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Abstract 

Interest in using artificial neural networks for predicting & forecasting has led to 

a tremendous surge in research activities in the past decade. Self organising 

maps, also commonly known as unsupervised neural networks, are known to 

generate their topology during learning. This leads to a network structure which 

converts complex, nonlinear relationships between multi-dimensional data into 

simple geometric relationships on a low-dimensional display.  

 

In this study, a Self Organising Map (SOM) is employed to predict the quality of 

welds using the Friction Stir Welding (FSW) process. FSW is a relatively novel 

welding technology, which has caught the interest of many industrial sectors 

due to its many advantages and clear industrial potential. Despite the 

successful deployment of FSW in industry, research relating to friction stir weld 

quality is developing rather gradually. This is mainly due to the non-

deterministic nature of the environment in which the system must function.  

 

The study is aimed to demonstrate and apply the most important property of the 

SOMs to FSW - orderliness of input-output mappings. Experimental data was 

collected by performing a series of FSW trials on Aluminium alloy AA2024 and 

A253 against a selected range of parameters. The SOM system was trained 

using the prepared training set. The generated model was tested against an 

unseen set of data captured during the FSW trials. The network results were in 

good agreement with the previously unseen data. It has been demonstrated 

that the SOM algorithm can be used as reliable tool for predicting weld quality.  
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1 Introduction  

1.1 Welding: A Brief Overview 

Welding is the process of joining materials, usually metals or thermoplastics, by 

softening with heat and applying pressure. ‘The majority of welding processes 

rely on heat more than on pressure to accomplish joining by creating atomic 

bonding across the joint interface’ [31]. There are two types of welding: fusion 

and non-fusion welding. During fusion welding, sufficient heat causes melting, 

and significant melting is necessary for welding to take place. In non-fusion 

welding, heat is only enough to soften the material in the solid state to facilitate 

plastic deformation or speed up the material solid phase diffusion [31]. 

 

Welding technology has advanced quickly during from the early 20th century - 

several modern welding techniques were developed, including friction stir 

welding, gas metal arc welding, submerged arc welding and electroslag welding 

[1] 
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1.1.1 Background of Friction Stir Welding 

Friction stir welding (FSW) is a novel welding technique invented by The 

Welding Institute (TWI) in 1991. It was invented and experimentally proven by 

Wayne Thomas and a team of his colleagues at The Welding Institute UK in 

December 1991 [5]. TWI holds a number of patents on the process, the first 

being the most descriptive. FSW is in fact a solid-state joining process that is a 

combination of extruding and forging and is not a true welding process [5]. 

1.1.2 Key benefits of FSW  

Since the process occurs at a temperature below the melting point of the work 

piece material, FSW has several advantages over fusion welding.  Some of the 

process advantages are given in the following list [7]: 

  

http://en.wikipedia.org/w/index.php?title=The_Welding_Institute&action=edit&redlink=1�
http://en.wikipedia.org/wiki/1991�
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Metallurgical 
benefits  

             Environmental 
benefits                 Energy benefits  

 Solid phase process  

 
 No shielding gas 

required  
 

 Improved 
materials use 
(e.g., joining 
different  

 Low distortion of 
work piece.  

 No surface 
cleaning required  

 thickness) allows 
reduction in 
weight  

 No loss of alloying 
elements 
 

 Excellent 
metallurgical 
properties in the 
joint area 

 
 Eliminate 

grinding wastes  
 

 Eliminate 
solvents required 
for degreasing 
 

 Only 2.5% of the 
energy needed for 
a laser weld 
 

 Decreased fuel 
consumption in 
light weight 
aircraft, 
automotive and 
ship applications 

 Absence of 
cracking. 
 

 Fine Microstructure 
 

 Good dimensional 
stability and 
repeatability 

 
  Consumable 

materials saving,  
such as rugs, 
wire or any other 
gases 

 

 

 

Table 1 Benefits of FSW [3] 

 

These advantages have generated interest from many key industries, 

particularly in the aerospace industry (such as Boeing, NASA – Marshall Space 

Flight Centre), the marine industry (e.g. fast ferries, fishing boats and yachts 

etc), and also transportation like the A-train from Hitachi [3-4] 

                                                              
 

Figure 1-1  Aluminium double skin of the A-Train [4] 



 

 4 

 

1.1.3 Principle of Operation 

In friction stir welding, a cylindrical-shouldered tool, with a profiled 

threaded/unthreaded probe (nib or pin) is rotated at a constant speed and fed at 

a constant traverse rate into the joint line between two pieces of sheet or plate 

material, which are butted together. The parts have to be clamped rigidly onto a 

backing plate in a manner that prevents the two joint faces from being forced 

apart. The length of the pin is slightly less than the depth of weld and the tool 

shoulder is kept in close contact with the work surface [6]. 

The pin is moved against the work, or vice versa. Frictional heat is generated 

between the wear-resistant welding tool shoulder and pin, and the material of 

the work pieces. This heat, along with the heat generated by the mechanical 

mixing process and the adiabatic heat within the material, cause the stirred 

materials to soften without reaching the melting point (hence cited as a solid-

state process), allowing the traversing of the tool along the weld line [6,11]  

As the pin is moved in the direction of welding, the leading face of the pin, 

assisted by a special pin profile, forces plasticised material to the back of the 

pin while applying a substantial forging force to consolidate the weld metal. The 

welding of the material is facilitated by severe plastic deformation in the solid 

state, involving dynamic re crystallization of the base material [6, 11]  

 

http://en.wikipedia.org/wiki/Friction�
http://en.wikipedia.org/wiki/Welding�
http://en.wikipedia.org/wiki/Adiabatic�
http://en.wikipedia.org/wiki/Melting_point�
http://en.wikipedia.org/wiki/Welding�
http://en.wikipedia.org/wiki/Deformation�


 

 5 

 
 

 

Figure 1-2 Schematic illustration of the FSW process [5] 

 

1.1.4 Shortcomings in Friction Stir Welds 

One of the major drivers for the use of FSW in aluminium welding is the low 

incidence of weld flaws as compared to that produced by conventional arc 

welding [17]. However, the process does have its own characteristic flaws. A 

number of different process variables affect the quality of the joint produced, for 

example - tool design, travel speeds, welding gap, thickness mismatch & plate 

thickness variation, tool plunge depth & tilt angle. 

Successful, reproducible welds may be produced by operating within the 

process “windows” However, defects in weld quality spring up when the welding 

conditions deviate from the standard operating window. Currently, there are no 

set standards for evaluating the quality of friction stir welds [29]. 
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1.2 Introduction to Artificial Neural Networks  

Artificial neural networks emerged after the introduction of simplified neurons by 

McCulloch and Pitts in 1943. These neurons were presented as models of 

biological neurons and as conceptual components for circuits that could perform 

complex computational tasks. Inspired by the biological nervous system they 

evolved in to an information processing paradigm.  

The key element of this paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems 

[10].  

Artificial neural networks (ANN) are amongst the newest signal-processing 

technologies in the engineer's toolbox. The field is highly interdisciplinary, but 

this study will restrict the view to the engineering perspective.  In engineering, 

neural networks serve two important functions: as pattern classifiers and as 

nonlinear adaptive filters [7, 8] 

  

Figure 1-3 General architecture of Artificial Neural Networks [12] 
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1.3 Artificial Neural Networks versus Conventional 
Computing 

Artificial Neural networks take a different approach to problem solving than 

conventional computers. Conventional computers use an algorithmic approach 

i.e. the computer follows a set of instructions in order to solve a problem. 

Unless the specific steps that the computer needs to follow are known or given, 

the computer cannot solve the problem [10]. This restricts the problem solving 

capability of conventional computers to problems that we already understand 

and know how to solve. However, standard computer algorithms would be so 

much more useful if they could do things that we don't exactly know how to do.  

 

Neural networks process data and information in a way similar to the human 

brain [8]. The network is composed of a large number of highly interconnected 

processing elements (neurones) working in parallel to solve a specific problem 

[7, 8]. Neural networks learn by example. They cannot be programmed to 

perform a specific task. The examples must be selected carefully otherwise 

useful time is wasted or even worse the network might be functioning 

incorrectly.  

 

 
 

Figure 1-4 Basic neuron model 
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On the other hand, conventional computers use a cognitive approach to 

problem solving; the way the problem is to be solved must be known and stated 

in small unambiguous instructions. These instructions are then converted from 

a high level language program into machine code that the computer 

understands. These machines are totally predictable; if anything goes wrong it’s 

due to a software or hardware fault. 

 

Neural networks and conventional algorithmic computers are not in competition 

but complement each other. There are certain tasks are more suited to an 

algorithmic approach like arithmetic operations and tasks that are more suited 

to neural networks. Even more, a large number of tasks, require systems that 

use a combination of the two approaches (normally a conventional computer is 

used to supervise the neural network) in order to perform at maximum efficiency 

[27]. 

1.3.1 Why use Self Organising Neural Networks 

Self organising neural networks, with their remarkable ability to derive meaning 

from complicated or imprecise data, can be used to extract patterns and detect 

trends that are too complex to be noticed by either humans or other computer 

techniques. A trained self organising neural network can be thought of as an 

"expert" in the category of information it has been given to analyse. This expert 

can then be used to provide projections given new situations of interest and 

answer "what if" questions [30, 38]. 
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Other advantages include [42]:  

 Adaptive learning: An ability to learn and mimic tasks based on the data 

given for training or initial experience.  

 Self-Organisation: An ANN can create its own organisation or 

representation of the information it receives during learning time.  

 Real Time Operation: ANN computations may be carried out in parallel, 

and special hardware devices are being designed and manufactured 

which take advantage of this capability.  

 Fault Tolerance via Redundant Information Coding: Partial destruction of 

a network leads to the corresponding degradation of performance. 

However, some network capabilities may be retained even with major 

network damage. 

 

1.3.2 Real World Applications of Self Organising Artificial Neural 
Networks 

 A great deal of research is being undertaken on neural networks 

worldwide. There are many different types of neural networks, each with 

it’s own strengths particular to it’s field of applications. The abilities of 

different networks can be related to their structure, dynamics and 

learning methods. Since neural networks are best at identifying patterns 

or trends in data, they are well suited for prediction or forecasting needs 

including [20]: 

 Industrial process control 

 Data validation 

 Risk management  

 Sales forecasting 
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 Self organising ANNs are also used in the following specific paradigms: 

recognition of speakers in communications; diagnosis of hepatitis; 

undersea mine detection; texture analysis; three-dimensional object 

recognition; hand-written word recognition; and facial recognition [27, 20] 
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1.4 Research Objectives  

The ability to determine the quality of a weld is important, and in some 

applications critical.  

Traditionally, it has been necessary to determine the weld input parameters for 

every new welded product to obtain a welded joint with the required 

specifications. This requires a time-consuming trial and error development 

effort, with weld input parameters chosen by the skill of the engineer or machine 

operator. Then welds are examined to determine whether they meet the 

specification or not. However, the likely applications for this technology make 

destructive testing economically infeasible. Also, what is not achieved or often 

considered is an optimised welding parameters combination, since welds can 

often be produced with very different parameters [21]. In other words, there is 

often a more ideal welding parameter combination, which can be used if it can 

be determined. 

A number of studies have focussed on the quantitative relationship between the 

primary FSW inputs and measured outputs (responses) [13, 14, 15, 16]. The 

measured responses are the most descriptive in understanding FSW process 

fundamentals and may help in understanding possible monitoring and control 

schemes. 

The goal of this research is to determine if the weld quality can be ascertained 

from feedback generated by the welding equipment. The friction stir welding 

process provides a wealth of feedback information which may be used to 

evaluate weld quality in a non-destructive manner. The rationale behind this 

study is to develop a self organising artificial neural network approach to 

establish predictive equations & relationships that may be used in a similar 



 

 12 

setup to pre determine weld quality. The breadth of the neural network 

approach is sufficient to allow the results to be truly representative of FSW. 

 

 

1.4.1 Collecting Experimental Data 

In this work, two types of aluminium alloys were considered for collecting data 

from the FSW process: AA2024 and A356 (AA2024 and A356 which have 

different strength characteristics near peak FSW temperatures) [19]. 

FSW experiments were carried out under a range of rotation and welding 

speeds. For each material, 22 sets of parameters were used. The resulting 

parameters were recorded for all welds using an external weld monitoring 

system plus software to display real time numerical values of forces, torque, the 

temperature adjacent to the system electronics and (if desired) the tool 

temperature. This enabled the measure of key weld parameters. 

Tools were made by CNC machining, and heat treated. A normal milling 

machine with stepped up rotation/linear speed settings was used. “Bead on 

plate” FSP was conducted on 290mm long, 85 mm wide, 6.35 mm thick A356 

(Al-7Si-0.3Mg) cast aluminium plates.  

 

 
Figure 1-5 Bead on plate setup 
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1.4.2 ANN application and modeling data with network 

The data obtained experimentally was used to explore the utilisation of 

Kohonen self organizing maps or SOM, which is a type of self organising neural 

network, for mapping and forecasting the relationships between widely different 

FSW parameters to assess weld quality. The value of the SOM analysis is to 

observe interrelationships that exist between the various FSW variables that 

were experimentally obtained and thereby provide a basis for generating a 

trained model on real data that can be experimentally examined.  

The SOM does not replace existing statistical tools, but complements our ability 

to examine relationships between disparate types of variables in a visual 

presentation of the data. Visual inspection of the component planes in SOM 

show that there are common patterns between many sets of variables. In this 

model, the primary concern is weld quality. The model presented here has 

demonstrated the type of system which can successfully be employed to predict 

FSW weld quality — an artificially intelligent program, providing information on a 

variety of input & generated parameters, which can be successfully applied to a 

personal computer. 
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1.4.3 Evaluation of results 

To develop a neural network with good performance, an adequate quantity of 

experimental data needs to be collected [22, 23]. The training process involves 

minimising the sum of square error between actual and predicted outputs, using 

the available training data, by continuously adjusting and finally determining the 

weights connecting neurons in adjacent layers. 

During the training and testing process, the structure, learning algorithm and 

other parameters of the neural network should also be optimised to the specific 

problem under investigation. When the neural network is sufficiently optimally 

trained based on the available data, it then becomes possible to generate 

satisfactory results when presented with any new input data it has never 

experienced before. 

 

Summing up, the objectives of this research were to: 

 

Carry out a series of FSW trials on Aluminium alloy A253 and AA2024 against a 

select range of parameters. 

