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INFINITE DIMENSIONAL MIXED ECONOMIES
WITH ASYMMETRIC INFORMATION

ANUJ BHOWMIK AND JILING CAO

Abstract. In this paper, we study asymmetric information economies con-
sisting of both non-negligible and negligible agents and having ordered Banach
spaces as their commodity spaces. In answering a question of Hervés-Beloso
and Moreno-Garćıa in [17], we establish a characterization of Walrasian expec-
tations allocations by the veto power of the grand coalition. It is also shown
that when an economy contains only negligible agents a Vind’s type theorem
on the private core with the exact feasibility can be restored. This solves a
problem of Pesce in [20].

1. Introduction

In their seminal papers [3] and [19], Arrow, Debreu and McKenzie considered
an economic model consisting of finitely many agents. Since only finitely many
coalitions can be formed in such an economy, the characterization of Walrasian al-
locations by the veto mechanism is asymptotic [7]. Later, Aumann [4] considered an
economic model consisting of a continuum of agents by taking [0,1] with Lebesgue
measure as the space of agents and established a characterization of Walrasian allo-
cations in terms of the core. The main advantage of Aumann’s model is that perfect
competition prevails, that is, the influence of any individual agent on the economy
is negligible. However, the competition in many real economies is imperfect, for
instance, in an economy which has some individual agents who own large portions
of initial endowments of some commodities. This is the main motivation to con-
sider mixed economies or oligopolistic markets, refer to [8], [12], [20], and [24]. In
Chapter 7 of [6], uncertainty was introduced in the Arrow-Debreu-McKenzie model
by allowing finitely many states of nature and viewing the commodities as differen-
tiated by state. In this model, each agent possesses the same full information and
makes a contract contingent on the realized state of nature. However, such a model
does not capture the idea of contracts under asymmetric information. This analysis
was extended by Radner in [21], where each agent is characterized by a private in-
formation set, a state-dependent utility function, a random initial endowment and
a prior belief. The trade of an agent is measurable with respect to his information
so that he cannot act differently on states that he cannot distinguish and an agent
makes a contract for trading commodities before he obtains any information about
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the realized state of nature. Radner also extended the notion of a Walrasian equi-
librium in the Arrow-Debreu-McKenzie model to that of a Walrasian expectations
equilibrium in his model so that better informed agents are generally better off.

In this paper, we consider a mixed economy with asymmetric information and
infinitely many commodities. In Section 2, we provide a general description on
our model. Section 3 is devoted to study a special case of our model, where the
space of agents is an atomless measure space. Two results on the private block-
ing power of a coalition are established, and measures of blocking coalitions when
agents are asymmetrically informed are studied. Schmeidler [23] first improved Au-
mann’s equivalence result by only considering the blocking power of small coalitions
in a complete information and atomless economy with finitely many commodities.
Schmeidler’s result was further generalized in Grodal [13]. Finally, Vind [26] showed
that if some coalition blocks an allocation then there is a blocking coalition with any
measure less than the measure of the grand coalition. Although Hervés-Beloso et
al. [14] pointed out that analogous results of Vind’s theorem are generally false for
an atomless economy with the space of real bounded sequences as the commodity
space, extensions of Vind’s theorem for special economies with asymmetric infor-
mation and the free disposal condition can be found in [5], [15] and [16]. Recently,
Hervés-Beloso et al. [18] established a Vind’s type theorem for the process of infor-
mation shared by coalitions in an asymmetric information economy having a finite
dimensional commodity space and the free disposal assumption. Considering an
ordered Banach space whose positive cone admitting an interior point as the com-
modity space and a complete finite positive atomless measure space of agents, Evren
and Hüsseinov [11] established a Vind’s type result on the private core of an econ-
omy under the free disposal condition and other additional assumptions. However,
as mentioned in [20], whether there is a version of Vind’s theorem on the private
core of an economy with the exact feasibility for finite dimensional economies is still
an open problem. Here, we investigate this question for an asymmetric information
economy with an ordered Banach space whose positive cone has an interior point as
the commodity space and give a full solution. As a result, the equivalence theorem
for finite dimensional economies in [2] is further generalized. The corresponding
problems on the (strong) fine core of an economy are also considered.

Concerning a complete information economy, Hervés-Beloso and Mareno-Garćıa
[17] provided a characterization of Walrasian allocations by robustly efficient alloca-
tions when the economy has a continuum of agents and finitely many commodities.
More precisely, if f is a Walrasian allocation then it is non-dominated in not only
the initial economy but also all economies obtained by modifying the initial endow-
ments of any coalition in the direction of f . In the same paper, they also showed
that such a result holds for economies with asymmetric information and the space
of real bounded sequences as the commodity space. In Section 4, a similar result is
established in an asymmetric information economy whose space of agents is a com-
plete finite positive measure space and commodity space is an ordered separable
Banach space whose positive cone has an interior point. Other results in Section
4 concern the relationships among different types of cores. Einy et al. [9] showed
that the fine core is a subset of the ex-post core for an asymmetric information
economy with an atomless measure space of agents and a finite dimensional com-
modity space. One year later, they established a characterization of the weak fine
core by the private core in a complete information economy in [10], where it was
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assumed that the grand coalition is a finite union of pairwise disjoint measurable
subsets having positive measure and any two agents in the same measurable sub-
set have the same information. Here, these results are extend to mixed economies
with asymmetric information and ordered separable Banach spaces whose positive
cones contain interior points as commodity spaces. Furthermore, in our framework
there may exist an information type associated with a null measurable subset of
the grand coalition.

2. The model

Let E be an exchange economy with asymmetric information as in [21] and [22].
Suppose that (Ω,F) is a measurable space, where Ω is a finite set denoting all
possible states of nature and the σ-algebra F denotes all events. Following from
the well-known mixed market model, the space of agents is a measure space (T, Σ, µ)
with a complete, finite and positive measure µ, where T is the set of agents, Σ is
the σ-algebra of measurable subsets of T whose economic weights on the market
are given by µ. Following from a classical result in measure theory, T can be
decomposed into two parts: one is atomelss and the other contains countably many
atoms. That is, T = T0 ∪T1, where T0 is the atomless part and T1 is the countable
union of µ-atoms. Since each µ-atom is treated as an agent, A ∈ T1 is used instead
of A ⊆ T1 if A is a µ-atom. Agents in T0 are called “small agents” and those
in T1 are called “large agents”. In each state, infinitely many commodities are
assumed. Throughout, the commodity space of E is an ordered Banach space Y
whose positive cone has an interior point. The order on Y is denoted by ≤, and
Y+ = {x ∈ Y : x ≥ 0} denotes the positive cone of Y . The symbol x À 0 (resp.
x > 0) denotes a strictly positive (resp. non-zero positive) element x of Y+. The
economy extends over two time periods τ = 0, 1. Consumption takes place at τ = 1.
At τ = 0, there is uncertainty over the states and agents make contracts that are
contingent on the realized state at τ = 1. Thus, E can be defined by

E = {(Ω,F); (T, Σ, µ); Y+; (Ft, Ut, a(t, ·), qt)t∈T }.
Here, Y+ is the consumption set in every state ω ∈ Ω for every agent t ∈ T ; Ft

the σ-algebra generated by a partition Πt of Ω representing the private information
of agent t; Ut : Ω × Y+ → R is the state-dependent utility function of agent t;
a(t, ·) : Ω → Y+ is the random initial endowment of agent t, assumed to be constant
on elements of Πt; and qt is a probability measure on Ω giving the prior of agent t. It
is assumed that qt is positive on all elements of Ω. The quadruple (Ft, Ut, a(t, ·), qt)
is called the characteristics of the agent t ∈ T . A function x : Ω → Y+ is interpreted
as a random consumption bundle in E . The ex ante expected utility of an agent t for
a given random consumption bundle x is defined by Vt(x) =

∑
ω∈Ω Ut(ω, x)qt(ω).

Any set S ∈ Σ with µ(S) > 0 is called a coalition of E . If S and S′ are two
coalitions of E with S′ ⊆ S, then S′ is called a sub-coalition of S. For a coalition S in
E , an S-assignment in E is a function f : S×Ω → Y+ such that f(·, ω) ∈ LS

1 (µ, Y+)
for all ω ∈ Ω, where LS

1 (µ, Y+) is the set of all Bochner integrable functions from
S into Y+. It is assumed that a(·, ω) ∈ LT

1 (µ, Y+) for each ω ∈ Ω. Put Lt = {x ∈
(Y+)Ω : x is Ft-measurable}. An S-assignment f in E is called an S-allocation if
f(t, ·) ∈ Lt for almost all t ∈ S, and it is said to be S-feasible if

∫
S

f(·, ω)dµ ≤∫
S

a(·, ω)dµ for all ω ∈ Ω. T -assignments, T -allocations and T -feasible allocations
are simply called assignments, allocations and feasible allocations. A coalition S
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privately blocks an allocation f in E if there is an S-feasible allocation g such that
Vt(g(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S. The private core of E is the set of all
feasible allocations which are not privately blocked by any coalition. A price system
is an F-measurable, non-zero function π : Ω → Y ∗

+, where Y ∗
+ is the positive cone

of the norm-dual space Y ∗ of Y . The budget set of agent t can be defined by

Bt(π) =

{
x ∈ Lt :

∑

ω∈Ω

〈π(ω), x(ω)〉 ≤
∑

ω∈Ω

〈π(ω), a(t, ω)〉
}

.

A Walrasian expectations equilibrium of E in the sense of Radner is a pair (f, π),
where f is a feasible allocation and π is a price system such that for almost all
t ∈ T , f(t, ·) ∈ Bt(π) and f(t, ·) maximizes Vt on Bt(π), and

∑

ω∈Ω

〈
π(ω),

∫

T

f(·, ω)dµ

〉
=

∑

ω∈Ω

〈
π(ω),

∫

T

a(·, ω)dµ

〉
.

Two agents are said to be the same type if they have the same characteristics.
The family of partitions of Ω is denoted by P. For any Q ∈ P, let TQ = {t ∈
T : Πt = Q}. For any coalition S, put PS = {Q ∈ P : S ∩ TQ 6= ∅} and
P(S) = {Q ∈ PS : µ(S ∩ TQ) > 0}. Then,

⋃
Q∈PT

TQ = T and Lt = Lt′ if and
only if t, t′ ∈ TQ for some Q ∈ PT . For any S ∈ Σ,

∨
Q denotes the σ-algebra

generated by the smallest refinement of all members of Q ⊆ PS .

