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Abstract 

There has been a rapid amount of ecosystem and biodiversity loss globally. Coastal 

ecosystems such as sand dunes have been particularly at risk, from climate change, 

residential intensification and invasive species (Haddad et al., 2015). This study aimed to 

analyse the effectiveness of Unmanned Aerial Vehicles (UAVs) for vegetation classification 

and monitoring.  

Two main techniques were employed for vegetation classification: traditional pixel-based and 

Object Orientated Image Analysis (OBIA). In recent years classification algorithms have 

increasing focused on OBIA because of its ability to include information not solely spectral 

but also shape, texture, compactness and spatial relationships (Blaschke., 2013). In this study 

OBIA had overall accuracies of 80.09% in the March 2019 flight compared to the next best 

pixel-based algorithm of 75.77% for the same March Flight. The accuracies for all 

classification algorithms were reduced in the November 2018 Flight, 77.61% for the OBIA 

algorithm. This trend of lower accuracy in November was seen in the other pixel-based 

classification algorithms also. 

While the overall accuracy was high, there were still many individual thematic classes in the 

study which were consistently misclassified. However, a promising result was Pampas grass/ 

Cortaderia selloana (an invasive species) achieved higher levels of accuracy when using 

OBIA classifications compared to pixel-based. 

UAVs represent a unique opportunity for ecological research. They are relatively 

inexpensive, can be launched rapidly and can access areas either to remote, dangerous and 

reduces the environmental impacts caused by trampling via traditional field methods. As the 

sensor technology, UAV platform technology and classification algorithms continue to 

evolve, the potential for the use of UAVs in environmental research is highly promising. 
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1. Introduction 

 

1.1 Sand Dunes Importance in New Zealand 

Habitat and biodiversity loss are occurring rapidly within many global ecosystems. Increased 

public awareness has led to pressure on governing bodies to review current management 

processes and funding allocation for conservation measures (Haddad et al., 2015; Perring., 

2012). Climate change, urban intensification and invasive plant species are critical threats to 

current ecosystem health. Coastal areas are particularly at risk of changing sea levels, climate 

change and residential intensification (Thomas et al., 2018). Sand dune vegetation is also 

vulnerable to invasive species due to the low levels of competition within these ecosystems 

(Brown and McLaughlin, 2002; Defeo et al., 2009). 

Invasive species can dramatically influence the ecological function and diversity of many 

ecosystems globally. For example, in many coastal environments, non-native grasses on 

foredunes out-compete native plants and drastically alter the form and function of the dune 

ecosystem (Hilton, 2006; Barrows et al., 2009). The efficient sand-binding grasses, such as 

marram grass, were often planted for dune stabilisation to protect land with high economic 

value for uses such as farming, forestry or residential housing (French et al., 2011).  

Dune vegetation has changed dramatically during the colonisation period of the late 1800s to 

early 1900 (Hilton et al., 2006). Marram grass (Ammophila Arenaria) was introduced as a 

dune stabiliser throughout New Zealand (Sykes and Wilson, 1991). Many studies have shown 

that Ammophila dominated foredunes produce large steep foredunes. Hilton and Harvey's 

(2002) study suggested that Ammophila dominated foredunes reduce or prevent blowouts and 

transgressive dune development. Transgressive dunes systems are more ecologically and 

morphologically diverse.  
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While the influence of marram grass on dune ecosystems has been studied extensively 

(Thomas et al., 2018), other non-native species also dominate the New Zealand coastal 

landscape. One of these species is tree lupin (Lupinus arboreus). Lupinus arboreus was 

planted in many coastal back dunes to support forestry due to its properties for nitrogen 

fixation (Thomas et al., 2018). Exploring the relationship between native and non-native 

species within the dune ecosystem and the key drivers of the distribution and abundance is 

essential for monitoring and restoring dune ecosystems. 

Coastal dune lands are prominent around much of New Zealand's coastland. Cockayne 

described them as New Zealand's "most common landform" (Cockayne in Hilton et al., 

2000). However, natural coastal ecosystems have been significantly reduced from pre-

colonisation times (Partridge, 1992).  These areas are considered of high ecological 

importance due to the amount of endemic vegetation within this ecosystem. In particular, 

species such as pingao and spinifex dominate the active foredunes and act as sand binders. 

The ecosystem is aeolian dominated, and the movement of sand by wind and waves and these 

forces dictate the morphological and ecological structure within these areas.   

In New Zealand, government strategies such as the New Zealand Biodiversity Strategy (DOC 

and MfE) have been introduced to address the need to assess and monitor New Zealand's 

ecosystems. Decision making and management plans require detailed and robust information 

on species and habitat diversity, distribution and how these differ over time. As a result, there 

have been various morphological and ecological surveys of sand dunes within New Zealand. 

A history of the different coastal surveys is explored in the following section. 
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1.2 New Zealand Sand Dunes - A history of National Surveys and Classification Schemes 

 

1.2.1 The First National Coastal Sand Dune Survey 

Leonard Cockayne conducted the first coastal sand dunes survey in 1911 (Cockane, 1911). 

This survey aimed to assess the botany and character of New Zealand sand dunes. Dune plant 

associations identified in this survey included native sand binders (pingao and spinifex), 

grass-dominated dunes, shrub or forest cover and inter-dune wetlands and lakes (Hilton et al., 

2000). He also estimated the total dune area of New Zealand to be 128,740ha (118900 in the 

North Island and 9840 in the South Island). In 1958, another estimation of active duneland 

was carried out with an estimated area of 127 000 ha being derived (Hilton et al., 2000). The 

1911 survey was commissioned after the Sand Drift Act 1907 had been enacted, and, 

therefore, he concluded "the final treatment of dunes should assuredly be 

afforestation'(Cockayne 1911, p. 4). Following this report, marram grass was widely planted 

to stabilise the active sand dunes. Marram grass has subsequently propagated widely and is 

now the most prevalent invasive species in the foredune environment (Hilton et a., 2005).  

 

1.2.2 Creation of National Inventories for Conservation Management of Coastal 

Environments (1990s) 

The Sand Dune and Beach Vegetation Inventory was created in 1992 by the Department of 

Scientific and Industrial Research and represented the first national conservation assessment 

of New Zealand's sand dunes (Hilton et al., 2000). This assessment aimed to assess each dune 

system's natural and botanical values, whereby a ranking between 0 and 20 was assigned 

based on vegetation community and landform diversity, the proportion of native species, 

amount of human modification, and the proportion of invasive weed species. From the 

survey, a total of 53 sites were identified as nationally significant for conservation. The 

Inventory categorises dune vegetation zones as strandline, foredune, back dune, moist inter-
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dune depressions and stone pavements (Hilton et al., 2000). The ranking assigned to each 

dune system is based on the ecological and morphological characteristics of these categories. 

However, the Inventory was criticised by Rapson (1996) for not including interdune wetland 

and lake habitats in addition to missing certain types of dunes. Another criticism of the 

Inventory was the lack of priority associated with stabilised duneland ecological 

characteristics (Hilton et al., 2000). 

The Protected Natural Areas Program (PNAP) was created for identifying indigenous plant 

communities' characteristics and locations not represented by existing surveys. 

Recommended Areas for Protection (RAPS) are defined by the "representativeness, diversity, 

special features, naturalness, viability, size and shape and buffering from external stresses" 

(Hilton et al., 2000). A total of 179 ecological districts (EDs); however, only 25 of the 123 

coastal EDs were surveyed as of 1998 (Hilton et al., 2000). The PNAP surveys identify larger 

ecological districts than the Sand Dune and Vegetation Inventory; therefore, back dune and 

stabilised indigenous forested areas at the margins of the dune area are given greater weight 

in the survey. However, any advantage of this methodology is offset by the lack of surveys 

conducted compared to the Nationwide surveys completed between 1984 and 1988 by the 

Sand Dune and Beach Vegetation Inventory. 

The Inventory of New Zealand Active Dunelands was commissioned by the Department of 

Conservation and created by Hilton, Macauley and Henderson (Hilton etl al., 2000). Active 

dunelands from the 1950s to the 1980s were constructed from topographic maps and other 

ancillary information, while maps of the 1990s active duneland were created from 

contemporary aerial photography. It was found that active duneland had decreased from 

Cockayne's estimate of 129 000 ha to 39 000 ha, a 70% reduction (Hilton et al., 2000). 
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1.2.3 National Ecosystem Classification (2014) 

The National Ecosystem Classification was created by the Department of Conservation to 

categorise the natural environment into defined ecosystems (Singers and Rogers, 2014). The 

ecosystem classification aims to describe both biotic and abiotic relationships to include 

"physical variable, process variables and biota" to analyse each ecosystem's environmental 

and physical drivers (Singers and Rogers, 2014). In this Classification, ecosystems are 

divided into zonal and azonal ecosystems. Zonal ecosystems drivers include macroclimatic 

variables such as temperature and rainfall, and azonal ecosystems are driven by edaphic 

extremes such as soil chemistry or extreme heat. A total of 152 ecosystems were classified, 

78 zonal and 72 azonal.  

In this Classification, five active coastal dunes ecosystems were identified (DN1-5), all of 

which are azonal ecosystems. Active dunes are classified as aeolian formed landforms along 

the coast of New Zealand. The distinction between active and stable dunes is influenced by 

the development of scrub vegetation and by the appearance of soil horizons in stable dune 

systems (Singers and Rogers, 2014). The five classifications are separated by temperature and 

biographic pattern. This Classification also includes dune slacks and deflation hollows that 

are temporary wetlands. These are recognised by Singers and Rogers (2014) as potentially 

being its own ecosystem classification. 

Due to the National Ecosystem Classification system's categorisation by physical and 

environmental drivers, many stabilised back dune forests are classified as a different category 

as it is influenced by zonal ecosystem drivers. Additionally, fixed or relict dunes are excluded 

from this Classification and are also classified as a zonal ecosystem (Singers and Rogers, 

2014). Similar to the PNAP surveys, this ecosystem approach allows the forested areas back 

dunes to be given an ecological weight in accordance with the specific drivers and botany of 

the area.  
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1.2.4 Adoption of the National Ecosystem Classification by Auckland Council 

Indigenous Terrestrial and Wetland Ecosystems of Auckland Classification (2017) 

Auckland Council has classified the Auckland region into 36 terrestrial and wetland 

ecosystems. This work was based upon the previously mentioned National Ecosystem 

Classification system produced by the Department of Conservation (Singers et al., 2017). 

Adoption of the National Ecosystem Classification System has spread across multiple 

regional authorities, including Auckland and provides a consistent methodology for 

comparisons between various ecosystems. The system was developed to meet the 

requirements of goal 3 of the New Zealand Biodiversity strategy to "maintain and restore a 

full range of remaining habitats and ecosystems" (Singers et al., 2017). The classification 

system allows targeted ecosystem protection and assessment and monitoring of key 

environmental drivers and threats to ecosystem health. 

Two of the five dune ecosystems defined by the National Ecosystem Classification are 

present in the Auckland region: Spinifex, Pingao, grassland/sedgeland (DN2) and Oioi, 

Knobby Club Rush Sedgeland (DN5), see Table 1. Karekare is classified as DN2 in both the 

national and Auckland-based ecosystem framework. The DN2 Classification includes active 

sand dunes, where dominant ecosystem drivers include salt winds, periodic drought, high 

surface temperature and low nutrient availability (Hesp, 2000). Dunes consist of a variety of 

drought-tolerant plants. Dune systems have a successional pattern as the dune over time. 
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Table 1: Ecosystem Frameworks of active coastal sand dunes found in the Auckland region 

(Singers & Rogers, 2014). 

PRIMARY 

ECOSYSTEM 

DRIVER: 

FREQUENT 

GEOMORPHIC 

DISTURBANCE 

SECONDARY 

ECOSYSTEM 

DRIVER: 

TEMPERATURE 

TERTIARY 

ECOSYSTEM 

DRIVER: 

MOISTURE 

QUATERNARY 

ECOSYSTEM 

DRIVERS: 

LANDFORMS AND 

SOILS 

ECOSYSTEM 

UNIT 

Erosion and 

accretion of 

sand from wind 

ablation 

[Active coastal 

sand dunes] 

Warm to mild 

temperate 

Semi-arid to 

humid 

Dunes with raw sandy 

soils in 

association with 

atmospheric salinity 

(e.g. spume and salt-

spray) 

DN2: Spinifex, 

pīngao 

grassland/ 

sedgeland 

Erosion and 

accretion of 

sand from wind 

ablation 

[Active coastal 

sand dunes] 

Warm to cool 

temperate 

Semi-arid to 

humid 

Dune plains (including 

deflation hollows, dune 

slacks, damp sand 

plains and stream 

terraces) and exposed 

coastal hill slopes with 

raw sandy soils 

DN5: Oioi, 

knobby 

clubrush 

sedgeland 

 

Threats to the DN2 ecosystem include human trampling, rabbits, bike or motorbike 

disturbances. Active dune systems are highly mobile, and previous dune stabilisation 

programmes used invasive weeds such as Marram grass and Lupin that pose severe threats to 

the native flora. The regional IUCN threat status of this ecosystem is endangered. 
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1.3 Techniques for Dune Monitoring 

The previous section detailed the national and regional surveys conducted to classify New 

Zealand's dune ecosystems. A range of different sampling techniques and data sets were used 

to classify locations within the survey structure. Many additional datasets and ancillary 

information now supplement traditional field sampling methods (Singers & Rogers 2014). 

Resources such as the Land Cover Database, S-map for soil and properties and climate are all 

valuable tools for monitoring programmes. In addition, there is a wide variety of publicly 

available satellite imagery covering a large proportion of the country.  

 

1.3.1 Remote Sensing 

Remote Sensing has been defined as "the art, science and technology through which the 

characteristics of objects/targets either on, above or even below the Earth's surface are 

identified, measured and analysed without direct contact existing between the sensors and the 

objects or events being observed" Awange & Kiema, (2013). This definition is used in this 

thesis as it embodies the sensor or technology used and the end-user's underlying scientific 

principles and interpretations. Although all remote sensing projects should be understood in 

this manner, it is crucial to recognise the sensor or technology as a tool to aid a project's 

goals. Therefore, the methodology, tools and objectives will vary greatly depending on the 

objects or phenomena observed the aims of the project.  

Remote Sensing has vast applicability in ecological studies and can add supplementary 

information to traditional ground-based methodology, which is a lot more time-consuming 

and risks damage to the observed site (Gruszczynski et al., 2017). Repeatability for short- and 

long-term monitoring is another potential advantage of Remote Sensing methodologies 

(Hugenholtz et al., 2012). It is often not viable to set up permanent ground sampling plots in 
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environments that can be highly dynamic (Kaliraj et al., 2017). Using Remote Sensing-based 

algorithms, monitoring of a defined area can be achieved with high levels of accuracy 

(Krapivin & Shutko., 2012). Ecosystem response and time-series analysis is now an 

established field in remote Sensing and a favoured method for many projects (Tuna et al., 

2020).  

 

Remote Sensing Resolutions 

When assessing the methodology of a Remote Sensing project, there are four main resolution 

variables to consider: spectral, spatial, temporal and radiometric resolution. Spectral 

resolution relates to how reflected energy is measured and divided by an image sensor. A 

standard camera will measure only visible light (red, green and blue wavelengths). The 

traditional camera lens does not have a discrete lens to define red, green and blue and 

therefore interpolates the data values to provide the end-user with an image representative of 

the red, green, blue image values. Sensors used for remote Sensing are engineered only to 

read a specific wavelength range of the electromagnetic spectrum. For example, three discrete 

sensors record visible light (red, green and blue) on the MicaSense RedEdge sensor. The 

sensor used for blue reflectance will only capture reflectance between 465 – 486 nanometer 

(nm) bandwidths, while the green sensor will only record 550 – 570nm reflectance. 

 

Spectral Resolution 

The number of bands recorded by a sensor platform will define the spectral resolution. In 

Remote Sensing, there are three main categories of spectral resolution: panchromatic, 

multispectral and hyperspectral. Panchromatic refers to a single band reflectance output. In 

Remote Sensing, panchromatic images are related to greyscale (black and white) imagery 
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where a single reflectance value is used for the whole range of the visible light spectrum. 

Multispectral imagery refers to multiple discrete bands, usually between 3-10. Finally, 

Hyperspectral remote sensing platforms can have hundreds of contiguous spectral bands 

(Mateen et al., 2018). 