Obtain raw feedback data from the sensory machine during a weld. 

Develop an self organising neural network for simulating real world experiments 

Train and test the self organising map with real world data 

Evaluation of experimental results 
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2 Literature Review 

Chapter 1 gave a brief introduction and background to FSW, self organising 

neural network and an outline of the research objectives. This chapter reviews 

the state of the art on Artificial Neural Networks and the reasons to use growing 

self organising networks are investigated with in the context of prediction & 

optimisation of FSW weld quality. Furthermore, it aims to identify the knowledge 

gaps that have been incorporated into the research objectives. 

2.1 Artificial Neural Network – review of state-of-the-art 

An artificial neural network (ANN) is a mathematical model or computational 

model based on biological neural networks [9]. An ANN model consists of a 

number of highly interconnected processing elements organized into layers, the 

geometry and functionality of which have been likened to that of the human 

brain.  

ANNs learn by experience, generalize from previous experiences to new ones, 

and can make decisions [8, 9]. 

 In general terms, neural networks are non-linear statistical data modelling 

tools. They can be used to model complex relationships between inputs and 

outputs or to find patterns in data.  In most cases an ANN is an adaptive system 

that changes its structure based on external or internal information that flows 

through the network during the learning/training phase. 
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Figure 2-1 Basic neural network architecture [10] 
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2.1.1 Learning Paradigms 

There are three major learning paradigms, each corresponding to a particular 

abstract learning task. These are supervised learning, unsupervised learning 

and reinforcement learning. Usually any given type of network architecture can 

be employed in any of these categories. 

 

2.1.1.1 Supervised learning 

In supervised learning, the classifier for a given input is able to classify it with 

respect to some kind of classification. For a system to be using supervised 

learning, a teacher must help the system in its model construction by defining 

classes and providing positive and negative examples of objects belonging to 

these classes. The system is then to find out common properties of the different 

classes, and what separates them, in order to make correct classification for 

other objects. Supervised document classifiers are commonly referred to as 

statistical document classifiers because they make use of statistical properties 

of category features during classification [13]. 

 

For example, say, we are given a set of example pairs and the aim is to find a 

function f in the allowed class of functions that matches the examples. In other 

words, we wish to infer the mapping implied by the data; the cost function is 

related to the mismatch between our mapping and the data and it implicitly 

contains prior knowledge about the problem domain. 

 

Tasks that fall within the paradigm of supervised learning are pattern 

recognition (also known as classification) and regression (also known as 

function approximation). The supervised learning paradigm is also applicable to 
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sequential data (e.g., for speech and gesture recognition). This can be thought 

of as learning with a "teacher," in the form of a function that provides continuous 

feedback on the quality of solutions obtained thus far [13, 27] 

  

2.1.1.2 Unsupervised learning 

This learning technique identifies groups or clusters, of related documents as 

well as the relationships among them. This approach is commonly referred to 

as clustering; because this approach eliminates the need for tagged training 

documents and also does not require a preexisting taxonomy or category 

structure. However, clustering algorithms are not always good at selecting 

categories that are intuitive to human users. For this reason, clustering 

generally works hand-in-hand with the previously described supervised 

learning. Kohonen’s Self Organizing Map is an unsupervised learning 

technique. By using Kohonen’s SOM, the data dimensionality can be reduced 

from a very high dimension data into 2 or 3 dimensional space. This reduction is 

dimensionality enables us to interpret the results easily and instinctively. 

 

In unsupervised learning we are given some data x, and the cost function to be 

minimized can be any function of the data x and the network's output, f. The 

cost function is dependent on the task (what we are trying to model) and our 

assumptions (the implicit properties of our model, its parameters and variables) 

[13]. 

 

Tasks that fall within the paradigm of unsupervised learning are in general 

estimation problems; the applications include clustering, the estimation of 

statistical distributions, compression and filtering [13, 27] 
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2.1.1.3 Reinforcement learning 

In reinforcement learning, data x is usually not given, but generated by an 

agent's interactions with the environment. At each point in time t, the agent 

performs an action yt and the environment generates an observation xt and an 

instantaneous cost ct, according to some (usually unknown) dynamics. The aim 

is to discover a policy for selecting actions that minimises some measure of a 

long-term cost, i.e. the expected cumulative cost. The environment's dynamics 

and the long-term cost for each policy are usually unknown, but can be 

estimated. ANNs are frequently used in reinforcement learning as part of the 

overall algorithm [7, 13]. 

 

Tasks that fall within the paradigm of reinforcement learning are control 

problems, games and other sequential decision making tasks. 
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2.1.2 Useful properties of Artificial Neural networks  

2.1.2.1 Computational Power 

The multi-layer perceptron (MLP) is a universal function approximator, as 

proven by the Cybenko theorem. However, the proof is not constructive 

regarding the number of neurons required or the settings of the weights [32]. 

 

Work by Hava T. Siegelman [25] has provided proof that a specific recurrent 

architecture with rational valued weights (as opposed to the commonly used 

floating point approximations) has the full power of a Universal Turing Machine. 

They have further shown that the use of irrational values for weights results in a 

machine with trans-turing power. 

 

2.1.2.2 Capacity 

Artificial neural network models have a property called 'capacity', which roughly 

corresponds to their ability to model any given function. It is related to the 

amount of information that can be stored in the network and to the notion of 

complexity [32]. 

 

2.1.2.3 Convergence 

Nothing specific can be said in general about convergence since it depends on 

a number of factors. Firstly, multiple local minima may exist. This depends on 

the cost function and the model. Secondly, the optimization method used might 

not be guaranteed to converge when far away from a local minimum. Thirdly, 

for a very large amount of data or parameters, some methods become 



 

 21 

impractical. In general, it has been found that theoretical guarantees regarding 

convergence are not always a very reliable guide to practical application [32]. 

 

2.1.2.4 Generalisation and statistics 

In applications where the goal is to create a system that generalises well in 

unseen examples, the problem of overtraining has emerged. This arises in 

over-complex or over-specified systems when the capacity of the network 

significantly exceeds the needed free parameters. There are two schools of 

thought for avoiding this problem: The first is to use cross-validation and similar 

techniques to check for the presence of overtraining and optimally select hyper 

parameters to minimise the generalisation error. The second is to use some 

form of regularisation. This is a concept that emerges naturally in a probabilistic 

(Bayesian) framework, where the regularisation can be performed by putting a 

larger prior probability over simpler models; but also in statistical learning 

theory, where the goal is to minimise over two quantities: the 'empirical risk' and 

the 'structural risk', which roughly correspond to the error over the training set 

and the predicted error in unseen data due to over fitting [25, 32]. 

 

By assigning a softmax activation function on the output layer of the neural 

network (or a softmax component in a component-based neural network) for 

categorical target variables, the outputs can be interpreted as posterior 

probabilities. This is very useful in classification as it gives a certainty measure 

on classifications. 
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2.1.3 Network Architecture 

An ANN is typically composed of layers of nodes. The popular Multi Layer 

Perceptron network, all the input nodes are in one input layer, all the output 

nodes are in one output layer and the hidden nodes are distributed into one or 

more hidden layers in between. In designing an MLP, one must determine the 

following variables: 

 

2.1.3.1 The number of input nodes 

The number of input nodes corresponds to the number of variables in the input 

vector used to predict future values. For casual prediction, the number of inputs 

is usually transparent and relatively easy to choose. In a time series prediction 

problem, the number of input nodes corresponds to the number of lagged 

observations to make forecasts for future values. However, currently there is no 

suggested systematic way to determine this number [32]. The selection of this 

parameter should be included in the model construction process. Ideally, a 

small number of essential nodes are desired which can unveil the unique 

features embedded in the data. Too few or too many input nodes can affect 

either the learning or the prediction capability of the network [36].  

 

2.1.3.2 The number of hidden layers and hidden nodes 

The hidden layer and nodes play very important roles for successful 

applications of neural networks. It is the hidden nodes in the hidden layer that 

allow neural networks to detect the feature, to capture the pattern in the data, 

and to perform complicated nonlinear mapping between input and output 

variables. It is clear that without hidden nodes, simple perceptrons are 

equivalent to linear statistical forecasting models. The most common way in 
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determining the number of hidden nodes is via experiments or by trial-and error. 

Several rules of thumb have also been proposed, such as, the number of 

hidden nodes depends on the number of input patterns and each weight should 

have at least ten input patterns (sample size) [36]. 

 The issue of determining the optimal number of hidden nodes is a crucial yet 

complicated one. In general, networks with fewer hidden nodes are preferable 

as they usually have better generalization ability. But networks with too few 

hidden nodes may not have enough power to model and learn the data [32].  

 

2.1.3.3 The number of output nodes. 

The number of output nodes is relatively easy to specify as it is directly related 

to the problem under study. For a time series forecasting problem, the number 

of output nodes often corresponds to the forecasting window. There are two 

types of forecasting: one-step-ahead (which uses one output node) and multi-

step-ahead forecasting.  

The first is called the iterative forecasting as used in the Box-Jenkins model in 

which the forecast values are iteratively used as inputs for the next forecasts. In 

this case, only one output node is necessary [32].  

The second called the direct method is to let the neural network have several 

output nodes to directly forecast each step into the future.  

Results from Zhang et al. [34] show that the direct prediction is much better 

than the iterated method. However, Weigend et al. [43] report that the direct 

multi-step prediction performs significantly worse than the iterated single-step 

prediction for the sunspot data. Hill et al. [42] conclude similar findings for 111 

M-competition time series. 
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In any case, the selection of these parameters is basically problem-dependent. 

Furthermore none of these methods can guarantee the optimal solution for all 

real forecasting problems. To date, there is no simple clear-cut method for 

determination of these parameters. Guidelines are either heuristic or based on 

simulations derived from limited experiments [36]. 

 

2.1.4 Training and Data Normalisation 

Training and test samples are typically required for building an ANN predicter 

model. The training sample is used for ANN model development and the test 

sample is adopted for evaluating the forecasting ability of the model. 

Sometimes a third one called the validation sample is also utilised to avoid 

overfitting problem or to determine the stopping point of the training process 

[32]. 

2.1.4.1 Data Normalisation 

Data normalisation is often performed before the training process begins when 

nonlinear transfer functions are used at the output nodes, the desired output 

values must be transformed to the range of the actual outputs of the network. 

Even if a linear output transfer function is used, it may still be advantageous to 

standardize the outputs as well as the inputs to avoid computational problems 

to meet algorithm requirement, and to facilitate network learning 

Four methods for input normalization were summarised by Weigend et.al’s 

research [43]: 

 

1. Along channel normalization: A channel is defined as a set of elements 

in the same position over all input vectors in the training or test set. That 

is, each channel can be thought of as an ‘‘independent’’ input variable. 
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The along channel normalization is performed column by column if the 

input vectors are put into a matrix.  

2. Across channel normalization: This type of normalization is performed for 

each input vector independently, that is, normalization is across all the 

elements in a data pattern. 

3. Mixed channel normalization: As the name suggests, this method uses 

some kind of combinations of along and across normalization. 

4. External normalization: All the training data are normalized into a specific 

range. 

 

The choice of the above methods usually depends on the composition of the 

input vector. It should be noted that, as a result of normalizing the target values, 

the observed output of the network will correspond to the normalized range. 

Thus, to interpret the results obtained from the network, the outputs must be 

rescaled to the original range. From the user’s point of view, the accuracy 

obtained by the ANNs should be based on the rescaled data set. Performance 

measures should also be calculated based on the rescaled outputs. However 

only a few authors clearly state whether the performance measures are 

calculated on the original or transformed scale [31, 43, 44]. 

 

2.1.4.2  Training Algorithm    

The neural network training is an unconstrained nonlinear minimization problem 

in which arc weights of a network are iteratively modified to minimize the overall 

mean or total squared error between the desired and actual output values for all 

output nodes over all input patterns. The existence of many different 

optimization methods [10] provides various choices for neural network training. 
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There is no algorithm currently available to guarantee the global optimal 

solution for a general nonlinear optimization problem in a reasonable amount of 

time. As such, all optimization algorithms in practice inevitably suffer from the 

local optima problems, and the most we can do is to use the available 

optimization method which can give the ‘‘best’’ local optima if the true global 

solution is not available. 

Aleksander.I and Morton.H [9] conclude that the training parameters play a 

critical role in the performance of ANNs. Using different learning parameters, 

they re-tested the performance of ANNs for several time series which have 

been previously reported to have worse results with ANNs. They find that for 

each of these time series there is an ANN with appropriate learning parameters, 

which performs significantly better. Zhang et al. [31] also study the effect of 

training parameters on the ANN learning. They report that high learning rate is 

good for less complex data and low learning rate with high momentum should 

be used for more complex data series. However, there are inconsistent 

conclusions with regard to the best learning parameters. In light of the 

weakness of the conventional back propagation algorithm, a number of 

variations or modifications of back-propagation, such as the adaptive method 

[42], and Kohonen’s feature maps have been proposed [39].  

Among them, the kohonen’s feature maps are more efficient for nonlinear 

optimisation methods [39]. Their faster convergence, robustness, and the ability 

to find good local minima make them attractive in ANN training. Kohonen’s 

feature maps are motivated by the self-organising behavior of the human brain   
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2.1.5 Performance Measures 

Although there can be many performance measures for an ANN forecaster like 

the modelling time and training time, the ultimate and the most important 

measure of performance is the prediction accuracy it can achieve beyond the 

training data. However, a suitable measure of accuracy for a given problem is 

not universally accepted by the forecasting academicians and practitioners. An 

accuracy measure is often defined in terms of the forecasting error which is the 

difference between the actual and the predicted value. There are a number of 

measures of accuracy in the forecasting literature and each has advantages 

and limitations [31, 44]. The most frequently used are; 

  

 

 

where et is the individual forecast error; yt is the actual value; and N is the 

number of error terms. Because of the limitations associated with each 

individual measure, one may use multiple performance measures in a particular 

problem. However, one method judged to be the best along one dimension is 

not necessarily the best in terms of other dimensions [31]. 

 

There are many inconsistent reports in the literature on the performance of 

ANNs for forecasting tasks. The main reason is, that a large number of factors 

including network structure, training method, and sample data may affect the 

forecasting ability of the networks. For some cases where ANNs perform worse 
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than linear statistical models, the reason may simply be that the data is linear 

without much disturbance. We cannot expect ANNs to do better than linear 

models for linear relationships. In other cases, it may simply be that the ideal 

network structure is not used for the data set. Table 2-1 summarizes the 

literature on the relative performance of ANNs.  
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Study Data Conclusions 
Brace et al. (1991) 8 electric load series 

(daily) 
ANNs are not as good as 
traditional methods 

De Groot and Wurtz 
(1991) 

Sunspots activity time 
series (yearly) 

ANNs are not the best but 
comparable to the best linear 
or nonlinear statistical model. 

