
Full citation: MacDonell, S.G. (1991) Rigor in software complexity measurement experimentation,
Journal of Systems and Software 16, pp.141-150.
doi: 10.1016/0164-1212(91)90008-T

Rigour in Software Complexity Measurement Experimentation

Stephen G. MacDonella, b
aComputer and Information Science, University of Otago, New Zealand

bDepartment of Engineering, University of Cambridge, England
stevemac@commerce.otago.ac.nz

Abstract

The lack of widespread industry acceptance of much of
the research into the measurement of software complexity
must be due at least in part to the lack of experimental
rigour associated with many of the studies. This paper
examines thirteen areas in which previous empirical
problems have arisen, citing examples where
appropriate, and provides some recommendations
regarding more adequate procedures.

1. INTRODUCTION

Far too often, advances in quantitative software
assessment have their validity questioned because of
experimental issues. Despite widespread recognition of
many of the problems which can and do occur in
empirical procedures (e.g. see [51]), it would appear that
this awareness is still being disregarded in the rush for
immediate results. The final line in many studies is
therefore `More experiments are therefore needed...'.

There are several areas in which problems have arisen in
the past; thirteen are examined in the following
discussion: pre-experiment design, operational
definitions, experimental method, subjective assessment,
data collection, program sizes, program sample sizes,
languages investigated, subjects, confounding factors,
statistical validity, result interpretation and publication of
data and assumptions. Although the examples cited in
the discussion concern complexity measurement
experiments, the comments and recommendations could
be applied to empirical procedures in most software
measurement domains.

2. AREAS OF CONCERN
2.1. Pre-experiment design

It is imperative for any research involving some degree of
empirical activity that the tasks and procedures which
make up this work are planned and documented before
the work begins. At the very least, this helps to ensure
that the true objectives of the work are being addressed,
in that data is derived in order to perform the experiment
or validation, rather than vice versa. It is clearly
unscientific to design experiments or validation around
the data which has been obtained - this can clearly bias
the results.

Kearney et al [37] comment that due to the multi-
dimensional nature of software measurement, many
studies have examined a large number of variables and
properties in an attempt to determine feasible hypotheses,
rather than testing previously defined predictions. This,
they say clearly increases the chances of finding
accidental relationships which cannot be generalised to
similar studies. Confidence in the results obtained is
therefore significantly reduced.

Furthermore, due to poor experimental designs, many
studies which are supposed to be tests of given
hypotheses are actually incapable of discarding them -
according to Hamer and Frewin [28], they simply do not
have the power to identify false hypotheses.

Basili et al [5] have therefore provided some guidance on
the initial stages of experimental research:

1. Experiment definition - precise specification is
required in formulating the problem(s) into
documented goals

2. Experiment planning - designers should already be
looking towards larger replications of the
experiment to reinforce the findings. Factors
which are thought to be influential should be
determined and recorded at this stage.

Appropriate procedures should also be chosen and clearly
documented at this point, keeping in mind the goals of
the experiment, the sample size and characteristics of the
sample itself.

2.2. Operational definitions

Quantitative software assessment becomes especially
difficult with the lack of operational properties which
adequately and accurately represent the attributes under
investigation. For example, we may be interested in the
quality of an emerging system; however, how quality can
be objectively measured from aspects of the software
product is still unclear.

A similar situation exists for complexity quantification.
Ince and Shepperd [33] state that there are many metrics
which are said to provide estimates of complexity, but
that are in fact derived and validated based on a wide
range of actual operational features e.g. construction
time, debugging time, the number of errors or control
flow in the code.

http://dx.doi.org/10.1016/0164-1212(91)90008-T�

The result of this lack of clarity in reference to
appropriate operational attributes is that important
predictive relationships may be missed, as evaluators
cannot or do not measure the actual criteria which the
metrics are said to estimate [12].

Another practice which causes problems in model
validation involves the substitution of one attribute for
another, depending on what data is available. For
example, Henry and Kafura [32] use program changes as
an equivalent substitute for development errors in the
empirical validation of their information flow metric.
Justification for this is taken from previous studies - they
cite work by Basili and Reiter [4], who remarked that
program changes were "...a reasonable measure of the
relative number of programming errors...". This may
have been appropriate for this particular study. However,
the validity of the assumption could be questionable. A
study by Weiss and Basili [59] has shown that changes
and errors can be significantly different (Table 1).

TABLE 1. Code changes versus coding errors

The problems associated with determining adequate
quantitative indicators of aspects such as quality and
maintainability will be difficult to overcome. It may in
fact be impossible to define a general set of properties
which accurately reflect such attributes in every case.
Aspects of interest (such as the number of development
errors) which can be measured however, must be
measured, and not replaced by other countable features,
no matter how closely related they may be.

