
REUSING PAST REPLIES TO

RESPOND TO NEW EMAIL:

A CASE-BASED REASONING

APPROACH

I Wayan Sathya Linggawa

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

March 2017

School of Engineering, Computer, and Mathematical Sciences

Supervisors:

Dr Muhammad Asif Naeem

Associate Professor Russel Pears

Dr Gerald Weber

Attestation of Authorship

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains

no material previously published or written by another

person nor material which to a substantial extent has

been accepted for the qualification of any other degree

or diploma of a university or other institution of higher

learning.

Signature of candidate

2

Acknowledgements

Firstly, I would like to acknowledge my supervisors, Dr Muhammad Asif Naeem

and Associate Professor Russel Pears, for their guidance, support, and feedback

during my thesis journey. I appreciate the trust and flexibility given to me to

explore the topic I enjoyed the most. I also would like to thank Dr Gerald Weber

and Dr Christof Lutteroth for their great insights in each discussion to improve

my work, particularly during the prototype development.

This thesis, and my whole study journey in AUT, would not have been possible

without the support from the New Zealand ASEAN Scholarship (NZAS). I would

like to express my gratitude for the financial support throughout my study.

Special thanks to Dessy Ariyanti who provided useful insight in organising

my experiment results; Nindita Soenarso who helped me by being my pilot

test participant; Fatthy Amir for advising me on the early stage of my research

journey; Shelley Lodge, Titaningtyas, and Ridho Rizki for proofreading my

thesis; and the AUT Scholarship Office team (Sacha, Ruth, and Margaret), who

enhanced my study journey with the kiwi experience. I would also appreciate

all the support and fun shared by my fellow friends in Auckland and Indonesia.

Finally, I would like to express my profound gratitude to my parents for their

tremendous supports and prayers throughout the process of writing this thesis.

Thank you for always encouraging me to pursue my dream to study in New

Zealand; a childhood dream that sparked from a scoop of vanilla ice cream.

3

Abstract

Email communication has been widely used in managing customer queries, such

as complaints and inquiries. The user is expected to respond the query properly.

However, with an increasing number of query emails received every day, it

seems likely that the inbox appears to have more unreplied queries and leads to

overwhelmed and cluttered email management called email overload.

This thesis presents a development in the email overload issue on managing

a reply task. The system, called a smart email client, helps in replying to an

email by suggesting a list of replies gleaned from the emails replied to in the

past. These suggested replies are ranked according to the level of similarity. The

methodology follows the Case-Based Reasoning (CBR) approach to solve the

problem by reusing previously written solutions from the past replies stored in

the case base. Techniques from Natural Language Processing and Information

Retrieval are utilised, particularly in lexical semantics, through using WordNet.

Finally, an evaluation of the retrieval algorithm shows that the effectiveness and

efficiency of the algorithm is influenced by the case feature selection and various

text analysis techniques such as lexical analysis, stemming, stopwords removal,

and synonym expansion.

4

Contents

Attestation of Authorship 2

Acknowledgements 3

Abstract 4

1 Introduction 9
1.1 Thesis Contribution . 12
1.2 Thesis Structure . 13

2 Related Literature 14
2.1 Email Client . 14
2.2 Email Overload . 17
2.3 Responding to a New Email . 19

2.3.1 Automatic email answering or template generation 19
2.3.2 Predicting reply action . 22
2.3.3 Reusing previously authored reply message 24

2.4 Case-Based Reasoning . 26
2.4.1 CBR Cycle . 27
2.4.2 Categorisation of the CBR System 32
2.4.3 Textual CBR for text-based problems 34

2.5 Related tasks and techniques in textual CBR 35
2.5.1 Information Retrieval . 36
2.5.2 Natural Language Processing 38
2.5.3 Document Preprocessing . 40

2.6 Summary . 46

3 Design and Implementation 47
3.1 Overview of Smart Email Client . 47
3.2 System Architecture . 49
3.3 Functionality Design . 51

3.3.1 Email Communication . 52
3.3.2 Information Retrieval (IR) . 54
3.3.3 Graphical User Interface (GUI) 55

5

3.4 Adapting the CBR in Smart Email Client 57
3.4.1 Process Flowchart . 57
3.4.2 Case Representation . 58
3.4.3 Case Base Population . 59
3.4.4 Case Retrieval . 63
3.4.5 Case Reuse . 64
3.4.6 Case Revision . 65
3.4.7 Case Retain . 66

3.5 Implementation Results . 66
3.6 Restrictions and Limitations . 74

3.6.1 Logic . 74
3.6.2 User Interface . 75

3.7 Summary . 75

4 Evaluation 76
4.1 Evaluation Configuration . 76

4.1.1 Evaluation methods . 77
4.1.2 Evaluation metrics . 78
4.1.3 Dataset description . 80
4.1.4 Experiment configuration . 83

4.2 Results . 84
4.2.1 Dataset distribution . 84
4.2.2 Experiment results . 86

4.3 Discussion . 93
4.3.1 Influence of text analysis and case feature selection 93
4.3.2 Dataset critique . 98

4.4 Summary . 100

5 Conclusions 102
5.1 Conclusions . 102
5.2 Future Work . 104

6

List of Tables

2.1 Overview of various approaches in responding to a new email . . 19
2.2 Methods and techniques in the "automatic email answering" ap-

proach . 20
2.3 Methods and techniques in the "predicting reply action" approach 22
2.4 Methods and techniques in the "reusing previously authored reply

message" approach . 24
2.5 Positioning of our approach (appears in bold) based on the CBR

system categorisation by López (2013) 32
2.6 An example of a stopwords list obtained from Fox (1989) 41

3.1 Case representation from the email corpus in database 58

4.1 A query and its annotated relevant response from farmer-c mailbox 81
4.2 Datasets used in this evaluation . 82
4.3 Template used to record experiment results 83
4.4 MRR score from experiments in both dataset 87
4.5 Total terms indexed from experiments in both dataset 91
4.6 Lexical analysis: words are treated equally by normalisation . . . 94
4.7 Advantages of stemming: more discovery of matching terms . . . 95
4.8 Advantages of stopwords removal: reduced number of terms

indexed . 96
4.9 Synonym expansion: extending the capability of exact matching . 96
4.10 Expanding terms with their corresponding synonyms in the content 97
4.11 Retrieval results using "subject"; italic indicates matching keywords 98
4.12 Summary of messages with less meaningful context 99
4.13 Given relevance judgment compared to our retrieval results; ital-

ics indicates matching keywords . 100

7

List of Figures

2.1 The CBR Cycle adapted from Aamodt & Plaza (1994) and Watson
(1999). 27

2.2 Vector Space Model as introduced by Salton et al. (1975) 44

3.1 Flowchart of the system . 48
3.2 High-level architecture view of the email client 50
3.3 Proposed functionality layers in the application 51
3.4 Table definition in the email client application 53
3.5 The user interface layout forms an F-pattern 56
3.6 Look and feel of the application using JavaFX library 56
3.7 Process workflow adapting CBR methodology 57
3.8 Flowchart of indexing case base . 60
3.9 Case reuse . 64
3.10 Case revision . 65
3.11 Case retain . 66
3.12 The start screen user is asked to select a message 67
3.13 The unreplied to message screen and two options for replying. . . 68
3.14 Reply window using normal reply . 69
3.15 Implementation of case retrieval in the application 70
3.16 Implementation of case reuse in the application 71
3.17 Implementation of case revision in the application 72
3.18 Implementation of case retain in the application 73

4.1 Diagram showing summary of our experiments process 79
4.2 Luke: An open source tool to read Lucene index files 85
4.3 Dataset distribution according to Zipf’s Law distribution 86
4.4 Retrieval effectiveness as represented by MRR score 88
4.5 Average similarity score over top 10 results in germany-c dataset . 89
4.6 Average similarity score over top 10 results in farmed-d dataset . 89
4.7 Similarity score increase rate before (SA) and after (SE) applying

synonym expansion with respect to case features body and subject 90
4.8 Index size as represented in a count of terms indexed 91
4.9 Influence of synonym expansion for term distribution in germany-c 92
4.10 Influence of synonym expansion for term distribution in farmer-d 92
4.11 Retrieval efficiency as represented in processing time elapsed . . . 93

8

Chapter 1

Introduction

Email is still one of the most preferred communication channels., which is

reflected by the fact that in 2015 that the number of email accounts reached 4.3

billion, a figure that is expected to grow by 6-7% in the next four years (Radicati,

2015). In the same period, there were 2.5 billion email users, an annual growth

of 3%. That indicates that a user may have at least one email account, with an

average of 1.72 email accounts per user. In addition to the daily traffic, 112

billion email messages are sent and received daily (Radicati, 2015).

While these overall statistics show the importance of email, it is also interest-

ing to see the statistics of user activities. According to the statistics presented in

Radicati (2015), on average 122 emails are sent and received by a user daily.

72% of these messages are received by a user, and 28% of the messages are

sent emails. Assuming that the received email messages are queries, the user

is expected to manage the workflow to respond to the query properly as oth-

erwise, it may result in a personal information management issue called email

overload (Whittaker & Sidner, 1996).

9

Chapter 1. Introduction 10

Over the past years, managing email messages has widely been done through

an application called email client. This application originally had the main role of

accessing the user’s mailbox in a mail server. However, as email communication

evolved and became more complex, an email client became capable of dealing

with task management applications, as well as personal archiving (Whittaker

& Sidner, 1996). One of the components of task management is related to

how a user can receive a message (which may come in the form of a query),

and how they respond to that message, (in other words, providing the solution

in reply to the query). Due to the increase in incoming emails (or queries)

every day, the user needs a more efficient workflow to respond to the query.

Several studies have attempted to develop an automatic email response or to

generate a template (Kosseim et al., 2001; Weng & Liu, 2004; Malik et al., 2007;

Sneiders, 2016b). Other approaches have focused on indicating whether or not

an email needs a reply (Ayodele & Zhou, 2009; Dredze et al., 2008). The latter

approaches however, still involve user control more than the earlier ones do.

Motivated by the explicit usage of previously authored information to reply

to the message, another study suggests that the incoming query may have been

already answered in the past (Lamontagne & Lapalme, 2003; Hewlett & Freed,

2008). Therefore, a user could benefit from reusing his/her own past reply

message if the query is similar. This may improve the experience of responding

to an email, since the user does not always need to start with a blank message.

From the perspective of computer science, the notion of understanding

problems in the form of user query, then solving this, has triggered the imple-

mentation of Natural Language Processing (NLP) and Information Retrieval (IR).

While past studies show an extensive use of rule-based approaches, such as

keyword utilisation to categorise email messages, NLP focuses on understanding

human language and processing it in a way that computers can understand. IR

Chapter 1. Introduction 11

attempts to retrieve documents based on the user’s query; and therefore benefits

from using NLP (Liddy, 2001).