Most multispectral sensors used in remote Sensing consist of non-contiguous bands, which 

leave gaps in the data set. The hyperspectral sensor can provide narrow-band, contiguous 

bands. For example, the Hyperion sensor of NASA'S Earth Observing Satellite (E0-1) has 

242 spectral bands, which can record both visible/near-infrared, VNIR, (400-1000 nm) and 

shortwave infrared, SWIR, (0-2500nm) (Chutia et al., 2016).  However, due to the overlay of 

VNIR and SWIR, 22 bands are removed, leaving 220 bands used for analysis. There have 

been multiple studies using the enhanced spectral resolution of hyperspectral imagery on a 

wide range of environments from soil composition (Golubiewski and Wessman, 2010), 

minerals (Lévesque and Staenz, 2008) and vegetation and weed mapping (Zhang et al., 

2012). 

Spatial Resolution 

Spatial resolution in Remote Sensing is defined as the linear dimension on the ground surface 

of an individual pixel (Wang et al., 2012). The spatial resolution will significantly impact 

remote sensing studies as, in general, only objects larger than the minimum mapping unit 

(MMU), usually 2x2 pixels, can be observed with any degree of accuracy. However, not all 

studies will benefit from a very high spatial resolution. For example, having a high spatial 

resolution may reduce the area coverage of a project. 

Radiometric Resolution 

Radiometric resolution refers to the dynamic range of the data or the amount of different 

values that can be recorded for each spectral band (Wang et al., 2012). Radiometric 



18 
 

resolution is measured in bits. For example, an 8-bit data source will record a digital number 

between 0-255 (28 = 256 different numbers). A 10-bit data source will have digital numbers 

from 0-1023 (210 = 1024 different numbers). The higher the radiometric resolution, the better 

the sensor will differentiate between small changes in reflectance. 

Temporal Resolution 

Temporal resolution refers to the frequency of repeat sampling missions (Baghdadi & Zribi, 

2016). For satellites, temporal resolution refers to the time it takes for a platform to complete 

an entire orbital cycle (16 days for Landsat-8, for example). The temporal resolution can be 

tailored to the given project for other remote sensing applications such as aerial photography 

and UAV imagery. The choice of temporal resolution will need to depend greatly on how 

dynamic the site is and the aims and goals of the analysis. 

The four resolution variables need to be considered holistically for any remote sensing 

project. For example, there is often an inverse relationship between spectral and spatial 

resolution. The same trade-off exists in orbital satellites for spatial resolution and temporal 

resolution. Therefore, the choice of sensor and platform is perhaps the most crucial step 

before undertaking any mission as it will dictate what is achievable relevant to the project's 

outline. 

 

1.3.2 Remote Sensing of Coastal Sand Dunes 

There are a wide variety of sensors and platforms that have been used for Remote Sensing of 

coastal environments. There are two main types of platforms: space-borne (i.e. satellite 

platforms) and air-bone (both piloted planes/helicopters and Unmanned Aerial Vehicles 

(UAVs)) (Müllerová et al., 2013). The decision to use a specific platform or combination of 

platforms will depend on the goal and spatial scope of the project. Regional and National-
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scale monitoring will rely primarily on Satellite imagery in combination with aerial imagery 

(Whitehead 2014). Small-scale/local analysis will use predominantly aerial imagery and 

UAVs (Gruszczynski et al., 2017; Hugenholtz et al., 2012).  

In recent years there has been an increased focus on the use of UAVs for Remote Sensing 

studies in a wide range of environments, for example, forest ecosystems (Zahawi et al., 

2105), agriculture (Tsoros et al., 2019), Areas prone to landslides (Rossi et al., 2018) etc. In 

particular, UAV-based coastal studies have been carried out in many different locations 

globally (Scarelli et al., 2017; Suo et al., 2019 etc.). UAVs are suited for coastal 

environments because coastal systems are geomorphologically active and have many drivers 

for geomorphic change, including seasonal and event-based (storm) causes (Kaneko & 

Nohara., 2014). In addition, UAVs can be rapidly deployed and have been employed to detail 

and evaluate the effects of destructive events such as large storms in a coastal setting and 

landslides for inland areas (Ruessink et al., 2018). UAVs have also been used for illustrating 

long-term changes with increased temporal resolution. The expense of aerial surveys using an 

aeroplane or helicopter is much greater than a UAV; therefore, multiple flights every year can 

be conducted using UAVs (Turner et al., 2016). However, the aerial extent is more limited, 

and therefore locations of ecological or historical significance need to be targeted (De Giglio 

et al., 2017). 

Vegetation classification using remote sensing methods has been widely employed in many 

ecological studies (Xie et al., 2008). Vegetation classification uses computer-assisted 

machine learning to automatically classify an area into different classes (Jensen, 2000). There 

are two main types of Classification – supervised and unsupervised. Unsupervised 

Classification is when the computer runs a set of algorithms to assign individual pixels into a 

class with similar characteristics. Supervised Classification is where the user inputs a series 

of training values representing a class with similar attributes. Supervised Classification uses 



20 
 

pre-existing information, and the algorithm then uses the defined characteristics to assign a 

pixel to a specific class (Bolyn et al., 2018). In general, Unsupervised Classification is only 

used as exploratory information to understand spectral differences of a study site. In most 

studies, there are goals and objectives relating to specific vegetation classes that the user is 

trying to determine, for example, a specific invasive plant species or a vegetation class of 

significant ecological value. 

A relatively new sector of remote sensing classification is Object-Based Image Analysis 

(OBIA). OBIA varies from traditional pixel-based methods principally by adding an 

additional process, image segmentation, before the Classification is undertaken (Ma et al., 

2017). Traditional pixel-based classifications assign an individual pixel to a class category. 

However, OBIA segments the image into objects with similar attributes, a series of 

neighbouring pixels belonging to a single group/object (Li et al., 2014). Once the 

segmentation and objects are created, the classification algorithm is run per object, not per 

pixel. 

OBIA is a very useful technique for Very High Resolution (VHR) data. An object of interest, 

for example, an individual tree, may have many pixels. Traditional pixel-based methods may 

create a salt-and-pepper effect, whereby multiple different classes are present within a single 

feature (Song et al., 2020). OBIA aims to classify individual features as a single object 

reducing the amount of misclassification within the boundaries of the feature. UAVs produce 

VHR data; therefore, there has been an increase in the amount of UAV-based studies using 

OBIA instead of traditional pixel-based classifications (Baatz et al., 2000). 

However, UAV based and OBIA based studies are still a relatively new field of study, and 

there remains a lot to learn and develop to create a list of best practices for UAV-based 

Remote Sensing studies. Therefore, this study aims to compare the differences between pixel-
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based and OBIA methods and provide guidance on the advantages and limitations of using 

UAVs and OBIA-based methods for environmental monitoring of Coastal Environments. 

 

1.4 Goals and Objectives of this Study 

• Compare and contrast pixel-based and OBIA classification methods advantages and 

limitations for analysis of high-resolution data. 

• Provide a Case study on the effect of seasonal/temporal variance on UAV-based 

vegetation classification. 

• Assess the effectiveness of UAVs for use in Vegetation monitoring and Classification. 

• Create a detailed workflow and list of best practices for using UAVs for vegetation 

classification. 

• Evaluate the advantages and limitations of present technologies and processes. 

 

1.5 Study Site 

Karekare Beach is located on the West Coast of Auckland, north of Whatipu Scientific 

reserve and south of Piha beach (see Figure 1). Karekare is classified as a DN2 Ecosystem 

(Spinifex, pingao grassland/sedgeland) in the national and Auckland-based ecosystem 

framework. The DN2 Classification includes active sand dunes, where dominant ecosystem 

drivers include salt winds, periodic drought, high surface temperature and low nutrient 

availability (Hesp, 2000).  



22 
 

 

Figure 1: Map of Karekare Sand Dunes study site 

 

Threats to the DN2 ecosystem include human trampling, rabbits, bike or motorbike 

disturbances. Active dune systems are highly mobile; previous dune stabilisation programmes 

used invasive weeds such as marram grass and lupin that pose severe threats to the native 

flora. The regional IUCN threat status of this ecosystem is endangered. 

Karekare has been classified as a high priority site for weed management by Auckland 

Council (Craw, 2015). The stream, coastline, and bush edges were significant in the weed 

management plan (Craw, 2015).  
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1.5.1 Contemporary Vegetation Monitoring of Karekare Beach 

Auckland Council conducted a systematic vegetation survey of Karekare beach in late 2017 

(Auckland Council 2018, unpublished). The sampling consisted of five transects 

perpendicular to the coastline with sampling spacing ranging from 20 to 30 metres. Circular 

sampling plots with a 2m radius were set up with the species and percentage cover recorded 

at each plot. During this study, Dominant vegetation species included Spinifex in the 

foredunes. The mid to back dunes were dominated by species such as Muelenbeckia 

complexa, Ficina nodosa, Lupinus arboreus, Ozothamnus leptophyllus and herbland species, 

including Senecio skirrhodon and Lachnagrostis billardierei (Auckland Council 2018, 

unpublished). A total of 44 different species were identified in the survey. 

 

1.5.2 Geological setting 

The geology of Karekare and surrounding west coast beaches comprise of the Waitakere 

Group consisting of volcanogenic rocks and underwater sediment created in the early 

Miocene, which were then uplifted, see Figure 2 (Hayward, 2017). Embayment filling and 

shoreline propagation began around 6500 years ago, resulting in Karekare and adjacent west 

coast beaches (King et al., 2006). Karekare's sand systems contain mineral-rich black sand 

with a large proportion of heavy iron ores and lighter quartz and feldspar ores (Hamill & 

Balance, 1985).  
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Figure 2: Simplified Geological Map of West Auckland (Hayward, 2017). 

 

1.5.3 Karekare historic Sand Dune erosion and propagation 

In Blue & Kench’s (2017) paper, it was found that the Karekare study site had minor 

shoreline retreat; the mean dune toe was displaced 22 metres inland from 1940 to 2010. 

Erosion was most rapid between 1940 and 1960 at 2.2m/yr. However, between 1980 and 

1988, there was a period of rapid propagation at 4.0m/yr, followed by erosion in 1988-2003. 

Finally, between 2003 and 2010, propagation of 4.5m/yr resulted in the recovery of tha 

majority of dune loss since 1980. 
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2. Methods 

2.1 Diagram of the eight steps undertaken in the project 

 

Figure 3: Diagram of the Key steps for UAV Vegetation Classification 

• Flight Path Created in UGCS Software ensuring correct resolution and overlap is accounted for.

• Ground Control Points Created and Geolocated with a LoRa GPS unit.

• Radiometric Calibration of the UAV image sensor to measure reflectivity accurately over multiple different Flights.

• UAV flight conducted according to CAA guidelines for 101 or 102 operations.

• The Researcher samples the images to ensure there is no problems with the capture.

Initial UAV Survey 
Methods

• Sample points on a digital map are generated.

• These point are input onto a GPS device.

• The researcher locates each point in the real world environment and records the vegetation type of each sample point.

• Each point is assigned a code for the vegetation type and this is exported into a format compatible with GIS analysis (in this study 
ArcGIS Pro).

Ground Truth/ 
Training Data 

Vegetation Sampling

• The images from each UAV flight are imported into a Photogrammetry Software (in this study Pix4D).

• The researcher checks the data’s validity to ensure all the images are of a consistent quality.

• The Radiometric Calibration Image is provided as a sample and the unique identification code of the Radiometric Panel is applied.

• The images are stitched together as a single mosaic and point-cloud output using the photogrammetry software. This can be run 
in multiple smaller batches for each flight or a single project depending on the size of the project and reliability of the software ad 
hardware used.

• The outputs can be converted into a single RGB image, a multi-spectral image, or Vegetation Indices can be applied within the 
software and exported as a multiple band file for use in a GIS software of the researcher’s choice.

UAV Post-Processing 
and 

Photogrammetry

• Preliminary exploration of the data is carried out to determine the best course of action for vegetation classification.

• Spectral Signatures of the pixels within vegetation types are explored.

• The researcher needs to determine which vegetation types are spectrally different and therefore will have a higher accuracy and 
which vegetation types or grouping of vegetation types would be acceptable in relation to the goals and objectives of the study.

• A list of Vegetation Classes are created from the training data (this is often a combination of vegetation types into a single class 
and single vegetation species of specific value to the overall goals of the project).

Data Exploration and 
Assigning Vegetation 

Classes

• Training Data and Ground truth data samples can be created from one Vegetation Survey

• In general a certain percentage of the complete vegetation samples are assigned randomly into Training or Ground Truth Data. In 
this study it was a 50/50 split, however, the percentage value will depend on the accuracy required for a study.

Assigning Training 
Samples and Ground 

Truth Samples

• The training data polygons created in the previous step and the UAV-generated multi-spectral band image are imported into a GIS 
Software Program.

• The area of interest within the image is identified for the classification.

• Multiple different classification algorithms, which determine whether an individual pixel has similar spectral values to another
within a defined thematic class. Once this is completed the results are subsequently exported in a format suitable for further 
analysis.

Pixel-Based 
Classification 

Methods

• The training data polygons created in the previous step and the UAV-generated multi-spectral band image are imported into a GIS 
Software Program.

• The area of interest within the image is identified for the classification.

• Image segmentation is carried out over the complete study area to identify pixels with similar attributes: size, distance, spectral 
similarity and form.

• Attribute features of the training sample polygons (including Mean and standard deviation values for all bands, compactness and 
roundness of the objects, and texture values) of the training data objects are assigned and stored in memory.

• Using the attribute features of the training sample polygons the complete image has a classification algorithm run on it assigning 
each individual object into a predefined thematic class.

Object-Based 
Classification 

Methods

• Once all the classification algorithms have been completed the next step is to assess the accuracy of each algorithm.

• The data from the initial vegetation sample survey that was not used as training data is now used as ground truth data.

• The class generated from the classification algorithms'’ output is compared against the class assigned during the vegetation survey 
at the same location.

• The accuracy of each point is validated and finally a confusion matrix is generated to illustrate how many locations were 
incorrectly classified and also the vegetation class that it was incorrectly assigned to.

Accuracy 
Assessment
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2.2 Initial UAV Survey Methods 

 

2.2.1 Flight Mission Planning Software - Universal Ground Control Software (UGCS) 

UGCS was used for flight planning. Therefore, it is essential to modify the parameters and 

flight pattern to suit the project's goal. UGCS has various UAV platform setups, including the 

Phantom 4 Pro UAV platform with the MicaSense Red Edge sensor used in this study. By 

selecting the correct UAV platform, the software can create flight plans relatively 

autonomously. Flight resolution, image overlap, Flight area and flight pattern (single or 

double grid) were the only user imputed variables. Due to the added weight of the Red Edge 

sensor, flights were limited to less than 15 minutes as opposed to the 25 -27 minutes 

advertised for the Phantom 4 pro without the Red Edge. A 1-metre resolution Digital 

Elevation Model (DEM) produced by Auckland Council in 2015 was input into UGCS as the 

baseline elevation. The inclusion of the DEM to the flight programming allowed UGCS to 

maintain a consistent elevation (80 metres) over the study area and adjust to the changing 

topography. The goal of retaining this elevation is to reduce artefacts that can occur if the 

UAV was operated at a defined height from the take-off point, not taking into account the 

local topography 

A total of six flights were created in the UGCS software. The advantage of using flight-

mission software is the flights can be easily replicated. For example, this study used the same 

flight plans for the November and March flights as the UAV platform, and sensor remained 

unchanged. Therefore, the pre-flight planning allows for change detection of the area with 

minimal set-up once the initial flight missions have been created. 

2.2.2 Ground Control Points (GCPs) 

GCPs are points that are manually recorded by GPS units with greater accuracy than the 

UAVs internal senor. GCPs need to be easily identified in the output UAV images. GCPS are 

used to correct inherent positioning errors associated with the internal sensor of the UAV, 
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therefore increasing real-world accuracy. GCPs can be manmade or natural, for example, 

edges of roof houses or distinctive rock outcrops. The choice of GCP will depend on the 

resolution of the imagery, accuracy of GPS survey equipment and goal of the project. This 

study aimed to look at 3D dune structure and vegetation mapping at a resolution of 5cm. 

Given the previous requirements having very accurate GCPs was important. The natural 

landscape of the dunes was highly dynamic, with very little permanent structures that could 

be used as a GCP.  

Therefore, the GCPs were created from vinyl mats with a black and white checker pattern. 

The pattern allowed for easy identification of the central point. The vinyl mats consisted of 

four squares, 15cm in length. The total dimensions of each mat were 30x30cm. Vinyl mats 

were chosen as they are waterproof and relatively lightweight for transportation to the study 

site. Each square of the ground control points was also greater than the imagery's minimum 

mapping unit (10x10cm). The mats were anchored to the ground with tent pegs on each mat 

corner to avoid movement before the flight. As per the Auckland Council's research permit 

stipulations, ground control points were removed the same day as the UAV flights. 

