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Consumption and Foraging Behaviors for Common Stimulants
(Nicotine, Caffeine)

James G. Phillipsa, Jonathan Curriea, and RowanQ1 P. Ogeilb

aAuckland University of Technology, Auckland, New ZealandQ2 ; bEastern Health Clinical School, Monash University and Turning Point

Q3
5 Models are needed to understand the emerging capability to track consumers’ movements.

Therefore, we examined the use of legal and readily available stimulants that vary in their addictive
potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological
Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the
number of times and locations stimulants were purchased and used. On average, nicotine

10 dependent individuals made their purchases from 2 locations, while caffeine dependent individuals
consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use.
Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency.
The finding has implications for attempts to control substance use.Q5
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Highlights

15 � Stimulant foraging can be explained by power
laws, and is greater in dependent users.

� Nicotine dependent individuals purchase nico-
tine from an average of two locations.

� Caffeine dependent individuals consume caffeine
20 at an average of two locations.

Q6

Introduction

The use of psychoactive substances can lead to
increased involvement, preoccupation with the sub-
stance, and dependence.1 Attempts to control the

25 availability of psychoactive substances may be chal-
lenged by the increased appetitive behaviors of heavier
users.2 The tracking of patterns of substance use was
only possible under specific circumstances, for exam-
ple when documented by overdose.3 However, this

30 may change as emerging technologies (e.g., Google’s
“Your Timeline”) have the potential to track and
record people’s purchases,4,5 or their locations.6,7

Hence, the present article sought methods of under-
standing the behavior of substance users, by consider-

35 ing the purchase and consumption of two legally
available stimulants (nicotine and caffeine).

Nicotine is a widely used stimulant.8 Regular smok-
ing is associated with dependence and long-term
health problems,9 and restrictions are placed on nico-

40tine use by specific groups (e.g., minors). In contrast,
few formal constraints are placed upon the use of caf-
feine. Caffeine is also used as a cognitive enhancer,
but it has less addictive potential.10,11 Moderate con-
sumption of caffeine is not associated with long-term

45adverse health effects.12 However, dosages and pat-
terns of caffeine use have changed over the last
15�20 years,13 and a dependence syndrome has been
documented.14 DSM5 indicates that caffeine warrants
further study.15

50Simple central place foraging

Studies of animal foraging behavior may offer conve-
nient models to assist in the understanding of the
ways in which substances might be acquired by
users.16 The simplest (Central Place) model of forag-

55ing would propose that substance users commence
their search for resources from a home base or some
other familiar place.16 For example, there are relation-
ships between the density of outlets licenced to sell
alcohol, and engagement in risky patterns of alcohol

60consumption (e.g., “bingeing”),17 dependence,18 and
increased levels of crime.19 If the locations where
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substances are available are fixed and known, then a
substance user can systematically check them until the
desired substance is obtained. In this case, the number

65 of times a substance is purchased would be directly
linearly proportional to the number of locations at
which a user purchases substances.

Random brownian motion

However, recent research has suggested that relation-
70 ships between spatial density of substance providers

and harm are not linear in nature. These relationships
depend on a variety of factors, such as individual
drinking patterns and preferences, and social and
structural characteristics such as access to transport.20

75 Where conditions are more uncertain, researchers
have applied alternative models of foraging behav-
ior.21,22 If resources are randomly available and access
is influenced by a multiplicity of factors, foraging
would likely involve a more random search pattern.

