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Abstract—The effects of asynchronous updating of the state
of the agents in a Cucker-Smale flocking model is considered
in this paper. The study of asynchronous update is important
because in practical implementations the agents typically have
internal clocks that are not synchronized. We considered how
asynchronous update will affect the time it takes to achieve
flocking (flocking time) as well as how close the agents in the
flock are moving (flock diameter). These factors were largely
ignored in most previous works as achieving asymptotic conver-
gence was their main focus. Furthermore, previous simulations
typically assume that the agents move with the same speed.
We considered the effects of achieving consensus of both the
speed and the heading. Through computer simulations, we
showed that both the flocking time and flock diameter increase
significantly with asynchronicity. Results also showed that the
diameter of the flock is substantially larger when the agents
start with different speeds. These results should be taken into
account when designing flocking agents in practice.
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1. Introduction

Flocking is a collective behaviour where individual
autonomous agents use only limited information to self-
organize into a state of motion consensus, starting from a
disordered initial state. From the distributed system point of
view, flocking is achieved when individual agents reached
consensus on their velocity. Consensus has been a very
active area of research in the past decade [1]–[4]. The
type of agents are typically either first-order [5], [6] or
second-order [3], [7], [8]. The two most studied models
of flocking – the Vicsek model [9] and the Cucker-Smale
model [10], are both second order models. These two models
are similar in the sense that an agent’s velocity is adjusted
depending on a weighted average of the velocities of the
agents in some neighbourhood. The Cucker-Smale model
has the added advantage that it is a continuous-time model
and its convergence has been proven based only on the initial
state and a coupling parameter.

Most of the researches on flocking and consensus have
been assumed that the agents either update their states
continuously for continuous-time models or at the same

time instants (i.e. synchronously) for discrete-time models.
In practice, the internal clocks of the agent are rarely
synchronized. There has been some researches in the asyn-
chronous consensus problem, where the internal clocks of
the agents are not synchronized. The types of asynchronous
update include overlapping, sequential, parallel and block-
sequential updates [11]. The convergence of asynchronous
consensus was first reported in [12], [13]. De Castro et
al. [14] studied the asynchronous consensus problem for
discrete-time multi-agent systems with a fixed communi-
cation topology. In 2005, Fang et al. studied the con-
sensus of asynchronous discrete-time multi-agent systems,
with various communication patterns [15]. Asynchronous
consensus control for a continuous-time multi-agent system
with switching topology is studied in [16]. The continuous-
time system was transformed into its equivalent discrete-
time system, and a distributed consensus algorithm was
proposed to address problems such as time-varying commu-
nication delays. Meanwhile, an asynchronous Vicsek model
has been studied in which each agent independently updates
its heading at times determined by its own clock [17].

In all the above cited works, the focus is on the asymp-
totic convergence properties of some consensus protocols or
flocking model under various conditions. The time it takes
to achieve flocking or consensus and how asynchronous
update affects it has not been studied. Another measure of
a flock is how spread out in space the flock is, which we
shall call the flock diameter, has also not been considered.
Furthermore, for most of the simulation results with the two
flocking models, the speed of the agents is typically assumed
to be the same. Thus only the consensus of the heading is
considered. It is not clear whether the consensus of both
speed and heading will affect the flocking time.

The main objective of this paper is to present simulation
results concerning the flocking time and flock diameter
for the discrete-time version of the Cucker-Smale model
with asynchronous updates. A secondary objective is to
present results when both the speed and heading needs to
be aligned. These results shall be useful for practical design
of systems of flocking agents. A brief introduction to the
definition of flocking and the Cucker-Smale flocking model
is given in Section 2. In Section 3, the method we used
to simulate asynchronous updates and the simulation results
are presented.



2. Cucker-Smale Model and Flocking

2.1. Definition of Flocking

Flocking is said to be achieved when the following two
conditions are satisfied.

