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ABSTRACT 

 

A novel framework is proposed in this study that uses a spiking neural network for 

learning spatio-temporal and spectro-temporal data called NeuCube. It is capable of learning 

and classifying such data in real time (online).  

NeuCube-based methodology is proposed, tested and implemented for a control of 

Quadcopter using brain signals. A Quadcopter is a flying drone, which is used for its stability 

and ability to carry heavy loads for practical applications. There are three types of movement 

in flying drones/flight: Pitch, Yaw and Roll. These movements are controlled by a small 

controller called “Flight Controller”, which has its sensors such as 3-axis gyros, accelerometer, 

barometer and many more, which ensure a stabilised flying drone. Usually these are controlled 

by a radio control kit. In this study the path chosen is to control a Quadcopter with brain data. 

In this study, a 14-channel Emotiv EPOC EEG device was used. In this experiment 

rather than using a real Quadcopter, the author uses a virtual environment to move a virtual 

drone in four directions. For each direction a facial movement was used to produce and record 

EEG data: Left eyebrow up, Right eyebrow up, both eyebrows up and both eyebrows down. 

NeuCube uses DeSNN (Dynamic Evolving Spiking Neural Network) to classify the data and 

to send the commands to virtual Quadcopter to move. 

This experiment was tested during which the system showed good results. 
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Chapter 1: Introduction 

 

The brain is a complex organ of the human nervous system. It is estimated that a Cerebral 

cortex consists of more than 20 billion of neocortical neurons (Drachman, 2005). Cerebral 

cortex is the largest part of the brain, which is divided into two parts: left and right 

hemispheres. A cerebrum (both hemisphere together) consists of different lobes which have 

different function of its own. It is divided into: Occipital Lobe, Temporal Lobe, Parietal Lobe 

and Frontal Lobe. The main function of Cerebrum is to control voluntary actions (E. A. 

Martin, 2010). 

Di Sessa (1985) expressed the view that the future of using computers is not limited to 

scientists alone, but is for all. In this era we can see that everyone, including students, home 

users and various others use computers for their daily needs. The technology has advanced so 

much today that a thumbnail track pad was invented by an MIT researcher (Hardesty, 2015).  

As the technology advances, its importance for medical and scientific use has also 

increased exponentially. Controlling machines by using brain signals has also become 

possible. Technologies such as Electroencephalography (EEG) and Functional Magnetic 

Resonance Imaging (FMRI), which can record brain signals have been developed. These 

signals from certain patterns that can be learnt by applying machine learning and pattern 

recognition methods and can be used to control a moving object. The branch of Human-

Computer interface that deals with the interaction between the brain and the computer is 

called Brain Computer Interface (BCI). According to Vallabhaneni, Wang, and He (2005), 

BCI can be defined as a means of human communication with computers based on the neural 

activity among neurons which is independent of any muscular or peripheral activities. 

When there is a physical activity (or performing tasks), there are neuron-to-neuron 

interactions which give rise to Neural Oscillation (Llinas, 1990), which was first discovered 

by Hans Berger that led to the discovery of EEG. The brain signals can record when a person 

does some task and then fed to a classifier which recognises the pattern associated to that task 

(Al-ani & Trad, 2010). This thesis is based on DeSNN (Dynamic Evolving Spiking Neural 

Network) algorithm which classifies four class problem and moves a virtual Quadcopter in a 

space. 
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This chapter consists of sections discussing motivation, background research, research 

questions, the author’s contribution to this study and finally the study structure itself. 

1.1 Motivation 

BCI would help people who are immobile to control devices through thoughts and to 

communicate with other people. There are many examples of prominent politicians, scientists 

and actors, who suffered various diseases that made them immobile, some of them participating 

in the development of new BCI technologies. 

Amyotrophic Lateral Sclerosis (ALS) is also known as Lou Gehrig's disease and is a 

neurodegenerative disease which affects nerve cells in the brain and spinal cord. Motor from 

the brain neurons are connected to the spinal cord, then from the spinal cord these neurons are 

distributed to muscles; since this is a degenerative disease, slowly these neurons die which 

makes the person immobile (What is ALS?). Doctor Cathy Wolf who is in her 60’s, was 

diagnosed with ALS at the age of 18. She is an expert in Human Computer Interaction (HCI) 

and is a lead contributor for Wadsworth Center’s development of BCIs. She has participated in 

different experiments including Test-to Speech (using BCI), P300 letter prediction (also known 

as “a-ha” response), word prediction and other (Wolf, 2013). 

The proposed framework in this study aims at demonstrating that it is possible to develop 

BCI, based on EEG data to control an object. 

 

Figure 1.1: Trends in BCI for 2007-2013 (Ahn, Lee, Choi, & Jun, 2014). 

2
4

21

29

57

33 34

0

10

20

30

40

50

60

2007 2008 2009 2010 2011 2012 2013

N
u

m
b

er
 o

f 
P

u
b

lic
at

io
n

s 
in

 t
en

's

Years



3 

 

In Figure 1.1, we can see that in year 2011 there were the highest number of publications 

related to BCI. The authors believed that portable and wireless EEG devices like Emotiv EPOC 

and Neurosky were factors which influenced the high number of publications. They also 

believed that BCI had more influence on gaming development rather than being used in clinical 

methods (Ahn et al., 2014).  

1.2 Research Scope and Focus 

The research scope for this study is to define if a human is capable of moving an object 

in a given space. We would be focusing more on DeSNN architecture rather than using any 

conventional method. More about this is Chapter 5: 

1.3 Research Questions 

The main objective for this research is to create a framework for BCI, making it easier 

for others to use compared to traditional implementation. Keeping this in mind the following 

research questions are formulated: 

1. What is Brain Computer Interface (BCI)? What are the challenges? 

2. How good Emotiv EPOC is compared to other EEG devices (medical devices) in 

collecting brain data. 

3. How does NeuCube based architecture improve the performance of object control when 

compared to other traditional methods? 

4. Can NeuCube-based BCI help people with paralysis, Multiple Sclerosis (MS) or 

Amyotrophic Lateral Sclerosis (ALS)? 

5. How accurate is NeuCube framework in terms of controlling of a drone? 

6. What are the limitations of this approach? 

1.4 Overview of this study 

 Literature review related to the study of brain data is presented; 

 Literature review on BCI and its various implementations is also presented; 

 The motivation for using Quadcopter for this study is explained; 

 A new framework for BCI has been proposed based on the NeuCube architecture. 

 An online/real time data processing system based on the NeuCube is implemented. 

 An easily affordable EEG system is used, where a user can record data directly from 

the NeuCube software. 

 For every recording (with input and output data), a person can see their emotional levels 

(alpha, beta, gamma and delta waves). 
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 No third party EEG data was used; all experiments conducted in this study was done 

on the author’s data. 

 The data collected was recorded in controlled conditions and only movement of eyelids 

were used. 

 A virtual environment was developed for a multi-rotor (Quadcopter) flight to be 

controlled in a given space, where the user is given a feedback of score. 

 Poster presentation was given on the same framework using NeuCube at NCEI 2015 

workshop. 

 An abstract was published in the NCEI 2015 proceedings. 

1.5 Structure of the thesis 

To answer all the research questions, this thesis has been structured as follows: 

Chapter 2: This chapter focuses on how the brain functions. A detailed review of how neuron-

to-neuron interaction takes place is also presented. 

Chapter 3: This chapter presents BCI technologies and some advanced brain mapping 

systems. 

Chapter 4: An introduction to a basic pattern recognition algorithm is presented; a few 

algorithms that are used in this study are explained as well. 

Chapter 5: This chapter proposes a framework of a Brain Computer Interface (BCI) based on 

NeuCube architecture. The functionality of the module developed by the author for 

online/offline training/testing is explained. 

Chapter 6: A pilot implementation of the new framework is described and tested on the 

author’s data and experimental results are presented in this chapter. 

Chapter 7: The study is concluded in this chapter. 
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Figure 1.2: An overview of this study  
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Chapter 2: Brain functions and brain data 

 

Before discussing the principles of BCI, the author would like to briefly describe the 

brain functions and different types of brain data. A detailed explanation on neuron-to-neuron 

communication is shown and also different types of brain imaging techniques are explained. 

The chapter provides a literature review and discusses the working of the brain, 

communication between neurons and different types of brain data acquisition hardware. 

2.1 Functionality of the Brain 

The brain is considered to be a collection centre for storing information and behaviour 

(Freeman, 2000). It’s a complex organ that has more than 100 billion neurons connected to 

each other in a most complex manner (Haken, 2006).  

2.1.1 Introduction to brain areas 

 

Figure 2.1: Structure of the Brain 

 Our focus for this study is on Forebrain (part of the Cerebrum), which is divided into 

two parts: right hemisphere and left hemisphere. Put together it’s called cerebrum (Griggs, 

2010) that can be seen in Figure 2.2. 
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Figure 2.2: Left & Right Hemisphere 

 The brain is divided into two sections longitudinally by the longitudinal fissure 

(Colman, 2014e). 

2.1.2 Functions of the brain 

 

Figure 2.3: Divisions of central nervous system (Eric R Kandel, 1985) 

Left 

Hemisphere 
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Hemisphere 

Longitudinal 
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 Each division of the brain has its own functions and is part of the nervous system. The 

nervous system is divided into six parts (Eric R Kandel, 1985). 

2.1.2.1 Spinal cord 

It is a collection of neuron fibres which extend to the Medulla (Allaby). Its function is 

to carry motor and sensory signals throughout the body. It relates also to involuntary 

response to any stimuli, also known as “Reflex” actions (or Reflex Arc) ("Spinal cord," 

2014) 

2.1.2.2 Medulla 

Formally Medulla is known as Medulla Oblongata, which is one of the three main parts 

of the brain stem. The presence of white matter is highest in this region with minimal 

amount of grey matter. The function of this region is to control Cardiac, Respiratory 

and Vasomotor muscles ("Medulla Oblongata," 2012)  

2.1.2.3 Pons 

Pons is also known as “bridge of Varolius”; it contains much white matter and very 

little grey matter ("Pons," 2012). Its function is to control force and range of movement 

(Eric R Kandel, 1985). 

2.1.2.4 Midbrain 

It acts like a junction between the cerebral cortex and the spinal cord. Its main function 

is to control the reflex actions of the visual and auditory systems, for example moving 

the head and eyes ("Midbrain," 2012). 

2.1.2.5 Diencephalon 

It is located in the anterior part of the cerebrum. It acts like a junction between sensory 

areas and higher brain centres. The optical nerve starts from this region 

("diencephalon," 2014). 

2.1.2.6 Cerebral Hemispheres 

It is made up of an outer layer of grey matter and the inner layer of white matter 

("Cerebral Hemisphere," 2012). This part of the brain is concerned with most of the 

human functions including perception, cognitive and motor movements (Eric R Kandel, 

1985).  

Most of the brain works in a cross over manner, that is, all the work you do is processed 

on the opposite hemisphere of the brain. For example, when you see something with your left 

eye, your right hemisphere processes it; likewise, when you touch something with your right 
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hand, the opposite (left) hemisphere associated to that part of the body processes it (except for 

a few facial nerves). Even the auditory processing is done in the opposite side of the 

hemisphere. Smell is the one sense organ that is not processed in the opposite hemisphere; that 

is, if you smell with the left nostril, that smell is processed only in the left hemisphere of the 

brain and vice versa (Carter & Frith, 1998). 

2.2 Neuron-to-neuron Communication 

2.2.1 Introduction to Neurons 

There are over twenty types of neurons in the brain (Haken, 2007). 

 

Figure 2.4: Examples of neurons (Haken, 2007) 

 Out of twenty types of neurons, two types of neurons are shown in Figure 2.4. The left 

part of the figure shows a cluster of neurons called Pyramidal cells and the right one is a 

Purkinje cell. 

 Every neuron cell has the following four main parts;  

2.2.1.1 Synapse 

It is the small gap between two neurons where chemical transmission takes place 

(neurotransmission) (Allaby, 2014). 
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Figure 2.5: (a) Cross section of a neuron cell body. (b) A synaptic neurotransmission. (c) A full neuron 

structure showing axon, dendrites and synaptic connection to other neuron. (Freeman, 2000) 

(BruceBlaus, 2013) 

 

2.2.1.2 Dendrites 

They are small spine like structures that are short and connect to the cell body. Usually 

a neuron has two or more dendrites (D. R. Brown, 1980). They not only receive 

chemicals from the axon, but in a few sensory neurons, due to their external sensation 

input they exhibit receptor potentials (Jan & Jan, 2001). 

2.2.1.3 Cell body 

Neurons are built similarly to any other cell body. Figure 2.5 shows the following: 

Nucleus (where RND and DNA is stored), mitochondria (the power house of the cell), 

golgi complex (storage place for RNA), endoplasmic reticulum (transport agent for the 

cell), nissl body (available usually in neurons and glandular cells, this produces all the 

proteins and enzymes for neurotransmissions) and microtubules (helps in flow of 

proteins and enzymes from neuron-to-neuro) (D. R. Brown, 1980). 

2.2.1.4 Axon 

This is one long fibre, which starts from soma that takes the action potential generated 

by the cell body and transfers it to another cell. The length of axon varies from neuron 
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to neuron but some are quite long. For example, the axons of some motor cells start 

from the spinal cord and end in the leg (D. R. Brown, 1980).  

2.2.2 Communication between neurons 

Before discussing about how neurons communicate (action potential), we should first 

know the basic principles of electricity. Ions with similar (positive-to-positive and negative-to-

negative) charges repel each other and with different charges attract (D. R. Brown, 1980). A 

potential energy is required to move ions from one place to another. This potential difference 

is called voltage ("Potential, Electric," 2014). A flow of electrically charged particles moving 

from one point to another point, in the presence of a potential difference is called current. Its 

international system of unit is Amperes ("Electric Current," 2014). 

There are two types of neurotransmission in a neuron: chemical transmission and 

electrical transmission. Chemical transmission happens in between dendrites and axons 

whereas electrical transmission happens between two dendrites (Stufflebeam, 2008). 

2.2.2.1 Chemical Neurotransmission 

In chemical neurotransmission two neurons are chemically connected, which means that 

there is no physical connection but there is a gap called synaptic cleft ("synaptic cleft," 

2014). The neuron which sends chemical impulses is called presynaptic neuron and the 

one which receives it is called postsynaptic neuron. An action potential cannot cross a 

presynaptic neuron due to the presence of extracellular fluid in the synaptic cleft, but 

chemical transmission can take place. There are five types of ion exchanges in neuro 

transmissions (or neurotransmitters) that can happen between two neurons: 

 Potassium ions (K+) : Voltage of -90 mV (D. R. Brown, 1980) 

 Chloride ions (Cl-): Voltage of -70 mV (D. R. Brown, 1980) 

 Protein molecules (A-) 

 Calcium ions (Ca2+) 

 Sodium (Na+): Voltage of +65 mV (D. R. Brown, 1980) 

These ions can be sent through the synaptic membrane opening called ion channel, 

which acts like a valve between two pipes (axons and dendrites). These ion channels 

open and close whenever a neuro transmission takes place. As the ions are charged 

particles, when they are sent from a presynaptic neuron to a postsynaptic neuron (the 

ions enter the postsynaptic neuron only when the receptor site binds them together), 

a small electrical charge occurs. This electrical pulse is called synaptic potential. Now 
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the postsynaptic neuron fires action potential if and only when the sum of all the 

neurotransmitters (charged ions) exceeds its threshold. The transmission between 

neurons ends when the synaptic cleft is cleaned (removal of neurotransmitters). Most 

of the neurotransmitters are allowed to enter a presynaptic neuron to reuse the ions 

by a process called reuptake (Stufflebeam, 2008). 

 

Figure 2.6: Synaptic Neurotransmission overview (Romano, 1995) 

2.2.2.2 Electrical Neurotransmission 

Electrical impulses occur when there is a physical contact between two neurons. As the 

channel opens and closes other chemicals also enter through it. As charged ions enter and 

exit the cells, a synaptic potential in one cell produces a synchronous synaptic potential 

in another neuron ("Electric Current," 2014). 
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Figure 2.7: Electro-neurotransmission overview ("Potential, Electric," 2014) 

 

Electrical impulses, as explained above, produce charged ions (current). The charge of each 

ion lasts for about one millisecond. This can be seen in Figure 2.8, where the asterisk is a 

stimulation to produce a spike. 

 

Figure 2.8: Spike pattern of neuron-to-neuron communication (Greenfield, 1997). 

The whole process takes about 20 ms. Luigi Galvani was the first person who discovered that 

the neurons in the spinal cord could emit/generate electricity (Greenfield, 1997). 

2.3 Different types of brain imaging techniques:  

Brain imaging (also known as “neuroimaging”) is a type of non-invasive method of taking 

images of the brain ("Neuroimaging," 2012). The first tracking of blood flow was seen in the 

year 1890 by two neuroscientist (Roy & Sherrington, 1890). Later after the discovery of X-

rays in 1895, a neurosurgeon in 1918 used X-rays for taking the first brain image (Fox, 1984); 
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this was the starting point for brain imaging. The following are some of the most commonly 

used neuroimaging techniques: 

 Functional Magnetic Resonance Imaging (fMRI); 

 Electroencephalography (EEG); 

 Positron Emission Tomography (PET); 

 Computed Tomography (CT); 

 Magnetoencephalography; 

 Single-Photon Emission Computed Tomography (SPECT); 

 Event-related optical signal (EROS); 

 Near-infrared spectroscopy (NIRS); 

 diffusion MRI (dMRI); 

 Electrocorticography (ECoG). 