80 Random motions that have a probabilistic element are
called Brownian motions. A search with a probabilistic
element would fit the number of purchases and loca-
tions onto exponential functions that are linear on sin-
gle log plots.21,23

85 However, there are other factors, such as depen-
dence, that may also influence appetitive behaviors.1

Phillips and Ogeil24 asked people the numbers of
times and places at which they consumed alcohol and
gambled. People were asked about visits to a specific

90 venue, and visits to other venues. Problem gamblers
or problem drinkers were found to visit a specific
venue more often,24 but problem drinkers and prob-
lem gamblers had an extended range, as they also
reported that they visited other venues more often.24

95 L�evy Walk

Simulations and studies of animal foraging behavior
suggest that random Brownian motion may suffice
when resources are plentiful, but that other forms of
search may become necessary if resources are

100 scarce.23,25 Where resources are scarce, a form of for-
aging called a L�evy walk may be more efficient. During
a L�evy walk foragers typically search within an area,
but their movements are super-diffusive as they occa-
sionally perform larger movements to extend their

105 range so that they no longer cover the same ground.26

In humans this has been likened to the decision as to
whether to exploit “here” or explore “there.”27

However, these behaviors may not actually arise from
conscious consideration as similar search patterns also

110occur in lower organisms.28 Simulations suggest that
L�evy walk foraging tends to reduce periods of fam-
ine.29 As both resource availability and trip length
have probabilistic elements, L�evy walk foraging would
fit the numbers of purchases and locations onto power

115laws that are linear on double log plots.16,21,23

The foraging of substance users is relevant to: (1)
governments and legislators who may wish to restrict
access to a substance,30 and (2) the development of
reminder technologies31�33 to provide outpatient sup-

120port for people seeking to reduce the amounts that
they drink or gamble.34 While previous studies have
estimated visits to relatively fixed sites of consump-
tion,24 it is also important to determine patterns of
purchase and consumption occurring for more readily

125accessible products, such as nicotine and caffeine, that
are associated with substance dependency.

To obtain an estimate of frequency of foraging, the
present article uses the self-reported number of times
and locations per day that consumption occurred, and

130examined the numbers of times and locations per
week that purchases were made. Although these are
not the raw frequencies of trips used by other
researchers,23 the temporal contiguity of events can be
used as an estimator of event frequency.35 Therefore,

135the consideration of times/locations per day/week
would be homologous when converted into probabil-
ity density functions.35 A comparison of two stimu-
lants with varying addictive potential, and different
constraints upon access will then provide insights into

140patterns of use and appropriate models explaining
stimulant foraging (Simple Central Place, Random
Brownian Motion, or L�evy Walks).

Methods

Participants

145There were 166 participants (74 males, 92 females)
with a mean age of 28.43 years (standard deviation
9.99 years). The majority of the sample (69.9%) had
some form of employment, and 51.2% reported
undertaking some form of study. Most participants

150had some level of post-secondary school education,
with 14.5% having a trade or apprenticeship, and 57%
having an undergraduate or postgraduate university
qualification. After reading an explanatory statement,
participants completed an online survey approved by
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155 institutional ethics committees. The survey was avail-
able for 3 months. It was hosted on SurveyMonkey
and posted on Australian (My Monash; Whirlpool
Forum) and international (Reddit) online bulletin
boards.

160 Materials

Participants were asked the typical number of times
and places each: (1) day they used nicotine and caf-
feine; and (2) week they purchased nicotine and caf-
feine. Guidelines as to caffeine content were provided

165 to assist participants in estimating their daily dose of
caffeine in milligrams. As the number of instruments
devoted to caffeine is limited, the Severity of Depen-
dence Scale (SDS)36 was adapted for use with caffeine
(obtained Cronbach’s alpha D .83). For comparison

170 purposes the same scale was used for nicotine
(obtained Cronbach’s alpha D .94). A cutoff of “4” on
this scale is commonly used to separate “non-depen-
dent” from “dependent” substance users.37,38 Only 12
respondents were dependent upon both caffeine and

175 nicotine. As an index of psychological distress, partici-
pants were also asked to complete the K10.39

Results

Participants that reported dependence upon nicotine
(SDS D 7.08, SEQ8 D .38) smoked significantly more

180 times a day (t(164) D 11.574, p < .001, h2 D .45) than
participants that were not dependent upon nicotine
(SDS D .21, SE D .06). Nicotine dependent individuals
also smoked in significantly more places (t(164) D
13.502, p < .001, h2 D .53) and purchased nicotine in