Enhancements in retrieving documents based on the user query can be

achieved by implementing additional knowledge related to that domain. Some

studies suggest that providing a domain-specific ontology may improve the

chance of finding more relevant results (Lamontagne & Lapalme, 2003). How-

ever, this specific knowledge might not be useful, since the context of the terms

might not be relevant to the general domain. Another approach adopts language-

based knowledge to accommodate lexical semantics by understanding words

such as synonyms (Hliaoutakis et al., 2006; Abdalgader & Skabar, 2010). The

problem-solving paradigm has also evolved over time, and recently Case-Based

Reasoning (CBR) methodology has been introduced. CBR solves a problem by

retrieving similar past problems from the collection (knowledge base), referred

to as the case base, and reusing its solutions for the new problem. This approach

is commonly known as lazy learners, as it performs the function of retrieving

similar knowledge at the time the query is presented instead of first building

training model.

The notion behind CBR methodology is a motivation to adapt this approach

to solve the email overload problem. CBR has its own sub area, identified as

textual CBR, where the problem is presented as textual information. The textual

CBR framework benefits from the utilisation of text processing techniques, such

as stemming and stop words removal, as well as specific domain knowledge

elicitation (Weber et al., 2005).

Our proposed email client solution is a desktop application that has standard

functionality for email communications and an enhanced capability to intelli-

gently provide reply recommendations. The application starts performing when

a user initiates the reply action to a new incoming message. It then attempts to

Chapter 1. Introduction 12

retrieve similar past incoming emails (known as cases), reusing the answers and

treating them as a reply recommendation list. The process is finished when the

user selects a result from the list and sends the email. The answered email is

considered as a problem solved and is stored in the case base.

There are two main objectives that we have attempted to accomplish. The

first was to build a prototype of an email client which has the basic functionality

to send and receive email messages from the mail server. The second is to assist

users through a reply recommendation list, based on their past replies, so they

can reply to an incoming email.

There are two challenges that we have identified in this research. The first

challenge is to apply the CBR methodology to the problem domain, the email

reply behaviour. We discuss how the case for CBR is represented and processed

in the CBR cycle.

The second challenge is to build a retrieval algorithm capable of finding

similar cases beyond the exact matching. We attempt to explore recent studies in

this area, including a strategy that uses the most useful case feature in the email

message, and the use of a semantic component in the text analysis (Hliaoutakis

et al., 2006; Abdalgader & Skabar, 2010).

1.1 Thesis Contribution

This thesis makes the following contributions:

1. A comprehensive literature review of current developments in the area of

email response processes.

2. A Java-based prototype of a smart email client with reply recommendation

system, which implements the CBR approach.

Chapter 1. Introduction 13

3. The development and evaluation of a retrieval algorithm, with improve-

ments using text processing techniques and semantics analysis using word

synonyms.

1.2 Thesis Structure

The structure of this thesis is organised as follows. Chapter 2 begins with a

discussion of past research in this field and provides background information

about the study, such as potential areas in Natural Language Processing and

Information Retrieval. It also describes the CBR approach using the 4R’s (retrieve,

reuse, revise, and retain) model. In addition, various text processing techniques

and algorithms that could be used in the development are examined.

Chapter 3 describes the design thinking process for the proposed solution,

along with the justification. This includes the components and tools utilised in

the development of the application. Moreover, the implementation phase, which

adapts the CBR methodology, is also described. It starts with building the case

base, performing a retrieval strategy, reusing and revising potential solutions,

then retaining the solved problem in the case base.

Chapter 4 discusses the various evaluations of the CBR system. These evalu-

ations include examining the effects of text processing techniques, identifying

which case feature is the most useful for retrieval of similar solutions, and analys-

ing the dataset with respect to the results. The datasets used in this evaluation

were obtained from a publicly available email dataset: the Enron corpus.

Finally, Chapter 5 concludes the thesis, as well as describing some directions

for further work.

Chapter 2

Related Literature

This chapter provides a basic understanding of the problem investigated in this

thesis. We examine current developments in email communication and identify

gaps in it. We also discuss the related areas that have been studied in order to

solve the problems. Finally, we specifically identify potential techniques in order

to build our solution.

2.1 Email Client

The mail system can be distinguished into two subsystems (Partridge, 2008).

The first has the role of moving email messages from the sending user to the

receiving user. This subsystem is called the message handling system (MHS) and

is built on a set of message transfer agents (MTA). The other subsystem, the user

agent (UA) or mail user agent (MUA), has roles related to user activity, such as

receiving, managing, and creating email messages, as well as sending them via

MHS. Therefore, considering these roles, the MUA can be further referenced as

an email client.

14

Chapter 2. Related Literature 15

An email client is an application that enables the configuration of one or

more remote mailboxes, allowing the user to receive and send email through a

mailbox. It has been widely developed as a desktop application and is available

off-the-shelf. The email client also has been implemented in mobile phones

alongside the native operating system. Moreover, most email clients have been

developed to address the limitations of a web-based mailbox interface by storing

the messages offline.

Recently there has been an increase in the use of remote mailbox service pro-

viders to support email communications such as Gmail1, Yahoo2, and Outlook3.

In addition to providing remote mailbox storage, they also have a web-based

interface to access the email in the mailbox. While this service requires the user

to be connected to the internet, the problem arises when the internet connection

is not presented. This is one of the issues that has motivated the development of

a non web-based email client.

As mentioned previously, the main use of an email client is to compose the

message and retrieve it from the mailbox. Two methods are used for message

retrieval: Post Office Protocol (POP) and Internet Message Access Protocol

(IMAP) (Partridge, 2008). The first method allows the user to download the

message then delete it from the mail server after it has been successfully stored

offline, while the latter implements enhancements through a flagging capability

on the messages. This flag allows a message to be marked read or unread.

Typically, the email client will have a POP or IMAP configuration, based on the

mailbox service of the user.

To compose a message, a typical email client usually has an interface to input

and edit the text content. The message consists of three parts: headers, the body,
1https://www.google.com/gmail/
2https://mail.yahoo.com/
3https://outlook.live.com/

Chapter 2. Related Literature 16

and non-textual contents and attachments commonly known as Multi-Purpose In-

ternet Mail Extensions (MIME). This formatting accords to the standard internet

message format, RFC53224. The headers include information about the origin

and destination of the message, such as To, CC, BCC, From, and Reply-to. There

is also a configuration for the date and time of the message in RFC5322, which

is not comprehensively explained here. It is important to carefully consider the

format of the email message, since it ensures the message will be delivered to

the mail server.

In addition to message formatting, an email client submits the message to

the mail server by using Simple Mail Transfer Protocol (SMTP). The standard for

SMTP specification is also available in RFC53215. As with message retrieval, the

email client needs to know the SMTP configuration of the mailbox being used.

As daily tasks become more complex, the main function of the email client

has shifted from managing email communications to personal task management.

Features such as contact management and personal calendars have been widely

implemented in modern email services (Grevet et al., 2014). One study also

attempted to enhance the capability of an email client by providing more visu-

alisation, text analysis, and attention management functionality (Rohall et al.,

2004). These implementations were motivated by an issue called email overload

(Whittaker & Sidner, 1996), because users were expected to manage responses

to the high volume of email received daily. In addition, these emails may appear

in the form of a complaint, for instance, which needs an immediate response

(Coussement & Van den Poel, 2008).
4https://tools.ietf.org/html/rfc5322
5https://tools.ietf.org/html/rfc5321

Chapter 2. Related Literature 17

2.2 Email Overload

The term email overload was introduced by Whittaker & Sidner (1996) as a

result of observing the cluttered user email phenomenon in 1996. Initially,

email aimed to establish asynchronous communication where a specific action

is taken after the recipient receives the message. However, Whittaker & Sidner

(1996) argue that the actual use is beyond communication; it also acts as a

task manager and a personal archive. The first role is related to how email can

provide information related to the task as well as showing the current status of

the task. The second role is about how the message is organised by the user so it

can be easily retrieved when needed.

Whittaker & Sidner (1996) also explain in their study that people tend to

receive a large volume of incoming messages, as email communication acts as

a source of office tasks. This phenomenon can leave the task unfinished, the

message partially read, or the correspondence partly composed and not ready to

be sent. It could be useful therefore, to focus the study on assisting the user to

deal with those tasks.

A decade later, Fisher et al. (2006) conducted a study on the email over-

load problem by reinvestigating the work of Whittaker & Sidner (1996). They

identified that in the 10-year time frame, email functionality had not changed

much but people’s email archives had grown significantly. People also tended

to use more folders to organise their emails, while in contrast, some cleaned

their inboxes daily. In the end, they concluded that in the coming years, email

overload would still occur due to the fact that the variety of content retrieved

would become more extensive (e.g document transfer or RSS feeds). Although

the current study has shown significant findings in terms of revisiting the previ-

ous research, the scope of the experiment is limited to one technology company.

Chapter 2. Related Literature 18

Therefore, the study would be more useful if it could distinguish the various

type of email users from different backgrounds since they would have different

behaviours.

Further, research conducted by Grevet et al. (2014) continued the study of the

email overload issue, particularly related to Google’s Gmail service. They argue

that the issue still arises because the volume of incoming email is increasing.

In addition, email overload has taken a new form by affecting both personal

and work environments. Promotional mail and billing are examples of personal

email, while work emails deal with the status of work, such as to read or to do.

A study conducted by Grevet et al. (2014) makes a strong point by investig-

ating the personal email environment, while both Whittaker & Sidner (1996)

and Fisher et al. (2006) mainly focused on work email. As a result, the author

has identified that one indication of email overload arises from the large volume

of unwanted emails, which are further defined as ’spam’ (Grevet et al., 2014).

In addition, the various backgrounds of the users in the research could provide

different personal experiences when utilising their personal email.

In previously explained studies, it seems that one of the keys to reducing the

email overload issue might be to encourage the user to respond to emails that

needs action as soon as possible, thus helping the user to be better organised. In

addition, ease of access in managing repeat inquiries such as customer complaints

in the customer service domain (Coussement & Van den Poel, 2008), could

be another interesting objective. According to Whittaker & Sidner (1996),

the concerns relate to task management and asynchronous communication.

Therefore, an intuitive solution could be developed by focusing on these two

functionalities.

Chapter 2. Related Literature 19

2.3 Responding to a New Email

The previous section revealed that one of the challenges in email communication

relates to defining a strategy on how to respond to the high volume of incoming

email. This usually arises in customer-related domains such as help desks, event

management or customer service (Coussement & Van den Poel, 2008). Most of

the time, users may have already replied to a similar inquiry. However, they could

be spending time browsing through their previous sent emails in order to obtain

the respective reply (or solution), a time-consuming and frustrating process.