Hann and Steurer 
(1996) 

Weekly and monthly 
exchange rate 

ANNs outperform the linear 
models for weekly & monthly 
data. 

Kohzadi et al. 
(1996) 

Monthly live cattle and 
wheat prices 

ANNs are considerably and 
consistently better and can 
find more turning points 

Srinivasan et al. 
(1994) 

One set of load data ANNs are better than 
regression and liner models 

Marquez et al. 
(1992) 

Simulated data for 3 
regression models 

ANNs perform comparatively 
as well as regression models 

Nam and Schaefer 
(1995) 

One airline passenger 
data (monthly) 

ANNs are better than time 
series regression and 
exponential smoothing  

Gorr et al. (1994) Student grade point 
averages 

Slight improvement with ANNs 
in predicting students’ GPAs 
over linear models 

Weigend et al. 
(1992) 

Exchange rate (daily) ANNs perform better than 
TAR and bilinear models. 
ANNs are significantly better 
than random walk model. 

Lachtermacher and 
Fuller (1995) 

4 stationary river flow 
and 4 non-stationary 
electricity load time 
series (yearly) 

For stationary time series, 
ANNs have a better overall 
performance than traditional 
methods; for non-stationary 
series ANNs are almost much 
better than other linear 
models. 

 

Table 2 Neural network applications to non-linear data [42] 
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2.1.6 Application Areas of ANN  

Generally, ANNs are more robust and outperform other computational tools in 

solving a variety of problems from seven categories.  

2.1.6.1 Pattern Classification 

Pattern classification deals with assigning an unknown input pattern, using 

unsupervised or supervised learning, to one of several pre-specified classes 

based on one or more properties that characterize a given class, as shown in 

Fig 2-2. Classification applications from the area of microbiology include 

classification of commodities based on their microbiological characteristics [32]. 

Unlike discriminant analysis in statistics, ANNs do not require the linearity 

assumption and can be applied to nonlinearly separable classes [44]. 

 
Figure 2-2 Pattern classification 

2.1.6.2 Clustering 

Clustering is performed via unsupervised learning in which clusters (classes) 

are formed by exploring the similarities or dissimilarities between the input 

patterns based on their inter-correlations (Fig. 2-3). The network assigns 

‘similar’ patterns to the same cluster. Example applications from microbiology 

include sub-species discrimination using pyrolysis mass spectrometry and 

Kohonen network [38]. 
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Figure 2-3 Clustering 

2.1.6.3 Function Approximation 

Function approximation (modeling) involves training ANN on input–output data 

to approximate the underlying rules relating the inputs to the outputs. Multilayer 

ANNs are considered universal approximators that can approximate any 

arbitrary function to any degree of accuracy [41], and thus are normally used in 

this application. Function approximation is applied to problems (i) where no 

theoretical model is available, i.e., data obtained from experiments or 

observations are utilised, or (ii) to substitute theoretical models that are hard to 

compute analytically by utilizing data obtained from such models 

 
 

 
Figure 2-4 Function Approximation 

  



 

 32 

 

2.1.6.4 Forecasting 

Successful applications of ANNs in forecasting were reported by G Simona et.al 

and Hill et.al [60, 44]. Using two deterministic chaotic time series generated by 

the logistic map and the Glass-Mackey equation, they designed the feed-

forward neural networks that can accurately mimic and predict such dynamic 

nonlinear systems. Their results show that ANNs can be used for modeling and 

forecasting nonlinear time series with very high accuracy. 

The sunspot series has long served as a benchmark and has been well studied 

in statistical literature.  ANNs have been used for forecasting business failure 

and traffic [60, 62].  

 

 
Figure 2-5 Forecasting 

 

2.1.6.5 Optimisation 

Optimization is concerned with finding a solution that maximizes or minimizes 

an objective function subject to a set of constraints. Optimization is a well-

established field in mathematics. However ANNs, such as the Hopfield network, 

were found to be more efficient in solving complex and nonlinear optimization 

problems [60] 
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2.1.6.6 Association 

Association involves developing a pattern association ANN by training on ideal 

(noise-free) data and subsequently using this ANN to classify (noisy) corrupted 

data. The associative network may also be used to correct (reconstruct) the 

corrupted data or complete the missing data (or image), as shown in Fig. 2-6. 

Hopfield and Hamming networks are especially used for this application [63], 

and to a lesser degree multilayer back-propagation ANNs trained on patterns 

with identical input and output [41]. 

 
 

Figure 2-6 Image Completion 

 

 

2.1.6.7 Control 

Control is concerned with designing a network normally recurrent, which will aid 

an adaptive control system to generate the required control inputs such that the 

system will follow a certain trajectory based on system feedback [58]. 
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2.2 State of the Art in Friction Stir Welding 

Welding input parameters play a very significant role in determining the quality 

of a weld joint. This section reviews the literature on FSW within the context of 

this study. In this section, the present understanding of mechanical processes 

during FSW is reviewed. 

2.2.1 Process Parameters 

FSW/FSP involves complex material movement and plastic deformation. 

Welding parameters, tool geometry, and joint design exert significant effect on 

the material flow pattern and temperature distribution, thereby influencing the 

microstructural evolution of material [14]. In this section, a few major factors 

affecting FSW/FSP process, such as tool geometry, welding parameters, joint 

design are addressed.  

 

2.2.1.1 Welding Parameters 

For FSW, two parameters are very important [6]:  

 

 Tool rotation rate (v, rpm) in clockwise or counter clockwise direction and  

 Tool traverse speed (n, mm/min) along the line of joint.   

 

The rotation of tool results in stirring and mixing of material around the rotating 

pin and the translation of tool moves the stirred material from the front to the 

back of the pin and finishes welding process. Higher tool rotation rates generate 

higher temperature because of higher friction heating and result in more intense 

stirring and mixing of material as will be discussed later. However, it should be 
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noted that frictional coupling of tool surface with work piece is going to govern 

the heating.  

In addition to the tool rotation rate and traverse speed, another important 

process parameter is the angle of spindle or tool tilt with respect to the work 

piece surface [18]. A suitable tilt of the spindle towards trailing direction ensures 

that the shoulder of the tool holds the stirred material by threaded pin and move 

material efficiently from the front to the back of the pin. Further, the insertion 

depth of pin into the workpieces (also called target depth) is important for 

producing sound welds with smooth tool shoulders. The insertion depth of pin is 

associated with the pin height. When the insertion depth is too shallow, the 

shoulder of tool does not contact the original work piece surface. Thus, rotating 

shoulder cannot move the stirred material efficiently from the front to the back of 

the pin, resulting in generation of welds with inner channel or surface groove 

[33]. When the insertion depth is too deep, the shoulder of tool plunges into the 

work piece creating excessive flash. In this case, a significantly concave weld is 

produced, leading to local thinning of the welded plates [35]. Such tools are 

particularly preferred for curved joints.  

Preheating or cooling can also be important for some specific FSW processes. 

For materials with high melting point such as steel and titanium or high 

conductivity such as copper, the heat produced by friction and stirring may be 

not sufficient to soften and plasticise the material around the rotating tool [33]. 

Thus, it is difficult to produce continuous defect-free weld.  

As for tilt angle (θ), Fujii et al [36] observed that increase θ from 1.5 to 3 

degrees increased the welding resistant force by 20 percent in a conventional 

shoulder tool FSW.  
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2.2.1.2 Tool Geometry 

Tool geometry is the most influential aspect of process development. The tool 

geometry plays a critical role in material flow and in turn governs the traverse 

rate at which FSW can be conducted. An FSW tool consists of a shoulder and a 

pin as shown schematically in Fig. 2-6. As mentioned earlier, the tool has two 

primary functions: (a) localized heating, and (b) material flow.  

In the initial stage of tool plunge, the heating results primarily from the friction 

between pin and work piece. The tool is plunged till the shoulder touches the 

work piece. The friction between the shoulder and work piece results in the 

biggest component of heating [28]. From the heating aspect, the relative size of 

pin and shoulder is important, and the other design features are not critical. The 

shoulder also provides confinement for the heated volume of material. 

 

 
Figure 2-7 Schematic drawing of the FSW tool [11] 

 

The second function of the tool is to ‘stir’ and ‘move’ the material. The uniformity 

of microstructure and properties as well as the process loads are governed by 

the tool design [11].  
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2.2.2 Welding Forces 

During welding a number of forces will act on the tool [14]: 

 

 A downwards force is necessary to maintain the position of the tool at or 

below the material surface. Some friction-stir welding machines operate 

under load control but in many cases the vertical position of the tool are 

preset and so the load will vary during welding.  

 The traverse force acts parallel to the tool motion and is positive in the 

traverse direction. Since this force arises as a result of the resistance of 

the material to the motion of the tool it might be expected that this force 

will decrease as the temperature of the material around the tool is 

increased.  

 The lateral force may act perpendicular to the tool traverse direction and 

is defined here as positive towards the advancing side of the weld.  

 A torque is required to rotate the tool, the value of which will depend on 

the down force and friction coefficient (sliding friction) and/or the flow 

strength of the material in the surrounding region (sticking friction).  

In order to prevent tool fracture or simply to minimise excessive wear and tear 

on the tool and associated machinery it is desirable to modify the welding cycle 

such that the forces acting on the tool are as low as possible and that sudden 

changes are avoided [14]. In order to find the best combination of welding 

parameters it is likely that a compromise must be reached since the conditions 

that favour low forces (e.g. high heat input, low travel speeds) may be 

undesirable from the point of view of productivity and weld properties [14, 33]. 
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2.2.3 Process Modelling 

Computational and non linear models are essential to the future of FSW. These 

will help elucidate many of the fundamental principles presently unknown [28]. 

They can be summarised as: 

 Relationships between process inputs and measured outputs leading to 

good weld quality [17] 

 Characterisation of the nature of heat generation and dissipation [21] 

 Assessing the physics of the tool/weld metal interface [19] 

 Marker studies [18] 

 An understanding of mechanical and thermal processes during FSW/FSP is 

needed for optimising weld quality. In this section, the present understanding of 

mechanical and thermal processes during FSW is reviewed. 

 

2.2.3.1 Metal flow 

The material flow during friction stir welding is quite complex depending on the 

process parameters, tool geometry and material to be welded. It is of practical 

importance to understand the material flow characteristics for optimal tool 

design and obtain high structural efficiency welds. This has led to numerous 

investigations on material flow behaviour during FSW [15, 19]. A number of 

approaches, such as tracer technique by marker, welding of dissimilar 

alloys/metals, have been used to visualize material flow pattern in FSW [18]. 
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2.2.3.2 Temperature distribution 

 The effect of FSW parameters on temperature was further examined by Robert 

and Messler 

[28]. They reported that for a given tool geometry and depth of penetration, the 

maximum temperature was observed to be a strong function of the rotation rate 

(v, rpm) while the rate of heating was a strong function of the traverse speed (n, 

rpm). It was also noted that there was a slightly higher temperature on the 

advancing side of the joint where the tangential velocity vector direction was 

same as the forward velocity vector. They measured the average maximum 

temperature on 6.35 mm aluminium plates as a function of the pseudo ‘‘heat 

index”. It was demonstrated that for several aluminium alloys a general 

relationship between maximum welding temperature and FSW parameters can 

be explained by    where the exponent α was reported to range 

from 0.04 to 0.06, the constant K is between 0.65 and 0.75, and Tm (degree 

celsius) is the melting point of the alloy. 

 
Figure 2-8 Effect of tool rotation rate/traverse speed (v/n) ratio on peak temperature of FSW 

2024Al-T6, 5083Al-O, and 7075Al-T6 [28] 
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2.2.4 Factors affecting the Weld Quality 

Weld Quality is strongly dependent on welding parameters, base material & tool 

geometry [29]. Factors affecting weld zone formation and weld imperfections 

will be reviewed in this section 

2.2.4.1 Welding Parameters & Tool Geometry 

Fujii et al [33] studied the effect of FSW tool shapes and welding parameters on 

the weld quality. The experiments were conducted using three different tool pin 

profiles as shown in figure 2-9. 

 
Figure 2-9 FSW tool shape (a) column without threads, (b) column with threads, (c) triangular 

prism [33] 

 

Figure 2-10 shows the macrostructure of welds produced at various travelling 

speeds and tool shapes, as obtained by Fuji et al. It can be observed from the 

figures, there is a defect appearing in the weld obtained by a triangular prism 

tool FSW 38 at 1500rpm (J) and 1000mm/min (V). However, there are no 

defects in the welds produced by the same tool rotating at the same speed (J) 

but a lower travelling speed of 100 and 400mm/min. This indicates that a faster 

tool travelling speed (V) results in an increase in the likelihood of welding 

defects which correlates with another study conducted by Kim et al [34]. 
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Figure 2-10 Macrostructure of cross sections of 6061 Al FSW joints, showing the weld quality at 

various welding parameters and tool types [33] 

 

Shoulder flow zone forming mechanisms were studied by using a special 

experimental setting [35]. Figure 2-11 shows the experimental setup, where the 

interaction between the conventional shoulder tool with the base material is 

increased progressively, leading to a greater depth of shoulder penetration. 

 

 
 

Figure 2-11 Schematic illustration of the experimental set up; the backing plate is kept at an angle 

such that the axial load can be linearly increased (from 4 to 10.9 kN) [35] 

 

The primary reason for the defect in the welds, at the initial stages, where the 

axial load was less than 7.4 kN, was shallow shoulder penetration (lack of 

shoulder contact with the base material). When the depth of shoulder 

penetration was increased the axial load increased and when the axial load was 

above 7.4 kN, the shoulder flow zone material from the leading edge was 
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confined in the weld cavity, and then a sufficient amount of frictional heat and 

hydrostatic pressure was generated to produce a defect-free weld.  

Accordingly, the research concluded that deeper shoulder penetration lead to a 

significant decrease in the likelihood of welding defects. 