185 significantly more places (t(164) D 10.607, p < .001,
h2 D .41) at more times (t(164) D 12.995, h2 D .51;
see Table 1). Nicotine dependence as measured by the
SDS was associated with higher levels of psychological

distress as measured by the K10 (r(164) D .248, p <

190.001).
Participants that reported a dependence upon caf-

feine (SDS D 6.24, SE D 0.32) had a significantly (t
(164) D 3.201, p < .01, h2 D .06) higher estimated
dose of caffeine (405 mg SE D 32) than the estimated

195dose (283 mg SE D 21) of those that were not depen-
dent upon caffeine (SDS D 0.98, SE D 0.09). Caffeine
dependent individuals reported consuming caffeine at
significantly more times (t(164) D 2.805, p < .05, h2

D .07) and places (t(164) D 3.673, p < .001, h2 D .08)
200than those that were not caffeine dependent (see

Table 1). Caffeine dependent individuals purchased
caffeine in significantly more places (t(164) D 3.096,
p < .01, h2 D .06) and more times (t(164) D 2,805, p
< .01, h2 D .05). Caffeine dependence was associated

205with higher levels of psychological distress (r(164) D
.307, p < .001).

Simple, Brownian, and L�evy Walk models of forag-
ing behavior were then applied to the patterns of for-
aging behavior, by testing whether the overall data

210were best fit by a linear, exponential function or power
law. Whereas a simple linear model could explain
between 12.6 and 73.5% of the variance, and an expo-
nential model explained between 13.4 and 73.6% of
the variance, a power law explained between 31.9 and

21588.9% of the variance. Power laws always provided the
best fit to spatio-temporal patterns of stimulant pur-
chase and use.

Lines of best fit for power laws describing the times
that stimulants were used (per day) or purchased (per

220week) may be see in Table 2. Although good fits were
obtained for nicotine data, the better fit was obtained
for daily use. Fits were not as good for the caffeine
data, with the better fit occurring for caffeine weekly
purchases.

225To visualize foraging behavior Figure 1 presents scat-
ter plots and lines of best fit for daily smoking and
weekly caffeine purchases. Although the overall sample
used nicotine on average about four times a day in
around one location, some individuals demonstrated a

230greater range and intensity of use. The use of caffeine
seemed somewhat more uniform. Again the overall sam-
ple exhibited somewhat restricted caffeine purchasing
behavior (about two times per week from around four
places) but there were still some individuals that demon-

235strated a greater range and intensity of purchasing.
To understand the foraging patterns of stimulant

users, a power law was then fitted separately to

Table 1. Mean number of times and places per day that a stimu-
lant is used and the number of locations and times that a stimu-
lant is purchased per week (standard errors in brackets).

Nicotine Caffeine

Non-dept Times used Places used Times used Places used
.70 (.27) .23 (.07) 2.41 (.21) 1.64 (.09)
Times bought Places bought Times bought Places bought
.15 (.04) .15 (.05) 1.66 (.12) 3.43 (.32)

Dependent Times used Places used Times used Places used
11.87 (1.35)aa 3.00 (.28)aa 3.68 (.28)aa 2.21 (.12)aa

Times bought Places bought Times bought Places bought
1.46 (.12)aa 2.34 (.30)aa 2.43 (.31)aa 5.78 (.90)aa

aSignificantly different from non-dependent.
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consumption patterns of the nicotine dependent and
caffeine dependent individuals (see Table 2). For each

240 group significant fits were obtained. The greater inter-
cept for dependent stimulant users indicate a greater
base rate of substance use. The shallower slopes for
dependent stimulant users indicate that substance use
and purchase are occurring over a greater range of

245 locations.

