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Abstract

The options market is one of the most important derivatives markets. It plays

a significant role in risk management. The importance of the options market is

essentially due to the fact that an option is a financial contract that gives its holder

the right, but not the obligation, to buy or sell another asset, called the underlying,

at a specified price over a specific time. The underlying asset can be any financial

product. The variety of options is wide, some of them can have a very complicated

structure, creating a real challenge for academics and practitioners. This thesis

focuses on three types of options which differ in terms of underlying assets. It will

consider options written on equity and volatility Leverage Exchange Traded Funds

(LETFs), options written on the VIX index and options written on USO (an ETF

related to crude oil).

The first essay contributes to the understanding of the pricing of options written

on a set of LETFs which track the same index. A parametric perspective is used

which employs a stochastic volatility framework for the dynamics of the underlying

LETFs, each one having a specific leverage ratio. Closed-form pricing formulas

are obtained by adopting a Fast Fourier Transform (FFT) approach. Jump risk

is also incorporated into the volatility model and a sensitivity analysis of prices is

carried out. As all the LETFs track the same underlying index, the option pricing

framework developed is therefore consistent.

The second essay analyzes the higher-order moment risk premiums of the volatility

market by utilizing VIX options that are the most liquid volatility derivatives. Both

variance and skew risk premiums are considered and a nonparametric point of view is
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adopted. This essay is the first study to discuss higher-order moment risk premiums

for volatility market. The empirical findings underline the specifics of the volatility

market and novel results are provided.

The third essay extends the study of higher-order moment risk premiums to the

crude oil market by considering USO options. There are several contributions in this

essay. Firstly, it is the first study to analyze higher-order moment risk premiums

of the crude oil market as both variance and skew risk premiums are incorporated.

Secondly, the risk premiums are decomposed, conditional on the direction of market

movements, to take into account the assumption that the upward and downward

market fluctuations carry asymmetric information. The empirical results suggest

that, compared to their undecomposed counterparts, the decomposed risk premiums

are more informative in predicting future market returns. The decomposition of the

risk premiums is proved to be essential in obtaining significant results and as the

third order moment (i.e. the skew) is also considered this work constitutes a general

and important contribution to the financial commodity literature.
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Chapter 1

Introduction

It is well known that options market is a significant component of the overall deriva-

tives markets. Options provide several advantages such as cost efficiency and/or

hedging risk opportunities. However, the large variety of option markets and the

sophisticated structures of options bring challenges to researchers. Part of the com-

plexity of options arises from the fact that they can be written on any financial

asset as essentially the option is a financial contract that gives the holder the right

to buy or sell an underlying asset at a specified price over a specific time. New

option products written on complicated underlyings are regularly introduced in the

market as a result of investors’ changing demands.

Chapter 2 serves as a starting point for the thesis, and it presents a primer on the

option market. The chapter starts with a description of Leveraged Exchange Traded

Funds (LETFs) and their derivative market. A brief literature review about research

on LETFs and their options is also given, all of which is oriented toward the S&P 500

LETF market. This chapter also explains the importance of the volatility market

and the need for further research on this new and fast growing market. Even though

the first volatility index, the VIX, is developed upon a set of S&P 500 options, the

popularity and proliferation of volatility products make the volatility an asset class

by itself. Most of the literature so far focuses on VIX options and but this research

is the first to focus on the pricing of volatility LETF options. It not only focuses on
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Chapter 1. Introduction

addressing the pricing of sophisticated structured options such as LETF options, it

also employs a nonparametric methodology to extract market information from Out

of the Money (OTM) options. A literature review of parametric and nonparametric

methodologies is given in this chapter.

In Chapter 3, pricing frameworks are developed for options on two sets of LETFs,

tracking the daily performance of the S&P 500 index and VIX index, respectively, by

employing stochastic volatility models. The key for a given set of LETFs targeting

the same underlying is the set of leverage ratios. These LETFs differ from each

other in leverage ratios, while they are connected to the same source of randomness,

which is the underlying. Chapter 3 proposes a stochastic volatility framework for

the LETFs and further develops the pricing of options on LETFs on the S&P 500

index by employing Fast Fourier Transform (FFT). This framework was originally

proposed by Zhang (2010). We extend this framework by incorporating jumps risk

and show how the option pricing can be developed. A sensitivity analysis of price

curves is performed to illustrate the impact of the model parameters on the prices.

Using Bao et al. (2012) as a starting point, we develop a novel and consistent pricing

framework for options written on volatility LETFs. The whole discussion of Chapter

3 is based on the dynamics proposed for the LETFs, and therefore it constitutes a

parametric approach to the option pricing problem.

In contrast to Chapter 3, which is based on a parametric approach, Chapters 4

and 5 exploit a nonparametric methodology to build higher-moment risk premiums

from volatility and crude oil option prices. This approach allows the extraction of

market information by using option data in a model-free way. There is a strand

of literature examining the information role of derivative markets, e.g., An et al.

(2014) and Johnson and So (2012), which argues that forward-looking information

is contained in option markets and it is slowly incorporated into the stock market.

Therefore, the thesis focuses on providing a comprehensive study of option market,

from both parametric and nonparametric perspectives.

Chapter 4, more specifically, employs the nonparametric methodology proposed by

2



Chapter 1. Introduction

Kozhan et al. (2013) to extract variance and skew risk premiums from VIX options.

So far, most of the previous research is limited to the variance risk premium and

mostly to the equity (index) option market. This chapter presents the first study on

variance and skew risk premiums for the volatility market and explains how they are

related to VIX index returns as well as to S&P 500 index returns. What is more, the

results obtained for this market contrast with those in Kozhan et al. (2013) for the

equity index option market. The results further confirm that the volatility market

has its own specific aspects and highlights the importance of such research on the

volatility market.

Chapter 5 extends the study of higher moment risk premiums to the crude oil market,

one of the most important commodity markets. Moreover, the risk premiums are

decomposed conditional on the market return sign following the strategy proposed

by Kilic and Shaliastovich (2015). One key finding is that the decomposed risk

premiums contain more predictive information about market excess returns. Also,

both the upside and downside variance risk premiums are negative in the crude

oil market, while Kilic and Shaliastovich (2015) show that the upside variance risk

premium is positive and the downside variance risk premium is negative in the equity

market. Compared to Kilic and Shaliastovich (2015), this thesis considers not only

the variance risk premium but also the skew risk premium along with the conditional

decompositions.

Overall, this thesis provides a comprehensive study on option markets, with a focus

on LETF options, VIX options and USO options. The research is carried out using

both parametric and nonparametric frameworks. The empirical results for VIX

options and USO options reveal some differences compared to equity index options,

often used in previous studies, and underline the necessity of analyzing these new

markets. To conclude, Chapter 6 provides a summary of key findings and suggests

certain new directions for future research.
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Chapter 2

A Primer on Options Market

This part gives a brief introduction and explanation of related financial markets and

literature for the whole thesis.

2.1 LETFs and their derivative market

Exchange Traded Funds (ETFs) have gained tremendous popularity due to the

advantages they offer, such as easy diversification, low costs, tax efficiency and

transparency. A Leveraged ETF (LETF) is a specific type of ETF that is designed

to provide a multiple of the daily return of a given underlying ETF or index. In

order to complete this goal, fund managers need to rebalance the components of the

holding portfolio on a daily basis. The multiple is often called the leveraged ratio.

Options written on LETFs are available as well. Typically, an LETF has a very

liquid underlying ETF, and there can be options traded on both the LETFs and the

underlying ETF. Trading options on LETFs offers investors several advantages over

trading the underlying LETF itself. The LETF option is a powerful vehicle to trade

on the market because of its potential for large gains or its uses for hedging risk.

The LETF option also provides an additional tool for speculation. LETFs and their

corresponding derivatives market are quite new compared with other traditional

4
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financial assets.

As stated in Zhang (2010), there can be LETFs with various leverage ratios tracking

the same underlying ETF or index; therefore, the pricing of LETFs is connected by

the leverage ratios and the dynamics of the underlying. Zhang (2010) also points

out that the leverage can only be maintained in the short term, which is the key of

a leveraged product, as the leverage decays quite fast in the long run. Specifically,

this thesis focuses on LETFs tracking two prominent market indices, namely, the

S&P 500 and the VIX index.

2.2 Research on LETFs and their options

So far, limited research has been carried out on LETFs and their related derivative

market, which can be explained by the fact that the LETF option market is relatively

new. The first theoretical work is carried out by Zhang (2010), which analyzes a

sextet of LETFs tracking the S&P 500 index and proposes using the Heston model

to price options written on these LETFs. Ahn et al. (2015) extend the work of

Zhang (2010) by considering the role of jumps by analyzing the performance of

stochastic volatility with jumps in price (SVJ) model and stochastic volatility with

contemporaneous jumps in price and volatility (SVCJ) model. Deng et al. (2014)

provide an analysis of options of LETF along with some results on the impact of the

leverage ratio on the shape of the volatility smile. Note that all the previous works

consider options written on LETFs tracking the S&P 500 equity index.

2.3 The volatility derivative market

Since the Global Financial Crisis, the role of volatility products in portfolio risk man-

agement, such as diversifying and hedging by incorporating volatility products, has

become increasingly significant, especially in turbulent markets. Even though the

VIX index is derived from S&P 500 options, the volatility index and its derivatives
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have evolved into an asset class itself and have specific properties that are different

from the traditional assets, such as equities. The need for a better understanding

and modelling of equity volatility and the pricing of its derivatives has increased

dramatically.

The VIX index, which is well known as “the fear index”, was introduced in the mar-

ket by the Chicago Board Options Exchange (CBOE) in 1993. As VIX has become

an asset class of its own, it can act as a benchmark or underlying for a host of futures,

options and ETFs. For example, futures on VIX were introduced in March, 2004

and options on VIX were launched in February, 2006. Both VIX futures and options

can provide investors with access to diversified investment portfolios by incorporat-

ing a volatility risk factor. The trading of volatility exchange traded products/funds

(ETPs/ETFs) has also been booming, as traders look for profit opportunities dur-

ing market fluctuations. According to Bloomberg News on September 15, 2016, the

total transaction volume of volatility-related ETPs amounted to $4.3 billion in 2016,

in sharp contrast to almost nothing less than a decade ago.

However, institutional investors such as pension funds are not allowed to take di-

rect positions in VIX futures and options. The proliferation of volatility-related

ETPs/ETFs provides these investors with direct exposure to market volatility. One

such ETF is the volatility LETF which aims to track a certain multiple of the un-

derlying VIX futures index. Options written on these volatility LETFs are also

available. So far, research on LETF options has mainly focused on the options writ-

ten on LETFs tracking S&P 500 index, and none has been carried out on options

written on LETFs tracking the VIX index. The underlying index for the LETFs is

the S&P 500 VIX Short-Term Futures Index, rather than the VIX index itself. As

the VIX futures index has a close connection with the VIX, previous works on VIX

modelling can be a good reference for the modelling of the volatility of LETFs.
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2.4 Research on volatility options

So far, the majority of the literature on the volatility index and its derivatives is on

VIX futures and options. A brief discussion on the modelling of VIX dynamics and

pricing of VIX derivatives is presented here. One prominent feature of VIX options

is that the implied volatility surface exhibits a positive volatility skew, while the

volatility skew is negative in the case of equity index options. Sepp (2008) reasons

that since out-of-money (OTM) call options on the VIX provide a protection against

market crash, extra compensation for taking risk should be charged. Sepp (2008)

also suggests incorporating stochastic volatility into the VIX dynamics to model the

feature of positive skew in VIX options, and this strategy is consistent with what

was done for the equity (index) option market to which stochastic volatility models

have been applied extensively. 1

Detemple and Osakwe (2000) propose a mean-reverting logarithmic process for the

volatility dynamics. Kaeck and Alexander (2010) find that modelling the dynamics

of the log value of the VIX index is superior to the direct modelling of that of the

volatility level, so they propose a stochastic volatility model for the logarithm of

the VIX. Bao et al. (2012) adopt the model of Kaeck and Alexander (2010) for

the dynamics of iPath S&P 500 VIX Short Term Futures ETN (VXX) and derive

a pricing formula for options written on the VXX. Menćıa and Sentana (2013)

find that modeling the log of VIX with a mean reverting process combined with a

stochastic volatility leads to a satisfactory model to price VIX futures and options.

Gehricke and Zhang (2014) propose a model for VXX, focusing on the time-varying

mean behavior of the VXX. Branger et al. (2016) propose parametric models for VIX

options, and the empirical analysis demonstrates that a stochastic central tendency is

of importance for the pricing of VIX futures while a stochastic volatility-of-volatility

contributes to match the prices of VIX options. Bardgett et al. (2017) also deal with

VIX and S&P 500 options using a parametric approach and they find that VIX

1 Stochastic volatility works well to characterize the negative skew observed in the equity
option market, except for short-dated data for which jumps are needed (see Heston (1993) and
Bates (1996)).
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option market provides information about the variance of S&P 500 returns which is

not spanned by the S&P 500 market. So far, no research on the pricing of options

on volatility LETF has been carried out. To build a framework of pricing options

on volatility LETFs, the research of Bao et al. (2012) will be used, as the VXX is

essentially a volatility LETF with a leverage ratio of one.

2.5 Relation between equity and volatility mar-

kets

As stated previously, the first volatility index, namely, the VIX, is computed by using

a set of S&P 500 options and represents the market’s 30-day forward expectation of

S&P 500 market volatility. The methodology used to build the VIX is nonparametric

as no model is involved in the computations. It is widely acknowledged that the

VIX index works well as a barometer of investor sentiment and market volatility.

The introduction of VIX derivatives such as options and futures makes volatility

trading available to investors. Moreover, the Global Financial Crisis made investors

aware of the necessity to hedge investments by incorporating volatility products.

Apart from the VIX index, which is based on the S&P 500 index, there are also

volatility indices on other equity market indices such as the Russell 2000 index,

interest rates, commodity-related ETFs, currency-related ETFs, and volatility of

VIX. For example, OVX is the volatility index built from USO options (the USO is an

ETF tracking the WTI light sweet crude oil) and EVZ stands for the EuroCurrency

ETF volatility index. Derivatives on these volatility indices, such as futures and

options, are available as well. As a result, the rapid growth of volatility products

has turned the volatility into an asset class in itself but it has some unique properties

compared to the much more mature equity and equity option markets.
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2.6 Parametric and nonparametric approaches

In this thesis, both parametric and nonparametric approaches are utilized to analyze

the option market. Specifically, Chapter 3 relies on parametric models to analyze

both equity and volatility LETFs and options written on these LETFs; Chapters 4

and 5 rely on a nonparametric methodology to investigate higher moment risk pre-

miums for the volatility and crude oil markets. A brief explanation of the differences

between these two approaches is given in this section.

The parametric methodology relies on the specification of a dynamic model and its

parameters. In terms of option pricing, the stochastic volatility model is the most

popular pricing framework, which assumes the volatility term follows a stochastic

process. As mentioned previously, the stochastic volatility model proposed by He-

ston (1993) achieved great popularity for its capability to generate the volatility

smiles observed in the equity index option market. One shortcoming of Heston’s

(1993) model is that it does not work well for short-dated options. Bakshi et al.

(1997) conjecture that jumps in volatility may be necessary as stochastic volatility

model can not fully explain the short-term volatility smile. There are many works

in the literature focusing on adding jumps to stochastic volatility models. Among

these works, Duffie et al. (2000) find that the inclusion of jumps into volatility leads

to a more pronounced smirk for both short and long maturities. Eraker et al. (2003)

confirm strong evidence for jumps in both volatility and returns and emphasize

that jumps play a greater role than stochastic volatility in the periods of market

downturns.

The nonparametric method is also called the model-free method. Carr and Wu

(2009) are the first to propose a direct and model-free approach for quantifying the

variance risk premium for financial assets. They synthesize the risk-neutral vari-

ance of an asset by utilizing a particular linear combination of options written on

that asset. Furthermore, by taking the difference between this risk-neutral variance

and the ex-post realized variance of the asset, they can measure its variance risk
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premium. Based on Carr and Wu (2009), Kozhan et al. (2013) propose a general-

ized approach to quantify the risk premium for the third order moment, i.e., the

skew risk premium. They show that a risk premium for a given moment order is

equivalent to a swap contract, where the fixed leg is the risk-neutral moment, the

floating leg is the realized moment, and the expected profit from the trading strat-

egy is the risk premium of the moment. Moreover, there is a strand of literature

documenting that financial markets react differently to positive and negative shocks

(For this aspect, refer to Barndorff-Nielsen et al. (2008) and Patton and Sheppard

(2015).). The different impacts of positive and negative market movements on eco-

nomic fundamentals lead Kilic and Shaliastovich (2015) to decompose the variance

risk premium, and further demonstrate that decomposed variance risk premiums are

more informative for future stock market returns.

In all, parametric and nonparametric methodologies are complementary. The former

enables a concise description of the asset dynamics, as the model parameters give

an easy-to-understand impact on the option prices and the calibration or estimation

can be more robust to outliers. In contrast, nonparametric methodology allows one

to obtain very general conclusions on key financial variables (such as risk premiums)

without making any model assumptions. Even though at first sight the model-free

methodology looks very appealing, this generality comes at a price as it can be quite

sensitive to outliers. Both approaches have pros and cons, so the best strategy is to

use them both as this work will show.

2.7 Variance and Skew Swap Contracts

A variance swap is an over-the-counter contract which allows speculation on or

hedging risks associated with volatility of the underlying product, such as equity

index and exchange rate. Payoff for the receiver of the floating leg, who is the payer

of the fixed leg at the same time, is the difference between the realized variance and

the variance swap rate which actually represents the risk-neutral variance. Carr and
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Wu (2009) first demonstrate that the variance swap rate can be synthesized by a

particular linear combination of option prices. The methodology is normally called

model-free as it does not rely on any pricing model to measure the variance swap

rate.

The variance risk premium is actually the payoff for a variance swap contract

initiated at time t with maturity T

realized variance︸ ︷︷ ︸
received at time T

− risk-neutral variance︸ ︷︷ ︸
paid at time t

,

where the fixed leg of the variance swap contract stands for the risk-neutral variance

and the floating leg of the variance swap contract stands for the realized variance.

An any-order moment risk premium is proposed by Kozhan et al. (2013),

who developed a general trading strategy so that a swap contract based on any-order

moment can be synthesized. Correspondingly, an any-order moment risk premium

is the payoff of the moment swap contract initiated at time t with maturity T

g(rt,T )︸ ︷︷ ︸
received at time T

−EQ
t [g(rt,T )]︸ ︷︷ ︸

paid at time t

, (2.1)

where rt,T stands for the log return of the underlying asset from t to T , P stands

for the physical measure and Q stands for the risk-neutral measure.

Regarding different order moment swaps, the key is the specific form of payoff func-

tion g in Equation (2.1). According to Kozhan et al. (2013), payoff for the variance

swap contract is

gv(r) = 2 (er − 1− r) ,

where r is daily log return of the underlying asset.
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Payoff for the skew swap contract is

gs(r) = 6 (2 + r − 2er + rer) .

The specific expressions of variance and skew swap risk premiums will be further

discussed in Chapter 4.
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Chapter 3

A Study of Options on Equity and

Volatility LETFs

3.1 Introduction

A leveraged exchange traded fund (LETF) is a specific type of ETF that is designed

to track multiple daily returns of a given ETF or index. Options written on LETFs

are provided as well. Since the LETFs with various leverage ratios are tracking the

same underlying ETF or index, the pricing of LETFs is connected by the leverage

ratios and the dynamics of the underlying, as in Zhang (2010). Moreover, as options

on different LETFs share the same source of risk, which is the underlying ETF,

then their prices are determined by the leverage ratio and the dynamics of the

underlying asset. This thesis focuses on LETFs related to two prominent market

indices, namely, the S&P 500 and the VIX, and the pricing of options on these

LETFs. For simplicity, an LETF tracking a multiple daily return of the S&P 500

Index is named an equity LETF and an LETF tracking a multiple daily return of

the S&P 500 VIX Short Term Futures Index is named a volatility LETF.

This thesis focuses on two sets of LETFs here. The first is the set of equity LETFs,

namely, SPXU (-3), SDS (-2), SH (-1), SPY (+1), SSO (+2) and UPRO (+3).
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Options on these equity LETFs were introduced in the market in 2011. The second

is the set of volatility LETFs, namely, VIXY (+1), UVXY (+2) and SVXY (-1),

which are issued by ProShares. Options written on these volatility LETFs are also

available in the market. 1

So far, limited research has been carried out on LETFs and their related derivative

market. Avellaneda and Zhang (2010) are the first to systematically investigate

equity LETFs tracking the S&P 500 and their option pricing from a theoretical

perspective. Other studies include Lu et al. (2009), Ahn et al. (2015), Deng et al.

(2014), and Leung et al. (2014). Lu et al. (2009) analyze the evolution of Ultra ETF

(+2) and UltraShort ETF (−2) from the ProShares family, which finds that the long

term returns of both LETFs deviate from the leverage ratios, emphasizing the fact

that LETFs are designed to track the short term multiple returns of the underlying.

By studying a sextet of LETFs tracking S&P 500 index, Deng et al. (2014) show

that the Heston model can reproduce the crooked smiles generated by LETF options

and the curvature of volatility smiles can be affected by leverage ratios. Ahn et al.

(2015) analyze the consistent pricing of options on LETFs, by comparing several

stochastic volatility models, which also point out the model-dependency of LETF

option prices.

This thesis also analyzes the set of volatility LETFs and consider the pricing of

options on these assets. So far, no research on a dynamic model of the volatility

LETFs and their derivative pricing has been proposed. We develop an analysis of

the volatility LETF market by specifying a proper model for the underlying asset

and the pricing of the options. The focus is volatility products as volatility has

grown into a new asset class as a result of the increasing popularity and demand

for volatility trading. So far, most literature is on VIX modelling and its option

pricing. Note that the underlying index for the LETFs is the S&P 500 VIX Short-

Term Futures Index, rather than the VIX index itself. Therefore, pricing options

1The set of equity LETFs, namely, SPXU (-3), SDS (-2), SH (-1), SPY (+1), SSO (+2) and
UPRO (+3), are tracking the S&P 500 index. The number in the brackets is the corresponding
leverage ratio designed to target. The set of volatility LETFs, namely, VIXY (+1), UVXY (+2)
and SVXY (-1), are designed to track the S&P 500 VIX Short-Term Futures Index.
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on volatility LETFs is closely related to pricing VIX options, but the difference can

not be neglected.

Jump is another concern that features the volatility smile observed in the option

market. There is an extensive body of research on the impacts of jumps on option

pricing. For example, Bates (1996) is the first to add jumps into the stochastic

volatility model for pricing foreign exchange rate options. Other papers about com-

bining jumps and stochastic volatility include, among others, Duffie et al. (2000),

Eraker (2004) and Broadie et al. (2007). Moreover, the specification of jump inten-

sity is another issue worth of concern. Indeed, Bates (1996) and Duffie et al. (2000)

introduce jump risk with constant intensity while other researchers, such as Bates

(2000) and Eraker (2004), assume the jump risk is time varying. In this thesis, the

jump term is added into the pricing models of both equity and volatility LETFs. In

addition, the jump risk will be analyzed under two situations, namely, the constant

jump intensity and the stochastic jump intensity. The corresponding option pricing

formula will be further derived by using Fourier Inversion techniques. To the au-

thor’s knowledge, no research on pricing LETF options by combining the stochastic

volatility and jump risk has been carried out so far.