 

 

 
Figure 2-12 Evolution of a shoulder flow zone formation as a function of the downward force, 

arrow marks indicate the presence of voids in the weld [35] 
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2.2.5 FSW Defects & Controls Mechanisms 

Leonard et al [29] investigated the imperfections of FSW welds, and they 

reported that there are three common defects encountered during FSW. Figure 

2-13 shows these three typical defects, which are internal voids, joint line 

remnants, and root flaws. They observed that internal voids normally occurred 

on the advancing side of the weld, and internal void formation was due to 

insufficient forging pressure and excessive welding speed. 

.  
Figure 2-13 Cross sections of defect weld (a) internal voids, (b) joint line remnants, and (c) root 

 

 

Leonard et al also recommended several strategies to reduce this type of weld 

imperfection, such as sufficient cleaning of the workpiece, correct tool location 

versus weld joint-line, suitable shoulder diameters and tool welding speeds etc.  

Further, they also concluded that there were quite a few causes of root flaws, 

including variation of plate thickness, incorrect tool position, and improper tool 
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design. They advised that a sufficient depth of shoulder penetration could 

eliminate root defects. Leonard et al’s findings and suggestions are well 

supported by Kim et al [34] in investigation of FSW weld defect mechanism. 

2.3 History of Employing Artificial Neural Network in related 
research 

Since neural networks are best at identifying patterns or trends in data, they are 

well suited for predicting and optimising. Their ability to learn by example makes 

them very flexible and powerful. Furthermore there is no need to devise an 

algorithm in order to perform a specific task; i.e. there is no need to understand 

the internal mechanisms of that task.  

 

They are also very well suited for real time systems because of their fast 

response and computational times which are due to their parallel architecture 

[10]. A recent survey conducted on optimisation of different welding parameters 

using various types of modelling approaches has revealed a high level of 

interest in adapting Artificial Neural Networks to predict response(s) and 

optimise friction stir welding [20,27]. 

 

Anderson et al. [22] have explained some concepts related to neural networks 

and how they can be used to model weld-bead geometry, in terms of equipment 

parameters, in order to evaluate the accuracy of neural networks for weld 

modelling. They carried out a number of simulations and they used actual data 

for this purpose. 

The data consisted of values for voltage, current, electrode travel speed and 

wire feed speed and the corresponding bead width, penetration, reinforcement 

height and bead cross-sectional area. The performance of neural networks for 
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weld modelling was presented and evaluated using actual welding data. It was 

concluded that the accuracy of neural networks modelling is fully comparable 

with the accuracy achieved by more traditional modelling schemes.  

 

Evaluation of ANN for monitoring and control of the plasma arc welding process 

was carried out by Cook et al. [24]. Three areas of welding application were 

investigated in this work: weld process modelling, weld process control and 

weld-bead profile analysis for quality control.  

A network was constructed to determine the torch standoff, forward current, 

reverse current and travel speed for desired crown width and root width. The 

base material was 2219 aluminium alloy in the form of plates 6.35 mm thick; the 

joint type was bead-on-plate. It was confirmed that ANNs are powerful tools for 

analysis, modelling and control of such applications.  

Furthermore, the results obtained when analysing weld profile data suggested 

that ANNs can yield real-time results of equal or better accuracy and reliability 

than previously used data analysis algorithms. 

 

Y.K. Yousif et al. [36] developed for the analysis and simulation of the 

correlation between the friction stir welding (FSW) parameters of aluminum (Al) 

plates and mechanical properties.  

The input parameters of the model consist of weld speed (Ws) and tool rotation 

speed (Rs). The outputs of the ANN model include property parameters 

namely: tensile strength, yield strength and elongation. The aim of this paper 

was to show the possibility of the use of neural networks for the calculation of 

the mechanical properties of welded Al plates using FSW method. Results 

showed that, the networks can be used as an alternative way in these systems. 
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The model can be used to calculate mechanical properties of welded Al plates 

as functions of weld & rotation speeds. The combined influence of weld & 

rotation speeds on the mechanical properties of welded Al plates was 

simulated.  

A comparison was made between measured and calculated data. It is found 

that the correlations between the measured and predicted values of tensile 

strength, bending stress were in good agreement with measured data. 

 

H. Okuyucu et al. [24] developed an artificial neural network (ANN) model for 

the analysis and simulation of the correlation between the friction stir welding 

(FSW) parameters of aluminium (Al) plates and mechanical properties.  

The input parameters of the model consist of weld speed and tool rotation 

speed (TRS). The outputs of the ANN model include property parameters 

namely: tensile strength, yield strength, elongation, hardness of weld metal and 

hardness of heat effected zone (HAZ). Good performance of the ANN model 

was achieved. The model can be used to calculate mechanical properties of 

welded Al plates as functions of weld & tool rotation speeds. The combined 

influence of weld speed and TRS on the mechanical properties of welded Al 

plates was simulated. A comparison was made between measured and 

calculated data. The calculated results were in good agreement with measured 

data. The aim of the paper was to show the possibility of the use of neural 

networks for the calculation of the mechanical properties of welded Al plates 

using FSW method. Results showed that, the networks can be used as an 

alternative in these systems. 
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Vitek et al. [49] have developed a model to predict the weld pool shape 

parameters (penetration, width, width at half-penetration and cross-section 

area) in pulsed Nd- YAG laser welds of Al-alloy 5754 using neural network.  

They considered the following process parameters; travel speed, average 

power, pulse energy and pulse duration. The accuracy of the model was 

excellent. They concluded that this approach allows for instantaneous results 

and therefore, offers advantages in applications where real-time predictions are 

needed and computationally intensive predictions are too slow.  

 

L Fratini and G Buffa [50] studied the continuous dynamic re-crystallisation 

phenomena occurring in the FSW of Al alloys. A good agreement with the 

experimental results was obtained using the ANN model. In regard to ANNs, it 

noted that ANNs perform better than the other techniques, especially RSM 

when highly non-linear behaviour is the case. Also, this technique can build an 

efficient model using a small number of experiments; however the technique 

accuracy would be better when a larger number of experiments are used to 

develop a model.   
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2.4 Self Organising Map  

The name Self-Organizing Map (SOM) signifies a class of neural-network 

algorithms in the unsupervised-learning category. In its original form the SOM 

was invented by the founder of the Neural Networks Research Centre, 

Professor Teuvo Kohonen in 1981-82, and numerous versions, generalizations, 

accelerated learning schemes, and applications of the SOM have been 

developed since then [54]. 

 

With a conventional ANN approach an input vector is presented to the network 

(typically a multilayer feed-forward network) and the output is compared with 

the target vector. If they differ, the weights of the network are altered slightly to 

reduce the error in the output. This is repeated many times and with many sets 

of vector pairs until the network gives the desired output. Training a SOM 

however, requires no target vector. A SOM learns to classify the training data 

without any external supervision whatsoever [54]. This approach is markedly 

different from the supervised training techniques such as back-propagation 

networks where the training data consists of vector pairs - an input vector and a 

target vector [54, 55]. 

 

The SOM has spread into numerous fields of science and technology as an 

analysis method. There is a list of over 5000 scientific articles that apply the 

SOM or otherwise benefit from it [53, 54]. 
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The most promising fields of application of the SOM seem to be: 

 Process analysis, diagnostics, monitoring, and control, 

 Data mining at large, in particular visualisation of statistical data and 

document collections 

 Biomedical applications, including diagnostic data analysis in bioinformatics 

& 

 Data analysis in commerce, industry, macroeconomics, and finance. 

 

 
Figure 2-14 Basic Self Organising Map architecture [37] 
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2.4.1 SOM Algorithm - Overview 

A SOM does not need a target output to be specified unlike many other types of 

network. Instead, where the node weights match the input vector, that area of 

the lattice is selectively optimized to more closely resemble the data for the 

class the input vector is a member of [48].  

Each node receives all elements of the training set, one at a time, in vector 

format. For each element, a calculation is made to determine the fit between 

that element and the “weight" of the node. Often, this calculation is the Euclidian 

distance between the two vectors, but can be another function of distance. In 

many cases, this weight is a vector of the same dimension as the input vectors. 

This will allow us to determine the “winning" node, that is, the node that 

represents the best the training element.  

Once the winning node is found, the neighbours of the winning node are then 

identified. The winning node and these neighbors are then updated to reflect 

the new training element. In this way, the map learns from the individual 

elements. 

It appears to be customary that both the neighborhood function and the learning 

rate are a decreasing function of time. This means that, as more training 

elements are learned, the neighborhood is smaller, and nodes are less affected 

by the new elements [51]. 
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Figure 2-15 An illustration of the training of a self-organising map. The blue blob is the distribution 

of the training data, and the small white disc is the current training sample drawn from that 

distribution. At first (left) the SOM nodes are arbitrarily positioned in the data space. The node 

nearest to the training node (highlighted in yellow) is selected, and is moved towards the training 

datum, as (to a lesser extent) are its neighbours on the grid. After much iteration the grid tends to 

approximate the data distribution (right) [37, 51].  

We express this change as the following function: for a node x, the update is 

equal to: 

x(t + 1) = x(t) + N(x, t) α (t) (∂(t) − x(t)) 

where: 

• x(t + 1) is the next value of the weight vector 

• x(t) is the current value of the weight vector 

• N(x, t) is the neighbourhood function, which decreases the size of the 

neighbourhood as a function of time 

• α(t) is the learning rate, which decreases as a function of time 

• ∂(t) is the vector representing the input document 

Based on this information, here is simplified view of the algorithm [37]: 

1. Initialize the weights of the nodes, either to random or pre-computed values 

2. for all input elements: 
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(a) Take the input, get its vector 

(b) For each node in the map: 

i. Compare the node with the input's vector 

(c) The node with the vector “closest" to the input vector is the winning node 

(d) For the winning node and its neighbours, update them according to the 

formula above 

Another way to view the SOM is expressed here, taken from [51]: 

The other way is to think of neuronal weights as pointers to the input space. [...] 

More neurons point to regions with high training sample concentrations and 

fewer where the samples are scarce.  

Indeed, the linkage of the neural network forms an elastic fabric, where the 

input documents pull the covers in their direction. If a large number of inputs 

“pull the covers" in a certain direction, a greater number of nodes will be used to 

represent that portion of the input space. 

2.4.1.1 Algorithmic complexity 

The conversion of the input elements into a vectorial format varies based other 

type of input, and thus will not be considered here. The factors involved in the 

map creation are: 

• d, the dimension of the vectors 

• N, the number of input samples 

• m, the number of map elements 
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Based on the algorithm above, the algorithmic complexity is O(dNm). However, 

most analyses of the question (in particular, [58] and [64]) postulate as 

assumption that the number of map elements is chosen proportionally to the 

number of input samples, and thus the complexity becomes O(dN²). 

 

Figure 2-16  Screenshot of a demo program (left) and the colours it has classified (right) [37] 

 

 

 

2.4.2 SOM Fault Diagnosis 

In engineering, the most straightforward applications of the SOM are in the 

identification and monitoring of complex machine and process states, otherwise 

very difficult to perceive and interpret. The SOM has been used for 

development of new pattern classification and target recognition systems, 

whereby categorisation of the input signal states is performed by it [52]. 

As the SOM is a nonlinear projection method, such characteristic states or 

clusters can often be made visible in the self organised map, without explicit 

modelling of the system. 
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An important application of SOM is in fault diagnosis. The SOM can be used in 

two ways: to detect the fault and to identify it. In practical engineering, we can 

distinguish two different situations; either there are no prior measurements of 

the faulty situations, or the faults have been recorded [61]. 

 

During Training, the weight vectors of the SOM become adapted to that domain 

of the system space from which measurements have been taken. Thus the 

state of space will be divided in to two parts.  

1. The orientation space represented by the SOM and 

2. It’s complimentary space 

 

Fault detection can also be based on the quantisation error: (when the feature 

vector corresponding to the measurements is compared with the weight vectors 

of all map units, and the smallest difference exceeds a predetermined 

threshold, the process is probably in fault situation. This conclusion is based on 

the assumption that a large quantisation error corresponds to the operation 

point belonging to the complimentary space not covered by the training data. 

Therefore the situation is new and something is going wrong [59, 61] 

If the fault situations and their reasons are known well enough, simulated data 

for SOM training can be produced easily. In practical engineering systems, the 

different types of faults or errors usually encountered are [38, 61]; 

 

1. Sudden change in some regulated parameter value indicating fault in the 

control mechanism 

2. Jamming of a measurement value, often caused by a mechanical fault in 

a measuring instrument 

3. Break in signal lines resulting in abrupt drop in signal 
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4. Slow drift in measured value due to again of device 

5. Heavy disturbance with large sporadic change in signals 

 

All the mentioned fault types can be simulated easily and independently as 

demonstrated by J Huysmans et al [61]. If measurements of most of the typical 

fault types are available or can be simulated, mechanically or by modelling, the 

SOM can be used as a monitor of the operating conditions of the system. 

Examples of fault detection and identification in an anaesthesia system are 

described in [ 61]. The complete system comprises of the anaesthesia machine, 

anaesthesia personnel and the patient. The purpose of the SOM based 

monitoring system is to minimise the risks of anaesthesia poisoning by 

detecting and identifying the faults before they cause damage to the patient. 

Figure 2-17 describes the SOM computed for an anaesthesia machine, and 

different areas on it correspond to obstruction of tubes, hoses or pumps, their 

breakage, wrong gas mixtures, positioning errors of the intubation tube etc. 

 

 
Figure 2-17 Fault identification of an anaesthesia system tested in a true situation N=Normal state. 

The position of the patient was changed and the intubation tube was obstructed for a short period 

of time. The increase in the quantisation error shown in (a) indicates that a fault has been detected. 

The trajectory of the operating point was moving from the area corresponding to the normal 

situation to the area that corresponded to an obstruction in the specific part of the system. The 

trajectory is depicted in (b). 



 

 56 

 

2.4.2.1 Data Visualisation 

Understanding and modelling complex relationships between multiple variables 

in large systems is often problematic. Automated measurements produce 

masses of data that may be very hard or even impossible to interpret. 

Visualising complex and multi-dimensional data is increasing in relevance in 

various research and industrial areas. Self organising maps are often proposed 

for this task since they generate a mapping from a multi dimensional input 

space to a low-dimensional structure used as a network topology. In many 

cases this is a rectangular, often square, two dimensional grid of units [51]. 