2.3.1 Functional Magnetic Resonance Imaging (fMRI) 

Before going into the fMRI first let us look at what Magnetic Resonance Imaging (MRI) 

is. It was first discovered in 1973 (R. W. Brown, Cheng, Haacke, Thompson, & 

Venkatesan, 2014). MRI functions on a principle called Nuclear Magnetic Resonance 

(NMR) from which its name was derived. MR produces powerful magnetic fields that 

make the protons in the hydrogen atom align to the magnetic field applied. Once the 

magnetic field is applied, the proton spins and comes to rest (known as the equilibrium). 

This change in the alignment of the proton produces radio waves which are then 

measured by the MRI coils. When there is an equilibrium there is no emission of radio 

waves, so an alternate magnetic field is added perpendicular to the now magnetised 

proton. This added magnetic field makes the proton spin again. After reaching the 

required spin, the new magnetic field is removed; then changes in the radio waves are 

measured by the coils. These changes in the magnetic field of the atom can be mapped 

and turned in an image of brain which has (𝑥, 𝑦, 𝑧) coordinates. Figure 2.9 illustrates the 

functioning of MRI. This cycle is repeated for each anatomical slice of the brain, which 

is known as layer (How MRI Works). 
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Figure 2.9: Functioning of MRI 

 

 

Figure 2.10: MRI Working. 
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The resolution of each layer is always high because of the flow of blood in the nerves. 

The brain has many connected nerves that supply blood & oxygen. Blood contains more 

than 92% of water (O'Neil, 2014) which is made up of hydrogen & oxygen (𝐻2𝑂); 

since there are about 4-6 billion red blood cells per cubic millimetre (L, 2005), this 

ensures high resolution images of each layer. 

fMRI works on the same principle as MRI, but the main difference is that fMRI detects 

Blood-oxygen-level dependent (BOLD) changes in the brain. When a human performs 

a task, the neurons tend to take more amount of oxygen. This increase in oxygen intake 

changes the magnetic field of the red blood cell. The changes are then detected by the 

fMRI system (What is fMRI?). This is known as BOLD. Figure 2.11 shows an 

experiment of 250 seconds, where the subject is shown an image on the screen and is 

asked to open and close his /her eyes; the change in BOLD levels is observed in the 

graph. 

 

Figure 2.11: Opening and closing of the eye can be measured by fMRI  

2.3.2 Positron Emission Tomography (PET) 

PET scans are a type of nuclear medicine that uses radioactive isotope to produce 

gamma rays from the available electrons inside the body. A radioactive carrier which 

is specially made glucose molecules called Fluorodeoxyglucose (FDG) is injected into 

the body of the patient/subject. The subject is kept under observation for a few hours 

(1 to 2 hours) so that no reactions to the injected substance are found. It is known that 

the tumours absorb higher amount of sugars than normal tissues. Once the sugar is 

absorbed the radioactive molecule is decomposed with in the tumour and releases 
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positrons. These positrons are then bombarded with electrons in the body to from 

photons (or also known as gamma rays). These newly formed photons are bounce in 

the opposite side of the bombardment. They are then flushed out of the body. This is 

detected by the photon (or gamma) cameras that are attached to the scanner. This 

scanner computes the exact two dimensional coordinates of the photons emitted. The 

bigger the tumour, the more is the absorption of FDG. When a large amount of FDG is 

absorbed, higher amounts of positrons are emitted which are then bombarded with 

electrons rapidly to form multiple photons (or gamma rays) per image. This would show 

the size of the tumour ("Positron Emission Tomography (PET Scan),"). Figure 2.12 

presents the two stages of process. When positron (e+) and electron (e-) collide with 

each other it provides gamma (Ƴ) rays, which are then read by gamma cameras. In the 

same figure the blue dotted lines signify imaginary coordinates. The image on the right 

side of the figure shows gamma rays deflecting each other. These deflected positrons 

produce gamma rays that are detected by the cameras which show their coordinates. In 

this case it is (2,6). There is a hazard using PET scan. Figure 2.13 shows PET scanned 

image. 

 

 

Figure 2.12: Diagram of PET system 
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Figure 2.13: PET scanned image. Brighter regions show higher absorption of glucose (Madakasira et al., 

2002). 

2.3.3 Computed Tomography (CT) 

Similarly to PET scanner, Computed Tomography (CT) also known as CAT (Computed 

Axel Tomography), takes images in the form of slices. These slices are 2D images. 

When theses slices are stacked together using sophisticated software techniques, it 

forms a 3D image. The main difference is the way the images are produced. Unlike 

MRI (which uses magnetic field) and PET (which uses nuclear medicine techniques), 

CAT uses X-ray as its main source of imaging. The X-ray photographer rotates 360o 

around the subject (or a place of concentration) (Kalender, 2011). 

 

Figure 2.14: Diagram of CAT scanner 

Figure 2.14 shows the internal structure of a CAT scanner, where the subject is placed 

on a bench and the X-ray emitter takes multiple images as it rotates around the subject. 
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Figure 2.15: CAT scan images 

Figure 2.15 shows multiple scans of a brain taken by CAT scanner. 

2.3.4 Electrocorticography 

Electrocorticography (ECoG) is a partially invasive EEG device which is used to 

acquire EEG data. Like any other data acquisition tool this also has its pros and cons.  

2.3.5 Electroencephalography (EEG) 

In the year 1875, a neuroscientist named Richard Caton, was the first to discover that 

there are electrical activities between neurons (Finger, 2001). Later, in the year 1929, the 

German psychiatrist Hans Berger was the first person who recorded brain data of a 

human and found the first type of wave called the alpha wave 

("Electroencephalography," 2015). Since then the number of research studies has 

increased exponentially. EEG is a device which is used to measure the electrical activity 

of the neurons from the scalp without any invasive methods. In the medical field, EEG 

devices are used to diagnose epilepsy and sleep disorders (Martin & McFerran). This 

type of brain signals acquisition system is similar to ECoG systems in terms of collecting 

data, but physically EEG is placed on top of the scalp whereas ECoG is placed in the 

subdural region. 

Over the years new and improved systems of EEG have appeared that can acquire data 

easily. 

After the discovery of the brain waves, scientists have used EEG devices to acquire other 

types of brain patterns. These brain patterns show the excited or relaxed state of mind. 

There are six major types of brain frequency activities that can be measured with the use 

of EEG device ("Electroencephalography," 2015) (Colman, 2014f) (Colman, 2014d). 

They are briefly described below. 



20 

 

2.3.5.1 Delta wave 

 

Figure 2.16: Delta wave 

Figure 2.16 shows a delta wave that has low frequency and higher amplitude, ranging 

from 1 to 3 Hz and a voltage of around 150 µV. This type of wave is also called slow-

wave sleep and occurs when the subject is in deep sleep without dreams (Colman, 

2014c). 

2.3.5.2 Theta wave 

 

Figure 2.17: Theta wave 

Figure 2.17 shows a different type of brain signal where the frequency has increased 

when compared to delta wave. The frequency ranges from 5 to 8 Hz. This is also called 

Theta rhythm, which usually occurs in the hippocampus region. This occurs when the 

subject is in Rapid Eye Movement (REM) sleep or semi-deep sleep (Colman, 2014h). 

2.3.5.3 Alpha wave 

 

Figure 2.18: Alpha wave 

Figure 2.18 shows the Alpha wave which has relatively higher amplitude and medium 

frequency of 8 to 12 Hz. This wave usually occurs when a person is relaxed (awake) 

and eyes are closed (Colman, 2014a) but not sleeping. 
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2.3.5.4 Beta wave 

 

Figure 2.19: Beta wave 

Figure 2.19 shows a low voltage wave, also called Beta rhythm. The frequency ranges 

from 10 to 30 Hz and usually occurs when the person is in aroused state (Colman, 

2014b). 

2.3.5.5 Gamma wave 

 

Figure 2.20: Gamma wave 

The Gamma wave shown in Figure 2.20 has relatively high frequency (when compared 

to other waves) that ranges from 35 to 75 Hz. This type of wave is also called 40 Hz 

oscillation and occurs when the person is thinking about something interesting 

(Colman, 2014d). 

2.3.5.6 Mu wave 

Also called the wicket rhythm that has a frequency ranging from 8 to 13 Hz. This occurs 

in the motor cortex of the human brain. This wave is suppressed when the person makes 

any physical movements of his/her muscles and also tends to get suppressed when he/she 

even thinks of doing such actions. This wave is also supressed when the person sees 

someone else making any muscle movement (Colman, 2014g). This wave overlaps with 

alpha waves as this frequencies tend to be almost the same which forms the same wave 

patterns as shown in Figure 2.18. 

2.4 Placement of EEG Electrodes 

The placement of EEG electrodes is instructed by an international system called “10-20 

systems”. The number 10 refers to the mean distance between Nasion to first electrode and 
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Inion to last electrode. The number 20 refers to the mean distance between electrodes to the 

adjacent electrodes. 10% mean distance between Nasion to first electrode (front of the brain, 

above nasal cavity) and Inion (back of the brain, above the neck) with respect to the last 

electrode (Herwig, Satrapi, & Schönfeldt-Lecuona, 2003). 

 

Figure 2.21: International 10-20 system outline 

From the above Figure 2.21, first the distance between Nasion and Inion is taken (the distance 

of 50% of the total distance is taken from one side of the ear to the centre). 10% of the total 

measurement is given to Nasion & Inion and marked as one electrode. From the first marked 

electrode 20% distance is taken towards the centre and marked as another electrode. This cycle 

is repeated till the till the last electrode placed near Inion is reached. 

Our study uses a commercial EEG recording system Emotive EPOC (Epoc) which records 14 

channels of brain signals as shown in Figure 2.22 
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Figure 2.22: Emotiv EEG 10-20 system map 

2.5 Conclusion 

The chapter describes briefly how the brain functions, shows a detailed view of neuron-to-

neuron communication and finally reviews a few brain imaging techniques. The EEG technique 

will be used in the following chapters for the creation of a new BCI framework based on the 

NeuCube spiking neural network architecture (N. K. Kasabov, 2014). 
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Chapter 3: Introduction to Brain Computer 

Interfaces 

 

This chapter introduces Brain Computer Interfaces (BCI), their functioning and types of 

data acquisitions. Furthermore, current developments and limitations are shown and an 

introduction to quad copter (also known as drone) is given. 

3.1 Introduction to BCI 

As the name suggests, BCI is a method used for communication between humans and 

computer based on brain activity. The research of BCI was first started in University of 

California Los Angeles (UCLA). The research funding was granted by National Science 

Foundation (NSF), then later followed by a contract from the Defense Advanced 

Research Projects Agency (DARPA) (Martin Weil & Randolph, 1994). 

3.2 Components of BCI 

A BCI is not a single machine, but a collection of multiple components. Following are 

the main components of a complete BCI system: 

 EEG device: Electroencephalograph (EEG) is a device which is used to collect signals 

generated by the electrical activity of neurons in the brain (as described in section 2.3.5)  

 Amplifier: An amplifier boosts the signals collected by the EEG so that the computer can 

detect difference between signals; 

 Pattern Recognition software: This is the heart of the BCI systems. Its main use is to 

recognise the patterns in the incoming signals and classify them accordingly. 

 Computer: A computer is needed to connect all the components together and do the 

computation for the pattern recognition. 

Figure 3.1 shows the overview of BCI system. 
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Figure 3.1: BCI overview 

3.3 Functionality of BCI 

BCI techniques involve recording EEG brain data and classifying it. The following steps 

are performed (J. R. Wolpaw, 2014): 

 Human subject preparation; 

 Data acquisition; 

 Feature extraction; 

 Model activation; 

 Feedback. 

 

Figure 3.2: BCI Cycle. 
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3.4 Data Acquisition 

A human brain data can be collected in three ways (Naik, 2014): invasive, partially 

invasive and non-invasive. 

3.4.1 Invasive: 

Invasive approach toward BCI involves neurosurgeons and computer scientists to work 

together. This is because the electrodes have to be implanted inside the subdural space 

(Niels Birbaumer et al., 2006) (Naik, 2014). This makes the EEG acquisition more clear 

and reduces the noise levels. Figure 3.3 shows an example of invasive technique. 

 

Figure 3.3: Invasive electrodes 

3.4.2 Partially Invasive: 

In this type of data collection, like the Invasive technique there would be a surgical 

procedure to implant the electrodes, but unlike the invasive technique the electrodes are 

placed on top of the brain just underneath the skull. This placement would give clearer 

signals and the advantage of this is that there would be no scarred tissue, unlike Invasive 

techniques (Roebuck, 2012). Figure 3.4 shows an example of partially invasive 

technique. 

 

Figure 3.4: Partially invasive electrodes 
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3.4.3 Non-Invasive: 

Non-invasive techniques are most commonly used nowadays. This type of method 

consists of different types of data acquisition techniques. The most common way of 

acquiring data is to use Electroencephalography (EEG), which uses contacts on top of 

the scalp rather than having any surgical procedure to place them (Tsihrintzis & Virvou, 

2010). Figure 3.5 shows non-invasive EEG technique. 

 

Figure 3.5: Non-Invasive EEG data collection 

3.5 Noise Reduction and Feature Extraction 

Feature extraction can be defined as a filtering process where the difference of relevant 

content can be extracted from irrelevant content and then representing the data in a 

more meaningful manner. The Noise occurs usually in the non-invasive form of EEG 

data acquisition method, which involves the electrode to be placed on the scalp. Any 

slight movement of the electrodes can cause noise. High-pass and low-pass filters are 

examples of noise filer, which are capable of removing noise in a raw EEG data. The 

measurement of signal to noise is done by Signal to Noise ratio. The higher the SNR 

ratio, the lower the signals with noise. 

 

Figure 3.6: Feature extraction (J. Wolpaw & Wolpaw, 2011) 
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 In Figure 3.6, we can see the shaded part where the feature extraction happens. The 

process first starts with the analogue signals from the EEG device which are sent to the 

amplifier where the signals are amplified so that the processing of the signals is much easier to 

handle. Then these signals are converted to digital signals which are passed on to “signal 

condition”, where the signals are enhanced and/or the unwanted signals are removed. Finally 

the filtered signals are sent to “feature extraction and conditioning algorithm” where the 

features are extracted from one or more channels to produce feature vectors which are then sent 

to feature translation (about this section 3.6) (J. Wolpaw & Wolpaw, 2011). 

There are three steps for feature extraction: 

 Making sure the input signals are without any noise; 

 Extracting the features from the filtered signals; 

 Finally, preparing the feature vector for the final stage of feature translation. 

3.6 Feature Translation and Model Creation 

The feature extraction stage is successful in extracting the features, but those features 

are not readable by the user. They must be translated to a different scale that would be 

easily interpreted. This is achieved with a translation algorithm. Feature translation 

consists of mathematical equations which convert the input feature vector into an 

appropriate command for the application to read. In some cases, there might be a 

situation where the input might be a different level, where it might have been converted 

to a higher dimension (for example, a robot hand which has multiple axes of division 

in a three dimensional space). The input data may have few observations with few 

features or many observations with many features. In any of these cases, the final goal 

is to show the difference between the features and users intent. A simple equation as 

(3.1) can be used as a feature translation method. 

 

𝑌 = 𝑚𝑋 + 𝑐 (3.1) 

 

The difference between 𝑋 and 𝑌 can be defined by the above linear equation, where 𝑚 

is the slope and 𝑐 is the 𝑌 intercept. If the above equation is used as a BCI model, 𝑋 
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would be the features and 𝑌 would be the output command (J. Wolpaw & Wolpaw, 

2011).  

 

Figure 3.7: Line equation 

3.7 Feedback Generation 

This can be achieved through data classification. The system is developed to classify 

which input data belongs to which class with the help of pattern recognition algorithm 

(Kittler, 1997). Figure 3.8 shows a simple example of classification problem where the 

data from EEG device is collected and the classifier classifies as to where that particular 

input data belongs. To get the correct classification we have to follow a few steps. The 

first step is to train the data, for example if an EEG data; contains three movements 

(wrist up, down and rest) then for each movement we have class labels one, two and 

three respectively. 

 

Figure 3.8: Data classification; the dotted lines represents non-classified classes. 

These collected data with their class labels are sent to the classifier for training, where 

the pattern recognition software learns the pattern flow. The next step is to validate the 

classifier with new data (external data) that follows the same process as in Figure 3.8. 

The classifier algorithm (pattern recognition algorithm) checks the pattern to see if it 

𝑐 

𝑋 

𝑌 = 𝑚𝑋 + 𝑐 
𝑌 
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matches any data which it was already trained on. If there is a match, it would assign 

the data to the matched class. Otherwise, if there is no matched pattern it would give 

the nearest matched class as the output.  

There are many types of classification algorithms, but the popular ones used are the 

following (Lotte, Congedo, Lécuyer, & Lamarche, 2007): 

 Regression techniques; 

 Support Vector Machine (SVM); 

 Linear Discriminant Analysis (LDA); 

 Multilayer Perceptron (MLP); 

 Dynamic Evolving Spiking Neural Network (DeSNN) (N. Kasabov, Dhoble, 

Nuntalid, & Indiveri, 2013a) ; 

3.8 Biofeedback 

In the 1960’s neurophysiologist Barbara Brown and neuropsychiatrist Joseph Kamiya, 

developed a electrophysiological device that was used by physiologist to get feedback 

from the patient on their mental state ("biofeedback," 2014). This device helps in 

monitoring the stress level, hypertension and other health related problems. This also 

helps the patients to overcome these problems (Martin & McFerran). According to 

Norris (1995) it was seen that Neurofeedback (A device for brain feedback) was able 

to help children with ADHD to control their behaviour. 