This chapter is organized as follows. Section 2 presents the stochastic volatility

models for pricing options on both equity and volatility LETFs. In Section 3, the

option pricing formulas are computed via Fourier Transform. Section 4 provides the

asymptotic expansions for option pricing. Section 5 gives a brief data description.

Section 6 presents the numerical results. Section 7 provides an analytical extension

of option pricing models by incorporating jumps. Section 8 concludes.

3.2 The stochastic volatility models

In this part, the thesis focuses on the feature of volatility skew observed in the

LETF option market, namely, the negative volatility skew implied by equity LETF

option data and the positive volatility skew implied by volatility LETF option data,
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respectively. Introducing stochastic volatility into the option pricing model can be

an effective way to characterize this feature. Prominent examples include Heston

(1993) and Hull and White (1987). In fact, Heston model is adopted in this thesis

for the dynamics of equity LETFs and a logarithmic model with stochastic volatility

(LRSV) for the dynamics of volatility LETFs.

Regarding options on equity LETFs with different leverage ratios, which share the

same source of randomness, namely, the underlying ETF, therefore, pricing options

written on the set of LETFs is related. This important property was explained in

Zhang (2010) who provides a unifying framework to value these options within the

Heston model

The S&P 500 VIX Short-Term Futures Index has a close connection with the VIX,

and previous work on VIX modeling can be a good reference for the modeling of

volatility LETFs. As one prominent feature of VIX options is that the implied

volatility surface exhibits positive volatility skew, Sepp (2008) suggests incorporat-

ing stochastic volatility into the VIX dynamics to capture this feature. Detemple

and Osakwe (2000) propose a mean-reverting logarithmic process for the volatility

dynamics. Kaeck and Alexander (2010) find that modelling the dynamics of the log

value of the VIX index is superior to the direct modelling of that of its level. Bao

et al. (2012) adopt the model of Kaeck and Alexander (2010) for the dynamics of

VXX, which is an ETN issued by iPath Barclays that tracks the daily performance

of the S&P 500 VIX Short-Term Futures Index, and perform the pricing of options

on this asset. The work of Bao et al. (2012) only focuses on the dynamics of the

unleveraged ETF and pricing of corresponding options. We aim to provide a con-

sistent pricing framework for options on volatility LETFs, based on the framework

of Bao et al. (2012).
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3.2.1 Equity index LETFs

In this part, the dynamics of equity LETFs are discussed and a consistent pricing

framework for all the LETF options is provided. The underlying asset of equity

LETFs is denoted by st, which may qualify as a stock. Then the dynamics of st can

be given by the set of stochastic differential equations (SDE in the sequel) under

the risk-neutral probability

dst = (r − q)stdt+
√
vtstdw

1
t , (3.1)

dvt = κ(θ − vt)dt+ σ
√
vtdw

2
t , (3.2)

In the above system, (w1
t , w

2
t )t≥0 is a two-dimensional Brownian motion with corre-

lation structure corr(dω1
t , dω

2
t ) = ρ, r is the risk-free rate, q is the dividend yield,

κ is the mean-reverting speed, θ is the long-term mean of variance and σ is the

volatility of volatility. This model is the classical Heston model and belongs to the

affine class. It means that the moment generating function of the log-stock ln st,

denoted by yt, and the integrated volatility are known in closed form. Indeed, this

function is given by the following proposition.

Proposition 1 Let (yt, vt) be a vector with yt = ln st where (st, vt)t≥0 is given by

Equation (3.1) and Equation (3.2), then its moment generating function is given by

G(t, z1, z2, y, v) = EQ[ez1yt+z2
∫ t
0 vudu|y0 = y, v0 = v] = ea(t)+b(t)v0+z1y0 , (3.3)

where

a(t) =
2κθ

σ2

(
tλ− − ln

(
λ+ − λ−e−

√
∆t

λ+ − λ−

))
+ (r − q)z1t, (3.4)

b(t) =
(z2

1 − z1 + 2z2)

2

1− e−
√

∆t

λ+ − λ−e−
√

∆t
, (3.5)
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and

λ± =
(κ− z1ρσ)±

√
∆

2
, (3.6)

∆ = (κ− z1ρσ)2 − σ2(z2
1 − z1 + 2z2), (3.7)

the proof of which can be found in Appendix 3.9.

A leveraged exchange traded fund lt provides a multiple, denoted by m, of the daily

return of the underlying ETF (st)t≥0. It was shown in Avellaneda and Zhang (2010)

that these two assets are related through the following relation

dlt
lt

= m
dst
st

+ (1−m)rdt,

with the initial value l0 known and r denotes the risk-free interest rate. It can be

seen that both lt and st share the same source of randomness.

Using Itô’s Lemma, it can be deduced that

lt = l0

(
st
s0

)m
e

(
m−m2

2

) ∫ t
0 vudu+(1−m)rt

. (3.8)

Obviously, if m = 1 then lt = st. For a connection between the leveraged asset and

the Constant Proportion Portfolio Insurance (CPPI) strategy proposed by Black and

Perold (1992), see Bertrand and Prigent (2003). Following Avellaneda and Zhang

(2010), other papers for example Haugh (2011) and Jarrow (2010) also focused on

this relation indicated by Equation (3.8). Taking the logarithm of Equation (3.8),

this equation can be rewritten as

ln lt − ln l0 = m(ln st − ln s0) +
m−m2

2

∫ t

0

vudu+ (1−m)rt. (3.9)

This equation illustrates that lt provides a multiple of the stock return, and also

underlines the presence of a bias due to volatility. As m ∈ {−3,−2,−1, 2, 3} the

volatility contribution will be negative. Thus whatever the sign of m is, it will reduce
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the return of the LETF compared to the stock return. Both options on (st)t≥0 and

(lt)t≥0 are available, and it is therefore of interest to focus on the consistent pricing

of options on these assets.

3.2.2 Volatility index LETFs

It is assumed that the underlying asset price Vt of volatility LETFs follows the

logarithmic model with stochastic volatility (LRSV) with instantaneous variance vt,

which is discussed in Kaeck and Alexander (2010) and Bao et al. (2012)

d lnVt = κ(θ − lnVt)dt+
√
vtdω

1
t , (3.10)

dvt = κv(θv − vt)dt+ σv
√
vtdω

2
t , (3.11)

where the initial value V0 is known, the initial value of v0 is unknown as it is a

latent variable, (ω1
t , ω

2
t )t≥0 is a Brownian motion with correlation coefficient ρ, r is

risk-free interest rate, κ is the mean-reverting speed of the log-value of Vt, θ is the

long-term mean of the log-value of Vt, vt is the stochastic volatility of Vt, κv is the

mean-reverting speed of the stochastic volatility vt, θv is the long-term mean of the

stochastic volatility vt and σv is the volatility of volatility.

Remark 2 First, let us stress the fact that our objective is to show that within the

framework proposed by Bao et al. (2012) the pricing of options on volatility LETF is

feasible, it does not mean that their framework is the most relevant one. Certainly,

taking into account the recent contribution of Gehricke and Zhang (2014) will lead

to a more realistic model.

Proposition 3 Let (yt, vt) be a vector with yt = lnVt where (Vt, vt)t≥0 is given by

Equation (3.10) and Equation (3.11), then its moment generating function is given

by

G(t, z1, z2, y, v) = EQ[ez1yt+z2
∫ t
0 vudu|y0 = y, v0 = v] = eA(t)+B(t)v0+C(t)y0 , (3.12)
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with A(t), B(t) and C(t) solving the set of ordinary differential equations (ODEs)

∂A

∂t
= κvθvB(t) + κθC(t),

∂B

∂t
= z2 +

1

2
C2(t) + (ρσvC(t)− κv)B(t) +

1

2
σ2
vB

2(t),

∂C

∂t
= −κC(t),

with initial conditions A(0) = 0, B(0) = 0 and C(0) = z1. Therefore, we have

C(t) = z1 exp (−κt). The function B(t) is a Riccati equation with time-dependent

coefficients, and can be solved by applying a numerical method such as Runge-Kutta.

The function A(t) can also be solved by utilizing the Runge-Kutta method. The proof

can be found in Appendix 3.9.

For a volatility LETF with leverage ratio m, its price xt is based on the underlying

price Vt as follows
dxt
xt

= m
dVt
Vt

+ (1−m)rdt,

with the initial value x0 known and r denotes the risk free interest rate. We can see

that both Vt and xt share the same source of randomness.

By applying Itô’s Lemma, the dynamics of the log-price lnxt with instantaneous

variance vt is given by

d lnxt = md lnVt −
(
m2 −m

2

)
vtdt+ (1−m)rdt, (3.13)

with the known initial value lnx0,

Equation (3.13) further implies that

xt = x0

(
Vt
V0

)m
e
−
(

m2−m
2

) ∫ t
0 vudu+(1−m)rt

. (3.14)

Equation (3.13) demonstrates the compounding effects, which means that returns

over periods longer than one day will deviate from the target return, as documented

by Zhang (2010). The deviation depends on the volatility of the underlying and the
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leverage ratio.

3.3 Option pricing on LETFs

3.3.1 Option on equity LETFs

The pricing of options on LETF was originally presented in Zhang (2010) using the

Heston model. A slightly different approach was proposed by Ahn et al. (2015) for

the Heston model with jumps on the stock. Other papers focusing on option pricing

are Deng et al. (2014) based on the Heston model; Leung et al. (2014) where the

stock follows a non affine dynamic process and option price approximations are given

using expansions based on the fast mean reverting decomposition of the volatility

process. For the sake of completeness, the pricing of these products is presented

below.

Considering a European call option on an LETF with strike price K and maturity

time t, using standard arguments, it can be proved that

c(t, l0, v0) = e−rtEQ [(lt −K)+]

= e−rtEQ

[(
l0

(
st
s0

)m
e

(
m−m2

2

) ∫ t
0 vudu+(1−m)rt −K

)
+

]
= e−rtEQ

[
(l0e

xt −K)+

]
= e−rt

∫ +∞

−∞
(l0e

x −K)+ f(x)dx, (3.15)

where f(x) is the density of xt = ln
(
lt
l0

)
= m ln

(
st
s0

)
+
(
m−m2

2

) ∫ t
0
vudu+(1−m)rt.

By ϕ(t, z) = EQ [eizxt ] the characteristic function of xt is denoted and

c(t, l0, v0) =
e−rt

2π

∫ +∞+iγ

−∞+iγ

ϕ(t, z)

∫ ∞
−∞

(l0e
x −K)+ e

−izxdxdz

=
e−rt

2π

∫ +∞+iγ

−∞+iγ

ϕ(t, z)
K1−izliz0
iz(iz − 1)

dz,
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where γ = =(z) < −1.

Defining k0 = ln
(
K
l0

)
, the above equation can be simplified to

c(t, l0, v0) =
Ke−rt

π

∫ +∞+iγ

0+iγ

e−izk0
ϕ(t, z)

iz(iz − 1)
dz. (3.16)

The characteristic function of (lt)t≥0 in Equation (3.16) is linked to the moment

generating function Equation (3.12) as follows

ϕ(t, z) = EQ
[
eizxt

]
= EQ

[
e
iz(m ln

st
s0

+m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtG

(
t, izm, iz

m−m2

2
, 0, v0

)
.

If we wish to relax the assumption on =(z), then we can firstly consider a put minus

a cash position. The Fourier transform of this function is

∫ +∞

−∞

(
(K − l0ex)+ −K

)
e−izxdx =

Ke
−iz ln K

l0

iz(iz − 1)
. (3.17)

Equation (3.17) implies that the constraint =(z) ∈ [−1, 0] and the call option price

can be obtained by using the call-put parity relation. The proof can be found in

Appendix 3.9. Numerically, the option pricing is performed using the FFT following

the exposition made by Carr and Madan (1999).

3.3.2 Option on volatility LETFs

The price of a European call option written on the LETF with leverage ratio m

having strike K and time to maturity t, or equivalently maturity t if the current

time is t = 0, is

c(t, x0, v0) = e−rtEQ [(xt −K)+]

= e−rtx0

∫ ∞
−∞

(
ey − ek0

)
+
f(y)dy,
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where yt = ln xt
x0

, k0 = ln
(
K
x0

)
and f(y) is the probability density function of the

random variable yt.

The pricing formula above indicates that the option value actually depends on the

probability density function f(y). In fact, the computation of f(y) can be easily and

effectively performed by inverting the characteristic function via Fourier Transform.

By φX(t, z) = EQ [eizxt ] the characteristic function of xt is denoted and

c(t, x0, v0) =
e−rt

2π

∫ +∞+iγ

−∞+iγ

φX(t, z)

∫ ∞
−∞

(x0e
x −K)+ e

−izxdxdz

=
e−rt

2π

∫ +∞+iγ

−∞+iγ

φX(t, z)
K1−izxiz0
iz(iz − 1)

dz,

where γ = =(z) < −1.

The call option pricing formula can be expressed as

c(t, x0, v0) =
Ke−rt

π

∫ ∞
0

<
[
φX(t, z)e−izk0

1

iz(iz − 1)

]
dzR, (3.18)

where z = zR + zIi is a complex number with i =
√
−1 and zR ∈ R, zI ∈ R. The

above integral is limited to zI < −1, the proof of which can be found in Appendix

3.9. For the corresponding price of the put option denoted by p(t, x0, v0), which has

exactly the same time to maturity t, strike price K and the underlying LETF with

leverage ratio m, the price is obtained via put-call parity.

More precisely, the price of a European put option written on the LETF with lever-

age ratio m having strike K and time to maturity t, or equivalently with maturity

t if the current time is t = 0, is

p(t, x0, v0) = c(t, x0, v0)− xt +Ke−rt. (3.19)

Carr and Madan (1999) applied the FFT algorithm to compute Equation (3.18),

and this thesis follows this strategy.
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3.4 Short term asymptotic expansions of implied

volatility

Consider the Heston model

dst = (r − q)stdt+
√
vtstdw

1
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdw

2
t ,

with correlation structure corr(dω1
t , dω

2
t ) = ρ.

Referring to Forde and Jacquier (2009), the short-time asymptotic implied volatility

I(p) has the following expansion around p = 0

I(p) =
√
v0

[
1 +

1

4
ρz + (

1

24
− 5

48
ρ2)z2 +O(z3)

]
, (3.20)

where z = σp
v0

.

Equation (3.20) indicates that when the moneyness p is close to zero, the implied

volatility is determined by the initial instantaneous volatility of variance v0, the

correlation coefficient ρ and z which is the ratio between instantaneous volatility of

the underlying σp and v0. Based on the short term asymptotics of implied volatility

shown by Equation (3.20), the small-time asymptotic implied volatility of LETFs is

further explored.

The dynamic system of an LETF lt with leverage ratio m is given by the following

set of stochastic differential equations (SDE in the sequel) under the risk-neutral

probability

dlt = (R−Q)ltdt+ lt
√
Ytdw

1
t , (3.21)

dYt = κY (θY − Yt)dt+ σY
√
Ytdw

2
t , (3.22)

with (w1
t , w

2
t )t≥0 a two-dimensional Brownian motion with correlation structure
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corr(dω1
t , dω

2
t ) = ρ.

Corresponding to the dynamic system of the underlying asset st, the coefficients

have the following relationship

R = r,

Q = mq,

y0 = m2v0,

κY = m2κ,

θY = θ,

σY = mσ,

ρY = sgn(m)ρ.

with sgn(m) = 1 if m ≥ 0 and sgn(m) = −1 if m < 0.

As a result, the short-time asymptotic implied volatility Im(p) for the LETF with

leverage m has the following expansion around p = 0

Im(p) =
√
y0

[
m+

1

4
sgn(m)ρz + (

1

24
− 5

48
ρ2)

z2

m2
+O(z3)

]
, (3.23)

where z = σp
y0

.

Equation (3.23) indicates that the implied volatility depends only on the leverage

ratio and correlation coefficient; the higher the absolute value of leverage ratio, the

larger the implied volatility. Also, for a pair of LETFs with opposite leverage ratios,

the sign of leverage has an impact on the asymptotic implied volatility, and therefore

the asymptotic values of volatility are different.
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3.5 Data description

3.5.1 Equity index LETFs

There is a rich dataset which contains the prices of options on a sextet of LETFs

tracking the daily performance (or a multiple) of the S&P 500 index. The dataset

spans from March 24, 2011 to February 16, 2015, which is the overlapping period

that option data on all the six LETFs are available. The underlying LETFs are

issued by the ProShare company, which is a division of the ProFunds Group and

offers many different ETFs in terms of asset class besides the equity LETFs. The

detailed information of the LETFs targeting S&P 500 is reported in Table 3.1.

Table 3.1: Equity LETFs ticker and ratio
Fund Name Ticker Name Leverage Ratio
Proshares UltraPro Short S&P 500 ETF SPXU -3
Proshares UltraShort S&P 500 ETF SDS -2
Proshares Short S&P 500 ETF SH -1
SPDR S&P 500 ETF SPY +1
Proshares Ultra S&P 500 ETF SSO +2
Proshares UltraPro S&P 500 ETF UPRO +3

Note: Equity LETFs tracking the S&P 500 Index, complete names as well as the ticker names
along with the associated leverage ratios.

Moreover, Figure 3.1 shows the 5-day evolution of the equity LETF prices, from June

1, 2011 to June 7, 2011. The price curve of an LETF and that of its corresponding

reverse product are ”mirror images”. In contrast, Figure 3.2 reveals the 1-year

evolution of the equity LETF prices, from June 1, 2011 to June 1, 2012. The price

curves of a pair of LETFs with opposite leverage ratio are no longer symmetric

to each other, indicating that the negative correlation between them decays over

time. The above phenomenon is called ”correlation decay”, with the details given

by Zhang (2010).
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Figure 3.1: 5-day evolution of equity LETF prices
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Note: Times series for equity LETF prices from 2011/06/01 to 2012/06/01.

Figure 3.2: 1-year evolution of equity LETF prices
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Note: Times series for equity LETF prices from 2011/06/01 to 2012/06/01.

The option data are provided by DataStream. The option prices are the daily
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closing bid-ask mid prices. The option volatility is obtained by using Cox-Rubinstein

Binomial model and the option market price. The number of options increases over

time, indicating that more and more investors are attracted to this market. For

example, at the beginning sample date there were 462 options on SSO while at the

end date there were 702 options, which is an indication of the fast growth of this

option market. Regarding the calibration of options, this thesis restricts the analysis

to October 24, 2011 and to a certain range of option moneyness that increases as

the absolute value of the leverage ratio increases to be consistent with the relation

Equation(3.9). Table 3.2 reports the number of options, the smallest and the largest

maturity available as well as the moneyness range for each LETF.

Table 3.2: Properties of options on equity LETFs
Number opt. Smallest mat. Largest mat. Moneyness range

SPXU 135 0.071 1.241 [0.5, 2.5]
SDS 144 0.071 1.241 [0.5, 2.0]
SH 126 0.071 1.241 [0.8, 1.5]
SPY 722 0.071 1.241 [0.8, 1.3]
SSO 211 0.071 1.241 [0.5, 1.4]
UPRO 181 0.071 0.819 [0.3, 1.6]

Note: Options of equity LETF properties for the day 2011/10/24.

Not surprisingly options are more numerous for options on SPY (+1), which is

the ETF tracking the S&P 500. More options are available for positive leverage

ratios although the results depend on the range of moneyness selected. Note that

compared to Ahn et al. (2015) and Leung and Sircar (2015) the range of moneyness

in this thesis is quite large which translates into volatility smiles that display more

curvature. Also, the LETF SH, with ratio -1, that is not considered in both Ahn et al.

(2015) and Leung and Sircar (2015) is considered here. The following figures are

the implied volatility smiles exhibited by options written on various equity LETFs.

Specifically, Figure 3.3 shows the volatility smile generated by SDS options; Figure

3.4 shows the volatility smile generated by SH options; Figure 3.5 shows the volatility

smile generated by SPY options, and Figure 3.6 shows the volatility smile generated

by SSO options.
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Figure 3.3: Volatility smile for SDS(-2)
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Note: Smile of the options with maturity 0.14, options on equity LETF SDS(-2) for 2011/10/24.

Figure 3.4: Volatility smile for SH(-1)
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Note: Smile of the options with maturity 0.14, options on equity LETF SH(-1) for 2011/10/24.
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Figure 3.5: Volatility smile for SPY(+1)
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Note: Smile of the options with maturity 0.14, options on equity LETF SPY(+1) for 2011/10/24.

Figure 3.6: Volatility smile for SSO(+2)
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Note: Smile of the options with maturity 0.14, options on equity LETF SSO(+2) for 2011/10/24.
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3.5.2 Volatility index LETFs

A dataset that contains the prices of options on a set of volatility LETFs is now

available. Note that the underlying index is the VIX futures index, rather than the

VIX itself, even though the two variables are highly correlated. The dataset spans

from March 19, 2012 to October 31, 2014, which is the overlapping period for which

option data on all the three volatility LETFs are available, and therefore use can be

made of the information contained in the set of volatility LETFs. The underlying

volatility LETFs are issued by the ProShare company, which is a division of the

ProFunds Group and offers many categories of ETFs with regard to asset classes

such as volatility, equity and currency. The detailed information of the volatility

LETFs is reported in Table 3.3.

Table 3.3: Volatility LETF ticker and ratio
Fund Name Ticker Name Leverage Ratio
Proshares Short VIX Short-Term Futures ETF SVXY -1
Proshares VIX Short-Term Futures ETF VIXY +1
Proshares Ultra VIX Short-Term Futures ETF UVXY +2

Note: Volatility LETFs tracking the S&P 500 VIX Short-Term Futures Index, gives the complete
name as well as the ticker name along with the associated leverage ratio.

In the above table, UVXY (+2) is designed to track twice the daily return of the S&P

500 VIX Short-Term Futures Index, before fees and expenses. The target returns

are achieved by daily rebalance. VIXY (+1) is actually an unleveraged ETF but it

can be treated as an LETF with leverage ratio 1 here for the purpose of consistency.

Moreover, a comparison of the short-term and long-term price curves of a volatility

LETF and their reverse counterpart is made. Figure 3.7 shows 5-day price curves

of VIXY(+1) and SVXY(−1), which are symmetric to each other, indicating a -

1 correlation between them. In contrast, 1-year price curves of VIXY(+1) and

SVXY(−1) represented by Figure 3.8 are no longer symmetric, suggesting that the

correlation decays over time, as discussed in Zhang (2010).

The option data are provided by Thomson Reuters Ticker History (TRTH). The
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Figure 3.7: 5-day evolution of volatility LETF prices
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Note: Times series for volatility LETF prices from 2012/01/02 to 2012/01/06.

Figure 3.8: 1-year evolution of volatility LETF prices
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Note: Times series for volatility LETF prices from 2012/01/02 to 2013/01/02.

option prices are the daily closing bid-ask mid prices. The number of options in-
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creases with time. For example, at the beginning sample date there were 138 options

on VIXY while at the end date there were 311 options on VIXY, which is an indi-

cation of the fast growth of the option market on volatility LETFs. Regarding the

options, the analysis here is restricted to March 30, 2012. Table 3.4 exhibits the

number of options, the smallest and the largest maturity available as well as the

moneyness range for each LETF.