 

 
Figure 2-18 Data visualisation in self organising map structure [59] 

 

2.4.3 Why Kohonen’s Self Organising map (SOM)?  

The ANN model itself provides little information about the design factors and 

their contribution to the response if further analysis has not been done. The 

most popular ANNs are learning vector quantization neural networks, back-

propagation and counter propagation algorithms. However, for this particular 

project Self Organising Maps (SOM) will be employed since SOMs are relatively 

simpler to understand. Plots that are closer and have grey shades connecting 
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them can be bracketed as similar. If there is a black ravine between them, then 

they are bracketed as dissimilar. Unlike Multidimensional Scaling or N-land, 

they are more adaptable and network modelers can quickly pick up on how to 

use them in an effective manner [56]. 

 

Furthermore, SOMs classify data well and they are relatively simpler to evaluate 

with respect to their quality. Hence one can actually calculate how good a map 

is and how strong the similarities between objects are. The SOM map seeks to 

preserve the topological properties of the input space. The SOM is the best 

choice for feature extraction because it eliminates the need to make a difficult 

choice of the network structure and the need to define a decay schedule for 

various parameters [56, 57].  

 

Kohonen’s model, aims at mapping high dimensional input signals onto an 

(often two-dimensional) neural sheet of fixed size and the structure in such a 

way that neighbourhood relations among the input signals are preserved as well 

as possible [59]. An essential prerequisite for this is a network structure 

matching the structure of the distribution. If this is approximately the case, 

Kohonen’s model is able to find appropriate mapping .The non- linear 

relationship between the FSW input and output parameters may be identified 

well by using a Self Organising Neural Network 

 

Summarising, the key benefits of using SOM are: 

 The possibility to use problem dependant error measures to determine 

where new units are inserted (insertion where necessary) [55]. 
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 The possibility to interrupt the self organisation process or to continue a 

previously interrupted one. Due to the constant parameters there are no 

different phases in self-organisation [58]. 

 Fewer magic numbers to define: the network need not be defined in 

advance but can be defined indirectly by giving a performance criterion 

which must be met. For each parameter only its value must be defined 

and not starting value, end value as well as its function over time as in 

many other approaches [50, 64]. 

2.5 Summary  

This chapter aims to familiarise the reader with self organising neural 

networking. We have seen that Artificial Neural Networks offer an alternative 

way to tackle complex and ill-defined problems. The increased utilization of 

ANNs is linked to several features they possess, importantly (i) the ability to 

recognize and learn the underlying relations between input and output without 

explicit physical consideration, regardless of the problem’s dimensionality and 

the system’s nonlinearity, (ii) once trained from examples (sample data) it can 

perform predictions and generalisations at high speed and (iii) has a high 

tolerance to data containing noise and measurement errors due to distributed 

processing within the network.  

 

ANNs also have limitations that should not be overlooked. These include (i) 

dependance on both the quality and quantity of the data [27], (ii) a lack of clear 

rules or fixed guidelines for optimal ANN architecture design [10, 27], (iii) a lack 

of physical concepts and relations [20], and (iv) the inability to explain in a 

comprehensible form the process through which a given decision (answer) was 

made by the ANN [20, 24].  
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ANNs are further classified as supervised or unsupervised systems depending 

on their learning paradigm. An unsupervised neural network does not receive 

any feedback from its supervisor; instead it relies on an internal criterion to 

guide its learning outcomes. The supervised neural network such as the back 

propagation algorithm requires training before it can be used for mapping or 

classification purposes. During the training, BP calculates the weights of the 

ANN to represent the relationship between the inputs and outputs. However, 

unsupervised neural networks may start classifying the inputs without a 

separate training session and are adept at dealing with abrupt changes in the 

characteristics of the input–output relationship of the system. 

 

It is of practical importance to have a sufficient understanding of the FSW 

process fundamentals. Of the FSW literature and data publicly available, many 

have explored aspects of various process fundamentals. Each study provides 

useful information about FSW. However, the wealth of information available and 

the advances in process equipment has not yielded an agreement on optimal 

control schemes. For instance, the effect of input parameters on the weld 

quality is not thoroughly understood. Many studies provided valuable 

information but did not include quantitative results as part of their discussion. 

 

The survey has also revealed that the SOM algorithm has attracted a great deal 

of interest among researches and practitioners in a wide variety of fields [54]. 

The SOM has been analysed extensively, a number of variants have been 

developed and, perhaps most notably, it has been applied extensively within 

fields ranging from engineering sciences to medicine, biology, and even 
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economics. Since most manufacturing processes are complex in nature, highly 

non- linear and there are a large number of input variables, there is no close 

mathematical model which can describe the behavior of these processes. Self 

organising maps are up to the task of modeling these complex interactions 

because they have the ability to learn from examples, do not require lengthy 

supervised training times, are cost effective and are relatively easier to 

interpret. 

 Numerous applications have been found in process modeling for monitoring 

and control purposes, as forecasters, as intelligent sensors to estimate variable 

that usually cannot be measured in fault detection and diagnosis systems, 

dynamic online systems and, finally in, process control. 

 

The aim of this project is demonstrate the possibility of using a self organising 

map capable of predicting FSW weld quality based on process input 

parameters. Careful experiments with an emphasis on FSW control must be 

performed to better understand potential control schemes. This survey also 

reveals a high level of interest in the adaptation of Artificial Neural Networks to 

predict response(s) in a wide array of industrial processes.   

The proposed methodology, experimental data collection, and the results will be 

outlined in the following chapters. 
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3 Methodology and Experimentation 

The previous chapters have outlined and elucidated the objectives of this 

research. This chapter provides the experimental procedures for assessing the 

aforementioned objectives.  

 

Experimental data was collected by performing a series of FSW trials on 

Aluminium alloy AA2024 and A253 against a select range of parameters. 

Kurtosis analysis was initially performed on the raw data collected from the tool-

work piece interaction using an external sensory unit. The approach was split 

into the following phases: 

 

• Setting up experimental equipment and carrying out FSW trials 

• Collection of comprehensive data relating to multiple welding parameters 

• Pre processing of raw data to reduce dimensionality and integrate 

vectors from the external sensor while maintaining completeness in 

information 

• Application of the state-of-the-art Self Organising Feature Map and to 

coalesce integrated sensory data, providing a detailed mapping of the 

various FSW trials.  

 

These stages are discussed in detail in the following sections. 
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3.1 Experimental Setup 

FSW trials were done by using both a Lagun turret-milling machine and a Tos 

Olomouc machine at AUT’s workshop; these are shown in Figure 3-1. The tool 

pins made of H13 steel were used to carry out the FSW trials. Heat treatment 

was applied to ensure that the threads would not deform after an extended 

period of welding. Suitable hardness of the thread was critical for detecting the 

contact conditions on the interface. 

 

 
 

The tool pin was made to rotate at varying speeds in a fixed position while the 

machine bed moved at varying speeds rather than the tool travelling through 

the work piece. 

  

Figure 3-1 TosOlomouc machine 
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3.1.1 Plate Preparation – Aluminium A356 

Commercially available aluminium A356 was carefully sectioned into 24 similar 

sized plates. These plates were then milled from all six sides to form square 

plates roughly about 8x8cm in dimensions. These plates were then friction stir 

welded to form about eight plates. The eight resulting plates were once again 

clamped to the Lagun milling machine to level and remove any 

unevenness/distortion from the plate’s surfaces before performing the FSW 

trials with LowStir sensor unit.  FSW trials were then performed on the plates 

using the Lagun- Turret milling machine as shown in Figure 3-2. The gaps 

between some of the plates were variable and significant care was taken to 

ensure proper clamping of the plates to prevent plate movement of them during 

welding. 

 

 
Figure 3-2 Lagun Turret Milling Machine 
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3.1.2 Tool Design 

The tool, having a 25 mm diameter shoulder, was used during the trials. This 

diameter was chosen because it would fit the tool assembly of the low stir 

sensor unit Figure 9. The tool has three features which were - the shoulder 

diameter, the pin diameter and the tool profile. The H13 tool was heat treated 

after machining to ensure the hardness of the teeth. The final tool design is 

described in Table 3-1. 

 

Tool type Tool (H13 tool steel) 

Shoulder diameter 25 mm 

Pin length 5.70 mm 

Screw on the pin left handed thread 

Pitch 1.2 mm; 1.6 mm depth  
 

Table 3 Tool design in the research 

 

 

Figure 3-3 below shows the tool profile. The drawings of the tools are shown in 

the appendix B. 

 

 
Figure 3-3 FSW tool and the LowStir sensor unit including ISO taper, tool holder and heat shield 

disc. This is supplied already bolted together as a complete system, ready to use 
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3.1.3 Welding Machine & Weld Monitoring System Setup 

Milling machines are normally targeted at specific applications, which govern 

machine architecture and the maximum workpiece size. FSW trials were 

conducted using the Tos Olomouc FA3AV milling machine at AUT’s workshop.  

The Tos Olomouc machine characteristics including forces, torque, spindle 

speed and traverse speed were examined to determine suitability for friction stir 

welding. The machine had a 5.8 kW maximum power output, and was able to 

vary spindle rotation speeds and set a desirable speed value for both vertical 

and horizontal movement. In addition, the machine had a vertical position 

setting of 0.02mm per step. Rotation speed varied between 250 rpm and 1400 

rpm, and linear speed varied between 28 mm/min and 450 mm/min. 

FSW LowStir sensor apparatus is a full weld monitoring system that can be 

retro fitted to standard milling machines such as the Tos Olomouc machine at 

AUT to join aluminium alloys within a thickness range of 2 – 8 mm.  

The unit has been tested by TWI, BAE Systems UK, Sapa, Aeronautical 

Research and Test Institute of the Czech Republic and Instytut Spawalnictwa 

[26] 

 

The sensor unit was installed onto the milling machine head using the attached 

ISO taper and care was taken to ensure any of the trailing wires were tied out of 

the way of any moving parts. Figure 3-4 shows the setup picture. 
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Figure 3-4 LowStir 3 Axis Sensor unit retro fitted on to the Tos Olomouc machine at AUT 

  

 

3.1.3.1 Weld monitoring software setup 

The monitoring software needs to be installed on the computer connected to the 

LowStir unit when the system is run for the very first time. Additionally, the 

software can be configured to display real time numerical values of forces, 

torque and other key weld parameters (as identified by TWI).  

The information gathered by the LowStir device is displayed to the operator in a 

clear and straightforward manner using a laptop PC running Labview, a sample 

display screen format is shown in Fig. 3-5. The instrument panel displays real 

time numerical values of forces, torque, the temperature adjacent to the system 

electronics and (if desired) the tool temperature. The system also has the 

capability to add real-time event markers to allow correlation between process 

conditions/stages and the recorded data. The main display screen has buttons 
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to start and stop recording of data. Alternatively an automatic trigger facility 

exists for initiating the recording of data. The display also shows the current 

captured data values for the weld in progress indicating whether they are within 

the acceptable range for satisfactory welding. The display also has a multi-

graph facility where the user can select which sensor values are displayed. 

 

 

 
Figure 3-5 LowStir software main screenshot after being sucessfully loaded on to the system 
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3.1.4 Materials used in Experiments 

Welding plates of aluminium alloy A356 and AA2024 were chosen as welding 

material for experiments which have different strength characteristics 

particularly at near peak FSW temperatures [35]. “Bead on plate” FSP have 

been conducted on 290mm long, 85 mm wide, 6.35 mm thick A356 (Al-7Si-

0.3Mg) cast aluminium plates. Tools with 18 mm shoulder diameter were cut by 

CNC machine followed by heat treatment to obtain hardness around 48 HRC.  

Tool pins are 6 mm in diameter, 5.7 mm in length, with left-handed threads 

(1.25 mm in pitch). In the experiments, the welding line was made parallel to the 

extrusion texture direction. Fifteen welds were conducted using different 

combinations of speeds and a constant tilt angle of 2.5 degrees. 

 

Alloy Si Fe Cu  Mn Mg Ti 
A356 6.5-7.5 0.2 0.2 0.1 0.25-0.45 0.2 
2024 0.5 max 0.5max 3.5*4.9 0.3-0.9 1.2-1.8 0.2max 

 

Table 4 Chemical composition of A356 & 2024 [35] 

 

 
 

  

Alloy Fluidity Resistance 
to hot 
Cracking 

Corrosion 
Resistance 

Machinability Elevated 
Temperature 
Strength 

A356 1 1 2 3 3 
2024 1 1 1 2 3 
Ratings: 1=Excellent 2=Very 

Good 
3=Good 4=Fair 5=Poor 

Table 5 A356 & 2024 Physical Characteristics [35] 
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3.1.5 Parameters considered while making a friction stir weld 

A sum total of 22 combinations of parameters were chosen to undertake trials 

on two aluminium alloys A356 and AA2024. There were 22 combinations 

possible by changing either the tool speed / welding speed or rotation speed 

parameter for each of the frition stir weld. By doing this, a complete set of trail 

data was obtained which enabled better classification of the relationship 

between each of the parameter (input) and the weld quality (output). In the 

present FSW experiments, a range of tool speeds were used and the resulting 

torque was measured. All plates were machined to a standard size to eliminate 

the effect of size on material flow. Welding force, down force are monitored 

during welding. 

Commonly used parameters were considered before choosing a range of 

welding parameters.  

The intention was to perform a maximum number of trials within the most 

commonly used range (parameters) – [6], [28] and [33]. The trial range values 

of v & ω were chosen so that the upper and lower values were taken in to 

consideration to give a comprehensive picture. 

Secondly, the intervals chosen between any two separate values of v (mm/min) 

& ω (rev/min) were the set values of the Tos Olomouc milling machine. The 

machine works reliably only for the following range of speeds and tool rotations 

speeds. 
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weld no. v (mm/min)  ω (rev/min)  

1 28 250 

2 28 500 

3 28 710 

4 28 1000 

5 56 250 

6 56 710 

7 56 1400 

8 112 250 

9 112 500 

10 112 710 

11 112 1000 

12 112 1400 

13 224 250 

14 224 500 

15 224 710 

16 224 1000 

17 224 1400 

18 315 500 

19 315 710 

20 450 500 

21 450 710 

22 450 1000 
 

Table 6 Input parameter combination table 

 

The tilt angle tends to produce a “heel plunge depth”, which is the deepest part 

the tool shoulder that appears below the work piece surface. Heel plunge is 

used to consolidate material behind the tool pin to avoid defects. The tilt angle 

of the tool was set at 2.5 degrees. 

Welding defects can also occur if the gap between the plates before welding is 

significant. It is recommended that the gap be no wider than 10% of the plate 
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thickness [45]. Smaller gaps are closed by the material pressure that develops 

under the tool shoulder during weld [46]. Clamping is important because plates 

can tend to separate or lift off the bed during the weld (lift is mainly a problem 

for thinner plates).  