2.3. Experimental method

Also of particular importance are the tests which are
chosen to provide the required data, particularly in
psychological complexity studies. In terms of research
into this avenue of complexity (as reflected by
programmer ability), problems often occur in determining
an appropriate measure of software understanding. As an
illustration, it is suggested by Curtis et al [13] that the
most sensitive measure of a programmer's understanding
is the ability to follow code structure and to reproduce
functionally equivalent code. To this end they adopt as
their dependent variable the percentage of statements
correctly recalled. The obvious flaw in this approach is
that the test becomes one of short term memory rather
than of long term recall, with individuals often varying in
their ability for both tasks. Another study by Dunsmore
and Gannon [20] used the exam average of three course
tests as the supposedly independent measure of student
programmer ability. This fails to consider however, that

many students perform differently under an exam
situation. The adequacy of the results obtained in
providing generalisable conclusions could therefore be
questioned.

In most experiments in this domain, programs are created
or viewed for the first time during the experiment itself.
Davis [14] claims that this differs markedly from the
common situation under which many programmers work
i.e. concentrating on the same group of programs over a
period of time, increasing their familiarity and therefore
influencing their understanding and performance. Hence
an artificial testing situation is used in experiments
employing these types of procedures.

Di Persio et al [18] suggest that there are several `typical'
tests:

1. to construct a program from a given specification

2. to make certain changes to a program

3. to locate and/or correct one or more deliberate
bugs

4. to study a program and then answer questions
about it.

These are said to be of limited use however, as the results
obtained are dependent on the particular program domain
used in the study at hand. They are also difficult to
prepare and mark. The authors therefore suggest
memorisation/reconstruction tasks as more appropriate.
To ensure that these are not simply tests of syntactic
memorisation, it is recommended that the recalled-lines
procedure should be tailored to the environment in which
the programmers normally work.

As mentioned in the initial part of this discussion
however, memorisation/reconstruction-type tests are also
not ideal. Further evidence of the inadequacy of these
methods is provided by Krall and Harris [in 42]. They
examined the effect of various readability improvement
strategies using a comprehension quiz and a
reconstruction test. Significant results were obtained
only under the former scheme, casting doubts upon the
use of memorisation assessment to reflect understanding.

Other works however, have also illustrated shortcomings
in the quiz approach. Iyengar et al [34] conducted a
study investigating the complexity of understanding using
various data structures. They chose error location
methods for their test, claiming that comprehension
quizzes only test short term recollection ability (as
suggested above) which can be affected by, among other
things, data variable names and the extent of internal
documentation. Weissman [60] also concluded that
comprehension tests were inadequate for assessing
psychological complexity.

What are suggested as the three most widely used
approaches for measuring the complexity of
understanding have been discussed in some detail by
Haas and Hassell [26]. They cite several problems with
the use of the first technique, code reconstruction. The
initial problem concerns the inaccuracy and subjectivity
of deciding what is actually a correct reproduction - is the
substitution of functionally equivalent constructs

incorrect, or simply a different approach? Is omitting a
simple statement as serious as leaving out an important
control flow structure? Can partial credit be awarded for
certain degrees of reconstruction? Furthermore,
reconstruction ability has been found to be related in
many instances to the experience of those being tested,
yet this is not considered in most cases, because of the
significant difficulty in effectively measuring relative
levels of expertise.

The second technique investigated by Haas and Hassell
[26] is that of program error location/correction. Only
one bug is used in most cases of error location, creating
an artificial situation in comparison to normal
development/maintenance circumstances. Problems also
occur in error correction tests, particularly in the
assignment of marks for partial correction or when the
correction of one error creates another. What is more,
this is generally not a test of understanding, but rather
one of problem-solving ability [34].

The time required for the completion of program tasks is
the third method discussed by Haas and Hassell [26].
Their main objection to this type of criteria is the obvious
slant which it has towards quick workers. That one
programmer completes a given task faster than another
does not ensure a fuller understanding of that task. What
is more, how should relative grades be assigned for an
incomplete but accurate product as compared to a
complete but inaccurate one?

Clearly there are flaws with all three approaches. Haas
and Hassell therefore propose a different approach. They
suggest that subjects should be provided with the code,
documentation and sample output data for a system.
Questions may then be put to them concerning the
manipulation of input data, the resulting output, the
overall functionality of the program and of parts of the
code and the possibility of enhancements and the effects
that these may have. This approach would appear to
overcome at least some of the problems associated with
other methods.

2.4. Subjective assessment

The subjective nature of many studies is unfortunate and
often misleading, given the fact that objective results are
said to have been achieved in many cases. It is
understandable that where human endeavours are
considered (such as programming), differences among
individuals will occur. However, the actual assessment
of aspects of the software product must be approached
quantitatively to lessen the influence of personal
attributes and perceptions.