Table 3.4: Properties of options on Volatility LETF
Number opt. Smallest mat. Largest mat. Moneyness range

SVXY 144 0.060 0.482 [0.5, 1.3]
VIXY 150 0.060 0.482 [0.5, 1.5]
UVXY 114 0.060 0.482 [0.5, 1.5]

Note: Options of volatility LETF properties for 2012/03/30.

Figure 3.9: Volatility smile for SVXY(-1)
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Note: Smile of the options with maturity 0.14, options on volatility LETF SVXY(-1) for
2014/10/01.

The volatility smile implied by the option price of a specified day is also plotted. In

contrast to the equity LETF options, the numbers of options available for various

leverage ratios are quite close. As Figure 3.9, Figure 3.10 and Figure 3.11 indicate,
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options on neg-

Figure 3.10: Volatility smile for VIXY(+1)
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Note: Smile of the options with maturity 0.14, options on volatility LETF VIXY(+1) for
2014/10/01.
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Figure 3.11: Volatility smile for UVXY(+2)
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Note: Smile of the options with maturity 0.14, options on volatility LETF UVXY(+2) for
2014/10/01.

ative LETF reveal a smile with a minimum value for a moneyness smaller than one

while the smiles from options with leverage ratios 1 and 2 have their minimum for

moneynesses larger than one.

3.6 Numerical results

3.6.1 The equity LETF option case

For each equity LETF (and leverage ratio m) the model is calibrated by solving the

following optimization problem

min
v0,κ,θ,σ,ρ

1

N

N∑
i

(
σmarketimp (ti, Ki,m)− σmodelimp (ti, Ki,m)

)2
, (3.24)
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where σmarketimp (ti, Ki,m) is the Black-Scholes implied volatility for the option with

maturity ti, strike Ki and leverage ratio m. N stands for the number of options

available and will vary across the different leverage ratios. Similarly, σmodelimp is the

Black-Scholes model implied volatility. The sum in Equation (3.24) is restricted to

in-the-money options.

The option pricing error for a norm expressed in price is reported and is given by

min
v0,κ,θ,σ,ρ

1

N

N∑
i

(
cmarket(ti, Ki,m)− cmodel(ti, Ki,m)

)2
, (3.25)

where cmarket(ti, Ki,m) is the market price normalized by the underlying spot value

of a call/put with maturity ti, strike Ki and leverage ration m.

Firstly, the calibration performance for each equity LETF is analyzed and in Table

3.5 both the estimated parameters as well as the calibration errors in volatility and

price are reported. All the LETFs lead to a negative sign for the spot-volatility

correlation, which is consistent with the leverage effect, but SH (-1) clearly displays

a higher value (or lower value if the absolute value of the correlation coefficient is

considered) nearly half of that obtained for the SPY (+1). Regarding the pair κ

and θ, UPRO (+3) leads to rather small values (for both parameters) and contrast

with the other LETFs. It might be more relevant to consider the ratio κ
σ2 as it is

this quantity that appears in the asymptotic distribution of the volatility. 2 Using

the values of the table 14.3, 2.9, 3.1, 0.8, 2.1 and 2.3 are obtained for the different

LETFs (the values are reported following the order of the table). These values

suggest that SPXU (-3) has the most distinct distribution. The calibration errors

expressed using the implied volatility for the norm (i.e. Equation (3.24)) are in line

with those obtained in Da Fonseca and Grasselli (2011) for SPY (+1) and SH (-1)

but deteriorate as the leverage ratio increases in absolute value terms. This might

be due to the larger moneyness range involved in the calibration procedure making

the fitting of the smile more difficult.

2The volatility process used in the Heston model has an asymptotic distribution that depends
on κ

σ2 and κθ
σ2 .
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Table 3.5: Calibration results of options on equity LETFs
v0 κ θ σ ρ ErrorVol Error Price

SPXU 0.0253 2.6308 0.1438 0.4282 -0.664 3.949× 10−2 6.093× 10−4

SDS 0.0823 8.3064 0.0781 1.6757 -0.535 2.108× 10−3 3.891× 10−5

SH 0.0708 2.7108 0.0948 0.9343 -0.320 5.835× 10−4 5.152× 10−6

SPY 0.0854 2.4816 0.1345 1.6613 -0.739 4.654× 10−4 2.13× 10−6

SSO 0.0698 3.7320 0.0983 1.3296 -0.638 2.505× 10−3 3.697× 10−5

UPRO 0.0612 0.5308 0.1549 0.4747 -0.649 3.765× 10−3 3.946× 10−5

Note: Calibrated parameters for each LETF for 2011/10/24. ”ErrorVol” reports the error as given
by formula Equation (3.24) while ”Error Price” gives the value obtained using Equation (3.25).
Note that option prices are normalized by the corresponding underlying spot value so the pricing
errors can be compared.

In order to assess the ability of information content extracted from options on an

LETF to explain option prices written on another LETF, a repricing exercise is

performed. More precisely, for a given LEFT option set the ratio of the volatility

error value is reported when this set is priced using parameters calibrated on another

LETF option set and the volatility error value obtained when the model is calibrated

on this set. Also computed are these ratios for the price error norm. The results

are reported in Table 3.6 for the first norm and in Table 3.7 for the second norm.

The smaller these ratios are, the more the stock distributions implied by the option

prices are similar. The volatility smiles can therefore be qualified as consistent.

Table 3.6: Options on equity LETFs: repricing errors - volatility norm
SPXU SDS SH SPY SSO UPRO

SPXU 1.00 2.55 1.24 5.31 2.86 1.65
SDS 20.64 1.00 5.97 29.85 16.08 10.92
SH 5.46 1.86 1.00 9.57 2.86 1.76
SPY 9.20 4.67 6.78 1.00 3.71 5.13
SSO 7.91 0.97 2.60 1.64 1.00 3.13
UPRO 4.01 1.94 1.82 3.25 1.74 1.00

Note: For a given set of calibrated parameters obtained for a given LETF (in the top row), options
written on other LETF (given in the left column) are priced and the ratio of error in volatility
Equation (3.24) is reported.

37



Chapter 3. A Study of Options on Equity and Volatility LETFs

Table 3.7: Options on equity LETFs: repricing errors - price norm
SPXU SDS SH SPY SSO UPRO

SPXU 1.00 23.05 10.88 37.69 3885.89 13.15
SDS 9.45 1.00 1.60 314.09 159.44 2.66
SH 10.56 1.31 1.00 30.86 2.87 1.79
SPY 56.87 11.17 18.90 1.00 4.80 10.70
SSO 8.55 0.71 1.83 2.74 1.00 1.26
UPRO 11.62 1.37 2.79 2.21 0.84 1.00

Note: For a given set of calibrated parameters obtained for a given LETF, options written on other
LETF are priced and the ratio of error in price Equation (3.25) is reported.

It seems that SDS (−2) is the option set that leads to the largest repricing errors as

the values are large. However, when the SDS (+2) parameters are used to reprice

the other LETF options, whatever LETF is selected, the repricing is quite accurate.

The parameters of SPXU (-3) lead to large repricing errors while the options on this

LETF can be fairly correctly priced. As a result, it can be concluded that options

on LETFs with negative ratios are priced with larger errors. Interestingly, the SPY

(+1) does not lead to the lowest repricing errors although such result could have

been expected.

3.6.2 The volatility LETF option case

The closed-form pricing formulas for LETF options can be obtained by inverting

the characteristic function via Fourier Transform. The option pricing formula de-

pends on the parameters of the dynamic system, which is shown in the Appendix.

Compared to the dynamic systems under a stochastic volatility framework in the

previous two chapters, the jump component also plays a role in the option pricing.

The parameters related to the jump risk along with the parameters linked to the

stochastic volatility risk are shown in the option pricing formula. In order to analyze

the impact of parameters associated with different risks, the sensitivity analysis is

carried out here. Specifically, the impact of parameters related to the jump risk

and the impact of parameters related to the stochastic volatility risk are analyzed.

Graphs showing the impacts of various parameters will be provided.
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Figure 3.12: Sensitivity analysis for VIXY(+1)
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Note: Smile for the maturity 0.2 options on the volatility LETF VIXY(+1).

Figure 3.12 depicts the sensitivity of the volatility smile of VIXY (+1) to the cor-

relation coefficient ρ, contained in Equations (3.10) and (3.11). The volatility curve

is symmetric when ρ = 0, and the skewness increases when ρ increases. Figure 3.13

compares the price curves of options written on different volatility LETFs, namely,

SVXY (-1), VIXY (+1) and UVXY (+2), with the same time to maturity. The

leverage ratios 1 and -1 lead to similar curves. In contrast, the leverage ratio +2

leads to higher price levels, which depend on the second moment distribution of the

volatility ETF.
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Figure 3.13: Sensitivity analysis for options on volatility LETFs
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Note: Smile for the maturity 0.2 options on the volatility LETFs SVXY(-1), VIXY(+1) and
UVXY(+2).

3.7 Role of jump: analytical extensions of the

pricing of options on equity and volatility LETFs

In the previous parts, the thesis focuses on the feature of volatility skew observed

in the LETF option market, namely, the negative volatility skew implied by equity

LETF option data and the positive volatility skew implied by volatility LETF option

data, respectively. However, Bates (1996) found that it is only under implausible

parameters that the stochastic volatility model can explain the smile implied by the

Deutsche Mark option market. He concludes that by adding jumps to the stochastic

volatility model the volatility smile can be better explained. The empirical studies

of Bakshi et al. (1997) also demonstrate that the stochastic volatility model can

not fully explain the volatility smile. They conjecture that jumps in the volatility

may be necessary. Duffie et al. (2000) systematically investigate the implications

of stochastic volatility and jumps in the setting of affine jump diffusion. They find
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that the inclusion of jumps into volatility leads to a more pronounced smirk at both

the shortest and longest maturities and reduces the model misspecification. Eraker

et al. (2003) investigate the impact of jumps using data of S&P 500 and Nasdaq

100 Index returns. Eraker et al. (2003) confirm strong evidence for jumps in both

volatility and returns. Especially in the periods of market stress, the jumps play

a greater role than stochastic volatility. They also argue that jumps in volatility

are important as they allow the rapid increase in volatility. Broadie et al. (2007)

utilize an extensive data on S&P 500 futures option, ranging from January 1987 to

March 2003, to examine the jump risk premium, while most previous works employ

data of relatively short period. Broadie et al. (2007) employ both time series and

cross section of option prices to perform the test. The time series test shows strong

evidence for jumps in volatility and the cross section test reveals the important role

of jumps in volatility as this improves the model fit to the data.

The specification of jumps is furthermore important. Bates (2000) focuses on the

post 1987 S&P 500 futures option market and finds that the time-varying jump risk

and stochastic volatility work together to explain the strongly negative skewness. It

is worth noticing that the jump intensity is no longer constant as in Bates (1996).

Eraker (2004) examines the combined jump diffusion model by utilizing a joint data

set of options and stock markets. It also assumes that the jump arrival intensity

is state-dependent, while typical jump models usually assume the jump intensity is

constant.

Considering the important role of jumps in volatility, jumps are introduced to the

dynamics of the underlying in this part. Specifically, a jump term will be added

to the volatility process in the Heston model for equity LETFs and to the volatil-

ity process in the Logarithmic Model with Stochastic Volatility (LRSV) model for

volatility LETFs. As stated in the previous part, the arrival intensity of jumps was

assumed to be constant in the early studies, but later on, state-dependent jumps

were introduced and it was claimed that the time-varying jump intensity was a de-

sirable model feature (see, for example, the work of Eraker (2004)). The option

pricing formula will be derived under both cases, which are the constant intensity
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and stochastic intensity cases. By incorporating jump risk into the option pricing

formula, the role of jump risk in option pricing can be further analyzed. Up to now

and to the author’s knowledge, this work has not been done.

3.7.1 Heston model extension for equity LETFs

3.7.1 Heston with constant jump intensity

The dynamics of the underlying asset price st is specified as follows

dst
st

= (r − q)dt+
√
vtdω

1
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdω

2
t + JdNt,

with initial value s0 known.

In the above system, ωt = (ω1
t , ω

2
t )t≥0 is a Brownian motion with correlation co-

efficient ρ, r is the risk-free rate, q is the dividend yield, κ is the mean-reverting

speed, θ is the long-term mean of variance and σ is the volatility of volatility. Nt is

a Poisson Process with constant intensity λ. The magnitude J of jumps is a random

variable satisfying the exponential distribution, i.e. J ∼ exp ( 1
J

).

The characteristic function φ (t, z1, z2) = EQ
[
e
iz1 ln

st
s0

+iz2
∫ t
0 vudu

]
is

φ (t, z1, z2) = eA(t)+B(t)v+iz1x,

with solutions of A(t) and B(t) are in Appendix 3.9.

The characteristic function of Xt = ln lt
l0

can be written as

ΦX(z) = EQ
[
e
iz ln

lt
l0

]
= EQ

[
e
iz(m ln

st
s0

+m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtφ

(
t, zm, z

[
m−m2

2

])
.
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Set z1 = zm and z2 = z
[
m−m2

2

]
. The specific expression of ΦX(z), which further

implies the density function by Fourier transform, can then be obtained.

3.7.1 Heston with stochastic jump intensity

The dynamics of the underlying asset price st are specified as follows

dst
st

= (r − q)dt+
√
vtdω

1
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdω

2
t + JdNt,

dλt = κλ(θλ − λt)dt+ σλ
√
λtdω

3
t ,

with initial value s0 known.

In the above system, ωt = (ω1
t , ω

2
t , ω

3
t )t≥0 is a Brownian motion with corr(dω1

t , dω
2
t ) =

ρ, corr(dω1
t , dω

3
t ) = 0 and corr(dω2

t , dω
3
t ) = 0, r is the risk-free rate, κ is the mean-

reverting speed of the instantaneous volatility vt, θ is the long-term mean of the in-

stantaneous volatility vt, vt is the stochastic volatility of st, κλ is the mean-reverting

speed of the jump intensity λt, θλ is the long-term mean of the jump intensity λt and

σλ is the volatility of the jump intensity λt. Nt is a Poisson Process with stochastic

intensity λt which follows a mean-reverting process. The magnitude J of jumps is a

random variable satisfying the exponential distribution, i.e. J ∼ exp ( 1
J

).

The characteristic function φ (t, z1, z2, z3) = EQ
[
eiz1xt+iz2λt+iz3

∫ t
0 vudu

]
is

φ (t, z1, z2, z3) = eA(t)+B(t)v+C(t)λ+iz1x,

with solutions of A(t), B(t) and C(t) which are in Appendix 3.9.
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The characteristic function of Xt = ln lt
l0

can be written as

ΦX(z) = EQ
[
e
iz ln

lt
l0

]
= EQ

[
e
iz(m ln

st
s0

+m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtφ

(
t, zm, 0, z

[
m−m2

2

])
.

Set z1 = zm, z2 = 0 and z3 = z
[
m−m2

2

]
. The specific expression of ΦX(z), which

further implies the density function by Fourier transform, can then be obtained.

3.7.2 LRSVJ with constant jump intensity

It is assumed that the price Vt follows the LRSV model, which is discussed in Kaeck

and Alexander (2010) and Bao et al. (2012), and is specified as follows

d lnVt = κ(θ − lnVt)dt+
√
vtdω

1
t ,

dvt = κv(θv − vt)dt+ σv
√
vtdω

2
t + JdNt,

with initial value V0 known.

In the above system, ωt = (ω1
t , ω

2
t )t≥0 is a Brownian motion with correlation coeffi-

cient ρ, r is the risk-free rate, κ is the mean-reverting speed of the log-value of Vt, θ

is the long-term mean of the log-value of Vt, vt is the stochastic volatility of Vt, κv

is the mean-reverting speed of the stochastic volatility vt, θv is the long-term mean

of the stochastic volatility vt and σv is the volatility of volatility. Nt is a Poisson

Process with constant intensity λ. The magnitude J of jumps is a random variable

satisfying the exponential distribution, i.e. J ∼ exp ( 1
J

).

The characteristic function of lnxt can be written as

ΦX(z) = EQ
[
eizxt

]
= EQ

[
eiz(mxt+

m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtφ

(
t, zm, z

[
m−m2

2

])
.
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Set z1 = zm and z2 = z
[
m−m2

2

]
. The specific expression of ΦX(z), which further

implies the density function by Fourier transform, can then be obtained. Corre-

sponding proof is given in Appendix 3.9.

3.7.3 LRSVJ with stochastic jump intensity

The price Vt is assumed to follow the LRSV model, which is discussed in Kaeck and

Alexander (2010) and Bao et al. (2012), and is specified as follows

d lnVt = κ(θ − lnVt)dt+
√
vtdω

1
t ,

dvt = κv(θv − vt)dt+ σv
√
vtdω

2
t + JdNt,

dλt = κλ(θλ − λt)dt+ σλ
√
λtdω

3
t ,

with initial value V0 known.

In the above system, ωt = (ω1
t , ω

2
t , ω

3
t )t≥0 is a Brownian motion with corr(dω1

t , dω
2
t ) =

ρ, corr(dω1
t , dω

3
t ) = 0 and corr(dω2

t , dω
3
t ) = 0, r is the risk-free rate, κ is the mean-

reverting speed of the log-value of Vt, θ is the long-term mean of the log-value of Vt,

vt is the stochastic volatility of Vt, κv is the mean-reverting speed of the stochastic

volatility vt, θv is the long-term mean of the stochastic volatility vt and σv is the

volatility of volatility. Nt is a Poisson Process with stochastic intensity λt. The

magnitude J of jumps is a random variable satisfying the exponential distribution,

i.e. J ∼ exp ( 1
J

).

The characteristic function of Xt = ln lt
l0

can be written as

ΦX(z) = EQ
[
e
iz ln

lt
l0

]
= EQ

[
e
iz(m ln

Vt
V0

+m−m2

2

∫ t
0 vudu+(1−m)rt)

]
= ei(1−m)zrtφ

(
t, zm, 0, z

[
m−m2

2

])
.

Set z1 = zm, z2 = 0 and z3 = z
[
m−m2

2

]
. The specific expression of ΦX(z), which
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further implies the density function by Fourier transform, can then be obtained.

Corresponding proof is given in Appendix 3.9.

3.8 Conclusion

In this chapter, a comprehensive analysis of options on both equity and volatility

LETFs is carried out. More precisely, equity LETFs whose daily returns are multi-

ples of daily S&P 500 returns and volatility LETFs whose daily returns are multiples

of daily S&P 500 VIX Short-Term futures returns are considered. Based on specific

dynamics and the Fourier Transform algorithm, these options are priced efficiently.

Short term asymptotics of implied volatility are also given, as they provide useful

tools to simplify the calibration procedure. For a given day, different calibrations

are carried out and it is found that calibration errors are larger for options written

on equity LETFs with larger leverage ratios (in absolute value term). Using the

framework proposed by Bao et al. (2012), this thesis extends it to price options on

volatility LETFs; the model being affine, it involves a Fourier transform. Lastly,

the role of jumps is also considered and corresponding option pricing formulas are

provided as well. The affine framework allows the incorporation of both the constant

intensity case and the stochastic intensity case in a very simple way. Further work

is needed to assess the importance of jumps from an empirical point of view. This

aspect is left for future research.
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3.9 Appendix

Proof. of Proposition 1. The pricing PDE for the function

f(t, v, y) = EQ
[
ez1yt+z2

∫ t
0
vudu|y0 = y, v0 = v

]
= ea(t)+b(t)v+z1y

is

−∂f
∂t

+ κ(θ − v)
∂f

∂v
+

(
r − q − 1

2
v

)
∂f

∂y
+

1

2
σ2v

∂2f

∂v2
+

1

2
v
∂2f

∂y2
+ ρσv

∂2f

∂y∂v
+ z2vf = 0

which infers the following ODEs:

da

dt
= κθb(t) + z1(r − q), (3.26)

db

dt
=

1

2

(
z2

1 − z1

)
+ z2 + (ρσz1 − κ) b(t) +

1

2
σ2b2(t), (3.27)

with initial conditions a(0) = 0 and b(0) = 0.

To look for the closed form solution of Equation (3.27), there should exist a function g(t) such that

b(t) = − g′(t)
1
2σ

2g(t)
, where g(t) satisfies the ODE

g′′(t)− (ρσz1 − κ) g′(t) +

(
1

4
σ2(z2

1 − z1) +
1

2
σ2z2

)
g(t) = 0.

Therefore, g(t) = C1e
−λ+t+C2e

−λ−t, with C1

C2
= −λ−λ+

and λ± =
(κ−z1ρσ)±

√
(κ−z1ρσ)2−σ2(z21−z1+2z2)

2 .

And we have

b(t) =
(z2

1 − z1 + 2z2)

2

1− e−
√

∆t

λ+ − λ−e−
√

∆t
.

Also, Equation (3.26) implies that

a(t) = −2κθ

σ2
ln

[
g(t)

g(0)

]
+ (r − q)z1t,

which can be further simplified to be

a(t) =
2κθ

σ2

(
tλ− − ln

(
λ+ − λ−e−

√
∆t

λ+ − λ−

))
+ (r − q)z1t.
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In all, the closed-form solutions for a(t) and b(t) are

a(t) =
2κθ

σ2

(
tλ− − ln

(
λ+ − λ−e−

√
∆t

λ+ − λ−

))
+ (r − q)z1t,

b(t) =
(z2

1 − z1 + 2z2)

2

1− e−
√

∆t

λ+ − λ−e−
√

∆t
,

and

λ± =
(κ− z1ρσ)±

√
∆

2
,

∆ = (κ− z1ρσ)2 − σ2(z2
1 − z1 + 2z2).

Proof. of Proposition 3. The pricing PDE for the function

f(t, v, y) = EQ
[
ez1yt+z2

∫ t
0
vudu|y0 = y, v0 = v

]
= eA(t)+B(t)v+z1y

is

−∂f
∂t

+ κv(θv − v)
∂f

∂v
+ κ(θ − y)

∂f

∂y
+

1

2
σ2
vv
∂2f

∂v2
+

1

2
v
∂2f

∂y2
+ ρσvv

∂2f

∂y∂v
+ z2vf = 0

which infers the following ODEs:

∂A

∂t
= κvθvB(t) + κθC(t)

∂B

∂t
= z2 +

1

2
C2(t) + (ρσvC(t)− κv)B(t) +

1

2
σ2
vB

2(t)

∂C

∂t
= −κC(t)

with initial conditions A(0) = 0, B(0) = 0 and C(0) = z1.

Therefore, we have C(t) = z1 exp (−κt). The function B(t) in the above ODE is a Ricati equation

with time-dependent coefficients, which can be solved by applying numerical methods such as

Runge-Kutta. The function A(t) can also be solved by utilizing the Runge-Kutta method.

Proof. of Constraint Condition on z. In Equation (3.16), the constraint condition on z is =(z) <

−1. The proof is as follows
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c(t, l0, v0) = e−rt
∫ ∞
−∞

(l0e
x −K)+ f(x)dx

=
e−rt

2π

∫ ∞
−∞

(l0e
x −K)+

∫ ∞
−∞

ϕ(t, z)e−izxdzdx

=
e−rt

2π

∫ ∞
−∞

ϕ(t, z)

∫ ∞
k0

(
l0e

(1−iz)x −Ke−izx
)
dxdz

Consider the inner integral, which is

∫ ∞
k0

(
l0e

(1−iz)x −Ke−izx
)
dx =

∫ ∞
k0

l0e
(1−iz)xdx−

∫ ∞
k0

Ke−izxdx

= l0
e(1−iz)x

1− iz

∣∣∣∣∞
k0

−Ke−izx

−iz

∣∣∣∣∞
k0

.