In remote sensing studies, a minimum of five GCPs is required as a baseline for creating 

georectificed orthomosaics. In order to cover the complete area of the Karekare study site, six 

flights were required. This study was concerned with assessing the ability of the 

photogrammetry software to perform radiometric calibration and orthomsoaic generation. 

Therefore, radiometric calibration was applied to each project in isolation from another flight. 

To create six separate projects, five GCPs were placed within each of the six flights. The 

layout represented a five dice pattern, a GCP in each corner and one in the middle. Each GCP 

was measured with a fixed signal (0.05-0.012m RMS) using the Emlid Reach RTK GPS unit. 

The fix and hold setting was used; this averages all readings over a fixed time, one minute for 

each GCP. 
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2.2.3 Real-Time Kinetic Surveying Set-up Procedures 

An Emlid Reach RTK unit was used for both the vegetation survey and the recording of GPS 

points for the UAV flight. RTK allows centimetre level accuracy to surveying missions. The 

use of real-time RTK base stations which link back to RINEX stations is common in higher-

precision survey missions. While this is an effective methodology for surveying, the cost of 

these base stations is very high.  

For this study, the RINEX corrections were done post-processing in the lab instead of in the 

field. The first step was to set up a base station reading and record its position for eight hours. 

Once the logging was completed, the raw data logs were post-processed to the nearest 

RINEX station (Auckland Whangaparaoa base station 55km away). This methodology 

resulted in the creation of a known survey point that has been corrected, and GPS drift and 

internal sensor inaccuracies have been mitigated. Once the point was created, a tent prong 

was placed at the centre point of the base station, and the resulting coordinates were manually 

entered into the reach unit. The antenna height was also recorded and kept consistent 

throughout all subsequent surveys. This methodology created a known survey point similar to 

the NZ standard geodetic markers in New Zealand. In addition, this methodology allows 

RTK surveys of remote locations without known geodetic markers or an expensive real-time 

base station setup. 

The topography of the region dictated the choice of the known survey point. Long Range 

Radio Signal (LoRa) allows for a base to rover connection that can span more than 1 km. 

Even though LoRa signals are characterised by their long wavelength, hills can still degrade 

signal quality. To counteract the influence of topography, the survey point chosen was a 

relatively unvegetated high foredune. The point was selected to reduce the impact of reflected 
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GPS signals from nearby objects and create a clear line of sight from the base to the rover 

units. 

 

2.2.4 UAV Flight Mission Safety and Quality Protocols 

Two UAV flight missions were carried out, one on November 7th, 2018 and another on 

March 28th 2019. Six flights were completed for each mission between 10:30 am and 3:00 

pm. Flights were completed during these hours to reduce shadow effects from the oblique 

angle of the sun. Ideal weather conditions for UAV flights are clear sky, low wind and the 

sun angle being as close to nadir as possible. On the day of both flight missions, there was 

low wind. However, there was intermittent cloud cover that varied from flight to flight. 

All flights were completed with a designated operator and a spotter to ensure two sets of eyes 

were always focused on the vehicle while in flight. A clear unpopulated area with an 

adequate line of sight was chosen as the take-off and landing point. This area was signposted 

to make the public aware of the purpose of the flight and avoid any distractions and potential 

dangers from public intervention while flying the UAV. Before and after each flight a 

checklist assessment of the platform and software was carried out to mitigate any potential 

risks for example propeller damage, errors in syncing with the drone and the remote 

controller, camera errors, insecure battery placement and structural damage to the UAV. 

UAV health and safety protocols were followed according to both Auckland University of 

Technology and Civil Aviation Authority (CAA) guidelines for UAV missions. These 

included filing a UAV con-op and health and safety report assessing any risk prior to the field 

missions. NOTAMS detailing any activity within the defined air space were checked the 

morning of each flight mission. All UAV flights were operated within the CAA 101 

guidelines and the entire study site was within unrestricted airspace.  
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A reference panel needs to be used for radiometric calibration to be carried out. A factory 

calibrated MicaSense reference panel was used with known values for all five bands the 

RedEdge sensor records. Immediately before and after each flight, a photo was captured 

using the RedEdge sensor. To minimise external variabilities a set of protocols following 

were observed for each capture. The following protocols represent best practice methodology 

for radiometric calibration recommended by Pix4D support: 

• The target is to be level with the ground and not at an angle. 

• The target should be facing North to avoid artefacts when the sung angle correction 

algorithm is applied. 

• The target should not be in shadow with no reflection of surrounding objects visible. 

• The calibration target should not be over/under exposed in any of the bands.). 

• For images taken with the target on the ground, the camera should be around 1 meter 

from the target and not facing the sun. 

• Complete a Quality Check of the camera metadata to ensure the correct GPS time and 

location are recorded for the flights.  

• Take multiple captures of the calibration target to get at least one high-quality 

calibration image. 

• Check the calibration target captures on-site to ensure the images are not 

over/underexposed. 

 

2.3 UAV Platform and Sensor 

The UAV platform included a Phantom 4 Pro with a MicaSense RedEdge sensor (see Table 2 

and Figure 4 for more detail on the RedEdge sensor). The platform was also outfitted with a 
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sun luminance meter to account for changing laminations during the flight. Luminance values 

are automatically recorded in the EXIF files of each capture and used in the post-processing 

steps.  

Table 2: RedEdge Sensor Bands and Wavelengths 

Band/Channel Wavelength 

1. Blue 465-485nm 

2. Green 550-570nm 

3. Red 663-673nm 

4. Red Edge 712-723nm 

5. Near Infrared 820-860nm 

 

 

Figure 4: Red Edge Sensor Schematic view (Pourazar et al., 2019) 
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2.4 UAV Post-Processing and Photogrammetry 

 

2.4.1 Photogrammetry  

Processing of the UAV imagery was undertaken in Pix4DMapper. This software uses 

photogrammetry methodology to "stitch" together multiple images to create an orthomosaic.  

Parameters used in Pix4D Processing 

Pix4D offers a variety of customisable parameters that will influence the final result of the 

imagery. The settings used will vary from project to project in accordance with the quality of 

the imagery recorded and the overall goals of the operation. Factors influencing which 

settings should be used include: image overlap percentage, resolution of the camera, the 

altitude of the flight, illumination conditions, topology of the region, density of the As the 

flights in this study consisted of a cross-grid pattern (see chapter number and letter of UGCs 

flight plan) with 60% overlap it is possible to achieve a highly detailed digital surface model 

from the point cloud without simplification. Therefore, the parameters used in Pix4D Mapper 

were consistently the highest quality with the least amount of generalisation or interpolation. 

However, this significantly increased the processing time for all tasks. As this project's 

purpose is to be used as a case study, the highest quality parameters were chosen as the 

quality was given greater importance than the time taken for processing.  

The first processing stage involves organising the images into meaningful folders for ease of 

use within the Pix4D Mapper software. The MicaSense RedEdge sensor will automatically 

catalogue the images into folders on the SD card. New folders will be created for each flight, 

and when manually pressing the camera button for calibration, a new folder will also be 

created. This makes processing streamlined; however, it is important to double-check the 

folders have been created correctly before analysis. Checking the EXIF file of each photo and 
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matching it with the times manually recorded when the flight took place is easy to determine 

if the capture is correct. However, even if the capture is accurate, images often are not useful 

and could adversely affect the final result. These could include using data from cancelled 

flight missions, blurred images or not including the entire flight mission if it was split over 

multiple folders.  

For the missions captured, the MicaSense sensor captured images every 2 seconds from the 

moment it was synced with the Phantom 4 Pro. Therefore, all images from the take-off point 

to the first survey and from the final survey to the landing point needed to be deleted. To 

remove these pre and post-survey images from the images that will be processed. The images 

were imported into Pix4D and visualised using the map view function. This allowed the 

identification of photos represented by a GPS point on the map, not within the survey grid 

created in UGCs. Next, the images not in the survey were moved to a separate folder leaving 

only the photos within the survey to be used and then reloaded into the Pix4D mapper as a 

new project.  

 

 

 

 

 

 

Photogrammetry calculations are influenced by various parameters associated with the 

camera rig used, including focal lens, sensor size and radial distortions between individual 

cameras (Pix4D, 2018). Therefore, before completing the analysis in any photogrammetry 

Figure 5: UAV flight plan of Karkare. Red Dots represent the images collected and the green lines indicate 
the flight path. 
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program, the camera properties must be explicitly adjusted to the model that was used. 

Suppose the software does not recognise the camera used and provides generic values. In that 

case, these can be manually altered by using documentation from the camera model and 

adjusting the parameters specific to the model used. If generic parameters are used, it will 

increase the likelihood of distortion and artefacts in the final model. Pix4D mapper includes a 

wide variety of camera model pre-sets, and the correct RedEdge model M type was 

automatically generated from the EXIF file when the photos were loaded.  

All photogrammetry software packages follow three core processes to create an output. These 

processes are initial processing, point cloud and mesh generation and DSM, Orthomsoaic and 

Index model generation. All three processes have a wide variety of parameters that can 

dramatically alter the quality of the final model. While there is no turnkey solution for 

optimal settings, Pix4D provides in-built settings for categories such as multispectral studies 

of the natural environment, urban 3-D mapping, etc. However, these settings are only a guide, 

and for optimal results changing the parameters to suit the projects design and goals is 

needed. The flight plan created allowed all settings to be adjusted to their maximum 

resolution/quality pre-sets due to the overlap and grid-corridor flight pattern.  

The initial settings used a double image size for generating the key points used for image 

matching. If the images did not have significant overlap, or there was little difference 

between images, this value can be reduced. Reducing the image size increases the likelihood 

of image matching but decreases results in a reduction of detail to the model. An example of 

a situation where image scale reduction would be a better choice would be mapping a 

relatively uniform, densely vegetated pine plantation. Aerial grid or corridor algorithms were 

used as opposed to a free flight which can be used if a flight mission was not created before 

the flight. For photogrammetry purposes, it is always advised to use flight mission software 

rather than free flight modelling. However, there may be situations where there is little 
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known of the area flown, or the GPS signal is very low where free flight may be the only 

viable option.  

The initial processing stage is the most CPU and RAM intensive step of the photogrammetry 

process. Therefore, projects with many photos can be split into subprojects for the initial 

processing stage and then combined for the next two steps (Pix4D, 2018). For this study, a 

powerful consumer-grade computer was used to process (AMD Ryzen 2700x eight-core 

CPU, 32gb of ram and a 1080ti Nvidia Graphics card). However, even with this high spec 

computer, the processing was needed to be restarted multiple times to complete the 

processing. The initial processing took around four hours to calibrate the complete project of 

6785 images. After that, the Point Cloud generation took approximately four hours, the 3D 

mesh two hours and the final stage three hours of processing. 

The previous initial processing stage uses both the internal GPS coordinates and image 

matching to generate to align the images. To achieve an accurate geolocated model ground 

control points are added to the project then manually georeferenced. The ground control 

points measured by the Emlid Reach Unit were added to the GCP manager map. The 

software estimates where each point could be, and the user will manually drag the cursor to 

the centre point of the GCP, where the measurement was recorded. Due to the image overlap, 

multiple images will have the GCP square visible and adjustment  

For the software to estimate GCP coordinates, both the GCPs and orthomsoaic needed to be 

in the same coordinate system. Emlid Reach units only record coordinates in WGS84 and 

height elevations represent ellipsoid heights rather than geoid height as metres above mean 

sea level (msl). To create a Digital Elevation Model that uses Mean Sea Level (msl) as a base 

point, all coordinates need to be converted. The Geoid Height Calculator created by 

UNAVCO was used for the vertical corrections. 
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The next stage of the processing involved generating a point cloud and 3D textured mesh. 

There are various parameters that can be used that will influence the density and resolution of 

the point cloud. For this study, maximum resolution (original image size and high point 

density) was chosen. A 3D textured mesh was also generated using the highest resolution. 

The final stage builds many of the outputs required for UAV image analysis (orthomosaic, 

Digital Surface Model and Reflectance maps). Before creating the orthomsoaic and 

reflectance maps, radiometric calibration needs to be performed to allow normalised 

reflectance values between 0-1 and time-series analysis of multiple UAV reflectance maps. 

  

2.4.2Radiometric Calibration 

Radiometric calibration was required for both time-series analysis and the accurate creation 

of vegetation indices. Pix4D mapper has a tool for radiometric calibration that has been 

designed to work in unison with MicaSense products.  

The formula for computing the spectral radiance L from pixel value p, is: 

 

 

Where, 

• p is the normalized raw pixel value 

• pBL is the normalized black level value (can be found in metadata tags) 

• a1 a2, a3 are the radiometric calibration coefficients 



37 
 

• V(x, y) is the vignette polynomial function for pixel location (x, y). See “Vignette 

Model” section. 

• te is the image exposure time 

• g is the sensor gain setting (can be found in metadata tags) 

• x, y are the pixel column and row number, respectively 

• L is the spectral radiance in W/m2/sr/nm 

Before and after each flight, an image of the calibration panel was captured to calculate 

reflectance relative to the ambient light conditions. Each panel is factory calibrated with 

defined values for each spectral band recorded; see Figures 6 and 7 for reference. In addition 

to the calibration panel, the UAV has a sunlight sensor attached to document changing 

luminance values during the flight mission. 
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Figure 6: Image showing the identification of calibration panel. The reflectance value is manually imputed from the unique 

QR identifier of the panel.  

 

Figure 7: Unique values of reflectance used for the panel 
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2.4.3 Vegetation Indices 

The MicaSense RedEdge sensor records five spectral bands; vegetation indices were used as 

supplementary data for the final classification algorithms. Vegetation indices are algorithms 

applied to spectral bands used as analogues for various vegetation processes and nutritional 

conditions. The most commonly used vegetation index is the Normalised Vegetation indices 

(NDVI). The equation for NDVI is (NIR – Red) / (NIR + Red). This Vegetation Index is used 

to estimate chlorophyll production. Chlorophyll reflects near-infrared but absorbs comparably 

more red light. Therefore, the NDVI equation is used as an analogue for plant health as 

chlorophyll is the byproduct of the photosynthesis process; therefore, the more chlorophyll in 

a plant, the more productive the plant is. 

NDVI is one example of vegetation indices. However, many other algorithms can be used as 

additional information for differentiating vegetation species. This study used a total of ten 

different vegetation indices. Table 3 shows the vegetation indices used in this study the 

vegetation indices chosen were adapted from Hatfield and Pruegar’s Study (2010). These 

vegetation indices will be used in the classification map and the change detection analysis 

between the two flight missions. In addition, vegetation indices have large seasonal 

variability and understanding the temporal dynamics of the vegetation is essential to 

understand the influence seasonality has on the final Classification. 
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Table 3: Vegetation Indices and the waveband equations used in this study, adapted from Hatfield and Pruegar (2010). 

Vegetation Index Waveband Equation 

Normalised Difference Vegetation Index 

(NDVI) 

(NIR-Red)/(NIR+Red) 

Ratio NIR/Red 

Green NDVI (NIR- Green)/(NIR+Green) 

RedEdge NDVI (NIR-RedEdge)/(NIR_RedEdge) 

Soil Asjusted Vegetation Index (SAVI) (NIR-Red)(1+L)/(NIR+Red+L) 

Enhanced Vegetation Index (EVI) 2.5(NIR-Red)/(NIR+6Red-7.5 Blue +1) 

Normalised Pigment Cholorophyll Ratio 

Index (NCPI) 

(Red-Blue)/(Red+Blue) 

Chlorphyll index (Green) (NIR/Green)-1 

Chlorphyll index (Red Edge) (NIR/Red Edge)-1 

Plant Sensescence Reflectance Index (PSRI) (Red-Green)/NIR 

 

 

Calculating Vegetation Indices in Pix4D 

Computer-generated vegetation indices are calculated for every individual pixel of a scene. 

Before the vegetation indices are calculated, each pixel in the scene will have a value for the 

five spectral bands recorded by the sensor (blue, green, red, NIR and Red Edge). For 

example, the Ratio index will take the NIR reflectance value and divide it by the Red 

reflectance value. If the NIR value was 0.6 and the Red value was 0.2, the ratio would be 3 

for that pixel (0.6/0.2 = 3). Pix4D Mapper allows the calculation of vegetation indices using 

an in-built function to allow band math to be performed, see Figure 8. It is also possible to 
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compute vegetation indices in other software programs such as ENVI. The Band math 

function in ENVI is used to calculate the vegetation indices using the reflectance data output 

by Pix4D Mapper. The outcome of using either of these methods is the same, and the choice 

will be determined by user preference. 

 

 

Figure 8: Vegetation Indices input using band math within the Pix4D software. 