Tanik [55] investigated the relationship between
subjective programmer-assigned complexity levels and
such aspects as the number of runs to complete a program
and the time spent in debugging a program. The
correlations obtained (from limited samples) were weakly
positive. In spite of the low explanatory powers observed,
Tanik suggested that programmers can in fact guess
complexity and that this `ability' might be used in
development time estimations. This conclusion seems

unjustified given the actual results obtained, and
highlights the lack of accuracy of subjective evaluations.

Subjective rating has also been used in several other
studies. In their investigation of metrics and software
maintenance, Kafura and Reddy [36] used subjective
ratings of complexity, chosen because objective data was
not available and to test the accuracy of `expert'
judgment. The model of software complexity proposed
by Van Verth [56] was also validated using programs
which were graded by experts.

This approach can only be valid, however, if it is
accepted that human opinion is an adequate discerner
with respect to relative levels of software complexity. If
this were the case, then what would be the need for
objective measures?

Studies which utilise subjective evaluations have always
been questioned, despite the fact that `experts' may have
often been used. It is therefore essential that if at all
possible, quantitative assessment methods be employed.

2.5. Data collection

The general lack of useful and accurate development
project data has been widely acknowledged as a major
impediment to the effective validation of software
complexity research ([46], [49], [44]).

What appears to be a standard approach to data collection
involves the use of collection forms which must be
completed by those working on the project. An example
of this procedure can be seen in Blaine and Kemmerer
[7]. A Software Change Proposal (SCP) was required
(over the six year project duration) for any modification
to be made to the system. Each proposal outlined a
reason for the change, a list of all the routines affected
and an estimate of the man-hours required to complete
the total modification. Rodriguez and Tsai [48]
employed a similar approach in the collection of error
data for their study, as did Vessey and Weber [58].

Although these are valiant attempts at obtaining accurate
data, several flaws can occur: those involved may
(willfully or otherwise) forget to submit the relevant
forms, or incomplete and/or inaccurate data may be
similarly provided (it is common for programmers not to
report clerical-type errors [3]); problems with the
allocation of error/change quantification data may also
occur when, for example, the change made affects more
than one section of code [6].

The previous remarks relate only to the acquisition of
data pertaining to the coding and maintenance stages. It
would appear that the acquisition of early development
phase data is even more difficult [44]. This may be due
in part to the often inconsistent points chosen to begin
data collection in various projects [31], or to the lack of
currency of the data [46]. When, for example, the error
history of a project is quite old, Potier et al [46] state that
in the event of missing data, recovery or recollection of
this data is extremely difficult and that in any case
incorrect data may be obtained due to changes in the
collection procedures used over the period.

Collecting useful data is clearly difficult. For one thing,
our models of the development process may be
inadequate as to even permit sufficient levels of data
quantification [57] and for another, the data which is
obtained may be of such a questionable nature that only
narrow and qualified acceptance can be made for much of
the research [65].

Rault [47] claims that the problems which are
encountered are a result of two inter-related issues; on the
one hand, the lack of accurate and timely data prevents
full validation of any models suggested; on the other
hand, the absence of sufficiently valid models restricts
the determination of what data is actually required. Rault
suggests that to remedy this situation, the systematic
collection of large volumes of data, albeit empirically,
should be the first step. Basili and Phillips [3] state
however, that data must be obtained from commercial
development environments, rather than from
experimental work. The following methodology for
achieving this is suggested by Weiss and Basili [59]:

1. determine aims of research

2. develop questions to satisfy aims

3. define data collection form(s)

4. derive collection procedures

5. collect, validate and analyse the data acquired.

This approach may too be afflicted by the problems
outlined previously. However it would seem that a
defined procedural approach involving commercial
development must be adopted. The initial objective
relating to this issue is therefore to obtain full cooperation
from the company (or companies) and their development
personnel. This alone will significantly increase the
likelihood of obtaining complete and accurate data.

2.6. Program sizes

The issue of program size appears in two guises within
complexity research; firstly when programs are used as
tools for the provision of data e.g. investigating bug
location times; and secondly as a medium for metric
validation. The use of insignificant programs (in terms of
their size) for both purposes has seen criticism.

Sayward [50] suggests that material selection has been
poor in several data collection experiments, with the
programs used being too small to reflect `real-world'
circumstances. It is stated that this is due in many cases to
economic constraints. Weissman [60] remarks further
that it is difficult to find programs of a size which falls
between trivial and manageable.

Examples of small-scale experimentation can be found in
Woodfield [61] and to a lesser extent in Henry and
Kafura [32]. Although in the latter study the sample of
procedures was significant as a system, the length of 53%
of the modules examined was less than twenty lines, and
the largest was just 180 lines long. If larger procedures
had been analysed, a different metric may have been
developed, or more significant evidence may have been
derived for the validity of the authors' findings.