Several studies have attempted to assist users in managing email responses, as

summarised in Table 2.1.

Table 2.1: Overview of various approaches in responding to a new email

Approach Author
Automatic email answering or
template generation

Kosseim et al. (2001),
Weng & Liu (2004),
Malik et al. (2007),
Sneiders et al. (2016)

Predict incoming message
whether or not it needs a reply

Ayodele & Zhou (2009),
Dredze et al. (2008)

Reuse past replies to respond to a
new incoming message

Lamontagne & Lapalme (2003),
Hewlett & Freed (2008)

2.3.1 Automatic email answering or template generation

One method of managing an email reply is by implementing an automated

email answering. The extensive review by Sneiders (2016a) shows that the

main approaches for this method are by using machine learning techniques. A

summary of various past studies is shown in Table 2.2.

Kosseim et al. (2001) conducted a study that arose from the typical task of

answering an email inquiry: recognising the content (usually a problem) and

Chapter 2. Related Literature 20

Table 2.2: Methods and techniques in the "automatic email answering" approach

Author Method Technique
Kosseim et al. (2001) Information Extraction Text processing,

Rule-based extraction,
Decision tree

Weng & Liu (2004) Classification,
Clustering

Text processing,
Term weighting TF-IDF,
Cosine similarity

Malik et al. (2007) Clustering Text processing
Sneiders et al. (2016) Pattern Matching Text processing,

Rule-based matching

generating the reply response. Since the domain is customer support, they iden-

tified the particular categories that are specifically available in that domain, such

as a "how-to question", "suggestions", "problem reports" and others. To analyse

the message text, an information extraction process is undertaken to identify

specific information and re-present it in the structured format. Tokenisation and

other lexical analyses are performed to group part-of-speech and phrases. The

text then fills the prepared templates used in the discourse analysis. Response

formulation is prepared afterwards and typically has a structured content, such

as beginning with a salutation (and the name of the customer) and ending with

a formal closing.

Malik et al. (2007) proposed a similar concept of preparing predefined

templates to answer customer queries. This idea arises from an understanding

that in a set of query-response email pairs, the association between the question

and answer can be identified. This association would be useful to map similar

future questions to its answer templates. The system is trained to identify earlier

a large number of email message pairs in the archive in order to learn to classify

them into standard answers. In mapping new email queries to the old ones

in the archive, this system employs WordNet language reference. The system

performs at 61% capability compared to a human-performed task.

Chapter 2. Related Literature 21

Weng & Liu (2004) identified an approach that focused on providing a set of

reply templates based on the incoming email content. Concepts, as a collection

of terms, were extracted from the body of the email and indexed. The main

contribution of this approach was finding out that indexing only the concepts

could make the search for the associated reply template faster. The best matched

reply templates were then given to the users. However, the knowledge base for

a reply template needs to be defined before the system can associate them with

an incoming email. In addition, the recommendation only considers a template

calculation score, which came from the terms that appear more frequently.

Extensive observation from Sneiders et al. (2016) suggests that an inquiry in

an incoming email can be separated into two parts: the context or description

of the problem, and a request to resolve. These two elements are important

in delivering the most appropriate reply generation. In this study, instead of

generating answer templates, the authors designed their own reply pattern,

which was manually designed and consists of syntax and regular expression. In

an experiment, we demonstrated text-pattern matching to the inquiry, before

assigning it a standard answer. Also, we identified that the highest misclassi-

fication occurs because of the unique wording of the inquiry, which may not

match a manually prepared text pattern. Other useful findings relate to missing

synonyms, no subject in the message, and misspellings.

While providing an intensive review of automatic email answering, Sneiders

(2016a) also argues that business nowadays does not commonly practise auto-

mated email answering. This happens because of the fear that they will lose

contact with their clients, leading to lost opportunities. This perspective aligns

with our study; we realise that users still want control over the actions they

perform. Therefore, the solution we propose should be able to put user control

one step above the automated tasks.

Chapter 2. Related Literature 22

In addition, we can see from the recent studies that most attempted to

develop solutions based on the rule-based approach. This approach has the

advantage of utilising set of predefined rules to build a strong knowledge base

for performing the automation process. However, the main drawback of the

rule-based approach is that it requires an extensive knowledge base before it

generates results. In some newly established recommendations or automation

systems, a robust knowledge base might not be present. Thus, the solution is

expected to work well, even though the knowledge base has less or minimal

information.

2.3.2 Predicting reply action

Automatic template generation may be useful for an efficient reply to a homo-

geneous query. Often, the user needs to be assisted in a way that means they can

have more control over the replying process. In this case, some of the studies

shown in Table 2.3 suggest that by identifying the structure and content of an

email message, a prediction of whether a message needs a reply or not can be

made.

Table 2.3: Methods and techniques in the "predicting reply action" approach

Author Method Technique
Ayodele & Zhou (2009) Clustering Text processing,

Rule-based prediction
Dredze et al. (2008) Classification Text processing,

Term weighting TF-IDF,
Rule-based prediction

Ayodele & Zhou (2009) conducted a study on generating reply prediction

using the machine learning technique. This study was part of the email man-

agement system that the author has previously used (Ayodele & Zhou, 2008).

The main idea is to generate a prediction about whether or not an incoming

Chapter 2. Related Literature 23

email message requires a reply in a form of labelling. The prediction appears as

the result of a scoring mechanism calculation based on the email subject and

content extraction. Content extraction is examined based on several indicators,

such as interrogative words, question marks, domain recognition of the sender’s

email address, attachments, and most used phrases. Then, each email is given

a label of "definitely needs reply" or "needs no reply" and shown to the users

according to the score.

Ayodele & Zhou (2009) also show that their solution could assist the users to

notice which email is prioritised to be replied to. However, it is not clear in their

study how they perform the text processing, other than finding the interrogative

words. Also, the authors did not explicitly state whether they considered the

body content of the email.

Dredze et al. (2008) developed a prototype for predicting whether a reply is

necessary for an email message. This work differs from that of Ayodele & Zhou

(2009), since it includes a prediction for the attachment too. The reply prediction

provides information on whether a message requires a reply by establishing

a rule-based system using reply predictors. The predictors include the user

profile (e.g send/received statistics and address book), as well as the presence

of the words "reply" or urgent, and of question marks in a message. Afterwards,

the attachment predictors benefit from the discovery of the words "attach",

"attaching", "attachment", or "attached".

Dredze et al. (2008) also argue that the users have control over the system,

since they are being assisted when taking the action of replying to the most

important email first. When the reply message contains the keywords mentioned

previously, they could be alerted to attach documents instead of missing this.

The prototype is usable as it has been implemented in the Mozilla Thunderbird

email client as an extension.

Chapter 2. Related Literature 24

While previous studies have demonstrated the usefulness of features for

user control, as in providing labels and alerts, the system employs a rule-based

approach under the hood. Therefore, collecting sufficient training data to build

the knowledge for classifying the email is necessary to optimise the classification

process.

2.3.3 Reusing previously authored reply message

Some of the studies shown in Table 2.4 extend beyond automatic reply and

template generation, and predicting the reply. They realise that a new incoming

email forming a query (or problem) may have been replied to in the past.

Therefore, the exploration and utilisation of past messages are identified, based

on the notion that similar problems may have similar answers.

Table 2.4: Methods and techniques in the "reusing previously authored reply
message" approach

Author Method Technique
Lamontagne & Lapalme
(2003)

Case Based Reasoning Text processing,
Rule-based extraction

Hewlett & Freed (2008) Classification Text processing

Sneiders (2016b) demonstrates the use of the term co-occurrences to increase

automation in a company’s website contact page. The idea is to use previously

published information when the user types the message, so when it is available,

the user will be directed to the pages that contain the information. He argued

that his approach could save the user’s time and the company’s resources as

the solution may already be there for the user. While this approach is novel

when matching email-style messages to web pages or documents, it is different

to our approach, which matches an email query with a collection of past email

messages, not web pages.

Chapter 2. Related Literature 25

Lamontagne & Lapalme (2003) developed a solution to deal with customer

email messages sent to a company. The goal is to adapt previous email messages

in order to reply to a new request. To achieve this, the system compares the new

request message with a collection of past messages in order to find the most

similar one. When the most appropriate past message is found, based on the

calculation the system attempts to reuse the corresponding answer message to

reply to the request.

The study conducted by Lamontagne & Lapalme (2003) was also part of

the Mercure project (Lapalme & Kosseim, 2003). This study is domain-specific,

notably in terms of investor relation messages. Thus, the authors explain that

no domain specific resources are present. They did not benefit from the existing

linguistic resources such as WordNet. However, by expanding the query into

term co-occurrences, they benefitted from a slight increase in the result.

Although providing reply predictions and templates could minimise the

users’ efforts to reply to similar emails, an extensive training model with a high

volume of samples could be mandatory to achieve better performances. This

investigation, however, suggests that user intervention could help to provide a

better recommendation process by giving feedback on the most relevant results

(Hewlett & Freed, 2008). Feedback was given after the system performed a

search for the most similar sent emails. A higher score could be achieved when

the users vote that particular result to be the most appropriate reply. Hence, the

system also learned about user preference.

Our work is closely related to that of Lamontagne & Lapalme (2003) and

Hewlett & Freed (2008), as we tried to utilise past email replies to answer an

incoming email inquiry. We realise that future questions could be mapped by

utilising similar old questions and reusing the answers. This approach would

still allow the user to have control of the task. Further, it could also reduce the

Chapter 2. Related Literature 26

complexity of composing from scratch or searching through the whole mailbox.

2.4 Case-Based Reasoning

In past decades, a problem solving approach emphasising the possession of

past experience has been intensively studied. The case-based reasoning (CBR)

methodology was inspired by research from cognitive science on human memory

(Schank, 1983), which reflects previous experience on solving a similar problem.

The reasoning behind the proposed solution is much influenced by cases (col-

lection of past solutions). Before the system can solve a new problem, several

processes need to be performed.

A broader perspective on CBR implementation has been shown in recent

studies by Osiński & Weiss (2005), Díaz-Agudo et al. (2007), and Stahl & Roth-

Berghofer (2008). These authors developed a generic platform for building a

CBR system that could be applicable to any domain. As a result, these works

demonstrated the flexibility of their platform as it has been implemented in

various fields such as the medical (Abdrabou & Salem, 2010), and the financial

(Martin et al., 2012).

Although some off-the-shelf platforms for problem solving using the CBR

approach are already available, they are mainly built for the structured problem

domain. The problem can be separated into the domain-specific query with its

particular terminology. In our study, the problem domain is an email message.

The content of a message is considered unstructured, since every query could be

different from another. Besides this, the length of the message also varies.