As the inner integral can be valued under the following two constraints

e(1−iz)∞ = 0,

e−iz∞ = 0,

which is equivalent to the constraint

=(z) < −1.

If =(z) < −1, we have ∫ ∞
k0

(
l0e

(1−iz)x −Ke−izx
)
dx =

Ke−izk0

iz(iz − 1)
,

with k0 = ln
(
K
l0

)
.

Proof. Heston model with constant jump intensity In the case of the Heston model with

constant jump intensity, the pricing PDE for the function

f(t, v, x) = EQ
[
eiz1 ln

st
s0

+iz2
∫ t
0
vudu|x0 = x, v0 = v

]
= eA(t)+B(t)v+iz1x
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is

−∂f
∂t

+ κ(θ − v)
∂f

∂v
+

(
r − q − 1

2
v

)
∂f

∂x
+

1

2
σ2v

∂2f

∂v2
+

1

2
v
∂2f

∂x2
+ ρσv

∂2f

∂x∂v

+iz2vf + λ

∫ ∞
0

[f(t, v + J, x)− f(t, v, x)] ω̄(J)dJ = 0,

which infers the following ODEs:

∂A

∂t
= κθB(t) + iz1(r − q) + λ

ηB(t)

1− ηB(t)
,

∂B

∂t
= −1

2

(
z2

1 + iz1

)
+ iz2 + (iρσz1 − κ)B(t) +

1

2
σ2B2(t),

with initial conditions A(0) = 0, B(0) = 0 and i =
√
−1.

The above ODEs generate the closed-form solutions for A(t) and B(t), which are

A(t) = −2κθ

σ2

{
r1t+ ln

[
r1e
−
√

∆t − r2√
∆

]}
+

λη√
∆

{
a ln

[ √
∆

e−
√

∆t(ηω + r1)− (ηω + r2)

]
− b
√

∆t

}
+(r − q)z1ti,

B(t) = − 2

σ2

r1r2

(
1− e−

√
∆t
)

(
r2 − r1e−

√
∆t
) ,

with

r1 =
(ρσz1i− κ) +

√
∆

2
,

r2 =
(ρσz1i− κ)−

√
∆

2
,

∆ = (ρσz1i− κ)
2 − σ2(−z2

1 − z1i+ 2z2i),

ω = −z
2
1 + z1

2
,

a =
ω
√

∆

(ωη + r1)(ωη + r2)
,

b =
ω

ωη + r2
,

i =
√
−1.

Proof. Heston model with stochastic jump intensity In the case of the Heston model with

stochastic jump intensity, the pricing PDE for the function

f(t, v, x) = EQ
[
eiz1xt+iz2λt+iz3

∫ t
0
vudu|x0 = x, v0 = v

]
= eA(t)+B(t)v+C(t)λ+iz1x
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is

−∂f
∂t

+ κ(θ − v)
∂f

∂v
+ κλ(θλ − λ)

∂f

∂λ
+

(
r − q − 1

2
v

)
∂f

∂x
+

1

2
σ2v

∂2f

∂v2
+

1

2
σ2
λλ
∂2f

∂λ2

+
1

2
v
∂2f

∂x2
+ ρσv

∂2f

∂x∂v
+ iz3vf + λ

∫ ∞
0

[f(t, v + J, x)− f(t, v, x)] ω̄(J)dJ = 0,

which infers the following ODEs

∂A

∂t
= κθB(t) + κλθλC(t) + iz1(r − q),

∂B

∂t
= −1

2

(
z2

1 + iz1

)
+ iz3 + (iρσz1 − κ)B(t) +

1

2
σ2B2(t),

∂C

∂t
=

ηB(t)

1− ηB(t)
− κλC(t) +

1

2
σ2
λC

2(t),

with initial conditions A(0) = 0, B(0) = 0, C(0) = 0 and i =
√
−1.

The above ODEs generate the closed-form solutions for A(t), B(t) and C(t), which are

A(t) = −2κθ

σ2

{
r1t+ ln

[
r1e
−
√

∆t − r2√
∆

]}
− 2κλθλ

σ2
λ

{
λ1t+ ln

[
λ1e
−
√

∆t − λ2√
∆

]}
+ (r − q)z1ti,

B(t) = − 2

σ2

r1r2

(
1− e−

√
∆t
)

(
r2 − r1e−

√
∆t
) ,

C(t) = − 2

σ2
λ

λ1λ2

(
1− e−

√
∆λt
)

(
λ2 − λ1e−

√
∆λt
) ,

with

r1 =
(ρσz1i− κ) +

√
∆

2
,

r2 =
(ρσz1i− κ)−

√
∆

2
,

∆ = (ρσz1i− κ)
2 − σ2(−z2

1 − z1i+ 2z3i),

Rλ(t) = −κλ −
∆σ2e−

√
∆t(

1− e−
√

∆t
) [

2ηr1r2

(
1− e−

√
∆t
)

+ σ2
(
r2 − r1e−

√
∆t
)] ,

Sλ(t) = −
σ2
ληr1r2

(
1− e−

√
∆t
)

2ηr1r2

(
1− e−

√
∆t
)

+ σ2
(
r2 − r1e−

√
∆t
) ,

∆λ = R2
λ(t)− 4Sλ(t),

λ1 =
Rλ(t) +

√
∆λ

2
,

λ2 =
Rλ(t)−

√
∆λ

2
.

51



Chapter 3. A Study of Options on Equity and Volatility LETFs

Proof. LRSVJ with constant jump intensity In the case of the LRSV with jumps model, the

pricing PDE for the function

f(t, v, y) = EQ
[
eiz1 ln

Vt
V0

+iz2
∫ t
0
vudu|y0 = y, v0 = v

]
= eA(t)+B(t)v+C(t)y

is

−∂f
∂t

+ κv(θv − v)
∂f

∂v
+ κ(θ − x)

∂f

∂x
+

1

2
σ2
vv
∂2f

∂v2
+

1

2
v
∂2f

∂x2
+ ρσvv

∂2f

∂x∂v
+ iz2vf

+λ

∫ ∞
0

[f(t, v + J, x)− f(t, v, x)] ω̄(J)dJ = 0,

(3.28)

which infers the following ODEs

∂A

∂t
= κvθvB(t) + κθC(t) + λ

ηB(t)

1− ηB(t)
,

∂B

∂t
= iz2 +

1

2
C2(t) + (ρσvC(t)− κv)B(t) +

1

2
σ2
vB

2(t),

∂C

∂t
= −κC(t),

with initial conditions A(0) = 0, B(0) = 0, C(0) = iz1 and i =
√
−1.

Therefore, we have C(t) = iz1 exp (−κt). The function B(t) in the above ODE is a Riccati

equation with time-dependent coefficients, which can be solved by applying numerical methods

such as Runge-Kutta. The function A(t) can also be solved by utilizing the Runge-Kutta method.

Proof. LRSVJ with stochastic jump intensity In the case of the LRSV with jumps model,

the pricing PDE for the function

f(t, v, λ, x) = EQ
[
eiz1 ln

Vt
V0

+iz2
∫ t
0
vudu|x0 = x, v0 = v, λ0 = λ

]
= eA(t)+B(t)v+C(t)λ+D(t)x

is

−∂f
∂t

+ κv(θv − v)
∂f

∂v
+ κλ(θλ − λ)

∂f

∂λ
+ κ(θ − x)

∂f

∂x
+

1

2
σ2
vv
∂2f

∂v2
+

1

2
σ2
λλ
∂2f

∂λ2
+

1

2
v
∂2f

∂x2

+ρσvv
∂2f

∂x∂v
+ iz2vf + λ

∫ ∞
0

[f(t, v + J, x)− f(t, v, x)] ω̄(J)dJ = 0,

(3.29)
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which infers the following ODEs

∂A

∂t
= κvθvB(t) + κλθλC(t) + κθD(t),

∂B

∂t
= iz3 +

1

2
D2(t) + (ρσvD(t)− κv)B(t) +

1

2
σ2
vB

2(t),

∂C

∂t
=

1

2
σ2
vC

2(t)− κλC(t) +
ηB(t)

1− ηB(t)
,

∂D

∂t
= −κD(t),

with initial conditions A(0) = 0, B(0) = 0, C(0) = iz2,, D(0) = iz1 and i =
√
−1.

Therefore, we have C(t) = iz1 exp (−κt). The function B(t) in the above ODE is a Ricati equation

with time-dependent coefficients, which can be solved by applying numerical methods such as

Runge-Kutta. The function A(t) and D(t) can also be solved by utilizing the Runge-Kutta method.
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Chapter 4

Variance and Skew Risk

Premiums for the Volatility

Market: The VIX Evidence

4.1 Introduction

The rapid growth of volatility products, among which the VIX index is by far the

most well known, has turned volatility into an asset class, see Whaley (1993) and

Zhang et al. (2010). The availability of VIX options suggests applying option-implied

moment estimation methodologies, which were extensively used on equity (index)

options, to that market as they allow the extraction of information on the VIX

distribution without specifying any parametric model for it. They are often qualified

as model-free approaches. These methodologies are favoured over more traditional

historical estimation strategies as options embed a more forward looking point of

view of asset moments’ distribution. Also, options contain risk-neutral information

and, when combined with historical information, enable the determination of risk

premiums that are the key variables for risk management.

These model-free methodologies have been extensively applied to equity index op-
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tions and/or individual stock options, and to foreign exchange options, and are based

on the analytical results developed in Derman et al. (1997) and Carr and Madan

(1998). The literature is so vast that this thesis is restricted to quoting the impor-

tant works of Bakshi et al. (2003) and Neuberger (2012) as entry points in this field.

Among many possible applications the following are mentioned: the use of higher

risk-neutral moments for asset pricing models in Bakshi et al. (2003), the estimation

of an investor’s risk aversion from volatility spread in Duan and Zhang (2014) or

volatility forecasting using implied moments in Neumann and Skiadopoulos (2013)

and Byun and Kim (2013), and more recently the analysis of variance and skew

swaps for the S&P 500 option market in Kozhan et al. (2013). However, the use of

these results for the VIX option market remains largely unexplored.

Following Kozhan et al. (2013), VIX options are used to compute variance swap and

skew swap excess returns and analyze their relationships to VIX index and S&P

500 index excess returns. All the variables involved are obtained from options in

a model-free way and correspond to tradable strategies some of which, such as the

variance swap, are actively used on the market today. A by-product of the results is

to draw some conclusions on variance and skew risk premiums for the VIX market

that will certainly hold for other less developed volatility markets. The results

also underline certain differences between the equity (index) option market and the

volatility (index) option market that may not be a surprise as equity and volatility

dynamics are profoundly different.

This chapter contributes to the literature by analyzing variance and skew risk pre-

miums for the volatility market and finds that both variables are negative. For this

market, it is shown that variance swap excess return can be partially explained by

volatility index excess return and equity index excess return but also by skew swap

excess return. However, considering all these explanatory variables together does

not fully capture the return of a variance swap trading strategy, e.g. the Capital

Asset Pricing Model (CAPM) does not hold. To explain the skew swap excess return

the most important variable is the variance swap excess return from which we de-

duce that higher order moments of the volatility distribution can hardly be hedged
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using equity index trading strategies. Overall, the results are found to depict the

volatility index market as being structurally different from the equity index market.

The chapter is organized is as follows. The key ingredients to obtain the variables

from option prices are presented in Section 4.2. A description of the empirical data

used in the thesis analysis is provided in Section 4.3. Regression tests and analysis

are performed in Section 4.4, and Section 4.5 concludes.

4.2 Pricing formulas

The main purpose of this chapter is to analyze the variance and skew risk premiums

for the volatility market and these keys variables will be computed using VIX call

and put options. To this end, Ct,T (K) and Pt,T (K) will denote the European call

and put option prices at time t with maturity T and strike K on the VIX whose

value at time t is vixt. It is often more convenient to use the forward value of the

VIX, and Ft,T is written for the forward value at time t with maturity T that is

related to the spot value through the standard equality Ft,t = vixt. Use is also

made of rt,T = lnFT,T − lnFt,T , the log return of a position on the forward contract.

The availability of these derivative products allows the computing of the variance

and skew risk premiums in a model-free way as shown in the literature, with the

important contribution provided by Kozhan et al. (2013) that will be closely followed

(see also Neuberger (2012)).

Extracting distribution information from option prices, like higher moments, has a

long history, for example, Carr and Madan (1998). See among many others the works

of Bakshi et al. (2003) for individual options; Bakshi and Madan (2006) and Carr

and Wu (2009) for a variance risk premium analysis of equity index options (options

on S&P 500, S&P 100 and other major indices as well as equity); Fleming (1998),

Neumann and Skiadopoulos (2013), Byun and Kim (2013) and Konstantinidi and

Skiadopoulos (2016) for forecasting aspects (using S&P 500 options); Ammann and

Buesser (2013) for variance risk premium properties for the foreign exchange market;
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investors’ risk aversion analysis as in Kostakis et al. (2011) and Duan and Zhang

(2014) (using S&P 500 options); and variance risk premiums for the commodity

markets in Prokopczuk and Wese Simen (2014).

The work of Huang and Shaliastovich (2014) exploits VIX options to extract volatil-

ity higher moments (in their case the second moment, the volatility of the VIX or

the volatility of volatility) and performs a joint analysis with the second moment ex-

tracted from S&P 500 options (i.e. the square of the VIX) along with high frequency

variables such as realized volatility and bi-power variation (these two latter variables

allow the authors to isolate the role of jumps). As this thesis follows Kozhan et al.

(2013), it differs from Huang and Shaliastovich (2014) by also focusing on the skew-

ness of the VIX distribution and this aspect is important as it controls the shape of

the VIX option smile and is also related to the “inverse” leverage effect, or positive

skew, for the volatility market.1 What is more, it is really at the skewness level that

the volatility index option market departs from the equity index option market.

The variance risk premium A variance swap contract, receiver of the floating

leg and payer of the fixed leg, is a contract between two counterparties that involves

receiving at maturity T of the contract the realized variance of a given asset while

at initiation t of the contract there is a payment of a premium (i.e. the fixed leg).

The premium, also called variance swap rate, is given by

V art,T =
2

Bt,T

(∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ +∞

Ft,T

Ct,T (K)

K2
dK

)
(4.1)

with Bt,T being the zero-coupon at time t with maturity T . It is shown in the liter-

ature that a variance swap contract enables the hedging of changes in the variance

of the underlying asset and in the present case this will be the VIX. Equation (4.1)

involves a continuum of options and as in the market only a finite number of options

1The literature of parametric approaches to VIX option pricing is substantial, such as the works
of Grünbichler and Longstaff (1996), Detemple and Osakwe (2000), Sepp (2008), Lian and Zhu
(2013) and Park (2016). For variance, skew and kurtosis swaps within the affine framework see
Zhao et al. (2013).
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is available, this quantity is approximated by the following sum

V art,T = 2
∑

Ki≤Ft,T

Pt,T (Ki)

Bt,TK2
i

∆I(Ki) + 2
∑

Ft,T≤Ki

Ct,T (Ki)

Bt,TK2
i

∆I(Ki), (4.2)

with the weight function ∆I(Ki) defined as

∆I(Ki) =


Ki+1−Ki−1

2
, 0 ≤ i ≤ N(with K−1 = 2K0 −K1, KN+1 = 2KN −KN−1)

0, otherwise.

The floating leg of the swap is the realized variance of the underlying asset and is

given by

rV art,T =
T−1∑
i=t

[2 (exp (ri,i+1)− 1− ri,i+1)] , (4.3)

with ri,i+1 = lnFi+1,T − lnFi,T the daily log-price increment for the forward of

maturity T and by combining Equations (4.1) and (4.3) the value of a realization

of the variance swap, rV art,T − V art,T , is deduced from which the variance risk

premium is obtained after averaging under the historical probability measure. Also

of interest is the excess return of an investment made on the variance swap, which

is denoted by

xV art,T =
rV art,T
V art,T

− 1. (4.4)

As the options have monthly maturities there will be monthly observations for the

variance risk premium and variance swap excess return. As a result, in the previous

equations t will run through the first days following the option maturity dates while

T will be the first maturity date available posterior to a given t. Note that rV art,T

is known at time T while V art,T is known at time t. So actually, for one-month

options, rV art,T is determined one month later than V art,T .
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The skew risk premium A skew swap, receiver of the floating leg and payer of

the fixed leg, is a contract between two counterparties that involves receiving, at

maturity T of the contract the realized skewness of a given asset while at initiation

t of the contract there is a payment of a premium (i.e. the fixed leg). The premium,

also called skew swap rate, is given by

Skewt,T =
6

Bt,T

(
−
∫ Ft,T

0

Ft,T −K
K2Ft,T

Pt,T (K)dK +

∫ +∞

Ft,T

K − Ft,T
K2Ft,T

Ct,T (K)dK

)
(4.5)

and as explained in Kozhan et al. (2013) it depends on the skewness of the underlying

asset distribution (i.e. the skewness of the log of VIX distribution) and is implied

from the options. By defining

V E
t,T =

2

Bt,T

(∫ Ft,T

0

Pt,T (K)

KFt,T
dK +

∫ +∞

Ft,T

Ct,T (K)

KFt,T
dK

)
(4.6)

then Skewt,T = 3(V E
t,T −V art,T ). As V art,T can be approximated by Equation (4.2),

to determine Skewt,T from option market prices Equation (4.6) just needs to be

discretized and this is done as

V E
t,T = 2

∑
Ki≤Ft,T

Pt,T (Ki)

Bt,TKiFt,T
∆I(Ki) + 2

∑
Ft,T≤Ki

Ct,T (Ki)

Bt,TKiFt,T
∆I(Ki), (4.7)

with ∆I(Ki) previously defined.

The floating leg of the skew swap is given by

rSkewt,T =
T−1∑
i=t

[
3∆V E

i,T (exp (ri,i+1)− 1) + 6 (2− 2 exp (ri,i+1) + ri,i+1 + ri,i+1 exp (ri,i+1))
]
,

(4.8)

with ri,i+1 = lnFi+1,T − lnFi,T the daily log-price increment for the forward of

maturity T and ∆V E
i,T = V E

i+1,T −V E
i,T the daily change of V E

t,T . Combining Equations

(4.2), (4.7) and (4.8) the value of a realization of the skew swap, Skewt,T−rSkewt,T ,

is deduced from which the skew risk premium is obtained after averaging under the
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historical probability measure. As for the variance risk premium, of interest is the

excess return of an investment made on the skew swap, which is denoted by

xSkewt,T =
rSkewt,T
Skewt,T

− 1. (4.9)

Similarly to variance swap variables there will be monthly observations for the skew

risk premium and skew swap excess return. As a result, in the previous equations

t will run through the first days following the option maturity dates while T will

be the first maturity date available posterior to a given t. This thesis drops the

dependency with respect to T in the different variables related to premiums, either

variance or skew, to lighten the notations although the reader should keep in mind

that they are of monthly frequency.

Remark 4 In Kozhan et al. (2013), the authors define the skew as Skewt,T/(V art,T )
3
2

and the realized skew as rSkewt,T/(V art,T )
3
2 , thereby following the usual mathemat-

ical definition while this thesis does not normalize by the term (V art,T )
3
2 . It would

be more accurate to term Equations (4.5) and (4.8) as risk-neutral and realized

third moments but nevertheless the word skew will be used. Following Kozhan et al.

(2013), most, if not all, of the regressions will involve the skew swap excess return

given by Equation (4.9) and whether the normalization by (V art,T )
3
2 is performed or

not is irrelevant for that quantity with the consequence that the results of this thesis

can be compared to those of Kozhan et al. (2013). Lastly, in Kozhan et al. (2013)

Table 3 in their paper mentions the “normalized” implied skew and realized skew

while the corresponding section (3.1 Time variation in risk premiums) refers only

to third implied and realized moments (see Equations (31) and (32) in their paper).
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4.3 Data and descriptive statistics

Figure 4.1: VIX futures open interest
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Note: Figure 4.1 VIX Futures open interest from March 2004 October 2015. The trading activity

on these products took off in 2010 as VIX futures are the natural tools to hedge options written

on the VIX.

To compute the variance and skew risk premiums European options are used, both

calls and puts, written on the VIX that are traded on the Chicago Board Options

Exchange (CBOE) and mature every month. The data are provided by Thomson

Reuters Ticker History (TRTH) from SIRCA2 and contain option information such

as ticker, option type, maturity date, strike and bid-ask option quotes. The sample

period starts from January 4, 2010 and ends on September 10, 2015 and the fre-

quency is daily. VIX options started to be traded in 2006 while for futures contracts

on the VIX it was in March 2004 but as can be seen from Figure 4.1 the trading

activity on VIX futures contracts, that constitute the natural hedging tool for VIX

options, only took off in 2010. Along with the fact that the author wanted to avoid

the Global Financial Crisis, this justifies starting the sample in 2010. The VIX fu-

tures contracts are obtained from Datastream and cover the same period and these

are used as forward values for the VIX. For each option the corresponding futures

2http://www.sirca.org.au/

61



Chapter 4. Variance and Skew Risk Premiums for the Volatility Market: The VIX
Evidence

contract value is used. Whenever a risk free rate is needed Libor rates provided by

Bloomberg are used for this thesis.

In sharp contrast to the options on the S&P 500, options on the VIX display a

positive skew that is also related to the positive relationship between the VIX and

its volatility, see Figure 4.2. Figure 4.2 also reports the smile for S&P 500 options

with the usual negative slope related to the leverage effect. Thanks to the availability

of the VVIX (VIX of VIX options) this fact can be intuited from the evolutions of

the VIX and the VVIX shown in Figure 4.3. It mirrors the well known leverage

effect of S&P 500 options that is negative and will explain some of the differences

between variance and skew premiums for S&P 500 and VIX options.

Figure 4.4 shows the evolution of risk-neutral variance (V ar) and realized variance

(rV ar), while Figure 4.5 depicts the comovement between risk-neutral skew (Skew)

and realized skew (rSkew). Both figures suggest positive correlations between the

risk-neutral and realized variance (skew). In general, the curve of V ar (Skew) is

above that of rV ar (rSkew), except for some spikes where the curve of V ar (Skew)

is below that of rV ar (rSkew). As a result, the sample averages of the V ar and the

Skew are higher than those of rV ar and rSkew, respectively, leading to negative

risk premiums. Lastly, variance of risk-neutral variables are lower than their realized

counterparts.

The variance and skew risk premiums, namely, the excess return from the variance

swap (xV ar) and the excess return from the skew swap (xSkew), are computed

on a monthly basis using the pricing formulas given in the previous section. The

comovement of variance and skew risk premiums shown in Figure 4.6 demonstrates

their positive correlation. Magnitudes of both xV ar and xSkew increase dramat-

ically when the market is volatile, as there are spikes for both xV ar and xSkew

during the 2010-2012 period. Moreover, the larger spikes given by xSkew suggest

that skew risk premium is more sensitive to market downturns. In other words, it is

likely that xSkew captures more important uncertainty information in the market.

More in-depth analysis will be given later.
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Figure 4.2: Smile of VIX and S&P 500 options
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Note: Implied volatility for VIX options (upper figure) and S&P 500 options (lower figure) on June

2, 2014 with 3-month time to maturity. The positive skew is one of the main features of the VIX

smile and contrasts with the downward sloping curve observed for S&P 500 options.
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Figure 4.3: Evolutions of VIX and VVIX
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Note: Evolutions of VIX and VVIX (VIX of VIX options) from January 4, 2010 to September 10,

2015 (round dot for the VIX and solid line for the VVIX). The positive correlation between these

two indices is apparent.