The effectiveness of many proposed metrics is also often
illustrated using very small programs. This, according to
Dunsmore [19], places in question the applicability of the
measures to large modularised software systems,
particularly since it has been acknowledged ([8], [54])
that large systems exhibit different properties to those of
smaller counterparts. The study by Henry and Kafura
[32] mentioned above also provides an example of this
practice. Another is Gordon's work on software clarity
[24]. The fifteen programs used to illustrate the
effectiveness of his measure were all between just three
and twelve lines long.

It is acknowledged by Dunsmore [19] that it is simply not
practical to validate a measure for all program sizes,
languages and applications. He suggests that
compromises are inevitable, but that they should be made
sensibly e.g. generalisation by size within a specific
language may be acceptable. This again assumes
however, that a change in size is only that i.e. that no
other aspects are affected. This is despite widely held
principles which encourage the use of modularised
structure for larger systems, when they would not be
employed for smaller segments of code.

It is clearly important that future empirical studies use
programs which accurately reflect the domain to which
the measures are said to apply. The most satisfactory
approach would appear to be the use of programs and
systems of varying sizes, to ensure general applicability
for the measure(s) being validated.

2.7. Program sample sizes

Studies in this area also frequently suffer from severely
limited program samples on which determination or
validation of measures is performed. Sample sizes should
be at least large enough to enable significance tests to be
carried out. Lister [39] comments that if this is not
achieved, results may become overly dependent on a few
extreme observations.

As an example, Zweben [66] attributes some degree of
the `overselling' of the software science quantification
theory [27] to results based on small samples. The
sample used by Gordon [24] in the development of a
clarity measure is similarly criticised by Evangelist [22]
for its lack of comprehensiveness.

DeMarco [17] acknowledges that the validation of his
cost prediction model was performed with small data
sets. He suggests however, that the use of partially
validated objective models (such as his) should be judged
against the alternative, that is, subjective estimation. The
implication is that partly objective models are better than
none at all, or guesswork. This comment has since been
extensively cited as justification for incomplete
validation, yet its general applicability may be
questionable. A model based on a few extreme or widely
dispersed observations may be significantly worse than
one based on information provided by skilled and
experienced personnel.

Ideally however, large replicable samples are necessary
for reliable model development and validation. Henry

and Kafura's suggestion [32] that a test-bed should be
high-level, well-documented, large, real and reusable is
clearly appropriate for work in this area.

2.8. Languages investigated

Under ideal circumstances, research should be validated
over a wide range of programming languages. To a large
extent, this has not occurred in previous work - Han et al
[29] remark that conventional complexity metrics are
largely dependent on data derived from lower to medium
level procedural language programs.

It would appear that, in particular, the study of metrics as
applied to COBOL systems is needed. Côté et al [11] and
Gibson and Senn [23] suggest that the small number of
investigations on metrics using this language fails to
correspond with its usage in industry. Many business
applications are written in it and so a large degree of
maintenance is performed on COBOL applications [45].
Another area which should be investigated is the use of
metrics as applied to software developed in a fourth-
generation environment, particularly as the use of these
products becomes more widespread [11].

It is likely in fact, that some metrics may perform poorly
when applied to certain languages, or they may simply be
inapplicable for particular language types. For example,
both software science [27] because of its syntactic focus
and McCabe's cyclomatic complexity [41] with its control
flow derivation are likely to be inappropriate for software
developed in a 4GL environment. It is therefore probable
that new measures will be developed for use with this and
other new environments. In any case, it is most important
that appropriate measures are used according to the
language or environment of the software being assessed.

2.9. Subjects

Sayward [50] remarks that subject selection is one of the
two most problematic aspects of psychological
complexity research. Due to resource constraints, many
studies in this domain have used students as their means
of acquiring data. (Clearly this is also due to the fact that
much of the research is performed at universities, with a
`captive' subject sample.) This practice however, has
been widely criticised as students are often considered to
be in fact atypical of the overall population [33].
Halstead [27] and Gordon [24] both remark that programs
written by novice programmers tend to contain a high
proportion of impurities. This would suggest then that
researchers who use such an approach must be especially
cautious in developing generalisable conclusions from
their results [52].

There are several other flaws associated with this
approach. One which has been openly acknowledged is
the extent of variation which may occur among
individuals. Empirical work in the programming domain
is said to be very difficult [24] given the inevitable and
often enormous variations in individuals' abilities ([10],
[16], [5]). Shepperd [53] remarks that statistically
significant results can be severely undermined due to
these variations in ability, with a few extreme

observations lessening the importance of the majority.

What is more, student development projects are often
restricted to insubstantial programming exercises [7] and
are consequently not indicative of a normal
development/maintenance environment. Therefore the
results obtained should not be (but often are) generalised
to this situation.