3.9 Developments in BCI 

3.9.1  Control Signals 

These are also known as evoked potential or Event Related Potential (ERP), and can be 

defined as a controlled stimulus of electrical activity when the subject performs a 

stimulating task ("evoked potential," 2009). There are a few different types of ERP 

signals (Schalk & Leuthardt, 2011): 

 Visual Evoked Potential (VEP); 

 Steady-State Visual Evoked Potential (SSVEP); 

 P300 Response; 

 Motor Evoked Potential (MEP). 
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3.9.1.1 Visual Evoked Potential (VEP): 

This is a type of electrical potential that happens when a subject performs task which 

involves visual performance. The electrodes are placed on the visual cortex, as it is the 

place where visual processing takes place. It was seen that there was P100 response 

when the subject performed a task (Creel, 2012). An example of this is to control 

television (TV) with these signals (Y. Wang, Gao, Hong, Jia, & Gao, 2008). 

3.9.1.2 Steady-State Visual Evoked Potential (SSVEP): 

SSVEP is a type of VEP, when the subject is subjected to certain levels of light 

frequency. A good amount of positive spikes were observed when the subjects were 

subjected to 8 – 30 Hz of flickering light. The event potential was observed at 80 – 100 

ms (Morgan, Hansen, & Hillyard, 1996). An example of this is to control a robot 

(Prueckl & Guger, 2009). 

3.9.1.3 P300 Response: 

When a user does any visual task, the visual stimulus triggers brain signal after 300 ms 

(M. Wang et al., 2015). The best example of this is the P300 spelling software which 

was developed by Farwell and Donchin (1988). 

3.9.1.4 Motor Evoked Potential (MEP): 

To evoke this potential there must be an external stimulation to the central nervous 

system or the muscles, so that a positive spike can be observed ("Motor Evoked 

Potential (MEP)," 2009). 

3.9.2 Different types of BCI 

According to Graimann, Allison, and Pfurtscheller (2010) BCI could operate in one of 

the following two modes: 

 Synchronous or cue-paced BCI Systems: This type of BCI systems are used 

when the subject has only fixed time response. For example, let us consider a 

BCI system where the system tells the subject when to do a task with a beep 

sound. After this sound is heard the subject has about 2 to 6 seconds for the task 

to be completed. When the task is completed the BCI classifies the data after a 

limited time frame and gives the recognised command to the application. These 

types of systems are easy to set up as the instruction on when to start the task is 

predetermined by the system. 
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 Asynchronous or self-paced BCI Systems: These types of BCI systems have 

more technically demanding implementation as they require continuous 

processing of data received from the subject. The subjects do not have to listen 

to what the system tells them to do; rather the subjects may or may not have to 

send signals to the system. This is more technically demanding because of its 

continuous computational process of the incoming signals and classifying them 

in real time. 

Furthermore, the BCI can also be classified into two types in accordance with its input 

type (Roberto Hornero, 2012): 

 Exogenous: These types of systems depend of external stimulation to the 

subject. The best examples of these types of systems are P300 based spelling 

applications or SSVEP systems. These types of systems don’t need any training 

as the systems takes care of stimulating the subject either visually or by a device 

which can stimulate the brain directly. 

 Endogenous: This type is the opposite of exogenous systems. The user should 

be able to control his/her ability to produce good quality signal, for example 

frequencies like Sensorimotor Rhythms or Slow Cortical Potentials (SCP). 

These types of systems need vigorous training by the user so that the task can 

be performed better. 

3.9.3 Current applications of BCI systems 

BCI can be invasive, partially invasive or non-invasive. Each of them have their own 

usage. These systems are used in three main fields (Figure 3.9): 
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Figure 3.9: Applications of BCI 

 

3.9.4 BCI in communication 

The main usage for BCI communication is to help paralysed patients. As the technology 

has evolved, the increase in the BCI technology has also evolved. In 1990, a group of 

researchers developed a software which was able to take signals from the brain and 

control a mouse curser. The subject on whom this experiment was carried out was given 

intense training (J. R. Wolpaw, McFarland, Neat, & Forneris, 1991). A spelling 

software based on BCI was developed by N. Birbaumer et al. (1999) who were able to 

implement a better way of applying the BCI techniques using slow cortical potentials. 

Guenther et al. (2009) developed an invasive BCI speech synthesis device, which was 

able to take signals from the brain and use them to control a speech synthesiser. The 

subject on whom this was tested on was affected by locked-in syndrome. 

3.9.5 BCI in medical research 

Ruiz et al. (2011) used fMRI-BCI based system and were able to enhance the neuron-

to-neuron connectivity and behaviour of a group of participants who were divided into 

three groups. Their age ranged from 18 to 30. All participants were trained to control 

their region of interest (ROI) by using visual feedback. The first group were trained to 

control the coupling between Inferior Frontal Gyrus (IFG) and Superior Temporal 

Gyrus (STG). The second group were given feedback on Blood-Oxygen-Level 
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Dependent (BOLD) using only IFG and finally, the third group were used as a control 

group, who received sham feedback (making something to believe it was true; but in 

reality its false). The participants were tested on giving a word which they have to 

describe as real or abstract and the stimulation was Stimulus-onset asynchrony. It was 

seen that the first and second group were able to learn and control their IFG, STG and 

BOLD. But the third group of participants failed to control IFG and IFG. 

3.9.6 BCI in Entertainment 

BCI can be used for different purposes as shown in Figure 3.9. All applications are 

based on serious research-oriented experiments that are meant to help people who have 

mental and/or physical disability. 

BCI for entertainment can be divided into different categorises shown in Figure 3.10: 

 

Figure 3.10: BCI in Entertainment 
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3.9.6.1 BCI in Games 

 

Figure 3.11: (left to right) (a) A BCI based game where the subject plays Tetris using EEG signals. (b) A 

BCI based foosball which uses motor to control the shooting of the ball (Blankertz et al., 2010). 

In Figure 3.11(a); the subject is seen playing a game using brain signals with the help 

of non-invasive EEG device. The game has four classes, representing is the four 

direction of movement and rotation of a Tetris game object. The experiment is based 

on three MEP values which were used to move the game object left, right & down and 

used mental rotation to rotate a game object. Likewise, another game was developed, 

which controls the motor in a foosball game; it has two classes, for MEP values that are 

used to control the movement of the handle and hitting it. There were other games, for 

example the BrainBall game which was developed to monitor the level of relaxation 

using alpha waves from the occipital lobe. Another interesting BCI game is BCI-

PacMan, which uses motor cortex signals to move the object in the gaming environment 

(Blankertz et al., 2010). 

(a) (b) 
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3.9.6.2 BCI in Robot Control 

 

Figure 3.12: (a) A robot hand movement based on fMRI-BCI. (b) Quadriplegic women lifting a bottle 

with Invasive-BCI. (c) An EEG based BCI system which is capable of moving the prostatic hand 

Figure 3.12(a) is a robotic machine that was developed by Lee, Ryu, Jolesz, Cho, and 

Yoo (2009) and is based on real-time fMRI BCI system. They used this system to track 

the BOLD in the motor cortex during the hand-motor imaginary task. There were three 

right handed participants. The participants were told to imagine clenching their hands 

as realistically as possible. The task for the participants was to move the robotic arm to 

touch the three objects; the robot had two degrees of freedom which would move 

horizontally and vertically (Lee et al., 2009). Figure 3.12(b) shows a woman aged in 

her early 60’s who was affected by quadriplegia and had been paralysed for 15 years. 

She was able to move a robotic arm. By using BCI the researchers collected signals 

from her motor cortex by using a partially invasive method as the means for data 

collection (Duncan, 2012). Finally, Figure 3.12(c) shows a prosthetic hand using BCI 

methods and is based on steady-state visual evoked potentials (SSVEP). 

3.9.6.3 BCI in Media Application 

Media applications such as photo gallery, music applications, browsing internet and 

many other forms of applications are an essential part of daily lives. Paralysed people 

too would like to have access to the same kind media as any other person has; so, authors 

Teo et al. (2006) developed a media centre for paralysed people based on P300 ERP. 

(a) 
(b) 

(c) 
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This application has four modules: GUI Module – which provides the interface with the 

user; Control Panel Module – exchange the application controls between external 

sources; Media Modules – this includes MP3 players, photo gallery & other media 

applications; and P300 Module – This is where the classification of the input data takes 

place. Figure 3.13 shows the front end GUI. 

 

 

Figure 3.13: GUI for the Media Communication Centre application based on P300 ERP 

 

3.10 An introduction to Quadcopters 

Quadcopters, also called Quadrotor, is a radio controlled unmanned flying object that are 

like helicopters that can vertical take-off and land (VTOL). In 1921 the first full-scaled manned 

quadcopter was developed by De Bothezat (Altug, Ostrowski, & Mahony, 2002). Due to the 

unstable flying and expensive maintenance of helicopters, Quadcopters have been developed 

to increase stability (Sa & Corke, 2011).  
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Figure 3.14: Model of Quadcopter 

As seen in Figure 3.14, a Quadcopter has four fins, all of which turn at equal speed 

when hovering; in each pair of opposite rotors they rotate in the same direction clockwise (CW) 

and the other two rotate in counter clockwise (CCW) (Allen, 2014). If we want the Quadcopter 

to go forward, both motors in the back would increase their rotation speed and the front two 

motors would decrease their speed; this increase and decrease in speed would make the object 

go forward, backward, left and right. When it comes to VTOL, all the four motors rotate at the 

same rotations per minute (RPM) (Pounds, Mahony, & Corke, 2010). 

Every Quadcopter has something called as Flight Controller (FC), to stabilize the 

Quadcopter while flying. Every flight controller has the following main components 

("HobbyKing HKPilot Mega Mini Combo Flight Controller GPS and Power Module,") 

 3-Axis Gyro: It is a micro-electro mechanical system (MEMS) that is used to 

measure the orientation (Turner, 2015). 

 Accelerometer: It measures the acceleration or deceleration of the flight digitally 

("Accelerometer," 2014). 

 Magnetometer: It is an instrument used for measuring the direction or the 

intensity in the magnetic field. Example digital compass (Bankman, 2000). 

 Barometer: It measures the atmospheric pressure ("barometer," 2013). 

All components together with the remote control for manoeuvring the quadcopter, 

makes sure that the flight is stable and does not go out of control. Optionally, the user may also 

be able to attach a GPS device to the Quadcopter, so that the user can have its exact 

geographical position of it. This would help the user to use autopilot and use “Go Home” 

feature. 
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Another main important feature in quadcopters is their Brushless Direct Current 

(BLDC) type of motor. The reason for using these motors is that they have high RPM and 

torque (𝜏), which can be used to lift heavy loads; the RPM of these motors are controlled by 

Pulse Width Modulator (PWM) (Moseler & Isermann, 1998). 

3.11 Current limitation of BCI 

This section discusses the problems involved in the current implementation of BCI 

techniques such as the cost of equipment, data acquisition, human trials and the speed of 

processing. 

 Commercial use of EEG devices is limited to small number of channels. For example 

to collect EEG data and filter the noise Mynd play is a company which uses two to three 

channels EEG headsets to control a media player; another company, Focus Band uses three dry 

electrodes to monitor the state of mind when asleep. 

 However, researchers suggest that commercial equipment like Emotiv shows degraded 

results when compared to a medical systems (Duvinage et al., 2012). BCI computation requires 

powerful systems to process continuous incoming brain signals, so that the command sent from 

the signals do not overlap with previous commands.  

 Information Transfer Rate (ITR) is used to measure the amount of bits transferred per 

session or per task (Obermaier, Neuper, Guger, & Pfurtscheller, 2001). A P300 BCI speller 

application has an ITR of 2.3 characters/minute but in a control condition the number could go 

up to 12.75 character/minute (P. T. Wang, King, Do, & Nenadic, 2012). This is really slow for 

using it in a real world implementation. 

 To get higher resolution of brain signals it is considered that invasive-BCI techniques 

are better. As discussed earlier, it would involve a surgical procedure and the patient might 

react to the electrodes and develop scar tissues, which is not recommend. Another way of 

extracting higher resolution images or signals is using fMRI, but the problem is that the devices 

to acquire this level of resolution are very expensive. If someone did find the means to acquire 

such a system, the data acquisition can only be done by an expert. Due to this problem the data 

acquisition is done in one place and testing and validation is done in another place. This would 

mean that only static data can be collected but not continuous (or online) data. 

 Finally, the last problem is the training of subjects. For example, SCP based BCI would 

need extensive training sessions before the subject is capable of using the BCI application 
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(Niels Birbaumer, 2006). This training makes sure that the subject is capable of using the 

machine and the application; else there are chances of getting false positive errors. 

 Although there are many commercial and cheap EEG devices, they are not suitable for 

doing intensive research, as they are limited to three to 14 (Emotiv EPOC) channels. This 

equipment is used for small applications like gaming (Nijholt, Bos, & Reuderink, 2009). 

3.12 Overview of Methods used in BCI 

As discussed earlier, there are different types of EEG data acquisition tools which can be 

medical equipment or commercial equipment. This chapter focuses on such equipment where 

the data acquisition and the BCI classification algorithm is considered. For any BCI to work 

correctly, the researchers need to have all the necessary equipment, the skills to perform and 

train the person with the task that he/she has to perform. The following are the equipment and 

computational knowledge (algorithms) that an expert needs to obtain before he/she starts the 

examination (or testing a subject on BCI). 

 EEG data acquisition device; 

 BCI platforms; 

 Feature extraction; 

 Pattern recognition. 

3.12.1 EEG data acquisition for BCI 

There are different types of EEG data acquisition hardware ranging from a small 

consumer device to a professional medical EEG unit. Medical EEG devices have from four to 

256 channels (a channel signifies one electrode). 

 

Figure 3.15: 256 and 4 channel EEG devices  (“Wireless EEG system/4-ch MPEG-4 

compression/ambulatory”)  
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This equipment is expensive due to its unique functionalities such as dry electrodes and 

brain mapping algorithm with proprietary software. These types of equipment are usually used 

by experts who take detailed readings of patients who need medical attention, but these devices 

are not for regular and daily use. 

As the technologies evolve the cost to develop and commercialise EEG devices 

increases. There are many devices which can be used by commercial users and researchers. 

Two companies well known for commercial EEG devices are Emotiv and Neurosky. 

 

Figure 3.16: Emotiv EPOC and Neurosky MindWave 

Emotiv EPOC is a 14 channel EEG device running at 128 Hz SPS (Samples per Second) 

(internal sampling at 2048 Hz) and costs around USD $399. According to Ranky and 

Adamovich (2010) an experiment was conducted using a robotic arm called iARM that has 

seven degrees of freedom. They found out that Emotiv was able to outperform in the terms of 

portability, user customisation and robustness. 

The next most popular type of EEG device is Neurosky MindWave that has three 

channels runs at 512 Hz SPS and costs around USD $80 just for the headset. According to Yoh, 

Kwon, and Kim (2010) a game “Hansel and Gretel” was developed that used Neurosky 

MindWave. In this game the gamer was able to achieve the final result with ease. This 

demonstrated that even having the disadvantage of three electrodes they were able to play the 

game without any problem. 

So the pros of using commercial equipment rather than using medical EEG devices are as 

follows: 

 Commercial grade EEG equipment are affordable when compared to medical grade 

EEG equipment; 

 These systems follow the International 10-20 system, which is standardised to all 

medical equipment as well; 
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 No expert handling is required to use these systems; 

 Quality of collected EEG data can be compared to data collected with medical EEG 

devices. 

3.12.2 Different types of BCI platforms 

A BCI platform is a software median between the EEG hardware (and software) & the 

command you want to convert it into. It is also capable of giving neuro feedback to the user. 

There are different kinds of BCI applications. In this study, the author will be using “NeuCube 

architecture for Brain Computer Interface”, more on this in Chapter 5:. That being said, BCI 

application are of two main types; one which can run online data (dynamic streams of data) 

and the second one is offline data (static data); keeping that in mind there are different types of 

BCI applications are capable of working with both online and offline data; the most popular 

are OpenVibe, BrainBay, BCI2000, TOBI and BCILAB. 

 OpenVibe: One of the most widely used open source BCI application software 

currently available. This software is used for its multiple platform support and different 

types of research can be conducted with it, including BCI, virtual reality and many 

more. OpenVibe is easy to use, modular and portable (Renard et al., 2010). Though this 

is one of the widely used BCI application, the main problem is that it is mostly used for 

VEP. But in this study we need to deal with signals from the motor cortex, not from the 

visual cortex. 

 BCI2000: This is the second most widely used EEG acquisition and signal processing 

software. The communication on this application is based on TCP/IP unlike OpenVibe 

which uses serial port or USB ports (though this can be converted to TCP/IP 

communication by implementing your own module). BCI2000 runs four modules: 

operator (visualisations and EEG control), source storage, signal processing and user 

application (commands to application). This software also supports real time and offline 

data analysis (Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004). 

 BrainBay: It’s a bio and neuro-feedback application which is designed to work with 

OpenEEG hardware. This software also supports HCI and NeuroServer capabilities that 

can be used to transmit live/online data via TCP/IP. The main difference between this 

and other BCI applications is that this software was mainly developed for OpenEEG 

hardware like ModularEEG devices. It can handle its software implementation easily 

(Veigl). Though this is a free application, when trying to implement it with the existing 
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hardware such as Emotiv and Neurosky we have to develop plugins to make sure this 

software interacts with the BrainBay toolbox. 