Assumptions:

(A1) Measurability : The functions t 7→ qt and t 7→ Ft are measurable. This
means that {t ∈ T : qt ∈ A} ∈ Σ for any Borel subset A of |Ω| − 1
dimensional unit simplex, and TQ ∈ Σ for all Q ∈ P.

(A2) Carathéodory : For each ω ∈ Ω, (t, x) 7→ Ut(ω, x) is a Carathéodory function
on T ×Y+. This means that U(·)(ω, x) is measurable for all (ω, x) ∈ Ω×Y+,
and Ut(ω, ·) is norm-continuous for all (t, ω) ∈ T × Ω.

(A3) Monotonicity : For each (t, ω) ∈ T × Ω, if x, y ∈ Y+ with y À 0, then
Ut(ω, x + y) > Ut(ω, x).

(A′3) Strong monotonicity : For each (t, ω) ∈ T ×Ω, if x, y ∈ Y+ with y > 0, then
Ut(ω, x + y) > Ut(ω, x).

(A4) Partial concavity : For each (t0, ω0) ∈ T1 × Ω and S-feasible assignment f

with µ(S∩T1) > 0 in E , Ut0(ω0, f̂(ω0)) ≥ 1
µ(S∩T1)

∫
S∩T1

Ut0(ω0, f(·, ω0))dµ,

where f̂(ω0) = 1
µ(S∩T1)

∫
S∩T1

f(·, ω0)dµ.
(A′4) Concavity : For each (t, ω) ∈ T × Ω, Ut(ω, ·) is concave.
(A5) Strict positivity : For each (t, ω) ∈ T × Ω, a(t, ω) À 0.
(A6) Similarity : All large agents are the same type.
(A7) Minimality : T1 contains at least two elements.
(A8) Informativeness:

∨
PT = F .

(A9) F-measurability : For almost all t ∈ T and x ∈ Y+, Ut(·, x) is F-measurable.
Under (A1) and (A2), V(·)(·) : T × (Y+)Ω → R is a Carathéodory function. Under
(A3) (resp. (A′3)), Vt is monotone (resp. strongly monotone) in the sense that if
x, y ∈ (Y+)Ω with y(ω) À 0 (resp. y(ω) > 0) for some ω ∈ Ω, then Vt(x + y) >
Vt(x). Clearly, (A4) implies that Vt0 is partially concave for all t0 ∈ T1, that is,
Vt0(f̂(·)) ≥ 1

µ(S∩T1)

∫
S∩T1

Vt0(f(·, ·))dµ for all t0 ∈ T1 and S-feasible assignment f

in E with µ(S ∩ T1) > 0, where f̂ is defined in (A4). Similarly, (A′4) implies that
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Vt is concave for all t ∈ T . By (A6), all agents in T1 have the same characteristics,
so we use (FT1 , UT1 , a(T1, ·), qT1) to denote their common characteristics. Similarly,
VT1 denotes the common ex ante expected utility of agents in T1. Note that (A8)
is similar to (A.4) in [9], and (A1)-(A3), (A5) are the same as those in [11]. For
undefined mathematical concepts and terminologies in this paper, refer to [1].

3. Privately blocking and exact feasibility
in atomless economies

In this section, we study privately blocking and exactly feasible allocations in
an atomless economy. Thus, we assume T = T0 in this section. Two lemmas are
established in Subsection 3.1, which are used in Section 4. Similar to that in [26],
we also investigate the blocking power of a coalition for the (strong) fine core and
the private core when the exact feasibility is imposed on allocations.

3.1. Privately blocking coalitions. The following result is similar to Lemma 1
in [11]. In order to obtain a slightly different conclusion, we provide a proof here.

Lemma 3.1. Let an allocation f in E be privately blocked by a coalition S and
α ∈ (0, 1). Under (A1), (A2) and (A5), there exist an S-allocation g and a sub-
coalition S′ of S such that

(i) g(t, ω) À 0 for all (t, ω) ∈ S′ × Ω, and Vt(g(t, ·)) > Vt(f(t, ·)) for almost
all t ∈ S

(ii)
∫

S
(a(·, ω)− g(·, ω))dµ À 0 for all ω ∈ Ω,

(iii) µ(S′ ∩ TQ) > αµ(S ∩ TQ) for all Q ∈ P(S).

Proof. Since f is privately blocked by the coalition S, there exists an S-feasible
allocation h such that Vt(h(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S. Define a
correspondence Pf : S ⇒ (Y+)Ω by Pf (t) = {y ∈ Lt : Vt(y) > Vt(f(t, ·))} for
each t ∈ S. Then h(t, ·) ∈ Pf (t) for almost all t ∈ S. By ignoring a µ-null
subset of S, one can choose a separable, closed linear subspace Z of Y Ω such
that f(S, ·) ∪ h(S, ·) ∪ a(S, ·) ⊆ Z. Consider a correspondence P̃f : S ⇒ Z de-
fined by P̃f (t) = Z ∩ Pf (t). By Remark 6 in [11], Gr

P̃f
∈ ΣS ⊗ B(Z), where

ΣS = {A ∈ Σ : A ⊆ S}, Gr
P̃f

denotes the graph of P̃f and B(Z) is the family
of Borel subsets of Z. For any ε > 0, define a correspondence Nε : S ⇒ Z by
Nε(t) = {y ∈ Z : ‖y − h(t, ·)‖ < ε}. Then, GrNε ∈ ΣS ⊗ B(Z). Furthermore,
GrL̃ ∈ ΣS ⊗B(Z), where L̃ : S ⇒ Z is defined by L̃(t) = Z ∩ Lt. For all t ∈ S,
choose εt such that εt = sup{ε > 0 : y ∈ P̃f (t) whenever y ∈ L̃(t) ∩Nε(t)}. Conti-
nuity of Vt implies εt > 0 for almost all t ∈ S. Let β > 0. Then,

{t ∈ S : εt < β} =
⋃

r∈Q∩(0,β)

{t ∈ S : Nr(t) ∩ L̃(t) ∩ (Z \ P̃f (t)) 6= ∅},

which is the projection of the set
⋃

r∈Q∩(0,β)

(
GrNr ∩GrL̃ ∩

(
S × Z \Gr

P̃f

))
∈ ΣS ⊗B(Z)

on S. By the projection theorem [1, p.608], the set {t ∈ S : εt < β} ∈ Σ, which
means that the function t 7→ εt is measurable. Choose a sequence {cm} ⊂ (0, 1)
such that cm → 0 as m →∞. For each m ≥ 1, define hm : S × Ω → Y+ such that
hm(t, ω) = (1−cm)h(t, ω)+ cm

2 a(t, ω). Then, hm is an S-allocation, and hm(t, ω) À
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0 for all (t, ω) ∈ S×Ω. For each m ≥ 1, put Sm = {t ∈ S : ‖hm(t, ·)−h(t, ·)‖ < εt}.
Clearly, Sm ∈ ΣS and Sm ⊆ Sm+1 for all m ≥ 1. Moreover,

⋃
m Sm ∼ S and

hence, limm→∞ µ(S \ Sm) = 0. By the definition of εt, hm(t, ·) ∈ Pf (t) for almost
all t ∈ Sm. For each m ≥ 1, we now define a function gm : S × Ω → Y+ by

gm(t, ω) =

{
h(t, ω), if t ∈ (S \ Sm)× Ω;

hm(t, ω), if (t, ω) ∈ Sm × Ω.

Then gm is an S-allocation, Vt(gm(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S, and
gm(t, ω) À 0 for all (t, ω) ∈ Sm × Ω. Now, for each ω ∈ Ω,

∫

S

gm(·, ω)dµ =
∫

S\Sm

h(·, ω)dµ +
∫

Sm

hm(·, ω)dµ

=
∫

S\Sm

(h(·, ω)− hm(·, ω))dµ +
∫

S

hm(·, ω)dµ.

In addition,
∫

S
hm(·, ω)dµ ≤ (

1− cm

2

) ∫
S

a(·, ω)dµ. Consequently, we obtain
∫

S

gm(·, ω)dµ ≤
∫

S\Sm

cm

(
h(·, ω)− 1

2
a(·, ω)

)
dµ +

(
1− cm

2

) ∫

S

a(·, ω)dµ,

which is equivalent to
∫

S

(a(·, ω)− gm(·, ω))dµ ≥ cm

(
1
2

∫

S

a(·, ω)dµ− zm(ω)
)

,

where zm(ω) =
∫

S\Sm

(
h(·, ω)− 1

2a(·, ω)
)
dµ. Since

∫
S

a(·, ω)dµ À 0, by absolute
continuity of the Bochner integral, 1

2

∫
S

a(·, ω)dµ − zm(ω) À 0 for all ω ∈ Ω when
m is sufficiently large. Pick a Q0 ∈ P(S) satisfying µ(S ∩ TQ0) ≤ µ(S ∩ TQ) for all
Q ∈ P(S) and select a 1 < δ < 1

α . Then for all Q ∈ P(S),

(1− αδ)µ(S ∩ TQ0) < (1− α)µ(S ∩ TQ).(3.1)

Choose some integer m such that µ(Sm) > αδµ(S ∩ TQ0) + µ(S \ TQ0). Obviously,
µ(Sm ∩ TQ0) > αµ(S ∩ TQ0). It is claimed that µ(Sm ∩ TQ) ≤ αµ(S ∩ TQ) implies
(1−αδ)µ(S∩TQ0) ≥ (1−α)µ(S∩TQ) for any Q ∈ P(S)\{Q0}. If not, there is some
Q′ ∈ P(S) \ {Q0} such that µ(Sm ∩ TQ′) ≤ αµ(S ∩ TQ′) but (1− αδ)µ(S ∩ TQ0) <
(1− α)µ(S ∩ TQ′). It follows that

µ(Sm) = µ(Sm ∩ TQ′) +
∑

Q∈P(S)\{Q′}
µ(Sm ∩ TQ)

≤ αµ(S ∩ TQ′) + µ(S ∩ TQ0) +
∑

Q∈P(S)\{Q0,Q′}
µ(S ∩ TQ)

< αδµ(S ∩ TQ0) + µ(S \ TQ0),

which contradicts with the choice of Sm. This verifies the claim. By (3.1) and the
claim, we conclude that µ(Sm ∩ TQ) > αµ(S ∩ TQ) for all Q ∈ P(S). The proof is
completed by letting g = gm and S′ = Sm. ¤

Remark 3.2. The conclusion of Lemma 3.1 is also true if the atomless measure
space is replaced by a complete finite positive measure space.