Weissman [60] has suggested then, that a wide range of
subjects with varying backgrounds be used. However,
combining subjects with differing experience levels has
been criticised elsewhere (e.g. [40]). Furthermore, there
is little reason to believe that experienced and novice
programmers work in the same way, albeit at different
speeds. Combining results from both groups to develop
general conclusions may therefore also be of questionable
validity.

Although the ideal situation would employ a large sample
of professional developers of roughly uniform ability,
restrictions on time, money and other resources coupled
with the low chances of the availability of such a sample,
and the relative availability of a student populace, all
contribute to the likelihood of further use of student
samples. It is important then, that the students chosen are
at a senior level and are of approximately similar ability
and that the sample is sufficiently large as to lessen the
effect of individual observations.

2.10. Confounding factors

Due to the large number of factors which may be
considered in software engineering experimentation (and
the subjective nature of many of these), straightforward
analysis of results is often difficult. Factors such as
development methodology, programmer ability and
experience, problem difficulty, development environment
and the availability of development tools all vary across
projects and are difficult to express and consider in a
quantitative manner ([43], [37]).

An initial step in overcoming this problem is to
acknowledge the existence of uncontrolled factors in the
study, as in Davis and LeBlanc [15] and in Woodfield et
al [63]. Although praiseworthy, this unfortunately does
little to enhance the credibility and usefulness of the
studies' findings.

Clearly, experiments where all variables can be
controlled are the most likely to provide `pure'
observations. This situation is unlikely to be achieved in
a domain such as software development however, due to
the human factors which are often of significant
influence. Therefore the effect of all other factors which
can be controlled and are of no direct interest to the study
must be minimised. For example, Woodfield et al [62]
made all variable names meaningless and removed all
program indentation in their investigation of programmer
understanding under various comment and
modularisation schemes.

2.11. Statistical validity of predictive
relationships

Criticism of this aspect of software complexity
experimentation has been centred mainly around the use
of the correlation coefficient (usually Pearson's product-
moment correlation coefficient r) as the main determinant
of predictive relationships between two variables.

Rodriguez and Tsai [49] remark that only rarely have
metrics been fully validated in a statistical sense. The
extent of validation for many metrics is limited to finding
linear or rank correlations to determine a relationship
between the measure and a system attribute.

The inadequacy of this approach has been extensively
illustrated. Kearney et al [37] adopt a practical argument;
even when a strong correlation is discovered, the
applicability of the result may be minimal. For example,
they rightly suggest that it would be a gross misjudgment
to conclude that software size predicts the occurrence of
bugs, or that the size of all software should be reduced,
simply because a linear relationship is found between size
and errors. Large size is an obviously inherent property of
many applications.

Knafl and Sacks [38] also illustrate the often unjustified
importance which is attached to high correlations. They
examined the data used in Albrecht and Gaffney's
function point study [1] and showed that for one data set
three sparsely spaced large projects were overly
influential in the correlation obtained; removal of those
data points resulted in a 44% decrease in the correlation,

substantially reducing the significance of the results.

Lister [39] also points out that although correlation is a
measure of random variable relationship, few
experiments have even attempted to prove the random
nature of the variables involved. Furthermore, he
suggests that even if randomness were proved, a high
correlation only indicates the existence of a relationship,
not what the actual relationship is. The use of linear
regression techniques would provide an accurate
assessment of the relationship itself, yet Lister states that
this procedure is seldom even mentioned in research
reports.

To reinforce the danger of unquestioned reliance of
correlation coefficients, Lister provides the following
table (Table 2) showing relationships between predicted
and actual software lengths (N^ and N under Halstead's
software science [27]) for a sample of thirty-one PL/1
programs [21], for various definitions of predicted length.
Although the correlations are comparable, the errors
associated with the predictions vary significantly.

Another problem with the use of correlation measures in
this domain is the need for the variables investigated to
come from (approximations to) normal distributions. The
impossibility of obtaining a negative number of errors is
cited by Shepperd [53] as a situation where a skewed
distribution result, particularly for small sets of data.
Transformations which could lessen the effects of such a
distribution can be easily applied, but these are seldom
performed.

TABLE 2. Correlation and error data for actual and observed lengths

The extent to which the correlation coefficient pervades
metric research is further illustrated in a study by
Woodward [64]. The author acknowledges that there are
well publicised pitfalls in using the Pearson correlation
coefficient to confirm metric relationships, citing
previous studies. He then states however, that the method
has become the de facto standard practice for work in this
area and so presents his results using the Pearson
procedure without further comment.