 BCILAB: It is primarily a Matlab toolbox for BCI. This was designed to conduct field 

tests of general medical BCI systems. It is capable of visualising EEG data and can 

extract the state of mind (BCILAB, 2013). Though this is free software, implementing 

this in our study is not possible because of its limitation in classifying data and there 

are very few visualising modules associated with it. 

The sole purpose of all BCI platforms is to take the EEG data, classify it and visualize it. 

The discussed software/toolbox do not have feature extraction and data classification. So 

keeping these problems in mind, a new framework for BCI is proposed NeuCube: For Brain 

Computer Interface (BCI). NeuCube can be said as an all-in-one application. More on this in 

Chapter 5:. 

3.13 Conclusion 

This chapter discusses different types of BCI and how important and useful they can be 

and also their limitations. The main principles of BCI are used in a further chapter to develop 

new BCI framework and a working system for the control of a Quadcopter. 
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Chapter 4: Some Methods for Data  

Transformation Pattern Recognition and 

Machine Learning for BCI 

 

This chapter provides some introduction to the working of different algorithms that are 

used in this study. 

NeuCube uses different types of algorithms to encode, learn and classify the data. The 

family of Artificial Neural Network are broadly made up of the following networks 

 Neural Network; 

 Spiking Neural Network; 

 Evolving Spiking Neural Network; 

 Dynamic Evolving Spiking Neural Network. 

The above types of networks are discussed in more detail further below. 

The following algorithms are also discussed: 

 Butterworth algorithm; 

 Fast Fourier Transformation. 

And finally the chapter describes how Threshold based encoding works. 

4.1 Some pattern recognition algorithms 

There are different types of algorithms that can be used as classifiers for EEG data. Such 

as C4.5 and K-Nearest Neighbours. All these algorithms are based on supervised learning. 

 K-Nearest Neighbours: 

When a new data is given to this algorithm, it searches for 𝑘  nearest elements 

available in the training set that is similar to the new one. 

4.2 Introduction to Neural Networks 

In 1945, two neuroscientists namely Warren McCulloch and Walter Pitts developed a 

simple neuron known as artificial neuron. This type of neuron depends on threshold. The input 

or output from artificial neuron can be true/false or 1/0, this is known as binary function. (James 
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A Anderson & Rosenfeld, 1993). For example, a truth table of Inclusive OR function is 

considered, where the threshold 𝜃 = 1. Then we get from the Figure 4.1 

 

Figure 4.1: Two state neuron 

 

a b Output 

0 0 0 

1 0 1 

0 1 1 

1 1 1 
Table 4.1: Logical OR 

Let 𝑎 and 𝑏 represent synapses and indicate active state and inactive state at the time 

(𝑖 + 1). At (𝑖 + 1)𝑡ℎ  time, if 𝑎 is active and 𝑏 is not active then the neuron output state is 

active, since active synapsis plus inactive synapsis is always active. Hence, it follows the 

logical OR truth Table 4.1. The same can be applied to logical AND at the (𝑖 + 2)𝑡ℎ  time 

quantum (James A Anderson & Rosenfeld, 1993). 

Based on the findings of McCulloch-Pitts neuron, Hebb (2005) stated the following  

“When an axon of cell A is near enough to excite cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells 

firing B, is increased.” 

This means that the connection between pre-synaptic and post-synaptic potential 

depends on the influence (firing) of pre-synaptic neuron that will fire the post-synaptic neuron; 

the more the firing, stronger are the connection weight (strength in connection between neuron 

to neuron). This theory is known as Hebb’s Law, which is a learning rule that is given as follows 

(Hebb, 2005): 

Let there be a k-dimension column vectors: 

𝑥⃗ = [𝑥1, 𝑥2, … , 𝑥𝑘]𝑇 
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Neurons with random weight between -1 to 1: 

𝑤⃗⃗⃗ = [𝑤1, 𝑤2, … , 𝑤𝑘]𝑇 

And the output for the neuron is given by: 

𝑦 = 𝑤⃗⃗⃗𝑡𝑥⃗ = ∑ 𝑤𝑖𝑥𝑖

𝑘

𝑖=1

 

After the input pattern is given Hebb’s rule is applied, which is given by: 

∆𝑤⃗⃗⃗ = 𝜂𝑥⃗𝑦 (4.1) 

(4.1) shows the change in synaptic weight ∆𝒘 is equal to the learning rate 𝜼 times the input 𝒙 

times the postsynaptic neuron 𝒚. 

Where η is the fixed learning rate 

 

Figure 4.2: Model of a neuron (Turner, 2015) 

4.2.1 Perceptron Model 

In 1958, Frank Rosenblatt who was a psychologist, proposed a model called the 

Perceptron. This was one of the first pattern recognition algorithm ever created. Based on this 

perceptron model are some more advanced models, which are able to learn data easily and fast. 

The main component of perceptron model is a component called Threshold Logic Unit (TLU). 

All previous neural networks used simple linear elements whereas the perceptron model uses 

non-linear elements (James A. Anderson, 1995). 

The perceptron model is illustrated in Figure 4.3. The threshold function is expressed as 

follows: 
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𝑇𝐿𝑈 𝑜𝑢𝑡𝑝𝑢𝑡 =  +1 𝑖𝑓 ∑ 𝑤[𝑖]𝑥[𝑖] > 𝜃, 

𝑇𝐿𝑈 𝑜𝑢𝑡𝑝𝑢𝑡 =  −1 𝑖𝑓 ∑ 𝑤[𝑖]𝑥[𝑖] ≤ 𝜃. 

The difference between the previous algorithms and the perceptron model is the 

introduction of the so-called as bias. Which can be expressed as follows 

𝑦 = 𝑤0 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 

Also, the perceptron model defines a hyper plane in 𝑛 + 1 dimentions: 

𝑦 = 𝑤𝑛𝑥𝑛 + 𝑤𝑛−1𝑥𝑛−1 + ⋯ + 𝑤1𝑥1 + 𝑤0 

 

 

Figure 4.3: Perceptron model 

4.2.2 Multilayer Perceptron 

As the name suggests, this model has few layers of neurons: input layer, hidden layer 

and output layer. The input layer and the output layer has no direct connection to each 

other. Similar to perceptron model, the data flow in this network is feed-forward. Unlike 

the perceptron model, the hidden layer and the output layer do not have a step function, 

rather they have sigmoid functions. The non-linear transformation functions and the 

hidden layers, in this model can solve nonlinear problems, whereas the perceptron 

model cannot. Figure 4.4 illustrates a model of multi-layer perceptron. 
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Figure 4.4: Multi-layer perceptron 

The output of the multilayer perceptron is always between 0 and 1, unlike the step 

function where the output is either 1 or 0. 

4.3 Spiking Neural Networks 

As we have discussed earlier, the brain is a complex organ that is capable of making 

decisions. We are what our brain is. Brain is a collection of neurons, which send signals to each 

other in form of spikes. Using the principle of biological neuron, a 3rd generation of neural 

networks was developed. This artificial spiking neuron model is known as the Spiking Neural 

Networks (SNN). 

4.3.1 Hodgkin-Huxley model 

Hodgkin & Huxley (1952) are known as the fathers of spiking neurons. They developed 

a model that correlated with the electro-chemical information transmission of a neuron. 

The model used electrical circuits that had capacitors and resistors (Figure 4.5). In the 

figure, 𝐶 is the capacitance of the membrane and 𝑔𝑁𝑎, 𝑔𝐾 and 𝑔𝐿 is the ion exchanges 

in the live neurons with equilibrium potentials 𝐸𝑁𝑎, 𝐸𝑘  and 𝐸𝐿 ; ℎ, 𝑚  and 𝑛  are the 

opening and closing of the voltage. 𝐼(𝑡) is the input current at time 𝑡 < 0 (Paugam-

Moisy & Bohte, 2012) 

𝐶
𝑑𝑢

𝑑𝑡
= −𝑔𝑁𝑎𝑚3ℎ(𝑢 − 𝐸𝑁𝑎) − 𝑔𝑘𝑛4(𝑢 − 𝐸𝑘) − 𝑔𝐿(𝑢 − 𝐸𝐿) + 𝐼(𝑡) 

𝜏𝑛

𝑑𝑛

𝑑𝑡
= −[𝑛 − 𝑛0(𝑢)], 𝜏𝑚

𝑑𝑚

𝑑𝑡
= −[𝑚 − 𝑚0(𝑢)], 𝜏ℎ

𝑑ℎ

𝑑𝑡
= −[ℎ − ℎ0(𝑢)] 
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Figure 4.5: Hodgkin-Huxley model 

 

Figure 4.6: Spike pattern 

A well calibrated Hodgkin-Huxley (HH) model could compare to a biological model; 

furthermore, the researchers were able to get a neuron like physical property; this was 

achieved by having a sudden increase in firing time then followed by a short period of 

inactiveness, as can be seen in Figure 4.6. However, the HH model is too complex to 

setup and simulate SNN. 

4.3.2 Leaky Integrate and Fire 

Before Leaky Integrate and File (LIF) was developed, Integrate and Fire (I&F) neurons 

were proposed. They were known to be computationally faster. The equation for L&I is 

given as follows  
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𝐶
𝑑𝑢

𝑑𝑡
= −

1

𝑅
(𝑢(𝑡) − 𝑢𝑟𝑒𝑠𝑡) + 𝐼(𝑡) 

Where, 𝑢 is the membrane potential. 

The spike firing time 𝑡(𝑓) is given by 

𝑢(𝑡(𝑓)) = 𝜗 with 𝑢′(𝑡(𝑓)) > 0 (4.2) 

 

 

Figure 4.7: I&F model 

The most used type of I&F neuron is called the Leaky Integrate and Fire (LIF) neuron model. 

The main difference between LIF and HH model is that in the LIF neuron every spike is a 

uniform event, which is defined only by the time when it appears and the shape of the action 

potential is ignored (Paugam-Moisy & Bohte, 2012). In this model a Resistor 𝑅 is connected 

in parallel to Capacitor 𝐶 as shown in the Figure 4.7. 

The membrane potential for LIF is described with first-order differential equation: 

𝜏𝑚

𝑑𝑢

𝑑𝑡
= 𝑢𝑟𝑒𝑠𝑡 − 𝑢(𝑡) + 𝑅𝐼(𝑡) 

Where, 𝜏𝑚 = 𝑅𝐶 is the time constant for neuron membrane, which gives the voltage leakage, 

using the threshold value, see (4.2). Once a spike has reached its maximum threshold, 𝑢𝑟𝑒𝑠𝑡 is 

set to 0. This is shown in Figure 4.8.  

 

Figure 4.8: LIF spikes 
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4.4 Evolving Spiking Neural Network (eSNN) 

In this type of network, the classifier learns and evolves at every iteration. The eSNN 

architecture was first proposed in a paper written by Wysoski, Benuskova, and Kasabov (2006) 

where it was used as a pattern recognition for visual systems. This model has been evolved 

from Thorpe model that stresses on the importance of early spikes, which boost and affect the 

post-synaptic potentials. The eSNN uses supervised one-pass learning algorithm to classify the 

output. Like any other spiking neural network, this algorithm also uses encoding methods to 

convert the input data into spike trains. Rank order population encoding is used in eSNN. Also, 

eSNN uses feed forward as its main topology (N. Kasabov, 2013) 

4.4.1 Rank order population encoding 

Rank order population is an extended version of rank order encoding algorithm; like any 

other encoding methodology this algorithms main feature is to take the input data and 

convert them into spikes (N. Kasabov, 2013). 

 

Figure 4.9: A population encoding based on Gaussian receptive fields. (a) For input value 𝝑 = 𝟎. 𝟕𝟓 

(vertical thick line) and intersection points of each Gaussian is computed (inverted triangles). (b) Points 

are converted into spike time delays (N. Kasabov, 2013) 

A receptive field is an area where stimulation leads to response of a neuron (Krantz, 

1999). Figure 4.9 shows an implementation of receptive field using Gaussian function. 

Variable 𝑛 of intervals as [𝐼𝑚𝑖𝑛
𝑛 , 𝐼𝑚𝑎𝑥

𝑛 ] is defined. Receptive field of neuron 𝑖 with respect 

to Gaussian function is given by its centre 𝜇𝑖 as 

𝜇𝑖 = 𝐼𝑚𝑖𝑛
𝑛 +

2𝑖 − 3

2
.
𝐼𝑚𝑖𝑛

𝑛 − 𝐼𝑚𝑎𝑥
𝑛

𝑀 − 2
 

And the width input intervals 𝜎 is given by 
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𝜎 =
1

𝛽
.
𝐼𝑚𝑖𝑛

𝑛 − 𝐼𝑚𝑎𝑥
𝑛

𝑀 − 2
 

Where 1 ≤ 𝛽 ≤ 2, 𝛽 controls the width of the receptive field. For Figure 4.9, 𝛽 = 2, 

input intervals [𝐼𝑚𝑖𝑛
𝑛 , 𝐼𝑚𝑎𝑥

𝑛 ] was set to [-1.5,1.5] and 𝑀 = 5 (N. Kasabov, 2013). 

4.4.2 One pass learning algorithm 

Learning methods main objective is to produce output neurons with certain class label 

𝑙, where 𝑙 ∈ 𝐿. Where 𝐿 is the number of class labels in a given data set. When set of 

input data is given to the network, spike trains are produced through SNN that may fire 

output neurons. If no neurons are fired, the classification of the input data is unknown. 

If there are neurons that spike, the earliest spike time of the neuron is determined. The 

label of this neuron is the classification output (N. Kasabov, 2013). 

Require: 𝑚𝑙 , 𝑠𝑙, 𝑐𝑙 for a class label 𝑙 ∈ 𝐿 

1:  Initialize neuron repository 𝑅𝑙 = { } 

2:  for all samples 𝑋(𝑖) belongs to class 𝑙 do 

3:  𝑤𝑗
(𝑖)

← (𝑚𝑙)
𝑜𝑟𝑑𝑒𝑟(𝑗), ∀ 𝑗 | 𝑗 pre-synaptic 

neuron 𝑖 
4:  𝑢𝑚𝑎𝑥

(𝑖)
← Σ𝑗𝑤𝑗

(𝑖)(𝑚𝑙)
𝑜𝑟𝑑𝑒𝑟(𝑗) 

5:  𝜗(𝑖) ← 𝑐𝑙𝑢𝑚𝑎𝑥
(𝑖)

 

6:  if min (𝑑(𝑤(𝑖), 𝑤(𝑘))) < 𝑠𝑙, 𝑤(𝑘) ∈ 𝑅𝑙 

then 

7:  𝑤(𝑘) ← merge 𝑤(𝑖) and 𝑤(𝑘) 

8:  𝜗(𝑘) ← merge 𝜗(𝑖) and 𝜗(𝑘) 

9:  else 

10:  𝑅𝑙 ← 𝑅𝑙 ∪ {𝑤(𝑖)} 

11:  end if 

12:  end for 

 

Figure 4.10: Algorithm for training eSNN 

Where, 𝑖 is the training sample for class label 𝑙 ∈ 𝐿. 𝑤(𝑖) are the real-valued weight 

vector, having 𝑤𝑗
(𝑖)

∈ ℝ that means the connection between pre-synaptic neuron 𝑗 and 

the newly created neuron 𝑖. Next the input spikes are sent through the network and 

weight 𝑤𝑗
(𝑖)

 is calculated according to the order of spike transmission through a synapse 

𝑗.  𝑚𝑙 is the modulation factor of Thorpe neuron model, 𝜗(𝑖) is the firing threshold of 

the created neuron 𝑖, 𝑢𝑚𝑎𝑥
(𝑖)

 is the maximum potential of the created neuron 𝑖. 𝑐𝑙 is the 
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fraction parameter of the module. Existing neuron is denoted by 𝑘  and 𝑠𝑙  is the 

similarity threshold. 

Both firing threshold and the weight vectors are merged as 

𝑤𝑗
(𝑤)

←
𝑤𝑗

(𝑖)
+ 𝑁𝑤𝑗

(𝑘)

1 + 𝑁
 

∀𝑗 | 𝑗 pre-synaptic neuron of 𝑖 

𝜗𝑗
(𝑤)

←
𝜗(𝑖) + 𝑁𝜗(𝑘)

1 + 𝑁
 

Where, 𝑁 denotes the number of samples previously used to update neuron 𝑘. Figure 

4.10 shows the algorithm for training eSNN neuron. 

4.5 Introduction to Spike-Timing Dependent Plasticity (STDP) 

STDP is an unbalanced temporal form of Hebbian rule (explained in section 4.2), which 

has a temporal interrelationship between a pre- and a post-synaptic neuron. It is widely believed 

that synaptic plasticity is the cause for learning and storing information in brain. In STDP, we 

have two types of results for a synapsis: Long-Term Potentiation (LTP) and Long-Term 

Depression (LTD). LTP is said when a spike in a pre-synaptic occurs few milliseconds before 

a post-synaptic potential. LTD is said when a spike in a pre-synaptic occurs after a post-

synaptic potential. So STDP can be defined as the relative time between pre-synaptic spike to 

post-synaptic potential (Sjöström & Gerstner, 2010). 