Lemma 3.3. [25] Suppose that (X, Σ, µ) is an atomless measure space and E is a
Banach space. If f ∈ LX

1 (µ,E), then the set H = cl{∫
B

f : B ∈ Σ} is convex.
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The following result is an extension of the result used in the main theorem of
[26] to an asymmetric information economy whose commodity space is an ordered
Banach space having an interior point in its positive cone.

Lemma 3.4. Let f be an allocation in E. Suppose there exist a coalition S, a sub-
coalition S′ of S and an S-allocation g such that g(t, ω) À 0 for all (t, ω) ∈ S′×Ω,
P(S) = P(S′) and Vt(g(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S. Under (A1)-(A3),
for each r ∈ (0, 1), there exists an S-allocation h such that Vt(h(t, ·)) > Vt(f(t, ·))
for almost all t ∈ S, and

∫
S

h(·, ω)dµ =
∫

S
(rg(·, ω)+(1−r)f(·, ω))dµ for all ω ∈ Ω.

Proof. For each m ≥ 1, let gm : S×Ω → Y+ be defined by gm(t, ω) = (1−cm)g(t, ω).
Then gm is an S-allocation and gm(t, ω) À 0 for all (t, ω) ∈ S′ × Ω. Pick an
r ∈ (0, 1) and a Q ∈ P(S). Let {cm} be a sequence in (0, 1) such that cm → 0
as m →∞. Applying an argument similar to that in Lemma 3.1, it can be shown
that there is an increasing sequence {SQm} ⊆ ΣS∩TQ such that

⋃
m SQm ∼ S ∩ TQ,

limm→∞ µ((S ∩ TQ) \ SQm) = 0, and Vt(gm(t, ·)) > Vt(f(t, ·)) for almost all t ∈ SQm.
Choose an mQ such that µ(S′ ∩ TQ ∩ SQmQ) > 0. Consider the function yQ :
(S ∩ TQ)× Ω → Y+ defined by

yQ(t, ω) =

{
gmQ(t, ω), if (t, ω) ∈ SQmQ × Ω;

g(t, ω), otherwise.

Obviously, yQ is an (S ∩TQ)-allocation, and Vt(yQ(t, ·)) > Vt(f(t, ·)) for almost all
t ∈ S ∩ TQ. Furthermore, for all ω ∈ Ω,

∫

S∩TQ
yQ(·, ω)dµ =

∫

S∩TQ
g(·, ω)dµ− cmQ

∫

SQmQ

g(·, ω)dµ.

Let xQ À 0 be chosen such that xQ ≤ cmQ
2

∫
SQmQ

g(·, ω)dµ for all ω ∈ Ω. Let U(r,Q)

be an open neighborhood of 0 such that rxQ − U(r,Q) ⊆ intY+. By Lemma 3.3,

HQ = cl
{(

µ(EQ),
∫

EQ
(yQ − f)dµ

)
∈ R× Y Ω : EQ ∈ ΣS∩TQ

}

is a convex set. So, there is a sequence {EQ
n } ⊆ ΣS∩TQ such that for each ω ∈ Ω,

lim
n→∞

(
µ(EQ

n ),
∫

EQn
(yQ(·, ω)− f(·, ω))dµ

)
= r

(
µ(S ∩ TQ), zQ(ω)

)
,

where zQ(ω) =
∫

S∩TQ
(yQ(·, ω) − f(·, ω))dµ. Define a function bQn : Ω → Y such

that bQn (ω) =
∫

EQn
(yQ(·, ω) − f(·, ω))dµ − rzQ(ω). Since ‖bQn (ω)‖ → 0 as n → ∞,

there is an nQ such that bQnQ(ω) ∈ U(r,Q) for all ω ∈ Ω and µ(EQ
nQ) < µ(S ∩ TQ).

Consider the function gQ : (S ∩ TQ)× Ω → Y+ defined by

gQ(t, ω) =





yQ(t, ω), if (t, ω) ∈ EQ
nQ × Ω;

f(t, ω) + rxQ

µ((S∩TQ)\EQnQ) , if (t, ω) ∈ (
(
S ∩ TQ) \ EQ

nQ

)× Ω.

By (A3), we have Vt(gQ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S ∩ TQ and gQ is an
(S ∩ TQ)-allocation. Thus, we have

∫

S∩TQ
gQ(·, ω)dµ =

∫

EQnQ

(yQ(·, ω)− f(·, ω))dµ +
∫

S∩TQ
f(·, ω)dµ + rxQ.
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Furthermore, for all ω ∈ Ω,∫

EQnQ

(yQ(·, ω)− f(·, ω))dµ− bQnQ(ω) = r

∫

S∩TQ
(yQ(·, ω)− f(·, ω))dµ.

Consequently, we obtain∫

S∩TQ
gQ(·, ω)dµ ¿

∫

S∩TQ
(ryQ(·, ω) + (1− r)f(·, ω))dµ + 2rxQ

for each ω ∈ Ω, which implies that for each ω ∈ Ω,∫

S∩TQ
gQ(·, ω)dµ ¿

∫

S∩TQ
(rg(·, ω) + (1− r)f(·, ω))dµ.

We now define a Q-measurable dQ : Ω → Y+ such that for each ω ∈ Ω,

dQ(ω) =
1

µ(S ∩ TQ)

[∫

S∩TQ
(rg(·, ω) + (1− r)f(·, ω))dµ−

∫

S∩TQ
gQ(·, ω)dµ

]
.

Clearly, dQ(ω) À 0 for each ω ∈ Ω. Define an (S ∩ TQ)-allocation by hQ(t, ω) =
gQ(t, ω) + dQ(ω) for all (t, ω) ∈ (S ∩ TQ) × Ω. Then, Vt(hQ(t, ·)) > Vt(f(t, ·)) for
almost all t ∈ S ∩TQ and

∫
S∩TQ

hQ(·, ω)dµ =
∫

S∩TQ
(rg(·, ω)+ (1− r)f(·, ω))dµ for

all ω ∈ Ω. Let h : S × Ω → Y+ be defined by

h(t, ω) =

{
hQ(t, ω), if (t, ω) ∈ (S ∩ TQ)× Ω and Q ∈ P(S) ;

g(t, ω), otherwise.

It can be readily checked that h is the desired S-allocation. ¤
3.2. Allocations with the exact feasibility. In this subsection, we provide a
characterization of exactly feasible allocations of E that are not in various types of
cores. Given a coalition S of E , an S-assignment f in E is called S-exactly feasible
if

∫
S

f(·, ω)dµ =
∫

S
a(·, ω)dµ for all ω ∈ Ω. For simplicity, T -exactly feasible

assignment is just termed as exactly feasible assignment. An allocation f in E
is NY-strongly fine1 blocked by a coalition S [28] if there exist a sub-coalition S0

and an S-exactly feasible assignment g such that g(t, ·) is
∨

PS-measurable and
Vt(g(t, ·)) ≥ Vt(f(t, ·)) for almost all t ∈ S, and Vt(g(t, ·)) > Vt(f(t, ·)) for almost
all t ∈ S0. The NY-strong fine core [28] of E is the set of exactly feasible allocations
which are not NY -strongly fine blocked by any coalition of E .

Lemma 3.5. Let an allocation f in E be NY -strongly fine blocked by a coalition S
of E. Under (A1)-(A2), (A′3) and (A5), there exist a sub-coalition S′ of S and an
S-assignment g such that

(i) g(t, ·) is
∨

PS-measurable and Vt(g(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S,
(ii) g(t, ω) À 0 for all (t, ω) ∈ S′ × Ω,
(iii)

∫
S
(a(·, ω)− g(·, ω))dµ À 0 for all ω ∈ Ω.

Proof. Since f is NY -strongly fine blocked by S, there are a sub-coalition S0 of
S and an S-exactly feasible assignment y such that y(t, ·) is

∨
PS-measurable and

Vt(y(t, ·)) ≥ Vt(f(t, ·)) for almost all t ∈ S, and Vt(y(t, ·)) > Vt(f(t, ·)) for almost all
t ∈ S0. Without loss of generality, we may assume that µ(S0) < µ(S). Otherwise,
the argument will be similar to that in Lemma 3.1. By (A′3) and the fact that

1NY is the abbreviation of Nicholas Yannelis. Here, we follow some idea of his definition in
[28], to distinguish it from the concept of Wilson in [27].
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Vt(y(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S0, there exist an atom A of
∨

PS and a
sub-coalition S1 of S0 such that y(t, ω) > 0 for all ω ∈ A and almost all t ∈ S1.
Let {cm} be a sequence in (0, 1) converging to 0. For each m ≥ 1, we define a
function ym : S1 × Ω → Y+ such that ym(t, ω) = (1 − cm)y(t, ω). Then ym(t, ·)
is

∨
PS-measurable for almost all t ∈ S1. By an argument similar to that in

the proof of Lemma 3.1, it can be shown that there is a sub-coalition Sm of S1

such that Vt(ym(t, ·)) > Vt(f(t, ·)) for almost all t ∈ Sm. Note that the function
b : A → Y+, defined by b(ω) = cm

2

∫
Sm

y(·, ω)dµ, is
∨

PS-measurable. Define a
function ŷ : (S \ S0)× Ω → Y+ by

ŷ(t, ω) =

{
y(t, ω) + b(ω)

µ(S\S0)
, if (t, ω) ∈ (S \ S0)×A;

y(t, ω), otherwise.

Furthermore define another function h : S × Ω → Y+ by

h(t, ω) =





ŷ(t, ω), if (t, ω) ∈ (S \ S0)× Ω;

y(t, ω), if (t, ω) ∈ (S0 \ Sm)× Ω;

ym(t, ω), if (t, ω) ∈ Sm × Ω.