Figure 4.4: Risk-neutral and realized variances
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Note: Evolutions of risk-neutral and realized variances from January 4, 2010 to September 10,

2015 (round dot for the risk-neutral variance and solid line for the realized variance). In general,

risk-neutral variance is greater than realized variance, while the volatility of the former is smaller

than the latter.

64



Chapter 4. Variance and Skew Risk Premiums for the Volatility Market: The VIX
Evidence

Figure 4.5: Risk-neutral and realized skews
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Note: Evolutions of risk-neutral and realized skews from January 4, 2010 to September 10, 2015

(round dot for the risk-neutral skew and solid line for the realized skew). In general, risk-neutral

variance is greater than realized variance, while the volatility of the former is smaller than the

latter.

Figure 4.6: Evolutions of VIX variance and skew risk premiums
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Note: Evolutions of VIX variance and skew risk premiums from January 4, 2010 to September 10,

2015 (round dot for the variance swap excess return and solid line for the skew swap excess return).

The positive correlation between these two indices is apparent. Moreover, skew risk premium is

more sensitive to market crashes as the magnitude of spikes is greater when a crisis occurs.
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Following the methodology presented in the previous section, the variables are com-

puted on a monthly basis. Taking into account the data sample, monthly observa-

tions ranging from January 2010 (involving options with maturity February 2010)

to July 2015 (involving options with maturity August 2015) will be produced. Ta-

ble 4.1 reports the descriptive statistics of the variables, namely, V ar, rV ar, Skew,

rSkew, xV ar and xSkew. The sample average values of the risk-neutral variance

and realized variance are 0.071 and 0.049, respectively. Holding options provides

insurance against bad states of the economy, which suggests that option-implied

risk-neutral volatility is usually slightly higher than the actual historical realized

volatility. Therefore, a negative variance swap excess return with value of −0.283

will be generated, implying that an investor is willing to lose 28.3% of the premium

in order to hedge variance risk. It is interesting to note that the value is close to the

one obtained in Kozhan et al. (2013) for the variance swap excess return extracted

from S&P 500 options. For the skewness, the average risk-neutral skew is 0.031

while the realized skew is only 0.018, leading to an excess return for the skew swap

of −0.293, or −29.3%, a value close to the variance swap excess return value. An

investor entering in a skew swap paying a fixed leg (i.e. the premium) and receiving

a floating leg will lose on average 29.3% of the premium to hedge skew risk.3 The

excess return for the skew swap and variance swap are close and this contrasts with

the results for the S&P 500 for which excess return for the skew swap is roughly

twice that for the variance swap. For the standard deviations, the salient fact is the

value for the skew swap excess return that is twice the value for the variance swap

contract and this result is in line with the values for S&P 500 options of Kozhan

et al. (2013).

3Similar results are obtained using a parametric approach in Zhao et al. (2013)
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Table 4.1: Descriptive statistics
Mean Std. dev. Q1 Median Q3

V ar 0.071 0.022 0.057 0.065 0.081
rV ar 0.049 0.041 0.023 0.032 0.068
xV ar -0.283 0.616 -0.668 -0.511 -0.118
Skew 0.031 0.012 0.024 0.033 0.040
rSkew 0.018 0.022 0.005 0.011 0.019
xSkew -0.293 1.341 -0.835 -0.686 -0.329

Note: Descriptive statistics such as mean, standard deviation, the 25th percentile, median, and

75th percentile, for the variables: the risk-neutral variable V ar given by Equation (4.2), the realized

variance rV ar given by Equation (4.3), the variance swap excess return xV ar given by Equation

(4.4), the risk-neutral skew Skew given by Equation (4.5), the realized skew given by Equation

(4.8) and the skew swap excess return xSkew given by Equation (4.9). Sample with monthly

frequency ranging from January 2010 to July 2015.

The correlations between the variables are reported in Table 4.2. Consistent with

the positive slope observed on the VIX option volatility smile, the correlation be-

tween the risk-neutral variance and skew is positive at 0.202; an increase of the VIX

level is associated with an increase of its volatility leading to a right tail volatility

distribution thicker than the left tail distribution, thus a larger (positive) value for

the skewness. This result is in line with the implementation of parametric models

such as Sepp (2008) or Lian and Zhu (2013), although the approach used by Kozhan

et al. (2013) is model-free. Thus, the results of this thesis can be used to assess the

relevance of the few existing parametric models implemented for the VIX option

market.

Regarding realized variables, a much stronger dependency, at 0.888, occurs between

the realized variance and skew. The relationship between the variables xV ar, V ar

and rV ar is negative but has a weak correlation of −0.098 which is obtained between

the risk-neutral variance (V ar) and the variance swap excess return (xV ar) while

there is a strong and positive correlation of 0.933 between the realized variance

(rV ar) and variance swap excess return (xV ar). Similar results are obtained for

skew related variables; the correlation between the risk-neutral skew and skew swap

excess return is negative and equal to −0.287 and smaller (in absolute value) than

the correlation between this same excess return and the realized skew that is equal

to 0.661, suggesting that high demand for hedging variance risk and skew risk will
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take place at the same time in the market.

Overall, the information content of the shape of the VIX option volatility smile, and

more precisely the positive slope, applies to the realized distributions as well as to

the swap trading strategies. Although there are some similarities with the results

found for S&P 500 options by Kozhan et al. (2013), some specifics to the volatility

derivative option market appear that will have important consequences as will be

seen when applying the regression analysis.

Table 4.2: Correlations
V ar rV ar xV ar Skew rSkew xSkew

V ar 1.000 0.209 -0.098 0.202 0.115 0.137
rV ar 1.000 0.933 0.058 0.888 0.702
xV ar 1.000 0.046 0.868 0.607
Skew 1.000 0.133 -0.287
rSkew 1.000 0.661
xSkew 1.000

Note: Correlation between the variables: the risk-neutral variable V ar given by Equation (4.2),

the realized variance rV ar given by Equation (4.3), the variance swap excess return xV ar given

by Equation (4.4), the risk-neutral skew Skew given by Equation (4.5), the realized skew rSkew

given by Equation (4.8) and the skew swap excess return xSkew given by Equation (4.9). Sample

with monthly frequency ranging from January 2010 to July 2015.

4.4 Empirical results

In order to deepen the understanding of the relations between the variables, a thor-

ough empirical analysis will be carried out in this section. The first aspect focused

on is whether the risk-neutral variance and skew, which are forward looking mea-

sures, contain any predictive information regarding their realized counterpart. The

second aspect worth analyzing is whether the excess return from investing in a vari-

ance (skew) swap can be explained by the Capital Asset Pricing Model (CAPM).

It is known from Ang et al. (2006) that market-wide volatility risk can explain the

cross-section of stock returns. Yang et al. (2013) further prove that higher-order mo-

ment risk, such as market-wide skew, is also a pricing factor for cross-sectional stock

returns. More recently, Kozhan et al. (2013) show that excess return from variance
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or skew swap from equity index options can be partially explained by market index

excess returns. They further enhance their analysis by considering cross-moment

effects by quantifying the impact, along with index market return, of variance swap

excess return on skew swap excess return and vice-versa. The objective of this thesis

is to perform similar analysis for the volatility market that during the past years

has grown so much that it has become an asset class in itself and deserves a specific

analysis.

Risk-neutral and realized variance (skew) It is of interest to assess whether

risk-neutral variables, either variance or skew, can explain their corresponding re-

alized counterpart as this would give some insights into the market price of risks.

Therefore, the univariate regression of realized variance (skew) on risk-neutral vari-

ance (skew) is performed given by the set of equations

rV art = a0 + a1V art + εat , (4.10)

rSkewt = b0 + b1Skewt + εbt , (4.11)

where Skewt instead of Skewt,T , and rSkewt instead of rSkewt,T are used to simplify

the notations. The results are reported in Table 4.3.

Table 4.3: Realized moments versus implied moments
Const. V ar Skew Adj. R2(%)

rV ar 0.022 0.392 2.91
(1.63) (2.24)

rSkew 0.010 0.243 0.29
(1.37) (1.25)

Note: Regressions of rV ar, the realized variance, given by Equation (4.3) on V ar, the risk-neutral

variable, given by Equation (4.2) and rSkew, the realized skew, given by Equation (4.8) on Skew,

the risk-neutral skew, given by Equation (4.5). The t-statistics are computed according to Newey

and West (1987). Sample with monthly frequency ranging from January 2010 to July 2015.

For Equation (4.10) the coefficient is 0.392, thus consistent with the correlation

value reported in Table 4.2, and significant. Note, however, that the R2 is relatively
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low at 2.91%. 4 Regarding the skew variables, the risk-neutral skew provides no

information on the realized skew as the coefficient is not significant and the R2 is

close to 0%. These two results suggest that the driving factors for the risk-neutral

and realized variance (skew) are different.

Factor models for variance swap excess return: This part focuses on under-

standing the determinants of variance swap excess return, and to what extent they

are related to market returns and other risk factors. First, regressions are considered

xV art = a0 + a1xm
vix
t + εat , (4.12)

xV art = b0 + b1xm
sp
t + εbt , (4.13)

with the results reported in Table 4.4 columns (1) and (2), respectively. These

equations measure how variance swap excess return from the volatility market is

spanned by volatility index excess return, given by xmvix, and equity index excess

return, given by xmsp. Both of these returns can be achieved by trading on futures

contracts available for these two indices (for VIX futures contracts see Zhang and

Zhu (2006) and Zhu and Zhang (2007)). Equation (4.12) leads to a positive and

significant coefficient for xmvix with a R2 of 41.9%. The positive sign is consistent

with the positive skew of the volatility smile observed on the VIX option market

(and reported in Figure 4.2). Indeed, an increase of the volatility leads to an increase

of the volatility of volatility, thus a positive relationship exists between xmvix and

xV ar. Note also that the constant term is significant and negative at −0.18 and

larger than the mean value of −0.283 reported in Table 4.1. As xmvix is the excess

return that can be achieved by trading on the volatility market and as the VIX is

closely related to the S&P 500, one of the largest indices, thus it can be considered as

the market volatility excess return. Equation (4.13) regresses variance swap excess

return on S&P 500 excess return, which leads to a negative and significant parameter

of −0.9261 with an R2 of 24%. Here, also, the sign is consistent with the well known

leverage effect as a negative value for xmsp (i.e. bear market condition) will lead to

4In fact it is an adjusted R-square but the term “adjusted” will be omitted hereafter.
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an increase of the VIX (i.e. xmvix) and the positive skew of the VIX option volatility

smile, illustrated in the previous regression, implies an increase of VIX’s volatility,

i.e., an increase of xV ar. Hence, the consistency of these regression results in the

shapes of both the S&P 500 smile and VIX smile. The fact that the R2 of Equation

(4.12) is larger than the R2 of Equation (4.13) is reasonable as xV ar is related to

the volatility of the VIX, namely the volatility of volatility, while the VIX is related

to the volatility of the S&P 500. Lastly, as xmsp can be identified with the (equity)

market excess return and as the constant term in Equation (4.13) is significant,

this suggests that the classical CAPM does not hold for the variance swap contract

written on the volatility.

Table 4.4: Factor models for variance swap excess return
xV ar

(1) (2) (3) (4) (5) (6) (7)
Const. -0.186 -0.188 -0.182 -0.201 -0.151 -0.130 -0.137

(-3.31) (-2.36) (-3.21) (-2.57) (-2.89) (-2.03) (-2.61)
xmvix 2.010 1.906 1.539 1.148

(6.10) (5.44) (5.26) (4.18)
xmsp -9.621 -0.874 -8.096 -3.093

(-3.89) (-0.43) (-4.46) (-1.92)
xSkew 0.279 0.197 0.250 0.207

(2.47) (2.65) (3.41) (2.97)
Adj. R2(%) 41.89 24.18 41.09 35.9 57.44 52.99 57.99

Note: Regressions of xV ar, the variance swap excess return given by Equation (4.4), on explanatory

variables based on (xmvix, xmsp, xSkew). xmvix is the excess return of the VIX index, xmsp is

the excess return of the S&P 500 and xSkew, given by Equation (4.9), is the skew swap excess

return. The t-statistics are computed according to Newey and West (1987). Sample with monthly

frequency ranging from January 2010 to July 2015.

Using xmvix and xmsp as explanatory variables for xV ar, leads to estimating the

following factor model

xV art = a0 + a1xm
vix
t + a2xm

sp
t + εt, (4.14)

with the results given in Table 4.4 column (3). The coefficient on the second variable

turns out to be not significant, although it has the correct sign, suggesting that

regarding variance swap excess return, the information content of S&P 500 excess

return is already spanned by the VIX excess return. The constant term is significant
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and negative much in line with the values obtained either for Equation (4.12) or

Equation (4.13).

The xV ar variable depends on the second moment of the VIX distribution (both

risk-neutral and historical) and so far the determinants considered have been the

first moment of the VIX distribution, through the VIX excess return, and the first

moment of the S&P 500 distribution also through the same variable. The following

regression

xV art = a0 + a1xSkewt + εt, (4.15)

with results reported in column (4) of Table 4.4, assesses the impact of the third

moment distribution, through the skew swap excess return, on the second moment

distribution given by xV ar. The coefficient of xSkew is positive and significant while

the R2 is high at 35.9%. The finding is in line with the high correlation between

xV ar and xSkew reported in Table 4.2. It is interesting to note that the positive

sign is also consistent with the positive slope of the VIX option smile. Indeed, as

already explained an increase of the VIX implies an increase of the VIX’s volatility,

thus a thicker right tail distribution leading to a greater skew value. Note also

that the constant term is negative and significant at −0.201, suggesting that skew

swap excess return cannot fully explain variance swap excess return and, thus, the

existence of another source of risk for variance risk premium.

Combining the previous regressions, the following equations are considered

xV art = a0 + a1xm
vix
t + a2xSkewt + εat , (4.16)

xV art = b0 + b1xm
sp
t + b2xSkewt + εbt , (4.17)

as this allows us to understand whether skew swap excess return carries comple-

mentary information to the VIX and S&P 500 excess returns considered separately.

The results are reported in columns (5) and (6) of Table 4.4 for Equations (4.16)

and (4.17), respectively. The first regression leads to significant coefficients for both
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xmvix and xSkew implying complementary information between these two variables.

Note also the sign values, which are consistent with intuition. Lastly, the R2 culmi-

nates at 57.44% and the constant term is still significant. If the pair (xmsp, xSkew)

of explanatory variables is considered instead, very similar conclusions are obtained.

Namely, coefficients are both significant with correct signs and the R2 at 52.99% is

slightly lower than the previous case but remains high while the constant term is

negative and significant.

Using all the variables as explanatory variables the following regression

xV art = a0 + a1xm
sp
t + a2xm

vix
t + a3xSkewt + εt (4.18)

is performed with results given in column (7) of Table 4.4. In line with the regression

Equations (4.14) an(4.16), the S&P 500 excess return is not significant, while the

others display coefficient signs consistent with the VIX smile. The R2 is nearly

equal to the one obtained when regressing only on the pair (xmvix, xSkew) and the

constant term is significant and negative, suggesting that the CAPM does not hold

as the S&P 500 excess return is often used as a proxy for the market excess return.

Factor models for skew swap excess return In this section the determinants

of skew swap excess return are analyzed by performing several regressions, starting

by considering the two regressions

xSkewt = a0 + a1xm
vix
t + εat , (4.19)

xSkewt = b0 + b1xm
sp
t + εbt , (4.20)

with the results reported in Table 4.5 column (1) for Equation (4.19) and column (2)

for Equation (4.20). The first regression leads to a positive and significant regression

coefficient for the variable xmvix thereby suggesting that an increase of volatility

excess return induces an increase of skew swap excess return. The more the market

is volatile, the more skewed the volatility distribution and the more attractive the

skew swap for an investor. Again, this result is consistent with the positive slope
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of the VIX option smile as explained in the previous regressions. It can also be

intuited from Table 4.2 as an increase of VIX level leads to a higher level of VIX’s

volatility, either risk-neutral or realized, which is positively related to VIX skewness

distribution, either risk-neutral or realized, so a positive relationship between xmvix

and xSkew is natural. The R2 is 11.49%, lower than the 41.89% found when VIX

excess return is used to explain variance swap excess return. Therefore, the VIX

excess return has more explanatory power for second moment related variables than

third moment related variables, a result that seems very reasonable but nevertheless

appealing to find. In contrast to the results obtained for variance swap excess return

regressions, the constant term is not significant and will not be for any regression

having the skew swap excess return as the dependent variable. From Equation (4.20)

we deduce that S&P 500 excess return has no explanatory power for skew swap

excess return (or third moment related variables) as the coefficient is not significant,

although its sign is consistent with the shapes of the smiles (i.e. VIX and S&P

500 option smiles). The very weak relationship between these two variables is also

confirmed by the R2 of 0.66% that is close to zero.

Table 4.5: Factor models for skew swap excess return
xSkew

(1) (2) (3) (4) (5) (6) (7)
Const. -0.177 -0.233 -0.221 0.081 0.087 0.060 0.042

(-0.87) (-1.25) (-1.31) (0.32) (0.33) (0.25) (0.18)
xmvix 2.395 3.668 -0.457 0.920

(2.84) (2.16) (-0.52) (1.40)
xmsp -6.093 10.743 8.870 12.004

(-0.89) (0.96) (0.97) (1.19)
xV ar 1.322 1.419 1.555 1.442

(3.60) (2.78) (2.68) (2.73)
Adj. R2(%) 11.49 0.66 13.25 35.9 35.18 38.4 38.13

Note: Regressions of xSkew, the skew swap excess return given by Equation (4.9), on explanatory

variables based on (xmvix, xmsp, xV ar). xmvix is the excess return of the VIX index, xmsp is

the excess return of the S&P 500 and xV ar the variance swap excess return given by Equation

(4.4). The t-statistics are computed according to Newey and West (1987). Sample with monthly

frequency ranging from January 2010 to July 2015.

Combining xmvix and xmsp as explanatory variables for xSkew leads to the regres-
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sion

xSkewt = a0 + a1xm
vix
t + a2xm

sp
t + εat , (4.21)

with the estimates given in column (3) of Table 4.5. The results are consistent with

those of Equations (4.19) and (4.20) as only the coefficient of xmvix is significant

and positive, as expected. The R2 is 13.25%, marginally higher than its counterpart

in regression Equation (4.19) (i.e. 11.49%).

Let us now focus on the explanatory power of the variance swap excess return xV ar

for the skew swap excess return xSkew by performing the set of regressions

xSkewt = a0 + a1xV art + εat , (4.22)

xSkewt = b0 + b1xm
vix
t + b1xV art + εbt , (4.23)

xSkewt = c0 + c1xm
sp
t + c2xV art + εct , (4.24)

with results reported in columns (4), (5) and (6) of Table 4.5. For Equation (4.22),

it is already known that the regression coefficient a1 will be significant and posi-

tive, consistent with financial intuition, while the R2 is equal to 35.9% from the

regression Equation (4.15). But in contrast with these latter regression results, the

constant term will not be significant (as already mentioned). Equation (4.23) and

its estimated coefficients clearly show that VIX excess return does not provide any

more information than xV ar when it comes to explaining skew swap excess return

as the xmvix coefficient is not significant and the R2 is around 35%, thus identical

to the one obtained when regressing on xV ar alone. Very similar conclusions can be

achieved if the pair (xmsp, xV ar) of explanatory variables is considered (although

the R2 mildly increases from 35.9%, when xV ar is considered alone, to 38.3% for

Equation (4.24)).

Lastly, combining all the variables, the following factor model is estimated

xSkewt = a0 + a1xm
vix
t + a2xm

sp
t + a2xV art + εat , (4.25)
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with the results given in column (7) of Table 4.5. The estimates are very much

in line with those of the previous regressions. More precisely, only the coefficient

of variance swap excess return (xV ar) is found to be significant and with correct

sign; the R2 at 38% is close to its value when regressed on the pair (xmsp, xV ar) of

Equation (4.24); the constant term is not significant.

Considering jointly Tables 4.4 and 4.5, it can be concluded that to explain variance

swap excess return, or variables related to second moment of the volatility, third

moment of the volatility, given by skew swap excess return, and variables related to

first moments, either volatility or stock, provide complementary information. How-

ever, to explain volatility higher moments (such as skewness), lower order moment

variables (first moments of volatility or stock) perform very poorly, with the S&P

500 excess return being irrelevant. Though this latter finding appears to be rea-

sonable it provides some confidence in the consistency of the results. Putting these

results into a hedging portfolio point of view suggests that higher moment related

variables (of the volatility) can only be hedged using contracts related to higher

moments if a static hedge is performed and to some extent a separation between the

volatility and equity markets.5 Needless to say, a dynamic hedging strategy would

allow that problem to be solved.

Fama-French factor models Following Kozhan et al. (2013) two linear models

using Fama-French factors are built and take xmsp as a reasonable proxy for the

equity market excess return. Thus, the two variables SMB (the size factor) and

HML (the book-to-market factor) are considered along with the variance excess

returns xV ar and skew excess returns xSkew. We estimate the models

xV art = a0 + a1xm
vix
t + a2xSkewt + a3SMBt + a4HMLt + εat , (4.26)

xV art = b0 + b1xm
vix
t + b2xm

sp
t + b3xSkewt + b4SMBt + b5HMLt + εbt , (4.27)

xSkewt = c0 + c1xm
vix
t + c2xV art + c3SMBt + c4HMLt + εct , (4.28)

xSkewt = e0 + e1xm
vix
t + e2xm

sp
t + e3xV art + e4SMBt + e5HMLt + εet , (4.29)

5Indeed, by construction the linear regression suggests a static hedging strategy.
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and the coefficient values, reported in Table 4.6, allow us to draw conclusions very

similar to those obtained by Kozhan et al. (2013). If xV ar or xSkew is considered

as a dependent variable, the Fama-French factors are not significant. This slightly

contrasts with Carr and Wu (2009) where it is shown that for both S&P 500 (SPX)

and S&P 100 (OEX) the size factor is significant. To some extent there is an

inconsistency between Kozhan et al. (2013) and Carr and Wu (2009) as they find

contradicting conclusions for the size factor for the S&P 500 that may be explained

by their use of different samples.

Table 4.6: Fama-French risk factors for variance and skew swap excess returns
Const. xmvix xmsp xV ar xSkew SMB HML Adj. R2(%)

xV ar -0.147 1.525 0.203 -0.018 0.003 56.53
(-2.70) (5.56) (2.74) (-0.78) (0.12)

xV ar -0.134 1.154 -2.948 0.212 -0.016 0.002 56.95
(-2.51) (4.38) (-1.83) (3.06) (-0.70) (0.065)

xSkew 0.070 -0.435 1.406 0.110 -0.011 36.53
(0.29) (-0.53) (2.96) (1.62) (-0.21)

xSkew 0.032 0.802 10.785 1.428 0.096 -0.005 38.74
(0.14) (1.29) (1.05) (2.64) (1.54) (-0.098)

Note: Regressions of the skew swap excess return xV ar, given by Equation (4.4), and the

skew swap excess return xSkew, given by Equation (4.9), on explanatory variables based on

(xmvix, xmsp, SMB,HML). xmvix is the excess return of the VIX index, xmsp is the excess return

of the S&P 500 and the two Fama-French factors SMB (the size factor) and HML (the book-to-

market factor). The t-statistics are computed according to Newey and West (1987). Sample with

monthly frequency ranging from January 2010 to July 2015.

