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Abstract  

The lack of widespread industry acceptance of much of 
the research into the measurement of software complexity 
must be due at least in part to the lack of experimental 
rigour associated with many of the studies.  This paper 
examines thirteen areas in which previous empirical 
problems have arisen, citing examples where 
appropriate, and provides some recommendations 
regarding more adequate procedures. 
 
1. INTRODUCTION  

Far too often, advances in quantitative software 
assessment have their validity questioned because of 
experimental issues.  Despite widespread recognition of 
many of the problems which can and do occur in 
empirical procedures (e.g. see [51]), it would appear that 
this awareness is still being disregarded in the rush for 
immediate results.  The final line in many studies is 
therefore `More experiments are therefore needed...'.  

There are several areas in which problems have arisen in 
the past; thirteen are examined in the following 
discussion: pre-experiment design, operational 
definitions, experimental method, subjective assessment, 
data collection, program sizes, program sample sizes, 
languages investigated, subjects, confounding factors, 
statistical validity, result interpretation and publication of 
data and assumptions.  Although the examples cited in 
the discussion concern complexity measurement 
experiments, the comments and recommendations could 
be applied to empirical procedures in most software 
measurement domains.  
 
2. AREAS OF CONCERN  
2.1. Pre-experiment design  

It is imperative for any research involving some degree of 
empirical activity that the tasks and procedures which 
make up this work are planned and documented before 
the work begins. At the very least, this helps to ensure 
that the true objectives of the work are being addressed, 
in that data is derived in order to perform the experiment 
or validation, rather than vice versa. It is clearly 
unscientific to design experiments or validation around 
the data which has been obtained - this can clearly bias 
the results.  

Kearney et al [37] comment that due to the multi-
dimensional nature of software measurement, many 
studies have examined a large number of variables and 
properties in an attempt to determine feasible hypotheses, 
rather than testing previously defined predictions. This, 
they say clearly increases the chances of finding 
accidental relationships which cannot be generalised to 
similar studies.  Confidence in the results obtained is 
therefore significantly reduced.  

Furthermore, due to poor experimental designs, many 
studies which are supposed to be tests of given 
hypotheses are actually incapable of discarding them - 
according to Hamer and Frewin [28], they simply do not 
have the power to identify false hypotheses.  

Basili et al [5] have therefore provided some guidance on 
the initial stages of experimental research:  

1. Experiment definition - precise specification is 
required in formulating the problem(s) into 
documented goals  

2. Experiment planning - designers should already be 
looking towards larger replications of the 
experiment to reinforce the findings.  Factors 
which are thought to be influential should be 
determined and recorded at this stage.  

Appropriate procedures should also be chosen and clearly 
documented at this point, keeping in mind the goals of 
the experiment, the sample size and characteristics of the 
sample itself. 
 
2.2. Operational definitions  

Quantitative software assessment becomes especially 
difficult with the lack of operational properties which 
adequately and accurately represent the attributes under 
investigation.  For example, we may be interested in the 
quality of an emerging system; however, how quality can 
be objectively measured from aspects of the software 
product is still unclear.  

A similar situation exists for complexity quantification.  
Ince and Shepperd [33] state that there are many metrics 
which are said to provide estimates of complexity, but 
that are in fact derived and validated based on a wide 
range of actual operational features e.g. construction 
time, debugging time, the number of errors or control 
flow in the code.  
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The result of this lack of clarity in reference to 
appropriate operational attributes is that important 
predictive relationships may be missed, as evaluators 
cannot or do not measure the actual criteria which the 
metrics are said to estimate [12].  

Another practice which causes problems in model 
validation involves the substitution of one attribute for 
another, depending on what data is available.  For 
example, Henry and Kafura [32] use program changes as 
an equivalent substitute for development errors in the 
empirical validation of their information flow metric.  
Justification for this is taken from previous studies - they 
cite work by Basili and Reiter [4], who remarked that 
program changes were "...a reasonable measure of the 
relative number of programming errors...".  This may 
have been appropriate for this particular study.  However, 
the validity of the assumption could be questionable.  A 
study by Weiss and Basili [59] has shown that changes 
and errors can be significantly different (Table 1).  