Then, ŷ(t, ·) is
∨

PS-measurable and by (A′3), Vt(ŷ(t, ·)) > Vt(f(t, ·)) for almost all
t ∈ S \ S0. It follows that h(t, ·) is

∨
PS-measurable and Vt(h(t, ·)) > Vt(f(t, ·))

for almost all t ∈ S, and
∫

S
h(·, ω)dµ ≤ ∫

S
a(·, ω)dµ for each ω ∈ Ω. Next, for each

m ≥ 1, define a function hm : S×Ω → Y+ by hm(t, ω) = (1−cm)h(t, ω)+ cm

2 a(t, ω).
Clearly, hm(t, ·) is

∨
PS-measurable for almost all t ∈ S, and hm(t, ω) À 0 for all

(t, ω) ∈ S × Ω. Applying an argument similar to that in the proof of Lemma
3.1, one can find an increasing sequence {Rm} ⊆ ΣS such that

⋃
m Rm ∼ S and

Vt(hm(t, ·)) > Vt(f(t, ·)) for almost all t ∈ Rm. Finally, for each m ≥ 1, consider
the function gm : S × Ω → Y+ defined by

gm(t, ω) =

{
h(t, ω), if (t, ω) ∈ (S \Rm)× Ω;

hm(t, ω), if (t, ω) ∈ Rm × Ω.

Following from the steps at the end of the proof of Lemma 3.1, it can be verified
that the conclusion of this lemma is true when m is sufficiently large. Hence, the
proof is completed by selecting such an m and setting S′ = Rm and g = gm. ¤

Theorem 3.6. Let an exactly feasible allocation f be not in the NY -strong fine
core of E. Under (A1)-(A2), (A′3)-(A

′
4) and (A5), for any 0 < ε < µ(T ), there is a

coalition S with µ(S) = ε which NY -strongly fine blocks f .

Proof. Suppose that f is NY -strongly fine blocked by a coalition S. By Lemma
3.5, there are a sub-coalition S′ of S and an S-assignment g such that (i)-(iii) of
Lemma 3.5 hold. Define a function z : Ω → Y+ such that for all ω ∈ Ω,

z(ω) =
∫

S

(a(·, ω)− g(·, ω))dµ.(3.2)

Then z(ω) À 0 for all ω ∈ Ω. For any fixed Q ∈ P(S), by Lemma 3.3,

HQ = cl
{(

µ(EQ),
∫

EQ
(a− g)dµ

)
∈ R× Y Ω : EQ ∈ ΣS∩TQ

}
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is convex. For any given δ ∈ (0, 1), there is a sequence {EQ
n } ⊆ ΣS∩TQ such that

lim
n→∞

(
µ(EQ

n ),
∫

EQn
(a(·, ω)− g(·, ω))dµ

)
= δ(µ(S ∩ TQ), zQ(ω))

for all ω ∈ Ω, where zQ(ω) =
∫

S∩TQ
(a(·, ω)−g(·, ω))dµ. Since µ is atomless, we can

select a sequence {FQn } ⊆ ΣS∩TQ such that µ(FQn ) = δµ(S∩TQ) and µ(FQn ∆EQ
n ) =

|δµ(S∩TQ)−µ(EQ
n )|. Indeed, if µ(EQ

n ) ≥ δµ(S∩TQ), we select any FQn ⊆ EQ
n with

µ(FQn ) = δµ(S ∩TQ); Otherwise, we first select CQn ⊆ (S ∩TQ)\EQ
n with µ(CQn ) =

δµ(S∩TQ)−µ(EQ
n ) and put FQn = EQ

n ∪CQn . As a result, limn→∞ µ(FQn ∆EQ
n ) = 0,

which implies that limn→∞
∫

FQn
(a(·, ω)− g(·, ω))dµ = δzQ(ω) for all ω ∈ Ω. Let

Fn =


 ⋃

Q∈P(S)

FQn


⋃


 ⋃

Q∈PS\P(S)

(S ∩ TQ)




for all n ∈ N. Then µ(Fn) = δµ(S) and limn→∞
∫

Fn
(a(·, ω) − g(·, ω))dµ = δz(ω)

for all ω ∈ Ω. Hence there is an n0 such that
∫

Fn0
(a(·, ω) − g(·, ω))dµ À 0 for all

ω ∈ Ω. Since
∨

PFn0
=

∨
PS , the function zn0 : Ω → Y+, defined by zn0(ω) =∫

Fn0
(a(·, ω)−g(·, ω))dµ, is

∨
PFn0

-measurable. Define a function ĝ : Fn0×Ω → Y+

such that ĝ(t, ω) = g(t, ω) + zn0 (ω)

δµ(S) . By (A3), f is NY -strongly fine blocked by Fn0

via ĝ, which proves the theorem for ε ≤ µ(S). If µ(S) = µ(T ), the proof has been
completed. Otherwise, µ(T \ S) > 0. Let R = T \ S. Again by Lemma 3.3,

GQ = cl
{(

µ(BQ),
∫

BQ
(a− f)dµ

)
∈ R× Y Ω : BQ ∈ ΣR∩TQ

}

is convex for all Q ∈ P(R). Given any α ∈ (0, 1) and Q ∈ P(R), applying an
argument similar to the previous one, one can find a sequence {BQ

n } ⊆ ΣR∩TQ such
that µ(BQ

n ) = (1− α)µ(R ∩ TQ) and for all ω ∈ Ω,

lim
n→∞

∫

BQn
(a(·, ω)− f(·, ω))dµ = (1− α)κQ(ω),

where κQ(ω) =
∫

R∩TQ
(a(·, ω)− f(·, ω))dµ. Let

Bn =


 ⋃

Q∈P(R)

BQ
n


⋃


 ⋃

Q∈PR\P(R)

(R ∩ TQ)




for all n ∈ N and κ(ω) =
∫

R
(a(·, ω)− f(·, ω))dµ for all ω ∈ Ω. For all n ≥ 1, define

a function bn : Ω → Y+ such that

bn(ω) = (1− α)κ(ω)−
∫

Bn

(a(·, ω)− f(·, ω))dµ.(3.3)

Then bn is
∨

PBn-measurable for all n ≥ 1, and ‖bn(ω)‖ → 0 as n → ∞ for
all ω ∈ Ω. Choose an n1 satisfying αz(ω) − bn1(ω) À 0 for all ω ∈ Ω, define
gα : S × Ω → Y+ such that

gα(t, ω) = αg(t, ω) + (1− α)f(t, ω) +
1

µ(S)
(αz(ω)− bn1(ω)),

and take S̃ = S ∪ Bn1 . Note that µ(S̃) = µ(S) + (1− α)µ(T \ S) and gα is
∨

P
S̃
-

measurable for almost all t ∈ S. By (A′3) and (A′4), Vt(gα(t, ·)) > Vt(f(t, ·)) for
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almost all t ∈ S. It remains to verify that f is NY -strongly fine blocked by S̃. To
this end, define yα : S̃ × Ω → Y+ by

yα(t, ω) =

{
gα(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω), if (t, ω) ∈ Bn1 × Ω.

Then yα(t, ·) is
∨

P
S̃
-measurable and Vt(yα(t, ·)) ≥ Vt(f(t, ·)) for almost all t ∈ S̃,

and Vt(yα(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S. Using (3.2) and (3.3), one has∫

S̃

(a(·, ω)− yα(·, ω))dµ = (1− α)
∫

T

(a(·, ω)− f(·, ω))dµ = 0

for all ω ∈ Ω. This completes the proof. ¤

An allocation f in E is NY-fine blocked by a coalition S [28] if there is an S-
exactly feasible assignment g such that g(t, ·) is

∨
PS-measurable and Vt(g(t, ·)) >

Vt(f(t, ·)) for almost all t ∈ S. The NY-fine core [28] of E is the set of exactly
feasible allocations which are not NY -fine blocked by any coalition of E .

Remark 3.7. Under (A1)-(A3), (A′3)-(A
′
4) and (A5), an analogous result can be

derived for allocations not in the NY -fine core of E by modifying the functions gα

and yε in the following way:

gα(t, ω) = αg(t, ω) + (1− α)f(t, ω) +
1

µ(S)
(αz(ω)− bn1(ω)− x),

and

yα(t, ω) =

{
gα(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω) + x
µ(Bn1 ) , if (t, ω) ∈ Bn1 × Ω,

where x À 0 such that αz(ω)− bn1(ω)− x À 0.

Definition 3.8. An allocation f in E is NY-privately blocked by a coalition S [28]
if there exists an S-exactly feasible allocation g such that Vt(g(t, ·)) > Vt(f(t, ·))
for almost all t ∈ S. The NY-private core [28] of E is the set of exactly feasible
allocations which are not NY -privately blocked by any coalition of E .

Now, we are ready to present one of the main results of this paper, which com-
pletely answers a question of Pesce in [20, Remark 1].

Theorem 3.9. Assume that f is an exactly feasible allocation in E which is not
in the NY -private core and 0 < ε < µ(T ). Under (A1)-(A3), (A′4) and (A5), f is
NY -privately blocked by some coalition S with µ(S) = ε.

Proof. Since f is not in the NY -private core of E , there exist a coalition S and an
S-exactly feasible allocation g such that Vt(g(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S.
For all ω ∈ Ω and Q ∈ P(S), let

eQ(ω) =
1

µ(S ∩ TQ)

∫

S∩TQ
a(·, ω)dµ.

Choose an e À 0 such that e ≤ eQ(ω)
3 for all ω ∈ Ω and Q ∈ P(S), an open ball U

with center 0 and radius ε > 0 such that e− U ⊆ intY+ and a λ ∈ (0, 1). Let {cm}
be a sequence in (0, 1) such that cm → 0 as m → ∞. Pick an arbitrary element
Q ∈ P(S), and define a function gQm : (S ∩ TQ) × Ω → Y+ such that gQm(t, ω) =
(1 − cm)g(t, ω) + cm(eQ(ω) − 2e). By an argument similar to that in Lemma 3.1,
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one can find an increasing sequence {SQm} ⊆ ΣS∩TQ such that
⋃

m SQm ∼ S ∩ TQ,
limn→∞((S ∩ TQ) \SQm) = 0 and Vt(gQm(t, ·)) > Vt(f(t, ·)) for almost all t ∈ SQm. By
absolute continuity of the Bochner integral, there is some δ > 0 such that

2
µ(S ∩ TQ)

∫

RQ
(g(·, ω)− eQ(ω)) dµ ∈ U

for all RQ ∈ ΣS∩TQ with µ(RQ) < δ and Q ∈ P(S). For each Q ∈ P(S), choose an
mQ such that

µ
(
SQmQ

)
>

(
1− λ

2

)
µ(S ∩ TQ)

and µ((S ∩ TQ) \ SQmQ) < δ. Let m0 = max{mQ : Q ∈ P(S)}. It follows that

1
µ(SQm0

)

∫

(S∩TQ)\SQm0

(g(·, ω)− eQ(ω)) dµ ∈ U

for all Q ∈ P(S). For each Q ∈ P(S) and (t, ω) ∈ SQm0
× Ω, set

x(t, ω) = eQ(ω)− 1
µ(SQm0

)

∫

(S∩TQ)\SQm0

(g(·, ω)− eQ(ω)) dµ.