There is no silver bullet that works for every problem. This understanding

also applies in the CBR problem areas, where there are no specific CBR methods

that suit every domain. However, the general method of CBR was first established

Chapter 2. Related Literature 27

by Aamodt & Plaza (1994) and has been widely used since then. Thus, the

challenge is to tailor the method to suit for problem solving in a particular

domain area.

2.4.1 CBR Cycle

Case-based reasoning as a framework for problem solving has two main com-

ponents: the modelling process translated as a CBR cycle, and the task-method

structure associated with each process in the model (Aamodt & Plaza, 1994).

The diagramme in Figure 2.1 represents the high-level process of adapting the

CBR approach. It is widely recognised as the 4R’s: Retrieve, Reuse, Revise and

Retain.

New Case

New Case

Proposed
Solution

Confirmed
Solution

REUSE

REVISE

RETAIN

QUERY
PROBLEM

Case-Base

Retrieved
Cases

RETRIEVE

Figure 2.1: The CBR Cycle adapted from Aamodt & Plaza (1994) and Watson
(1999).

Chapter 2. Related Literature 28

A case typically consists of a problem description and its corresponding

solution. When a query problem arrives, it is considered as a new case with a

defined problem and no solution yet. Then an attempt is made to retrieve past

cases from the memory (or case base) that have a similar problem description

to the new case. Next, the solution to these past cases is obtained to be reused

as a proposed solution. The system either automatically, or by using user

intervention, attempts to revise the solution by considering the differences to the

current problem. The proposed solution is evaluated by applying it to the initial

problem, or assessed by the domain experts on its respective problem domain.

Finally, the confirmed solution is retained in the case base to be considered for

solving similar problems in the future.

A detailed explanation for each process in the CBR cycle is provided in the

following:

Case Representation

In the CBR method, a proposed solution relies heavily on the presence of

knowledge representation. The knowledge, specifically identified as the case,

is a collection of past experiences that might be suitable to solve the problem.

Further, Kolodner (1991) argues that the content of the case does not need to

have a specific form, but can be focused on the kind of things (or information)

that should be available. A proper formulation of the information can allow

the case to be productively used for solving the problem. In addition, Kolodner

(1991) suggests that a case can contain a problem description and its respective

solution, with additional information on whether it worked (or might not work)

in solving past problems.

Chapter 2. Related Literature 29

A further CBR cycle is mostly associated with issues about how to organise the

case storage for effective retrieval and reuse. Bergmann et al. (2005) identified

some basic approaches to collecting cases, where some use textual representation

or benefit from generalised cases. When a case is in a textual structure form, the

text, such as words or phrases, is extracted into Information Entity (IE) (Lenz &

Burkhard, 1996). IE allows the cases to be stored in the form of nets and nodes;

thus the retrieval process can be automated by calculating the strength of the

links between nodes. Meanwhile, a generalised case extends the capability of

a single case solving single problem by providing a solution to closely related

problems. This can be achieved because a generalised case can have various

alternative plans to accomplish a common goal.

Case Retrieval

The retrieval process first begins with problem definition and finishes when the

best match has been found. In particular, the retrieved cases are past experiences

stored in the case representation. A set of cases that are most similar to a given

problem are returned at the end of the process. Thus, extensive study has been

conducted on finding an efficient similarity assessment technique (De Mantaras

et al., 2005).

De Mantaras et al. (2005) argue that in some CBR implementations, a

similarity assessment can be performed by examining the features of the case,

either those that are provided in its description (surface), derived from an

inference based on the domain knowledge, or represented by a complex structure

in a form of graph. There is a trade-off between computational cost and the

capability to retrieve more relevant cases, which places derived and structural

examination as more resource consuming than the earlier. Alternatively, indexing

Chapter 2. Related Literature 30

vocabularies (or special terms) to describe cases can help to reduce this extensive

resource use.

With respect to the email problem domain, Lamontagne & Lapalme (2003)

identify the structure of an incoming email message as the features that de-

termine the problem. Then, named entities (a person’s name) and a particular

passage in the case base is considered in the matching and selecting of potential

cases through the retrieval process. Furthermore, the cases returned in the

retrieval process can be prepared for the next process: case reuse. The proposed

solution could benefit from the pertained knowledge (or cases) stored earlier.

As a result, instead of always composing a new blank reply, which is treated as a

new case, Lamontagne & Lapalme (2003) argue that they could suggest the past

case as a solution to the problem.

Case Reuse

Following the retrieval of a potentially identified solution, a CBR model attempts

to reuse selected past cases. The task is mainly focused on determining the

differences between returned past cases and the new case, as well as identifying

which part of the old case can be used in the new case. Two approaches have

been widely implemented: copying the details of a past case as the chosen

solution, or adapting the past case to the context of the new case by considering

transformation or derivation of information.

In terms of providing the response message to reply to an incoming email,

adapting the past case was selected by both Lamontagne & Lapalme (2003) and

Hewlett & Freed (2008). They selected only the most appropriate feature from

the retrieved past case, which is the body of the email itself. While Hewlett &

Freed (2008) present this task in the form of providing a recommendation to

Chapter 2. Related Literature 31

the user, Lamontagne & Lapalme (2003) intelligently map some part of the body

message to be further processed in the case revision step.

Case Revision

When the new case contains information from a previous case, revision can be

made automatically or by an intervention from the user. Two main tasks are

involved, namely evaluating the solutions and repairing the fault. The evaluation

process is taken to avoid providing inappropriate solution. In addition, when

the fault is found, it has to be repaired by considering the domain knowledge.

Therefore, the goal is to generate a high-quality case to be retained in the next

process.

Adapting past cases was selected by both Lamontagne & Lapalme (2003) and

Hewlett & Freed (2008) in their studies in the context of providing the response

message to reply to an incoming email. Although they use most of the content

from a past email in the body part of the new email, the main difference is that

Hewlett & Freed (2008) omitted some part of the message, while Lamontagne

& Lapalme (2003) provided the entity name that was extracted previously and

replaced a part of the message with a more appropriate reply content. Thus, both

have the trade-off of simple implementation and a more personalised message.

Case Retain

This process is often referred as the learning process. As stated, the main goal of

the CBR system is to store the solved problem in the existing knowledge base (or

case base). Case retention starts by extracting the whole (or partial) information

from the solution. This ensures the quality of the case stored. The process is

followed by indexing, which includes a decision about what type of indexes

Chapter 2. Related Literature 32

should be used for future retrieval. At the end, the case is integrated into the

case base by maintaining either partial or whole information. The newly learned

case may appear in the future if it matches a similar problem.

The nature of email conversation is a pair of query and reply sentences.

Therefore, with the implementation of the CBR system that manages email

response, the new case is considered as a query email associated with a reply.

While studies by Lamontagne & Lapalme (2003) and Hewlett & Freed (2008)

have provided a comprehensive description on how they implement case re-

trieval, reuse, and revision, it is not clear how they benefit from a successful

new case that has been solved using a past case. They did not explicitly state the

procedure of case retaining in their study.

2.4.2 Categorisation of the CBR System

There has been a significant development in various CBR systems. López (2013)

categorises the differences based on four criteria (or dimensions): the source

of knowledge, function, organisation and distribution. Although it is not an

exhaustive list of every CBR system development, we found it useful to see

the positioning of our CBR system in real world implementation. Thus, we

attempted to examine our email client system based on the criteria previously

mentioned, as summarised in Table 2.5.

Table 2.5: Positioning of our approach (appears in bold) based on the CBR
system categorisation by López (2013)

Knowledge source Function Organisation Distributiveness
Textual Classification Sole Single memory

Structural Recommendation Multiple level Multiple memories
Conversational Tutoring Hybrid CBR Single agent

Temporal Planning Meta CBR Multiple agents
Images Monitoring

Knowledge management

Chapter 2. Related Literature 33

The first dimension identifies what the form of the case is. Some CBR systems

have their source in the conversation between the user and the system, the

interpretation of images or even in the information from temporal relationships

such as user action history in a game. Furthermore, this information can be

stored in predefined variables for a specific domain such as the medical field.

Our system relies extensively on the presence of text in the email message, and

this textual collection is easily obtained.

The second dimension groups the CBR system based on the function of its

development. It is common to see a CBR system mainly utilised for a classification

task, where it can predict labels or classes in a binary (positive or negative)

or discrete (multiple) manner. A CBR system also assists in the processes

of a development life cycle such as knowledge management, planning, and

monitoring the deviation in the behaviour of a system. In some cases, it can

also provide recommendations according to user preference and interaction in

the system. Our system attempts to provide this recommendation based on

information acquired from the user’s past responses in replying to messages.

A CBR system can be combined with other knowledge-based systems or

even another CBR system that has a different functionality to solve a problem.

This combination may involve a multilevel organisation used by several CBR

systems, hybridised with other problem-solving methodologies, or utilise meta

information acquired by another CBR system to reason the best method to apply

at every CBR stage. On the other hand, it is also common to use a single CBR

system for problem solving. In our case, it is sufficient to only use a single CBR

system, as the nature of our task is not too complex.

Finally, a CBR system can be categorised by the number of the case-bases

(or memory) and what the processing distribution is. It can have one case-

base or many, and the processing can be done by either single or multiple

Chapter 2. Related Literature 34

agents in a system. Multiple distributions may be used for building case-bases

to solve complex problems, or for sharing processes that are computationally

expensive. Our system focuses on a relatively simple process, which involves

finding and recommending email messages from our case-base. In addition, it

is not necessary to build multiple case-bases since a single case-base already

represents information storage in an email account.

2.4.3 Textual CBR for text-based problems

In recent years, there has been an emerging interest in exploring CBR that

specifically deals with text problems. This is possible since CBR itself is a

methodology (Watson, 1999); thus it is open to new problem domain discoveries,

such as text. Experience and information from past problem solving processes is

retained and explicitly reused to deal with new tasks or problems. This extension

is commonly referred as textual CBR.

One of the typical areas that implements textual CBR is the customer support

domain. Normally, this support service relies heavily on text-based documents

such as error reports, technical documentation, or frequently asked questions

(FAQ) to solve customer problems. The problem itself may not necessarily be

solved within seconds, but the support staff needs a system to assist them in

finding the documents that are relevant to a customer’s query. In addition, a

specific technique to retrieve information based on natural language text in a

customer query is mandatory. Further explanation of this technique is presented

in the next section.

Since CBR is a knowledge-based approach, it is important to note that a

textual CBR system needs knowledge (or case) representations in any or some

of the following categories: case collection, index vocabulary for each case,

Chapter 2. Related Literature 35

similarity measurement, and knowledge adaptation (Lenz et al., 2003). First,

text-based documents can be utilised as the source of the case base. Then, the

index is constructed around the terms used in the document. Through consid-

ering the various terms in the index, the similarity measurement is performed

between the query and the document collections. In addition, this measurement

may go beyond the statistical term weighting by utilising semantics components

such as thesaurus or ontology from a particular domain.