TABLE 1. Code changes versus coding errors 
 

 

The problems associated with determining adequate 
quantitative indicators of aspects such as quality and 
maintainability will be difficult to overcome. It may in 
fact be impossible to define a general set of properties 
which accurately reflect such attributes in every case. 
Aspects of interest (such as the number of development 
errors) which can be measured however, must be 
measured, and not replaced by other countable features, 
no matter how closely related they may be.  
 
2.3. Experimental method  

Also of particular importance are the tests which are 
chosen to provide the required data, particularly in 
psychological complexity studies.  In terms of research 
into this avenue of complexity (as reflected by 
programmer ability), problems often occur in determining 
an appropriate measure of software understanding.  As an 
illustration, it is suggested by Curtis et al [13] that the 
most sensitive measure of a programmer's understanding 
is the ability to follow code structure and to reproduce 
functionally equivalent code.  To this end they adopt as 
their dependent variable the percentage of statements 
correctly recalled.  The obvious flaw in this approach is 
that the test becomes one of short term memory rather 
than of long term recall, with individuals often varying in 
their ability for both tasks.  Another study by Dunsmore 
and Gannon [20] used the exam average of three course 
tests as the supposedly independent measure of student 
programmer ability.  This fails to consider however, that 

many students perform differently under an exam 
situation.  The adequacy of the results obtained in 
providing generalisable conclusions could therefore be 
questioned.  

In most experiments in this domain, programs are created 
or viewed for the first time during the experiment itself.  
Davis [14] claims that this differs markedly from the 
common situation under which many programmers work 
i.e. concentrating on the same group of programs over a 
period of time, increasing their familiarity and therefore 
influencing their understanding and performance.  Hence 
an artificial testing situation is used in experiments 
employing these types of procedures.  

Di Persio et al [18] suggest that there are several `typical' 
tests:  

1. to construct a program from a given specification  

2. to make certain changes to a program  

3. to locate and/or correct one or more deliberate 
bugs  

4. to study a program and then answer questions 
about it.  

These are said to be of limited use however, as the results 
obtained are dependent on the particular program domain 
used in the study at hand. They are also difficult to 
prepare and mark.  The authors therefore suggest 
memorisation/reconstruction tasks as more appropriate. 
To ensure that these are not simply tests of syntactic 
memorisation, it is recommended that the recalled-lines 
procedure should be tailored to the environment in which 
the programmers normally work.  

As mentioned in the initial part of this discussion 
however, memorisation/reconstruction-type tests are also 
not ideal. Further evidence of the inadequacy of these 
methods is provided by Krall and Harris [in 42].  They 
examined the effect of various readability improvement 
strategies using a comprehension quiz and a 
reconstruction test.  Significant results were obtained 
only under the former scheme, casting doubts upon the 
use of memorisation assessment to reflect understanding.  

Other works however, have also illustrated shortcomings 
in the quiz approach.  Iyengar et al [34] conducted a 
study investigating the complexity of understanding using 
various data structures.  They chose error location 
methods for their test, claiming that comprehension 
quizzes only test short term recollection ability (as 
suggested above) which can be affected by, among other 
things, data variable names and the extent of internal 
documentation. Weissman [60] also concluded that 
comprehension tests were inadequate for assessing 
psychological complexity.  

What are suggested as the three most widely used 
approaches for measuring the complexity of 
understanding have been discussed in some detail by 
Haas and Hassell [26].  They cite several problems with 
the use of the first technique, code reconstruction. The 
initial problem concerns the inaccuracy and subjectivity 
of deciding what is actually a correct reproduction - is the 
substitution of functionally equivalent constructs 



incorrect, or simply a different approach?  Is omitting a 
simple statement as serious as leaving out an important 
control flow structure?  Can partial credit be awarded for 
certain degrees of reconstruction?  Furthermore, 
reconstruction ability has been found to be related in 
many instances to the experience of those being tested, 
yet this is not considered in most cases, because of the 
significant difficulty in effectively measuring relative 
levels of expertise.  