Consider a function yQ : (S ∩ TQ)× Ω → Y+ defined by

yQ(t, ω) =

{
(1− cm0)g(t, ω) + cm0x(t, ω), if (t, ω) ∈ SQm0

× Ω;

g(t, ω), otherwise.

Since yQ(t, ω) À gQm0
(t, ω) + cm0e for all (t, ω) ∈ SQm0

× Ω, by (A3), Vt(yQ(t, ·)) >

Vt(f(t, ·)) for almost all t ∈ S ∩ TQ and yQ is an (S ∩ TQ)-allocation. Moreover,
∫

S∩TQ
yQ(·, ω)dµ =

∫

S∩TQ
((1− cm0)g(·, ω) + cm0a(·, ω)) dµ(3.4)

for all ω ∈ Ω. By Lemma 3.3, the set

HQ = cl
{(

µ(EQ),
∫

EQ

(
yQ − a

)
dµ

)
∈ R× Y Ω : EQ ∈ ΣS∩TQ

}

is convex. Using an argument similar to that in the proof of Theorem 3.6, one can
find a sequence {FQn } ⊆ ΣS∩TQ such that µ(FQn ) = λµ(S ∩ TQ) and for all ω ∈ Ω,

lim
n→∞

∫

FQn
(yQ(·, ω)− a(·, ω))dµ = λzQ(ω),

where

zQ(ω) =
∫

S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ.(3.5)

The function bQn : Ω → Y+, defined by

bQn (ω) = λzQ(ω)−
∫

FQn

(
yQ(·, ω)− a(·, ω)

)
dµ,

is Q-measurable for all n ≥ 1 and ‖bQn (ω)‖ → 0 as n → ∞ for all ω ∈ Ω. Note
that min

{
µ(FQn ∩ SQm0

) : n ≥ 1
} ≥ λ

2 µ(S ∩ TQ) > 0. Choose an nQ such that
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2bQnQ (ω)

λµ(S∩TQ) ∈ cm0U for all ω ∈ Ω. Then cm0e+
bQnQ (ω)

µ(FQnQ∩SQm0)
À 0 for all ω ∈ Ω. Define

a function gQ : FQnQ × Ω → Y+ such that

gQ(t, ω) =





yQ(t, ω) +
bQnQ (ω)

µ(FQnQ∩SQm0)
, if (t, ω) ∈ (

FQnQ ∩ SQm0

)× Ω;

yQ(t, ω), otherwise.

By (A3) and the fact that Vt

(
gQm0

(t, ·)) > Vt(f(t, ·)) for almost all t ∈ FQnQ∩SQm0
, we

have Vt(gQ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ FQnQ ∩SQm0
. So, gQ is FQnQ -allocation

and Vt(gQ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ FQnQ . Furthermore,
∫

FQnQ

(gQ(·, ω)− a(·, ω))dµ = λzQ(ω)(3.6)

for all ω ∈ Ω. Let F =
⋃{FQnQ : Q ∈ P(S)}. So µ(F ) = λµ(S). Define a function

h : F × Ω → Y+ such that h(t, ω) = gQ(t, ω) if (t, ω) ∈ FQnQ × Ω. Then h is an
F -allocation and Vt(h(t, ·)) > Vt(f(t, ·)) for almost all t ∈ F . By (3.4)-(3.6), we
have

∫
F
(h(·, ω)− a(·, ω))dµ = 0 for all ω ∈ Ω. Thus, f is NY -privately blocked by

F via h. This proves the theorem for ε ≤ µ(S). If µ(S) = µ(T ), the proof has been
completed. Otherwise, µ(T \ S) > 0. Let S′ =

⋃{SQm0
: Q ∈ P(S)}. Let A = T \ S

and u = λcm0µ(S′)e
2(1−λ)µ(A) . Again pick an arbitrary element Q ∈ P(A). By Lemma 3.3,

GQ = cl
{(

µ(BQ),
∫

BQ
(a− f − u) dµ

)
∈ R× Y Ω : BQ ∈ ΣA∩TQ

}

is convex. Hence, there exists a sequence {BQ
k } ⊆ ΣA∩TQ such that µ(BQ

k ) =
(1− λ)µ(A ∩ TQ) and for all ω ∈ Ω,

lim
k→∞

∫

BQ
k

(a(·, ω)− f(·, ω)− u)dµ = (1− λ)vQ(ω),

where

vQ(ω) =
∫

A∩TQ
(a(·, ω)− f(·, ω)− u)dµ.(3.7)

The function dQk : Ω → Y+, defined by

dQk (ω) = (1− λ)vQ(ω)−
∫

BQ
k

(a(·, ω)− f(·, ω)− u) dµ,

is Q-measurable for all k ≥ 1 and ‖dQk (ω)‖ → 0 as k →∞ for all ω ∈ Ω. Choose a

kQ such that u− dQ
kQ (ω)

(1−λ)µ(A∩TQ) À 0 for each ω ∈ Ω. It is obvious that the function
fQ : BQ

kQ × Ω → Y+, defined by

fQ(t, ω) = f(t, ω) + u− dQkQ(ω)

(1− λ)µ(A ∩ TQ)
,

is an BQ
kQ-allocation. By (A3), Vt(fQ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ BQ

kQ .
Furthermore, for each ω ∈ Ω,∫

BQ
kQ

(a(·, ω)− fQ(·, ω))dµ = (1− λ)vQ(ω).(3.8)
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Let B =
⋃{BQ

kQ : Q ∈ P(A)}. Then, µ(B) = (1− λ)µ(A). Now, define a function
fλ : B × Ω → Y+ such that fλ(t, ω) = fQ(t, ω) if (t, ω) ∈ BQ

kQ × Ω, and for any
Q ∈ P(S), consider the function ŷQ : S ∩ TQ → Y+ defined by

ŷQ(t, ω) =

{
yQ(t, ω)− cm0

2 e, if (t, ω) ∈ SQm0
× Ω;

yQ(t, ω), otherwise.

Since ŷQ(t, ω) À gQm0
(t, ω) + cm0

2 e for all (t, ω) ∈ SQm0
× Ω, by (A3), Vt(ŷQ(t, ·)) >

Vt(f(t, ·)) for almost all t ∈ S ∩ TQ. Note that ŷQ is an (S ∩ TQ)-allocation. Take
Ŝ =

⋃{S ∩ TQ : Q ∈ P(S)}. Then, µ(Ŝ) = µ(S). Define yλ : Ŝ × Ω → Y+ by
yλ(t, ω) = ŷQ(t, ω) if (t, ω) ∈ (S ∩ TQ)×Ω. It can be checked that for each ω ∈ Ω,

∫

Ŝ

a(·, ω)dµ−
∫

Ŝ

yλ(·, ω)dµ =
cm0µ(S′)

2
e.(3.9)

Consider hλ : Ŝ×Ω → Y+ defined by hλ(t, ω) = λyλ(t, ω)+(1−λ)f(t, ω). By (A′4),
Vt(hλ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ Ŝ, and further hλ is an Ŝ-allocation. Let
S̃ = Ŝ ∪ B. Since µ(S̃) = µ(S) + (1 − λ)µ(T \ S), it remains to verify that f is
NY -privately blocked by S̃. To show this, consider gλ : S̃ × Ω → Y+ defined by

gλ(t, ω) =

{
hλ(t, ω), if (t, ω) ∈ Ŝ × Ω;

fλ(t, ω), if (t, ω) ∈ B × Ω.

Obviously, gλ is an S̃-allocation and Vt(gλ(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S̃.
Furthermore, using (3.7)- (3.9), it can be simply verified that

∫

S̃

(a(·, ω)− gλ(·, ω))dµ = (1− λ)
∫

T

(a(·, ω)− f(·, ω))dµ = 0

holds for all ω ∈ Ω. This completes the proof. ¤

Remark 3.10. If Y is separable, then without (A′4) the conclusions of Theorem 3.6,
Remark 3.7 and Theorem 3.9 hold. Indeed, to restore the conclusions in Theorem
3.6 and Remark 3.7, note that

∫
S

gdµ,
∫

S
fdµ are in the convex set cl

∫
S

Pfdµ. So,∫
S
(αg + (1 − α)f)dµ ∈ cl

∫
S

Pfdµ and by (A′3),
∫

gαdµ ∈ ∫
S

Pfdµ. Similarly, to
restore the conclusion of Theorem 3.9, note that

∫
S

gQm0
dµ and

∫
S

fdµ are elements
of the convex set cl

∫
S

Pfdµ. Thus,
∫

S
(λgQm0

+ (1 − λ)f)dµ ∈ cl
∫

S
Pfdµ and by

(A3),
∫

hλdµ ∈ ∫
S

Pfdµ.

4. Robust efficiency and different types of
cores of mixed market economies

In this section, we study cores and Walrasian expectations allocations in mixed
economies. We characterize Walrasian expectations allocations in terms of robust
efficiency, and establish relationships among various types of cores. To achieve these
goals, we associate the mixed economy E in Section 2 with an atomless economy
E∗, and then apply results established in Section 3. The space of agents of E∗
is denoted by (T ∗, Σ∗, µ∗), where T ∗ = T0 ∪ T ∗1 and T ∗1 is an atomless measure
space such that µ∗(T ∗1 ) = µ(T1) and T0 ∩ T ∗1 = ∅. We assume that (T ∗,Σ∗, µ∗) is
obtained by the direct sum of (T0, ΣT0 , µT0) and the measure space T ∗1 , where µT0

is the restriction of µ to T0. It is also assumed that each agent A ∈ T1 one-to-one
corresponds to a measurable subset A∗ of T ∗1 with µ∗(A∗) = µ(A). Each agent
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t ∈ A∗ is characterized by the private information set Ft = FA; the consumption
set Y+ in each state ω ∈ Ω; the initial endowment a(t, ·) = a(A, ·); the utility
function Ut = UA; and the prior qt = qA. Therefore, the ex ante expected utility
function of every agent t ∈ A∗ is Vt = VA.