The domain that we are dealing with, email communication, has the charac-

teristics that make it suitable for textual CBR implementation. The document

collection used as the basis of the case base has a text-based form. Even though

an email message has a clear structure consisting of sender, recipient, date,

subject and body, the greatest source of information is located in the subject and

body. Moreover, these fields may form a semi-structured or even unstructured

text, making it a challenge to extract useful knowledge from it. Therefore, a

textual CBR system mostly relies on a technique for identifying the natural

language text that is available in an email message.

2.5 Related tasks and techniques in textual CBR

As explained in the previous section, Aamodt & Plaza (1994) defined the retrieval

process as commencing the CBR cycle. It requires past problems similar to the

query to be retrieved. The problems, as presented in the email messages, contain

information in a form of natural language communication. Therefore, in this

section, we attempt to discuss the process of retrieving information from email

messages. Since these messages typically consist of textual content and file

attachments, we scoped the study to process only the text-based information. We

explored past studies in the area of text processing before finally implementing

Chapter 2. Related Literature 36

these techniques in our proposed solution.

2.5.1 Information Retrieval

An information retrieval (IR) process emerges from the notion that the user

needs access to information. This information is typically organised and stored

in a particular place. Users should be able to access the information they have

an interest in easily. However, understanding the information that the user

needs is not always a straightforward problem. It has to be translated into a

query to be processed by an IR system (Baeza-Yates & Ribeiro-Neto, 1999). It

is also important to note that a query presented to the IR system should return

information items (i.e in a form of documents) that are relevant to the query.

Therefore, relevance in the retrieval process is the core of the IR field.

In order to provide efficient access to a large volume of documents, an index

is typically built. While various index structures have been studied, one of the

most popular is the inverted index (Baeza-Yates & Ribeiro-Neto, 1999). This

index type has two components: the vocabulary and the occurrences. The

vocabulary is the distinct words (or terms) that appear in the document. For

each word, the position of its appearance in the text is stored in a list. This list is

further referred as occurrences. This allows direct access to particular matching

text positions. A fundamental study conducted by Voorhees (1986) showed that

an inverted index search guaranteed the retrieval of all documents based on the

greatest similarity, instead of zero. This was achieved by a search directed to the

terms instead of scanning the document thoroughly. The results showed that the

inverted index search is more efficient than a cluster search.

Furthermore, it is likely that not all the index terms are equally useful for

representing the document contents. Some terms might be more vague than

Chapter 2. Related Literature 37

others. With respect to the document storage (or corpus), terms that appear

in every document in the corpus may be less useful as they do not represent

a set of specific documents. In contrast, this generalisation could be avoided

when, for instance, five terms are found, meaning the search could be narrowed

down. These terms should be assigned a weight according to the relevancy of

each in representing a document. Therefore, Baeza-Yates & Ribeiro-Neto (1999)

define this phenomenon in three classic information retrieval models, namely

the Boolean model, the Vector model, and the Probabilistic model.

The earliest model, the Boolean, is based on an understanding of theory and

algebra. This model measures terms as 0 or 1, or as having a Boolean value

of FALSE or TRUE. Thus, it considers the document to be either relevant or not

relevant. While the clear semantics and its simplicity are the main advantages of

this model, it lacks the notion of partial matching. This may lead to retrieving

too many or too few documents (Baeza-Yates & Ribeiro-Neto, 1999).

The second model addressed drawbacks identified in the Boolean model. The

vector (space) model (VSM), as introduced by Salton et al. (1975), attempts to

assign non-binary weights to the terms in the documents. One of the simplest

and most commonly implemented methods to calculate the weight of the terms

is by considering the frequency of each term in a document (TF) as well as in the

whole corpus (IDF) (Salton et al., 1975). By obtaining the weight of each term in

a document, the degree of similarity between a query document and documents

in the corpus can be computed. This also allows the retrieved documents to

be ranked according to the degree of similarity. The ranked list also considers

documents that only partially match the query documents. Thus, it is likely to

have a higher chance of returning a document that matches the user’s needs,

compared to the Boolean model.

The last model utilises probabilistic inference in the process of document

Chapter 2. Related Literature 38

retrieval (Robertson & Jones, 1976). The degree of similarity between documents

is computed with respect to the probability of being relevant. Thus this model

also generates a ranked list of relevant documents based on the degree of

similarity, similar to the Vector model. While this model is capable of producing

a ranked list, it is necessary to provide a set of assumptions to distinguish the

documents into relevant and non-relevant sets (Baeza-Yates & Ribeiro-Neto,

1999).

Amongst all the models explained above, the Vector Space Model has been

very popular in the study of IR (Baeza-Yates & Ribeiro-Neto, 1999). Therefore

we decided to implement this model in our proposed solution, because of the

following considerations. First, it seems challenging to provide an initial set of

assumptions about which email is relevant to another email. Then, we assume

that whenever an email query is made, the system is expected to retrieve the

relevant documents, which include partially matching documents. This way

the ranked list of possible solutions could be provided to the user. Further

explanation about the corresponding technique is presented in the next section.

2.5.2 Natural Language Processing

In order to perform an effective retrieval of information, it is important to under-

stand how it is presented. In an email communication, people send and receive

textual information, which has a natural linguistic structure. Rules are applied

to structure linguistic expression (Manning & Schütze, 1999). We attempted to

identify common patterns that occur in language use. An approach to natural

language processing (NLP) arises from an understanding that computers are

good at recognising patterns that can be useful to automate basic linguistic tasks

in human communication.

Chapter 2. Related Literature 39

Liddy (2001) argues that there are several common approaches in natural

language processing: symbolic, statistical and connectionist. The symbolic

approach analyses linguistic phenomena based on explicit representation using

human-developed rules. An implementation of this is in the rule-based system,

where knowledge is represented as facts, a set of rules and semantic networks.

Tasks such as text categorisation, lexical acquisition, and information extraction

benefit from the presence of rules.

The second approach concerns adapting statistical techniques to establish a

generalised model of linguistic phenomena by using large text corpora. While

the symbolic approach uses a predefined set of rules, the statistical approach

benefits from observable data as its source of knowledge. This approach is

widely used in speech recognition and parsing since it utilises large corpora to

model generalisation.

The connectionist approach is similar to the statistical approach in the way

that both develop generalisations from linguistic phenomena. However, this

approach represents the model in the form of interconnected network models

where knowledge is stored in the processing unit and forms a particular rela-

tionship. Weight is applied to the connections between every processing unit.

The interconnected network model has influenced solving semantic tasks such

as word-sense disambiguation.

Furthermore, Liddy (2001) suggests applications that utilise text-based in-

formation to use NLP. Some examples include information extraction (IE), in-

formation retrieval (IR), and a question-answering system. The IE area focuses

on extracting, recognising and tagging a particular element of information, such

as a name, location, or organisation from a collection of texts. This extraction

may significantly enhance the implementation processes of the system, such as

data mining. Moreover, Liddy (2001) argues that only a few implementations of

Chapter 2. Related Literature 40

IR use NLP, given that this particular area deals with text. The question-answer

system benefits from an NLP approach, since this area attempts to provide

automation to answer a user’s query.

2.5.3 Document Preprocessing

As discussed in the previous section, it appears that not all of the index terms

are equally meaningful in representing the documents. Thus, the preprocessing

phase of the documents is typically considered to determine these index terms.

In this section, we explain several document preprocessing techniques, as cat-

egorised by Baeza-Yates & Ribeiro-Neto (1999), which are further referred to as

text operations or text analysis techniques. These operations include normalisa-

tion of the text by lexical analysis, removing common English words identified

as stopwords, reducing syntactic variations of the terms using stemmer, and

expanding the context of the term by finding its corresponding synonyms from a

lexical database (i.e. thesaurus).

Lexical analysis

In a text document, information is formed by a group of words. To find mean-

ingful information also means understanding the context. This objective stands

behind performing lexical analysis: to provide normalisation of the text, includ-

ing but not limited to the treatment of punctuation marks, digits and hyphens, as

well as upper and lower cases. This process is continued by converting a stream

of text in a document, commonly separated by a whitespace, into a stream of

candidate words to be indexed. While lexical analysis could reduce noise in

identifying the context of a document, careful consideration may be applied

in several cases. Numbers, independently, can be vague when used as index

Chapter 2. Related Literature 41

terms. However if surrounded by a context, for instance ’1240A.D.’, they can

be meaningful. The same applies to punctuation marks, which can be used to

abbreviate, as in ‘a.m.’ in ’ante meridian’ or as ‘am’ in ‘I am’.

Stopwords removal

Once the stream of potential words for index terms has been generated through

lexical analysis, some may be shown to have less influence on the context of the

document. This happens because they appear too frequently in a document, and

thus can be useless in the retrieval task. These words are termed stop words

(Baeza-Yates & Ribeiro-Neto, 1999), and include words commonly labelled as

prepositions, articles and conjunctions. Early work done to identify stop words

in the English language was made through analysing a large collection of corpus

(Fox, 1989), as shown in Table 2.6 .

Table 2.6: An example of a stopwords list obtained from Fox (1989)

Top 20 stopwords in Brown Corpus

the, of, and, to, a,
in, that, is, was, he,
for, it, with, as, not,
his, on, be, at, by ...

Although eliminating these stop words provides an important benefit, es-

pecially on the size of the indexing, Baeza-Yates & Ribeiro-Neto (1999) argue

that it may also reduce recall. Phrases containing these stopwords may not be

recognised in the retrieval process. However, the way to work around this issue

is to implement full-text searching as an additional feature.

Stemming

Stemming is a process of deriving a word by its root. This method is commonly

applied to reduce the variability of the words; thus more matching can be found.

Chapter 2. Related Literature 42

For instance, the string such as "buy", "buys", and "buying" can be reduced to its

root, "buy". This can reduce the size of index terms as well, since only a lower

number of distinct words (word root) are stored.

One of the most recognised works in word stemming is the Porter algorithm

(Porter, 1980). This algorithm stands behind the notion that most variants of

a word are generated by an addition of suffixes instead of prefixes. Therefore

Porter’s algorithm uses a set of rules for modifying the suffixes of the words in a

text document, for instance in examining plural words.

Term frequency and weighting

The text analysis techniques mentioned earlier allow for normalisation of the

terms. With respect to the correlation between terms in the query document and

documents in the corpus, documents that contain more matching terms tend

to be similar and should receive a higher score (Manning et al., 2008). Thus,

terms generated in the preprocessing phase can be considered when measuring

similarity scores between documents.