 

Figure 4.11: STDP with 60 spike paring between pre- and post-synaptic potential 



54 

 

Let’s consider, ∆𝑤𝑗 as the change in weight of synapsis from pre-synaptic neuron 𝑗; and 

lets conside the presynaptic spike arrival time for neuron 𝑗 as 𝑡𝑗
𝑓
 where 𝑓 = 1,2,3, … 𝑁 that are 

the counts to pre-synaptic spikes. And let’s consider the firing time for post-synaptic neuron as 

𝑡𝑛, where 𝑛 = 1,2,3, … 𝑁. So the weight change in the network ∆𝑤𝑗 with a stimulation protocol 

(that stimulates action potential in a neuron) is given by (Sjöström & Gerstner, 2010) 

∆𝑤𝑗 = ∑ ∑ 𝑊(𝑡𝑛 − 𝑡𝑗
𝑓

)

𝑁

𝑛=1

𝑁

𝑓=1

 

 

(4.3) 

 

From (4.3) 𝑊(𝑥) (where 𝑥 = 𝑡𝑛 − 𝑡𝑗
𝑓

) is one type of STDP function, which is also 

known as learning window, shown in the Figure 4.11. Popular choice for SDTP function are 

𝑊(𝑥) = 𝐴+𝑒𝑥𝑝(−𝑥/𝜏+) 𝑓𝑜𝑟 𝑥 > 0 
 

𝑊(𝑥) = −𝐴−𝑒𝑥𝑝(𝑥/𝜏−) 𝑓𝑜𝑟 𝑥 < 0 

 

(4.4) 

Here 𝐴+ and 𝐴− are the dependent current value of the weights 𝑤𝑗 ; 𝜏+ and 𝜏− are the 

time constraints that are in the order of 10𝑚𝑠 each. 

4.6 Dynamic Evolving Spiking Neural Network (DeSNN) 

DeSNN is an evolved version of eSNN. The problem with eSNN is that it uses rank order 

encoding method. The weight adjustments in this method is done only once, which is only 

capable of classifying static data but is not that efficient for Spatio- and Spectro- Temporal 

Data (SSTD). Due to this problem the weights must be tuned for each training over time and 

for this reason STDP was used in addition to the Rank Order (RO) learning based on the order 

of the incoming spikes. (see section 4.5. and N. Kasabov, Dhoble, Nuntalid, and Indiveri 

(2013b) for more details). 

4.7 Introduction to Fourier Transform 

Joseph Fourier is known as the father of modern mathematics. In 1822, he wrote the book 

“The Analytical Theory of Heat”. In the same book he described a transformation function 

which is now known as “Fourier Transformations”. It decomposes the time-domain function 

into its component frequencies (Adiutori, 2005) and is described by the following equations 

(Strang & Nguyen, 1996) 

𝑋(𝜔) = ∑ 𝑥(𝑛)𝑒𝑖𝑛𝜔

∞

𝑛=−∞

 
 

(4.5) 
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The inverse function is 

𝑥(𝑛) =
1

2𝜋
∫ 𝑋(𝜔)𝑒−𝑖𝑛𝜔𝑑𝜔

𝜋

−𝜋

 

 

(4.6) 

 

Where 𝑋(𝜔) is the frequency domain (also known as the Fourier function) and 𝑥(𝑛) is 

the time domain. Where the time 𝑛 is discrete (separated individually and unique) and 𝜔 is 

continuous. 

For example, let us consider the graph in Figure 4.12 

 

Figure 4.12: 𝒙(𝒏) is a frequency domain and 𝑿(𝝎) is a time domain. When 𝒙(𝒏) is sent through the 

Fourier it is changed into 𝑿(𝝎) and vice versa. 

On the left side of the above figure, we have a rectangle function which is in the form 

of time, when applied Fourier transform on it, we get frequency pattern that is on the right side 

of the above figure. 

4.7.1 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) represents regular data points in any given data and 

gives its strengths in periodic components. However, DFT of real numbers will be a 

complex number of same length; this causes two types of errors: aliasing and leakage 

that can be addressed by using Fast-Fourier Transform (Weisstein). 

Let us consider a continuous Fourier transform as  

𝑓(𝑣) = ℱ[𝑓(𝑡)](𝑣) =  ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝑣𝑡𝑑𝑡
∞

−∞

 

Now, generalise to discrete function 𝑓(𝑡) → 𝑓(𝑡𝑘) by 𝑓𝑘 ≡ 𝑓(𝑡𝑘) where 𝑡𝑘 ≡ 𝑘∆ and 

where ∆= 0, … , 𝑁 − 1. This will give the DFT as 𝐹𝑛 = ℱ𝑘[{𝑓𝑘} 𝑁−1
𝑘=0

](𝑛) 
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𝐹𝑛 ≡ ∑ 𝑓𝑘𝑒
−2𝜋𝑖𝑛𝑘

𝑁⁄

𝑁−1

𝑘=0

 

 

(4.7) 

And the inverse of DFT is 

𝑓𝑘 ≡
1

𝑁
∑ 𝐹𝑛𝑒

2𝜋𝑖𝑛𝑘
𝑁⁄

𝑁−1

𝑛=0

 

 

(4.8) 

 

4.7.2 Fast-Fourier Transform 

Fast-Fourier Transform (FFT) is a type of DFT, which was first introduced by James W. 

Cooley and John W. Tukey in the year 1965. FFT is used to reduce the computation work 

for 𝑁 from 2𝑁2 to 2𝑁 log2 𝑁. DFT can be computed using FFT by Danielson-Lanczos 

lemma, if 𝑁 is power of 2 (Weisstein). 

FFT can be differentiated into two classes – decimation in time and frequency. The 

method Cooley and Tukey first reverses the input data in bit wise order, that is they break 

up the transform length 𝑁 into two 𝑁 2⁄  (Weisstein). 

The FFT used in this study is written in Matlab. The equation used in Matlab can be seen 

in the (4.9): 

𝑋(𝑘) = ∑ 𝑥(𝑗)𝜔𝑁
(𝑗−1)(𝑘−1)

𝑁

𝑗=1

, 
 

(4.9) 

 

𝜔𝑁 = 𝑒(−2𝜋𝑖)/𝑁 

4.8 Introduction to Butterworth algorithm 

In 1930 physicist and engineer Stephen Butterworth developed a signal processing filter, 

now known as Butterworth filter. It was capable of flat frequencies responses for passband 

(Butterworth, 1930). For a low pass filter, the equation is given as (Wilcock): 

|𝐺𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑓)| =
√

1

1 + (
|𝑓|

𝑓𝑐
⁄ )

2𝑛 

 

 

(4.10) 

 

And for the high pass filter the equation is given as  

|𝐺ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠(𝑓)| = 1 − |𝐺𝑙𝑜𝑤𝑝𝑎𝑠𝑠(𝑓)| 
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|𝐺ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠(𝑓)| = 1 −
√

1

1 + (
|𝑓|

𝑓𝑐
⁄ )

2𝑛 

 

 

(4.11) 

 

In the (4.10) and (4.11), 𝑓𝑐 is the cut-off frequency and 𝑛 is the order. The sharpness of 

the output frequency increases with the increase in 𝑛. 

The passband (frequencies which can pass through) for the frequency is given by the following 

expression: 

|𝐺𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑(𝑓)| =
√

1

1 + [
(|𝑓| − 𝑓𝑏)

𝑓𝑐
⁄ ]

2𝑛 

The stopband (frequencies which cannot pass through) is given by the following expression: 

|𝐺𝑠𝑡𝑜𝑝𝑏𝑎𝑛𝑑(𝑓)| = 1 − |𝐺𝑝𝑎𝑠𝑠𝑏𝑎𝑛𝑑(𝑓)| 

= 1 −
√

1

1 + [
(|𝑓| − 𝑓𝑏)

𝑓𝑐
⁄ ]

2𝑛 

4.9 Introduction to Threshold Based Encoding algorithm 

The threshold based encoding algorithm converts the given input data (in this study it is 

EEG data) to trains of spikes. Let’s consider an EEG channel 𝑋 and its data points over time 

as 𝑥𝑖 where 𝑖 = 1,2,3, …; the mean of this channel is given by 

𝑋 =
∑ (𝑥𝑖 − 𝑥𝑖+1)𝑛−1

𝑖=1

𝑛 − 1
 

So the threshold value can be calculated as 

𝑥𝑛 = {
𝑖𝑓 (𝑥𝑛−1 − 𝑥𝑛) > 𝑋 𝑡ℎ𝑒𝑛 1

𝑒𝑙𝑠𝑒 − 1
 

Where 𝑛 = 1,2,3, … 

4.10 Conclusion 

This chapter provides a brief description of the main types of neural networks and some 

pattern recognition algorithm, along with data transformation algorithms such as Fourier 

Transform, Butterworth algorithm. Threshold based encoding is also briefly explained. 
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Chapter 5: The Proposed Methodology and  

BCI System Design 

 

Once we understand the functioning of the brain, BCI and various types of algorithms, 

we now introduce the functioning of NeuCube architecture for our BCI implementation. This 

chapter introduces the NeuCube architecture and the modules developed specifically to make 

it online BCI (dynamic) application. The test conducted in this study was to try and move the 

EEGRotor VE using EEG signals from the author brain. Screenshots of NeuCube for BCI can 

be seen Screenshots and video demo of NeuCube for BCI (video links) can be seen in Appendix 

C:. 

5.1 Overview of the NeuCube Architecture 

NeuCube is a spiking neural network architecture for learning, mapping and 

understanding of spatio-temporal and spectro-temporal data. It can be used for different kinds 

of such data, including brain data. 

 

Figure 5.1: NeuCube architecture (N. K. Kasabov, 2014) 

In our application, input data is a [14 ×  128] matrix, where 14  is the number of 

channels (features) and 128 is the time points. One such data is called a sample. For each action 

(a task), multiple samples are taken. A set of tasks is labelled as one class. For example, a 
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person performs two tasks; one with eyes open and the other with eyes closed, each of these 

tasks are done 20 times (20 samples). So this means that we have a two class data with twenty 

samples each. These pair of samples are converted into 3D matrix (more on this in 5.4.1). 

 The 3D matrix is fed into the NeuCube, which then converts the samples into spikes 

using a Introduction to Threshold Based Encoding algorithm. These spikes are entered into the 

reservoir which uses Introduction to Spike-Timing Dependent Plasticity (STDP) to make the 

connections between the neurons and learn the pattern, also known as the unsupervised 

learning. Once the patterns are learnt, a classifier is trained (in this case Dynamic Evolving 

Spiking Neural Network (DeSNN) to classify a new data. 

5.1.1 Modules in NeuCube 

Figure 5.1 depicts the NeuCube architecture, which is made up of multiple modules. 

These are modules from the originally proposed architecture (N. K. Kasabov, 2014): 

 Data encoding module; 

 3D Spiking Neural Network Reservoir; 

 Classifier (output function); 

 Gene regulatory network (GNR). 

The NeuCube architecture is used for classifying data. The input data could be EEG or 

other Spatio-Temporal Brain Data (STBD) data. 

The method for classifying STBD with NeuCube can be briefly described as following: 

I. Encode data into trains of spikes from STDB, i.e. EEG or FMRI data; 

II. By training the cube in unsupervised learning the 3D SNNr is evolved; 

III. Using the deSNN to train a classifier. 

IV. Optimise the model by iterating from I to III for different parameter values until 

maximum accuracy is achieved; 

V. Recall the model for new data. 
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Figure 5.2: EEG data classification flow in NeuCube (N. K. Kasabov, 2014) 

5.1.2 Classification of EEG data 

In this study we have used the same method, but in much more advanced way to classify 

the given new input data after the training of the cube is done. Figure 5.2 presents the 

flow of the classification process. 

The following steps occur when NeuCube learns and classifies the input data. 

 EEG data in the form of 128x14 matrix is prepared and label names for the 

output classes are determined. 

 Once the data is setup correctly, the input data is encoded into spike trains using 

AER encoding and fed to NeuCube. 

 Unsupervised training is conducted in NeuCube using STDP algorithm. 

 Once the training is done the connections between the neurons can be visualised. 

 A classifier is trained as a second phase. 

 Test classification result visualised for the sake of understanding the data. 

NeuCube uses STDP for unsupervised learning, DeSNN for supervised learning and 

threshold based encoding to convert an input sample into a spike train. 

Further discussions on NeuCube for BCI is provided in section 6.1. 

5.2 Introduction to the concept of EEGRotor 

As discussed previously (section 3.10), due to safety concerns Quadcopter was not used 

in this study. A virtual environment was developed that has a model of Quadcopter in it. Codes 

for the EEGRotor VE implementation can be found in Appendix C:. 
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EEGRotor is a virtual environment, which was developed using Maya and Unity 4. 3D 

modelling was developed in Maya, which is a 3D modelling software and the gaming engine 

used was Unity. This environment is a replica of Knowledge Engineering and Discovery 

Research Institute (KEDRI) at Auckland University of Technology (AUT) in WT building. 

The main challenge in this is that the subject operating this by NeuCube BCI has to make 

sure that the Quadcopter model should pass through all the rings. These rings act like a 

feedback to the user. Each ring that he/she passes through with the model gives him/her 10 

points, if missed no points are given. The classified output from the NeuCube is directly sent 

to the virtual environment using Java’s Abstract Window Toolkit (AWT). Figure 5.3 shows 

the environment in action, the last ring in this environment finishes the game and Figure 5.4 

shows the results to the subject. 

 

Figure 5.3: EEGRotor Virtual Environment 
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Figure 5.4: End of the VE 

5.3 Experiments with EEGRotor 

Resource for the experiments include the number of subjects used, experimental 

procedure and study framework. 

5.3.1 Subjects used for this study 

Due to time limitation for this study no external subjects were used for the experiments 

and the pilot testing was carried out on the author. The system was trained and tested 

using the author’s EEG signals. 

5.3.2 Experimental Procedure 

The Emotive EPOC system is a headset made up of 14 saline based electrodes (wet 

electrodes) and has its own proprietary software. The author made sure that the 

electrodes were wet enough and were making a perfect contact to his scalp; this was 

monitored on the Emotiv control panel where green light for every electrode indicates 

the connection is good. Before putting on the head set the author had a healthy meal so 

that weakness would not affect the data recording process. Once the connection is 

perfect, recording of the EEG data was started. 
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The guidelines for data collection was by Ferree, Luu, Russell, and Tucker (2001) and 

Pivik et al. (1993) were followed. The experiment was conducted in KEDRI, AUT in 

the NeuLab. The environment was quiet and there was no disturbance. 

Class 

number 

Direction Facial (mental and 

physical) Movement 

1 Front Both eyebrows up 

2 Right Right eyebrow up 

3 Back Both eyebrows down 

4 Left Left eyebrow up 
Table 5.1: Four classes assigned for four facial movements 

Table 5.1 shows four classes assigned to four facial movements. A class represents the 

label number for a facial movement. Twenty samples for each class were taken using 

the software developed in this study. The software functionality is described in the 

section 5.4. Two stages of EEG data were recorded: the author used his thoughts to 

mimic his facial movements, these thought signals were recorded and in the second 

stage, EEG data was collected while facial muscles were moved. While recording the 

data, it was made sure that the author was calm, sitting comfortably and there were no 

other movements. The system which was used to collect the data is explained in section 

5.4.1. 

In Emotiv EPOC headset, each second of data is represented as 128 time points (128 

Hz = 128 time points or milliseconds). Twenty EEG data samples were collected for 

each class. Each sample has 2 seconds of EEG data. Total time recorded was nearly 

equal to 2.7 minutes for each stage. The reason for collecting thought process and 

physical muscle movement EEG data is to minimise the error rate and other external 

disturbances. These two stages where combined together to form a set of EEG data. 

This set is sent through an encoder that converts the EEG data into trains of spikes. 

These spike trains are sent through unsupervised learning (section 4.5); finally the data 

is sent through supervised learning (section 4.6) to classify.  

As explained earlier (section 5.1.2), user can either save the trained NeuCube 

parameters (neuron weights, location and coordinates) or split the sample. In this study 

the author saved the NeuCube parameters for classifying with new data. NeuCube for 

BCI has an option to load previously saved parameters, so that classification with new 

data could be done easily. The author loaded back the trained NeuCube. EEGRotor 

virtual environment is opened. At this point the stream of EEG data is passed through 
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the NeuCube which recognises the data coming through and send the signal to the 

virtual environment. 

5.3.3 Framework 

The proposed framework is divided into two procedures: training NeuCube for BCI 

with recorded EEG data (Figure 5.5); testing (recall) EEGRotor with new EEG data. 

5.3.3.1 Training NeuCube for BCI to run EEGRotor 

 

Figure 5.5: Training the NeuCube for BCI to run EEGRotor 

The arrows in Figure 5.5 shows the flow of training an EEG data in the NeuCube. 

1. The user wearing the Emotiv EPOC headset with 14 wet electrodes can transmit data 

via Bluetooth at the rate of 128 Hz. 

2. The signals transmitted from the Emotiv headset can be recorded for each class using 

EEGRotor Training Module; the module requires specification of how many samples 

per class are needed and the time frame for each class. Once the recording is done the 

module creates a *.mat file which is required to train the data; the outline of the folder 

structure and the file can be seen in Figure 5.11. 
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3. Using EEGRotor State of Mind Module is an optional module, where the state of 

mind can be checked. State of mind plays important role in this study, the user can see 

if he/she is calm or excited in this module. If the user feels that the state of mind is 

fluctuating, the EEG data can be rerecorded using the training module. This module 

uses Fast Fourier Transformation (FFT) and Butterworth algorithm to split the given 

data into Alpha, Beta, Gamma and Theta waves with time points. 