4.1. Robust efficiency. In this subsection, we characterize a Walrasian expecta-
tions equilibrium of a mixed economy by the private blocking power of the grand
coalition. For any coalition S, allocation f in E and any 0 ≤ r ≤ 1, we introduce an
asymmetric information economy E(S, f, r) which coincides with E except for the
initial endowment allocation that is given by

a(S, f, r)(t, ·) =

{
a(t, ·), if t ∈ T \ S;

(1− r)a(t, ·) + rf(t, ·), if t ∈ S.

A feasible allocation f in E is said to be robustly efficient [17] if f is not privately
blocked by the grand coalition in every economy E(S, f, r).

Lemma 4.1. Assume that an allocation f∗ in E∗ is privately blocked by a coalition
S∗ with µ∗(S∗∩T ∗1 ) > 0. Under (A1)-(A2) and (A5), for any 0 < ε ≤ µ∗(S∗∩T ∗1 ),
there exist a coalition R∗ ⊆ ⋃

Q∈P(T∗)(S
∗ ∩ T ∗Q), a sub-coalition R∗1 of R∗ and an

R∗-allocation g∗ such that

(i)
∫

R∗(a(·, ω) − g∗(·, ω))dµ∗ À 0 for all ω ∈ Ω and Vt(g∗(t, ·)) > Vt(f∗(t, ·))
for almost all t ∈ R∗,

(ii) g∗(t, ω) À 0 for all (t, ω) ∈ R∗1 × Ω and P(R∗1) = P(R∗),
(iii) µ∗(R∗ ∩ T ∗1 ) = ε and µ∗(R∗ ∩ T ∗Q) = εµ∗(S∗∩T∗Q)

µ∗(S∗∩T∗1 ) for all Q ∈ P(S∗).

Proof. If ε = µ∗(S∗∩T ∗1 ), the conclusion directly follows from Lemma 3.1. Assume
0 < ε < µ∗(S∗ ∩ T ∗1 ). Let δ = ε

µ∗(S∗∩T∗1 ) and α = 1− δ
2 . Applying Lemma 3.1, one

has a sub-coalition S∗1 of S∗ and an S∗-allocation g∗ satisfying (i)-(iii) of Lemma
3.1. For each Q ∈ P(S∗), by Lemma 3.3, the set

HQ = cl
{(

µ∗(EQ), µ∗(EQ ∩ T ∗1 ),
∫

EQ
(a− g∗)dµ∗

)
∈ R2 × Y Ω : EQ ∈ Σ∗S∗∩T∗Q

}

is convex. Similar to the proof of Theorem 3.6, for each Q ∈ P(S∗), there exists
a sequence {EQ

n } ⊆ Σ∗S∗∩T∗Q
such that µ∗(EQ

n ) = δµ∗(S∗ ∩ T ∗Q), µ∗(EQ
n ∩ T ∗1 ) =

δµ∗(S∗ ∩ T ∗Q ∩ T ∗1 ) and

lim
n→∞

∫

EQn
(a− g∗)dµ∗ = δ

∫

S∗∩T∗Q

(a− g∗)dµ∗.

Since µ∗(S∗1 ∩ T ∗Q) > αµ∗(S∗ ∩ T ∗Q) for all Q ∈ P(S∗), then µ∗(S∗1 ∩ EQ
n ) > 0 for

all n ≥ 1 and all Q ∈ P(S∗). Let En =
⋃
Q∈P(S∗) EQ

n for all n ≥ 1. Then

lim
n→∞

∫

En

(a− g∗)dµ∗ = δ

∫

S∗
(a− g∗)dµ∗.

Pick an n0 such that
∫

En0
(a− g∗)dµ∗ À 0, and put R∗ = En0 , R∗1 = R∗ ∩ S∗1 . ¤

Lemma 4.2. [11] Assume Y is separable. Under (A1)-(A3) and (A5), f∗ is a
Walrasian expectations allocation of E∗ if and only if it is in the private core of E∗.



16 A. BHOWMIK AND J. CAO

Lemma 4.3. [11] Assume that E satisfies (A1)-(A3) and (A5). Let f∗ be a feasible
allocation of E∗ and 0 < ε < µ∗(T ∗). If f∗ is not in the private core of E∗, then
there is a coalition S with µ∗(S) = ε privately blocking f∗.

The following lemma is similar to Theorem 3.5 in [8].

Lemma 4.4. Assume that f is a robustly efficient allocation of E. Under (A1)-
(A7), there is an allocation f̂ in E such that f̂ |T0×Ω = f , f̂(·, ω) is constant on T1

for each ω ∈ Ω, VT1(f̂(t, ·)) = VT1(f(t, ·)) for all t ∈ T and
∫

T
fdµ =

∫
T

f̂dµ.

Proof. Consider the allocation f̂ : T × Ω → Y+ defined by

f̂(t, ω) =

{
f(t, ω), if (t, ω) ∈ T0 × Ω;

1
µ(T1)

∫
T1

f(·, ω)dµ, if (t, ω) ∈ T1 × Ω.

To complete the proof, one only needs to verify VT1(f̂(t, ·)) = VT1(f(t, ·)) holds for
all t ∈ T1. Suppose that there exists a coalition D ⊆ T1 such that VT1(f̂(t, ·)) >
VT1(f(t, ·)) for all t ∈ D. Then applying an argument similar to that in Lemma 3.1,
one can find some r1 ∈ (0, 1) and a sub-coalition C ⊆ D such that VT1(r1f̂(t, ·)) >

VT1(f(t, ·)) for all t ∈ C. Let r2 = µ(C)
µ(T1)

and r3 = r1 + η for some η > 0 such that
r3 ∈ (0, 1). Then r2 ∈ (0, 1]. Suppose that for each ω ∈ Ω,

α(ω) = r2r3

(∫

T

f(·, ω)dµ−
∫

T

a(·, ω)dµ

)
− r2(1− r3)

∫

T1

a(·, ω)dµ.

Note that α(ω) ∈ −intY+ for each ω ∈ Ω. Choose an ε > 0 such that for each ω ∈ Ω,
α(ω) + B(0, 2ε) ⊆ −intY+. By Lemma 3.3, H = cl

{∫
E

(f − a) ∈ Y Ω : E ∈ ΣT0

}
is

convex. So there is an E0 ∈ ΣT0 such that ‖ ∫
E0

(f −a)− r2r3

∫
T0

(f −a)‖ < ε. Pick
an u ∈ B(0, ε) ∩ intY+ and put S = E0 ∪ C. Then, µ(S) < µ(T ). Note that the
function g : S × Ω → Y+, defined by

g(t, ω) =

{
f̂(t, ω) + u

2µ(E0)
, if (t, ω) ∈ E0 × Ω;

r3f̂(t, ω) + u
2µ(C) , if (t, ω) ∈ C × Ω,

is an S-allocation and Vt(g(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S. Further, g(t, ω) À
0 for all (t, ω) ∈ S × Ω and

∫
S

g(·, ω)dµ =
∫

E0
f(·, ω)dµ + r2r3

∫
T1

f(·, ω)dµ + u for
all ω ∈ Ω. By (A6),

∫
C

a(·, ω)dµ = r2

∫
T1

a(·, ω)dµ for all ω ∈ Ω. Then it can be
easily verified that for all ω ∈ Ω,

−α(ω) +
∫

S

(g(·, ω)− a(·, ω))dµ =
∫

E0

(f − a)− r2r3

∫

T0

(f − a) + u ∈ B(0, 2ε).

It follows that
∫

S
g(·, ω)dµ − ∫

S
a(·, ω)dµ ¿ 0 for all ω ∈ Ω. Select an z À 0 such

that
∫

S
a(·, ω)dµ− ∫

S
g(·, ω)dµ À z for each ω ∈ Ω and pick an r ∈ (0, 1) such that

r1f̂(t, ω) ≤ rg(t, ω) for all (t, ω) ∈ C ×Ω. Note that the function h1 : C ×Ω → Y+,
defined by h1(t, ω) = r1f̂(t, ω), is a C-allocation and VT1(h1(t, ·)) > VT1(f(t, ·)) for
all t ∈ C. By Lemma 3.4, there is an E0-allocation h2 : E0 × Ω → Y+ such that
Vt(h2(t, ·)) > Vt(f(t, ·)) for almost all t ∈ E0, and

∫

E0

h2(·, ω)dµ =
∫

E0

(rg(·, ω) + (1− r)f(·, ω)) dµ
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for all ω ∈ Ω. Now, h : S × Ω → Y+, defined by

h(t, ω) =

{
h2(t, ω), if (t, ω) ∈ E0 × Ω;

h1(t, ω), if (t, ω) ∈ C × Ω,

is an S-allocation, Vt(h(t, ·)) > Vt(f(t, ·)) for almost all t ∈ S, and
∫

S

h(·, ω)dµ ≤
∫

S

(rg(·, ω) + (1− r)f(·, ω))dµ for all ω ∈ Ω.(4.1)

Define a function y : T × Ω → Y+ such that

y(t, ω) =

{
h(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω) + rz
µ(T\S) , if (t, ω) ∈ (T \ S)× Ω.

By (A3), Vt(y(t, ·)) > Vt(f(t, ·)) for almost all t ∈ T \ S. Thus, y is an allocation
and Vt(y(t, ·)) > Vt(f(t, ·)) for almost all t ∈ T . Furthermore, using (4.1) and∫

S
(a(·, ω)− g(·, ω))dµ À z, one can simply verify that for each ω ∈ Ω,

∫

T

(y(·, ω)− a(T \ S, f, r)(·, ω))dµ ≤ (1− r)
∫

T

(f(·, ω)− a(·, ω))dµ ≤ 0.