As much as the correlation coefficient may adequately
indicate the degree of a linear relationship between two
random variables, it fails to provide any support for
predictive relationships which may be derived from it.
Therefore other tests should be used in conjunction with
this procedure so that the problems alluded to above can
be avoided. This could involve the use of regression

techniques and the examination of the relative and
absolute errors associated with the predictions to enable
determination of the actual relationship(s) and the
explanatory powers of the predictive models used.

2.12. Result interpretation

Testing methods are clearly important in software
engineering experiments, but correct result interpretation
is an equally vital and difficult task [10]. In several cases
researchers have adopted different interpretations of the
same model, making the comparison of results
meaningless [53].

Kearney et al [37] cite Basili and Hutchens' study [2] as
an example of result misinterpretation. The authors
suggest that unjustified general conclusions were drawn,

as they were based only on the results obtained from a
single programmer concerning the relationship of
program changes and the SynC complexity measures.

Incorrect interpretations are also often perpetuated by
subsequent studies e.g. Jensen and Vairavan [35] report
that Henry and Kafura's work [32] related their
information flow metric to the occurrence of errors,
whereas the original relationship was actually between
the metric and program changes.

Basili et al [5] suggest that the correct presentation of
results assists in their correct interpretation. They also
recommend that results and conclusions be qualified
according to the particular samples used. An example of
this occurs in a study by Blaine and Kemmerer [7]: "The
recommended measures of maintenance effort for Rolm
assembly language software are..." p.239. This specifies
exactly what is being predicted and to what software the
results apply. Another good example of result
qualification is used by Gremillion [25]. The author
states that in drawing conclusions from his study it
should be remembered that the research represented only
one situation using one language and style, and that
generalisation beyond this scope would be inappropriate.

This practice is an important part of the validation
process and should be performed in all studies. This
would assist in ensuring firstly that those examining the
results are aware of the uses and limitations associated
with them and secondly that subsequent studies which
attempt to replicate the original work have clearly defined
boundaries on which to base their research.

2.13. Publication of data and assumptions

The credibility of several studies has also been lessened
by their failure to provide the raw or derived data and/or
the assumptions on which the results and conclusions
were based. Comer et al [9], for example, fail even to
provide information on the type and size of the programs
which were used in the experiments. This is of vital
importance, particularly so repeated comparative
experiments can be performed.

3. CONCLUSIONS

This review has highlighted several areas within software
engineering experimentation in which more rigid
procedures must be developed and put to use. All must be
addressed if the validity of results obtained through
empirical studies is to be assured.

It is acknowledged, however, that this is by no means a
simple task. Several of the criteria are particularly
difficult to achieve, for example, the exact, large-scale
replication of experiments, and the availability of
representative subjects and large program samples.
Others may be conflicting - a model based on small data
sets is often insignificant; yet the only other option,
subjective assessment, is also questionable.

In any case, it is most important that experimenters are
constantly aware of the problems which may occur and

the limitations that these may place upon the findings
obtained. Many studies conclude with a recommendation
for further experiments (e.g. [6], [23]). This suggestion is
pointless however, unless the formulation, operation and
validation of this research is strengthened through more
rigorous definition and control of experimental
procedures.

REFERENCES

1 A.J. Albrecht and J.E. Gaffney Jr, Software Function,
Source Lines of Code and Development Effort
Prediction: A Software Science Validation IEEE
Transactions on Software Engineering 9 (6), 1983:
639-648.

2 V.R. Basili and D.H. Hutchens, An Empirical Study
of a Syntactic Complexity Family IEEE
Transactions on Software Engineering 8 (3), 1983:
664-672.

3 V.R. Basili and T.Y. Phillips, Evaluating and
Comparing Software Metrics in the Software
Engineering Laboratory ACM SIGMetrics 10 (1),
1981: 95-106.

4 V.R. Basili and R.W. Reiter Jr, Evaluating
Automatable Measures of Software Development
Proceedings Workshop on Quantitative Software
Models, 1979: 107-116.

5 V.R. Basili, R.W. Selby and D.H. Hutchens,
Experimentation in Software Engineering IEEE
Transactions on Software Engineering 12 (7), 1986:
733-743.

6 V.R. Basili, R.W. Selby and T.Y. Phillips, Metric
Analysis and Data Validation Across Fortran
Projects IEEE Transactions on Software
Engineering 9 (6), 1983: 652-663.

7 J.D. Blaine and R.A. Kemmerer, Complexity
Measures for Assembly Language Programs Journal
of Systems and Software 5, 1985: 229-245.

8 F.P. Brooks Jr, No Silver Bullet - Essence and
Accidents of Software Engineering IEEE Computer
20 (4), 1987: 10-19.

9 J.R. Comer, J.R. Rinewalt and M.M. Tanik, A
Comparison of Two Different Program Complexity
Measures ACM SIGMetrics 10 (2), 1981: 26-28.