Position-control technique was implemented in all welds in order to make sure 

the centre of the pin-shoulder intersection is just immersed in the base plates. 

Cross section samples were taken near the end of the welds where a stable 

welding condition is achieved. All samples have gone through normal 

metallurgical preparation steps and were analysed under a stereomicroscope. 

 

3.2 Data Analysis 

The data capture was conducted in real time using LowStir sensor software. 

The system is designed to provide friction stir welds using only a suitable milling 

machine, computer and the LowStir unit itself. The computer can monitor down 

force, lateral force, torque, internal temperature and, if required, an external 

temperature. Once the data is captured, preprocessing allows the data to be 

ANN ready for subsequent manipulation and analysis. 
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3.2.1 FSW Sequence/Conditions. 

The work piece and the weld parameters used in the experiment are shown 

below. Trials were carried out showing the influence of multiple FSW input 

parameters (welding speed, rotational speed, tilt angle) on the weld quality. Two 

groups of response were measured: the forces involved in the FSW process 

and the resulting quality of weld.  

 

Work piece Parameters of FSW 

Aluminium A356 

(Al-7Si-0.3Mg) 6.35mm Thick 

 

Aluminium AA 2024 

(Al-0.5Si-1.5Mg) 6.35mm Thick 

Vtravelling = 28, 56, 112, 224, 

448mm/min 

θ =2.5  

ω = 250, 500, 710, 1000 & 1400 rpm 

Dshoulder = 18mm 

Lpin = 5.7mm 

Dpin = 6mm 
Table 7 FSW parameter window 

 
The parameters in table 3-5 are: 

• Dshoulder - the diameter of the tool shoulder; 

• Lpin - the length of the tool pin; 

• Dpin - the diameter of the tool pin; 

• Vtravelling - the tool traverse speed along the joint line; 

• ω - the tool rotation speed; 

• and θ tilt - the angle between the tool neutral line and the vertical plane  
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3.2.2 Data Extraction  

The software can capture and display data from five transducers (two 

temperatures, down force, lateral force and torque). Each of the monitored 

channels (tool temperatures, sensor temperature, torque, weld force and down 

force) has a corresponding indicator that displays the current values during real 

time monitoring. The graphs can plot a maximum of three channels at a time. 

Also, during monitoring, the length of time the monitoring has been running 

(Time Into Archive) and available monitoring time remaining (Available Archive 

time Remaining) will be shown as below. 

 
Figure 3-6 during monitoring this available time is determined by the limitation Microsoft imposes 

on the number of rows allowed in some versions of Excel 

 

Each channel’s value is constantly updated during the monitoring period and 

also the selected channels are plotted on the graph (refer to “plotting channels” 

for how to select channels to plot). Each graph’s associated channel name is 

shown on the right hand corner of the graph. See below 
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Figure 3-7 Graph’s associated channel name is shown on the right hand corner of the graph 

. 

 

The “sampling interval (ms)” is one of the weld parameters, and it determines 

the sample rate and, therefore, the maximum duration for monitoring to one file. 

Because the maximum number of samples to be stored to file is 6000, the 

monitoring duration will be adjusted accordingly based on the specified 

“sampling interval (ms)”. When monitoring stops, the captured channel data, 

weld parameters and calibration information is stored to file in a Microsoft Excel 

format. 

3.2.3 Metallography 

The Nikon optical microscope was used to view the microstructure of the 

samples. It has objective lenses of 5 times to 100 times and images were taken 

accordingly. The optical microscope was mainly used to identify the weld 

quality.  

 
Figure 3-8 Olympus stereomicroscope was used to analyse weld quality of A356. 
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3.2.4 Data Analysis and Pre processing  

The data capture was conducted in real time using the LowStir software along 

with the sensory unit and signal processing module. This data was then 

exported as digital data into an excel worksheet.  

The digital data was analysed using the DaDiSP/32 software. DaDiSP is a 

powerful generic tool for data display and analysis. Once the data is captured, 

DaDiSP allows displaying the data for subsequent manipulation and analysis. 

The Figure below shows how the data is manipulated using DaDiSP. 

 

 
Figure 3-9 Using DaDisp for data display, manipulation and analysis 

 

The exported digital data is first read as a series in DaDiSP. This is shown in 

Fig. 3-9 in the first window from the top left. This data is then broken up into 

several parts of dynamic data which are extracted as shown in the bottom-left 

window in the figure 3-10. These extracted parts of the data have an overlap (of 

48 sampling points) with each other to maintain the continuity and 
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completeness in the output results. This extracted data is then analysed by 

calculating the power spectral density (PSD) of the signal. This is done using 

the psd function. The dynamic part of the PSD is shown in the bottom-right 

window in Fig. 3-10. PSD is a very useful tool to identify oscillatory signals in 

time series data. It also gives the amplitudes of the data set. PSD analysis is 

especially useful to detect unwanted vibrations that stem from machining 

operations. To further characterise the data, it was considered to calculate the 

Kurtosis of the signals.  

The kurtosis distributions were calculated and it was clear from the calculated 

kurtosis distributions that the deviations were relatively high and some of the 

calculated values were significant. Thus, the kurtosis distributions were not 

considered to be a fitting indicator of the data distribution. Thus, the power 

spectral density of the signal was calculated and the dynamic part of the signal 

was extracted as a pre-processed input for the ANN. Pre-processing the data 

gives us a fair idea as to whether the signal distribution is normal / peaked etc.  

In the Toolbox, a graphical user interface is used for preprocessing data from 

the function som_normalize. This fuction can be used to perform linear and 

logarithmic scalings and histogram equalisations of the numerical variables. 

Scaling of variables is of special importance, since the SOM algorithm uses 

Euclidean metric to measure distances between vectors. If one variable has 

values in the range of [0,...,1000] and another in the range of [0,...,1] the former 

will almost completely dominate the map organization because of its greater 

impact on the distances measured. Typically, one would want the variables to 

be equally important. The standard way to achieve this is to linearly scale all 

variables so that their variances are equal to one [40].  
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The data does not necessarily have to be preprocessed at all before creating a 

SOM using it. However, in most real tasks preprocessing is important; perhaps 

even the most important part of the whole process [40,65]. 

 

 

 
Figure 3-10  Showing the tool torque analysis in DaDisp 
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3.3 ANN approach and modelling data with Network  

The R program package contains all the programs necessary for the correct 

application of the Self Organising Map algorithm for the visualisation of complex 

experimental data. The core of R is an interpreted computer language which 

allows branching, looping and modular programming using functions. Most of 

the user-visible functions in R are written in R. It is possible for the user to 

interface to procedures written in the C, C++, or FORTRAN languages for 

efficiency [40]. The R distribution contains functionality for a large number of 

statistical procedures. Among these are: linear and generalized linear models, 

nonlinear regression models, time series analysis, classical parametric and 

nonparametric tests, clustering and smoothing. There is also a large set of 

functions which provide a flexible graphical environment for creating various 

kinds of data presentations. Additional modules (“add-on packages”) are 

available for a variety of specific purposes [37, 40]. 

 

3.3.1  Installation of R Program Package 

Current binary versions of R run on Windows 2000 or later. A typical install took 

50Mb of disk space, a full installation about 65Mb and a minimal one about 

29Mb. Since installing to a network share was not supported for users of 

XP/Vista/Windows7 it had to be installed on to a non-system area (such 

as C:\R).  

Command-line arguments were added at the end of the Target field (after any 

final double quote, and separated by a space), for example --sdi --max-mem-

size=1G. Also, environment variables were set at the end of the Target field, for 

example R_LIBS=p:/myRlib, and the language settings for the menus and 

messages were set to (New Zealand) English, SET LANGUAGE=en. 
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3.3.2 Data Format 

The kind of data that can be processed with the R Toolbox is so-called 

spreadsheet or table data. Each row of the table is one data sample. The 

columns of the table are the variables of the data set. The variables might be 

the properties of an object, or a set of measurements measured at a specific 

time.  

Every sample had the same set of variables such as tool rotation speed, weld 

speed, torque etc. The table representation is a very common data format [40]. 

Initially, the available data did not conform to the toolbox format. However, it 

was transformed to the prescribed format using mapping & data manipulation 

schemes within the R toolbox. The toolbox can handle both numeric and 

categorical data, but only the former is utilised by the SOM algorithm. 

In the Toolbox, categorial data had to be inserted into labels associated with 

each data sample. 

Function som_autolabel was used to handle categorial variables since numeric 

variables were needed to train the SOM. They were converted into numerical 

variables using 1-of-n coding. 

Note that for a variable to be “numeric”, the numeric representation must be 

meaningful: values 1, 2 and 4 corresponding to objects A, B and C should really 

mean that (in terms of this variable) B is between A and C, and that the 

distance between B and A is smaller than the distance between B and C. 

Identification numbers, error codes, etc. rarely have such meaning, and as such 

were handled as categorial data. 
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3.3.3 Construction of Data Sets 

The preprocessed data had to be brought into R using standard programming 

functions such as  load and fscanf. In addition, the Toolbox has function 

som_read_data which can be used to read ASCII data files: 

sD = som_read_data(‘data.txt’); 

 

The data was put into a data struct, which is a struct defined in the Toolbox to 

categorise information related to a data set. It had fields for numerical data 

(.data), strings (.labels), as well as for information about data sets and the 

individual variables. 

The Toolbox utilizes many other structs as well, for example a map struct which 

holds all information related to a SOM. A numerical matrix can be converted 

into a data struct with: sD = som_data_struct(D). If the given data only 

consisted of numerical values, then it would not have been necessary to use 

data structs at all. Most functions accept numerical matrices as well. However, 

in this study, categorial variables were given and thus data structs had to be 

used. The categorial variables were converted to strings and put into the .labels 

field of the data struct as a cell array of strings. 

3.3.4 Initialisation 

There are two initialisation (random and linear) and two training (sequential and 

batch) algorithms implemented in the R Package [40]. By default linear 

initialisation and batch training algorithm were used. The efficient way to 

initialise and train a SOM was to use the 

function som_make which did both using automatically selected parameters: 

sM = som_make(sD); 
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The training was done is two phases: rough training with large (initial) 

neighborhood radius and large (initial) learning rate, and fine tuning with small 

radius and learning rate. If tighter control over the training parameters was 

desired, the respective initialisation and training functions, e.g. som_batchtrain, 

was used directly. There is also a graphical user interface tool for initialising and 

training SOMs, see Figure 3-11 

 

 
Figure 3-11 SOM initialization and training tool 

 

When the entries in the map were trained to their final values, the resulting 

quantization errors were evaluated. The training file was used for this purpose. 

The program qerror was used to evaluate the average quantization error. 

>qerror –din ex.dat –cin ex.cod 
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This program computed the quantization error over all the samples in the data 

file. 

3.3.5 Visualisation and Analysis 

There are a variety of methods to visualise the SOM. In the Toolbox, the basic 

tool is the function som_show. It was used to show the U-matrix and the 

component planes of the SOM: 

som_show(sM); 

The U-matrix visualised distances between neighboring map units, and thus 

showed the cluster structure of the map: high values of the U-matrix indicated a 

cluster border, uniform areas of low values indicated clusters themselves. Each 

component plane showed the values of one variable in each map unit. On top of 

these visualisations, additional information was shown: labels, data histograms 

and trajectories. 

With function som_vis much more advanced visualisations were possible. The 

function is based on the idea that the visualisation of a data set simply consists 

of a set of objects, each with a unique position, color and shape. In addition, 

connections between objects, for example neighborhood relations, can be 

shown using lines. With som_vis function it was possible to assign arbitrary 

values to each of these properties. For example, x-, y-, and z-coordinates, 

object size and color can each stand for one variable, thus enabling the 

simultaneous visualization of five variables. The different options were: 

- the position of an object can be 2- or 3-dimensional 

- the color of an object can be freely selected from the RGB cube, 

although typically indexed color is used 
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- the shape of an object can be any of the R plot markers ('.','+', 

etc.), a pie chart, a bar chart, a plot or even an arbitrarily shaped 

polygon, typically a rectangle or hexagon 

- lines between objects can have arbitrary color, width and any of 

the Matlab line modes, e.g. '-' 

- in addition to the objects, associated labels can be shown 

For quantitative analysis of the SOM there are at the moment only a few tools. 

The function som_quality supplies two quality measures for SOM: average 

quantization error and topographic error. However, using low level functions, 

like som_neighborhood, 

som_bmus and som_unit_dists, it was easy to implement new analysis 

functions. Much research is being done in this area, and many new functions for 

the analysis will be added to the Toolbox in the future, for example tools for 

clustering and analysis of the properties of the clusters [40]. Also new 

visualisation functions for making projections and specific visualization tasks will 

be added to the package. 
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4  Results & Discussion  

This chapter presents the results obtained by the trials explained in the previous 

chapter and discussed in order to analyse the results. The results presented in 

this chapter consist of FSW input parameter values which were given to the 

SOM for both, learning and subsequent classification. The classification results 

obtained from the SOM have also been shown - these quantify the classification 

performance of the SOM under varying operating conditions. Graphical plots 

have been used to aid in visualising the data sets and the data display is 

formatted to read as clearly and practicably as possible. The neural network 

coding and simulation was done using R.  

R is a language and environment for statistical computing and graphics. R 

provides a wide variety of statistical and graphical techniques, and is highly 

extensible. The program written for the SOM is based on the function provided 

in the kohonen package of R. Although the basic calculation subroutine is little 

changed, the data input, handling, execution, storage and output formatting is 

all original. 

 

4.1 Evaluation of Results 

In present work, the following steps were undertaken: 

• Data collection. 

• Analysis and pre-processing of the data. 

• Training of the neural network. 

• Testing the trained network. 

• Use of the trained SOM for simulation and prediction. 
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The value of the SOM analysis was to observe interrelationships that exist 

between multiple FSW variables that were tested and thereby provide a basis 

for generating hypotheses that can be experimentally examined. The SOM 

does not replace existing statistical tools, but complements our ability to 

examine relationships between disparate types of variables in a visual 

presentation of the data. In this model, the primary concern was the weld quality 

as a desired output, which was hypothesized to be the strongest determinant of 

the friction stir welding process. 

The input layer of the SOM comprised of tool rotation speed, welding speed, tilt 

angle, alloy thickness, weld force, down force and tool torque and the weld 

quality was defined as the output. The experimental data set included 44 

patterns, of which 33 patterns were used for training the network and 11 

patterns were selected randomly to test the performance of the trained network. 