2.4.4 Final Output of PIX 4-D 

Once radiometric calibration and vegetation indices have been created. Final exports such as 

orthomsoaic, vegetation maps and digital surface models are exported to a suitable format 

ready for analysis. For this study, making sure each orthomsoaic and vegetation index was 

exported as a lossless TIFF file was important so no compression artifacting can occur for 

formats such as JPEG2000. 
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2.5 Ground Truth/ Training Data Vegetation Sampling 

 

Sampling design is an essential factor in any ecosystem study. For this study, a stratified 

random sampling strategy was employed. Two stratified zones were created for the study site 

of Karekare Beach, the active foredune area (consisting primarily of the sand-binder species 

pingao and spinifex) and the established mid-back-dune area. A total of 800 points of the mid 

to back dunes were created and 400 points for the foredune zone using the random points 

generator in QGIS. While the foredune area does not represent 1/3 of the total area, the 

choice to have a greater percentage of points was governed by the importance of key sand 

binders such as Pingao and Spinifex and to test if there was any encroachment of exotic 

weeds such as tree lupin on this area.  

To mitigate against changes to the highly dynamic active dunelands, vegetation sampling was 

conducted within a two-week time frame from each UAV flight prior to the image's 

processing and Classification. The same vegetation survey is used for this study's training and 

validation data (50% used for training data and the remaining 50% used for validation). 

Vegetation sampling involved recording the vegetation type in the field at each of the 

randomly generated points with the Emlid Reach Software application. A record of the Point 

Number and vegetation type was noted for each point. Once the Vegetation Survey was 

complete with every point having an allocated vegetation type the results were exported to 

ArcGIS Software. A polygon was created for each point representing the shape of the 

vegetation. This digitisation allowed the shape and texture elements of the training data to be 

used as supplementary information for OBIA. 

While the UAV survey is capable of high-resolution mapping, there is a limit to its ability to 

identify plant species. Therefore, the minimum mapping unit of 10x10cm in size (twice the 

pixel resolution size) was employed in the vegetation sampling. The vegetation species was 
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not observed if it had a size less than 10x10cm or if in a single plot there was multiple 

vegetation species.  

Pingao and spinifex sand binders are the most important species for dune establishment. 

However, the amount of pingao that was observed using the same random sampling as the 

mid to back dune study was less than 30. Nevertheless, due to the high ecological value of 

Pingao in Auckland Council’s Terrestrial and Wetland Ecosystems Classification, key 

patches of Pingao were visually identified on a previous aerial image and recorded in the 

field.  

Object-based Image Analysis (OBIA) uses pixel value and shape, compactness, texture, and 

spatial relationships. Therefore, training samples generation used a combination of fieldwork 

data and GIS-based manual digitising. This process involved locating the point at which the 

sample was collected and then manually tracing the outline of the plant. This allowed the 

OBIA to use this outline as additional information to the classification algorithm. Objects 

with two or more sample points within a single object were treated as a single sample. The 

shape outline could be used to train the image segmentation and assess the accuracy of the 

segmentation. 

 

2.6 Data Exploration and Assigning Vegetation Classes 

 

2.6.1 Classification of the vegetation 

The number of categories in a classification scheme increases the likelihood of 

misclassification errors. A vegetation classification map will amalgamate vegetation species 

into various classifications for remote sensing projects. How the classification scheme is 

produced will depend on the project's aim, vegetation diversity and quality of the imagery 

and vegetation sampling. Therefore, great care needs to be taken when producing a 
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classification scheme. In this study, categories were created correlating to the goals of using 

UAVs for monitoring and dune rehabilitation.  

Auckland council's classification scheme was used as a guide to identifying key vegetation 

species that should be targeted to assess dune health. Therefore, key invasive weeds such as 

tree lupin and pampas were given individual categories. Key native sand binders, pingao and 

Spinifex, which significantly impact dune morphology, were also given their categories. 

Other key native species characteristic of the DN2 classification scheme were also needed to 

be included as their own categories (Muehlenbeckia complexia, Phormium tenax and 

Ozothamnus leptophyllus). Ficinia nodosa and Carex Testacea were classified as a single 

classification of native sedges. All vegetation greater than 2 metres in height were classified 

as established following both dune succession zones literature and Auckland Council 

guidelines. Sand and exotic grass were also given individual categories as they represent a 

large proportion of the study site. 

There were 12 classification classes assigned to the vegetation within the study area site. The 

classification schema can be seen in the below table, Table 4. The foredune comprises 

predominantly of sand/bareground, with sand binding species (Spinifex and Pingao) also 

present. The mid dune species consisted of flax, sedges, tauhinu, mulenbeckia, Lupin, 

pampas, herbland, bareground and dead vegetation. The back dune consisted primarily of 

Herbland and established forest (vegetation > 2m as per Auckland Council’s guideline 

employed in their dune field sampling). 
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Table 4: 12 Classification classes included in this study 

Species Classification Class Origin 

Spinifex sericeus Spinifex Native 

Ficinia spiralis Pingao Native 

Phormium tenax Flax Native 

Ficinia nodosa and 

Carex Testacea 

Sedges Native 

Ozothamnus leptophyllus Tauhinu Native 

Muehlenbeckia complexa Muelenbeckia Native 

Lupinus arboreus Lupin Exotic 

Cortaderia selloana Pampas Exotic 

Grassland and herbland Herbland Mixed 

Mixed forest species Established Forest (vegetation > 2m as per 

Auckland Council’s guideline employed in 

their dune field sampling). 

Mixed 

Sand/bare ground Bareground N/A 

Dead Vegetation Dead Vegetation N/A 

 

2.6.2 Exploratory Data – Spectral Signatures 

Comparing and contrasting histograms of spectral signatures of thematic classes is an 

essential step in understanding the effectiveness of classification algorithms. In many studies, 

differences between spectral signatures are used as the determining factor for thematic class 

choice. However, in this study, the goal was to isolate thematic classes of ecological 

importance (either native or exotic). 
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Therefore, the spectral signatures provide information of which classes are spectrally similar 

and have a greater chance of being misclassified. On the other hand, it also provided data on 

which classes were spectrally unique and should have high classification accuracy. 

The spectral signatures were also compared between the two sample periods (November and 

March). The temporal comparison allows further data regarding times, both how the spectral 

signatures of an individual class changed over time and if the differences or similarities 

between different classes were enhanced or reduced. 

 

2.7 Assigning Training Samples and Ground Truth Samples 

In this study, both the training and validation vegetation samples were identified in the field 

and then manually digitised in ArcGIS Pro. The number and sampling technique used to 

acquire these sample types is crucial for the statistical rigour of the final accuracy assessment 

of the classification map. 

Training samples were collected using a stratified random sampling methodology as 

previously mentioned in the field sampling section. However, the random stratified method 

used two thematic zones for sampling, not the twelve categories used for the Classification. 

Therefore, Van Genderen and Lock's (1977) equation of minimum reference samples was 

used to determine how many field sample plots should be used for validation. Van Genderen 

and Lock's equation for the selection of the minimum number of reference samples is as 

follows: 

N = 
4(𝑝)(𝑞)

𝐸2
 

Where: 

 N = total number of points to be sampled 
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 p = expected percent accuracy 

 q = 100 – p 

 E = allowable error 

 

In Yeet al.’s (2018) review of object-based remote sensing studies, they found that reported 

accuracy ranged from as low as 42% to as high as 96%. The average accuracy assessment of 

the 209 reviewed articles was 85%. Using Van Genderen and Lock's equation, the minimum 

sample size of 20 samples per thematic category is required for an 85% classification 

accuracy. A minimum of 30 observations per class for a 90 percent accuracy (at 0.05 

confidence level) was used for this study. From the previously conducted stratified random 

survey of dune succession zones, the thematic class with the least number of recorded 

samples was Pampas, with a total of 65 samples.  

Therefore, a Python script was written to select 50 percent of samples from ESRI shapefiles 

randomly. The script was run on each thematic class individually to ensure the minimum 

number of samples per category was observed. This meant that the Pampas classification 

would have a minimum of 32 samples used as validation in the accuracy assessment.  

 

2.8 Classification Schemes 

In this analysis, both Pixel-based and OBIA Classification schemes were trialled. The three 

pixel-based classifications were: Maximum Likelihood Classification (MLC, Mahalanobis 

Distance and Neural Net. In addition, object-based Classification was performed in 

eCognition using the multiresolution segmentation algorithm and ruleset.  

 



48 
 

2.8.1 Pixel-Based Classifications 

Supervised Maximum Likelihood Classification (MLC) is a classification scheme based on 

Bayes’ Classification. The first step of the MLC is to calculate the mean and variance for 

each class (Shivakumar & Rajashekararadhya, 2017). It is based on the statistical likelihood 

of an individual pixel belonging to a particular class and assumes the mean and covariance 

follow a normal distribution (Richards et al.,1999). Furthermore, it uses a maximum a 

posteriori estimation (MAP), a principle that is used to create a point estimate based on data 

following regular normal distribution (Jensen., 2000). MLC was carried out in the ENVI 5.3 

software. 

Mahalanobis Distance Classification is a distance-based classifier. It uses all the statistics of 

each class; however, unlike MLC, it assumes all covariances are equal and, therefore, a faster 

algorithm to perform (Richards & Richards, 1999). Also, similar to MLC, it assumes a 

normal (Gaussian) distribution.   

The final pixel-based classification scheme was the Neural Net Classification, also performed 

in the ENVI software. The Neural net classification in ENVI is a form of Artificial Neural 

Network (ANN) that follows a standard back-propagation methodology using supervised 

machine learning (Exelis Visual Information Solutions, 2010). Neural networks use a series 

of nodes and layers to predict an output, such as a classification type (Maxwell et al., 2018). 

Neural Networks are data-driven and adapt after multiple runs or iterations in which a pixel 

will be 0 (not within a class) or 1 (within a class) (Zhang & Chang, 2015). Neural Net 

Classification follows a back-propagation loop whereby each iteration builds upon the 

previous loop creating a positive feedback loop. Each iteration adds additional data used to 

determine the final output result. In this study, a total of 1,000 iterations were carried out for 

each analysis. 

 



49 
 

2.8.2 Object-Based Classification 

Object Based Image Analysis (OBIA) was performed in eCognition 9.3 software. eCognition 

is a software tool used for OBIA that is very powerful because the Objects are created using 

multiresolution segmentation. OBIA includes an additional step before the analysis of the 

pixels, image segmentation. Image Segmentation creates groups of pixels with similar shared 

attributes known as objects. Attributes including size, distance, spectral similarity, and form 

determine similarity and are the criterion for creating objects with shared/similar attributes 

(Baatz et al., 2000). The similarity criterion is run on different scales simultaneously; 

therefore, the same multiresolution segmentation algorithm can be used for any number of 

different scales depending on the objective. Scale Parameter (i.e the size of the objects 

created), Shape/Colour weighting (i.e. defining whether the shape of an object or 

colour/reflectance value, will have greater influence) and object compactness are the three 

user controlled variables within the multiresolution segmentation algorithm (eCognition 

Developer Trimble, 2014). 

Scale Parameter defines the size of the objects created. It is dependent on the objectives of 

the data and the data itself. Therefore, multiple trial and error tests are required in the 

preliminary analysis (Kim et al., 2009). The researcher needs to be balance any loss of micro-

scale data from a scale parameter too large and weigh this against creating a scale parameter 

that is too small, which results in the target classification class of interest being split into 

many different objects instead of a single output. As part of the preliminary analysis 

attempting to define the scale parameter for this study, Estimation of Scale Parameter (ESP) 

was performed on the images. 

ESP generates image objects at multiple scales using a bottom-up approach, i.e. starting with 

a small-scale parameter and increasing iteratively while also calculating the Local Variance 

(LV) at each scale parameter (Dragut et al., 2010). LV is defined as the heterogeneity of 
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colour and shape that is observed at each scale. Therefore, allowing a researcher to quickly 

determine which scale parameter is best suited for the given application (Dargut et al., 2010). 

Peaks in LV graphs in relation to the Rate of Change (the blue line in Figure 9) usually 

indicate the point at which the data can be segmented appropriately. However, this study 

aimed to create a reusable set of rules for direct comparison with the pixel-based 

classifications. Therefore, a single scale parameter of 30 (which had a local variance of 0.9 

was decided to be run over the whole image), see Figures 10 and 11.  

 

 

Figure 9: Graph of Estimation of Scale Parameter (ESP) local Variance and Rate of Change.  

 

Another option would be to create multiple different scale parameters for different classes i.e. 

a large scale parameter for back dune vegetation and a small scale parameter for pingao. This 

could be explored in future studies.  An example of the output of the scale factor of 30 can be 

seen in Figure 9. 
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Figure 10: Scale Parameter 30 output within eCognition Software  

 

 

 

 

 

 

 

 

 

 

Figure 11: An example of the image objects created at Scale Parameter 30 for the whole of Karekare Beach 
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As mentioned earlier, there are three user-determined parameters within the multiresolution 

segmentation algorithm. The other two parameters are required to be changed. The first is the 

Shape ratio (0.0 shape has no influence on objects and is solely driven by the colour of the 

image layer to 1.0 determined exclusively by colour). The other is compactness which 

determines how compact the objects will be. Determining these two values involved a series 

of trial-and-error tests where the image layer underneath the objects was examined to 

determine whether the objects matched the real-life vegetation classes of the image, see 

Figure 12. 

 

 

Figure 12: Variables used within the eCognition Software for multiresolution segmentation. 

Once the segmentation was complete, the next stage in the analysis was to create training 

samples for the classification algorithm within eCognition. The same shapefiles from the 

pixel-based classifications were used to create samples for the OBIA classification. 
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Classification analysis could occur once the samples were made and assigned to their 

vegetation classes (see Figure 13) 

 

Figure 13: The 12 Classifications used - consistent with both the OBIA and pixel-based analysis 

 

The next step in the OBIA process tree was to create samples to attribute features of the 

sample set used for the Classification. Multiple different features can be included as data for 

the algorithm with eCognition. Choosing the correct features will depend on the study. It is 

unfeasible to select all features and run the algorithm, especially on a data set such as the one 

on Karekare beach, where 100s of thousands of objects were created for a single image. 

Therefore, key object features representative of the vegetation classes were chosen. These 

included: Mean and standard deviation values for all bands, compactness and roundness of 

the objects, and texture values, including standard deviation of texture values after the 

Haralick method, which looks at textural variance and orientation (Figure 14 and 15) 
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Figure 14: Selectable Features available to be included as reference data for classification samples. 

 

 

 

 

 

 

 

 

 

 

Figure 15: Object Feature variables selected to train the multiresolution segmentation in eCognition.  



55 
 

Once the samples had been populated with data resulting in their attributes, Classification 

could be carried out on the complete image. Like the pixel-based methods, the training 

sample data is used to extrapolate and classify all objects that are not currently assigned a 

class as a training sample object. The result of this process is the final classification map, and 

the last step is to export the data to a shapefile in order to carry out an Accuracy Assessment. 

Refer to Figure 16 for an overview of the complete Process Tree used for OBIA analysis. The 

same Process Tree was used for all of the different classification schemes, although the 

training samples for November and March were changed to reflect the sampling that was 

carried out at the two different time periods. 

 

 

 

Figure 16: Process tree for OBIA within eCognition 

 

2.9 Accuracy Assessment 

The accuracy assessment methodology was consistent for all the classification outputs. The 

polygons excluded from the initial Classification (50% of the total) were now the ground 

truth data to assess accuracy. The accuracy assessment involved creating a methodology to 

determine whether the output classification Thematic class pixels matched the Thematic class 

of the ground control pixels. The individual polygons created from the OBIA analysis were 
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of varying size. Therefore, the polygons were segmented into pixel-sized objects using the 

fishnet tool in ArcGIS to create a representative assessment and for accurate comparison with 

the pixel-based methods.  

An Intersect with the outputs of the different classification methods and the ground truth data 

was carried. Once the intersect was completed, the class names of the output and ground truth 

pixels needed to be kept consistent. A new field in the attribute table was created to match the 

Vegetation type of the ground truth data with the various output classifications (vege must 

match Class_1 ). The attribute table was then exported as a text file. 

The next step involved using R code to create a confusion matrix for each classification 

method. The caret statistical package was imported into R Studio. A script was produced to 

create a confusion matrix from the export attribute tables of the classification outputs (see 

Figure 17). 