10 M.L. Cook, Software Metrics: An Introduction and
Annotated Bibliography ACM SIGSoft 7 (2), 1982:
41-60.

11 V. Côté, P. Bourque, S. Oligny and N. Rivard,
Software Metrics: An Overview of Recent Results
Journal of Systems and Software 8, 1988: 121-131.

12 B. Curtis, Software Metrics: Guest Editor's
Introduction IEEE Transactions on Software
Engineering 9 (6), 1983: 637-638.

13 B. Curtis, S.B. Sheppard, P. Milliman, M.A. Borst
and T. Love, Measuring the Psychological
Complexity of Software Maintenance Tasks with the

Halstead and McCabe Metrics IEEE Transactions
on Software Engineering 5 (2), 1979: 96-104.

14 J.S. Davis, Chunks: A Basis for Complexity
Measurement Information Processing &
Management 20 (1-2), 1984: 119-127.

15 J.S. Davis and R.J. LeBlanc, A Study of the
Applicability of Complexity Measures IEEE
Transactions on Software Engineering 14 (9), 1988:
1366-1372.

16 T. DeMarco, Controlling Software Projects New
York, Yourdon Inc., 1982.

17 T. DeMarco, An Algorithm for Sizing Software
Products ACM SIGMetrics 12 (2), 1984: 13-22.

18 T. Di Persio, D. Isbister and B. Shneiderman, An
Experiment Using Memorization/Reconstruction as
a Measure of Programmer Ability International
Journal of Man-Machine Studies 13, 1980: 339-354.

19 H.E. Dunsmore, Software Metrics: An Overview of
an Evolving Methodology Information Processing &
Management 20 (1-2), 1984: 183-192.

20 H.E. Dunsmore and J.D. Gannon, Analysis of the
Effects of Programming Factors on Programming
Effort Journal of Systems and Software 1, 1980:
141-153.

21 J.L. Elshoff, An Investigation into the Effects of the
Counting Method Used on Software Science
Measurements ACM SigPlan 13 (2), 1978: 30-45.

22 W.M. Evangelist, Software Complexity Metric
Sensitivity to Program Structuring Rules Journal of
Systems and Software 3, 1983: 231-243.

23 V.R. Gibson and J.A. Senn, System Structure and
Software Maintenance Performance
Communications of the ACM 32 (3), 1989: 347-358.

24 R.D. Gordon, Measuring Improvements in Program
Clarity IEEE Transactions on Software Engineering
5 (2), 1979: 79-90.

25 L.L. Gremillion, Determinants of Program Repair
Maintenance Requirements Communications of the
ACM 27 (8), 1984: 826-832.

26 M. Haas and J. Hassell, A Proposal for a Measure of
Program Understanding ACM SIGCSE 15 (1), 1983:
7-13.

27 M.H. Halstead, Elements of Software Science New
York, Elsevier North-Holland, 1977.

28 P.G. Hamer and G.D. Frewin, M.H. Halstead's
Software Science - A Critical Examination
Proceedings 6th International Conference on
Software Engineering, 1982: 197-206.

29 W.T. Han, Y.C. Choe and Y.J. Park, Software
Metrics Using Operand Type Proceedings TENCON
'87, 1987: 1212-1215.

30 W.A. Harrison and C. Cook, A Method of Sharing
Industrial Software Complexity Data ACM SIGPlan
20 (2), 1985: 42-53.

31 S.D. Hartman, A Counting Tool for RPG ACM
SigMetrics 11 (3), 1982: 86-100.

32 S. Henry and D. Kafura, Software Structure Metrics
Based on Information Flow IEEE Transactions on
Software Engineering 7 (5), 1981: 510-518.

33 D.C. Ince and M.J. Shepperd, System Design
Metrics: A Review and Perspective Proceedings 2nd
IEE/BCS Conference on Software Engineering,
1988: 23-27.

34 S.S. Iyengar, F.B. Bastani and J.W. Fuller, An
Experimental Study of the Logical Complexity of
Data Structures Proceedings 2nd Symposium on
Empirical Foundations of Information and Software
Science, 1985: 225-239.

35 H.A. Jensen and K. Vairavan, An Experimental
Study of Software Metrics for Real-Time Software
IEEE Transactions on Software Engineering 11 (2),
1985: 231-234.

36 D. Kafura and G.R. Reddy, The Use of Software
Complexity Metrics in Software Maintenance IEEE
Transactions on Software Engineering 13 (3), 1987:
335-343.

37 J.K. Kearney, R.L. Sedlmeyer, W.B. Thompson,
M.A. Gray and M.A. Adler, Software Complexity
Measurement Communications of the ACM 29 (11),
1986: 1044-1050.

38 G.J. Knafl and J. Sacks, Software Development
Effort Prediction Based on Function Points
Proceedings COMPSAC '86, 1986: 319-324.