The impacts of SMB and HML are insignificant here and this disappointing per-

formance of the two Fama-French factors (i.e. SMB and HML) might be explained

by the fact that they are built using two equity portfolios. As mentioned earlier,

volatility products can be treated as an asset class itself, with specific properties

different from the equity market. Although these two markets are related, the well-

known leverage effect being a good example, specific or bespoke factors are needed

for this market. A similar problem appeared for the currency market and it is pre-

cisely the contribution of Lustig et al. (2011) who propose a common risk factor for

that market that they name HMLFX . Its relevance was illustrated in Jurek and Xu

(2014) on a problem related to carry trade. The results of this work suggest that

similar factors, specific to the volatility market, should be built, but this objective
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is beyond the scope of the present thesis.

Differences between volatility index and equity index markets It is of

interest to compare the results obtained here for the volatility index market, through

the use of VIX options, and those obtained for the equity index market, through the

use of S&P 500 options, analyzed in Kozhan et al. (2013) as these are two different

asset classes (i.e. volatility versus equity). It would allow us to assess whether there

are structural differences between these two markets. Note that Table 4.2, reporting

variables’ correlation, already displays important differences to those observed for

the S&P 500. Also, the close relationship between the VIX and the S&P 500 suggests

considering them jointly. As the most important variables are the skew swap excess

return, denoted xSkew in this work while denoted xs in Kozhan et al. (2013), and

the variance swap excess return, denoted xV ar in this work while denoted xv in

Kozhan et al. (2013), the comparison will be restricted to these variables as well as

to the regressions involving them.

The first important difference is the correlation between xSkew and xV ar that is

equal to 0.897 in Kozhan et al. (2013), a value much higher than the 0.607 obtained

here, that leads these authors to question whether there are two separate risk pre-

miums. In Kozhan et al. (2013), when regressing the variance swap excess return on

equity index excess return, the constant term is significant and a similar conclusion

is achieved for the skew swap excess return, suggesting that the CAPM does not

hold (see Table 4 of Kozhan et al. (2013)). For the VIX, this conclusion mainly

holds for xV ar, see Table 4.4 column (2) along with Equation (4.13), but for the

skew, Table 4.5 column (2) along with Equation (4.20) show that the constant term

is not significant.6

Regarding the S&P 500 option market, regression of xV ar on the equity index

excess return xmsp and the skew swap excess return (xSkew) leads to an insignificant

constant term and similar conclusion can be drawn after swapping xV ar and xSkew

6Note that in this latter case the R2 is close to zero, so to some extent the conclusion also holds
for the skew but the argument is different.
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(see Table 5 of Kozhan et al. (2013)). Thus, these authors rightly conclude that xV ar

is spanned by the pair (xmsp, xSkew) and xSkew by (xmsp, xV ar). For the VIX

market the situation is slightly different as the constant term remains significant only

when xV ar is regressed on the other two variables, see Table 4.4 column (6) where

the t-statistic is found to be -2.03, suggesting that an additional factor is needed to

fully explain the variance swap excess return beyond the information provided by

xmsp and xSkew.

Related to the high correlation level between xV ar and xSkew in Kozhan et al.

(2013) (i.e. 0.897), whenever one of the variables is used as the explanatory variable

while the other is used as a dependent one, the R2 is extremely high leaving little

room for other factors (still these authors found xmsp to be significant). In the VIX

case, although there is a decent correlation between xV ar and xSkew, additional

variables such as equity index excess return xmsp or volatility excess return xmvix

do improve the R2 when xV ar is the dependent variable.

Lastly, the coefficient signs remain consistent with intuition for all factor models,

and in particular adding a new explanatory variable to a given regression does not

change the coefficient signs. From a hedging point of view, it means that one does

not have to reverse a position on a given instrument, an aspect that is extremely

appealing in practice. This sharply contrasts with Kozhan et al. (2013) as they

find a negative coefficient sign for xmsp (equity index excess return) when the skew

swap excess return xSkew is regressed on this variable alone (see Table 4 in that

paper) while the sign turns out to be positive when the variance swap excess return

is added as an explanatory variable. This is a direct consequence of the strong

correlation between xSkew and xV ar extracted from S&P 500 options. Also, for

skew swap excess return the equity index excess return is irrelevant for the volatility

option market while it is relevant for the S&P 500 option market. This suggests

that, for variables related to volatility higher moments, variables related to equity

(index) moments convey little information, and as a result there is an idiosyncratic

volatility factor.
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These are the salient differences between the equity index option market and the

volatility index option market underlining the very specific characteristics of the

volatility market with the related consequences in terms of hedging strategies.

4.5 Conclusion

In this chapter, an analysis is provided of variance and skew risk premiums for the

volatility market using VIX options and the methodology proposed by Kozhan et al.

(2013). It is found that variance swap excess return can be partially explained by

equity index and volatility index excess returns along with skew swap excess return.

In contrast, to explain skew swap excess return only the variance swap contract is

relevant, investing in the equity index (i.e. S&P 500 in that case) is of no use and

the volatility index provides no additional information beyond the variance swap

contract. Quite remarkably, all the results are consistent with the shape of the

smiles observed on the S&P 500 and VIX option markets. Certain results are in

sharp contrast to those obtained for the S&P 500 option market, as they underline

certain specifics of the volatility market.

This work suggests several extensions. First, applying the methodology to other

volatility option markets, such as crude oil for example, should confirm the results

obtained here. Second, the availability of exotic volatility options, such as options

on leveraged volatility exchange traded funds as presented in Bao et al. (2012), is an

alternative to extract implied-moments for the volatility distribution and assessing

whether all these products convey consistent information is an important question.

These open problems are left for future research.
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Chapter 5

Higher Moment Risk Premiums

for the Crude Oil Market: A

Downside and Upside Conditional

Decomposition

5.1 Introduction

Energy commodities have become a major part of financial markets as a result of the

rapid growth in trading volume and the variety of derivative products, among which

the crude oil futures and options have taken up a significant proportion. Specifically,

the trading volume of crude oil futures and options accounted for over 50% of the

total trading volume of energy contracts on the New York Mercantile Exchange

(NYMEX) in 2015. As for the equity (index) option market, the commodity option

market enables the study of variance risk premium, i.e., the premium asked by

market participants to invest/trade volatility risk. For the literature on variance

risk premium, without being exhaustive, reference is made to Bakshi et al. (2003),

Carr and Wu (2009), Trolle and Schwartz (2010) and Prokopczuk and Wese Simen
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(2014).

The fact that financial markets react differently to positive and negative shocks

has been widely acknowledged in previous literature. Consequently, semivariance

measures, considered in Barndorff-Nielsen et al. (2008) or Patton and Sheppard

(2015), were found to carry more information than unconditional measures of the

equity market. For the specific case of the crude oil market and the relevance of

semivariance measures see Chevallier and Sévi (2012) or Sévi (2014). Following

that line of research, it is therefore natural to assess whether tail risk premium

or conditional variance risk premium carries more information than standard (i.e.

unconditional) variance risk premium. In Bollerslev et al. (2015), Lettau et al.

(2014) and Kilic and Shaliastovich (2015), it is confirmed that conditional variance

risk premium has higher forecasting power for equity index excess returns.

Beyond the variance risk premium, skew risk premium has recently attracted a

strong interest among academics. In Kozhan et al. (2013), see also the important

and related work of Neuberger (2012), the authors found that skew risk premium

naturally completes the variance risk premium for the equity index option market.

The specifics of the volatility index option market (i.e. VIX options) are analyzed

here with respect to variance and skew risk premiums and show the consistency of

the results with the shapes of the volatility smile observed in the equity and volatility

index option markets.

Based on these works, this chapter contributes to the literature by performing a con-

ditional decomposition of variance and skew risk premiums extracted from options

written on the USO (an exchange traded fund tracking the daily price changes of the

WTI light sweet crude oil). The time variation property of these risk premiums is

assessed and the relations between these decomposed higher moment risk premiums

and the USO excess returns are analyzed. Lastly, how these decomposed higher

moment risk premiums enable a much better prediction of USO excess returns are

shown.

The chapter is organized as follows. Section 2 presents a formal definition of the
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key variables used in this work. Section 3 provides a description of the data used in

the empirical analysis. The empirical implementation and the results are discussed

in Section 4 and Section 5 concludes.

5.2 Pricing formulas

In this part, the variance swap contract and related variables such as variance risk

premium, are first presented then the conditional decompositions as well as excess

returns of investments made on such contracts. This will allow specification of the

notations used throughout this work. The skew swap and related variables that are

important for this work are pursued and constitute a contribution to the literature.

5.2.1 Variance risk premiums

The valuation of a variance swap contract of maturity T requires the computation of

the fixed leg that is paid at time t, the initiation date of the contract. Let St be the

underlying asset price at time t, then the log return from t to T is rt,T = lnST−lnSt.

In this work the asset St will be the USO, an exchange traded fund tracking the

daily price changes of the WTI light sweet crude oil. Firstly, the USO excess return

from t to T is defined as

xmUSO
t,T = rt,T − rft,T , (5.1)

where rft,T = rf (T − t) with rf the risk-free rate.

Following the literature, to value the fixed leg of the swap, Kozhan et al. (2013)

proposes the following formula

ivt,T = EQ
t [gv(rt,T )], (5.2)

where EQ
t [.] denotes the risk-neutral expectation conditional on time t and gv(r) =

2 (er − 1− r). A Taylor expansion of this function around zero shows that it is equal
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to r2, thus its choice for this product.

It was shown in the literature that any twice-continuously differentiable payoff func-

tion can be spanned by a continuum of out-of-the-money (OTM) European calls

and puts. Specifically, Kozhan et al. (2013) show that based on the payoff function

gv the risk-neutral variance ivt,T can be expressed as follows

ivt,T = 2

∫ +∞

St

Ct,T (K)

Bt,TK2
dK + 2

∫ St

0

Pt,T (K)

Bt,TK2
dK

= ivut,T + ivdt,T ,

(5.3)

where Ct,T (K) and Pt,T (K) denote the prices at time t of calls and puts with expiry

date T and strike price K, and Bt,T is the zero-coupon bond at time t with maturity

T . In fact, ivut,T and ivdt,T can be spanned by a continuum of OTM calls and puts,

respectively, which correspond to the first and second integrals in Equation (5.3).

A detailed proof is presented in Appendix A. The decomposition is quite intuitive,

the upside risk-neutral variance ivut,T is constructed upon a set of call options that

will pay only when the underlying asset return from t to T , i.e. rt,T = lnST − lnSt,

is positive. In fact, it captures the second moment of the upper tail distribution.

Likewise, the downside risk-neutral variance ivdt,T is constructed upon a set of put

options that will pay only when the underlying asset return from t to T is negative

and, in that case, it captures the second moment of the lower tail distribution. As

we have

gv(rt,T ) = gv(rt,T )1{rt,T>0} + gv(rt,T )1{rt,T≤0}, (5.4)

it is natural to also name ivut,T and ivdt,T the upside and downside risk-neutral vari-

ances and state

ivut,T = EQ
t [gv(rt,T )1{rt,T>0}],

ivdt,T = EQ
t [gv(rt,T )1{rt,T≤0}].

(5.5)

As there are only a finite number of options available in the market, ivut and ivdt can
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be approximated in practice by the following sums:

ivut,T = 2
∑
St≤Ki

Ct,T (Ki)

Bt,TK2
i

∆I(Ki),

ivdt,T = 2
∑
Ki≤St

Pt,T (Ki)

Bt,TK2
i

∆I(Ki),

(5.6)

with the weight function ∆I(Ki) defined as

∆I(Ki) =


Ki+1−Ki−1

2
, 0 ≤ i ≤ N (with K−1 = 2K0 −K1, KN+1 = 2KN −KN−1)

0, otherwise.

By definition of the variance swap contract, the floating leg is given by

rvt,T = gv(rt,T ) =
T−1∑
i=t

gv(ri,i+1), (5.7)

where ri,i+1 is the daily log return of the underlying asset (so we split the interval

[t T ], which will be one-month long in this work, into daily sub-intervals), and

EP
t [.] denotes the historical expectation conditional on time t. Following Kilic and

Shaliastovich (2015), the realized variance rvt,T is decomposed into two parts that

are related to the two opposite sides of the asset return distribution. More precisely,

the following will be written

rvt,T =
T−1∑
i=t

gv(ri,i+1)1{ri,i+1>0} +
T−1∑
i=t

gv(ri,i+1)1{ri,i+1≤0}

= rvut,T + rvdt,T ,

(5.8)

where rvut,T and rvdt,T denote the upside and downside realized variances, respectively.

These variables are defined; the payoff of a variance swap (payer of the fixed leg and

receiver of the floating leg) is given by rvt,T − ivt,T and after averaging under the

historical probability measure, the variance risk premium is obtained. As explained

in Kozhan et al. (2013), it is convenient to define the excess return of an investment
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in the variance swap and this is given by

vpt,T =
rvt,T
ivt,T

− 1. (5.9)

The decomposition performed on the variance swap allows the definition of the

upside and downside variance swaps as rvut,T − ivut,T and rvdt,T − ivdt,T , respectively, as

well as the corresponding risk premiums. Here also, it is convenient to define excess

returns associated with these swaps and this leads to

vput,T =
rvut,T
ivut,T

− 1, vpdt,T =
rvdt,T
ivdt,T

− 1. (5.10)

Remark 5 The decomposition of the variance risk premium into two components

follows Kilic and Shaliastovich (2015) where the authors qualified them as “good”

(for the upside) and “bad” (for the downside) risk premiums, a naming justified

by the fact that they analyze an equity index (the S&P 500) for which a positive

(negative) return is often favourably (unfavourably) considered. In the case of crude

oil, such naming is inappropriate as too high an oil price leads to a decrease of

consumption and a weakening of the economy.

Remark 6 In Kilic and Shaliastovich (2015), the decomposition of Equation (5.8)

is computed using high frequency data and as explained by these authors it is known

that, according to Barndorff-Nielsen et al. (2008), under the hypothesis that (rt)t≥0

satisfies the dynamic rt =
∫ t

0
µsds +

∫ t
0
σsdws + Jt with (wt)t≥0 a Brownian motion

and Jt a pure jump process, then the following convergences in probability hold

rvut,T →
1

2

∫ T

t

σ2
sds+

∑
t≤s≤T

(∆rs)
21{∆rs≥0},

rvdt,T →
1

2

∫ T

t

σ2
sds+

∑
t≤s≤T

(∆rs)
21{∆rs≤0},

with ∆rs = rs − rs−.
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For the risk-neutral part of the variance swap, the decomposition in Equation (5.3)

is performed. Note that while the upside risk-neutral variance depends on positive

evolutions of the underlying asset over the interval [t T ], the upside realized variance

does not and similar remark applies to the downside decomposition. As a result, it

does not lead exactly to risk premiums as, by definition, a risk premium requires the

same quantity to be computed under the risk-neutral and historical probabilities. Still,

these authors will be followed and the average value of rvut,T − ivut,T and rvdt,T − ivdt,T
qualified as risk premiums.

5.2.2 Skew risk premiums

For the skew swap Kozhan et al. (2013) are closely followed and that work is referred

to for further details. These authors propose computing the fixed leg of the swap at

time t with maturity T as

ist,T = EQ
t [gs(rt,T )], (5.11)

where gs(r) = 6 (2 + r − 2er + rer). A Taylor expansion of gs shows that it behaves

like r3 and this justifies its use to compute the skewness. 1The expectation in

Equation (5.12) can be expressed as a function of a continuum of OTM options as

it can be written as

ist,T = 3(vEt,T − ivt,T ), (5.12)

where the quantity vEt,T is defined as

vEt,T =
2

Bt,T

∫ +∞

St

Ct,T (K)

KFt,T
dK +

2

Bt,T

∫ St

0

Pt,T (K)

KFt,T
dK

= vu,Et,T + vd,Et,T .

Thanks to the decomposition of ivt,T into upside and downside parts and similar

1Kozhan et al. (2013) are referred to for an explanation of why the function gs is used instead
of r3 as well as gv given in the variance swap section instead of r2.
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decomposition that can also be performed on vEt,T , still denoted by vu,Et,T and by vd,Et,T ,

it is concluded that ist,T can be decomposed as

ist,T = 3(vu,Et,T − iv
u
t,T )− 3(vd,Et,T − iv

d
t,T )

= isut,T − isdt,T .
(5.13)

As isut,T only involves OTM calls, it depends on the third moment of the underlying

asset return conditional on this return to be positive and, as such, it depends on the

asset’s right or upper tail distribution. A similar remark applies to isdt,T ; this time

OTM puts are involved and with the difference that it is conditional on the asset

return to be negative, so it depends on the asset’s left or lower tail distribution. As

a result, the following can be written

gs(rt,T ) = gs(rt,T )1{rt,T>0} − gs(|rt,T |)1{rt,T≤0}, (5.14)

from which is deduced

isut,T = EQ
t

[
gs(rt,T )1{rt,T>0}

]
, isdt,T = EQ

t

[
gs(|rt,T |)1{rt,T≤0}

]
. (5.15)

In practice, there are only a finite number of options available in the market, so vu,Et,T

and vd,Et,T can be approximated by the following sums:

vu,Et,T = 2
∑
St≤Ki

Ct,T (Ki)

Bt,TKiFt,T
∆I(Ki),

vd,Et,T = 2
∑
Ki≤St

Pt,T (Ki)

Bt,TKiFt,T
∆I(Ki),

(5.16)

with weight function ∆I(Ki) as previously defined.

Regarding the floating leg of the skew swap, it is in fact the expectation of the payoff

function gs(r) under the physical measure P , and it is given by

rst,T = gs(rt,T ) =
T−1∑
i=t

gs(ri,i+1) (5.17)
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with, as in the previous case, ri,i+1 the daily log return of the underlying asset (so

we split the interval [t T ], which will be one-month long in this work, into daily

sub-intervals).

The decomposition of Equation (5.14) leads to defining the upside and downside

realized skew, namely, rsut,T and rsdt,T , and these variables are

rsut,T =
T−1∑
i=t

gs(ri,i+1)1{ri,i+1>0},

rsdt,T =
T−1∑
i=t

gs(|ri,i+1|)1{ri,i+1≤0}.

(5.18)

The skew swap contract value, payer of the fixed leg and receiver of the floating leg,

can be written as rst,T − ist,T and after averaging under the historical probability

measure the skew risk premium is obtained. As for the variance swap, it is convenient

to define the excess return of an investment on a skew swap contract as

spt,T =
rst,T
ist,T

− 1. (5.19)

Lastly, the decompositions performed on the risk-neutral and realized skews lead to

defining the upside and downside skew swaps and after averaging under the historical

probability measure to obtain the upside and downside skew risk premiums. Again,

it is convenient to compute the excess returns associated with these upside and

downside skew swaps; they are given by

sput,T =
rsut,T
isut,T

− 1,

spdt,T =
rsdt,T
isdt,T

− 1.

(5.20)

To implement these variables, options on crude oil are used where only monthly

maturities are available. As a consequence, the risk-neutral expectations can only

be evaluated 12 times a year and t will run through the first days following the
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option maturity dates. Therefore, all the variables are on a monthly basis. Also,

to simplify notations the dependency with respect to T is dropped, and ivt is used

instead of ivt,T in the following parts and the same rule applies to all the other

variables.

5.3 Data and descriptive statistics

The empirical analysis spans the period from January 2010 to June 2016 and the

sample frequency is daily. To compute the variance and skew risk premiums as well

as their decompositions, both European call and put options written on the USO

from Thomson Reuters Ticker History (TRTH) of SIRCA are obtained.2 Option

information such as Ticker, date, last price, close bid, close ask, expiration date,

strike price and option type is extracted and consistently with the pricing formulas

presented in the previous section only OTM options are used. As previously men-

tioned, the empirical study is carried out at monthly frequency, so only one-month

maturity options will be used here, and the computation will run through the first

days following the option maturity dates.

2http://www.sirca.org.au/
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Figure 5.1: Evolution of USO price
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Note: The curve shows the time series of USO price from January 2010 to July 2016. The market

went through turmoil in 2015 and 2016.

Also, because the moneyness range of options varies greatly across time, especially

for the puts, it is restricted from 0.5 to 2.0 to avoid illiquidity issues caused by deep

OTM options. Libor rates are used to proxy the risk-free rates, all of them provided

by Bloomberg.

Figure 5.1 contains the evolution of the USO for the period considered while Figure

5.2 illustrates the distribution of its daily log returns as well as the normal distribu-

tion having the same mean and standard deviation as the data sample. Compared

to the normally distributed curve, the USO density curve exhibits a slightly nega-

tive skewness, fatter tails, and a higher peak, it highlights the importance of higher

moment risks such as skewness and kurtosis.

Figure 5.3 exhibits the time series of total, upside and downside risk-neutral vari-

ances, namely, iv, ivu and ivd, from January 2010 to June 2016. The comovement

of the three variables demonstrates their positive correlations. In general, the curve
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of ivd is above that of ivu, so the average value of ivd is expected to be larger, which

implies that the variance of the left tail is larger than the variance of the right tail.

It can also be seen that compared to ivd, the curve of ivu exhibits more spikes.

Figure 5.4 shows the time series of total, upside and downside realized variances,

namely, rv, rvu and rvd, over the same period. All the three variables are positively

correlated as the curves move together, and the moving trend is similar to that of

their risk-neutral counterparts. The magnitude of rvd is slightly larger than that

of rvu but their difference is smaller compared to ivu and ivd. Moreover, there are

more spikes on the downside realized variance curve compared to the upside realized

variance curve.

Figure 5.2: Density curve of USO returns
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Note: The histogram shows the empirical density of the daily log returns of USO from January

2010 to July 2016. The curve stands for the normal distribution with the same mean and standard

deviation of the sample data.

Figure 5.5 displays the time series of total, upside and downside variance risk pre-

miums, namely, vp, vpu and vpd. Generally, vp, vpu and vpd show similar evolution

patterns over time, which suggests positive correlations among the variables. On
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average, vp, vpu and vpd are negative, indicating that positive premiums are paid

to hedge against the total, upside and downside volatility of the underlying asset.

Moreover, the curve of vpd shows more larger spikes than that of vpu. There are
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Figure 5.3: Decomposition of risk-neutral variance
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Note: The upper figure shows the evolution of risk-neutral variance (iv, given by Equation (5.3))

from January 2010 to June 2016, based on monthly observations. The lower figure shows the

evolutions of upside risk-neutral variance (ivu, given by Equation (5.6), black solid line) and

downside risk-neutral variance (ivd, given by Equation (5.6), red dashed line) for the same period,

also based on monthly observations. In general, the downside risk-neutral variance is greater and

more volatile than the upside risk-neutral variance, and the two sum up to the total risk-neutral

variance.
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Figure 5.4: Decomposition of realized variance
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Note: The upper figure shows the evolution of realized variance (rv, given by Equation (5.7)) from

January 2010 to June 2016, based on monthly observations. The lower figure shows the evolutions

of upside realized variance (rvu, given by Equation (5.8), black solid line) and downside realized

variance (rvd, given by Equation (5.8), red dashed line) for the same period, also based on monthly

observations. In general, the volatility of the downside realized variance is greater than the upside

realized variance, and the two sum up to the total realized variance.
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mainly two concentrated periods of spikes revealed by the curves of vpu and vpd,

namely, the period from 2010 to 2012 and the period from 2014 to 2016 during which

the crude oil price dropped dramatically. The curves of vpu and vpd exhibit spikes

at different times, indicating that the decomposed variance premiums are driven by

different underlying state variables.