This means that f is privately blocked by the grand coalition in E(T \S, f, r), which
contradicts with the fact that f is robustly efficient. So VT1(f(t, ·)) ≥ VT1(f̂(t, ·))
for all t ∈ T1. Suppose that there is a coalition W ⊆ T1 such that VT1(f(t, ·)) >

VT1(f̂(t, ·)) for all t ∈ W . By (A4), one can easily derive

VT1(f̂(t, ·)) >
1

µ(T1)

∫

T1

VT1(f̂(t, ·))dµ = VT1(f̂(t, ·)),

which is a contradiction. Thus, VT1(f(t, ·)) = VT1(f̂(t, ·)) for all t ∈ T1. ¤

Next, in answering a question mentioned Hervés-Beloso and Moreno-Garćıa in
[17, p.705], we provide a characterization of Walrasian expectations equilibria by the
veto power of the grand coalition in a mixed economy with asymmetric information
and an ordered separable Banach space whose positive cone has an interior point
as the commodity space.

Theorem 4.5. Assume that Y is separable. Under (A1)-(A7), f is a Walrasian
expectations allocation of E if and only if it is a robustly efficient allocation of E.
Proof. Suppose that f is a Walrasian expectations allocation of E . Applying an
argument similar to that in [17], one can show that it is robustly efficient.

Conversely, let f be a robustly efficient allocation of E . By Lemma 4.4, there
is an allocation f̂ in E such that f̂ |T0×Ω = f , f̂(·, ω) is a constant c(ω) on T1 for
each ω ∈ Ω, VT1(f̂(t, ·)) = VT1(f(t, ·)) for all t ∈ T1 and

∫
T

fdµ =
∫

T
f̂dµ. Suppose

that f is not a Walrasian expectations allocation of E . Then f̂ is not a Walrasian
expectations allocation for E . To see this, let (f̂ , π) be a Walrasian expectations
equilibrium for E , d ∈ intY+ and α > 0. By (A3), one has Vt(f(t, ·) + αd) >

Vt(f(t, ·)) = Vt(f̂(t, ·)) for all t ∈ T . It follows that for almost all t ∈ T ,
∑

ω∈Ω

〈π(ω), f(t, ω) + αd〉 >
∑

ω∈Ω

〈π(ω), f̂(t, ω)〉.
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Letting α → 0, one has
∑

ω∈Ω〈π(ω), f(t, ω)〉 ≥ ∑
ω∈Ω〈π(ω), f̂(t, ω)〉. So,

∑

ω∈Ω

〈π(ω), f(t, ω)〉 =
∑

ω∈Ω

〈π(ω), f̂(t, ω)〉 ≤
∑

ω∈Ω

〈π(ω), a(t, ω)〉

holds for almost all t ∈ T , and one has a contradiction. Therefore, the allocation
f̂∗ : T ∗ × Ω → Y+ defined by

f̂∗(t, ω) =

{
f̂(t, ω), if (t, ω) ∈ T0 × Ω;

c(ω), if (t, ω) ∈ T ∗1 × Ω,

is not a Walrasian expectations allocation of E∗. By Lemma 4.2, f̂∗ is not in the
private core of E∗. Pick any A0 ∈ T1 with µ(A0) = ε > 0. According to Lemma
4.3, f̂∗ is privately blocked by a coalition S∗ of E∗ with µ∗(S∗) = µ∗(T0) + ε,
which yields µ∗(S∗ ∩ T ∗1 ) ≥ ε. By Lemma 4.1, there exists a coalition R∗ ⊆ S∗,
a sub-coalition R∗1 of R∗ and an R∗-allocation g∗ such that (i)-(iii) of Lemma 4.1
hold. Take a coalition E of E such that E = (R∗ ∩ T0) ∪A0, and define a function
g̃ : E × Ω → Y+ by

g̃(t, ω) =

{
g∗(t, ω), if (t, ω) ∈ (R∗ ∩ T0)× Ω;
1
ε

∫
R∗∩T∗1

g∗(·, ω)dµ∗, otherwise.

Further, define another function g̃∗ : E∗ × Ω → Y+ such that

g̃∗(t, ω) =

{
g̃(t, ω), if (t, ω) ∈ (R∗ ∩ T0)× Ω;

g̃(A0, ω), if (t, ω) ∈ A∗0 × Ω.

By (A4), one concludes that g̃∗ is an E∗-allocation such that Vt(g̃∗(t, ·)) > Vt(f̂∗(t, ·))
for almost all t ∈ E∗ and

∫
E∗ g̃∗(·, ω)dµ∗ ¿ ∫

E∗ a(·, ω)dµ∗ for all ω ∈ Ω. Select
some b À 0 such that

∫
E∗(a(·, ω)dµ∗ − g̃∗(·, ω))dµ∗ À b for all ω ∈ Ω, and con-

sider the function g∗b : E∗ × Ω → Y+ defined by g∗b (t, ω) = g̃∗(t, ω) + b
2µ∗(E∗) .

By (A3), Vt(g∗b (t, ·)) > Vt(f̂∗(t, ·)) for almost all t ∈ E∗. Note that the function
gb : E × Ω → Y+, defined by

gb(t, ω) =

{
g∗b (t, ω), if (t, ω) ∈ (E ∩ T0)× Ω;
1
ε

∫
A∗0

g∗b (·, ω)dµ∗, otherwise,

is an E-allocation such that Vt(gb(t, ·)) > Vt(f(t, ·)) for almost all t ∈ E. Choose
an r ∈ (0, 1) satisfying g̃(A0, ω) ≤ rgb(A0, ω) for each ω ∈ Ω. By Lemma 3.4,
there exists an (E ∩ T0)-allocation hb such that Vt(hb(t, ·)) > Vt(f(t, ·)) for almost
all t ∈ E ∩ T0 and

∫
E∩T0

hb(·, ω)dµ =
∫

E∩T0
(rgb(·, ω) + (1 − r)f(·, ω))dµ. Finally,

consider the function h : E × Ω → Y+ defined by

h(t, ω) =

{
hb(t, ω), if (t, ω) ∈ (E ∩ T0)× Ω;

g̃(t, ω), otherwise.

Note that h is an E-allocation. Applying an argument similar to the final part of
Lemma 4.4, one can show that f is not robustly efficient. This is a contradiction
and so f is a Walrasin expectations allocation. ¤

Remark 4.6. It is clear that the conclusion of Theorem 4.5 is valid in atomless
economies whenever assumptions (A1)-(A3) and (A5) hold. By Lemma 4.3, the
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coalition S of E(S, f, r) in Theorem 4.5 can be chosen arbitrarily small in an atom-
less economy. Thus, perturbation of small coalition is enough to characterize the
Walrasian expectations allocations.

4.2. The RW -fine core and the ex-post core. In this subsection, we establish
a relationship between the RW -fine core and the ex-post core of E . An information
structure for a coalition S is a family {Gt : t ∈ S} of σ-algebras such that Gt ⊆ F
for all t ∈ S and {t ∈ S : Gt = H} ∈ Σ for every σ-algebra H ⊆ F . Since Ω is
finite, the family {G ⊆ F : G is a σ-algebra} is finite. Thus, it is possible that for
an information structure {Gt : t ∈ S} of S and two distinct agents t and t′ of S,
Gt = Gt′ . A communication system for a coalition S is an information structure
{Gt : t ∈ S} for S such that Ft ⊆ Gt ⊆

∨
PS for almost all t ∈ S, and it is

called a full communication system if Gt =
∨

PS for almost all t ∈ S. Further, for
any σ-algebra H with H ⊆ F , F-measurable function f : Ω → Y+ and t ∈ T , let
Et[f |H] be the conditional expectation of f given H with respect to qt. For any
coalition S, we now assume that an S-allocation (including initial endowment) is a
function f : S × Ω → Y+ such that f(·, ω) ∈ LS

1 (µ, Y+) for each ω ∈ Ω and f(t, ·)
is F-measurable for almost all t ∈ S. As mentioned previously, T -allocations are
simply called allocations.

Definition 4.7. [27] An allocation f in E is RW-fine2 blocked by a coalition S if
there are an S-allocation g, a communication system {Gt}t∈S for S, and a nonempty
event A ∈ ⋂

t∈S Gt such that
∫

S
g(·, ω)dµ =

∫
S

a(·, ω)dµ for all ω ∈ A, and

Et[Ut(·, g(t, ·))|Gt](ω) > Et[Ut(·, f(t, ·))|Gt](ω)

for all ω ∈ A and almost all t ∈ S. The RW-fine core of E is the set of all feasible
allocations that cannot be RW -fine blocked by any coalition.

Definition 4.8. [9] An allocation f in E is ex-postly blocked by a coalition S if there
exist an S-allocation g and a state ω0 ∈ Ω such that

∫
S

g(·, ω0)dµ =
∫

S
a(·, ω0)dµ,

and Ut(ω0, g(t, ω0)) > Ut(ω0, f(t, ω0)) for almost all t ∈ S. The ex-post core of E is
the set of all feasible allocations that cannot be ex-postly blocked by any coalition.

Lemma 4.9. Assume that f is in the RW -fine core of E. Under (A1)-(A9), there
exists an allocation f̂ in E such that f̂ |T0×Ω = f , f̂(·, ω) is constant on T1 for each
ω ∈ Ω, UT1(ω, f̂(t, ω)) = UT1(ω, f(t, ω)) for all (t, ω) ∈ T1×Ω and

∫
T

fdµ =
∫

T
f̂dµ.

Proof. Consider the allocation f̂ : T × Ω → Y+ defined by

f̂(t, ω) =

{
f(t, ω), if (t, ω) ∈ T0 × Ω;

1
µ(T1)

∫
T1

f(·, ω)dµ, if (t, ω) ∈ T1 × Ω.

One needs to verify UT1(ω, f̂(t, ω)) = UT1(ω, f(t, ω)) for all (t, ω) ∈ T1×Ω. Suppose
that there exist a coalition D ⊆ T1 and a state ω0 ∈ Ω such that UT1(ω0, f̂(t, ω0)) >
UT1(ω0, f(t, ω0)) for all t ∈ D. Then, a contradiction can be derived by a proof
similar to that of Lemma 4.4 except for the fact that the coalition E0 can be chosen
as

⋃
Q∈P(T0)

EQ
0 , where each EQ

0 satisfies the condition
∥∥∥∥∥
∫

EQ0

(f(·, ω0)− a(·, ω0))dµ− r2r3

∫

T0∩TQ
(f(·, ω0)− a(·, ω0))dµ

∥∥∥∥∥ <
ε

|P(T0)| ,

2RW is the abbreviation of Robert Wilson.
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the blocking coalition is of the form R = S
⋃ (

T0 \
⋃
Q∈P(T0)

TQ
)
, where S is

defined in Lemma 4.4, and the function g : R → Y+ is defined by

g(t) =





f̂(t, ω0) + u
2µ(E0)

, if t ∈ E0;

r3f̂(t, ω0) + u
2µ(C) , if t ∈ C;

f(t, ω0), otherwise.