39 A.M. Lister, Software Science - The Emperor's New
Clothes? Australian Computer Journal 14 (2), 1982:
66-70.

40 T. Love, An Experimental Investigation of the Effect
of Program Structure on Program Understanding in
D.B. Wortman (ed.) Proceedings 1977 ACM
Conference on Language Design for Reliable
Software, 1977: 105-113.

41 T.J. McCabe, A Complexity Measure IEEE
Transactions on Software Engineering 2 (4), 1976:
308-320.

42 R.J. Miara, J.A. Musselman, J.A. Navarro and B.
Shneiderman, Program Indentation and
Comprehensibility Communications of the ACM 26
(11), 1983: 861-867.

43 G.C. Moss, Developing a Usable Metric Toolkit for a
Commercial Environment Proceedings 2nd
IEE/BCS Conference on Software Engineering,
1988: 123-127.

44 L.M. Ottenstein, Predicting Numbers of Errors
Using Software Science ACM SIGMetrics 10 (1),
1981: 157-167.

45 G. Parikh, Programmer Productivity Reston, Reston
Publishing Company, 1984.

46 D. Potier, J.L. Albin, R. Ferreol and A. Bilodeau,
Experiments with Computer Software Complexity

and Reliability Proceedings 6th International
Conference on Software Engineering, 1982: 94-103.

47 J.C. Rault, An Approach Towards Reliable Software
Proceedings 4th International Conference on
Software Engineering, 1979: 220-230.

48 V. Rodriguez and W.T. Tsai, Software Metrics
Interpretation Through Experimentation
Proceedings COMPSAC '86, 1986: 368-374.

49 V. Rodriguez and W.T. Tsai, A Tool for
Discriminant Analysis and Classification of
Software Metrics Information and Software
Technology 29 (3), 1987: 137-151.

50 F.G. Sayward, Experimental Design Methodologies
in Software Science Information Processing &
Management 20 (1-2), 1984: 223-227.

51 V.Y. Shen, S.D. Conte and H.E. Dunsmore, Software
Science Revisited: A Critical Analysis of the Theory
and its Empirical Support IEEE Transactions on
Software Engineering 9 (2), 1983: 155-165.

52 J.A. Shepherd and J.L. Lassez, Opposing Views on
the Use of Software Science Measures for
Automatic Assessment of Student Programs
Australian Computer Science Communications 2 (1),
1980: 205-215.

53 M. Shepperd, A Critique of Cyclomatic Complexity
as a Software Metric Software Engineering Journal
3 (2), 1988a: 30-36.

54 M. Shepperd, An Evaluation of Software Product
Metrics Information and Software Technology 30
(3), 1988b: 177-188.

55 M.M. Tanik, Two Experiments on a Program
Complexity Perception by Programmers ACM
SIGPlan 15 (9), 1980: 64-66.

56 P.B. Van Verth, A Program Complexity Model that
Includes Procedures Proceedings 11th International
Conference on Software Engineering, 1987: 252-
258.

57 J.M. Verner and G. Tate, Software Sizing and
Costing Proceedings 9th New Zealand Computer
Conference, 1985: 287-304.

58 I. Vessey and R. Weber, Some Factors Affecting
Program Repair Maintenance: An Empirical Study
Communications of the ACM 26 (2), 1983: 128-134.

59 D.M. Weiss and V.R. Basili, Evaluating Software
Development by Analysis of Changes: Some Data
from the Software Engineering Laboratory IEEE
Transactions on Software Engineering, 1985: 157-
168.

60 L. Weissman, Psychological Complexity of
Computer Programs: An Experimental Methodology
ACM SIGPlan 9 (6), 1974: 25-36.

61 S.N. Woodfield, An Experiment on Unit Increase in
Problem Complexity IEEE Transactions on
Software Engineering 5 (2), 1979: 76-79.

62 S.N. Woodfield, H.E. Dunsmore and V.Y. Shen, The
Effect of Modularization and Comments on Program
Comprehension Proceedings 5th International
Conference on Software Engineering, 1981a: 215-
223.

63 S.N. Woodfield, V.Y. Shen and H.E. Dunsmore, A
Study of Several Metrics for Programming Effort
Journal of Systems and Software 2, 1981b: 97-103.

64 M.R. Woodward, The Application of Halstead's
Software Science Theory to Algol 68 Programs
Software - Practice and Experience 14 (3), 1984:
263-276.

65 S.S. Yau and J.S. Collofello, Some Stability
Measures for Software Maintenance IEEE
Transactions on Software Engineering 6 (6), 1980:
545-552.

66 S.H. Zweben, Heads I Win, Tails You Lose
(Zweben's Comment) Computing Surveys 11 (3),
1979: 277-278.