The second technique investigated by Haas and Hassell 
[26] is that of program error location/correction.  Only 
one bug is used in most cases of error location, creating 
an artificial situation in comparison to normal 
development/maintenance circumstances.  Problems also 
occur in error correction tests, particularly in the 
assignment of marks for partial correction or when the 
correction of one error creates another.  What is more, 
this is generally not a test of understanding, but rather 
one of problem-solving ability [34].  

The time required for the completion of program tasks is 
the third method discussed by Haas and Hassell [26].  
Their main objection to this type of criteria is the obvious 
slant which it has towards quick workers. That one 
programmer completes a given task faster than another 
does not ensure a fuller understanding of that task.  What 
is more, how should relative grades be assigned for an 
incomplete but accurate product as compared to a 
complete but inaccurate one?  

Clearly there are flaws with all three approaches.  Haas 
and Hassell therefore propose a different approach. They 
suggest that subjects should be provided with the code, 
documentation and sample output data for a system.  
Questions may then be put to them concerning the 
manipulation of input data, the resulting output, the 
overall functionality of the program and of parts of the 
code and the possibility of enhancements and the effects 
that these may have. This approach would appear to 
overcome at least some of the problems associated with 
other methods. 
 
2.4. Subjective assessment  

The subjective nature of many studies is unfortunate and 
often misleading, given the fact that objective results are 
said to have been achieved in many cases.  It is 
understandable that where human endeavours are 
considered (such as programming), differences among 
individuals will occur.  However, the actual assessment 
of aspects of the software product must be approached 
quantitatively to lessen the influence of personal 
attributes and perceptions.  

Tanik [55] investigated the relationship between 
subjective programmer-assigned complexity levels and 
such aspects as the number of runs to complete a program 
and the time spent in debugging a program.  The 
correlations obtained (from limited samples) were weakly 
positive. In spite of the low explanatory powers observed, 
Tanik suggested that programmers can in fact guess 
complexity and that this `ability' might be used in 
development time estimations. This conclusion seems 

unjustified given the actual results obtained, and 
highlights the lack of accuracy of subjective evaluations.  

Subjective rating has also been used in several other 
studies.  In their investigation of metrics and software 
maintenance, Kafura and Reddy [36] used subjective 
ratings of complexity, chosen because objective data was 
not available and to test the accuracy of `expert' 
judgment. The model of software complexity proposed 
by Van Verth [56] was also validated using programs 
which were graded by experts.   

This approach can only be valid, however, if it is 
accepted that human opinion is an adequate discerner 
with respect to relative levels of software complexity.  If 
this were the case, then what would be the need for 
objective measures?  

Studies which utilise subjective evaluations have always 
been questioned, despite the fact that `experts' may have 
often been used.  It is therefore essential that if at all 
possible, quantitative assessment methods be employed.  
 
2.5. Data collection  

The general lack of useful and accurate development 
project data has been widely acknowledged as a major 
impediment to the effective validation of software 
complexity research ([46], [49], [44]).  

What appears to be a standard approach to data collection 
involves the use of collection forms which must be 
completed by those working on the project. An example 
of this procedure can be seen in Blaine and Kemmerer 
[7].  A Software Change Proposal (SCP) was required 
(over the six year project duration) for any modification 
to be made to the system.  Each proposal outlined a 
reason for the change, a list of all the routines affected 
and an estimate of the man-hours required to complete 
the total modification.  Rodriguez and Tsai [48] 
employed a similar approach in the collection of error 
data for their study, as did Vessey and Weber [58].  

Although these are valiant attempts at obtaining accurate 
data, several flaws can occur: those involved may 
(willfully or otherwise) forget to submit the relevant 
forms, or incomplete and/or inaccurate data may be 
similarly provided (it is common for programmers not to 
report clerical-type errors [3]); problems with the 
allocation of error/change quantification data may also 
occur when, for example, the change made affects more 
than one section of code [6].  