4. Encoder (section 4.9) is a part of the NeuCube architecture. It converts the EEG data 

into trains of spikes. These spikes are binary data, which is required by STDP and 

DeSNN algorithms. 

5. STDP algorithm makes sure that the weight between two neurons change while the 

learning takes place. This is explained in section 4.5. 

6. While training the data for 100% the DeSNN classifier is not used. The main use for 

this algorithm is to classify the data and also if the label values are present it would give 

you the accuracy value. 

7. As discussed earlier (section 5.3.2) the user has the ability to train the data in two ways: 

complete or split the data. Splitting the data will use the first half for training and the 

second half for testing/validation. Once the training of the NeuCube is finished, DeSNN 

classifier can be used to classify the second half of the data with the trained data. This 

procedure is optional for BCI in the training stage. 

Once the training of NeuCube is finished, the user can save a complete copy of the neuron 

weights and its coordinates. The usability of this cube is explained in 5.3.3.2. 
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5.3.3.2 Testing the NeuCube for BCI to run EEGRotor 

 

Figure 5.6: Testing the NeuCube for BCI to run EEGRotor 

The dotted arrow in the Figure 5.6 shows a hypothetical flow of controlling the EEGRotor and 

the bold arrows show the flows of testing EEG data.  

1. As explained in section 5.3.3.1, Emotiv EPOC headset with 14 wet electrodes can 

transmit data via Bluetooth at the rate of 128 Hz. 

2. Dynamic EEG data module (section 5.4.5) is inter-linked to EEG data control panel 

module (section 5.4.7), which enables the flow of EEG data from Emotiv headset to the 

NeuCube. 

3. Finally, the DeSNN classifier takes in the stream of EEG data .and classifies it. Based 

on the classified class, the NeuCube sends the appropriate commands to EEGRotor. 

The commands are discussed in Table 5.1. 

5.4 EEGRotor for Brain-Computer Interface 

This section describes how NeuCube and EEGRotor for BCI work and the functions of 

the modules. As discussed earlier, NeuCube is a pattern recognition framework for spatio-
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temporal data (N. K. Kasabov, 2014) and is capable of classifying input data without its label 

values (only after its trained with data and class values). The basic workflow of the model can 

be seen in Figure 5.7. 
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Figure 5.7: Functional diagram of NeuCube for BCI to control EEGRotor
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As explained in section 5.3.2, the training module in Figure 5.6 shows that the 

classification of the input data can be continuous stream of EEG data or static EEG data. An 

input can be given in two formats, in .mat format or in a stream of 128 × 14 matrices. The 

process starts with inputting data, then the state of mind response of the subject can be observed 

(optional); from there it goes to unsupervised training and finally supervised training which 

classifies the new input data and sends the recognised command to the virtual environment. 

For training, the training data is taken from the subject and the training is done in the same 

fashion as the testing (more on this in Chapter 6:). Figure 5.8 shows how the software looks 

like while reading and classifying the data.  

Figure 5.8 shows the functions, and how to optimise each of the modules for better 

performance. In Chapter 6:, the author will discuss on how the data is collected using the 

training module. Further in section 6.1, the author will discuss on how the complete modules 

when come together work. Finally, the author would discuss on how we could increase the 

performance of the software. 
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Figure 5.8: NeuCube for Brain Computer Interface (BCI) 

There are seven modules associated with NeuCube for BCI to run EEGRotor: 

 EEGRotor Training Module 

 EEGRotor Testing Module 

 EEGRotor State of Mind Module 

 EEGRotor Activation Plot Module 

 Dynamic EEG Data Module 

 Total EEG Data Module 

 EEG Data Control Panel Module 

A detailed description of each module is given below: 
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5.4.1 EEGRotor Training Module 

 

Figure 5.9: EEG data collection model to collect four class EEG data with its class label and create a 

final_eeg.mat file 

Figure 5.9 shows the feature of the EEG Training phase, there are two buttons, start and 

stop; start button starts the flow of dynamic data from the Emotiv EPOC device that 

would produce 128 × 14 two dimensional matrix in the Matlab; where 14 is the number 

of EEG channels and 128 is the time points (in EPOC head set 128 is equal to one 

second). The stop button pauses the data streaming. 

The training module does the following: 

 The data can be collected in two ways: One way is to provide your own data in 

the format of a 3D matrix and a label as a 2D matrix. The other way is that this 

module takes the data directly from the Emotiv EEG headset and created the 3D 

and 2D matrix automatically. If you choose the second way to collect data, you 

need to first select the number of samples you want to record for each class. If 
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you choose to provide the data manually you need to follow the format shown in 

Figure 5.10. 

 

Figure 5.10: 3D Matrix 

A three dimensional matrix consist of (𝑥, 𝑦, 𝑧) data elements, where 𝑥 is the 

number of EEG channels, 𝑦 is the number of time points and 𝑧 is the number of 

samples. 

 Next the user has to select the timer (data recorded in seconds) input; for example 

in the Figure 5.10 the timer (C) shows 2, which means the user can take two 

seconds of data for each class, 𝑦 = 128 × 2 and 𝑥 will be 14 because these are 

14 channels of EEG device; so the final output would be (𝑥 × 𝑦) = (256 × 14) 

matrix. The higher the timer, the higher the number of data points are and the 

more time for the software to compute. 

 Once this is done and the EEG headset is placed on the subject’s head, the user 

can start the process by clicking on the start button. The process starts in 

clockwise direction; from Table 5.1 the class starts from class 1 – UP, and ends 

at class 4 – LEFT. 

 EEG data collection stops automatically once the number of samples specified is 

reached. However, the researcher can stop the process anytime by clicking on the 

stop button. 

 Once the process is completed, the software creates a folder structure which can 

be seen in Figure 5.11; each class (EEG data) is stored separately in its 

corresponding folder with its label (class label) file. It also creates a file called 
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eeg_final.mat, who’s structure is in the form of a 3D matrix (Figure 5.10) is then 

used in the NeuCube for training. 

 

Figure 5.11: Folder structure for Training phase 

5.4.2 EEGRotor Testing Module 

 

Figure 5.12: Interface of the testing module 

This module includes the trained NeuCube which is tested by using a new data that could 

be directly taken from the user or it could be a manual input. Once this is done, the user 

can then click on “Next” which will take him/her to the next process of classifying the 

data. After the classification the user could use the output to give the appropriate 
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command which to EEGRotor VE. In this module the user need not give any label values 

for the sample data, as it is not important. When no label values are supplied NeuCube 

predicts the class label for the data. 

5.4.3 EEGRotor State of Mind Module 

 

Figure 5.13: State of mind module with raw EEG data, delta waves, theta waves, alpha waves and beta 

waves 

This module is an optional module. It extracts Delta, Theta, Alpha and Beta waves after 

the EEG acquisition is completed. Due to Matlab’s inability to run multiple loops at a 

time, this particular module cannot run on dynamic data. Figure 5.13 shows how the 

EEG wave forms are extracted over time. Y-axes is the amplitude of the wave and the 

X-axis is the time period in seconds. This module can be eneabled by choosing “Emotion 

State” from the drop down menu of “Plot Options” which is on the right side of the 

NeuCube interface. 

When the EEG testing is done, all the readings are saved to the Matlab workspace as a 

2D matrix which consists of 𝑛 rows and 14 columns; these 𝑛 rows are the time points 

for the recorded EEG data. EEG data are stored as 128 ∗ 𝑛. When this is input to the 

state of mind function the data is extracted using Fast Fourier Transformations and 

Butterworth algorithm which is available with the Matlab program; after the extraction 

is done, the extracted alpha, beta, theta and delta waves can be plotted individually. 
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5.4.4 EEGRotor Activation Plot Module 

 

Figure 5.14: Activation Plot for EEG data collected from Emotive headset 

Activation plot is an optional plot that uses Talairach coordinates in which the activation 

state of each electrode directly taken from the Emotiv EPOC EEG device. When a certain 

threshold is exceeded, the electrode location (blue dots) indicated by the corresponding 

point in Figure 5.14 highlights. This shows which part of the brain is more active when 

compared to other parts of the brain. As with the emotion module, this is an independent 

module which does not depend on NeuCube. 
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5.4.5 Dynamic EEG Data Module 

 

Figure 5.15: Dynamic EEG data plotted over time. Y-axes shows the amplitude and X-axes shows the 

time 

This module provides live visualisation of the incoming EEG data which has certain 

amplitude and frequency. The Y-axis shows the amplitude of the 14-channel EEG 

signals separated by their frequencies and the X-axis shows the time points in 128 

divisions. As explained earlier 128 time points is equal to one second. 

This module uses a timer function for scheduling the data. Old data is replaced by the 

data.  

This module facilitates understanding brain responses to each task. Higher amplitude 

of brain signals means that the subject is performing visually or mentally intense task. 

Lower amplitudes occur when the person is in his/her rest position without performing 

any task. 

5.4.6 Total EEG Data Module 
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Figure 5.16: Final EEG 

This module gives the total output of the EEG data. This module activates when the 

stop button on the EEG control panel is clicked. Dynamic data that comes in through 

the Emotiv EPOC EEG device is stored as a 2D matrix in the workspace; this happens 

if and only if the Stop button on the control panel is clicked. This would give the overall 

observation of the final EEG data, which can be used to interpret the excitation and rest 

state of the person (Note that this stage does not give out the emotional state. Refer to 

EEGRotor State of Mind Module). Y-axis shows the amplitude of the 14 EEG 

channels and the X-axis of the time points in multiples of 128 (one second) divisions. 

In Figure 5.16 the number of time points is ≈ 650 which means that the data was 

recorded for almost 5 seconds (650 divisions/128 divisions). 

Also, this data is cleared when the user starts the reading of EEG data again. This 

process is connected in classifier of the NeuCube which will be explained in section 

6.1. 

5.4.7 EEG Data Control Panel Module 

 

Figure 5.17: Interface for the EEG data control panel 
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The EEG Data Control Panel (EDCP) is the heart of NeuCube for BCI. Emotiv has 

proprietary software called “Emotiv Control Panel”, which communicates with Emotiv 

EPOC EEG headset to transmit EEG data. They also provide Software Development Kit 

(SDK) developed in C++ that links the EEG data control panel to Emotiv control panel. 

It can be used as an interface caller to read the EEG data from the EPOC headset. There 

are two types of connections to the Emotiv EPOC head set: one via TCP/IP and the other 

one is a direct connection to the hardware through general ports. The main connection 

from the headset to the computer is done through Bluetooth protocols. 

The Start button tells the SDK to connect to modules developed in Matlab and the control 

panel; once this connection is established the next thing is to start reading the EEG data 

from the device. Stop button pauses the EEG reading and the Disconnect button will clear 

the cached data and disconnects the EEG control panel from Emotiv Control Panel (and 

SDK). 

5.5 Conclusion 

This chapter describes how the of NeuCube architecture functions. It introduces a virtual 

environment called EEGRotor and explains the research framework for this study using 

the virtual environment. All seven modules developed for online application of 

EEGRotor are also explained. 
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Chapter 6: Experimental Results and  

Analysis of the EEGRotor 

 

6.1 Working of the Complete Software Suite 

This BCI system is capable of classifying personalised data (data belongs to a single 

person). Figure 5.8 shows all modules that use the NeuCube architecture to process continuous 

stream of brain data. The following software system are required to run the NeuCube based 

BCI (the EEGRotor): 

 A Windows computer running i5 processor or equivalent and 4 GB RAM; 

 Matlab R2013a software program; 

 Visual Studio 2010; 

 Emotiv EPOC Research Version; 

 Emotiv Research SDK; 

 NeuCube for Brain Computer Interface. 

6.1.1 Training NeuCube for BCI 

Training is the first stage that needs to be done before the BCI system can classify new 

data. The following are the steps that need to be followed for the procedure to take place 

correctly: 

 This study is based on four classes (see Table 5.1). EEGRotor Training Module 

collects the EEG brain data from the subject and creates files accordingly. 

NeuCube can take more than four class but the user has to create *.mat file that 

should follow Figure 5.10. 

 Once the user has recorded the EEG data, the first goal is to train NeuCube; for 

this the user has to click on the drop down menu at “What do you want to do?” 

which is to the left of the NeuCube interface that can be seen in Figure 6.1: 

Training 
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Figure 6.1: Training 

 Once the user clicks on it, a pop up window appears; click on the browse button 

to add *.mat file (making sure the user includes label file within *.mat file) and 

close the window. This will make the system know that a manual entry was given 

to it; this will activate the NeuCube system. 

 The user has to initialise the system. He/she can also provide neural coordinates 

(Talairach coordinates for EEG electrodes) and neuron coordinates (neuron 

coordinates for NeuCube) if needed. Click on “Initialize NeuCube” button which 

will initialise NeuCube with the appropriate neurons placed with their neural 

coordinates, this can be seen in the cube (Figure 6.4). 

 Before user starts the unsupervised learning, he/she has to train the software with 

100% data (no splitting of data); to do that the user has to set Training division to 

1. 

 Once this is done click on unsupervised learning followed by supervised learning. 

 Finally, the user has to save the NeuCube file by clicking on “save NeuCube”. 

This file contains the connection weights and coordinates for the trained data. 

This can be then used to classify new EEG data. 

6.1.2 Testing NeuCube for BCI 

Once NeuCube is trained and it has learnt the provided EEG data, it can classify new 

data that can be entered either dynamically or manually. The user would have to follow 

these to get the correct classification. 

 The saved NeuCube is loaded back to NeuCube (this is because of the Matlab 

software program that has to clear cached data). 

 There are two options for entering the data that needs classification: either to enter 

manually the EEG data in 2D format i.e. 128 × 14 or use continuous EEG by 

clicking on Dynamic Data in the pop up menu. Click “start” on the EEG data 

control panel. 
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 Ensure the subject wears the Emotiv EPOC headset. The SDK connects to Matlab 

and stream of EEG data (in 128 × 14 2D matrix) ( visualisation of data can be 

seen in the Figure 5.15) is converted to trains of spike and classified using 

DeSNN classifier (supervised classification), which sends the command to 

EEGRotor VE 

6.2 Analysis of Results 

After following the steps given in sections 6.1.1 and 6.1.2 the classified output is 

presented in the Matlab software command window: 

------------------ RESULTS ------------------------- 

Time:12-Jun-2015 14:25:36 

Class label of the given samples: 

Sample 0001 ------> class 1 

---------------------------------------------------- 

In the above result, the user can see the time at which the execution took place; and the sample 

0001 indicates the sample number and what class the input data belongs to. 

As explained previously, each class indicates one of the four directions in the EEGRotor VE; 

the class labels and directions of movement can be seen in Table 5.1 

NeuCube for BCI was tested on:  

 Self-generated neural coordinates with 1000 neurons; 

 With Talairach coordinates that has 1485 neurons. 

This means that there are two separate NeuCube files which can be used for testing or validating 

new data.  

A self-generated map is produced by the NeuCube using time series correlation, which means 

that it check the correlation between each feature and check which feature is close together and 

which is not. The closer features are kept near to each other and the others are kept far away 

from each other. 

Talairach coordinates are 3D coordinate of human brain. It is a map of the brain which shows 

the structure of each part (Bankman, 2000). 

The results from the above tests are presented seen in section 6.2.1. 
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6.2.1 Results in tabular form 

The results from two types of testing are presented in tabular form. 

6.2.1.1 Self-generated Mapping 

This test uses self-generated neural coordinates with 1000 neurons and was performed three 

times. 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

Class 

Actual 

Direction 

Task 

1 1 Front 1 Front Both eyebrows up 

2 1 Front 1 Front Both eyebrows up 

3 1 Front 1 Front Both eyebrows up 

4 2 Right 4 Left Left eyebrow up 

5 1 Front 4 Left Left eyebrow up 

6 1 Front 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 4 Left 1 Front Both eyebrows up 

9 2 Right 1 Front Both eyebrows up 

10 1 Front 1 Front Both eyebrows up 
Table 6.1: Results using self-generated mapping – Test 1 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

Class 

Actual 

Direction 

Task 

1 1 Front 1 Front Both eyebrows up 

2 1 Front 1 Front Both eyebrows up 

3 3 Back 1 Front Both eyebrows up 

4 2 Right 4 Left Left eyebrow up 

5 1 Front 4 Left Left eyebrow up 

6 4 Left 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 4 Left 1 Front Both eyebrows up 

9 2 Right 1 Front Both eyebrows up 

10 2 Right 1 Front Both eyebrows up 
Table 6.2: Results using self-generated mapping – Test 2 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

Class 

Actual 

Direction 

Task 

1 2 Right 1 Front Both eyebrows up 

2 1 Front 1 Front Both eyebrows up 

3 1 Front 1 Front Both eyebrows up 

4 2 Right 4 Left Left eyebrow up 

5 1 Front 4 Left Left eyebrow up 

6 1 Front 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 1 Front 1 Front Both eyebrows up 
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9 2 Right 1 Front Both eyebrows up 

10 3 Back 1 Front Both eyebrows up 
Table 6.3: Results using self-generated mapping – Test 3 

6.2.1.2 With manual Input Mapping 

This test uses Talairach coordinates with 1485 neurons and was performed three times. 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

class 

Actual 

Direction 

Task 

1 1 Front 1 Front Both eyebrows up 

2 1 Front 1 Front Both eyebrows up 

3 3 Back 1 Front Both eyebrows up 

4 4 Left 4 Left Left eyebrow up 

5 4 Left 4 Left Left eyebrow up 

6 4 Left 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 3 Back 1 Front Both eyebrows up 

9 3 Back 1 Front Both eyebrows up 

10 4 Left 1 Front Both eyebrows up 
Table 6.4: Results using manual input of mapping – Test 1 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

class 

Actual 

Direction 

Task 

1 1 Front 1 Front Both eyebrows up 

2 2 Right 1 Front Both eyebrows up 

3 3 Back 1 Front Both eyebrows up 

4 4 Left 4 Left Left eyebrow up 

5 1 Front 4 Left Left eyebrow up 

6 4 Left 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 3 Back 1 Front Both eyebrows up 

9 3 Back 1 Front Both eyebrows up 

10 4 Left 1 Front Both eyebrows up 
Table 6.5: Results using manual input of mapping – Test 2 

Sample 

Number 

Classified 

Class 

Number 

Classified 

Direction 

Actual 

class 

Actual 

Direction 

Task 

1 1 Front 1 Front Both eyebrows up 

2 1 Front 1 Front Both eyebrows up 

3 1 Front 1 Front Both eyebrows up 

4 4 Left 4 Left Left eyebrow up 

5 2 Right 4 Left Left eyebrow up 

6 4 Left 1 Front Both eyebrows up 

7 1 Front 1 Front Both eyebrows up 

8 1 Back 1 Front Both eyebrows up 

9 1 Back 1 Front Both eyebrows up 
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10 1 Left 1 Front Both eyebrows up 
Table 6.6: Results using manual input of mapping – Test 3 

6.2.2 Visualisation 

This section presents visualisations of neurons connection and activation plots. 