4.2 Post Weld Analysis 

FSW trials were performed on two aluminium alloys A356 and AA2024 which 

have different physical characteristics (particularly strength characteristics at 

near peak FSW temperatures) under a wide range of rotation and welding 

speeds. A total of twenty two welds combinations for each material were 

produced. The resulting torque and forces have been recorded for all welds. 

Currently, no national or international standards exist for evaluating the quality 

of friction stir welds [29]. However, Lloyds Register of Shipping has issued 

guidance notes for weld qualification [45], which are largely based on 

requirements for arc welds in British Standard BS EN288 [47] and an AWS 

standard is in preparation [46]. The former document specifies 100% visual 

examination, 100% radiographic or ultrasonic inspection and 100% penetrant 

inspection, together with bend tests, tensile tests and metallography.  
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In this paper, welding flaws were identified by a combination of metallographic 

sectioning and visual observation. No attempts were made to determine the 

limits of detectability, of the flaws by the above mentioned techniques. The 

experiments for A356 were carried out under the following process windows. 

 

mm 7.5   mm 6   mm 18  2.5
 mm/min     448 224, 112, 56, ,28
     rpm 1400 & 1000 710, 500, ,250

0.3Mg)-7Si-(Al A356 thick mm 6.35  :Workpiece

pin
o ====

=
=

LDD
v

pinshoulderθ

ω
 

 

A number of A356 welds contained defects. It was observed that when welding 

at a higher speed, the material received less work per unit of weld length, i.e 

fewer tool rotations per mm. Under such conditions, the plasticised material 

might be cooler, and less easily forged by the shoulder, resulting in 

unconsolidated voids. 

Minor defects were also observed elsewhere in the welds. In some instances 

they might have been due to inadequate forging. Others were present 

intermittently. Macrostructures of post-weld transverse cross sections are 

shown in table 4-1. 
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Weld 

No. 

Microstructure of Post Welds Conditions 

 

 

 

4. 

 

V = 112 

mm/min  

 

w = 250 

rpm 

 

 

 

 

5. 

 

V = 224 

mm/min  

 

w = 250 

rpm 

 

 

 

 

7. 

 

V = 315 

mm/min  

 

w = 500 

rpm 
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10. 

 

V =  224 

mm/min  

 

w = 710 

rpm 

 

 

Table 8 Microstructure of Post Welds 

 

 

 

4.3 The Self Organising Map – Training Phase 

The neural network model was trained to simulate FSW runs that were done in 

the labs. The data from these trials was fed to the Self Organising Map and its 

performance or classification accuracy was tested against the actual data 

observed from the trials performed in the labs. The neural network learned to 

organise or tune itself to the fed input and eventually created a “self organised 

map” of the data it had seen during training. 

 

The figure 4-1 below shows a plot of the SOM after 100 iterations during the 

training phase. The figure shows the neurons within the SOM output layer and 

the distribution of data within these neurons. Depending on the input domain 

signals, the best matching unit from the output layer is chosen to represent the 

output.  
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Figure 4-1 Training the SOM - after 100 iterations 

 

 

 

In the next figure, the distribution of the data within the neurons in the 

computational layer of the neural network is shown. The output of the network is 

classified into acceptable or unacceptable weld quality. The neuron that is 

stimulated in the output layer will be the neuron whose data distribution 

matches the closest to the input data distribution. It can be seen from the figure 

that the neighbourhoods or the sampling regions of the neurons do not overlap 

with each other and thus information sharing between the neurons is nil or very 

low. 
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Figure 4-2 Data distribution within neurons during initial training phase 

 

 

Figure 4-3 shows the neuronal plot of the SOM after 20,000 iterations during 

the training phase. The difference between Figures 4-2 & 4-3 is apparent. The 

neurons in Fig. 4-3 are more in number; the data distribution inside the neurons 

is gradually starting to form clusters or groups of neurons with analogous data 

distributions. This is the beginning of the classification stage. Also, the neuronal 

neighbourhoods are coming closer to each other ever so slightly indicating that 

the data distribution within the neurons is inclining towards being fuzzy or 

representative of the real world data. 
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Figure 4-3 Beginnings of classification within neurons after 20,000 iterations 

 

In figure 4-4 it can be see that the neurons have re-organised or classified 

themselves into patterns that match the input vectors. The neurons in the top 

left corner of the figure, for example, represent input vectors where all the 

forces acting on the metal plate are at a minimum. This is only a snapshot of 

the classified neuronal layer in the SOM and should not be considered to be the 

actual classification pattern of all the neurons in the SOM. 
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Figure 4-4 Classified neuronal layer representing the welding forces 

 

 

 

4.4 Trained SOM 

Figure 4-5 shows the neuronal plot of the SOM that has undergone the training 

or learning process and has re-organised itself to match the patterns in the 

input domain. This SOM is the result of 100,000 iterations of the program.  

 



 

 93 

 
Figure 4-5 Classification after training 

 

In Fig. 4-5, it can be see that the SOM has now re-organised itself to match the 

input patterns as closely as possible. The different colours of the neurons in the 

map represent or depict the varying degrees of the signal in the input domain. 

The neurons with similar data distributions are bunched together and there is 

significant overlap between the neuronal neighbourhoods – i.e. for a given set 

of inputs, a bunch of neurons in the output layer are excited as opposed to a 

single or small number of neurons that are excited in conventional ANNs. These 

relatively large numbers of excited neurons reach their desired outcome 

through a “consensus of opinion” and thus correspond to the real-world data 

distributions in the input domain much more accurately than ANNs that learn 
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through the supervised learning paradigm. This classification and re-

organisation of the neurons within the neural network is done autonomously by 

the SOM during the learning phase and involves no human supervision or input. 

This independent nature of the SOM serves us well for predicting the outcomes 

of non-linear processes in stochastic environments. 

ANN Structure Feed (mm / min) Speed (rpm) Percentage of correct predictions 

      Good Weld      Bad Weld 

Initial network 
(after training 

run) 

28 250 77 72 
28 500 78 74 
28 710 70 71 
28 1000 82 80 
56 250 85 76 
56 710 88 81 
56 1400 75 82 

112 250 78 87 
112 500 79 72 
112 710 85 73 
112 1000 83 78 
112 1400 72 77 
224 250 71 84 
224 500 80 78 
224 710 75 78 
224 1000 80 75 
224 1400 71 75 
315 500 68 92 
315 710 88 87 
450 500 90 88 
450 710 94 92 
450 1000 89 90 

 

Table 9 Training results 

 

Table 9 represents the percentages of correct predictions averaged over 40 test 

samples for each weld classification. The training phase helps the ANN model 

to increase its generalisation accuracy. 
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4.5 Testing with Unseen Data 

Figure 4-6 shows the neuronal plot of the neural network during the prediction 

phase. The bottom right corner of the plot represents the neurons which 

correspond to the data distributions showing acceptable weld quality in the input 

domain. If the multi-sensory input to the SOM were indicative of acceptable 

levels of weld quality, then the output of the SOM would be generated by the 

excitatory response generated by these neurons. The neurons in the top-left 

corner of the map show the neurons that are representative of unacceptable 

levels of weld quality. Thus, the neural network has learned to distinguish 

between two different levels of weld quality. 

 

 
Figure 4-6 Classification results showing the grouping of neurons corresponding to weld qualities 
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Figure 4-7 shows the plot of the weld quality information within the neurons in 

the neural network. Here, the information is displayed on the plot by showing 

where every object is mapped and then by plotting a symbol in the neuron – 

which is the container circle. 

 

The map was trained to predict weld quality - the position of the symbols 

(circular spots) within the circle indicates the mapping of the expected weld 

quality for the given sample, and the measure of weld quality is indicated by the 

concentration of the circular spots within the circumference of the container 

circle. In our case this is binary, i.e. good / bad weld quality. The location of the 

circular spots comprise of two components: first, the position of the unit onto 

which the sample is mapped and second, a random component within that unit. 

 

The mapping in Figure 4-7 shows that the modelled output parameter (weld 

quality) indeed has a spatially smooth (or coherent) distribution. Moreover, in 

the prediction of the quality of the weld, the samples are ordered in such a way 

that the high quality welds (circular spots) are located in close proximity.  
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Figure 4-7: Prediction of Weld Quality 

 

Figure 4-8 shows the prediction performed by the SOM in 100,000 iterations of 

the program.  

The input domain is dynamic for the first 40,000 runs of the program and then 

stabilises. From the graph it is plain that the output patterns closely follow the 

input patterns and therefore the SOM prediction is accurate. The total number 

of miscalculations can be considered to be low in relation to the number of runs 

of the program that were made. This phenomenon would tend to indicate that 

the SOM has successfully learned the problem of weld quality detection and 

prediction and thus has good generalisation abilities. The odd misclassification 

probably suggests that there were local variations in the data caused due to the 

input domain being dependent on the machine variables or external noise. The 
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misclassifications were also limited to adjacent data sets in the input domain 

displaying a general trend of classifying to a lower level of weld quality. 

 

 

 
 

Figure 4-8 Prediction - Black is input signal and Blue is predicted output 
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ANN Structure Feed (mm / min) Speed (rpm) Percentage of correct predictions 

      Good Weld      Bad Weld 

Testing with 
unseen data 
(with trained 

network) 

28 250 93 91 
28 500 90 92 
28 710 91 93 
28 1000 90 95 
56 250 92 90 
56 710 93 90 
56 1400 96 92 

112 250 90 94 
112 500 91 93 
112 710 93 90 
112 1000 95 90 
112 1400 94 91 
224 250 94 95 
224 500 96 95 
224 710 93 94 
224 1000 88 86 
224 1400 87 89 
315 500 88 90 
315 710 89 84 
450 500 82 84 
450 710 92 91 
450 1000 89 80 

 

Table 10 Prediction in the trained network 

 

The statistics in Table 10 indicate that the best performance was obtained with 

feed rate of 224 mm/min with a speed of 500 rpm. More correct classifications 

were made for the “Good Weld” cases. The ANN model sometimes missed or 

mixed up the two weld classes (good was classified as bad and vice versa). It 

was noticed that the down-force and the weld-force shared some similarities in 

the input domain, which could be a source of prediction difficulty.  
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5 Conclusions 

The results presented in the previous chapter demonstrate the capabilities of 

the developed SOM system. The process of developing the capability of the 

neural network was done by evaluating a particularly demanding set of data 

obtained from different welding configurations under varying parametric 

conditions. Accurate classification of weld quality provides evidence that the self 

organising map was able to identify and quantify similarities between the 

training data sets and the test data sets. Moreover, it indicates that the data 

was highly process dependant with little machine dependencies. The self-

organising map appears, therefore, to be an effective and efficient prediction 

model with adequate knowledge retained by reorganisation of the neurons 

constituting the map.  

 

Weld quality classification and prediction is a complex phenomenon. Accurate 

modelling of the problem requires a highly evolved and comprehensive solution 

that draws knowledge from a spectrum of variables and learns dynamically. The 

work done in the field of FSW and ANN so far has mainly focused on the use of 

neural networks which learn using the supervised learning paradigm. These 

networks perform well under known conditions, but even a minor deviation from 

their predefined parameters can cause such networks to fail and become 

unreliable. The principal aim of this research is to construct a robust and 

efficient system for predicting weld quality of a friction stir welded plate. 

 

The promising performance of the self organising predictive system presented 

here, is not merely a reflection of its capabilities - the pre-processing and 

integration techniques are the information suppliers on the problem, and as 
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such, these have also demonstrated their adeptness allowing for judgemental 

decision making. Hence, successful classification is an indicator of the “system” 

performance.  

 

The Self-Organising Map is a neural network that closely resembles how our 

brains function by mirroring the way in which we decode data from various 

sources (senses). This cognitive capability of the SOM possesses tremendous 

merit. To build on this capability, the information that is captured to assess the 

quality of a weld should contain primary and secondary sources of data which 

are used to arrive at a consensus of opinion. 

 

The research presented here demonstrates the type of system which can 

successfully be employed to predict the weld quality of aluminum plates that are 

welded together using Friction Stir Welding. The system is an artificially 

intelligent program, providing information on a variety of weld parameters, 

which can be successfully deployed using a personal computer. Sufficiently 

long data samples, which ensure accuracy, need not result in prohibitively large 

computation times thus making the program’s application to online weld quality 

prediction a real possibility. The true robustness of the system is to be 

established by the application of the system in other industrial environments. 

The classification of weld quality using unsupervised neural networks is 

regarded as a strategic step forward in the progress towards the creation of a 

truly unmanned manufacturing environment. 

 

The main point of departure in this work is the use of an unsupervised learning 

algorithm that is used for training the SOM - thus making it independent of 
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human errors and perceptions that are enforced during the SOM training phase. 

Furthermore, the neural network is able to adapt to changing environments and 

conditions. This flexibility in adaption integrates well with the stochastic nature 

of industrial environments 

 

Some of the key findings of the research may be summarized as below: 

 

• There is a need for a reliable and robust weld quality prediction system 

that is capable of characterising weld quality in process time. 

• It appears unlikely that the weld quality of aluminium plates can always 

accurately be predicted using experiential knowledge and human 

expertise under ever changing industrial conditions. 

• Artificial Neural Networks are the best suited for modelling non-linear 

processes which make them inherently suitable for problems such as 

weld quality prediction which itself is a highly non-linear and stochastic 

process.  

• Complex time domain information can be satisfactorily expressed using 

the power spectral density of the data. 

• The unsupervised learning paradigm is proven to be better suited and 

more robust for the prediction of weld quality as opposed to the 

supervised learning paradigm used by the majority of research done so 

far. 
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• The same basic system, once trained, is capable of accurately 

classifying weld quality into varying levels of quality and not just good or 

bad. 

• This study was conducted as a proof of principle of the effectiveness of 

the self organising map for detecting & predicting the presence of weld 

defect. While these results are promising, further exploration is 

warranted. 
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6 Further Work 

The research presented in this thesis has led to the identification of a number of 

areas which are considered worthy of further investigation and development. 

They may be identified as follows: 

 

• For the developed system to be widely accepted as a prediction tool for 

use in actual industrial environments, the system has to remain effective 

in dynamic scenarios with altering weld parameters. Development of a 

universal prediction system is a particularly active research area with the 

continuous introduction of more advanced technologies. 