The previous remarks relate only to the acquisition of 
data pertaining to the coding and maintenance stages.  It 
would appear that the acquisition of early development 
phase data is even more difficult [44].  This may be due 
in part to the often inconsistent points chosen to begin 
data collection in various projects [31], or to the lack of 
currency of the data [46]. When, for example, the error 
history of a project is quite old, Potier et al [46] state that 
in the event of missing data, recovery or recollection of 
this data is extremely difficult and that in any case 
incorrect data may be obtained due to changes in the 
collection procedures used over the period.  



Collecting useful data is clearly difficult.  For one thing, 
our models of the development process may be 
inadequate as to even permit sufficient levels of data 
quantification [57] and for another, the data which is 
obtained may be of such a questionable nature that only 
narrow and qualified acceptance can be made for much of 
the research [65].  

Rault [47] claims that the problems which are 
encountered are a result of two inter-related issues; on the 
one hand, the lack of accurate and timely data prevents 
full validation of any models suggested; on the other 
hand, the absence of sufficiently valid models restricts 
the determination of what data is actually required.  Rault 
suggests that to remedy this situation, the systematic 
collection of large volumes of data, albeit empirically, 
should be the first step. Basili and Phillips [3] state 
however, that data must be obtained from commercial 
development environments, rather than from 
experimental work.  The following methodology for 
achieving this is suggested by Weiss and Basili [59]:  

1. determine aims of research  

2. develop questions to satisfy aims  

3. define data collection form(s)  

4. derive collection procedures  

5. collect, validate and analyse the data acquired.  

This approach may too be afflicted by the problems 
outlined previously.  However it would seem that a 
defined procedural approach involving commercial 
development must be adopted. The initial objective 
relating to this issue is therefore to obtain full cooperation 
from the company (or companies) and their development 
personnel.  This alone will significantly increase the 
likelihood of obtaining complete and accurate data.  
 
2.6. Program sizes  

The issue of program size appears in two guises within 
complexity research; firstly when programs are used as 
tools for the provision of data e.g. investigating bug 
location times; and secondly as a medium for metric 
validation. The use of insignificant programs (in terms of 
their size) for both purposes has seen criticism.  

Sayward [50] suggests that material selection has been 
poor in several data collection experiments, with the 
programs used being too small to reflect `real-world' 
circumstances. It is stated that this is due in many cases to 
economic constraints.  Weissman [60] remarks further 
that it is difficult to find programs of a size which falls 
between trivial and manageable.  

Examples of small-scale experimentation can be found in 
Woodfield [61] and to a lesser extent in Henry and 
Kafura [32].  Although in the latter study the sample of 
procedures was significant as a system, the length of 53% 
of the modules examined was less than twenty lines, and 
the largest was just 180 lines long.  If larger procedures 
had been analysed, a different metric may have been 
developed, or more significant evidence may have been 
derived for the validity of the authors' findings.  

The effectiveness of many proposed metrics is also often 
illustrated using very small programs.  This, according to 
Dunsmore [19], places in question the applicability of the 
measures to large modularised software systems, 
particularly since it has been acknowledged ([8], [54]) 
that large systems exhibit different properties to those of 
smaller counterparts. The study by Henry and Kafura 
[32] mentioned above also provides an example of this 
practice. Another is Gordon's work on software clarity 
[24]. The fifteen programs used to illustrate the 
effectiveness of his measure were all between just three 
and twelve lines long.  

It is acknowledged by Dunsmore [19] that it is simply not 
practical to validate a measure for all program sizes, 
languages and applications.  He suggests that 
compromises are inevitable, but that they should be made 
sensibly e.g. generalisation by size within a specific 
language may be acceptable.  This again assumes 
however, that a change in size is only that i.e. that no 
other aspects are affected.  This is despite widely held 
principles which encourage the use of modularised 
structure for larger systems, when they would not be 
employed for smaller segments of code.  

It is clearly important that future empirical studies use 
programs which accurately reflect the domain to which 
the measures are said to apply.  The most satisfactory 
approach would appear to be the use of programs and 
systems of varying sizes, to ensure general applicability 
for the measure(s) being validated.  
 