1) The velocities of the agents are aligned. Mathemat-
ically, for an arbitrarily small δ > 0, this condition
is described by

|vi − vj | ≤ δ (1)

for all i, j ∈ [1, N ], i 6= j.
A more convenient measure of velocity alignment
is the average normalized velocity. It is defined as

va =

∑N
i=1 vi

∑N
i=1 |vi|

(2)

The alignment condition can be expressed as |1 −
va| < δ′ for some small δ′ > 0.
In a two-dimensional system, velocity alignment
requires the consensus of both the speed si and
the heading θi. That is,

|θi(t)− θj(t)| ≤ δθ
|si(t)− sj(t)‖ ≤ δs ∀i, j = 1, 2, ..., N.

(3)

for some arbitrarily small δθ and δs.
2) The agents are cohesive. That is, the distance be-

tween any two agents is bounded by some finite
positive constant ε. That is,

0 < sup
t≥Tf

‖pi − pj‖ < ε (4)

for all 1 ≤ i, j ≤ N .

With any flocking model, we are interested in two per-
formance measures. They are the flocking time and flocking
diameter. The flocking time is the time it takes for the
velocities of the agents to be aligned. Using the notations
above, it is defined as Tf = inf{T : |vi − vj | ≤ δ}. The
flocking diameter is the distance between any two agents
that are furthest apart.

2.2. Cucker-Smale Model

The Cucker-Smale model was first proposed in [10] to
capture the emergence of flocking behaviour of a group of
N autonomous agents in both continuous and discrete time.
The state of agent i (1 ≤ i ≤ N ) is described by its position
pi and velocity vi in the following way:

ṗi = vi

v̇i = 1
N

N∑
j=1

ψ(‖pj − pi‖)(vj − vi)
(5)

where ψ is a positive decreasing function that quantifies the
influence of robot j on the velocity of robot i. A function
that has been used extensively is given by

ψ(‖pj − pi‖) =
1

(1 + ‖pj − pi‖2)β
. (6)

In [10], it has been proven that flocking emerges uncon-
ditionally if β < 1/2. For β ≥ 1/2, however, flocking is
conditional on the initial state of the system.

The Cucker-Smale model is a continuous-time model
which makes it amenable to mathematical analysis. How-
ever, when it is implemented on real agents, velocity
changes have to be made at regular discrete intervals instead
of in a continuous fashion. In discrete time, (5) is given by

∆vi(t(k+1)) =
1

N

N∑
j=1

aij(tk) (vj(tk)− vi(tk)) , (7)

for i ∈ 1, 2, . . . , N , where aij(tk) = ψ(‖pj − pi‖) at
the time instant tk. Most simulation results of flocking are
obtained assuming that all the agents update their states at
the same time using the latest values of the neighbour’s
states. That is, the state of the agents is changed at time
instants t1, t2, . . . , tk, tk+1, . . . instantaneously. This basi-
cally assumes that the internal clocks of all the agents are
synchronized.

If the internal clocks of the agents are not synchronized,
then they will not be updating their states at the same time
instant. Figure 1 shows an example of asynchronous update;
some agents update at the same time instant while others do
not.
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Figure 1. Updating Times in Asynchronous Dynamic System

3. Simulating Asynchronous Update

3.1. Methodology

We shall investigate the effects of asynchronous update
to the flocking time and diameter through computer sim-
ulations. Assume that each agent updates its state every
Tp seconds. Then, in the synchronous case, the state of



every agent is updated at time instants Tp, 2Tp, 3Tp, · · · . To
simulate asynchronous update, every Tp second interval is
divided into α equal time periods. Each of the N agents in
the system is random assigned to one of the α subgroups,
with subgroup i containing Ni > 0 agents. The agents in
each subgroup are updated at the same time. Consider the
time interval [0, Tp]. Agents in subgroup 1 will be updated
at time Tp/α. Those in subgroup i are updated at iTp/α
and those in subgroup α at Tp. This process is repeated
every Tp seconds. The average velocity is computed after
each subgroup updates to see if the flocking condition is
satisfied.