Discussion

The present study examined common stimulants, and
applied models of foraging behavior to their patterns
of use. As frequency of consumption (or purchasing)

250 increased, the range of locations where stimulants
were consumed (or purchased) increased, but the best
fit to these relationships was not linear. A power law
best describes the foraging behavior of common stim-
ulant users. For most individuals, stimulant use and

255 purchase is limited to a couple of locations, but some
individuals make appreciably greater access to stimu-
lants over a wider number of locations. Such relation-
ships are seemingly stronger for the stimulant with
the greater addictive potential (nicotine). In addition,

260 dependent users of stimulants appear to engage in

greater consumption over a larger range of locations.
However, even dependent users of legally available
stimulants seem to purchase these stimulants on aver-
age at a relatively limited number of times (i.e., nico-

265tine) or consume them at a limited number of
locations (i.e., caffeine).

As a power law provides the better fit to data, this
implies that L�evy Walks might better explain stimu-
lant foraging behavior than Simple Central Place or

270Random Brownian motion. Even though much stimu-
lant use might be close to a habitual location, some
users demonstrate a greater range. The tendency to
travel further, and/or access from more sources has
implications for governments or legislators attempting

275to restrict access,40�42 as even one site providing sub-
stances to minors can increase purchasability and
access in a neighbourhood.30 Not only are dependent
substances users likely to pay more,2 the present data
suggest that they probably access more locations as

280well,24 and this poses potential problems for attempts
to restrict access.

With increasing dependence upon a stimulant, the
number of times or locations at which a stimulant is
purchased or consumed increases, and similar pat-

285terns have been observed for alcohol.18 This might

Table 2. Lines of best fit for power laws describing use and purchase of stimulants (times and places are natural log transformed C1),
for complete sample, dependent, and non-dependent stimulant users (Adjusted r2 in brackets).

Complete Sample Non-Dependent Dependent

Nicotine (daily use) Y D 1.673X C .026 (R2 D .89) Y D 1.593X � .003 (R2 D .90) Y D 1.195X C .739 (R2 D .40)
Nicotine (weekly purchases) Y D .712X C .051 (R2 D .86) Y D .882X C .015 (R2 D .87) Y D .457X C .369 (R2 D .59)
Caffeine (daily use) Y D .350X C .184 (R2 D .32) Y D .339X C .169 (R2 D .32) Y D .185X C .428 (R2 D .06)
Caffeine (weekly purchases) Y D .505X C .275 (R2 D .66) Y D .505X C .258 (R2 D .64) Y D .485X C .344 (R2 D .65)

Figure 1. Scatter plots of best fitting power law for nicotine consumption per day, and best fitting power law for caffeine purchases per
week.

4 J. G. PHILLIPS ET AL.



arise from: tolerance, destructive foraging, scarcity, or
stimulant use. With increasing tolerance there is a
need to increase the size and frequency of dosage, and
this might contribute to the number of sites where

290 stimulants are purchased.43 However, studies of forag-
ing suggest that an organism might also increase its
range because their behavior creates a scarcity of
resources due to destructive foraging,26 exhausting a
site’s resources or in other ways preventing subse-

295 quent use. Conceivably the problem behaviors exhib-
ited by gamblers or drinkers increase the likelihood
that they be temporarily barred from a specific venue,
but this is less likely for smokers or consumers of caf-
feine. Possibly greater consumption could lead to scar-

300 city. As dependent individuals consume more, they
risk exhausting their supplies and are thus required to
extend their range.22,44 Extending search patterns has
been suggested to reduce the likelihood of scarcity or
famine,29 but this seems unlikely for such readily

305 available stimulants. Indeed it is also possible that the
use of stimulants may actually encourage a range of
foraging behaviors,44 and there is experimental evi-
dence to support such observations.43,45

Implications

310 These power laws provide a method of quantifying a
cohorts’ foraging behaviors that is sensitive to depen-
dency and addictive potential. The power laws of
dependent users exhibited: (1) higher intercepts, indi-
cating greater consumption; (2) shallower slopes, indi-

315 cating that substance use occurs across a greater range
of locations. Greater addictive potential seems to be
associated with greater use per location. It is likely
that dependent users of illegal stimulants would make
a greater use of the more restricted number of sites

320 where purchases are available. Hence, greater inter-
cepts and steeper slopes would be expected to any
power laws applied to the foraging of those dependent
on illegal stimulants.