Figure 5.6 shows the time series of total, upside and downside risk-neutral skews,

namely, is, isu and isd. The comovement of isu and isd suggests a positive correlation

between these variables. Comparing the upper and lower figures, and consistently

with the decomposition of is, isu captures the positive spikes of is and isd captures

the negative spikes of is. Also of interest is to note that is can remain unchanged

from one observation date to the next while isu and isd vary substantially. As a

result, the disaggregation of is into isu and isd can provide additional information.

A similar remark applies to iv, although here ivu and ivd add up to give iv. Both

the average value and volatility of isd are greater than those of isu, as the curve of

isd is above that of isu for the most part and it displays more larger spikes as well.

Figure 5.7 shows the time series of total, upside and downside realized skews, namely,

rs, rsu and rsd. It depicts a similar moving trend to their risk-neutral counterparts.

A positive correlation between rsu and rsd can be observed as they comove together.

As for the risk-neutral variances, rsu captures the positive spikes of rs while rsd

captures the negative spikes of rs, as shown in Figure 5.7. Lastly, rsd reveals higher

values on average compared to rsu.

Figure 5.8 exhibits the time series of total, upside and downside skew risk premiums,

namely, sp, spu and spd. The three variables display distinct extreme values from

those of the series in Figures 5.6 and 5.7 as spikes in risk premiums, decomposed or

not, are due to strong differences between realized and risk-neutral variables. This

suggests that the risk premium components contain different information. Also,

during the two crisis periods, namely, years 2010 to 2012 and 2014 to 2016, many

spikes are present in spu and spd curves while for the sp curve there is
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Figure 5.5: Decomposition of variance risk premium
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Note: The upper figure shows the evolution of variance risk premium (vp, given by Equation

(5.9)) from January 2010 to June 2016, based on monthly observations. The lower figure shows

the evolutions of upside variance risk premium (vpu, given by Equation (5.10), black solid line)

and downside variance risk premium (vpd, given by Equation (5.10), red dashed line) for the same

period, also based on monthly observations. In general, the volatility of the downside variance risk

premium is greater.
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Figure 5.6: Decomposition of risk-neutral skew
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Note: The upper figure shows the evolution of risk-neutral skew (is, given by Equation (5.12)) from

January 2010 to June 2016, based on monthly observations. The lower figure shows the evolutions

of upside risk-neutral skew (isu, given by Equation (5.13), black solid line) and downside risk-

neutral skew (isd, given by Equation (5.13), red dashed line) for the same period, also based on

monthly observations. In general, the volatility of the downside risk-neutral skew is greater than

the upside risk-neutral skew, and the two sum up to the total risk-neutral skew.
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Figure 5.7: Decomposition of realized skew
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Note: The upper figure shows the evolution of realized skew (rs, given by Equation (5.17)) from

January 2010 to June 2016, based on monthly observations. The lower figure shows the evolutions

of upside realized skew (rsu, given by Equation (5.18), black solid line) and downside realized

skew (rsd, given by Equation (5.18), red dashed line) for the same period, also based on monthly

observations. In general, the volatility of the downside realized skew is greater than the upside

realized skew, and the two sum up to the total realized skew.
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Figure 5.8: Decomposition of skew risk premium
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Note: The upper figure shows the evolution of skew risk premium (sp, given by Equation (5.19))

from January 2010 to June 2016, based on monthly observations. The lower figure shows the

evolutions of upside skew risk premium (spu, given by Equation (5.20), black solid line) and

downside skew risk premium (spd, given by Equation (5.20), red dashed line) for the same period,

also based on monthly observations. In general, the volatility of the downside skew risk premium

is greater than the upside skew risk premium.
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only one extreme value around 2011. The finding suggests that the sp curve, which

aggregates spu and spd, is less informative than its constituents considered sepa-

rately. Lastly, the curve of spd exhibits larger spikes than that of spu.

Table 5.1 reports descriptive statistics such as mean and standard deviation for the

realized and risk-neutral variance and skewness. Regarding the variance, either re-

alized or risk-neutral, the downside component is larger than the upside component.

A similar remark applies to the skewness, as it results in negative skews (realized and

risk-neutral). For both the variance and the skew, the realized values are smaller

than the risk-neutral values, which implies that investors are willing to pay in order

to hedge variance and skew risks. Lastly, the asymmetry between downside and

upside risk-neutral variables (variance and skew) explains the downward slope of

the volatility smile observed in the USO option market and is similar to what is

known for the equity index options (S&P 500).

Table 5.1: Descriptive statistics of variances and skews
Mean Std. dev. Mean Std. dev.

rv 7.64e-03 7.48e-03 rs -2.526e-05 2.422e-04
rvu 3.54e-03 4.32e-03 rsu 1.417e-04 2.779e-04
rvd 4.10e-03 4.09e-03 rsd 1.670e-04 2.426e-04
iv 10.65e-03 7.36e-03 is -8.446e-04 8.754e-04
ivu 4.27e-03 3.10e-03 isu 1.335e-03 1.257e-03
ivd 6.38e-03 4.45e-03 isd 2.179e-03 1.919e-03

Note: Descriptive statistics such as mean, standard deviation for the variables: the realized skew

(rs, given by Equation (5.17)), the upside realized skew (rsu, given by Equation (5.18)) and the

downside realized skew (rsd, given by Equation (5.18)), the risk-neutral skew (is, given by Equation

(5.12)), the upside risk-neutral skew (isu, given by Equation (5.15)) and the downside risk-neutral

skew (isd, given by Equation (5.15)). Sample with monthly frequency ranging from January 2010

to June 2016.

Table 5.2 reports descriptive statistics for the key variables vp, vpu, vpd, sp, spu

and spd for the period under study. On average, the variance risk premiums are

negative, with the downside variance risk premium as the lowest. Note that in Kilic

and Shaliastovich (2015), who investigates the upside and downside variance risk

premiums for the S&P 500 market, ivu is positive while ivd is negative3, highlighting

3Kilic and Shaliastovich (2015) defines moment risk premium as the difference between risk-
neutral and realized moments, it will result in risk a premium of opposite sign than ours.
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a difference between equity index and commodity markets. In other words, in the

equity market, a downward market movement is bad news but an upward market

movement is good news. In sharp contrast, in the commodity market, both upward

and downward market shifts are bad news. Regarding the skew risk premiums, all

of them are negative. Moreover, it is noted that upside and downside skew risk

premiums are quite close. For the standard deviations, both downside variance and

skew risk premiums are higher than their upside counterparts and the difference is

even larger for the skew. This suggests that the downside skew risk premium is the

most sensitive variable to left tail market crashes.

Table 5.2: Descriptive statistics of risk premiums
Mean Std. dev. Q1 Median Q3

vp -0.304 0.395 -0.565 -0.408 -0.207
vpu -0.239 0.474 -0.531 -0.315 -0.020
vpd -0.323 0.605 -0.676 -0.435 -0.178
sp -1.096 0.808 -1.071 -1.000 -0.919
spu -0.915 0.094 -0.975 -0.938 -0.899
spd -0.912 0.153 -0.981 -0.956 -0.921

Note: Descriptive statistics such as mean, standard deviation, the 25th percentile, median, and

75th percentile for the variables: the variance risk premium (vp, given by Equation (5.9)), the

upside variance risk premium (vpu, given by Equation (5.10)), the downside variance risk premium

(vpd, given by Equation (5.10)), the skew risk premium (sp, given by Equation (5.19)), the upside

skew risk premium (spu, given by Equation (5.20)) and the downside skew risk premium (spd,

given by Equation (5.20)). Sample with monthly frequency ranging from January 2010 to June

2016.

Table 5.3: Correlations
vp vpu vpd sp spu spd

vp 1.000 0.487 0.885 -0.339 0.536 0.807
vpu 1.000 0.051 -0.154 0.899 0.088
vpd 1.000 -0.418 0.153 0.923
sp 1.000 -0.195 -0.601
spu 1.000 0.172
spd 1.000

Note: Correlation between the variables: the variance risk premium (vp, given by Equation (5.9)),

the upside variance risk premium (vpu, given by Equation (5.10)) and the downside variance risk

premium (vpd, given by Equation (5.10)), the skew risk premium (sp, given by Equation (5.19)),

the upside skew risk premium (spu, given by Equation (5.20)) and the downside skew risk premium

(spd, given by Equation (5.20)). Sample with monthly frequency ranging from January 2010 to

June 2016.
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Table 5.3 provides a correlation matrix for total, upside and downside variance

(skew) risk premiums. Both vpu and vpd have strong correlations with vp, as high

as 0.487 and 0.885, respectively. As expected, vpu and vpd are weakly correlated,

only 0.051. In contrast, spd has a much higher correlation with sp as -0.601 is found

for the former while for the latter it is -0.195. Note that in both cases, downside

decompositions carry more information (i.e. higher correlations) with respect to

aggregated or unconditional risk premiums than upside decompositions.

5.4 Empirical analysis

In order to deepen our understanding of the information content of the variables

constructed in the previous part, namely, the upside and downside variance and

skew risk premiums, a thorough empirical analysis of these variables is performed.

The first part aims to test time-varying properties of the total and decomposed risk

premiums. Time variation of variance and skew risk premiums for the U.S. equity

index market (i.e. S&P 500 index options) has been documented in the literature

such as Kozhan et al. (2013) while similar conclusion was obtained for the volatility

index market (i.e. VIX index options). The second part proposes several factor

models for the total as well as decomposed risk premiums using the USO excess

return as the explanatory variable. The third part is about predictability of USO

excess returns by these variables and to show that upside and downside risk pre-

miums jointly have higher forecasting power than the (unconditional) variance and

skew risk premiums. As shown by Bollerslev et al. (2009), the variance risk premium

contains significant predictive information for equity index excess returns within a

forecast horizon of six months. The more recent work of Kilic and Shaliastovich

(2015) decomposed the variance premium into “good” and “bad” variance premi-

ums and further demonstrated that the two components jointly have a stronger

predictive power for equity index excess returns over a longer horizon (they study

the same data as Bollerslev et al. (2009)). The objective of this thesis is to analyze

the predictability of USO excess returns by the upside and downside variance and

103



Chapter 5. Higher Moment Risk Premiums for the Crude Oil Market: A Downside
and Upside Conditional Decomposition

skew risk premiums over forecast horizons spanning from one week to nine months.

The results extend existing results in the literature in both directions. First, along

with variance risk premiums (unconditional and conditional) the thesis also consid-

ers skew risk premiums (unconditional and conditional), thus it extends the study

of Chevallier and Sévi (2013) that analyzes the predictability of crude oil futures

returns using the (unconditional) variance risk premium.4 Second, it underlines the

specifics, compared with the equity index option market and volatility index option

market, of the crude oil option market.

5.4.1 Time variation of risk premiums

Time variation of variance risk premiums: Following Kozhan et al. (2013),

the time variation of the total variance risk premiums are tested by performing

the univariate regression of realized variance on risk-neutral variance, as well as

the univariate regressions of upside and downside realized variances on upside and

downside risk-neutral variances

rvt = α0 + α1ivt + εαt , (5.21)

rvut = β0 + β1iv
u
t + εβt , (5.22)

rvdt = γ0 + γ1iv
d
t + εγt , (5.23)

and the results are reported in Table 5.4.

Under the null hypothesis that the variance risk premium is constant over time, the

slope should be one and the intercept should be zero. Regarding Equation (5.21),

the slope of total risk-neutral variance (iv) is 0.798, thus significantly smaller than 1

(and different from 0), which indicates that vp is time varying. A similar conclusion

applies to ivd as the slope coefficient is 0.528 and highly significant. It contrasts

with ivu as the estimated coefficient in that case is 1.042 and highly significant from

4The point of view of Chevallier and Sévi (2013) is somewhat different than ours as they consider
along the variance risk premium other explanatory variables such as Han Index, Killian Index and
the De RoonS Index, among others.
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which it is deduced that the upside variance risk premium is not time varying if

Kozhan et al’s (2013) interpretation is followed. The empirical results, at least for

iv and ivd, are consistent with Figure 5.5, which shows the time-varying evolutions

of total and downside variance risk premiums. Regarding the R2, the values are

as high as 61.29%, 55.28% and 32.08% and all the intercepts are not significantly

different from zero.

Table 5.4: Time variation of upside and downside variance premiums

Const. iv ivu ivd Adj. R2(%)
rv -0.0008 0.798∗∗∗ 61.29

(-0.91) (8.82)
rvu -0.0009 1.042∗∗∗ 55.28

(-1.46) (6.49)
rvd 0.0008 0.528∗∗∗ 32.08

(1.31) (6.34)

Note: Regressions of the realized variance (rv, given by Equation (5.7)) on the risk-neutral variance

(iv, given by Equation (5.3)), the upside realized variance (rvu, given by Equation (5.8)) on the

upside risk-neutral variance (ivu, given by Equation (5.3)) and the downside realized variance

(rvd, given by Equation (5.8)) on the downside risk-neutral variance (ivd, given by Equation

(5.3)). The t-statistics are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗ denote

the significance level of 5%, 1% and 0.1% respectively. Sample with monthly frequency ranging

from January 2010 to June 2016.

Time variation of skew risk premiums: To test the dynamics of skew risk pre-

miums, either total, upside or downside skew risk premiums, the following univariate

regressions are run

rst = α0 + α1ist + εαt , (5.24)

rsut = β0 + β1is
u
t + εβt , (5.25)

rsdt = γ0 + γ1is
d
t + εγt , (5.26)

and the results reported in Table 5.5.

Regarding Equation (5.24) about the total skew risk premium, the slope is signif-

icantly different from zero at 5%, while both slopes of upside and downside skew

risk premiums are highly significantly different from one. This indicates that all the
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skew risk premiums are time varying. Moreover, the R2 for Equation (5.24) is as

low as 10.15%, while for Equations (5.25) and (5.26) they increase to 49.75% and

26.11%, respectively. It is demonstrated that after decomposition, the upside and

downside risk-neutral skew provides more information on its realized counterparts.

Table 5.5: Time variation of upside and downside skew premiums
Const. is isu isd Adj. R2(%)

rs -0.0001∗∗ -0.093∗ 10.15
(-2.96) (-2.50)

rsu -0.00006∗ 0.157∗∗∗ 49.75
(-2.04) (5.81)

rsd 0.00002 0.066∗∗∗ 26.11
(0.63) (4.73)

Note: Regressions of the realized skew (rs, given by Equation (5.17)) on the risk-neutral variance

(is, given by Equation (5.12)), the upside realized variance (rsu, given by Equation (5.18)) on the

upside risk-neutral variance (isu, given by Equation (5.15)) and the downside realized variance

(rsd, given by Equation (5.18)) on the downside risk-neutral variance (isd, given by Equation

(5.15)). The t-statistics are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗ denote

the significance level of 5%, 1% and 0.1% respectively. Sample with monthly frequency ranging

from January 2010 to June 2016.

5.4.2 Factor models for risk premiums

In this part, to better understand the source of risk premiums, what extent they

are related to USO excess returns is analyzed. As previously stated, the ratio ex-

pressions given by Equations (5.9), (5.10), (5.19) and (5.20) are adopted, so that

the risk premiums can be interpreted as the excess returns of investments made on

the corresponding moment swap contracts. For example, vpd is actually the excess

return from an investment made on the downside variance swap contract, for which

the value of the floating leg is rvd and the value of the fixed leg is ivd. Therefore,

the synthetic downside variance swap vpd enables the buyer of the contract to hedge

against an increase of the downside variance. Moreover, for simplicity, the under-

lying of vpd is named the downside USO, as it is related to negative USO returns.

Similarly, the underlying of vpu is the upside USO, it is related to positive USO

returns. The same interpretation also applies to spu and spd.
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Factor models for total variance and skew risk premiums: Regarding the

total variance and skew risk premiums, the following regressions are considered

vpt = α0 + α1xm
USO
t + εαt , (5.27)

spt = β0 + β1xm
USO
t + εβt , (5.28)

where xmUSO denotes the USO monthly excess return starting on day t as defined

in Equation (5.1). The results for Equations (5.27) and (5.28) are reported in Table

5.6.

Table 5.6: Market excess returns and risk premiums
Const. xmUSO Adj. R2(%)

vp -0.314∗∗∗ -1.450∗ 10.46
(-8.01) (-2.15)

sp -1.098∗∗∗ -0.225 -1.24
(-15.84) (-0.22)

vpu -0.198∗∗∗ 2.554∗∗∗ 22.82
(-3.79) (4.56)

spu -0.908∗∗∗ 0.377∗∗ 11.66
(-84.20) (2.95)

vpd -0.366∗∗∗ -4.045∗∗∗ 38.16
(-7.66) (-4.57)

spd -0.920∗∗∗ -0.726∗∗ 19.22
(-66.13) -3.23

Note: The table shows to what extent the risk premiums, namely, the variance premium (vp, given

by Equation (5.9)), the skew premium (sp, given by Equation (5.19)), the upside variance premium

(vpu, given by Equation (5.10)), the upside skew premium (spu, given by Equation (5.20)), the

downside variance premium (vpd, given by Equation (5.10)) and the downside skew premium (spd,

given by Equation (5.20)), can be explained by the USO excess return (xmUSO, given by Equation

(5.1)). The t-statistics are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗ denote

the significance level of 5%, 1% and 0.1% respectively. The monthly observations range from

January 2010 to June 2016.

The first regression leads to a highly significant and negative coefficient for xmUSO

and R2 of 10.44%, and the coefficient’s sign is consistent with the leverage effect

implied by the negative slope of the volatility smile observed on USO options. If

the market goes down, i.e., a negative value for xmUSO, it will lead to an increase of

market volatility and thus an increase of vp. Furthermore, as the market volatility

increases, the left tail of USO distribution grows larger and will result in a volatility

smile with a steeper slope. The coefficient of xmUSO in the second regression is not
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significantly different from zero, so the relationship between xmUSO and sp cannot

be confirmed here. Note that xmUSO explains more vp than sp.

Factor models for upside variance and skew risk premiums: It is considered

whether the upside variance and skew risk premiums, which can be interpreted as

the excess return of investments made on those swap contracts, can be explained by

market excess returns. The following regressions are run

vput = α0 + α1xm
USO
t + εαt , (5.29)

sput = β0 + β1xm
USO
t + εβt , (5.30)

with the estimation results reported in Table 5.6. Regarding the regression for the

upside variance risk premium, the slope estimate is positive and highly significant

and indicates that a positive relationship exists between the USO excess return and

upside variance risk premium. Similarly, Equation (5.30) also leads to a positive and

significant coefficient for xmUSO, thus a positive relationship also exists between the

USO excess return and upside skew risk premium. Also, the R2 for Equation (5.29)

is 22.82% while it is 11.66% for Equation (5.30), indicating that xmUSO explains

more the variable vpu than spu. Moreover, before decomposition, xmUSO contributes

only to 10.44% of vp (the regression Equation (5.27)), while after decomposition,

xmUSO contributes to 22.82% of vpu. A similar remark applies to sp and spu, as

xmUSO is not correlated to the former while it explains a considerable part of the

latter.

Factor models for downside variance and skew risk premiums: Univariate

regressions of downside variance and skew risk premiums on the USO excess return

are performed

vpdt = α0 + α1xm
USO
t + εαt , (5.31)

spdt = β0 + β1xm
USO
t + εβt , (5.32)
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and the results are reported in Table 5.6. The coefficients for vpd and spd are both

negative and significant, the R2 are equal to 38.16% and 19.22% for Equations (5.31)

and (5.32), respectively. Similarly to the previous case, xmUSO explains more of vpd

than spd. In conclusion, the higher the risk premium moment order, the less xmUSO

can explain. Interestingly, xmUSO explains more vpd than vp or vpu. Likewise,

among sp, spu and spd, xmUSO explains more of spd.

5.4.3 Predictability

Predictability by upside and downside variance risk premiums: In this

part, the focus is on the role of upside and downside variance risk premiums in

predicting USO excess returns. The following regressions are considered

xmUSO
t,h = α0,h + α1,hvpt + εαt , (5.33)

xmUSO
t,h = β0,h + β1,hvp

u
t + εβt , (5.34)

xmUSO
t,h = γ0,h + γ1,hvp

d
t + εγt , (5.35)

xmUSO
t,h = δ0,h + δ1,hvp

u
t + δ2,hvp

d
t + εδt , (5.36)

where h denotes the horizon of prediction and xmUSO
t,h denotes the future USO excess

return over the horizon h that is computed as

xmUSO
t,h =

1

h

h∑
i=0

rt+i,T+i − rft+h,T+h, (5.37)

with rt,T and rft,T representing the monthly USO return, as previously defined, and

the monthly risk-free rate starting at day t and ending at time T , respectively. The

results for Equations (5.33) - (5.36) are presented in Table 5.7.

Equation (5.33) analyzes the predictability of USO excess returns by the variance

risk premium over various time horizons ranging from one week to nine months. The

regression results show that vp remains a significant predictor variable only over a
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short horizon of two weeks, with a low R2 of 6.70%.5 In contrast, Bollerslev et al.

(2009) demonstrate that variance risk premium serves as a significant predictor for

equity index returns over a forecasting horizon of six months, which is much longer

than the two-week horizon in the crude oil market, and illustrates a first difference

between the equity index market and the crude oil market. Also, the coefficient of

vp in Equation (5.33) is negative, which indicates that investors are willing to pay

a premium to hedge against the volatility of the underlying asset (i.e. the USO)

regardless of the moving direction.

Table 5.7: Market return prediction using upside and downside variance premiums
xmUSO

1w 2w 1m 2m 3m 6m 9m
1 Const. -0.035∗ -0.030 -0.022 -0.017 -0.015 -0.013 -0.013

(-2.49) (-1.91) (-1.29) (-0.89) (-0.71) (-0.59) (-0.83)
vp -0.074∗∗∗ -0.057∗ -0.032 -0.013 -0.008 0.002 0.005

(-3.33) (-2.44) (-1.34) (-0.75) (-0.42) (0.18) (0.49)
Adj. R2(%) 9.84 6.70 1.64 -0.65 -1.05 -1.38 -1.07

2 Const. 0.006 0.002 0.0007 -0.003 -0.006 -0.010 -0.012
(0.57) (0.21) (0.06) (-0.23) (-0.40) (-0.55) (-0.87)

vpu 0.083∗∗∗ 0.068∗∗∗ 0.060∗∗∗ 0.043∗∗∗ 0.029∗∗ 0.014 0.010
(5.21) (5.30) (4.84) (4.08) (2.81) (1.77) (1.24)

Adj. R2(%) 19.91 15.93 14.27 9.29 5.28 2.29 1.35
3 Const. -0.041∗∗ -0.035∗∗ -0.029∗ -0.022 -0.018 -0.015 -0.014

(-3.29) (-2.85) (-2.23) (-1.61) (-1.16) (-0.67) (-0.92)
vpd -0.089∗∗∗ -0.070∗∗∗ -0.049∗∗∗ -0.028∗∗∗ -0.018∗ -0.004 0.0002

(-4.84) (-4.33) (-3.57) (-3.88) (-2.06) (-0.75) (0.030)
Adj. R2(%) 35.56 26.73 14.53 5.46 2.48 -0.94 -1.47

4 Const. -0.023 -0.020 -0.015 -0.012 -0.012 -0.011 -0.012
(-1.90) (-1.77) (-1.38) (-1.11) (-0.87) (-0.66) (-0.96)

vpu 0.088∗∗∗ 0.071∗∗∗ 0.063∗∗∗ 0.045∗∗∗ 0.030∗∗ 0.015 0.010
(6.78) (6.06) (5.21) (4.00) (2.73) (1.82) (1.30)

vpd -0.092∗∗∗ -0.072∗∗∗ -0.051∗∗∗ -0.029∗∗∗ -0.019∗ -0.005 -0.0001
(-5.41) (-4.77) (-3.97) (-4.24) (-2.21) (-0.95) (-0.03)

Adj. R2(%) 58.67 45.16 30.56 15.62 8.18 1.47 -0.12

Note: The table shows the predictability of future USO excess returns (xmUSO) which is defined as

Equation (5.37), by using the variance premium (vp, given by Equation (5.9)) alone, and using the

upside variance premium (vpu, given by Equation (5.10)) and downside variance premium (vpd,

given by Equation (5.10)) jointly. The forecasting horizon h can be 1 week (1w), 2 weeks (2w), 1

month (1m), 2 months (2m), 3 months (3m), 6 months (6m) and 9 months (9m). The t-statistics

are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗ to denote the significance level

of 5%, 1% and 0.1% respectively. The monthly observations range from January 2010 to June

2016.