• A question that remains unanswered is the impact each machine will 

have on the output signals generated during the welding process. It is 

likely that each machine will contribute noise to the weld which may or 

may not be filtered by the neural network. Additional tests ought to be 

undertaken to determine the extent of the machine effect, the robustness 

of the network in the presence of the machine contribution to the signal, 

and the possibility of pre-filtering the machine dependent component of 

the output signals prior to classification 

• Having established that weld quality prediction is possible, the next step 

would be to automate the modification of weld parameters for a given 

value of expected weld quality. This step is becoming considerably 

simpler to achieve with greater utilisation of micro-chip based machine 

controllers. 

• The software and hardware elements for a comprehensive prediction 

system must be devised into a dedicated framework for data-capture, 
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pre-processing and prediction. This framework should include systems 

that have the memory capabilities for simultaneous data capture of 

various dynamic characteristics and also allow suitably fast classification 

of weld quality for industry acceptance.  

• Embedding the SOM architecture in a computerized FSW system would 

enable greater levels of un-manned welding operations. The ultimate aim 

would be to create machines that are capable of performing all the 

functions which are done by a machine operator in contemporary factory 

settings. 

• The tool rotation and weld speeds are two the most influential weld 

parameter in terms of the plate weld quality – monitoring small changes 

in this variable is particularly crucial for the automation of the welding 

process. The collection of in-process data is undoubtedly the key 

element to effective weld quality prediction and this can be simply 

achieved by utilising the relationship of the input parameters to the 

collected time domain information. The use of relatively short time 

domain signals in this work is therefore considered to be highly 

transportable to other machining operations.  
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Appendix – A 

 

Self-Organising Map Algorithm Program Listing 
 

Function SOM: 

function (data, grid = somgrid(), rlen = 100, alpha = c(0.05,  

    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), init,  

    toroidal = FALSE, n.hood, keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    ng <- nrow(grid$pts) 

    if (missing(init)) { 

        init <- data[sample(1:nd, ng, replace = FALSE), , drop = FALSE] 

    } 

    else { 

        init <- as.matrix(init) 

        if (nrow(init) != ng | ncol(init) != ncol(data) | !is.numeric(init))  

            stop("incorrect init matrix supplied") 

    } 

    codes <- init 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 
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    nhbrdist <- unit.distances(grid, toroidal) 

    if (length(radius) == 1)  

        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen) 

    res <- .C("SOM_online", data = as.double(data), codes = as.double(codes),  

        nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

        radii = as.double(radius), changes = as.double(changes),  

        n = as.integer(nrow(data)), p = as.integer(ncol(data)),  

        ncodes = as.integer(nrow(init)), rlen = as.integer(rlen),  

        PACKAGE = "kohonen") 

    changes <- matrix(res$changes, ncol = 1) 

    codes <- res$codes 

    dim(codes) <- dim(init) 

    colnames(codes) <- colnames(init) 

    if (keep.data) { 

        mapping <- map.kohonen(list(codes = codes), newdata = data) 

        structure(list(data = data, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "som"), class = "kohonen") 

    } 

    else { 

        structure(list(grid = grid, codes = codes, changes = changes,  

            alpha = alpha, radius = radius, toroidal = toroidal,  

            method = "som"), class = "kohonen") 

    } 

} 

 

Function to initialise: 

function (data, Y, grid = somgrid(), rlen = 100, alpha = c(0.05,  
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    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.75,  

    contin = !(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,  

    keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    nx <- ncol(data) 

    if (is.vector(Y))  

        Y <- matrix(Y, ncol = 1) 

    ny <- ncol(Y) 

    ng <- nrow(grid$pts) 

    xdists <- ydists <- rep(0, ng) 

    starters <- sample(1:nd, ng, replace = FALSE) 

    init <- data[starters, , drop = FALSE] 

    codes <- init 

    if (!contin) { 

        codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5) 

    } 

    else { 

        codeYs <- Y[starters, ] 

    } 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 

    nhbrdist <- unit.distances(grid, toroidal) 
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    if (length(radius) == 1)  

        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen * 2) 

    if (contin) { 

        res <- .C("BDK_Eucl", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radii = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    else { 

        res <- .C("BDK_Tani", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radius = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    changes <- matrix(res$changes, ncol = 2) 

    codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),  

        Y = matrix(res$codeYs, ng, ny)) 

    colnames(codes$Y) <- colnames(Y) 

    if (keep.data) { 

        mapping <- map.kohonen(list(codes = codes), newdata = data,  

            whatmap = 1) 

        structure(list(data = data, Y = Y, contin = contin, grid = grid,  
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            codes = codes, changes = changes, alpha = alpha,  

            radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "bdk"), class = "kohonen") 

    } 

    else { 

        structure(list(contin = contin, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, method = "bdk"), class = "kohonen") 

    } 

} 

 

Function for mapping: 

function (xdim = 8, ydim = 6, topo = c("rectangular", "hexagonal"))  

{ 

    topo <- match.arg(topo) 

    x <- 1:xdim 

    y <- 1:ydim 

    pts <- as.matrix(expand.grid(x = x, y = y)) 

    if (topo == "hexagonal") { 

        pts[, 1] <- pts[, 1] + 0.5 * (pts[, 2]%%2) 

        pts[, 2] <- sqrt(3)/2 * pts[, 2] 

    } 

    res <- list(pts = pts, xdim = xdim, ydim = ydim, topo = topo) 

    class(res) <- "somgrid" 

    res 

} 

<environment: namespace:class> 

 

Function for training: 

function (data, Y, grid = somgrid(), rlen = 100, alpha = c(0.05,  



 

 118 

    0.01), radius = quantile(nhbrdist, 0.67) * c(1, -1), xweight = 0.5,  

    contin = !(all(rowSums(Y) == 1)), toroidal = FALSE, n.hood,  

    keep.data = TRUE)  

{ 

    if (!is.numeric(data))  

        stop("Argument data should be numeric") 

    data <- as.matrix(data) 

    nd <- nrow(data) 

    nx <- ncol(data) 

    if (is.vector(Y))  

        Y <- matrix(Y, ncol = 1) 

    ny <- ncol(Y) 

    ng <- nrow(grid$pts) 

    xdists <- ydists <- rep(0, ng) 

    starters <- sample(1:nd, ng, replace = FALSE) 

    init <- data[starters, , drop = FALSE] 

    codes <- init 

    if (!contin) { 

        codeYs <- 0.5 + 0.5 * (Y[starters, ] - 0.5) 

    } 

    else { 

        codeYs <- Y[starters, ] 

    } 

    if (missing(n.hood)) { 

        n.hood <- switch(grid$topo, hexagonal = "circular", rectangular = "square") 

    } 

    else { 

        n.hood <- match.arg(n.hood, c("circular", "square")) 

    } 

    grid$n.hood <- n.hood 

    nhbrdist <- unit.distances(grid, toroidal) 
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    if (length(radius) == 1)  

        radius <- sort(radius * c(1, -1), decreasing = TRUE) 

    changes <- rep(0, rlen * 2) 

    if (contin) { 

        res <- .C("XYF_Eucl", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radii = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    else { 

        res <- .C("XYF_Tani", data = as.double(data), Ys = as.double(Y),  

            codes = as.double(codes), codeYs = as.double(codeYs),  

            nhbrdist = as.double(nhbrdist), alpha = as.double(alpha),  

            radius = as.double(radius), xweight = as.double(xweight),  

            changes = as.double(changes), xdists = as.double(xdists),  

            ydists = as.double(ydists), n = as.integer(nd), px = as.integer(nx),  

            py = as.integer(ny), ncodes = as.integer(ng), rlen = as.integer(rlen),  

            PACKAGE = "kohonen") 

    } 

    changes <- matrix(res$changes, ncol = 2) 

    colnames(changes) <- c("X", "Y") 

    codes <- list(X = matrix(res$codes, nrow(init), ncol(init)),  

        Y = matrix(res$codeYs, ng, ny)) 

    colnames(codes$Y) <- colnames(Y) 

    if (keep.data) { 

        mapping <- map.kohonen(list(codes = codes), newdata = data,  

            whatmap = 1) 
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        structure(list(data = data, Y = Y, contin = contin, grid = grid,  

            codes = codes, changes = changes, alpha = alpha,  

            radius = radius, toroidal = toroidal, unit.classif = mapping$unit.classif,  

            distances = mapping$distances, method = "xyf"), class = "kohonen") 

    } 

    else { 

        structure(list(contin = contin, grid = grid, codes = codes,  

            changes = changes, alpha = alpha, radius = radius,  

            toroidal = toroidal, method = "xyf"), class = "kohonen") 

    } 

} 

 

Function for predicting: 

function (object, newdata, trainX, trainY, unit.predictions = NULL,  

    threshold = 0, whatmap = NULL, weights = 1, ...)  

{ 

    mapping <- NULL 

    if (missing(newdata)) { 

        if (!is.null(object$data)) { 

            newdata <- object$data 

            mapping <- object$unit.classif 

        } 

        else { 

            stop("No data given with which to predict") 

        } 

    } 

    if (is.null(mapping))  

        mapping <- map(object, newdata, whatmap, weights)$unit.classif 

    if (is.null(unit.predictions)) { 

        if (object$method %in% c("xyf", "bdk")) { 
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            unit.predictions <- object$codes$Y 

        } 

        else { 

            if (object$method == "supersom" & !is.null(whatmap)) { 

                whatmap <- check.whatmap(object, whatmap) 

                if (length(whatmap) < length(object$data))  

                  unit.predictions <- object$codes[-whatmap] 

            } 

            else { 

                if (missing(trainY))  

                  stop("For unsupervised forms of mapping, trainY is required") 

                if (is.list(trainY))  

                  stop("Prediction for trainY lists not implemented") 

                if (is.vector(trainY))  

                  trainY <- matrix(trainY, ncol = 1) 

                nY <- ncol(trainY) 

                trainingMapping <- NULL 

                if (missing(trainX) & !is.null(object$data)) { 

                  trainX <- object$data 

                  trainingMapping <- object$unit.classif 

                } 

                nX <- ifelse(is.list(trainX), nrow(trainX[[1]]),  

                  nrow(trainX)) 

                if (nX != nrow(trainY))  

                  stop("Unequal number of rows in trainX and trainY") 

                if (is.null(trainingMapping))  

                  trainingMapping <- map(object, trainX)$unit.classif 

                unit.predictions <- matrix(NA, nrow(object$grid$pts),  

                  nY) 

                huhn <- aggregate(trainY, by = list(cl = trainingMapping),  

                  mean) 



 

 122 

                if (R.version$major <= "2" & R.version$minor <  

                  "6.0") { 

                  unit.predictions[sort(as.numeric(levels(huhn[,  

                    1]))), ] <- as.matrix(huhn[, -1]) 

                } 

                else { 

                  unit.predictions[huhn[, 1], ] <- as.matrix(huhn[,  

                    -1]) 

                } 

                nas <- which(apply(unit.predictions, 1, function(x) all(is.na(x)))) 

                nhbrdist <- unit.distances(object$grid, object$toroidal) 

                for (i in seq(along = nas)) { 

                  unit.predictions[nas[i], ] <- colMeans(unit.predictions[nhbrdist[nas[i],  

                    ] == 1, , drop = FALSE], na.rm = TRUE) 

                } 

                colnames(unit.predictions) <- colnames(trainY) 

            } 

        } 

    } 

    if (!is.null(object$contin) && !object$contin) { 

        prediction <- classmat2classvec(unit.predictions, threshold = 
threshold)[mapping] 

    } 

    else { 

        if (is.list(unit.predictions)) { 

            prediction <- sapply(unit.predictions, function(x) x[mapping]) 

        } 

        else { 

            prediction <- unit.predictions[mapping, ] 

        } 

    } 
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    list(prediction = prediction, unit.classif = mapping, unit.predictions = 
unit.predictions) 

} 

 

Function for plotting: 

 

function (x, type = c("codes", "changes", "counts", "mapping",  

    "property", "quality"), classif = NULL, labels = NULL, pchs = NULL,  

    main = NULL, palette.name = heat.colors, ncolors, bgcol = NULL,  

    zlim = NULL, heatkey = TRUE, property, contin, whatmap = NULL,  

    codeRendering = NULL, keepMargins = FALSE, ...)  

{ 

    type <- match.arg(type) 

    switch(type, mapping = plot.kohmapping(x, classif, main,  

        labels, pchs, bgcol, keepMargins, ...), property = plot.kohprop(x,  

        property, main, palette.name, ncolors, zlim, heatkey,  

        contin, keepMargins, ...), codes = plot.kohcodes(x, main,  

        bgcol, whatmap, codeRendering, keepMargins, ...), quality = 
plot.kohquality(x,  

        classif, main, palette.name, ncolors, zlim, heatkey,  

        keepMargins, ...), counts = plot.kohcounts(x, classif,  

        main, palette.name, ncolors, zlim, heatkey, keepMargins,  

        ...), changes = plot.kohchanges(x, main, keepMargins,  

        ...)) 

    invisible() 

} 

function (x, main, keepMargins, ...)  

{ 

    if (is.null(main))  

        main <- "Training progress" 

    nmaps <- ncol(x$changes) 
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    if (nmaps > 1) { 

        if (!is.null(colnames(x$changes))) { 

            varnames <- colnames(x$changes) 

        } 

        else { 

            varnames <- paste("Matrix", 1:ncol(x$changes)) 

        } 

    } 

    if (nmaps == 2) { 

        if (!keepMargins) { 

            opar <- par("mar") 

            on.exit(par(mar = opar)) 

        } 

        par(mar = c(5.1, 4.1, 4.1, 4.1)) 

        huhn <- x$changes 

        huhn[, 2] <- max(x$changes[, 1]) * huhn[, 2]/max(x$changes[,  

            2]) 

        ticks <- pretty(x$changes[, 2], length(axTicks(2))) 

    } 

    else { 

        huhn <- x$changes 

    } 

    matplot(huhn, type = "l", lty = 1, main = main, ylab = "Mean distance to 
closest unit",  

        xlab = "Iteration", ...) 

    abline(h = 0, col = "gray") 

    if (nmaps == 2)  

        axis(4, col.axis = 2, at = ticks * max(x$changes[, 1])/max(x$changes[,  

            2]), labels = ticks) 

    if (nmaps > 1)  

        legend("topright", legend = varnames, lty = 1, col = 1:nmaps,  
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            bty = "n") 

} 
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Appendix – B 

Tool specifications 
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Appendix – C 

Weld quality microsturcture pictures. 
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