The present data are relevant to the development of
325 technologies messaging clients and reminding them of

their goal to reduce or abstain.33,34,46�48 Such technol-
ogies enable therapists to provide out-patient support,
allowing interventions to be delivered “on site” in
“real time,”6,31,32 with programs messaging addicted

330 clients and reminding them as to their goal to reduce
or abstain. The present data would be relevant to the

development of interventions that might be more spa-
tially and temporally contingent upon risk.

The movements of smart phone users can be esti-
335mated from their mobile phone calls.49 For each call,

the closest mobile phone tower can be used as an indi-
cator of the phone user’s location, hence resolution is
a function of tower density. From such data, Gonz�alez
et al.49 noted that humans have a predictable range,

340typically spending the majority of their time in two
locations (e.g., home and work), with temporal perio-
dicities corresponding to a 24-hour cycle.

The present consideration of readily available sub-
stances offers insights as to the practical limits that

345might be required for systems that seek to provide
outpatient support for dependent substance
users.31�33 While there might be 306,695 tobacco out-
lets in the United States,50 given people’s movements
are relatively predictable,51,52 it could be feasible for

350apps to operate on the more limited number of venues
and times that users and therapists can jointly nomi-
nate, and that might be more meaningfully associated
with points of risk in their life space (e.g., Google’s
“Your Timeline”). Such subscription systems could

355message and interrupt users at times or locations
when they indicate that they tend to be more vulnera-
ble, and disrupt habitual behavior patterns. The
greater range of locations frequented by dependent
users would have implications for the upper limits

360required for such systems.

Limitations

Although an online survey was employed, online sur-
veys may actually canvas a wider section of the com-
munity.53 Indeed, the methodology suggested is

365appropriate as it samples the population of technology
users that would be likely to adopt such apps.54,55

Most substance users possess mobile phones,56

although there are indications that such populations
may be concerned about their privacy.56,57

370The present foraging data from stimulant users
were consistent with power laws,58 and the use of daily
frequencies actually acknowledges the periodicity of
foraging behaviors.59 However, the use of daily fre-
quencies may not be mathematically equivalent to

375outcomes obtained by raw frequency counts over an
extended period,35 hence the author’s recommend fur-
ther study using GPS Q9and improved methods of col-
lecting self-reported use.33,55,60
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Conclusion

380 Even though caffeine and nicotine are readily legally
available, the foraging behavior of dependent users
resembles that of organisms in circumstances of scar-
city. Dependent stimulant users access stimulants
more often and in more locations. Although the total

385 number of outlets for stimulants is quite high, the
number of places a dependent user of stimulants actu-
ally frequents is potentially much less. However, some
dependent users of stimulants appear to engage in a
greater range and intensity of use than others, and

390 this may have implications for regulation and
management.

Funding
Dr. Ogeil is the recipient of a Peter Doherty Early Career Fel-
lowship from the National Health and Medical Research

395 Council (Australia).
Q10

References

1. Orford J. Addiction as excessive appetite. Addiction 2001;
96:15�31.

2. Manning WG, Blumberg L, Moulton LH. The demand for
400 alcohol: the differential response to price. J Health Eco-

nomics 1995; 14:123�48.
3. Forester MB. Temporal and geographic patterns in opioid

abuse in Texas. J Addictive Diseases 2012; 31:93�9.
4. Hoffman DL, Novak TP, Peralta M. Building consumer

405 trust online. Communications of the ACM 1999; 42:80�5.
5. Schafer JB, Konstan JA, Riedl J. E-commerce recommen-

dation applications. Data Mining Knowledge Discovery
2001; 5:115�53.