Term weighting can be computed in various ways, and one of the most widely

adapted in the IR field is the TF-IDF scheme. This scheme was introduced by

Salton & Buckley (1988), and the acronym stands for term frequency - inverse

document frequency. Statistically, it measures the importance of a word to a

document within a corpus or collection. TF-IDF weighting considers the scaling

mechanism: frequent terms are scaled down and rare terms are scaled up. For

instance, a term that appears 10 times more than another may not necessarily

be more important.

Chapter 2. Related Literature 43

Given the term t and document d, the TF-IDF weighting of a term in the

document tfidf(t,d) is computed using the following formula:

tfidf(t,d) = f(t,d) ∗ log �D�
f(t,D) (2.1)

where f(t,d) represents the term occurrences count in a document, �D� is the

total of documents in the case base, and f(t,D) equals to the documents count

containing term t.

Some studies report that the use of TF-IDF has assisted in performing further

analysis (Weng & Liu, 2004; Dredze et al., 2008), and a textual CBR application

has also been built by considering TF-IDF weighting in the retrieval process

(Lamontagne & Lapalme, 2003).

Similarity measurement in Vector Space Model

Salton et al. (1975) introduced a model of IR for when term weights have

been computed, which is capable of measuring similarities between documents

in a vector space. The Vector Space Model (VSM) transforms a collection of

words in a document into a high dimensional vector. The weight of the vector is

represented by a set of document terms that have been weighted (in this case

using TF-IDF). The distance between two vectors is measured using the cosine

angle between them, which is usually referred to as Euclidean distance. Thus, it

seems clear that the shorter the distance between two vectors, the more similar

the documents are.

As shown in Figure 2.2, there are two documents in the case base, represented

as vector �d1 and vector �d2. Vector �q represents a user query document. Although

these vectors have the same term count (x, y), their term weight (x1, x2) and

(y1, y2) differs from each other. Thus, the distance between the two vectors �q

Chapter 2. Related Literature 44

Figure 2.2: Vector Space Model as introduced by Salton et al. (1975)

and �d2 is measured by the cosine angle (✓) score.

Given the above information, similarity sim(�q, �d2) in VSM is computed as a

dot product of both vectors, as shown in the following formula:

sim(�q, �d2) = cos ✓
= �q ● �d2��q�� �d2�
= (x1 ∗ x2) + (y1 ∗ y2)�

x1
2 + y12�x2

2 + y22
(2.2)

Although the implementation of TF-IDF and VSM has been widely known for

their simplicity and ease of use (Manning et al., 2008), they lack an identifying

semantic context between the terms. Therefore, by implementing additional

linguistic knowledge such as through the use of thesaurus, this issue can be

diminished (Abdalgader & Skabar, 2010). In addition, VSM is capable of perform-

ing partial matching as well as exact matching between a query and documents

in the corpus.

Chapter 2. Related Literature 45

Synonym expansion using thesaurus

During the process of the semantic identification of words in a document, a

common strategy is to find a set of words that closely relate to a given word.

In linguistics, this set of related words is commonly identified as a synonym. A

tool called thesaurus has been widely used to find synonyms. This capability is

present since a thesaurus consists of a precompiled list of important words for

a particular domain of knowledge and its set of related words (Baeza-Yates &

Ribeiro-Neto, 1999).

The use of the thesaurus was motivated by advantages such as a reduction in

noise, and retrieval based on concepts (semantic matching) rather than on words

(exact matching). It is particularly useful when the domain has an extensive

and specific use, such as in the medical field. In the general domain, a popular

study on the thesaurus in the English language, known as WordNet, is available

(Miller, 1995).

In a study conducted by Hliaoutakis et al. (2006), the authors focused on

investigating semantic similarities in a text. They examined these by computing

semantic similarities using WordNet (Miller, 1995) as the natural language

ontology reference, and MeSH (Lipscomb, 2000) for medical and biomedical

terms. The initial experiment was carried out through evaluating the model with

the results generated using WordNet and MeSH references. The retrieval model,

as identified by the Semantic Similarity Retrieval Model (SSRM), was proposed

by taking into account some useful behaviours from the initial experiment.

This model performs query re-weighting, synonym expansion and calculating

document similarity. By proposing this model, the authors argue that the Vector

Space Model by itself is not capable of capturing terms that are semantically

similar (e.g. "ask" with "inquiry" or "demand").

Chapter 2. Related Literature 46

Similarly, Abdalgader & Skabar (2010) also studied the influence of word

sense disambiguation and synonym expansion in measuring short text similarity.

They argued that the standard IR measures of word co-occurrence were not

sufficient. Thus, lexical resources such as WordNet were employed to obtain the

semantic information for each term in the sentence. An evaluation performed

on three different datasets shows that synonym expansion leads to improvement

in sentence similarity measurements.

When considering the results from Hliaoutakis et al. (2006), as previously

explained, and the study conducted by Abdalgader & Skabar (2010), it seems

promising that the utilisation of lexical resources such as WordNet could in-

fluence the similarity calculation for our proposed solution. Therefore, we

considered adapting the synonym expansion approach in our study. Similarly,

we implemented the thesaurus library using WordNet (Miller, 1995).

2.6 Summary

In this chapter, we presented the background to the problem domain that we

address in our study. We explained previous approaches related to responding

to email messages. While we found two studies (Lamontagne & Lapalme,

2003; Hewlett & Freed, 2008) that are similar to our approach, only one study

implemented case-based reasoning as the underlying methodology (Lamontagne

& Lapalme, 2003). Furthermore, all of the past text-based studies implemented

text preprocessing techniques. However, we identified that in most studies,

synonym expansion was not implemented. Therefore, in the following chapters,

we attempt to implement and evaluate that technique, along with other text

analysis techniques.

Chapter 3

Design and Implementation

While previous studies and potential techniques commonly used in email reply

management have been explored in Chapter 2, this chapter starts with an

overview of our proposed system - the smart email client. Afterwards we

comprehensively present the architecture and functionality design of the system.

The next section begins with the implementation of the CBR approach in our

design, along with the tools utilised in its development. It describes how an

email message is modelled as a case, either a new one or as a part of case base.

We also present our retrieval strategies to find the most similar cases and reuse

those solutions. Finally, the chapter ends with the current limitations in this

development phase.

3.1 Overview of Smart Email Client

Here we attempt to solve the problem of task management in email overload

issues, as mentioned in previous chapters, by assisting the user in responding to

an email. We designed a prototype of an email client with reply recommendation

features when the user is about to reply an incoming message. The system follows

47

Chapter 3. Design and Implementation 48

the CBR methodology in retrieving similar cases: reusing the past solution

to answer the new problem, revising the proposed solution if necessary, and

retaining the successful solution seamlessly as a reply message or a solved case

in the case base.

As can be seen in Figure 3.1, initially the user starts by browsing through

their inbox messages. These messages are stored locally in the database, since

the system is capable of retrieving it from the mail server. Two types of message

are then identified in the inbox, whether it is a message that has been replied to

or not. The user can see the details of each type. However, when they select a

not-replied message to reply to, the system provides two options for replying.

First, the normal reply option has a typical reply procedure - a blank text box

with the original message attached at the end of the box. In the second option,

the system provides a ranked list of replied to messages obtained from the user’s

own sent items. Finally, when the message composing is finished, the user sends

the message and the system delivers it to the mail server as well as storing it in

the database for future use.

Compose
reply

message

Browse
messages

Send reply
message

Not replied

Replied

Replied

Retrieval algorithm

User A

User B
Mail server

Database Index
files

Normal reply

Recommended reply

WordNet
Data

Figure 3.1: Flowchart of the system

Chapter 3. Design and Implementation 49

Reply actions are provided whenever the user selects a message not replied

to (or a query). The normal reply can be utilised if the user chooses to compose a

reply message from scratch. However, when the user prefers to see recommended

replies from his own past reply messages, a button to action this is also provided.

It triggers the retrieval algorithm to search for previously answered emails that

are similar to the email query. The system then ranks the top 10 results according

to their similarity score. Next, it obtains the corresponding reply message and

presents this on a reply recommendation list. This list allows the user to select

the most relevant reply message, according to their preference. Finally, the

selected reply message is already pre-populated in the reply box, which enables

the user to efficiently reuse the solution or to make the necessary revisions before

sending.

3.2 System Architecture

An email client application has recently been developed in various environments,

including mobile systems and web-based applications, while those with the most

comprehensive features are usually implemented in the desktop environment.

This is possibly because these features also demand more processing power, and

desktop applications benefit from the availability of the processing resources

available in, for instance, a personal computer (PC) or laptop. As our prototype

implements a new feature to build a recommendation system, we chose to start

the development using the desktop environment.

As illustrated in Figure 3.2, we identified that three elements were involved

in our application architecture – the mail server, the database, and the user.

The main objective for an email client is to be able to communicate with the

mail server. This form of communication is shown in activities such as fetching

Chapter 3. Design and Implementation 50

Mail Client
Application

(SMail)
Mail server Database

User

Figure 3.2: High-level architecture view of the email client

new inbox messages and sending a reply message back to the mail server from

the application. There might be additional features such as draft management.

However, we will address this limitation near the end of this chapter.

It was not feasible to build our case base in the mail server. We also consider

that performing too many requests to the mail server to fetch messages is

not efficient. Therefore we built a local copy, or case base, using a database

management system (DBMS) application. Our main consideration in choosing a

DBMS was that it had to be an open source application. Therefore, we chose

a system widely used in DBMS by software developers; MySQL1. However,

there could be the possibility of using a portable database such as SQLite2 or a

file-based DBMS, MongoDB3. More details of our database implementation are

presented in the next section.

Finally, the usability of the application had a significant influence in our

design thinking process. In her study, Mayhew (1999) argues that it is a matter

of trade-off and compromise in the user interface design. At the same time, users

want powerful functionality but a simple interface. In addition, the system has
1https://www.mysql.com/
2https://sqlite.org/
3https://www.mongodb.com/

Chapter 3. Design and Implementation 51

to establish ease of learning as well as ease of use. As a result, we took into

account the previous consideration. We attempted to design the user interface

application by adapting it from an off-the-shelf email client. We identified

unwritten guidelines about placing elements in an email client application. A

comprehensive explanation about our design considerations is also presented in

the next section.

3.3 Functionality Design

We have categorised the requirements above into functional layers, as shown in

Figure 3.3. These layers relate to email communication, information retrieval

(IR), and graphical user interface (GUI). In addition, a corresponding entity for

each layer provides complementary information for the functionality implement-

ation. Following is the further reasoning and discussion on each functionality

layer, which further referred as the components.