2.7. Program sample sizes  

Studies in this area also frequently suffer from severely 
limited program samples on which determination or 
validation of measures is performed. Sample sizes should 
be at least large enough to enable significance tests to be 
carried out. Lister [39] comments that if this is not 
achieved, results may become overly dependent on a few 
extreme observations.  

As an example, Zweben [66] attributes some degree of 
the `overselling' of the software science quantification 
theory [27] to results based on small samples.  The 
sample used by Gordon [24] in the development of a 
clarity measure is similarly criticised by Evangelist [22] 
for its lack of comprehensiveness.  

DeMarco [17] acknowledges that the validation of his 
cost prediction model was performed with small data 
sets.  He suggests however, that the use of partially 
validated objective models (such as his) should be judged 
against the alternative, that is, subjective estimation.  The 
implication is that partly objective models are better than 
none at all, or guesswork.  This comment has since been 
extensively cited as justification for incomplete 
validation, yet its general applicability may be 
questionable.  A model based on a few extreme or widely 
dispersed observations may be significantly worse than 
one based on information provided by skilled and 
experienced personnel.  

Ideally however, large replicable samples are necessary 
for reliable model development and validation.  Henry 



and Kafura's suggestion [32] that a test-bed should be 
high-level, well-documented, large, real and reusable is 
clearly appropriate for work in this area.  
 
2.8. Languages investigated  

Under ideal circumstances, research should be validated 
over a wide range of programming languages.  To a large 
extent, this has not occurred in previous work - Han et al 
[29] remark that conventional complexity metrics are 
largely dependent on data derived from lower to medium 
level procedural language programs.  

It would appear that, in particular, the study of metrics as 
applied to COBOL systems is needed. Côté et al [11] and 
Gibson and Senn [23] suggest that the small number of 
investigations on metrics using this language fails to 
correspond with its usage in industry. Many business 
applications are written in it and so a large degree of 
maintenance is performed on COBOL applications [45].  
Another area which should be investigated is the use of 
metrics as applied to software developed in a fourth-
generation environment, particularly as the use of these 
products becomes more widespread [11].  

It is likely in fact, that some metrics may perform poorly 
when applied to certain languages, or they may simply be 
inapplicable for particular language types.  For example, 
both software science [27] because of its syntactic focus 
and McCabe's cyclomatic complexity [41] with its control 
flow derivation are likely to be inappropriate for software 
developed in a 4GL environment. It is therefore probable 
that new measures will be developed for use with this and 
other new environments. In any case, it is most important 
that appropriate measures are used according to the 
language or environment of the software being assessed. 
  
2.9. Subjects  

Sayward [50] remarks that subject selection is one of the 
two most problematic aspects of psychological 
complexity research.  Due to resource constraints, many 
studies in this domain have used students as their means 
of acquiring data.  (Clearly this is also due to the fact that 
much of the research is performed at universities, with a 
`captive' subject sample.)  This practice however, has 
been widely criticised as students are often considered to 
be in fact atypical of the overall population [33].  
Halstead [27] and Gordon [24] both remark that programs 
written by novice programmers tend to contain a high 
proportion of impurities.  This would suggest then that 
researchers who use such an approach must be especially 
cautious in developing generalisable conclusions from 
their results [52].  

There are several other flaws associated with this 
approach.  One which has been openly acknowledged is 
the extent of variation which may occur among 
individuals.  Empirical work in the programming domain 
is said to be very difficult [24] given the inevitable and 
often enormous variations in individuals' abilities ([10], 
[16], [5]).  Shepperd [53] remarks that statistically 
significant results can be severely undermined due to 
these variations in ability, with a few extreme 

observations lessening the importance of the majority.  

What is more, student development projects are often 
restricted to insubstantial programming exercises [7] and 
are consequently not indicative of a normal 
development/maintenance environment. Therefore the 
results obtained should not be (but often are) generalised 
to this situation.  

Weissman [60] has suggested then, that a wide range of 
subjects with varying backgrounds be used. However, 
combining subjects with differing experience levels has 
been criticised elsewhere (e.g. [40]).  Furthermore, there 
is little reason to believe that experienced and novice 
programmers work in the same way, albeit at different 
speeds.  Combining results from both groups to develop 
general conclusions may therefore also be of questionable 
validity.  