6. Gravenhorst F, Muaremi A, Bardram J, Gr€unerbl A, May-
410 ora O, Wurzer G, Frost M, Osmani V, Arnrich B, Luko-

wicz P, Tr€oster G. Mobile phones as medical devices in
mental disorder treatment: an overview. Pers Ubiquit
Comput 2015; 19:335�53.

7. Montaner M, Lopez B, de la Rosa JL. A taxonomy of rec-
415 ommender agents on the internet. Artific Intelligence Rev

2003; 19:285�330.
8. Craig CR, Stitzel RE. Modern pharmacology with clinical

applications. Philadelphia, PA: Lippincott Williams Wil-
kins, 2003.

420 9. U.S. Department of Health and Human Services. The
Health Consequences of Smoking—50 Years of Progress:
A Report of the Surgeon General. Atlanta, GA: U.S.
Department of Health and Human Services, Centers for
Disease Control and Prevention, National Center for

425 Chronic Disease Prevention and Health Promotion, Office
on Smoking and Health, 2014.

10. Nehlig A. Are we dependent upon coffee and caffeine? A
review on human and animal data. Neurosci Biobehav Rev
1999; 23:563�576.

43011. Satel S. Is caffeine addictive?—a review of the literature.
The American Journal of Drug Alcohol Abuse 2006;
32:493�502.

12. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha
R. Association of coffee drinking with total and cause-spe-

435cific mortality. New Eng J Med 2012; 366:1891�904.
13. Reissig CJ, Strain EC, Griffiths RR. Caffeinated energy

drinks—a growing problem. Drug Alcohol Depend 2009;
99:1�10.

14. Juliano LM, Evatt DP, Richards BD, Griffiths RR. Charac-
440terization of individuals seeking treatment for caffeine

dependence. Psychol Addict Behav 2012; 26:948�54.
15. Meredith SE, Juliano LM, Hughes JR, Griffiths RR. Caf-

feine use disorder: a comprehensive review and research
agenda. J Caffeine Res 2013; 3:114�30.

44516. Johnson SD. How do offenders choose where to offend?
Perspectives from animal foraging. Legal Criminological
Psychol 2014; 19:193�210.

17. Connor JL, Kypri K, Bell ML, Cousins K. Alcohol outlet
density, levels of drinking, and alcohol-related harm in

450New Zealand: a national study. J Epidemiol Community
Health 2011; 65(10):841�6.

18. Livingston M. Alcohol outlet density and harm: compar-
ing the impacts on violence and chronic harms. Drug
Alcohol Rev 2011; 30(5):515�23.

45519. Day P, Breetzke G, Kingham S, Campbell M. Close prox-
imity to alcohol outlets is associated with increased serious
violent crime in New Zealand. Australian NZ J Public
Health 2012; 36(1):48�54.

20. Cameron MP, Cochrane W, Gordon C, Livingston M.
460Alcohol outlet density and violence: a geographically

weighted regression approach. Drug Alcohol Rev 2015;
http://onlinelibrary.wiley.com/doi/10.1111/dar.12295/full Q11

21. Buchanan M. The mathematical mirror to animal nature.
Nature 2008; 453:714�6.

46522. Bickell WK, Giordano LA, Badger GJ. Risk-sensitive forag-
ing theory elucidates risky choices made by heroin addicts.
Addiction 2004; 99:855�61.

23. Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl
MK, Schaefer KM, et al. Environmental context explains

470L�evy and Brownian movement patterns of marine preda-
tors. Nature 2010; 465:1066�9.

24. Phillips JG, Ogeil RP. Decisional styles and risk of problem
drinking or gambling. Pers Individ Diff 2011; 51:521�6.

25. Bartumeus F, Catalan J, Fulco UL, Lyra ML, Viswanathan
475GM. Optimising the encounter rate in biological interac-

tions: L�evy versus Brownian strategies. Physical Rev Let
2002; 88:097901. Q12

26. Viswanathan GM, Buidyrev SV, Havlins S, da Luz, MGE,
Raposo EP, Stanley HE. Optimising the success of random

480searches. Nature 1999; 401:911�4.
27. Volchenkov D, Helbach J, Tscherepanow M, Kuhnel S.