6.2.2.1 Self-generated Mapping 

 

Figure 6.2: (Left) The cube before initialising and showing the input features. (Right) Showing the trained 

cube after the training is done, thicker lines indicate stronger connections. 

 

Figure 6.3: This cube shows the activation level for each feature; the brightness of dots indicates the level 

of activation. 
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6.2.2.2 With manual Input Mapping 

 

Figure 6.4: (Left) The cube showing the Talairach coordinates before initilisation. (Right) The cube 

showing the connections between neurons, thicker lines indicate stronger connections. 

 

Figure 6.5: The cube shows the activation level; the brightness of dots indicates the level of activation. 

NeuCube has the ability to visualise the data dynamically that is it can show the connections 

between the neurons. 

Yellow dots from figures Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5 are the input 

features, each dot corresponds to one electrode of the Emotiv headset. When the training is 

complete, user can see the connections between the neurons (this visualises how brain would 

connect neurons). Blue lines signify the connections between neurons, the thicker the line is 

the stronger is the connection. For example in the Figure 6.4 (right) shows a cluster of 
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connections in the front of the image, which shows that the author had higher amount of activity 

on his prefrontal cortex. 

6.3 Discussion 

The NeuCube architecture is a complex software which can be used to classify STBD 

and SSBD. The architecture has been modified to run online EEG data, which would allow it 

to issue commands for movements to robots or flying objects. Due to safety concerns, a virtual 

environment called EEGRotor was specifically developed where a virtual flying object could 

be navigated. 

Two types of tests were run using NeuCube as discussed above: one using the self-

generated mapping and the second one using the Talairach coordinates (which is based on 10-

20 international system). 

Using the tasks and assigned classes shown in the Table 5.1, the data was recorded as 

discussed in section 5.4.1. Once the training is done, NeuCube was saved and the application 

was reopened to refresh the cached content. After that NeuCube is loaded back in. Using the 

EEGRotor Testing Module and EEG Data Control Panel Module the live data is input, which 

is followed by classifying saving of the data. 

 

Figure 6.6: Comparison of actual class to classified class in self-generated mapping. 
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Figure 6.7: Comparison of actual class to classified class in manual input of mapping. 

These graphs show promising results for using NeuCube as a BCI system to control an 

object. However, the author must also be able to test this study on someone else other than 

himself. 

The classified data for self-generated mapping can be seen in Table 6.1, Table 6.2 & 

Table 6.3 and the classified data for Talairach coordinates can be seen in Table 6.4, Table 6.5 

& Table 6.6. To make it more clear, the results have been presented in two graphs (Figure 6.6 

and Figure 6.7), in the graphs blue line is the actual class that was used to move the EEGRotor. 

We can see that there are large differences between those two figures. The confusion matrices 

for the experiments are provided in 6.3.1 and 6.3.2. 

The Left most part of each matrix is the correctly classified order number and top part is 

the incorrectly classified order. 

6.3.1 Confusion matrix for Self-generated mapping 

The matrix (Figure 6.8) for Test1 shows that for class 1 (Front) was correctly classified 

six times and incorrectly classified once to class 2 (Right) and class 4 (Left). There were no 

classifications for class 2 (Right) and class 3 (back). Class 4 (Left) was incorrectly classified 

once to class 1 (Front) and once to class 2 (Right). The accuracy for this test is 60% 
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Predicted Class 

 

Figure 6.8: Test1 using self-generated mapping 

The matrix (Figure 6.9) for Test2 shows that for class 1 was correctly classified three 

times and incorrectly classified twice to class 2 (Right), once to class 3 (Back) and twice to 

class 4 (Left). There were no classifications for class 2 (Right) and class 3 (Back). Class 4 was 

incorrectly classified once to class 1 and once to class 2. The accuracy for this test is 30% 
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Figure 6.9: Test2 using self-generated mapping 

The matrix (Figure 6.10) for Test3 shows that for class 1 was correctly classified five 

times and incorrectly classified twice to class 2 and once to class 3. There were no 

classifications for class 2 and class 3. Class 4 was incorrectly classified once to class 1 and 

once for class 2. The accuracy for this test is 50% 

 

 

Figure 6.10: Test2 using self-generated mapping 

6.3.2 Confusion matrix for Talairach coordinates 

The matrix (Figure 6.11) for Test1 shows that for the class 1 correctly classified three 

times and incorrectly classified thrice to class 3 and twice to class 4. There were no 

classifications for class 2 and class 3. Class 4 was correctly classified twice. The accuracy for 

this is 50% 
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Predicted Class 

 

Figure 6.11: Test1 using Talairach coordinates 

The matrix (Figure 6.12) for Test2 shows that for the class 1 was correctly classified two 

times and incorrectly classified once to class 2, thrice to class 3 and twice to class 4. There 

were no classifications for class 2 and class 3. Class 4 was correctly classified once and 

incorrectly classified once to class 1. The accuracy for this is 30% 

 

Figure 6.12: Test2 using Talairach coordinates 
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The matrix (Figure 6.13) for Test3 shows that the class 1 was correctly classified seven 

times and incorrectly classified once to class 4. There were no classifications for class 2 and 

class 3. Class 4 was incorrectly classified once for class 2 and correctly classified once to class 

4. The accuracy for this is 80% 

 

Figure 6.13: Test3 using Talairach coordinates 

Self-generated mapping Talairach coordinates 

Test’s Accuracy Test’s Accuracy 

Test 1 60% Test 1 50% 

Test 2 30% Test 2 30% 

Test 3 50% Test 3 80% 
Table 6.7: Accuracy results 

6.4 Conclusion 

In this chapter we have discussed how the implemented BCI EEGRotor works when it is 

trained and tested with EEG data. A detailed analysis of results obtained from using both 

self-generated mapping and Talairach coordinates mapping is presented. Also, graphical 

representations of neuron-to-neuron connections are presented.  
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Chapter 7: Conclusions 

 

This chapter summarises the study and discusses its limitations. The contribution of this 

work is outlined and some directions for future work are also provided. 

7.1 A Review of the Study 

This thesis presents, a case study that makes use of the Emotiv EPOC EEG headset as a 

real-time EEG recorder, which is simple to use and affordable. Using the NeuCube architecture 

a new software called EEGRotor was developed that can acquire real-time data and classify it 

for the purpose of Quadcopter control. A detailed explanation of all developed modules is 

presented in the thesis. 

This thesis starts with a literature review and an introduction to how the brain works. It 

also explains briefly the functions of the brain, what a neuron is and how neuron-to-neuron 

interaction occurs. 

A literature review on BCI is presented. 

Further, a literature review of supervised, unsupervised and filter algorithms are 

presented along with brief introduction to neural networks. Also, in this chapter all algorithms 

used in EEGRotor were explained in detail. 

Finally, the implementation of a complete NeuCube suite for BCI called EEGRotor is 

assigned step by step. 

Section 1.3 presents the research questions for this study. The first question is related to 

BCI and is answered in the Chapter 3:. The second question is about working and reliability of 

the Emotiv EEG device when compared to medical grade EEG devices. The answer to this 

question can be found in section 3.12.2. The third question is related to the ability of NeuCube 

to improve the control of a robot. The answer to this question is provided in section 6.3. The 

fourth question relates to whether NeuCube can be used to help paralysed people. While 

currently NeuCube is in its early stage of development, it is not quite fast enough due to 

hardware limitations. In future NeuCube implementation may be used to help a paralytic 

person. The fifth question is related to the accuracy of performance of the BCI framework; the 

proposed BCI framework works on dynamic data, however, EEG data collected from the brain 

with the 14 channel Emotiv device at 128 Hz has much lower resolution than data collected 
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with sophisticated medical EEG device. Regardless of that though, the results obtained in this 

study are promising. Finally, the sixth question related to the limitation of this approach is 

addressed in section 7.2. 

7.2 Limitations 

The limitations of this study are based on the following findings: 

 The main limitation is the hardware speed; 

 No parallel processing architecture was used. Which slows down the classification 

process. 

 Classification can only start after the EEG data has been read. This causes a delay of 

five seconds for the next iteration to start. 

 The SDK provided by the Emotiv Company uses old library, which can only be opened 

if Visual studio 2010 is installed. 

 Due to the SDK restriction the NeuCube for BCI framework can only be run on Matlab 

R2013 family. 

7.3 Contribution of this Study 

The following are the contributions made in this study: 

 Most of the BCI techniques used to control a robot do not have any visual output on 

how the neurons communicate with each other, but the NeuCube for BCI framework is 

able to show the real-time connections between the neurons. 

 All previous experiments conducted with BCI to control a robot used medical grade 

EEG devices. In this study Emotiv EMPOC EEG headset with 14 channel was used. It 

was able to perform well. 

 The EEGRotor State of Mind Module developed in this study is able to show state of 

mind over time. This module separates the raw data into Delta, Theta, Alpha and Beta 

bands. 

 A virtual environment was developed for this study which is an exact replica of the 

KEDRI institute work space here at AUT. This allows the user (in this case the author) 

to feel as if the place is already known so they do not need much training. 

 The classification is done in almost real time and is significantly faster than achieved 

by other techniques, and the key to this is the classification algorithm known as DeSNN 

(section 4.6). 
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 One of the main important feature is that the classified data can be retrained with the 

existing NeuCube framework, this would make the framework more reliable. 

 The EEGRotor Training Module developed in this study can save the collected EEG 

data. Since it is independent of NeuCube, it could be used in other implementations as 

well. 

 The user is able to control both number of collected samples as well as their length in 

seconds. The control panel used for implementing the data to classify is directly 

connected to the EEG headset so that there are no delays in receiving the data. 

7.4 Future Work 

The limitations discussed in section 7.2 could be addressed in future as outlined in 

sections 7.4.1 and 7.4.2 : 

7.4.1 Future Work on the EEGRotor 

 It is recommended that instead of using an Emotiv device with only 14-channels, future 

work should consider devices with a higher number of channels as this would increase 

the signal spatial resolution. 

 Processing speed has been one of the main issues for real time classification of new 

input data. Therefore, it is highly recommended to change the platform from a 

conventional computer to a faster neuromorphic hardware or to use General-Purpose 

Computing on Graphics Processing Units (GPGPU). A neuromorphic hardware such 

as Spiking Neural Network Architecture (SpiNNaker) (SpiNNaker Home Page, n.d.). 

 General computing processors are slower than GPU processors. When a user runs 

NeuCube architecture on a computer, computational process is slow due to the 

processors inability to perform faster. Instead, GPUs could be used that support 

Compute Unified Device Architecture (CUDA) and Open Computing Language 

(OpenCL) framework that can use GPU’s ability to compute data. 

 A new model could be developed to add to the NeuCube framework. The new Module 

(M10 in Figure 7.1) should be able to learn real time data from the EEG device and 

train the NeuCube. 

 At the time of finalising this thesis, the author has already developed and tested this 

module. 
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Figure 7.1: NeuCube configuration with a new Module M10 for online learning, developed by the author. 

 Improved learning methods for BCI in real time (online) could be implemented. 

7.4.2 Hardware Implementation of EEGRotor 

A virtual environment is only good to test a software, but what if we use neuromorphic 

hardware to control a real live quadcopter. A plan that could be implemented in future 

studies is presented below: 

7.4.2.1 Hardware Required 

 Raspberry Pi 

 Arduino 

 IR distance sensor 

 Quad rotor kit with flight controller 

7.4.2.2 Blueprint 

Figure 7.1 shows the dimensions of each parts that would be used to build the actual 

EEGRotor in future work. 

 

Parts Name Size in Millimetres 

Fin 200 mm 

Carbon fibre boom (each) 220 mm 

Complete size of the EEGRotor 550 mm 
Table 7.1: EEGRotor parts 
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Figure 7.2: Side view of quadcopter 

 

Figure 7.3: Top view quadcopter 
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Figure 7.4: Rendered perspective view quadcopter 

7.4.2.3 Safety 

This is always a big concern with Quadcopter. Safety precautions can be taken by not 

over charging the battery and adding ducts to the fins. 
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Appendix A: Code for EEGRotor 

 

testing.m 

function varargout = testing(varargin) 
 

gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @testing_OpeningFcn, ... 
                   'gui_OutputFcn',  @testing_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin) 
    gui_State.gui_Callback = str2func(varargin); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before testing is made visible. 
function testing_OpeningFcn(hObject, eventdata, handles, varargin) 

 
% Choose default command line output for testing 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  

 

  
% --- Outputs from this function are returned to the command line. 
function varargout = testing_OutputFcn(hObject, eventdata, handles)  
 

varargout{1} = handles.output; 

  

  
% --- Executes on button press in browse. 
function browse_Callback(hObject, eventdata, handles) 

 
[FileName,PathName] = uigetfile('*.mat','Select the MATLAB data file'); 

  
full_name = strcat(PathName,FileName); 

  
setappdata(0,'fileName_testing',FileName); 
setappdata(0,'pathName_testing',PathName); 
set(handles.rl,'String',full_name); 
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function rl_Callback(hObject, eventdata, handles) 
 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in next. 
function next_Callback(hObject, eventdata, handles) 

 
uiwait(msgbox('This window will close, click on "Training& Validation" 

button','Closing')); 

  
close(handles.testing_fig); 

  

  
% --- Executes on button press in dynamic. 
function dynamic_Callback(hObject, eventdata, handles) 

 
uiwait(msgbox('This window will close now and click on the start button on 

the EEG Control Panel','Closing')); 

  
close(handles.testing_fig); 

  

  
% --- Executes when user attempts to close testing_fig. 
function testing_fig_CloseRequestFcn(hObject, eventdata, handles) 
 

delete(hObject); 

 

 

training.m 

function varargout = training(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @training_OpeningFcn, ... 
                   'gui_OutputFcn',  @training_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

  

  
function training_OpeningFcn(hObject, eventdata, handles, varargin) 

 
global samples_output time; 
%  
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samples_output = 20; 
set(handles.samples,'String',num2str(samples_output)); 
guidata(hObject,handles); 

  
time = 2; 
set(handles.timer,'String',num2str(time)); 

  
training_folder = exist('training', 'dir'); 
if training_folder ~= 7 
    mkdir('training'); 
end 

  
class1_folder = exist('training\class_1', 'dir'); 
class2_folder = exist('training\class_2', 'dir'); 
class3_folder = exist('training\class_3', 'dir'); 
class4_folder = exist('training\class_4', 'dir'); 

  

  
if class1_folder ~= 7 
    mkdir('training\class_1'); 
end 
if class2_folder ~= 7 
    mkdir('training\class_2'); 
end 
if class3_folder ~= 7 
    mkdir('training\class_3'); 
end 
if class4_folder ~= 7 
    mkdir('training\class_4'); 
end 

  

  

  
x = [0;1;0;-1]; 
y = [1;0;-1;0]; 

  
location={}; 
s=cell(1,4); 
for a = 1:4 
    location{1} = sprintf('UP'); 
    location{2} = sprintf('RIGHT'); 
    location{3} = sprintf('DOWN'); 
    location{4} = sprintf('LEFT'); 
    n = location{a}; 
    s(a)=strread(sprintf(n),'%s','delimiter',''); 
end 

  
set(handles.viewer_training,'YTick',[]); 
set(handles.viewer_training,'XTick',[]); 
scatter(x,y,'filled') 
text((x-.1),(y+.2),s,'color',[1,0,0]); 
hold on;  

  
set(handles.viewer_training,'YTick',[]); 
set(handles.viewer_training,'XTick',[]); 

  
text_input = 'Enter number of samples needed for each class and then click 

on start, click on stop to stop recording EEG data. You can also input your 

own data by click on browse button.'; 
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set(handles.current_pos,'String',text_input); 

  
handles.output = hObject; 

  
guidata(hObject, handles); 

  

 

  
% --- Outputs from this function are returned to the command line. 
function varargout = training_OutputFcn(hObject, eventdata, handles)  
clear global 
varargout{1} = handles.output; 