Note that
∨

PR =
∨

PT = F and
∫

R
gdµ ≤ ∫

R
a(·, ω0)dµ. Let b =

∫
R

a(·, ω0) −∫
R

gdµ. Consider a function h : R → Y+ defined by h(t) = g(t) + b
µ(R) . By (A3),

Ut(ω0, h(t)) > Ut(ω0, f(t, ω0)) for almost all t ∈ R. Let A(ω0) denote the atom of
F containing ω0. Define a function y : R× Ω → Y+ by

y(t, ω) =

{
h(t), if (t, ω) ∈ R×A(ω0);

a(t, ω), otherwise.

Then, y is an R-allocation. Since a(t, ·) is F-measurable, a(t, ω) = a(t, ω′) for
almost all t ∈ R and all ω, ω′ ∈ A(ω0). Hence,

∫
R

y(·, ω)dµ =
∫

R
a(·, ω)dµ for all

ω ∈ A(ω0). By (A8),
∨

PR = F . Thus using (A9), one has Et[Ut(·, f(t, ·))|∨ PR] =
Ut(·, f(t, ·)) and Et[Ut(·, y(t, ·))|∨ PR] = Ut(·, y(t, ·)). Further, for all ω ∈ A(ω0)
and almost all t ∈ R, one has that

Et

[
Ut(·, y(t, ·))∣∣

∨
PR

]
(ω) = Ut(ω, y(t, ω)) = Ut(ω0, ĥ(t))

> Ut(ω0, f̂(t, ω0))

= Et

[
Ut(·, f(t, ·))

∣∣∨ PR

]
(ω),

which implies that f is RW -fine blocked by R via y. This contradicts with the
assumption. Hence, UT1(ω, f(t, ω)) ≥ UT1(ω, f̂(t, ω)) for all (t, ω) ∈ T1 × Ω. By
an argument similar to that in Lemma 4.4, one can further show UT1(ω, f̂(t, ω)) =
UT1(ω, f(t, ω)) for all (t, ω) ∈ T1 × Ω. ¤

The following theorem is an extension of Theorem 3.1 in [9] to mixed economies
with infinitely many commodities and the exact feasibility. In addition, the as-
sumption PT = P(T ) used by Einy et al. is not assumed in our result. To this end,
we assume that for each ω ∈ Ω, E(ω) denotes the symmetric information economy
whose space of agents are T , and whose the consumption set, the utility function
and the initial endowment of agent t are Y+, Ut(ω, ·) and a(t, ω) respectively.

Theorem 4.10. Assume that E satisfies (A1)-(A9). If f is in the RW -fine core of
E, then it is also in the ex-post core of E .

Proof. Suppose that f is not in the ex-post core of E . The allocation f̂ defined in
Lemma 4.9 is not in the ex-post core of E either. Then there is a state ω0 ∈ Ω such
that f̂(·, ω0) is a feasible allocation in the symmetric information economy E(ω0)
and is not in the core of E(ω0). Consider an allocation f̂∗ : T ∗×Ω → Y+ defined by
f̂∗(t, ω) = f̂(t, ω), if (t, ω) ∈ T0×Ω; and f̂∗(t, ω) = f̂(T1, ω), if (t, ω) ∈ T ∗1×Ω, where
f̂(T1, ω) denotes the constant value of f̂(·, ω) on T1 for each ω ∈ Ω. Then f̂∗(·, ω0)
is a feasible allocation in E∗(ω0) and f̂∗(·, ω0) is not in the core of E∗(ω0). Choose
an arbitrary A0 ∈ T1 and let µ(A0) = ε > 0. Note that under (A3), the conclusion
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of Lemma 4.3 also holds with the exact feasibility in a deterministic economy. Thus,
f̂∗(·, ω0) is blocked by a coalition S∗ via ĝ∗ such that µ∗(S∗) = µ∗(T0) + ε, if

µ∗(T ∗1 \A∗0) < min{µ∗(T0 ∩ T ∗Q) : Q ∈ P(T0)},
and otherwise, µ∗(S∗) > µ∗(T0)−min{µ∗(T0∩T ∗Q) : Q ∈ P(T0)}+ µ∗(T ∗1 ). Clearly,
µ∗(S∗∩T ∗1 ) ≥ ε and

∨
P(S∗) =

∨
P(T ). Let α = ε

µ∗(S∗∩T∗1 ) . Applying (A3) and an
argument similar to that in Lemma 4.1, one can show that there exists a coalition
R∗ ⊆ ⋃

Q∈P(T∗)(S
∗ ∩ T ∗Q) blocking f̂∗(·, ω0) via ĥ∗ : R∗ → Y+ in E∗(ω0) such that

µ∗(R∗ ∩ T ∗Q) = αµ∗(S∗ ∩ T ∗Q) for all Q ∈ P(S∗) and µ∗(R∗ ∩ T ∗1 ) = ε. Note that∨
P(R∗) =

∨
P(S∗). Consider a coalition R of E define by R = (R∗ ∩ T0) ∪ A0.

Then,
∨

P(R) =
∨

P(T ). We consider a function ĥ : R → Y+ defined by

ĥ(t) =





ĥ∗(t), if t ∈ R∗ ∩ T0;
1
ε

∫
R∗∩T∗1

ĥ∗dµ∗, otherwise.

Obviously, Ut(ω0, ĥ(t)) > Ut(ω0, f̂(t, ω0)) if t ∈ R∗ ∩ T0. By (A4), UT1(ω0, ĥ(t)) >

UT1(ω0, f̂(t, ω0)) if t = A0. Moreover,
∫

R
ĥdµ =

∫
R

a(·, ω0)dµ. Define a coalition

E = R ∪
(
T0 \

⋃
Q∈P(T0)

TQ
)
. Then

∨
PT =

∨
PE . Let A(ω0) be the atom of∨

PT containing ω0. Now, define a function y : E × Ω → Y+ such that

y(t, ω) =

{
ĥ(t), if (t, ω) ∈ R×A(ω0);

a(t, ω), otherwise.

Then, y is an E-allocation. Applying an argument similar to that in Lemma 4.9,
one can show that f is RW -fine blocked by E via y. This contradicts with the
assumption, which completes the proof. ¤

Remark 4.11. It is obvious from the proof of Theorem 4.10 that a similar result
holds for atomless economies under (A1)-(A3), (A5) and (A8)-(A9) only.

4.3. The weak fine core. In this subsection, we extend Proposition 5.1 in [10] to
mixed economies with infinitely many commodities and the exact feasibility. We
also relax the assumption PT = P(T ).

Definition 4.12. A feasible assignment f in E is said to be in the weak fine core
of E if f(t, ·) is

∨
PT -measurable for almost all t ∈ T , and f cannot be NY -fine

blocked by any coalition.

In the sequel, the economy Es is similar to E except for the information of every
agent being

∨
PT . The proof of the next lemma is similar to that of Lemma 4.9.

Lemma 4.13. Assume that f is in the weak fine core of E. Under (A1)-(A7),
there exists an allocation f̂ such that f̂ |T0×Ω = f , f̂(·, ω) is constant on T1 for each
ω ∈ Ω, VT1(f̂(t, ·)) = VT1(f(t, ·)) for almost all t ∈ T1 and

∫
T

fdµ =
∫

T
f̂dµ.

Theorem 4.14. Assume that E satisfies (A1)-(A7). Then f is in the weak fine
core of E if and only if f is in the private core of Es.

Proof. It is clear that if f is in the private core of Es, then f is in the weak fine
core of E . Now, assume that f is in the weak fine core of E . Let

∨
PT be generated

by the partition {A1, ..., Ak} of Ω, and let X denote the set of all
∨

PT -measurable
elements of (Y+)Ω. Define a function γ : X → Y k

+ such that γ(f) = fs, where
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fs = (f(ω1), ..., f(ωk)) if ωj ∈ Aj for all 1 ≤ j ≤ k. Now for all t ∈ T , consider
a function V s

t : Y k
+ → R defined by V s

t (fs) = Vt(γ−1(fs)). Let Ẽs be a symmetric
information economy whose space of economic agents is (T,Σ, µ), and in which the
consumption set of every agent is Y k

+ , the utility function and initial endowment
of agent t are V s

t and as(t) = γ(a(t, ·)) respectively. Suppose that f is not in the
private core of Es. Then fs is not in the private core of Ẽs. Thus f̂s is is not
in the private core of Ẽs. Applying an argument similar to that in the proof of
Theorem 4.10, one can show that there is a coalition R ⊆ ⋃

Q∈P(T ) TQ blocking fs

via hs such that
∨

P(R) =
∨

P(T ). Let E = R ∪
(
T0 \

⋃
Q∈P(T0)

TQ
)
. Obviously,∨

PT =
∨

PE . Define a function ys : E → Y k
+ by

ys(t) :=

{
hs(t), if t ∈ R;

as(t), otherwise.

Note that V s
t (ys(t)) > V s

t (fs(t)) for almost all t ∈ E. Furthermore,
∫

E
ysdµ =∫

E
asdµ. Let y(t, ·) = γ−1(ys(t)) for all t ∈ E. Then, y(t, ·) is

∨
PE-measurable and

Vt(y(t, ·)) > Vt(f(t, ·)) for almost all t ∈ E. Moreover,
∫

E
y(·, ω)dµ =

∫
E

a(·, ω)dµ
for all ω ∈ Ω. Thus, f is also NY -fine blocked by E via y. This contradicts with
the fact that f is in the weak fine core of E . Consequently, f must be in the private
core of Es. ¤

Remark 4.15. A similar conclusion can be derived for atomless economies under
(A1)-(A3) and (A5) only.
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[16] C. Hervés-Beloso, E. Moreno-Garćıa, N.C. Yannelis, Characterization and incentive compati-
bility of Walrasian expectations equilibrium in infinite dimensional commodity spaces, Econ.
Theory 26 (2005), 361–381.
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