 4. Individual (a) YS, (b) UTS, and (c) total elongation of the three tensile samples extracted from 

the as-laser welded Ti6242 sheet compared to those of the BM. 
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Fig. 5. Typical stress-strain curve of the tensile samples extracted from the as-laser welded Ti6242 sheet 

compared to that of the BM. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Typical stress-strain curve of the tensile samples extracted from the as-laser welded Ti6242 

sheet compared to that of the BM. 
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(a) 

 
(b) 

 
(c) 

 
 

Fig. 6. (a) Schematic showing the EPMA spots across the weld, (b) distribution of the alloying elments 

across the weld with a EPMA probe size of 2 m, and (c) average of ten chemical compostion 

measurments in the HAZ and BM using a spot size of 20 m comapred to the previous results of the 
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Fig. 7. Microhardness evolution across the weld in laser welded Ti6242. The negative and positive 

distances from the weld centerline and the three lines for microhardness measurement are depicted 

schematically in Fig. 2 
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Fig. 8. The average microhardness of the BM, HAZ (subregions A and B), and FZ in laser welded 

Ti6242. The best fit to the data is depicted as a dotted curve. The standard deviations for the 

measurements are also shown as error bars. 
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(a) BM (b) BM 

  
 

(c) HAZ 
 

(d) HAZ (region B) 

  
 

(e) FZ 
 

(f) FZ 

  
 

Fig. 9. Optical micrographs showing: (a) and (b) the bimodal microstructure with primary α and transformed β in the 

forged and annealed as-received BM Ti6242; bright or grey area is α phase and dark area is β , (c) and (d) HAZ 

microstructure with higher primary  volume fraction in subregion A, (e) and (f) acicular ’ martensite formation in 

the FZ. GB stands for grain boundary. 
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Fig. 10. Location of the Ti6242 alloy in a pseudobinary Ti phase diagram [4]. 
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(a) 

 
(b) 

 
Fig. 11. (a) Volume fraction and (b) size of the primary  in the BM and the two subregions of HAZ in 

laser welded Ti6242. The standard deviations for the measurements are shown as error bars. 
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Fig. 12. Size of the transformed β in the BM and two subregions of the HAZ in laser welded Ti6242. The 

standard deviations for the measurements are shown as error bars. 
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Fig. 13. Distribution of the elongation at the final stages of the tensile test for sample 1 (Fig. 1) extracted 

from the laser welded Ti6242 sheet. 

 
 

 

 

 

 

 

 

(a) (e) 

  
 

(b) (f) 

500 m



33 
 

  
 

(c) (g) 

  
 

(d) (h) 

  
 
Fig. 14. Fracture surface of the tensile sample 2: (a) to (c) overview, (d) to (h) higher magnification 

images of the circled areas in b and c. 
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(d) (h) 

  
 

Fig. 15. Fracture surface of the tensile sample 3: (a) to (d) overview, (e) to (h) higher magnification 

images of the circled areas in a, b, and d.  
 
 

 

 
 

Table 1- Details of grinding and polishing procedures 

Grinding/Polishin

g Surface 
Abrasive 

Automatic 

(A)/Manual (M) 

Grinding/Polishin

g 

Disk/Holde

r Rotation 

Speed, rpm 

Force 

per 

Sample

, N 

Lubrican

t 

Rotation 

Directio

n of 

Holder 

Relative 

to Disk 

Time

, min 

SiC paper 320 grit A 300/150 40 Water Same 1 

SiC paper 600 grit A 300/150 40 Water Same 1 

Low nap cloth 6 µm A 150/150 40 NA Same 1 

500 m 50 m

500 m
h
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diamond 

High nap cloth  

1 µm 

aluminu

m oxide  

M 150/ not 

applicable 

(NA) 

Firm NA NA 1 

Medium nap cloth  

0.3 µm 

aluminu

m oxide  

M 

150/NA Firm NA NA 2 

Medium nap cloth  

0.05 µm 

silicon 

dioxide  

M 

150/NA Firm NA NA 2 

 

 

 

 

 

 

 
 

 
Table 2- Average tensile properties of the as-laser welded Ti6242 compared to those of the BM  

 

Sample ID YS, MPa UTS, MPa Total Elongation, % Failure Location 

As-laser welded   775 ± 7 977 ± 4 13.4 ± 0.8 

Samples 1 and 3 in Fig. 1: FZ, 

Sample 2: BM 

 

BM 880 1120 19.4 N/A 

BM: Reference [13] 895 1018 19.0 N/A 

 
 
 
 

 