 

Figure 17: R code of Confusion Matrix created for Accuracy Assessment of all pixel-based and OBIA classifications 
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3. Results 
 

3.1 Chapter Layout 

This chapter presents outcomes of the image processing and classification workflows aimed 

at addressing the two thesis objectives. In the first part of this chapter, results are related to 

the evaluation of the spectral signature profiles for the different dominant vegetation types 

across the Karekare sand dune ecosystem for two seasons. Spectral signature profiles are 

presented as histograms that indicate the distribution of reflectance values for different 

vegetation types in terms of three key multi-spectral wavelength bands (Red, Near Infrared, 

and Red Edge) and derived spectral indices (NDVI, Ratio etc., see 3.3.1)When looking at 

histograms, the ideal situation would be to have the histograms of each vegetation type 

having distinctly different spectral reflection profiles, and peak reflectance values, for each 

data band, with minimal overlap.  This is rarely the case, and so the spectral profiles provide 

initial useful insights into how well we might expect a vegetation type to ultimately be well-

classified relative to other types, and whether this might differ depending on the season of 

imagery collection. In the second part of the chapter, different vegetation classification 

methods are compared in terms of the accuracy with which vegetation types are discriminated 

across the sand dune vegetation complex. 

 

3.2 Examination of Spectral Reflectance Profiles for Different Vegetation Types 

 

3.2.1 Training and Ground Truth Data acquired from Vegetation Survey and manual 

digitisation 

The training data samples were used to generate spectral profiles for each vegetation class. A 

summary of the number of pixels created for the November and March Vegetation samples 

are shown in the following Tables 6 and 7. There is slight variance in the number of pixels 
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created for each class between November and December. This variance is accounted for by 

the vegetation changing in size between the two seasons. 

 

Table 5: Number of Pixels used for each class for Ground Truth and Training Data in November 

Class Training 

Sample 

Pixels 

Ground Truth 

Pixels 

Total number of Pixels from 

the Vegetation Survey 

Spinifex 7388 7388 14776 

Pingao 831 831 1662 

Flax 27224 27224 54448 

Sedges 39911 39911 79822 

Tauhinu 38750 38750 77500 

Muelenbeckia 30317 30317 60634 

Lupin 102288 102288 204576 

Pampas 2414 2414 4828 

Herbland 43545 43545 87090 

Established 

Forest 

136550 136550 273100 

Bareground 25648 25648 51296 

Dead Vegetation 6375 6375 12750 

Total 461241 461241 922482 
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Table 6: Number of Pixels used for each class for Ground Truth and Training Data in March 

Class Training 

Sample 

Pixels 

Ground Truth 

Pixels 

Total number of Pixels from 

the Vegetation Survey 

Spinifex 10497 10497 20994 

Pingao 2567 2567 5134 

Flax 45957 45957 91914 

Sedges 39698 39698 79396 

Tauhinu 34545 34545 69090 

Muelenbeckia 55572 55572 111144 

Lupin 47907 47907 95814 

Pampas 22408 22408 44816 

Herbland 27229 27229 54458 

Established 

Forest 

97882 97882 195764 

Bareground 22716 22716 45432 

Dead Vegetation 19202 19202 38404 

Total 426180 426180 852360 

 

3.2.2 Red, near-infrared, and red edge histograms across all vegetation classes 

Given that vegetation types can usually be best discriminated based on how they 

differentially absorb red light, or reflect near-infrared light, the Near-infrared and Red 

Histograms are very important to the overall spectral profile of a vegetation class. These 

profiles can provide critical insights into different levels of ‘greenness’ of the different 
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vegetation types and how this might impact on spectral responses and, ultimately, the ability 

to classify them.  

Spectral profiles across the 12 vegetation types for red band reflectance (Figure 18) 

show that distinct bell curves characterise some vegetation profiles for both months. 

However, there is a shift in the profiles between November and March. For both months, 

many vegetation classes overlap and have similar spectral signatures, including the 

Muelenbeckia and Tauhinu classes or the Lupin and Flax classes that share very similar 

spectral signatures 

Red Band Reflectance Values 

The red band reflectance values of the vegetation for the March imagery, in comparison to 

the November imagery, were very low, with most of the pixels recording reflectance values 

below 0.08. Because the reflectance values were low, more classes had similar histograms 

with overlapping reflectance values.  

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 18: Band 3 -Red (661 to 675 nm wavelength) spectral reflectance profile histograms created for the 12 vegetation 
classes identified at the Karekare Beach sand dune site, for (a) November imagery and (b) March imagery. 
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Near InfraRed Reflectance Values 

November: Near InfraRed (Band 4) has a wavelength of 842 nm centre with a 57 nm 

bandwidth. The histograms here look very different from the ones seen in band number three. 

In particular, the Tauhinu class is now separated from the Muelenbeckia class. Therefore, 

these spectral differences could aid in the classification algorithm generation. Lupin also 

seems to have a slightly displaced curve compared to the flax classification seen earlier. 

However, other classes such as Muelenbeckia and Flax have very similar spectral curves 

within this wavelength.  

 March: Band 4 (Near-Infrared) also shows much lower reflectance values than in November, 

with maximum values close to 0.4 instead of 0.8 in November. However, the bell curves were 

less clustered together because plants have much higher reflectance values in the near-

infraRed and Red-Edge wavelengths. In particular, the Bare Ground class had a very 

distinctive low reflectance value for this spectral band. Native Sedges, Tauhinu and Dead 

Vegetation all had distinct histogram curves. However, there was a lot of overlap within most 

of the classes, including Established Forest, Muelenbeckia, Flax, Herbland and Pampas. 

 

 

 

 

 



62 
 

 

 

 

Figure 19: Band 4 Near Infrared 842 nm centre with a 57 nm bandwidth a) November Imagery b) March Imagery 

 

Red Edge Reflectance Values 

November: Figure 20a shows the spectral signatures of the twelve thematic classes within the 

RedEdge band wavelength (717 nm centre, 12 nm bandwidth). The Lupin class has lower 

reflectance values than Muelenbeckia, whereas the inverse was true for the Near InfraRed 

histogram. However, Herbland and Established Forest share similar curves in the Near 

InfraRed and RedEdge bands. There is more significant differentiation in the Red band 

histogram in Figure 18 for these two classes. These basic statistics of the different 

classifications represented in visual graphics are crucial for Remote Sensing. It can inform 

which classifications will be more likely to be classified correctly. It will be a key indicator 

for the results and the final classification accuracies and errors.  

(a) 
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March: As seen with the November survey, the RedEdge spectral band provided subtle 

differences compared to the RedEdge band and was a valuable addition for this study (Figure 

20b). In particular similar to the November study, Flax and Muelenbeckia showed more 

significant differentiation between the two classes. However, many of the classes fall within 

the 0.05 and 0.15 reflectance ranges, which shows how difficult characterising different 

vegetation classes based on spectral data can be. 

 

 

 

 

Figure 20: Band 5 (RedEdge) All Vegetation Classes a) November and b) March 
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3.2.3 Spectral signature comparisons  

A few thematic classes had similar spectral profiles, which increases the probability of 

misclassification. However, some classes were of high value to differentiate. For example, 

the differences between Muelenbeckia and Pampas. One is a native species (Muelenbeckia) 

while the other is an exotic species. Therefore, it was necessary to differentiate between these 

classes even though they had similar spectral profiles. The following section indicates the 

different classes that have similar spectral profiles and therefore have a greater probability of 

misclassification. 

November Spectral Signature Analysis 

Forest and Herbland 

Figure 21 shows the difference between Established Forest and Herbland using the 

Normalised Difference Vegetation Index (NDVI). While the pixel count is different, the 

overall curve is very similar. If this data was used exclusively, it would result in an inferior 

classification result. However, there were slight differences in the histogram shapes in band 

three red. Therefore, it was hoped that there would be enough differentiation within the 

classes for an accurate result. The Established Forest and Herbland also have very different 

textural qualities. Therefore, it would be expected that the object-based analysis would 

produce higher quality results than the pixel-based algorithms.  

 

Figure 21: Established Forest and Herbland NDVI histograms for the November Imagery 
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Lupin and Flax 

Lupin and Flax near-infrared values have a slight overlap; however, the overall curves are 

very different (see Figure 22). Lupin has a more Normally Distributed curve, whereas Flax 

has a skewed curve. It is an important factor to consider that all of the classification 

algorithms assume normally distributed data. Therefore, the flax class could show results that 

are not expected. 

 

Figure 22: Lupin and Flax Near Infrared values for November Imagery 

 

Pingao and Pampas 

An example of two classes that will be very unlikely to be misclassified is Pingao and 

Pampas. Figure 23 shows two distinct curves with minimal overlap in the infrared band. 

Judging from this histogram, the classification accuracy would be very high if the algorithms 

were to be run, focusing only on these two classes.  
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Figure 23: Pingao and Pampas Near Infrared values 

 

 

March Spectral Signature Analysis 

Like the November analysis, both Forest and Herbland had very similar NDVI values, and it 

would be challenging to differentiate these classes, see Figure 24. Muelenbeckia and 

Herbland show almost identical curves in the RedEdge band; however, there were slight 

differences in the NDVI vegetation index (Figure 25). It will be interesting to observe these 

two classes' different commission and omission errors for the 5-band classifications 

compared to the 15-band algorithms with the vegetation indices included.  
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Figure 24: Established Forest and Herbland NDVI histograms 

 

 

Figure 25: Muelenbeckia and Herbland NDVI Histograms 

 

3.2.6 Temporal Variation in Spectral Signatures  

There was a lot of difference between the output histograms of the November and March 

surveys. For example, Figure 26 shows the difference in NDVI between March and 

November for tree lupin (Lupin class); the NDVI values are approximately four to five times 

lower for this class in March compared to November. This was evident while on-site also as 

in November the Lupin was in flower and green; however, in March, the Lupin was not in 

bloom, and many of the green leaves had also fallen off. Tauhinu also showed a similar 

reduction in NDVI reflectance values in March compared to November (Figure 27). In both 

cases, the spectral signatures of the respective classes are entirely different between 

November and March. 
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Lupin November vs March NDVI variations 

 

Figure 26: NDVI values for Lupin in March and November 

 

Figure 27: NDVI values for Tauhinu in March and November 

 

Two classes that showed very similar NDVI values for both the November and March studies 

were Pingao and Spinifex (Figures 28 and 29). Both had a relatively low NDVI value, and 

because they are both foredune species, they are more resilient to drought conditions. This 

exemplifies how different vegetation species will have dramatically varied responses to 

seasonal variability and moisture availability. The difference is striking, especially when the 

two results are compared to the graphs of Lupin and Tauhinu NDVI values which show 

significant seasonal variability. 
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Figure 28: NDVI values for Pingao in March and November 

 

Figure 29: NDVI values for Spinifex in March and November 

 

 

3.3 Image Classification of Vegetation Types on Karekare Beach Sand Dunes 

 

3.3.1 Pixel-Based Results 

In this section, confusion matrices will be created for all the different pixel-based 

classification algorithms. These include Maximum Likelihood, Mahalanobis Distance and 

Neural Net. There will be two confusion matrices generated for each survey (March and 

November). The two confusion matrices will consist of one using only the five spectral and 

one using the five spectral bands, and the other ten vegetation indices. 
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Pixel-Based Confusion Matrices 

 

Maximum Likelihood  

 

November Maximum Likelihood no Vegetation Indices   

Overall Accuracy = 74.00% 

Kappa Coefficient = 0.7017 

The first results to be analysed are the Maximum Likelihood values. The overall accuracies 

with no vegetation indices were 74.00%. Overall, these results are very similar. Some 

vegetation classes had very high producer accuracies, including Spinifex (98.15%), Pingao 

(95.01%), Muelenbeckia 89.86% and Bare ground (98.72%). However, there were many 

examples where the accuracy was very low and below 50% accuracy in some cases. For 

instance, Pampas has an accuracy of 44.32%, and Herbland had an accuracy of 50.37%. 

Interestingly both of these were misclassified not by one but multiple different classes. 

Pampas was misclassified as Herbland 18.8% of the time, Flax 10.69 and Muelenbeckia 

8.49%. 

Table 7: November Maximum Likelihood no Vegetation Indices   

 

Tauhinu Spinifex Sedges Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Tauhinu 30674 0 252 17 395 57 1393 83 532 0 1 4129 37535 81.72

Spinifex 198 9000 0 70 0 0 9 2 0 0 244 0 9524 94.50

Sedges 294 0 26405 0 1464 912 511 1135 3797 1869 0 482 36870 71.62

Pingao 1034 82 0 1951 0 0 0 0 0 0 0 0 3067 63.61

Pampas 99 0 708 6 9717 222 1916 1231 3038 69 0 768 17774 54.67

Muelenbeckia 339 0 1549 0 1862 44772 195 1829 1142 34 0 12754 64476 69.44

Lupin 602 0 91 0 1461 5 62494 1004 5758 0 0 4272 75686 82.57

Herbland 750 12 835 8 4122 1491 1659 7805 1990 96 0 13991 32760 23.82

Flax 400 0 2265 0 2344 350 8591 1236 37535 0 0 1916 54636 68.70

Dead Vegetation 150 23 8880 0 531 252 27 876 21 37535 36 684 49016 76.58

Bareground 3 52 0 0 0 0 0 0 0 0 21610 0 21665 99.74

Established Forest 2079 0 114 1 28 1765 1558 293 586 0 0 81980 88404 92.73

Column Totals 36622 9170 41099 2053 21923 49826 78353 15494 54399 39603 21891 120976 491411

Cover Type Accuracy (%) 83.76 98.15 64.25 95.01 44.32 89.86 79.76 50.37 69.00 94.78 98.72 67.77
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November Maximum Likelihood with Vegetation Indices   

Overall Accuracy = 74.50%   

Kappa Coefficient = 0.7063   

The results, including the vegetation indices, were very similar to the results without the 

vegetation indices. The overall accuracy was 74.50% compared to 74.00%. The same classes 

as the previous confusion matrices had very high accuracy percentages: Spinifex 97.82%, 

Pingao 94.72% Muelenbeckia 90.23% and Bare ground 98.62%. Herbland had a decreased 

accuracy of 41.93%, while Sedgeland decreased from 64.25 to 60.58%. Pampas had an even 

lower accuracy of 37.29 and was confused with Herbland 26.04% of the time. Overall the 

results between using the 5-band sensor and the 15-band stack were very similar. 

Table 8: November Maximum Likelihood with Vegetation Indices   

 

 

March Maximum Likelihood no Vegetation Indices   

Overall Accuracy = 75.70%   

Kappa Coefficient = 0.7208   

The March maximum likelihood confusion matrices will be analysed next. The March 

analysis's overall accuracy without vegetation indices was slightly higher than the November 

classification (overall accuracy: 75.70%). Bareground (96.76%), Spinifex (95.12%), Pingao 

(90.34%) and Muelenbeckia (85.52%) again had high classification accuracies. However, in 

Bareground Dead Vegetation Flax Established Forest Herbland Lupin Muelenbeckia Pampas Pingao Spinifex Tauhinu Sedges Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Bareground 21765 0 0 0 0 0 0 0 0 49 2 0 21815 99.77

Dead Vegetation 39 7454 17 493 716 49 271 557 4 39 179 9415 19232 38.76

Flax 0 0 38798 2010 1050 8516 436 2227 0 0 603 3131 56773 68.34

Established Forest 0 1 571 84922 954 1122 2301 58 0 0 2108 104 92140 92.17

Herbland 0 68 2326 2064 6568 2640 872 5772 0 37 771 1106 22224 29.56

Lupin 0 0 7187 4369 1056 64434 8 1772 0 0 1109 106 80041 80.50

Muelenbeckia 0 13 1529 18104 2387 300 45453 1845 0 0 531 1855 72017 63.11

Pampas 0 36 1887 441 1728 846 14 8265 4 9 19 457 13706 60.30

Pingao 0 0 0 0 0 2 0 0 1966 69 1425 0 3462 56.79

Spinifex 261 0 0 0 0 31 0 0 72 9069 93 0 9527 95.19

Tauhinu 4 0 320 4197 19 916 18 149 24 0 29819 205 35672 83.59

Sedges 0 2042 2362 701 1186 358 999 1517 5 0 365 25172 34708 72.53

Column Totals 22068 9614 54997 117300 15665 79214 50374 22164 2076 9271 37024 41551 461317

Cover Type Accuracy (%) 98.62 77.53 70.55 72.40 41.93 81.34 90.23 37.29 94.72 97.82 80.54 60.58
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March, Pampas was classified much more accurately 62.95% an 18.63% increase from the 

November analysis using five spectral bands. Herbland was also classified with greater 

accuracy (65.61% compared to 50.37%). 