  

  
function start_training_Callback(hObject, eventdata, handles) 
global samples_output h time final_class final_label; 
set(handles.viewer_training,'YTick',[]); 
set(handles.viewer_training,'XTick',[]); 
% Create axes 
axes(handles.viewer_training); 

  
x = [0;1;0;-1]; 
y = [1;0;-1;0]; 

  
h = EmotivEEG; 
h.Run; 

  
class1 = zeros(128, 25, samples_output); 
class1_label = zeros(1,samples_output); 
class2 = zeros(128, 25, samples_output); 
class2_label = zeros(1,samples_output); 
class3 = zeros(128, 25, samples_output); 
class3_label = zeros(1,samples_output); 
class4 = zeros(128, 25, samples_output); 
class4_label = zeros(1,samples_output); 

  

  
for k = 1:samples_output 

  
    location={}; 
    s=cell(1,4); 
    for a = 1:4 
        location{1} = sprintf('UP'); 
        location{2} = sprintf('RIGHT'); 
        location{3} = sprintf('DOWN'); 
        location{4} = sprintf('LEFT'); 
        n = location{a}; 
        s(a)=strread(sprintf(n),'%s','delimiter',''); 
    end 

  
    set(handles.viewer_training,'YTick',[]); 
    set(handles.viewer_training,'XTick',[]); 
    scatter(x,y,'filled') 
    text((x-.1),(y+.2),s,'color',[1,0,0]); 
    hold on;  

  
    tic 
    for s=1:numel(x) 
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        samples_class_text = sprintf('Samples: %s \n Class: %s',num2str(k), 

num2str(s)); 
        set(handles.current_pos,'String',samples_class_text, 'FontSize', 

15); 
        set(handles.viewer_training,'YTick',[]); 
        set(handles.viewer_training,'XTick',[]); 
        scatter(x(s),y(s),400,'MarkerFaceColor',[0 0 0]); 
        drawnow; 
        if s == 1 
            class1(:,:,k) = h.data; 
            class1_label(:,k) = 1; 
        elseif s == 2 
            class2(:,:,k) = h.data; 
            class2_label(:,k) = 2; 
        elseif s == 3 
            class3(:,:,k) = h.data; 
            class3_label(:,k) = 3; 
        elseif s == 4 
            class4(:,:,k) = h.data; 
            class4_label(:,k) = 4; 
        end 
        pause(time); 
    end 
    toc 
    cla; 
    set(handles.current_pos,'String','Done!'); 
end 

  
save('training\class_1\class1.mat','class1','class1_label'); 
save('training\class_2\class2.mat','class2','class2_label'); 
save('training\class_3\class3.mat','class3','class3_label'); 
save('training\class_4\class4.mat','class4','class4_label'); 

  
final_class = cat(3, class1, class2, class3); 
final_label = cat(2, class1_label, class2_label, class3_label); 

  
save('training\final_eeg.mat', 'final_class','final_label'); 

  
FileName = 'final_eeg.mat'; 
[stat,struc]=fileattrib('training'); 
i_PathName = struc.Name; 

  
PathName = strcat(i_PathName, '\'); 

  
% b = open('training\'); 

  
setappdata(0,'fileName_training',FileName); 
setappdata(0,'pathName_training',PathName); 

  

  
h.delete; 

  

  
function stop_training_Callback(hObject, eventdata, handles) 
global h final_class final_lables; 

  
h.Stop; 

  
function samples_Callback(hObject, eventdata, handles) 
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global samples_output; 

  
samples_output = str2double(get(hObject,'String')); 

  

 

  
function samples_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
 [FileName,PathName] = uigetfile('*.mat','Select the MATLAB data file'); 
setappdata(0,'fileName_training',FileName); 
setappdata(0,'pathName_training',PathName); 

  

  
function training_figure_CloseRequestFcn(hObject, eventdata, handles) 
global h; 

  
if libisloaded('edk')     
    h.delete 
end 

  
delete(hObject); 

  

  

  
function timer_Callback(hObject, eventdata, handles) 

 
global time; 

  

  
time = str2double(get(hObject,'String')); 

  

  
function timer_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 

 

emotion.m 

function [ ] = state( input_arguments ) 

  
eeg_data = input_arguments; 

  

  

  
Number=4; 
hz = 128; 
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time = 0:1/hz:(length(eeg_data)-1)*1/hz; 

  
% delta wave 
Wn_delta=5/hz; 

  
[b,a] = butter(Number,Wn_delta); 
delta = filter(b,a,eeg_data); 

  

  
% theta wave 

  
W1 = 8/hz; 
W2 = 14/hz; 
Wn_theta = [W1 W2]; 
[c,d] = butter(Number,Wn_theta); 
theta = filter(c,d,eeg_data); 

  

  
% alpha wave 

  
W3 = 16/hz; 
W4 = 22/hz; 
Wn_alpha = [W3 W4]; 
[e,f] = butter(Number,Wn_alpha); 
alpha = filter(e,f,eeg_data); 

  

  

  
% beta wave 

  
W5 = 22/hz; 
W6 = 80/hz; 
Wn_beta = [W5 W6]; 
[g,h] = butter(Number,Wn_beta); 
beta = filter(g,h,eeg_data); 

  

  
%% EEG Plotting 

  
set(gcf, 'Position', [1 1 1920 1080]) 
hold on 
title('EEG Wave Patterns') 
subplot(5,1,1), plot(time, delta)  
    xlabel('Time(s)') 
    ylabel('Amplitude') 
    title('Delta Waves') 
subplot(5,1,2), plot(time, theta)  
    xlabel('Time(s)') 
    ylabel('Amplitude') 
    title('Theta Waves') 
subplot(5,1,3), plot(time, alpha)  
    xlabel('Time(s)') 
    ylabel('Amplitude') 
    title('Alpha Waves') 
subplot(5,1,4), plot(time, beta)  
    xlabel('Time(s)') 
    ylabel('Amplitude') 
    title('Beta Waves')  
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hold off 

  

  
end 

  

eeg_live.m 

function varargout = eeg_live(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @eeg_live_OpeningFcn, ... 
                   'gui_OutputFcn',  @eeg_live_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
 

function eeg_live_OpeningFcn(hObject, eventdata, handles, varargin) 

 
lmno = getappdata(0,'eegdata'); 
treshold = getappdata(0,'treshold'); 

  
spk=diff(lmno,1,1); 
spk1=spk; 

  
a = (mean(abs(spk1),1)+std(abs(spk1),0,1))'; 
disp(a) 

  

  

  
x = [-30;-50;-40;-60;-60;-60;-30;30;60;60;60;40;50;30]; 
y = [50;30;30;0;20;-60;-80;-80;-60;20;0;30;30;50]; 
z = [30;0;40;30;0;0;10;10;0;0;30;40;0;30]; 

  
location={}; 
s=cell(1,14); 
for a = 1:14 
    location{1} = sprintf('AF3'); 
    location{2} = sprintf('F7'); 
    location{3} = sprintf('F3'); 
    location{4} = sprintf('FC5'); 
    location{5} = sprintf('T7'); 
    location{6} = sprintf('P7'); 
    location{7} = sprintf('O1'); 
    location{8} = sprintf('O2'); 
    location{9} = sprintf('P8'); 
    location{10} = sprintf('T8'); 
    location{11} = sprintf('FC6'); 
    location{12} = sprintf('F4'); 
    location{13} = sprintf('F8'); 
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    location{14} = sprintf('AF4'); 
    n = location{a}; 
    s(a)=strread(sprintf(n),'%s','delimiter',''); 
end 
% the plot 
scatter3(-x,-y,-z,'filled'); % <- NOT <plot3> 
text(-(x+.3),-(y-.5),-z,s,'color',[1,0,0]); 
view(115,18) 

  
handles.output = hObject; 

  
guidata(hObject, handles); 

  

  
function varargout = eeg_live_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output; 

  

  
function pushbutton1_Callback(hObject, eventdata, handles) 
close(); 

  

 

neucube.m 

function start_eeg_dynamic_Callback(hObject, eventdata, handles) 
global emotiv_true_false h; 
emotiv_true_false = true; 

  
set(handles.disconnect,'enable','on'); 
set(handles.stop_eeg_dynamic,'enable','on'); 
set(handles.disconnect,'enable','on'); 

  
axes(handles.eeg_dynamic) 
h = EmotivEEG; 
h.Run 
a=2; 
while (emotiv_true_false) 
    out = nan([size(h.data),4]); 
    for k = 1:a 
        out(:,:,k) = h.data + 1; 
        plot(out(:,:,k)); 
%         handles.newhandel=out(:,:,k); % send it to eeg_live 
        setappdata(0,'eegdata',out(:,:,k)); 
        pause(0.5); 
    end 
    a=a+1; 
end 
h.Stop; 
set(handles.eeg_final,'visible','on'); 
set(handles.activation_plot,'visible','off'); 
set(handles.emo_plot,'visible','off'); 
for eeg = 1:size(out(:,:,:),3) 
    eeg_output_1d = permute(out,[1 3 2]); 
    eeg_output_1d = reshape(eeg_output_1d,[],size(out,2),1); 
    plot(eeg_output_1d); 
    assignin('base','eeg_output_1d',eeg_output_1d) 
end 
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function activation(hObject, eventdata, handles) 
% activation plot 

  
x = [-30;-50;-40;-60;-60;-60;-30;30;60;60;60;40;50;30]; 
y = [50;30;30;0;20;-60;-80;-80;-60;20;0;30;30;50]; 
z = [30;0;40;30;0;0;10;10;0;0;30;40;0;30]; 

  
location={}; 
s=cell(1,14); 
for a = 1:14 
    location{1} = sprintf('AF3'); 
    location{2} = sprintf('F7'); 
    location{3} = sprintf('F3'); 
    location{4} = sprintf('FC5'); 
    location{5} = sprintf('T7'); 
    location{6} = sprintf('P7'); 
    location{7} = sprintf('O1'); 
    location{8} = sprintf('O2'); 
    location{9} = sprintf('P8'); 
    location{10} = sprintf('T8'); 
    location{11} = sprintf('FC6'); 
    location{12} = sprintf('F4'); 
    location{13} = sprintf('F8'); 
    location{14} = sprintf('AF4'); 
    n = location{a}; 
    s(a)=strread(sprintf(n),'%s','delimiter',''); 
end 
% the plot 
scatter3(-x,-y,-z,'filled'); % <- NOT <plot3> 
text(-(x+.3),-(y-.5),-z,s,'color',[1,0,0]); 
view(115,18); 

 

Plotting Option 

function plot_options_popup_Callback(hObject, eventdata, handles) 
str = get(hObject, 'String'); 
val = get(hObject, 'Value'); 

  
switch str{val}; 
    case 'Final Reading' 
        set(handles.eeg_final,'visible','on'); 
        set(handles.activation_plot,'visible','off'); 
        set(handles.emo_plot,'visible','off'); 
        YesNo = evalin('base','exist(''eeg_output_1d'',''var'')'); 
         axes(handles.eeg_final) 
        if(YesNo == 1) 
            change_current_figure(gcf); 
            plot(evalin('base','eeg_output_1d')); 
        else 
            return; 
        end 
    case 'Activation Plot' 
        set(handles.activation_plot,'visible','on'); 
        set(handles.eeg_final,'visible','off'); 
        set(handles.emo_plot,'visible','off'); 
        axes(handles.activation_plot) 
        change_current_figure(gcf); 
        activation 
    case 'Emotion State' 
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        set(handles.emo_plot,'visible','on'); 
        set(handles.eeg_final,'visible','off'); 
        set(handles.activation_plot,'visible','off'); 
        axes(handles.emo_plot) 
        change_current_figure(gcf); 
%         emo_Callback 
        YesNo = evalin('base','exist(''eeg_output_1d'',''var'')'); 
        figure; 
        if(YesNo == 1) 
            change_current_figure(gcf); 
            state(evalin('base','eeg_output_1d')); 
        else 
            return; 
        end 

         
end 

 

function training_testing_Callback(hObject, eventdata, handles) 
str = get(hObject, 'String'); 
val = get(hObject, 'Value'); 

  
switch str{val}; 
    case 'Training' 
        eeg_rotor(hObject, eventdata, handles); 
    case 'Testing' 
        testing1(hObject, eventdata, handles); 

     
end 

 

EEGRotor controller code 

% gollahalli 
import java.awt.AWTException; 
import java.awt.Robot; 
import java.awt.event.KeyEvent; 
robot=Robot; 

  
if isempty(class_label_for_validation) 
    set(handles.tips,'string','Please find the classification results in 

command window'); 
    fprintf('\n'); 
    fprintf('------------------ RESULTS -------------------------\n'); 
    str=strcat('Data set:',handles.FileName); 
    fprintf(str); 
    fprintf('\n'); 
    fprintf('Time:') 
    fprintf(datestr(now)) 
    fprintf('\nClass label of the given samples:\n') 
    for k=1:length(output_neurals_test_class_sn) 
        fprintf('Sample %04d ------> class 

%d',k,output_neurals_test_class_sn(k)); 
        if(output_neurals_test_class_sn == 2) 
            robot.keyPress(KeyEvent.VK_W); 
            robot.delay(8000); 
            robot.keyRelease(KeyEvent.VK_W); 
        elseif(output_neurals_test_class_sn == 1) 
            robot.keyPress(KeyEvent.VK_S); 
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            robot.delay(300); 
            robot.keyRelease(KeyEvent.VK_S); 
        elseif(output_neurals_test_class_sn == 3) 
            return; 
            robot.keyPress(KeyEvent.VK_A); 
            robot.delay(300); 
            robot.keyRelease(KeyEvent.VK_A); 
        elseif(output_neurals_test_class_sn == 4) 
            return; 
            robot.keyPress(KeyEvent.VK_D); 
            robot.delay(300); 
            robot.keyRelease(KeyEvent.VK_D); 
        end 
        fprintf('\n'); 
    end 
    fprintf('----------------------------------------------------\n'); 

 

Function for starting EEG data 

function start_eeg_dynamic_Callback(hObject, eventdata, handles) 
% hObject    handle to start_eeg_dynamic (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global emotiv_true_false h; 
emotiv_true_false = true; 

  
set(handles.disconnect,'enable','on'); 
set(handles.stop_eeg_dynamic,'enable','on'); 
set(handles.disconnect,'enable','on'); 

  
axes(handles.eeg_dynamic) 
h = EmotivEEG; 
h.Run 
a=2; 
while (emotiv_true_false) 
    out = nan([size(h.data),4]); 
    for k = 1:a 
        out(:,:,k) = h.data + 1; 
        plot(out(:,:,k)); 
%         handles.newhandel=out(:,:,k); % send it to eeg_live 
        setappdata(0,'eegdata',out(:,:,k)); 
        pause(0.5); 
    end 
    a=a+1; 
end 
h.Stop; 
set(handles.eeg_final,'visible','on'); 
set(handles.activation_plot,'visible','off'); 
set(handles.emo_plot,'visible','off'); 
for eeg = 1:size(out(:,:,:),3) 
    eeg_output_1d = permute(out,[1 3 2]); 
    eeg_output_1d = reshape(eeg_output_1d,[],size(out,2),1); 
    plot(eeg_output_1d); 
    assignin('base','eeg_output_1d',eeg_output_1d) 
end 
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Stopping EEG 

function stop_eeg_dynamic_Callback(hObject, eventdata, handles) 
% hObject    handle to stop_eeg_dynamic (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global emotiv_true_false; 
emotiv_true_false = false; 
axes(handles.eeg_final) 
set(handles.stop_eeg_dynamic,'enable','off'); 

 

Disconnecting EEG 

function disconnect_Callback(hObject, eventdata, handles) 
% hObject    handle to disconnect (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global h; 

  
h.delete; 
set(handles.disconnect,'enable','off'); 
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Appendix B: Screenshots 

 

EEGRotor Virtual Environment 

 

Figure B.1: EEGRotor virtual environment 
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Figure B.2: EEGRotor virtual environment ending 

NeuCube for BCI 

 

Figure B.3: NeuCube for BCI 
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EEGRotor Testing Module 

 

Figure B.4: EEGRotor testing module 
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EEGRotor Training Module 

 

Figure B.5: EEGRotor training module 

EEG Data Control Panel 

 

Figure B.6: EEG data control panel 
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EEG Data Activation Plot 

 

Figure B.7: EEG data activation plot 

Emotional State 

 

Figure B.8: Emotional state 
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Dynamic EEG Data 

 

Figure B.9: Dynamic EEG data 
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Total EEG Data 

 

Figure B.10: Total EEG data 
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Blue Print of EEGRotor Hardware (Side View) 

 

Figure B.11: Blue print of EEGRotor hardware (side view) 

Blue Print of EEGRotor Hardware (Top View) 

 

Figure B.12: Blue print of EEGRotor hardware (top view) 
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Rendered Image of EEGRotor Hardware (Perspective View) 

 

Figure B.13: Rendered image of EEGRotor hardware (perspective view) 
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Appendix C: Videos and Software Links 

 

NeuCube for BCI running EEGRotor 

In this screen recorded video, the author shows a demo of EEGRotor VE using NeuCube for 

BCI. The video can be views at https://youtu.be/AvaCuLz9XcQ 

EEGRotor VE Simulation 

The author created a simulation to show the working of EEGRotor VE. The video can be 

viewed at https://youtu.be/Zne6wMrti1A 

EEGRotor VE Code and Models 

Code and assets for the creation of EEGRotor Virtual Environment can be found at 

https://github.com/akshaybabloo/EEGRotor-VE 

 

https://youtu.be/AvaCuLz9XcQ
https://youtu.be/Zne6wMrti1A
https://github.com/akshaybabloo/EEGRotor-VE
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