Although the ideal situation would employ a large sample 
of professional developers of roughly uniform ability, 
restrictions on time, money and other resources coupled 
with the low chances of the availability of such a sample, 
and the relative availability of a student populace, all 
contribute to the likelihood of further use of student 
samples.  It is important then, that the students chosen are 
at a senior level and are of approximately similar ability 
and that the sample is sufficiently large as to lessen the 
effect of individual observations.  
 
2.10. Confounding factors  

Due to the large number of factors which may be 
considered in software engineering experimentation (and 
the subjective nature of many of these), straightforward 
analysis of results is often difficult. Factors such as 
development methodology, programmer ability and 
experience, problem difficulty, development environment 
and the availability of development tools all vary across 
projects and are difficult to express and consider in a 
quantitative manner ([43], [37]).  

An initial step in overcoming this problem is to 
acknowledge the existence of uncontrolled factors in the 
study, as in Davis and LeBlanc [15] and in Woodfield et 
al [63].  Although praiseworthy, this unfortunately does 
little to enhance the credibility and usefulness of the 
studies' findings.  

Clearly, experiments where all variables can be 
controlled are the most likely to provide `pure' 
observations.  This situation is unlikely to be achieved in 
a domain such as software development however, due to 
the human factors which are often of significant 
influence. Therefore the effect of all other factors which 
can be controlled and are of no direct interest to the study 
must be minimised.  For example, Woodfield et al [62] 
made all variable names meaningless and removed all 
program indentation in their investigation of programmer 
understanding under various comment and 
modularisation schemes.  
 
 
 



2.11. Statistical validity of predictive 
relationships  

Criticism of this aspect of software complexity 
experimentation has been centred mainly around the use 
of the correlation coefficient (usually Pearson's product-
moment correlation coefficient r) as the main determinant 
of predictive relationships between two variables.  

Rodriguez and Tsai [49] remark that only rarely have 
metrics been fully validated in a statistical sense.  The 
extent of validation for many metrics is limited to finding 
linear or rank correlations to determine a relationship 
between the measure and a system attribute.  

The inadequacy of this approach has been extensively 
illustrated.  Kearney et al [37] adopt a practical argument; 
even when a strong correlation is discovered, the 
applicability of the result may be minimal.  For example, 
they rightly suggest that it would be a gross misjudgment 
to conclude that software size predicts the occurrence of 
bugs, or that the size of all software should be reduced, 
simply because a linear relationship is found between size 
and errors. Large size is an obviously inherent property of 
many applications.  

Knafl and Sacks [38] also illustrate the often unjustified 
importance which is attached to high correlations.  They 
examined the data used in Albrecht and Gaffney's 
function point study [1] and showed that for one data set 
three sparsely spaced large projects were overly 
influential in the correlation obtained; removal of those 
data points resulted in a 44% decrease in the correlation, 

substantially reducing the significance of the results.  

Lister [39] also points out that although correlation is a 
measure of random variable relationship, few 
experiments have even attempted to prove the random 
nature of the variables involved. Furthermore, he 
suggests that even if randomness were proved, a high 
correlation only indicates the existence of a relationship, 
not what the actual relationship is.  The use of linear 
regression techniques would provide an accurate 
assessment of the relationship itself, yet Lister states that 
this procedure is seldom even mentioned in research 
reports.  

To reinforce the danger of unquestioned reliance of 
correlation coefficients, Lister provides the following 
table (Table 2) showing relationships between predicted 
and actual software lengths (N^ and N under Halstead's 
software science [27]) for a sample of thirty-one PL/1 
programs [21], for various definitions of predicted length.  
Although the correlations are comparable, the errors 
associated with the predictions vary significantly. 

Another problem with the use of correlation measures in 
this domain is the need for the variables investigated to 
come from (approximations to) normal distributions.  The 
impossibility of obtaining a negative number of errors is 
cited by Shepperd [53] as a situation where a skewed 
distribution result, particularly for small sets of data.  
Transformations which could lessen the effects of such a 
distribution can be easily applied, but these are seldom 
performed.  