Application

User

Functionality Layers

Graphical User Interface (GUI)

Information Retrieval (IR)

Email Communication
Mail

Server
Config

Database Java
Library WordNet Lucene

Entities

Figure 3.3: Proposed functionality layers in the application

Chapter 3. Design and Implementation 52

3.3.1 Email Communication

In order to fetching and sending email, we developed an email communication

component, which resides under the application entity. This component has

the following main tasks: (1) establishing a connection to the mail server using

given email account settings; (2) fetching all email messages in the first run and

only fetching new messages on the following runs, and (3) using mail server

settings to send the email. Our system utilises Internet Message Access Protocol

(IMAP), thus it is possible to fetch from the inbox and send messages from its

corresponding folder. We also managed to develop a sending capability using

the Simple Mail Transfer Protocol (SMTP) settings of the mail server. All these

tasks were achieved by implementing JavaMail API4.

The email message that has been fetched needs to be further processed,

since it mostly comes with embedded Hypertext Markup Language (HTML) tags.

This process is known as parsing the content in the body part of the message.

Parsing is performed to ensure the content of the message does not contain

significant noise. While we carefully dealt with the quality of the content, we

left the parsing for multiple email recipients to future development. At this stage

therefore, our system focuses on one-to-one email communication between a

sender and a recipient.

After building the communication capability and parsing the content, the mes-

sages are stored in the MySQL database. The table definition in the database

is presented in Figure 3.4. The table name is self-explanatory - messages from

the inbox and the sent folder are stored in their respective tables. We decided

to deal with email attachments in the future, so we only stored email header

information and the body content of the email.
4https://javamail.java.net/

Chapter 3. Design and Implementation 53

t_inbox t_sent

inbox_idPK

inbox_recipient

inbox_sender

sent_idPK

sent_recipient

sent_sender

inbox_date

inbox_subject

inbox_body

sent_date

sent_subject

sent_body

Figure 3.4: Table definition in the email client application

Because of the simplicity of our table definition, we established the relation-

ship between an email message and its corresponding reply using the Structured

Query Language (SQL) syntax, as shown below.

Listing 3.1: SQL syntax to establish relationship between inbox and sent email

SELECT * FROM t_ inbox a LEFT JOIN t _ s en t b

ON a . inbox_sender = b . s e n t _ r e c i p i e n t

AND a . inbox_sub jec t = SUBSTRING(b . s en t_ sub j ec t , 5)

ORDER BY inbox_id DESC

Our implementation was successful in that it recognised messages in the

inbox table and matched them to a corresponding reply in the sent table. We

implemented SUBSTRING() function in order to start the subject reading after

the character "Re:" that is usually applied in an email reply. It enables exact

matching between the subject in the inbox table and the sent table. However,

we have identified the problems in this approach in terms of the variability of

Chapter 3. Design and Implementation 54

the subject messages. For instance, a user might accidentally modify the subject

content, which with our approach, means that we are unable to identify the

corresponding reply message, if is any. However, it is not a trivial thing to fix

this issue and we leave this for our future development.

3.3.2 Information Retrieval (IR)

The next component that we developed is related to IR capability. Like the

previous component, it resides under the application entity. This is the core

component in this research as it enables the ad-hoc retrieval of documents (in

this case the email message), according to the user query. Moreover, it performs

the following tasks: (1) the indexing of message entries in the database; (2) the

querying of the index to find the most similar document, and (3) ranking the

most relevant documents that are similar to the user query.

From the several IR libraries that are available off-the-shelf, for example the

Lemur project5, we chose Apache Lucene6 for the following reason. First, Lucene

is an open source library and available for Java-based application development,

which aligns with our approach. Being open source, Lucene is frequently up-

dated and maintained by the community. Second, it is capable of performing

text analysis, such as tokenisation, word stemming, and stop words removal

(Białecki et al., 2012). In addition, with further alteration, it is able to parse the

WordNet database to apply synonym expansion during text analysis. Lastly, by

default, it builds its term indexes using TF-IDF weighting (Białecki et al., 2012),

which simplifies our work on using term weighting for calculating the similarity

between query document and documents in the corpus.
5https://www.lemurproject.org/
6http://lucene.apache.org/core/

Chapter 3. Design and Implementation 55

3.3.3 Graphical User Interface (GUI)

Since one of our goals is to make the system more available to the user, we also

emphasised the development of the GUI, which resides under the user entity

in Figure 3.3. We adapted the interface layout guidelines from several widely

known email client applications, such as Mozilla Thunderbird7 and Opera Mail8.

The most noticeable layout observed in those applications regards the placement

of the message list on the left-hand side and the message details on the right-

hand side. Interestingly, this observation aligns with Nielsen & Pernice (2010) in

their study of identifying hot spots in web content. These hot spots, also called

eye-tracking spots, shape an F pattern from the user’s point of view. It is more

likely to happen when the content draws their attention. It is also more likely to

happen when the content draws their attention (Nielsen & Pernice, 2010). By

placing the message list on the left-hand side, assisted by colour differentiation

(white is for the replied messages, red is vice versa), as shown in 3.5, we expect

to provide more assistance to the user.

Building a desktop application means facing the challenge of the limited

and outdated library for user interface elements. However, we overcame this

problem by implementing the latest Java interface library, the JavaFX9. While

some outdated interface elements have been replaced, this library also expands

the capability of applying the Cascading Style Sheet (CSS) styling scheme and

multimedia embedding (Heckler et al., 2014). This improvement extends the

flexibility of applying CSS features in our application, such as colour schemes,

icon placement, and font adjustment, as shown in Figure 3.6.

7https://www.mozilla.org/en-US/thunderbird/
8http://www.opera.com/computer/mail
9http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

Chapter 3. Design and Implementation 56

Figure 3.5: The user interface layout forms an F-pattern

Figure 3.6: Look and feel of the application using JavaFX library

Chapter 3. Design and Implementation 57

3.4 Adapting the CBR in Smart Email Client

This section provides a detailed explanation of how we adapted the CBR ap-

proach in the system beginning with illustrating the overall process in a flowchart.

Each phase in the CBR cycle is then mapped. This includes how we represent the

email reply problem as a case, define the case base, retrieve similar past cases,

reuse the solution, then revise it and retain the solved problem in the case base.

We further explain the tools that we used during development.

3.4.1 Process Flowchart

The process in our system adapts CBR methodology, as represented in Figure

3.7. It begins when the user starts the system and email messages are fetched

from the mail server to the database (case base). This is the user intervention.

Further, these messages can be considered as new cases or past cases.

New Case

Proposed
Solution

Confirmed
Solution

System retrieves 10
most similar past

cases

System reuses the
case solution

System retain the
solution in the case

base

Past
Cases

User revises the
content manually

System sends the
message

System fetches
email messages

New Case

User selects an
email to be replied

Message has a
corresponding

reply? NO

YES

 Retrieved
Past Cases

Case Base
(Database)

START

FINISH

Users selects 1
most related

retrieved case

Mail server

Index
files

Figure 3.7: Process workflow adapting CBR methodology

Chapter 3. Design and Implementation 58

When the user selects an email to be replied to, the process of case retrieval

starts. The system attempts to retrieve the 10 past cases that are most similar

to the selected email. Furthermore, it also reuses the content of the email and

presents them as the proposed solution. The users then select one the most

preferred proposed solutions and revises the content, manually if necessary.

Whenever the user finishes composing the content and clicks send, the system

sends the message to the mail server and saves the copy to the database.

3.4.2 Case Representation

In the table definition, we showed a rich content of messages for both inboxes

and sent email. However, to adapt the CBR approach, a case representation must

be created. A case consists of a problem description with or without a solution.

It should have a structured pair of feature and value. With respect to the email

features obtained, we propose the case representation as shown in Table 3.1.

Table 3.1: Case representation from the email corpus in database

Feature Value
Problem Title "Subject" field of an inbox message
Problem Description "Body" field of an inbox message
Solution Title "Subject" field of a sent message
Solution Description "Body" field of a sent message

From the proposed case representation it can be seen that we have not used

other header fields such as the "To", "From", or "Date" fields, in contrast to the

study undertaken by Lamontagne & Lapalme (2003), where they used the recip-

ient and sender information. The main difference is that our approach focuses

on analysing the content of the email message and applying text processing and

semantic analysis technique. Lamontagne & Lapalme (2003) benefitted from

using the sender or recipient fields since they also performed an information

Chapter 3. Design and Implementation 59

extraction technique to obtain the named entity.

Moreover, we categorise the acquisition process of a case under two condi-

tions. First, if the email has no corresponding reply, that means the case does not

have a solution. We consider these as unsolved cases. Then, any messages with

a reply associated with that message are considered to be solved cases. Cases

remained unsolved until the user attempts to select one as a new case by starting

the reply action. Each reply message that is successfully sent we retain as a

solution to be used for future similar new cases.

3.4.3 Case Base Population

Previously proposed case representation presents an efficient structure for the

system to store the cases. This is done by excluding supplementary information

from the email corpus in the database, material such as the sender and recipients

information. One way to store the cases in the case base is by indexing the case

feature. In this case, the feature is textual information. Thus we adapted the

TF-IDF calculation and vector space model presented in Chapter 2.

The process of indexing a case base is shown in Figure 3.8. In the beginning,

the fetched email may contain HTML tags, which might increase the noise in

the email message. Thus, we parse the message into plain text before storing it

in the database. The system then starts the analysis process by fetching records

from the database. Various text analysis techniques are performed to generate

ready-to-index terms. In addition, a lexical resource for synonym expansion is

employed, namely WordNet. As a result, the system can expand a term with its

corresponding synonym terms to be indexed. Finally, these terms are indexed

using a native indexing method, the inverted index, from Lucene.

Chapter 3. Design and Implementation 60

Mail server

Database Index
files

Lexical analysis
Word stemming

Stop words removal

JavaMail library

Fetch email

HTML parser library

Convert to plain
text

Java MySQL library

Fetch record

Lucene Analyzer

Analyse plain text

Lucene Analyzer

Generate terms
and synonyms

Lucene IndexWriter

Create inverted
index using terms

WordNet
Data

Terms t1 Synonym t1
Synonym t1
Synonym t1

Terms t1 Doc 1
Doc 2
Doc 3Terms t2

Figure 3.8: Flowchart of indexing case base

The indexing process involves converting the text into a bag of words (or

bag of terms). In Lucene, this process is utilised using Analyzer class, where

it represents a text analysis functionality performed in the conversion process.

Lucene further allows the creation of CustomAnalyzer, where we can define our

own text analysis technique instead of using the default one. For the purposes of

evaluation, several types of Analyzer were built.