Table 9: March Maximum Likelihood no Vegetation Indices   

 

 

March Maximum Likelihood with Vegetation Indices   

Overall Accuracy = 75.77%   

Kappa Coefficient = 0.7214   

When the ten vegetation indices were added to the analysis, the overall accuracy only 

increased by 0.07% to 75.77%. The results for both March confusion indices were very 

similar. There was often little more than a percentage difference between the thematic class 

accuracy; for example, Dead Vegetation decreased in accuracy from 78.51 to 77.92, and 

Forest increased from 76.36 to 76.61. However, both results are within a single percentage 

difference and would be considered statistically insignificant. 

Table 10: March Maximum Likelihood with Vegetation Indices   

 

 

maxlik5

Bareground Dead Vegetation Flax Established Forest Herbland Lupin Muelenbeckia Pampas Pingao Spinifex Tauhinu Sedges Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Bareground 22423 0 0 0 0 0 0 0 1 213 79 0 22716 98.71

Dead Vegetation 170 8856 184 211 16 2319 116 206 7 58 1053 6006 19202 46.12

Flax 0 4 35640 5375 835 282 134 2177 10 0 6 1494 45957 77.55

Established Forest 0 104 1452 88860 525 3549 2778 142 0 0 215 257 97882 90.78

Herbland 7 300 6176 5115 9809 1601 1214 1928 9 0 49 1021 27229 36.02

Lupin 3 184 1165 3809 62 38855 720 765 3 23 922 1396 47907 81.11

Muelenbeckia 0 317 315 8294 958 515 41326 1800 0 0 50 1997 55572 74.36

Pampas 6 191 3863 1043 1201 726 170 14411 17 7 94 679 22408 64.31

Pingao 25 57 4 0 0 6 0 0 2311 90 74 0 2567 90.03

Spinifex 312 56 0 0 0 0 0 0 165 9521 443 0 10497 90.70

Tauhinu 212 144 198 3079 0 2606 2 195 16 99 26107 1887 34545 75.57

Sedges 15 914 6073 736 992 2877 1845 1108 19 0 115 25004 39698 62.99

Column Totals 23173 11127 55070 116522 14398 53336 48305 22732 2558 10011 29207 39741 426180

Cover Type Accuracy (%) 96.76 79.59 64.72 76.26 68.13 72.85 85.55 63.40 90.34 95.11 89.39 62.92

Bareground Dead Vegetation Flax Established Forest Herbland Lupin Muelenbeckia Pampas Pingao Spinifex Tauhinu Sedges Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Bareground 22515 0 0 0 0 0 0 0 2 222 64 0 22803 98.74

Dead Vegetation 252 8670 157 328 20 2160 95 205 7 64 1373 6008 19339 44.83

Flax 0 17 37224 4553 704 449 195 2392 9 0 8 2322 47873 77.76

Established Forest 0 116 2030 89273 402 4749 2726 69 0 0 101 366 99832 89.42

Herbland 2 240 6491 5378 10035 1907 1341 1847 0 0 28 1155 28424 35.30

Lupin 1 225 797 3420 32 37613 615 493 0 24 966 1474 45660 82.38

Muelenbeckia 0 320 421 9918 954 701 41295 1873 0 0 45 2089 57616 71.67

Pampas 2 138 3419 887 1438 736 216 14530 14 43 104 670 22197 65.46

Pingao 23 160 0 0 0 5 0 1 2286 86 234 0 2795 81.79

Spinifex 223 69 0 1 0 0 0 0 216 9514 271 0 10294 92.42

Tauhinu 128 81 107 2204 0 1630 2 152 1 58 25666 1370 31399 81.74

Sedges 27 1091 4424 560 813 3386 1820 1170 23 0 347 24287 37948 64.00

Column Totals 23173 11127 55070 116522 14398 53336 48305 22732 2558 10011 29207 39741 426180

Cover Type Accuracy (%) 97.16 77.92 67.59 76.61 69.70 70.52 85.49 63.92 89.37 95.04 87.88 61.11
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Mahalanobis Distance 

 

November Mahalanobis Distance No Vegetation Indices 

Overall Accuracy = 57.44%   

Kappa Coefficient = 0.5172    

The following Classification algorithm was the Mahalanobis distance. These classification 

results were much worse than the Maximum Likelihood results analysed in the previous 

section. The overall accuracy of the November survey using Mahalanobis Distance was 

57.44%. Pampas again had very poor accuracy (32.38%) and 24.28% of the ground truth 

polygons were misclassified as herbland. Herbland had an accuracy of only 26.85% and was 

misclassified with Muelenbeckia 21.82% and Pampas 14.89% of the time. Dead vegetation 

also had a very low classification accuracy of 50.30% and was consistently misclassified with 

Sedgeland (47.69%). Compared to the maximum likelihood classification Pingao had a great 

reduction in accuracy, down to 69.81, a reduction of 25.21% in accuracy. Bareground and 

Spinifex were the only two classes with accuracies above 80%, with 98.42% and 94.76, 

respectively. 

Table 11: November Mahalanobis Distance No Vegetation Indices 

 

 

 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedges 28487 1 1528 488 627 866 1201 89 2555 5 4 15829 51680 55.12

Tauhinu 9 8650 65 23 440 0 0 347 0 7 373 163 10077 85.84

Spinifex 277 1 24358 0 1282 1763 283 1850 1995 4514 0 600 36923 65.97

Pingao 16 240 401 1427 307 1 2057 284 390 160 0 20 5303 26.91

Pampas 122 0 544 0 7066 197 5102 2297 4561 5 0 107 20001 35.33

Muelenbeckia 560 0 860 0 2529 39630 391 3365 2343 2 0 48151 97831 40.51

Lupin 138 0 32 0 1970 65 52970 655 12250 0 0 4813 72893 72.67

Herbland 359 0 1566 0 5299 1013 453 4141 1856 8 0 990 15685 26.40

Flax 783 0 2226 0 1036 205 12932 788 27584 0 0 7337 52891 52.15

Dead Vegetation 0 75 8797 55 1120 221 5 1305 73 4761 0 11 16423 28.99

Bareground 495 161 0 51 2 0 3 0 2 0 23537 6 24257 97.03

Established Forest 5207 0 533 0 144 5636 2595 302 540 4 0 42392 57353 73.91

Column Totals 36453 9128 40910 2044 21822 49597 77992 15423 54149 9466 23914 120419 461317

Cover Type Accuracy (%) 78.15 94.76 59.54 69.81 32.38 79.90 67.92 26.85 50.94 50.30 98.42 35.20
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November Mahalanobis Distance with vegetation Indices 

Overall Accuracy = 58.41%   

Kappa Coefficient = 0.5291   

The results were similar when the Mahalanobis Distance was performed with vegetation 

indices. The overall accuracy increased from 57.44% to 58.41%; however, there was similar 

misclassification of Herbland (24.33%), Pampas (32.60%) and Dead vegetation 48.955. 

However, Tauhinu was classified with much higher accuracy (87.27 and an increase of 

9.12%). Overall, the results remain poor, and many classes had low classification accuracies. 

Table 12: November Mahalanobis Distance with vegetation Indices. 

 

 

March Mahalanobis Distance No Vegetation Indices 

Overall Accuracy = 62.11%   

Kappa Coefficient = 0.5716   

The accuracy percentages of the Mahalanobis Distance algorithm increased slightly in March. 

The overall accuracy was 62.11% compared to 57.44% for the November classification. 

However, Pampas still had very low accuracies (37.55%). Established Forest was also below 

50 with an accuracy of 44.56; however, that improved 9.12 compared to November. Overall 

there was a slight improvement over the November survey; however, the accuracies were still 

lower than the Maximum Likelihood classification (75.70 compared to 62.11). 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedges 31964 7 975 367 541 482 1901 49 1898 21 26 23474 61704 51.80

Tauhinu 101 8650 348 24 812 2 3 727 65 39 636 626 12034 71.88

Spinifex 256 2 25094 0 1355 2055 360 2186 2281 4582 0 637 38808 64.66

Pingao 361 268 429 1599 178 1 1363 38 345 182 0 6 4770 33.52

Pampas 217 0 490 0 7147 10 3494 1261 2607 24 0 174 15424 46.34

Muelenbeckia 297 0 1160 0 1661 39827 332 4253 1764 2 0 37786 87082 45.74

Lupin 98 0 26 0 1891 50 53868 679 12584 0 0 3393 72590 74.21

Herbland 154 2 1356 1 5816 2039 1764 3770 4732 2 0 4094 23731 15.89

Flax 834 0 2369 0 890 158 12660 682 27427 1 0 6512 51534 53.22

Dead Vegetation 1 145 8510 36 1488 231 7 1614 90 4656 0 8 16787 27.74

Bareground 98 97 0 27 0 0 0 0 0 0 21170 0 21393 98.96

Established Forest 2245 0 348 0 148 4979 2612 236 613 2 0 44277 55460 79.84

Column Totals 36627 9172 41105 2054 21926 49834 78364 15497 54408 9511 21832 120987

Cover Type Accuracy (%) 87.27 94.31 61.05 77.84 32.60 79.92 68.74 24.33 50.41 48.95 96.97 36.60
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Table 13: March Mahalanobis Distance No Vegetation Indices. 

 

 

March Mahalanobis distance with Vegetation Indices 

Overall Accuracy = 60.52%   

Kappa Coefficient = 0.5566   

Interestingly the accuracies decreased when the Mahalanobis algorithm was run for the 

March survey. The overall accuracy of 60.52% was recorded, a reduction of 1.59%. The 

Established Forest class reduced to 37.56% accuracy (a decrease of 7%). Pampas accuracy 

was slightly higher; however, it remained below 50% at 40.05%. Tauhinu increased to 

93.35%, 14.47% higher compared to the value without vegetation indices. However, most of 

the classification accuracies were similar or slightly lower than those without the vegetation 

indices. 

Table 14: March Mahalanobis distance with Vegetation Indices. 

 

 

 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedges 21218 362 0 44 781 1739 3293 745 4447 1516 6 334 34485 61.53

Tauhinu 2251 22694 118 22 114 113 4598 35 334 237 134 3199 33849 67.04

Spinifex 231 535 8265 117 2628 6 0 335 1 233 246 139 12735 64.90

Pingao 1307 3 24 1587 1393 74 52 403 774 49 3 8 5677 27.95

Pampas 233 330 48 8 8366 70 293 1771 721 35 5 360 12241 68.35

Muelenbeckia 1459 324 1 0 1931 40385 1365 1652 250 446 1 15712 63528 63.57

Lupin 590 1116 26 0 1875 686 35584 41 1499 78 0 17555 59050 60.26

Herbland 1643 1128 11 11 2720 1324 1864 7391 10393 171 0 13473 40130 18.42

Flax 1740 40 0 0 1892 21 448 1580 35640 31 6 16372 57770 61.69

Dead Vegetation 8220 416 81 305 557 485 1866 172 242 7846 168 240 20599 38.09

Bareground 0 1760 295 6 0 0 5 0 0 0 21562 0 23629 91.25

Established Forest 349 64 0 0 23 3083 3483 390 908 23 0 54164 62487 86.68

Column Totals 39242 28771 8870 2100 22280 47986 52852 14516 55209 10666 22132 121556

Cover Type Accuracy (%) 54.07 78.88 93.18 75.56 37.55 84.16 67.33 50.92 64.55 73.56 97.43 44.56

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedges 19956 256 0 61 668 1864 2896 709 3961 1451 7 290 32119 62.13

Tauhinu 4148 26858 196 6 242 259 8073 78 1688 357 1058 14165 57128 47.01

Spinifex 240 767 8269 111 2241 6 18 364 42 243 257 306 12863 64.29

Pingao 1729 3 17 1596 1553 137 48 435 924 41 2 9 6494 24.58

Pampas 266 31 5 1 8924 80 191 1709 840 22 2 106 12177 73.28

Muelenbeckia 1427 79 0 0 1955 40402 624 1734 275 425 0 23292 70213 57.54

Lupin 533 188 19 0 1733 611 35407 24 1253 96 0 8268 48132 73.56

Herbland 1456 170 19 19 2495 1098 1612 7351 10121 170 1 12278 36792 19.98

Flax 1487 3 0 0 1828 20 461 1555 35032 1 11 16947 57345 61.09

Dead Vegetation 7654 335 126 298 604 460 1907 154 232 7838 169 239 20016 39.16

Bareground 0 55 219 8 0 0 0 0 0 0 20624 0 20907 98.65

Established Forest 346 26 0 0 38 3048 1615 402 842 23 0 45656 51995 87.81

Column Totals 39242 28771 8870 2100 22280 47986 52852 14516 55209 10666 22132 121556 426180

Cover Type Accuracy (%) 50.85 93.35 93.23 76.01 40.05 84.20 66.99 50.64 63.45 73.48 93.19 37.56



76 
 

Nueral Net 

Neural Net classifications had overall higher levels of accuracy than Mahalanobis distance 

classifications. However, the pixel-based classifications were less accurate than the 

Maximum Likelihood algorithm. The March classifications were again slightly more accurate 

than the November classifications. 

 

November Neural Net with no Vegetation Indices 

Overall Accuracy: 66.73% 

Kappa Coefficient: 0.6075 

The November Neural Net classification had an overall accuracy of 66.73%. In Particular, 

Sedges (71.48%), Spinifex (83.06%), Lupin (85.12%) and Bareground (97.76%) had a high 

level of accuracy. However, many classes were misclassified. The Pingao class only had an 

accuracy of 35.86%, while Pampas only had an accuracy of 9.61% and was consistently 

misclassified as Herbland (55.7% of the time). The misclassification of Pampas was 

significantly worse than both the Mahalanobis and Maximum Likelihood Classifications. 

Table 15: November Neural Net with no Vegetation Indices. 

 

 

 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 11 0 0 0 0 0 0 0 0 424 1532 1967

Sedges 27596 14 566 597 273 4 907 21 348 206 12 3504 34047 81.05

Tauhinu 4 7617 0 192 0 0 0 0 0 0 25 2 7840 97.16

Spinifex 476 0 29376 4 1367 1375 771 1590 2628 5593 0 729 43909 66.90

Pingao 22 9 87 736 99 0 0 36 5 215 0 16 1227 60.03

Pampas 2 92 304 1 2108 7 387 134 308 6 0 65 3415 61.72

Muelenbeckia 146 0 642 0 1155 20737 117 2919 1278 0 0 3371 30365 68.29

Lupin 814 0 530 0 3636 173 66693 1488 24721 0 0 3912 101967 65.41

Herbland 1037 12 4407 68 12211 2006 4753 7923 7299 219 0 1969 41905 18.91

Flax 397 0 1660 0 321 4 2690 51 15951 1 0 1431 22506 70.87

Dead Vegetation 0 124 2710 404 98 3 5 6 1 3248 29 1 6629 48.99

Bareground 86 1216 0 13 0 0 3 0 0 0 21399 0 22717 94.20

Established Forest 6042 75 816 38 653 25516 2026 1325 1859 22 1 104434 142807 73.13

Column Totals 36621 9170 41099 2053 21923 49826 78352 15494 54399 9510 21890 120967

Cover Type Accuracy (%) 75.35 83.06 71.48 35.86 9.61 41.62 85.12 51.14 29.32 34.15 97.76 86.33
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November Neural Net with Vegetation Indices 

Overall Accuracy: 66.87 

Kappa Coefficient: 0.6103 

The results from the November flight using the Neural Net Algorithm with the Vegetation 

Indices included displayed similar results as the classification output without vegetation 

Indices. Overall accuracy increased from 66.73% to 66.87%. However, the difference is not 

significant, a 0.15% increase. Again, the Pampas class was consistently misclassified with an 

overall accuracy of only 7.04%, again Herbland (57.28%) and Lupin (18.07%) were 

consistently the incorrect classification output for the ground truth Pampas pixels.  

As expected, the general trends of accuracy percentages for all classes were similar for both 

March and November classifications, including vegetation indices and the classification 

output. However, it could be assumed that there would be a higher level of accuracy with the 

additional information of the vegetation indices. These results show little influence with or 

without vegetation indices in the output results between the two classification runs. The 

tables are similar in all classification categories. 

Table 16: November Neural Net with Vegetation Indices. 