TABLE 2. Correlation and error data for actual and observed lengths 
 

 

The extent to which the correlation coefficient pervades 
metric research is further illustrated in a study by 
Woodward [64].  The author acknowledges that there are 
well publicised pitfalls in using the Pearson correlation 
coefficient to confirm metric relationships, citing 
previous studies. He then states however, that the method 
has become the de facto standard practice for work in this 
area and so presents his results using the Pearson 
procedure without further comment.  

As much as the correlation coefficient may adequately 
indicate the degree of a linear relationship between two 
random variables, it fails to provide any support for 
predictive relationships which may be derived from it.  
Therefore other tests should be used in conjunction with 
this procedure so that the problems alluded to above can 
be avoided.  This could involve the use of regression 

techniques and the examination of the relative and 
absolute errors associated with the predictions to enable 
determination of the actual relationship(s) and the 
explanatory powers of the predictive models used.  
 
2.12. Result interpretation  

Testing methods are clearly important in software 
engineering experiments, but correct result interpretation 
is an equally vital and difficult task [10].  In several cases 
researchers have adopted different interpretations of the 
same model, making the comparison of results 
meaningless [53].  

Kearney et al [37] cite Basili and Hutchens' study [2] as 
an example of result misinterpretation.  The authors 
suggest that unjustified general conclusions were drawn, 



as they were based only on the results obtained from a 
single programmer concerning the relationship of 
program changes and the SynC complexity measures.  

Incorrect interpretations are also often perpetuated by 
subsequent studies e.g. Jensen and Vairavan [35] report 
that Henry and Kafura's work [32] related their 
information flow metric to the occurrence of errors, 
whereas the original relationship was actually between 
the metric and program changes.  

Basili et al [5] suggest that the correct presentation of 
results assists in their correct interpretation. They also 
recommend that results and conclusions be qualified 
according to the particular samples used. An example of 
this occurs in a study by Blaine and Kemmerer [7]: "The 
recommended measures of maintenance effort for Rolm 
assembly language software are..." p.239.  This specifies 
exactly what is being predicted and to what software the 
results apply.  Another good example of result 
qualification is used by Gremillion [25].  The author 
states that in drawing conclusions from his study it 
should be remembered that the research represented only 
one situation using one language and style, and that 
generalisation beyond this scope would be inappropriate.  

This practice is an important part of the validation 
process and should be performed in all studies. This 
would assist in ensuring firstly that those examining the 
results are aware of the uses and limitations associated 
with them and secondly that subsequent studies which 
attempt to replicate the original work have clearly defined 
boundaries on which to base their research.  
 
2.13. Publication of data and assumptions  

The credibility of several studies has also been lessened 
by their failure to provide the raw or derived data and/or 
the assumptions on which the results and conclusions 
were based.  Comer et al [9], for example, fail even to 
provide information on the type and size of the programs 
which were used in the experiments.  This is of vital 
importance, particularly so repeated comparative 
experiments can be performed.  
 
3. CONCLUSIONS  

This review has highlighted several areas within software 
engineering experimentation in which more rigid 
procedures must be developed and put to use. All must be 
addressed if the validity of results obtained through 
empirical studies is to be assured.  

It is acknowledged, however, that this is by no means a 
simple task.  Several of the criteria are particularly 
difficult to achieve, for example, the exact, large-scale 
replication of experiments, and the availability of 
representative subjects and large program samples.  
Others may be conflicting - a model based on small data 
sets is often insignificant; yet the only other option, 
subjective assessment, is also questionable.  

In any case, it is most important that experimenters are 
constantly aware of the problems which may occur and 

the limitations that these may place upon the findings 
obtained.  Many studies conclude with a recommendation 
for further experiments (e.g. [6], [23]).  This suggestion is 
pointless however, unless the formulation, operation and 
validation of this research is strengthened through more 
rigorous definition and control of experimental 
procedures.  
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