3.2. Results

In our experiments, the agents move in an infinitely
large two-dimensional space. Consequently, they will not
encounter any boundary. The agents initially move in a
random direction with either the same speed or different
speeds. It has been shown in [10] that the flocking will
be achieved if β < 1/2. Hence, we set β to 1/4 to
ensure that flocking occurs. For convenience, distances shall
be dimensionless and time is in seconds. The system is
considered to be in a flocking state when va ≥ 0.99. The
flock diameter is measured when this condition occurs. The
initial position of the agents is randomly chosen within a
4 × 4 square. The initial heading is uniformly random in
[0, 2π). Each simulation scenario is repeated 20 times with
different random initial values. The results presented are the
average values.

3.2.1. Synchronous Update With Different Speed.
We shall first consider synchronous update. In the first

set of simulations, the agents move with the same constant
speed of 0.5 per second. The number of agents N varies
from 10 to 50. This provides us with the basis for compari-
son with existing literature. In the second set of simulations,
the agents move with different initial speed and heading. An
agent’s speed is initialized to within the range of 0.5 ± 0.05
per second.

Figure 2 shows the flocking times for both sets of sim-
ulations. For the same flock size, the flocking time required
for agents with different initial speed is longer than when the
agents start with the same speed. This implies that it takes
longer to reach consensus of both speed and heading that
with heading alone. Furthermore, in both cases, doubling
the flock size N increases the flocking time by 30− 40%.

Figures 3 and 4 show the convergence behaviour re-
flected by the average normalized velocity for the two sets
of simulations respectively. As expected, the initial conver-
gence is slower for agents with different initial speeds.

3.2.2. Effects of Asynchronous Update.
The method described in Section 3.1 is used to simulate

asynchronous update. By varying the number of subgroups,
we can vary the degree of synchronicity from fully syn-
chronous to almost completely asynchronous.
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Figure 2. Flocking Time with Synchronous Updating
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Figure 3. Consensus on velocity with synchronous updating for same speed
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Figure 4. Consensus on velocity with synchronous updating for different
initial speeds
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Figure 5. Flocking time with asynchronous updating
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Figure 6. Convergence behaviours of synchronous and asynchronous up-
dating for N = 30.

The flocking time results are shown in Figure 5 for
different number of subgroups and different N . With this set
of simulations, the initial speed of the agents is the same.
The graphs show that flocking time increases approximate
linearly with the degree of asynchronism for N up to 30,
with a slope of around 0.22. For instance, for N = 10
divided into 10 subgroups of 10 agents, the flocking time is
four times that of synchronized updates (1 subgroup). As N
increases, the curves become more nonlinear. This is due to
the fact that even with 10 subgroups, there are still quite a
number of agents in each subgroup that are updated at the
same time.

Figure 6 compares how the average normalized velocity
va changes with time for N = 30 under synchronous
and asynchronous updating. In the case of asynchronous
updating, 5 subgroups are used. These results show that it
takes much longer for the system to converge to an average
normalized velocity above 0.9 with asynchronous updating.
Interestingly, whether the agents start with different speed
or the same speed makes little difference for asynchronous
update. But this is not the case for synchronous update.

Table 1 shows the flock diameters when flocking has
been achieved. The columns labelled “SS” are for agents
starting with the same speed. The columns labelled “DS”
are for agents starting with different speeds. First, these
results show that the flock diameters increase substantially
with the degree of asynchronicity regardless of whether
the agents start with same speed or not. Second, for the
same degree of asynchronicity, agents starting with different
speeds eventually flock further apart compared with those
that start with the same speeds. The reason for these effects
is not apparent and therefore require further research.

4. Conclusions

In this paper, we confirmed that flocking can be achieved
with the Cucker-Smale model when consensus on both the
speed and heading is required. Under asychronous updating
dynamics, the time it takes to achieve flocking is substan-
tially increased when compared to synchronous update. This
means that in practical implementation of such systems,
a longer flocking time should be taken into account. A
somewhat surprising result is that the flock diameters are
significantly larger with asynchronous update. Furthermore,
systems with agents starting with different speeds eventually
flock further apart than the ones with agents starting with
the same speed. Further investigation will be needed in order
to find out why this is the case.
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