 

 

 

 

Class Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 0 0 0 69 0 69

Sedges 28959 19 1293 724 515 35 1161 90 592 461 17 4884 38751 74.73

Tauhinu 2 7119 1 234 0 0 0 0 0 0 30 2 7388 96.36

Spinifex 264 0 27541 2 1085 1343 422 1445 1908 5408 0 493 39912 69.01

Pingao 5 4 58 632 50 0 0 7 2 68 0 5 831 76.05

Pampas 1 66 281 1 1535 6 188 87 188 8 0 53 2414 63.59

Muelenbeckia 110 0 541 0 1143 20992 78 2813 1037 0 0 3603 30317 69.24

Lupin 925 0 586 0 3944 269 66496 1569 23786 0 0 4714 102290 65.01

Herbland 977 28 4986 72 12500 2536 4547 8127 7463 287 0 2022 43546 18.66

Flax 577 0 2339 0 383 8 3537 72 17893 9 0 2406 27224 65.73

Dead Vegetation 0 68 2649 320 90 3 3 6 0 3208 28 0 6375 50.32

Bareground 97 1757 1 21 0 0 3 0 0 0 23769 0 25648 92.67

Established Forest 4536 67 634 38 577 24405 1558 1207 1280 17 1 102232 136552 74.87

Column Totals 36454 9128 40911 2044 21822 49598 77993 15423 54150 9466 23914 120414

Cover Type Accuracy (%) 79.44 77.99 67.32 30.92 7.03 42.33 85.26 52.69 33.04 33.89 99.39 84.90
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March Neural Net without Vegetation Indices 

Overall Accuracy: 72.15% 

Kappa Coefficient: 0.6708 

The two March classification runs of the Neural Net algorithm (with and without Vegetation 

Indices) had higher overall accuracy than the November runs. The first run without 

vegetation indices produced 72.15% compared to 66.73% in November. The Pampas 

Vegetation Class had a much higher accuracy than in November (32.37%); however, this 

value is far below an acceptable level of accuracy. The Herbland Class also had an accuracy 

below 50%. In addition, Pingao had an accuracy of only 13.36%.  

While the Neural Net algorithm had certain classes with very high accuracies (Tauhinu 

(83.06%), (Spinifex 92.11%), Bareground (97.21%), Forest (84.86%)), it also had significant 

variability and very low accuracies for classes such as Pingao and Pampas as mentioned 

earlier. Therefore, caution would need to be applied when looking at the overall accuracy of 

this result. 

Table 17: March Neural Net without Vegetation Indices. 

 

 

 

 

 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 53 0 0 306 1363 1723

Sedges 23401 205 0 413 2286 2976 4096 4464 4208 2285 23 526 44883 52.14

Tauhinu 2421 23801 44 2 130 0 836 0 42 243 53 1581 29153 81.64

Spinifex 146 413 8146 531 2 0 2 0 0 485 113 3 9843 82.76

Pingao 341 2 3 279 133 1 20 6 3 750 3 35 1577 17.72

Pampas 371 37 3 0 7185 33 27 217 321 6 0 79 8280 86.78

Muelenbeckia 2269 130 0 1 1891 36040 415 896 662 403 0 5841 48546 74.24

Lupin 771 1500 34 0 2274 446 31734 444 1076 341 8 2136 40764 77.85

Herbland 36 16 0 0 137 183 205 420 58 12 0 189 1256 33.42

Flax 5125 447 6 0 8006 262 3138 6560 44977 149 0 6586 75254 59.77

Dead Vegetation 3278 539 32 862 24 15 1226 16 58 5889 116 188 12243 48.10

Bareground 6 1128 576 2 1 0 0 0 3 3 21724 11 23454 92.62

Established Forest 915 436 0 0 130 7842 10930 1435 3575 61 0 103881 129205 80.40

Column Totals 39081 28655 8844 2091 22198 47797 52628 14509 54982 10627 22347 122419 426180

Cover Type Accuracy (%) 59.88 83.06 92.11 13.36 32.37 75.40 60.30 2.89 81.80 55.41 97.21 84.86
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March Neural Net with Vegetation Indices 

Overall Accuracy: 70.47% 

Kappa Coefficient: 0.6568 

Similar to the November study, the addition of Vegetation indices had little effect on the 

output classification. In March, the accuracy was reduced from 72.15% to 70.47%. Like the 

November study, the herbland and pingao classes had low accuracy, while tauhinu, spinifex, 

and Bareground had very high accuracy. Muelenbeckia had high accuracy (86.39%) however 

was consistently misclassified as many other vegetation classes (12.44% of Sedges Class, 

18.08% Herbland Class and 15.39% of the Forest Class). The above example illustrates the 

importance of understanding errors of commission and omission. Therefore, it is crucial to 

examine confusion matrices results in a greater depth rather than focusing solely on overall 

accuracy percentages. 

Table 18: March Neural Net with Vegetation Indices. 

 

 

 

 

 

 

Sedges Tauhini Spinifex Pingao Pampas Muelenbeckia Lupin Herbland Flax Dead Vegetation Bareground Established Forest Row Totals Reliability(%)

Unclassified 0 0 0 0 0 0 0 53 0 0 307 1363 1723

Sedges 18884 49 0 59 831 1835 2360 1432 2829 1630 39 325 30273 62.38

Tauhinu 779 23000 30 15 79 2 780 28 106 156 52 1316 26343 87.31

Spinifex 2 231 8018 164 0 0 0 0 0 37 76 1 8529 94.01

Pingao 83 0 18 516 3 7 3 0 5 0 1 1 638 80.94

Pampas 1165 111 4 0 14184 196 189 1742 2285 145 19 166 20207 70.19

Muelenbeckia 4862 27 0 4 2141 41287 1482 2623 3197 430 0 18842 74896 55.13

Lupin 3086 2244 31 0 1893 684 35745 1441 3825 335 1 5311 54595 65.47

Herbland 1092 560 8 19 1233 749 2058 4268 3404 224 6 1200 14822 28.80

Flax 2716 0 0 0 1707 17 838 2053 35520 46 0 3951 46848 75.82

Dead Vegetation 5890 1706 188 1237 72 10 1774 0 128 7508 141 261 18915 39.69

Bareground 1 356 537 77 0 0 0 0 0 65 21706 0 22743 95.44

Established Forest 524 371 0 0 46 3005 7409 870 3688 46 0 89689 105647 84.90

Column Totals 39083 28655 8834 2091 22190 47792 52638 14510 54986 10623 22349 122428 426180

Cover Type Accuracy (%) 48.32 80.26 90.76 24.69 63.92 86.39 67.91 29.41 64.60 70.68 97.13 73.26
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3.3.2 Object-Based Image Analysis (OBIA) Results (eCognition Results) 

 

November OBIA Results No Vegetation Indices 

Accuracy: 77.61% 

Kappa: 0.7440 

The following section shows the result of the OBIA classifications. The initial results with no 

vegetation indices showed an overall accuracy of 77.61% (3.61% higher than the maximum 

likelihood and 20.17% higher than the Mahalanobis Distance. Using OBIA, Established 

Forest showed much higher accuracy than any pixel-based classification (90.56%). Herbland 

(57.74%) and pampas (54.69%) continued to have low accuracies; however, both were 

classified with higher accuracy than the pixel-based methods. Spinifex (88.16), Tauhinu 

(86.13%), Pinagao (82.78%) and Spinifex (88.15%) all continued to have higher accuracies 

than other classes, similar to the pixel-based analysis.  

Table 19: November OBIA Results No Vegetation Indices 

 

 

 

 

 

 

Classification Dead Vegetation Flax Established Forest Herbland Lupin Muelenbeckia Pampas Pingao Bareground Sedges Spinifex Tauhinu Row Totals Reliability(%)

Dead Vegetation 8121 75 150 187 0 187 374 0 0 3481 0 37 12613 64.39

Flax 299 56589 1272 3181 5352 1123 4154 0 0 3555 0 374 75900 74.56

Established Forest 225 1759 82899 524 973 4566 487 0 0 861 0 2021 94314 87.90

Herbland 412 2021 337 11078 1123 2283 2096 0 0 1460 0 150 20959 52.86

Lupin 112 7261 1048 2208 64336 599 2246 75 75 1048 112 1722 80841 79.58

Muelenbeckia 0 749 2844 1085 75 32598 487 0 0 1310 0 0 39148 83.27

Pampas 674 2508 599 2657 1198 1871 15270 0 0 2133 0 150 27059 56.43

Pingao 0 0 0 37 0 0 0 4678 225 0 1422 150 6512 71.84

Bareground 112 0 0 0 0 0 37 0 9806 0 636 37 10629 92.25

Sedges 2770 2171 225 1422 674 1198 2545 0 0 25038 0 150 36191 69.18

Spinifex 37 0 0 112 0 0 0 37 2320 0 17815 0 20322 87.66

Tauhinu 112 674 2171 711 936 187 225 861 75 823 225 29754 36753 80.96

Column Totals 12875 73805 91545 23204 74665 44612 27920 5651 12500 39709 20210 34544 461241

Cover Type Accuracy (%) 63.08 76.67 90.56 47.74 86.17 73.07 54.69 82.78 78.44 63.05 88.15 86.13
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November OBIA Results No Vegetation Indices 

Accuracy: 60.56% 

Kappa:0.7672 

Interestingly, vegetation indices' accuracy decreased dramatically compared to using only the 

five spectral bands. It was believed that this was an error with the bands; however, multiple 

re-runs and different set-up processes yield the same result. It is unclear why there is such a 

drop off in accuracy, as this was not observed in the March OBIA analysis. It also was not 

apparent in the pixel-based algorithms using the same data sets. 

Table 20: November OBIA Results No Vegetation Indices 

 

 

March OBIA Results No Vegetation Indices 

Accuracy : 80.09%           

Kappa : 0.7672 

The March OBIA result showed the highest overall accuracy seen yet of 80.09%. In 

particular, pampas scored 77.76% correctly compared to the pixel-based analyses and 

consistently yielded results below 50%. The only two thematic classes with low accuracy 

percentages were sedges (33.79%) and herbland (53.72%). Sedgeland was consistently 

misclassified with flax (22.59%), while herbland was also misclassified with flax (15.35%) 

and forest (10.15%). 

Classification Dead Vegetation Flax Established Forest Herbland Lupin Muelenbeckia Pampas Pingao Bareground Sedges Spinifex Tauhinu Row Totals Reliability(%)

Dead Vegetation 6838 187 224 299 262 37 1009 0 0 4185 37 1270 14348 47.66

Flax 224 35647 4858 5007 11434 1943 4932 0 0 3587 0 1644 69276 51.46

Established Forest 149 5904 64643 1607 2989 6987 747 0 0 1681 0 4334 89042 72.60

Herbland 673 3139 1532 7361 1383 2205 3064 0 0 1569 0 224 21149 34.81

Lupin 598 13003 3213 3101 58739 336 4185 75 112 3326 37 1420 88145 66.64

Muelenbeckia 224 2989 7959 2728 262 21261 598 0 0 1084 0 673 37777 56.28

Pampas 1046 3774 1270 4297 2728 1719 10126 0 0 2690 37 673 28361 35.70

Pingao 75 0 0 0 0 0 0 3587 224 0 2205 262 6352 56.47

Bareground 411 0 0 0 0 0 0 37 9566 0 560 37 10612 90.14

Sedges 3961 2317 2242 4035 2616 374 3027 0 0 18197 0 2205 38972 46.69

Spinifex 374 0 0 37 0 0 37 299 1532 0 17039 0 19318 88.20

Tauhinu 336 1495 5082 635 673 374 187 859 37 1719 187 26305 37889 69.43

Column Totals 14909 68454 91023 29108 81083 35236 27912 4858 11471 38038 20103 39047 461241

Cover Type Accuracy (%) 45.86 52.07 71.02 25.29 72.44 60.34 36.28 73.85 83.39 47.84 84.76 67.37
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Table 21: March OBIA Results No Vegetation Indices 

 

 

March OBIA Results with Vegetation Indices 

Accuracy : 79.90%     

Kappa : 0.7674           

The March OBIA results with vegetation indices were almost identical to the results without 

vegetation indices (79.90% overall accuracy). Again, this is in stark difference from the 

anomaly of the results recorded with the November study. Herbland showed similar 

accuracies 51.88%, a decrease of 1.84% from the November study). One interesting thing to 

note was that Sedges dramatically increased accuracy compared to the November 

classification up to 68.69% from 33.79% in November). It was still confused with Flax 

10.44% of the time, but this is a significant increase in accuracy compared to the November 

study. 

Table 22: March OBIA Results with Vegetation Indices 

 

 

 

Classification Dead Vegetation Flax Establishe Forest Herblan Lupin Muelenbeckia Pampas Pingao Bareground Sedges Spinifex Tauhinu Row Totals Reliability(%)

Dead Vegetation 7174 29 206 265 1117 764 470 29 382 1705 88 382 12613 56.88

Flax 147 61328 1323 3822 2234 353 2969 59 0 3381 0 88 75705 81.01

Establish Forest 147 2587 95491 2528 3263 3675 206 0 29 853 0 764 109544 87.17

Herbland 88 2029 706 13377 382 323 882 0 0 294 0 0 18081 73.98

Lupin 676 382 4469 1147 52538 1205 206 0 29 1617 0 1793 64062 82.01

Muelenbeckia 29 206 4351 1382 794 36426 88 0 0 1117 0 0 44394 82.05

Pampas 88 3528 588 1558 1382 1911 18199 0 29 500 0 265 28047 64.88

Pingao 647 0 0 0 0 29 29 5851 29 29 1235 176 8026 72.89

Bareground 265 0 0 59 29 29 29 0 5645 88 147 265 6556 86.10

Sedges 911 764 323 676 1705 1352 265 0 0 5057 0 147 11201 45.14

Spinifex 118 0 0 0 59 0 0 59 1058 0 15435 118 16846 91.62

Tauhinu 441 118 1235 88 2764 59 59 29 970 323 206 24813 31105 79.77

Column Totals 10731 70971 108691 24902 66267 46128 23402 6027 8173 14965 17111 28812 426180

Cover Type Accuracy (%) 66.85 86.41 87.86 53.72 79.28 78.97 77.76 97.07 69.06 33.79 90.21 86.12

Classification Dead Vegetation Flax Establishe Forest Herblan Lupin Muelenbeckia Pampas Pingao Bareground Sedges Spinifex Tauhinu Row Totals Reliability(%)

Dead Vegetation 6892 28 195 195 1116 726 446 28 391 1646 84 223 11971 57.58

Flax 167 58292 1172 3795 2037 335 2651 56 0 3209 0 140 71853 81.13

Established Forest 140 2456 90605 2372 3153 3460 223 0 28 781 0 753 103971 87.14

Herbland 84 1897 670 12724 307 335 837 0 0 307 0 0 17161 74.15

Lupin 614 391 4381 1116 49530 1228 195 0 28 1591 0 1730 60803 81.46

Muelenbeckia 56 167 3739 1395 726 34852 84 0 0 1116 0 0 42135 82.72

Pampas 112 3404 586 1423 1200 1758 17356 0 28 502 0 251 26621 65.20

Pingao 502 0 0 0 0 28 28 5665 56 28 1172 187 7665 73.90

Bareground 223 0 0 84 28 28 0 0 5385 112 112 251 6223 86.55

Sedges 1646 1618 502 1311 3125 1814 558 0 56 21123 0 558 32313 65.37

Spinifex 84 0 0 0 56 0 0 28 1032 0 14650 140 15989 91.62

Tauhinu 419 140 949 112 2902 28 56 56 865 335 223 23439 29523 79.40

Column Totals 10938 68393 102799 24528 64180 44591 22435 5832 7869 30750 16240 27673 426228

Cover Type Accuracy (%) 63.01 85.23 88.14 51.88 77.17 78.16 77.36 97.13 68.44 68.69 90.21 84.70
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3.4 Output Classification Maps 

All of the classification algorithms produced classification maps of Karekare. Figures 30 and 

31 illustrate a sample of these results. The classification maps are the result of the maximum 

likelihood classification, and it shows a visual indication of how the vegetation coverage has 

changed between November and March. For example, in Figure 31, it can be seen the extent 

of spinifex in the foredunes has dramatically increased. In addition, there is also more Lupin 

in the places where Muelenbeckia occupied this space in the November classification. 
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Figure 30:November Maximum Likelihood Classification Results in map format 

 

Figure 31: March Maximum Likelihood Classification Results in map format 
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4. Discussion 

 

4.1 Pixel-Based and OBIA algorithm comparison 

A principal goal in this research was to compare and contrast pixel-based and OBIA 

classification models advantages and disadvantages using UAV methods. The results showed 

a slight increase in overall accuracy using OBIA methods compared to pixel-based methods. 

For example, results without Vegetation indices showed accuracies of 77.61% and 80.09% 

for the November and December OBIA classifications, respectively. Compared to the most 

accurate pixel-based methods (Maximum Likelihood) of 74.00% and 75.70%, an increase of 

3.61% and 4.39% was observed using the same five-band input (without vegetation indices). 

Possible reasons for this increase included shape, texture, spatial relationship and other 

underlying differences in OBIA methodology.   