Exploration exploitation trade-off features a saltatory
search behaviour. J Royal Soc 2013; 10:20130352. Q13

6 J. G. PHILLIPS ET AL.

http://dx.doi.org/10.1111&sol;dar.12295&sol;full


28. Baronchelli A, Radicchi R. L�evy flights in human behaviour
485 and cognition. Chaos Solitons Fractals 2013; 56:101�5.

29. Humphries NE, Sims DW. Optimal foraging strategies:
L�evy walks balance searching and patch exploitation under
a very broad range of conditions. J Theor Biol 2014;
358:179�93.

490 30. Forster JL, Murray DM, Wolfson M, Wagenaar AC. Com-
mercial availability of alcohol to young people: results of
alcohol purchase attempts. Preventive Medicine 1995,
24:342�7.

31. Auer M, Griffiths MD. Personalised feedback in the pro-
495 motion of responsible gambling: a brief overview. Respon-

sible Gamb Rev 2014; 1:27�36.
32. Heron KE, Smyth JM. Ecological momentary interven-

tions: incorporating mobile technology into psychosocial
and health behaviour treatments. Brit J Health Psychol

500 2010; 15:1�39.
33. Marsch LA. Leveraging technology to enhance addiction

treatment and recovery. J Addictive Diseases 2012; 31:313�8.
34. Savic M, Best D, Rodda S, Lubman DI. Exploring the focus

and experiences of smartphone applications for addiction
505 recovery. J Addictive Diseases 2013; 32:310�9.

35. Ratcliff R. Group reaction time distributions and an analy-
sis of distribution statistics. Psychol Bull 1979; 86:446�61.

36. Gossop M, Darke S, Griffiths P, Hando J, Powis B, Hall W,
Strang J. The Severity of Dependence Scale (SDS): psycho-

510 metric properties of the SDS in English and Australian
samples of heroin, cocaine, and amphetamine users.
Addiction 1995; 90:605�14.

37. Martin G, Copeland J, Gates P, Gilmour S. The Severity of
Dependence Scale (SDS) in an adolescent population of

515 cannabis users: reliability, validity, and diagnostic cut-off.
Drug Alcohol Depend 2006; 83:90�3.

38. Topp L, Mattick RP. Choosing a cut-off on the Severity of
Dependence Scale (SDS) for amphetamine users. Addic-
tion 1997; 92:839�45.

520 39. Kessler RC, Andrews G, Colpe LJ, Hiripi E, Mroczek DK,
Normand SL, Walters EE, Zaslavsky AM. Short screening
scales to monitor population prevalences and trends in non-
specific psychological distress. Psychol Med 2002; 32:959�6.

40. Campbell CA, Hahn RA, Elder R, Brewer R, Chattopadhyay
525 S, Fielding J, Naimi TS, Toomey T, Lawrence B, Middleton

JC. The effectiveness of limiting alcohol outlet density as a
means of reducing excessive alcohol consumption and alco-
hol-related harms. Am J PrevMed 2009; 37:556�69.

41. Huckle T, Conway K, Casswell S, Pledger M. Evaluation of
530 a regional community action intervention in New Zealand

to improve age checks for young people purchasing alco-
hol. Health Prom Int 2005; 20(2):147�55.

42. Reynolds RI, Holder HD, Gruenewald PJ. Community
prevention and alcohol retail access. Addiction 1997; 92

535 (Supp. 3):S261�72.
43. Li F, Cao WY, Li MB, Xu Y, Zhang JW, Zhang JY, Luo XG,

Dai RP, Zhou XF, Li CQ. A simple method for detection of
food foraging behavior in the rat: involvement of NMDA
and dopamine receptors in the behavior. Neuroscience

540 2012; 205:73�80.