5In fact it is an adjusted R-square but the term “adjusted” is omitted hereafter.
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For comparison, Equation (5.34) investigates the predictability of USO excess re-

turns by the upside variance risk premium over various forecasting horizons. Com-

pared to vp, the predictive information of vpu remains significant over the much

longer horizon of three months. For the three-month ahead USO excess return re-

gression, vpu is only moderately significant and leads to a low R2 of 5.28%. Consid-

ering the forecasting horizon of two months, the coefficient of vpu is highly significant

with an R2 of 15.93% and suggests that vpu contains more predictive information

than vp.

Equation (5.35) investigates the predictive information of vpd for the USO excess

return xmUSO. For the two-week forecasting horizon, vpd is highly significant with

an R2 of 26.73%, thus vpd is the most informative variable among vp, vpu and vpd.

Moreover, the longest forecastable horizon for vpd is three months, even though vpd

is lowly significant in that case (i.e. the t-statistic is at a significance level of 5%).

The results of univariate regressions from the previous parts show that among the

total and decomposed variance risk premiums, the latter, and especially vpd, work

better as predictor variables, in terms of forecasting horizons and level of signifi-

cance, and generally vpd contributes a little more to explain the future USO excess

returns than vpu. The joint predictive information of vpu and vpd for USO excess re-

turns in Equation (5.36) is further analyzed. Compared to the univariate regressions,

the R2 increases for all forecasting horizons, which underlines the complementary

contributions of vpu and vpd. Naturally, the R2 decreases from 58.67% to 8.18%

when the forecasting horizon increases from one week to three months, where for

the three-month horizon vpu is only moderately significant while vpd is lowly signif-

icant. For the two-week ahead USO excess return, vpu and vpd jointly contribute

to explain 45.16% of xmUSO, with both coefficients highly significant. In summary,

it is statistically important to include upside and downside variance premiums to

better predict future USO returns.

Predictability by upside and downside skew risk premiums: In this part,

similar analysis is carried out for the predictability of USO excess returns by upside
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and downside skew risk premiums and a comparison is performed when the total

skew risk premium is used. The following regressions are run

xmUSO
t,h = α0,h + α1,hspt + εαt , (5.38)

xmUSO
t,h = β0,h + β1,hsp

u
t + εβt , (5.39)

xmUSO
t,h = γ0,h + γ1,hsp

d
t + εγt , (5.40)

xmUSO
t,h = δ0,h + δ1,hsp

u
t + δ2,hsp

d
t + εδt , (5.41)

and the results are reported in Table 5.8.

Table 5.8: Market return prediction using upside and downside skew premiums
xmUSO

1w 2w 1m 2m 3m 6m 9m
1 Const. -0.010 -0.009 -0.007 -0.010 -0.007 -0.011 -0.013

(-0.56) (-0.57) (-0.48) (-0.67) (-0.40) (-0.45) (-0.85)
sp 0.002 0.003 0.005 0.002 0.005 0.002 0.001

(0.15) (0.22) (0.54) (0.42) (1.55) (0.79) (0.39)
Adj. R2(%) -1.28 -1.24 -1.02 -1.25 -0.82 -1.22 -1.43

2 Const. 0.281∗∗∗ 0.257∗∗∗ 0.251∗∗∗ 0.192∗∗∗ 0.127∗ 0.053 0.043
(4.27) (4.75) (4.71) (3.98) (2.42) (1.47) (1.23)

spu 0.321∗∗∗ 0.296∗∗∗ 0.290∗∗∗ 0.224∗∗∗ 0.153∗ 0.072 0.063
(4.13) (4.59) (4.56) (3.87) (2.46) (1.38) (1.24)

Adj. R2(%) 11.54 12.09 13.45 10.35 6.06 2.50 3.07
3 Const. -0.265∗∗ -0.222∗∗ -0.164∗∗ -0.091∗∗∗ -0.060∗ -0.015 -0.007

(-2.94) (-2.79) (-2.61) (-3.33) (-2.34) (-0.74) (-0.48)
spd -0.277∗∗ -0.229∗∗ -0.165∗∗ -0.086∗∗∗ -0.051∗ -0.002 0.008

(-2.97) (-2.81) (-2.63) (-3.46) (-2.40) (-0.10) (0.48)
Adj. R2(%) 20.95 17.46 9.91 2.67 0.61 -1.40 -1.29

4 Const. 0.063 0.074 0.114 0.115∗ 0.079 0.046 0.044
(0.65) (0.86) (1.49) (2.16) (1.53) (1.14) (1.22)

spu 0.403∗∗∗ 0.365∗∗∗ 0.341∗∗∗ 0.253∗∗∗ 0.171∗ 0.075 0.062
(5.14) (5.12) (4.79) (3.98) (2.52) (1.50) (1.43)

spd -0.321∗∗∗ -0.269∗∗ -0.203∗∗ -0.114∗∗∗ -0.070∗∗ -0.010 0.002
(-3.32) (-3.21) (-3.19) (-4.16) (-3.08) (-0.66) 0.11

Adj. R2(%) 39.83 36.41 28.91 16.03 8.32 1.27 1.63

Note: The table shows the predictability of future USO excess returns (xmUSO) which is defined

as Equation (5.37), by using the variance premium (sp, given by Equation (5.19)) alone, and using

the upside variance premium (spu, given by Equation (5.20)) and downside variance premium (spd,

given by Equation (5.20)) jointly. The forecasting horizon h can be 1 week (1w), 2 weeks (2w), 1

month (1m), 2 months (2m), 3 months (3m), 6 months (6m) and 9 months (9m). The t-statistics

are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗ denote the significance level of

5%, 1% and 0.1% respectively. The monthly observations range from January 2010 to June 2016.

Equation (5.38) focuses on the predictability of USO excess returns by the total
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skew risk premium (sp) over horizons ranging from one week to nine months. The

results show that sp does not contain any predictive information about xmUSO, as

the coefficients are insignificant and the R2 are low for all horizons. In contrast, as

previously shown, the total variance risk premium (vp) contains significant predictive

information regarding xmUSO for a forecasting horizon of up to two weeks.

Equation (5.39) investigates the predictive information for xmUSO contained in the

upside skew risk premium (spu) over the same forecasting horizons. The coefficient of

spu remains significant up to an horizon of three months, even though the significance

level at three months is only at 5%. Unlike sp, spu contains predictive information

for xmUSO as suggested by both the significant coefficients and the R2. Moreover,

spu is positively correlated with future USO excess returns as the coefficients of spu

remain positive for all horizons. Note that the intercept term is also significant for

up to three months.

For comparison, Equation (5.40) analyzes the predictive information for xmUSO

contained in the downside skew risk premium (spd). Similarly to the case of spu,

both the intercept and slope of spd remain significant for up to three months but

note that the R2 only remain decent, that is to say above 10%, for horizons up to

one month. Here also, the constant terms remain significant and of constant sign

for forecasting horizons less than or equal to three months. The negative sign of spd

shows that spd is negatively correlated to xmUSO.

Equation (5.41) further analyzes the joint predictive information of spu and spd for

xmUSO. Firstly, both spu and spd remain significant up to three months, with a high

degree of significance for shorter horizons. Compared to the univariate regressions

on spu and spd, for all the horizons, the R2 is much higher and larger than the sum

of the R2 of the univariate regressions. This suggests that these variables not only

do not have redundant information but, indeed, have complementary information.

The constant terms that were significant in the univariate regressions are no longer

significant (except for the two-month regression). Lastly, the coefficient signs are

consistent with those of the univariate regressions. Again, decomposed skew risk
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premiums have a much stronger predictive power for USO excess returns than the

(undecomposed) skew risk premium.

Predictability by combining upside and downside risk premiums: The

previous two parts demonstrate the advantage of decomposing variance and skew

risk premiums. In this part, the impact of this decomposition is further explored by

considering the predictability of USO excess returns by combining upside variance

and skew risk premiums as explanatory variables on the one hand and downside

variance and skew risk premiums as explanatory variables on the other. Lastly,

also considered are the combination of upside and downside variance and skew risk

premiums. For simplicity, the total higher moment risk premiums are used to refer

to the total variance risk premium and the total skew risk premium. Similarly, the

upside (downside) higher moment risk premiums are used to refer to the upside

(downside) variance risk premium and the upside (downside) skew risk premium.

The following regressions are run

xmUSO
t,h = α0,h + α1,hvpt + α1,hspt + εαt , (5.42)

xmUSO
t,h = β0,h + β1,hvp

u
t + β2,hsp

u
t + εβt , (5.43)

xmUSO
t,h = γ0,h + γ1,hvp

d
t + γ2,hsp

d
t + εγt , (5.44)

xmUSO
t,h = δ0,h + δ1,hvp

u
t + δ1,hvp

d
t + δ1,hsp

u
t + δ1,hsp

d
t + εδt , (5.45)

and the results reported in Table 5.9.

Equation (5.42) shows that total higher moment risk premiums can forecast USO

excess returns only for a horizon of two weeks as beyond that horizon the R2 is

close to zero and only the variance variable is significant. In sharp contrast, upside

high moment risk premiums, given by Equation (5.43), and downside high moment

risk premiums, given by Equation (5.44), lead to a forecast of USO excess returns

for up to two months, thus confirming the interest of decomposition for forecasting.

For the upside higher moment risk premiums the variance seems to contain all the

information as it is the only significant variable and, as a result, the R2 obtained for
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these regressions are close to those obtained when only the upside variance variable

is used. For the do-

Table 5.9: Market return prediction using upside and downside variance and skew
premiums

xmUSO

1w 2w 1m 2m 3m 6m 9m
1 Const. -0.050∗∗ -0.040∗ -0.023 -0.017 -0.009 -0.010 -0.010

(-2.84) (-2.08) (-1.19) (-0.79) (-0.37) (-0.39) (-0.78)
vp -0.082∗∗∗ -0.062∗∗ -0.032 -0.013 -0.005 0.003 0.006

(-3.73) (-2.63) (-1.37) (-0.73) (-0.24) (0.35) (0.53)
sp -0.012 -0.008 -0.0004 0.00005 0.004 0.003 0.002

(-1.17) (-0.82) (-0.05) (0.01) (0.87) (0.85) (0.70)
Adj. R2(%) 9.64 5.98 0.32 2.01 -2.10 -2.55 -2.37

2 Const. -0.226 -0.026 0.100 0.144 0.099 0.032 0.074
(-1.60) (-0.19) (0.70) (0.97) (0.64) (0.26) (0.82)

vpu 0.132∗∗∗ 0.074∗ 0.039 0.012 0.007 0.005 -0.008
(3.70) (2.18) (1.12) (0.35) (0.20) (0.19) (-0.40)

spu -0.267 -0.033 0.114 0.169 0.121 0.048 0.098
(-1.64) (0.84) (0.68) (0.94) (0.63) (0.30) (0.84)

Adj. R2(%) 20.54 14.84 13.57 9.31 4.85 1.20 1.96
3 Const. 0.251∗∗ 0.129 0.061 0.077 0.066 0.062 0.029

(2.88) (1.45) (0.68) (0.78) (0.58) (0.70) (0.63)
vpd -0.169∗∗∗ -0.115∗∗∗ -0.073∗ -0.055 -0.041 -0.025 -0.012

(-6.06) (-4.12) (-2.42) (-1.64) (-1.03) (-0.83) (-0.76)
spd 0.349∗∗∗ 0.196 0.107 0.118 0.101 0.091 0.052

(3.30) (1.79) (0.94) (0.92) (0.68) (0.75) (0.96)
Adj. R2(%) 40.03 27.83 14.09 5.31 2.28 -0.21 -1.87

4 Const. 0.270 0.306 0.307 0.324 0.239 0.120 0.119
(1.65) (1.76) (1.67) (1.51) (0.89) (0.70) (1.42)

vpu 0.070∗ 0.025 0.004 -0.012 -0.010 -0.0003 -0.010
(2.43) (0.83) (0.13) (-0.32) (-0.25) (-0.01) (-0.59)

vpd -0.155∗∗∗ -0.108∗∗∗ -0.070∗ -0.055 -0.041 -0.024 -0.013
(-5.30) (-3.62) (-2.25) (-1.72) (-0.99) (-0.94) (-0.84)

spu 0.077 0.245 0.317 0.304 0.213 0.075 0.107
(0.57) (1.59) (1.76) (1.58) (1.03) (0.56) (1.23)

spd 0.270∗ 0.137 0.057 0.087 0.081 0.080 0.046
(2.18) (1.11) (0.49) (0.75) (0.56) (0.80) (0.91)

Adj. R2(%) 60.85 46.26 32.07 17.60 8.74 0.91 -0.02

Note: The table compares the predictability of future USO excess returns (xmUSO) which is defined

as Equation (5.37), by dividing the risk premiums into two groups: the upside variance and skew

premiums and the downside variance and skew premiums. The forecasting horizon h can be 1

week (1w), 2 weeks (2w), 1 month (1m), 2 months (2m), 3 months (3m), 6 months (6m) and 9

months (9m). The t-statistics are computed according to Newey and West (1987). ∗, ∗∗ and ∗ ∗ ∗
denote the significance level of 5%, 1% and 0.1% respectively. The monthly observations range

from January 2010 to June 2016.

wnside higher moment risk premiums and for short horizons, both the variance and

skew are significant, and in that case the R2 is higher than those obtained when
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regressing on the downside variance alone (i.e. Equation (5.35)) or the downside

skew alone (i.e. Equation (5.40)), whereas for longer horizons the variance is the

only significant variable with the natural consequence that the R2 in those cases are

close to those obtained when regressing on the variance alone. Lastly, in Equation

(5.45), all the variables are considered, which leads to regressions with very large

R2 for up to two months and among all the variables vpd seems to be the most

important. The coefficients’ signs are consistent with those obtained in the previous

regressions. Note also that there is a complementary effect between upside and

downside variables as the R2 in a given regression involving these variables largely

dominates those obtained when only upside or downside variables are used and

further confirms, if need be, the interest of the decomposition proposed in this

work.

5.5 Conclusion

In this chapter, we provide a comprehensive analysis of the total and decomposed

variance and skew risk premiums for the USO, an exchange traded fund tracking the

daily price changes of the WTI light sweet crude oil. So far, most of the literature

mainly discusses the use of decomposed variance risk premiums for the S&P 500

option market. This chapter contributes to the literature by extending the analysis

of decomposed variance risk premiums to the crude oil market, but also extends

the discussion to skew risk premiums. To build these variables two key works are

relied upon: the decomposition proposed by Kilic and Shaliastovich (2015) for the

variance risk premium, and the computation methodology for variance and skew

risk premiums developed by Kozhan et al. (2013).

Three main findings are found: firstly, all the risk premiums, no matter whether

they are decomposed or not, are time varying; secondly, if one factor model is ap-

plied to the total, upside and downside variance and skew risk premiums with the

USO excess returns as explanatory variable, it is found that this better explains
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the decomposed higher moment risk premiums (both variance and skew) than their

total counterparts; thirdly, by analyzing the predictability of crude oil market excess

returns by decomposed variance and skew risk premiums, it is found that the decom-

posed high moment risk premiums contain much more predictive information than

their undecomposed counterparts. The downside higher moment risk premiums, the

variance and to a lesser extent the skewness, are especially informative about future

evolutions of the crude oil market excess return.

It would be interesting to fully explore how the decomposed risk premiums com-

bine with observable economic variables commonly used in the literature, see for

example Chevallier and Sévi (2013), for analyzing the crude oil market. Also, other

commodity markets such as gas and gold option markets could be considered along

with commodity volatility option markets. These open questions are left for further

research.
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5.6 Appendix

Proof. of decomposition of risk-neutral variance and skew. Following Bakshi et al. (2003), any

twice-continuously differentiable function H(S) where S is spot price of the underlying can be

spanned by a position in bonds, stocks and out-of-money options

H(S) = H(S̄) + (S − S̄)HS(S̄) +

∫ ∞
S̄

HSS(K)(S −K)+dK +

∫ S̄

0

HSS(K)(K − S)+dK.

Under risk-neutral measure Q, the arbitrage-free price of the contingent claim with payoff H(S) is

EQ[e−rf (T−t)H(S)] =
(
H(S̄)− S̄HS(S̄)

)
e−rf (T−t) +HS(S̄)St

+

∫ ∞
S̄

HSS(K)C(t, T ;K)dK +

∫ S̄

0

HSS(K)P (t, T ;K)dK. (5.46)

Specifically, Kozhan et al. (2013) define the payoff function for the variance swap contract as

gv(r(S)) = 2 (er − 1− r), with r(S) = ln S
St

. Referring to Equation (5.46), S̄ = S(t) is set. Under

the risk-neutral measure Q, value of the payoff function is

EQ[H(S)] =
1

Bt,T

∫ +∞

St

2

K2
Ct,T (K)dK +

1

Bt,T

∫ St

0

2

K2
Pt,T (K)dK. (5.47)

where Bt,T is the time-t price of zero-coupon bond with maturity T .

Based on the previous work, the payoff function for the upside variance swap contract is defined

as

Hu(S) =

g
v(r(S)), if S > St,

0, otherwise.

(5.48)

The first order derivative of Hu(S) is

Hu
S(S) =

2
(

1
St
− 1

S

)
, if S > St,

0, otherwise,

where Hu
S(S) is continuous but not differentiable at S = St.
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The second order derivative of Hu(S) is

Hu
SS(S) =


2
S2 , if S > St,

0, otherwise,

where Hu
SS(S) is not continuous at S̄ = St, but it is continuous on (−∞, St) and (St,∞) separately.

Even though Hu(S) is not twice-continuously differentiable at S = St, it is well defined and the

discontinuity will not result in an infinite integral. Therefore, for the upside variance swap, the

expected value of the payoff function under risk-neutral measure Q is

EQ[Hu(S)] =
1

Bt,T

∫ +∞

St

2

K2
Ct,T (K)dK. (5.49)

Likewise, if the payoff function for the downside variance swap contract is defined as

Hd(S) =

0, if S > St,

gv(r(S)), otherwise,

(5.50)

by taking the second derivative of Hd(S), the expected value of the payoff function is obtained

under risk-neutral measure Q

EQ[Hd(S)] =
1

Bt,T

∫ St

0

2

K2
Pt,T (K)dK. (5.51)

Considering Equation (5.47),

EQ[H(S)] = EQ[Hu(S)] + EQ[Hd(S)] (5.52)

is obtained.

Equation (5.52) demonstrates that the risk-neutral variance can be decomposed into upside and

downside risk-neutral variance, respectively, with the former constructed upon a continuum of

out-of-money calls and the latter constructed upon a continuum of out-of-money puts.

As to the decomposition of risk-neutral skew, the same methodology applies. The payoff function

for the upside and downside skew swap is defined as

Hu(S) =

g
s(r(S)), if S > St,

0, otherwise.

(5.53)
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and

Hd(S) =

0, if S > St,

−gs(r(S)), otherwise.

(5.54)

By utilizing Equation (5.46), under risk-neutral measure Q, the expected value for Hu(S) and

Hd(S) can be expressed by a continuum of out-of-money calls and puts, respectively

EQ[Hu(S)] =
6

Bt,T

∫ ∞
St

K − St
K2St

Ct,T (K)dK,

EQ[Hd(S)] =
6

Bt,T

∫ St

0

St −K
K2St

Pt,T (K)dK.

(5.55)

Therefore, for skew swap contract, the following applies

EQ[H(S)] = EQ[Hu(S)]− EQ[Hd(S)]. (5.56)
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Chapter 6

Concluding Remarks

The purpose of this thesis is to add to the understanding of the options market

by focusing on three specific new option types. The thesis mainly concentrates on

options written on LETFs, on the VIX and on the USO.

Chapter 2 provides an overview of the options markets. Firstly, LETFs and their

options market are discussed, on which limited research has been carried out. Most

of the studies focus on the dynamics of LETFs, while literature on LETF options

is quite rare. Secondly, the specifics of volatility products are explained compared

to the traditional assets such as equity. In Chapters 3 and 4, volatility options are

analyzed.

In Chapter 3, a pricing framework is first developed for options on LETFs tracking

S&P 500 by adopting the Heston (1993) stochastic volatility model and following

the work of Zhang (2010). A calibration experiment is performed using different sets

of options written on equity LETFs and the results are compared to assess whether

they contain consistent information regarding the underlying dynamics. A pricing

framework for options on volatility LETFs is developed based upon the work of

Bao et al. (2012). Lastly, how to incorporate jump risk into the stochastic volatility

models is shown and how option prices can be computed within this extended model,

which has not been carried out in previous research. All the results contribute to a

121



Chapter 6. Concluding Remarks

better understanding of the LETF option market.

Chapter 4 investigates the higher-order moment risk premiums for the volatility

market. This chapter contributes to the literature in two aspects. Firstly, it extends

the current literature by also considering the third order moment risk premium, as

most of the research performed so far only analyzes the variance risk premium. The

results rely heavily on the methodology proposed in Kozhan et al. (2013). Secondly,

this chapter is the first to analyze higher moment risk premiums for the volatility

market. This is very important as volatility-related products are now actively traded.

The empirical findings for the volatility market are different from those of Kozhan

et al. (2013), through using the equity index market, and confirm the specifics of

the volatility market and the novelty of the results.

Chapter 5 extends the study of higher moment risk premiums to the crude oil mar-

ket. Moreover, the risk premiums are further decomposed into upside and downside

components conditional on the direction of market movement. It is one of the few

works in this fast growing field. The decomposed variance and skew risk premiums

are found to be more informative than their undecomposed counterparts in predict-

ing future market returns. Especially for skew risk premiums, the decomposition

extracts much more information.

This research leads to a few strands of future research. First, how do those higher

moment risk premiums relate to each other? Can these risk premiums be decom-

posed into idiosyncratic components and a common component and their informa-

tion content analyzed? With respect to the decomposed risk premiums performed

in Chapter 5, one further research question is how they depend on the business cycle

and, more precisely, to what extent does the explanatory power of these decomposed

risk premiums depend on the business cycle.
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