This increase in overall accuracy from OBIA classification methods provides a promising 

indication of the potential OBIA classification methods can have in future Remote Sensing 

projects. However, it is essential to note that this study's overall increase in accuracy is 

relatively small and inconsistent for all the thematic classes observed. For example, pampas 

had a producer accuracy of 52.87% and a user accuracy of 54.69%. In contrast, other 

thematic classes had much higher values, such as established forest (87.60% and 90.56%) for 

producer and user accuracies, respectively. Additional examples of differences in thematic 

classes can be observed in the results section. Possible reasons for the low accuracy in 

pampas can be linked back to the similar spectral signatures of pampas with muelenbeckia, 

herbland and flax. This remains a consistent challenge in remote sensing: the balance 

between differentiating thematic classes concerning the purpose and objective of the study 

and the real-world spectral, textural and spatial relationship difference that classification 

algorithms can account for (Cruzan et al., 2016).  
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Pampas is a highly invasive species prominent within many New Zealand coastal ecosystems 

(Holliston & Dagmar, 2017). However, identifying this is very difficult due to the spectral 

similarities with other species. Pampas consistently had a low producer and user accuracy in 

all of the classification schemes compared to other thematic classes. It was hoped that the 

distinctive shape and texture of pampas could be used in OBIA classification methods to 

increase the accuracy of this thematic class. The digitisation of the overall shape of the 

pampas plant and the inclusion of additional textural and spatial attributes would increase the 

overall accuracy of this thematic class. However, it provided a challenge in all methods of 

automatic classification. 

However, while some thematic classes provided consistently low accuracies regardless of the 

classification algorithm, the overall increase in accuracy from OBIA classifications compared 

to pixel-based classification is encouraging. Of equal importance is the ability of the 

Maximum Likelihood classification to provide consistently high overall levels of accuracy 

for all four study flights. OBIA classification is a very time-consuming process and requires a 

lot of pre-existing knowledge to carry out (Blaschke, 2010). The ability of a pixel-based 

classification algorithm to provide such consistent results without the additional information 

afforded by OBIA classification was impressive.  

OBIA classification requires a lot of user input and variables such as scale parameter, 

shape/colour weighting and object compactness (Mafanya et al., 2017). These variables are 

user allocated within the eCognition software and can lead to differences in studies between 

two researchers who have been supplied the same data. In this study, the Estimation of Scale 

Parameter (ESP) was used to determine the best scale for the project (Dragut et al., 2010). 

However, even with this additional information, the user must decide appropriate values for 

each of the three user-controlled variables. The variability was minimised by providing a 

step-guide of best practices in the methods section.  
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OBIA is an emerging technology, and there have been numerous recent studies implementing 

OBIA classification algorithms into their studies (Blaschke., 2013). The additional 

information OBIA provides compared to solely spectral pixel-based algorithms is reason to 

be optimistic about the continued development of this technology for a wide variety of 

studies.  

 

4.2 Temporal Variability 

The seasons' effects of the two studies were stark. The March results had higher accuracy 

than the November results in every classification technique using the same algorithm. 

Possible reasons for this difference include the flowering of many species within the study 

site lupin, manuka and kanuka. Other studies have corroborated this theory that vegetation in 

flower can be more effectively classified. The findings seem logical as it is much easier for 

the naked eye to differentiate tree lupin with its distinctive yellow flowers than other low 

shrub and tree species. 

Another reason for the difference in classification accuracies was the weather in the weeks 

before the March flights. The previous months were very dry, and, therefore, a significant 

proportion of the vegetation no longer had very high NDVI values. In November, many of 

the vegetation species had high values of NDVI, making it very difficult to differentiate 

spectrally between them. However, in March, the differences in NDVI between species was 

exaggerated, and therefore the classification algorithms were more effective in allocating 

thematic classes.  

For temporal/ seasonal studies to be undertaken, a radiometric correction was needed to be 

carried out (Ibqual et al., 2018). This study aimed to provide a numerical guideline of spectral 

and object-based values relatively autonomously to future studies. However, the output 

spectral values between the November and March spectral signatures within the same 
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thematic class varied dramatically in practice. Therefore, a standardised guideline of values 

and rulesets within an Object-based thematic classification was not applicable. Possible 

reasons for the discrepancies include weather-based vegetation health and condition and 

natural variability of spectral signatures seasonally.   

However, an additional reason for the changes was the radiometric calibration itself. All 

radiometric panel values were specific to the panel serial number identified and calibrated by 

the manufacturer. However, in practice, when inputting this value into the photogrammetry 

software (Pix4D) overall image had a lower value in reflectance that seemed not solely 

attributed to seasonal differences in the vegetation as some of the consistent values (sand and 

bare ground) showed differences also. The UAV had a sunlight indicator that was fully 

operational during all of the flights, and many tests were carried out to ensure the validity of 

the results. All the radiometric calibration inputs were functional and followed proven 

methodologies of radiometric calibration. However, exact radiometric calibration for a small 

UAV is complicated given the large number of variables that can affect the outcome.  

Overall, it can be determined that the use of exact spectral numbers for automated vegetation 

classification is not applicable with current technology using the methodology outlined in this 

study. In addition to limitations of algorithms to account for all possible influences, many 

local variables explain that exact predetermined/ numerical automation is not applicable. 

While some variation was expected prior to this study, it was hoped that radiometric 

calibration could account for these differences. However, future multi-annual studies during 

similar dates in the year would provide additional information on the viability of radiometric 

calibration using the same methodology outlined in this study. 
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4.3 The overall effectiveness of UAVs for Vegetation Monitoring and Classification 

While numerical guidelines for rulesets seem to be not applicable within UAV-based studies 

of vegetation classification, there are additional positive learnings from this study. The ruleset 

and methodology used for eCognition are repeatable and produced a relatively high overall 

accuracy (77.61% and 80.09% for November and March OBIA results without vegetation 

indices included). The current methodology in this study involves using ground truth, field-

collected data that is subsequently digitised. This is a proven and widely implemented 

method of remote-sensing classification. Indeed, the time taken for a sample subset of 

training/ground data to be collected is much less than the time needed for a total field-based 

vegetation sample. The overall accuracies of the study suggest that there is a great deal of 

promise in methodologies similar to the one implemented in this research. 

In general, the accuracy of remote sensing classification is inversely correlated to the number 

of thematic classes included in a study (Schowengerdt., 2006). The larger the number of 

thematic classes, the higher the probability of misclassification. In this study, certain thematic 

classes were consistently misclassified; an example of this was herbland which consistently 

had accuracy percentages around 50% for all the classification algorithms implemented, both 

pixel-based and object-based. This class combines grass species with wide variability in 

NDVI depending on plant health. Misclassification of the herbland class was not solely 

related to a single thematic class and was misclassified as lupin, muelenbeckia, flax and 

sedges amongst other thematic classes. 

Other vegetation classes, such as pampas, showed low values of accuracy. Therefore, the 

ability of UAV-based remote sensing vegetation classification is determined by the 

acceptable level of accuracy required for a given project (Jensen., 2000). For identifying 

single pest/invasive species, such as pampas, a more targeted approach involving 

presence/absence classification would be more appropriate. In this study, a balanced 
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approach to thematic class allocation was undertaken, involving the separation of thematic 

classes via spectral variability – diagnosed in the preliminary investigation. Key species 

representing ecological health were of equal importance, such as invasive pest species (lupin 

and pampas) and native species of high ecological significance (muelenbeckia, pingao and 

spinifex).  

The overall accuracies of the study would be increased if this study only included thematic 

classes based upon differences in spectral signatures or a reduction in thematic classes. 

However, information regarding the ecological health and condition of the study site would 

be reduced. A subtle balance of the two diverging inputs needs to be considered. However, 

overall accuracies and high percentage accuracies of certain thematic classes such as pingao, 

spinifex and tauhinu are promising for future studies. While there are many ways thematic 

classifications can be allocated, the importance of understanding the project's overall goals 

should always be accounted for. 

 

4.4 Advantages and Disadvantages of Current Technology with a look to the future 

 

4.4.1 UAV Technology 

This study used the phantom 4-Pro UAV with the MicaSense Red-Edge sensor attached. This 

sensor is widely used in various disciplines for vegetation analysis, including agriculture, 

forestry and environmental research (Taddia et al., 2020; Olsen & Anderson, 2021 etc.). The 

ability of this sensor to capture near infra-red and red-edge spectral signatures provides a lot 

of additional information to the user and for the classification algorithms. However, while 

multispectral analysis provides additional spectral information, generally, there is a sacrifice 

in resolution and visual fidelity compared to traditional RGB camera lenses. Indeed, the Red-

Edge sensor has an overall resolution of 1.2 megapixels compared to the camera onboard the 

Phantom 4-pro, which has a resolution of 20 megapixels.  
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The relatively low resolution of the Red-Edge sensor resulted in some difficulties identifying 

the outlines of the vegetation when related to the corresponding field analysis. However, with 

continued advancement in camera lens technology, the increase in resolution and spectral 

information in multispectral sensors will increase the viability of UAV-based vegetation 

analysis.  

The Phantom 4-pro has a flight time of between 25 and 30 minutes without the sequoia 

sensor attached. However, the increased weight of this sensor reduced each flight to around 

15-18 minutes. Further advancements to UAV technology and a reduction of weight on the 

sensor will increase the spatial extent of future studies. However, for studies involving a 

relatively small area, current technologies for UAV research still provide decent aerial 

coverage.  

In addition to the flight time and resolution of the UAV, advancements in the technology 

used for radiometric calibration has been identified as a key factor in the ability to provide 

accurate results to the end-user. Improvements to the sunlight sensor on the drone and 

algorithms for radiometric calibration will reduce any potential inaccuracies caused by 

changing atmospheric conditions. Atmospheric conditions can change rapidly and vary 

greatly seasonally; therefore, advancements in this technology are equally important for 

improving UAV-based studies' accuracy as the previously mentioned resolution increases. 

 

4.4.2 Software and Classification Algorithms 

This study used a variety of classification algorithms. Many studies, especially very high-

resolution Studies such as UAV-based research, have implemented OBIA algorithms instead 

of pixel-based (De Castro et al., 2018). As mentioned previously, this study showed an 

overall increase in accuracy using OBIA-based methodology. However, OBIA is very 

complex, and several variabilities need to be accounted for. eCognition software is used in 
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many research projects; however, additional software such as Feature Analyst for ArcGIS is 

available (Lourenço et al., 2021). Other studies use purpose-built OBIA classification 

algorithms and techniques created by researchers (Cui et al., 2021). 

OBIA is an emerging field in scientific literature, and future advancements in algorithms and 

techniques should increase the accuracy of this field (Hossain & Chen., 2019). While 

eCognition has a learning curve, the workflow provided in the methods section offers an 

overview for end-user to apply this to their chosen research topic. The increasing prevalence 

of OBIA in research should lead to further advancements. Not only for increasing the 

accuracy of the output research but provide a researcher new to the field with a wide variety 

of sources to identify the best methodologies used for their study. It is hoped that the 

workflow created in the methods section will provide a basis for future research that can be 

adapted for future research. While ease of use is much greater for pixel-based analysis, the 

overall trend in environmental research is an increased number of studies in OBIA analysis. 

This field's increased prevalence and adoption are the key advantages and additional 

information related to shape, outline, and spatial relationships. Therefore, it would be 

expected that this field should continue to grow, and methods of best practices and 

methodologies for a wide variety of OBIA studies will be created 

 

4.4.3 Optical Sensors vs LiDAR 

This study used UAV-based optical sensors for the analysis. Optical sensors work well to 

create a 2-D orthomosiac; however, they do not function well when creating a 3-D model. 

Similar challenges in creating a 3-D model of sand dunes using optical sensors were faced in 

Moloney et al.’s (2018) study. Attempts were made to create a 3-D model using 

photogrammetry; however, errors in elevation and holes where the model failed to have 
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enough points for the point cloud mesh meant that this section of the analysis was abandoned 

in this study. 

For more accurate 3-D models of an environment, LiDAR technology is much more suitable 

(Sofonia et al., 2019). LiDAR has the advantage of reading both first and second responses 

from the sensor, which allows vegetation removal from a model to create an accurate Digital 

Elevation Model (DEM) (Shaw et al., 2019). In addition to removing vegetation, LiDAR 

technology is much more accurate for elevation models and is the industry standard for 

creating 3-D DEMs. Recent technological advantages in LiDAR sensor technology have 

reduced the size and weight of the sensor, and therefore, LiDAR mounted UAVs can 

dramatically change many research studies. 
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5. Conclusion 

 

There were five goals this thesis aimed to achieve:  

To compare the use of pixel-based and object-based classifications for analysing high-

resolution data. Second, to provide a case study of how seasonal and temporal effects 

influence vegetation classification accuracy. Third, assess UAVs viability for vegetation 

surveys and classification maps. Fourth, create a detailed workflow and list of best practices 

for using UAVs to create a vegetation classification map. Finally, evaluate the advantages 

and limitations of current technology for vegetation surveys. 

5.1 Pixel and Object-based Findings 

The object-based classification gave slightly higher accuracies than pixel-based. However, 

the Maximum Likelihood classification with no vegetation indices had accuracies of 75.70% 

and 74.00% for the November and March surveys, respectively. These accuracies were less 

than 77.61% and 80.09% for the OBIA classifications without vegetation indices. The 

increase in accuracy of the OBIA could be attributed to the additional data provided to the 

classification algorithms. The increase in accuracy of the OBIA study is promising, and there 

has been a trend of increased studies using OBIA methods compared to pixel-based studies 

(Ye., 2018). The other two pixel-based methods (Neural Net and Mahalanobis Distance) 

consistently produced lower accuracy than the Maximum Likelihood and OBIA methods. 

5.2 Seasonal/ Temporal Findings 

The accuracies produced in the March Survey were higher than the November Survey for all 

classification algorithms. The spectral profiles of the March flight showed more significant 

variability, increasing the ability of the classification algorithms to differentiate thematic 

classes. The March Survey occurred after many weeks with low volumes of water, and 

therefore the difference in NDVI specifically was exaggerated compared to the November 

survey. The result shows the great temporal and seasonal effects that influence the accuracy 
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of a vegetation survey. In addition, when certain species are flowering, such as (lupin and 

spinifex in March), it becomes easier to identify these species. There may be vastly different 

spectral signatures depending on the time of year or health of the plant. 

In this study, high overall accuracies were achieved using OBIA methods. In March, pampas 

especially had much higher accuracy when using OBIA methods than traditional pixel-based 

methods. The additional information of shape and textural properties provided in OBIA 

classification has been shown to be a significant factor in increasing the accuracies of some 

thematic classes. However, pampas was below 50% in both November classifications. The 

variance exemplifies the different seasonal factors can have on a vegetation survey and the 

complexities of the classification algorithms. While OBIA is more adept at identifying 

pampas, it failed to produce acceptable accuracy in November. This study's seasonal and 

temporal differences were stark, and the influence of timing vegetation surveys needs to be 

carefully considered. 

 

5.3 UAVs Viability for Vegetation Classification 

UAVs reduce the time and potential environmental impact of field surveys. They also provide 

high-resolution data at a fraction of the cost of aerial photography and with resolutions much 

higher than satellite imagery. However, they do lose the detail of identifying tens or hundreds 

of plant species that field sampling can provide. However, it can be a highly effective tool to 

identify key target species. In this study 12 thematic classes were used; however, other 

studies targeting specific pests or native species could be highly effective. Within the 12-class 

structure, the results showed certain thematic classes with low overall accuracies. Reducing 

the thematic classes could be a more effective solution, especially for pest management. 

However, the overall accuracy created from OBIA classification was high and showed the 
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promise of complete vegetation surveys using only UAV. However, ideally, these would be 

supplemented by a detailed field survey of a section of the coastal dune. 

 

5.4 A Detailed workflow and list of best practices 

A workflow and a list of best practices are provided in the methods section. The workflow for 

UAV flight and safety precautions can be applied to any remote sensing study. In addition, 

the methodology used in eCognition can be used as a starting point for future studies. This 

study provides only a small glimpse of the workflows and rulesets that can be created in 

eCognition or other OBIA based algorithms.  

 

5.5 Advantages and Limitations of current technologies 

The technology of sensors and UAVs are constantly evolving. There have been recent studies 

with LiDAR mounted UAVs (Donager et al., 2021) and hyperspectral sensors (Centeno et al., 

2020). As technology advances, remote sensing applications widen and open more 

possibilities. For example, multispectral sensors with increased Megapixel values should 

create the opportunity for high resolution and high accuracy UAV-based vegetation maps. 

This thesis provides a brief outline and observation of UAV-based vegetation surveys. With 

increased scientific studies and advancements in technology, the viability of UAVs for 

vegetation mapping is only going to increase. 
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