44. Rosse RB, Fay-McCarthy M, Collins JP, Alim TN, Deutsch
SI. The relationship between cocaine-induced paranoia
and compulsive foraging: a preliminary report. Addiction
1994; 89:1097�104.

54545. Foltin RW. Effects of amphetamine, dexfenfluramine,
diazepam, and other pharmacological and dietary manipu-
lations on food “seeking” and “taking” behavior in non-
human primates. Psychopharmacol 2001; 158:28�38.

46. Gainsbury S, Blaszczynski A. A systematic review of inter-
550net-based therapy for the treatment of addictions. Clin

Psychol Rev 2011; 31:490�8.
47. Kong G, Ells DM, Camenga DR, Krishnan-Sarin S. Text

messaging-based smoking cessation intervention: a narra-
tive review. Addict Behav 2014; 39:907�17.

55548. Litvin EB, Abrantes AM, Brown RA. Computer and
mobile technology-based interventions for substance use
disorders: an organising framework. Addict Behav 2013;
38:1747�56.

49. Gonz�alez MC, Hidalgo CA, Barab�asi AL. Understanding
560individual human mobility patterns. Nature 2008;

453:779�82.
50. Rodriguez D, Carlos HA, Adachi-Mejia AM, Berke EM,

Sargent JD. Predictors of tobacco outlet density nation-
wide: a geographic analysis. Tobacco Control 2012; doi:

56510.1136/tobaccocontrol-2011-050120
51. Song C, Qu Z, Blumm N, Barab�asi A-L. Limits of predict-

ability in human mobility. Science 2010; 327:1018�21.
52. Kang C, Ma X, Tong D, Liu Y. Intra-urban human mobil-

ity patterns: an urban morphology perspective. Physica A
5702012; 391:1702�17.

53. Gosling SD, Vazire S, Srivastava S, John OP. Should we
trust web-based studies? A comparative analysis of six pre-
conceptions about internet questionnaires. Am Psychol
2004; 59:93�104.

57554. Campbell B, Caine K, Connelly K, Doub T, Bragg A. Cell
phone ownership and use among mental health outpa-
tients in the USA. Pers Ubiquit Comput 2015; 19:367�78.

55. Thayer RE, Hutchinson KE. Improving accuracy of ado-
lescents’ substance use reports via text messaging. Addic-

580tion 2012; 107:1015�6.
56. Milward J, Day E, Wadsworth E, Strang J, Lynskey M. (in

press). Mobile phone ownership, usage, and readiness to
use by patients in drug treatment. Drug Alcohol Depend;
doi: 10.1016/j.drugalcdep.2014.11.001. (accessed on

585December 3, 2014).
Q1457. Phillips JG, Sargeant J, Ogeil RP, Chow YW, Blaszczynski

A. Self-reported gambling problems and digital traces.
CyberPsych Behav Soc Network 2014; 17(12):742�8.

58. Clauset A, Shallizi CR, Newman MEJ. Power-law distribu-
590tions in empirical data. SIAM Review 2009; 51:661�703.

59. Freeman MP, Watkins NW, Yonkei E, Crowcroft J.
Rhythm and randomness in human contact. International
Conference on Advances in Social Networks Analysis and
Mining. Odense August 9�11, 2010. Q15

59560. Kuntsche E, Labhart F. The future is now—using personal
cellphones to gather data on substance use and related fac-
tors. Addiction 2014; 109:1052�3.

JOURNAL OF ADDICTIVE DISEASES 7

http://dx.doi.org/10.1136&sol;tobaccocontrol-2011-050120
http://dx.doi.org/10.1016&sol;j.drugalcdep.2014.11.001
http://dx.doi.org/10.1016&sol;j.drugalcdep.2014.11.001

	Abstract
	Highlights
	Introduction
	Simple central place foraging
	Random brownian motion
	Lévy Walk

	Methods
	Participants
	Materials

	Results
	Discussion
	Implications
	Limitations

	Conclusion
	Funding
	References