Algorithm 1 shows that the process of building Analyzer was started by ini-

tialising tokenStream to collect processed words at the end (line 1). Tokenizer

allows tokenising words in a document by considering whitespace between each

word (line 2). It also omits punctuation and other non-numeric signs, which is

usually called the normalisation of a text document. Furthermore, Lucene also

provides a library for further normalisation by transforming all words into lower-

case using lowercaseFilter (line 9 and 15). snowballFilter then implements

the Porter stemming technique (Porter, 1980), to stem the suffix of the words

Chapter 3. Design and Implementation 61

(line 10 and 16). In addition, Lucene has a collection of English stopwords (line

5) by default which can be read by stopwordsFilter (line 11 and 18).

Moreover, with some customisation efforts, expanding each word with its

synonym can be done when the WordNet database (line 6) is parsed using

the wordnetSynonymParser (line 7). Finally, the synonymFilter matches the

tokenised words with entries in the WordNet database before the parsed synonym

can be retrieved and injected into that word (line 19). This allows every word

that has a synonym in the WordNet database to be paired with its corresponding

synonyms. Finally, the stream of terms (or tokens) can be further processed for

indexing (line 21).

Algorithm 1 Building Analyzer for text analysis and synonym matching
Input: email message Doc

Output: stream of terms T
1: initialise tokenStream(T)
2: initialise tokenizer(Doc)
3: initialise tokenF ilter

4: initialise analyzerType

5: initialise stopwordList

6: initialise wordnetDir =%file_directory%
7: initialise wordnetSynonymParser(wordnetDir)
8: if analyzerType = Standard then ▷ Basic text analysis process
9: tokenF ilter ← lowercaseF ilter

10: tokenF ilter ← snowballF ilter

11: tokenF ilter ← stopwordsF ilter(stopwordList)
12: tokenStream(tokenizer, tokenF ilter)
13: end if
14: if analyzerType = StandardWithSynonym then ▷ Use WordNet DB
15: tokenF ilter ← lowercaseF ilter

16: tokenF ilter ← snowballF ilter

17: tokenF ilter ← synonymFilter(wordnetSynonymParser)
18: tokenF ilter ← stopwordsF ilter(stopwordList)
19: tokenStream(tokenizer, tokenF ilter)
20: end if
21: return TokenStream(T) ▷ Stream of processed words

Chapter 3. Design and Implementation 62

After Analyzer has been built, as can be seen in Algorithm 1, it can be

implemented in the indexing process. Algorithm 2 shows that the Analyzer is

used (line 1) in the Lucene’s native index writing functionality (lines 2 and 8-12)

to write the index files to the specified directory (line 3). During this process, the

case feature from our case base (lines 5 and 6) that is going to be indexed should

be defined as to whether it is the subject (problem title), the body (problem

description), or has both features (line 4).

Algorithm 2 Indexing email message (case)
Input: stream of terms T
Output: index files Ix

1: initialise Analyzer(T)
2: initialise indexWriter(Analyzer)
3: initialise indexDir =%file_directory%
4: initialise caseFeatureName

5: connect to DB
6: query DB to "SELECT caseFeatureName FROM table_inbox" as resultSet
7: while resultSet �= NULL do
8: luceneF ield← resultSet

9: luceneDoc← luceneF ield

10: luceneDoc.property(getTermV ector)
11: Ix← indexWriter(Analyzer)← luceneDoc

12: indexDir ← Ix

13: end while

Furthermore, Lucene allows for the state-of-the-art TF-IDF calculation of the

words (or terms), until the term vector is obtained. It generates its indexes in the

form of special files stored on the hard drive. Terms in a document contribute to

the magnitude of the vector, making it possible to represent a document vector in

a vector space (line 10). Therefore, finding similar cases is easier since the case

can be mapped as a vector in the multi-dimensional space. Further explanation

is provided in the next section of case retrieval.

Chapter 3. Design and Implementation 63

3.4.4 Case Retrieval

The retrieval of similar cases starts whenever a user triggers the reply action,

particularly when they choose to reply using the recommended reply option. We

employed a retrieval algorithm that measures the angle of two document vectors

in the multi-dimensional space. As can be seen in Algorithm 3, it takes on the

input of a new case, which is a selected email that is about to be replied to.

Lucene’s native functionality to read the index file is then defined (lines 1-2). A

document object, which contains the vector of terms in that particular document,

is collected and normalised (lines 4-8) according to the cosine similarity formula

(Salton et al., 1975). The similarity score of the two documents (the query

document and the document in the case base) is obtained by calculating the dot

product of both vectors (lines 10-14). At the end of the process, the algorithm

generates a ranked list of usable past replies (lines 15 and 16).

Algorithm 3 Retrieving similar past email (past cases)
Input: newCase Cn & pastCases Cp in case base Ix

Output: n most similar pastCases Cpn

1: initialise indexReader()
2: read Ix using indexReader()
3: initialise caseV ector[] as count total Cpn in Ix caseIx

4: for each Cn, Cp in Ix do
5: get term vector caseTermV ec in Ix

6: caseV ector[]← count caseTermV ec

7: | caseV ector[] | ▷ Normalisation of vector
8: end for each
9: i = 0

10: for each caseV ector[] do
11: cosineSimilarity ← caseV ector[Cn] ● caseV ector[Cp] ▷ Dot product
12: mapRetrievedCases←map(i, cosineSimilarity)
13: i + +
14: end for each
15: sort mapRetrievedCases

16: use top n mapRetrievedCases(Cpn)

Chapter 3. Design and Implementation 64

When the similarity measurement has been calculated in every case, it is

ranked according to the similarity score. The higher the score, the more similar

the new case is to the retrieved past cases. The next step, reusing the solution

from the past case, is triggered by the user when they select a result from the

recommendations list.

3.4.5 Case Reuse

The process of reusing past retrieved cases includes two aspects. First is the

differences between the new and past cases. The second is about which part

of the retrieved cases can be used in the new case. In our email reply problem,

consideration of these differences was partially made during the retrieval process

by calculating the similarity of our case feature. Then the system identifies the

corresponding email reply and reuses it. Implementation of case reuse in our

system is illustrated in Figure 3.9.

<problem_description>

Problem Solution

Past
Case 1

Past
Case 2

Past
Case n

<problem_title>
<solution_description>
<solution_title>

Prototype progress report

Any progress on the prototype? Currently it is still ongoing...

Re: Prototype progress report

<problem_description>
<problem_title>

<solution_description>
<solution_title>

New
Case

Follow up prototype progress

How is it going so far?
Not replied yet.

Currently it is still ongoing...

Original message: <sender><time>

How is it going so far?

Re: Prototype progress report

Retrieve past cases with similar problems Reuse its solution

Proposed solution

Figure 3.9: Case reuse

Chapter 3. Design and Implementation 65

3.4.6 Case Revision

During the revision phase, solution evaluation and repair are involved. The solu-

tion can be evaluated directly by an evaluator or indirectly measured by certain

measurement indicators. The repair process may involve reviewing information

in the solution. The addition or removal of content can then be performed. Our

system implements case revision, which involves user intervention as shown in

Figure 3.10.

Currently it is still ongoing...

Original message: <sender><time>

How is it going so far?

Re: Prototype progress report

User

Add manual
revision

Proposed solution

Currently it is still ongoing
When is the due date?

Original message: <sender><time>

How is it going so far?

Re: Prototype progress report

Confirmed solution

Figure 3.10: Case revision

The reason behind involving user intervention is because the user should

have the direct role of being an evaluator. While partly subjective, it is the

closest approach to match with his personal preference. If the user is pleased

with the result, they are able to use it directly. However, if they are not, our

system provides a feature for editing the solution. In this case, the user is able to

revise the predefined reply message by doing further editing before sending the

message.

Chapter 3. Design and Implementation 66

3.4.7 Case Retain

The case retaining process is concerned about what information to store and

how the solved case can be indexed for the future retrieval process. In our

system, when the user sends the message it performs two actions, as can be seen

in Figure 3.11. First, the message is delivered to the mail server to be further

processed for the recipient. Second, the sent message is automatically paired

with its incoming message and stored in the database. Thus, we can consider this

to be a solved case. Furthermore, when the future retrieval phase is triggered,

the solved case can be indexed and retrieved if it is similar to the new problem.

Currently it is still ongoing
When is the due date?

Original message: <sender><time>

How is it going so far?

Re: Prototype progress report

Confirmed solution User

Send reply
message

As reply message

As
solved
 case

Database Index
files

Mail server

Figure 3.11: Case retain

3.5 Implementation Results

This section provides several screen captures of the smart email client application.

We briefly explain what the user can do on the corresponding screen. As

previously explained, we developed a Java-based desktop application as a "proof

of concept" of the CBR approach.

Chapter 3. Design and Implementation 67

Start screen

The start screen consists of several interface components. First, there are four

headings to highlight the following information: application name, inbox mes-

sage area, incoming email area, and reply email area. Second, the inbox list

is constructed from a scrollable list to assist navigation for a large number of

messages.

When the user starts the application, the list of their inbox messages is shown

on the left-hand side of the screen, as shown in Figure 3.12. The red colour

represents the unreplied messages, while the white is for replied messages. The

details of the messages are shown in a split screen, where the top is for the

incoming message and the bottom is for its corresponding reply. The user is

asked to select the message before the message details appear.

Figure 3.12: The start screen user is asked to select a message

Chapter 3. Design and Implementation 68

Unreplied message screen

Adapted from the previous interface, this screen shows the detail of an unreplied

to message by using several components. Four text labels map the following

information: subject, sender, date, and recipient. Then the non-editable text

area shows the body of the message. Finally, two buttons provide options for

replying.

The unreplied to message is selected by the user, as shown in Figure 3.13,

and the details are shown on the right-hand side of the screen. The reply section

shows the "not replied yet" notification, since it does not have a reply message

associated with it. To start replying to the message, the user can choose between

using a normal reply or a recommended reply.

Figure 3.13: The unreplied to message screen and two options for replying.

Chapter 3. Design and Implementation 69

Replying to an email using the normal reply screen

In this screen, a pop-up window was built as the underlying container for other

components. It has a heading, which acts as an instruction. Text labels map

information about the email that is to be replied to. The editable text area is

provided for typing the body message. Finally, there are two buttons for sending

the email and for cancelling the reply action.

Figure 3.14 shows the screen using normal reply. It appears when the user

clicks on the normal reply button. In the reply box, the user can type the reply

message manually. The corresponding original message is placed at the bottom

of the message, separated by a divider to distinguish between the reply message

and the original message.

Figure 3.14: Reply window using normal reply

Chapter 3. Design and Implementation 70

Replying an email using recommended reply screen

In addition to normal reply, the system also provides an assisted reply via the

recommended reply option. When the user clicks on that option, the system

starts the retrieval of similar past cases and reuses its past replies so they are

presented in a ranked list, as shown in Figure 3.15. The relevance column shows

the similarity of the corresponding past reply; the higher the score, the more

relevant it is.

Figure 3.15: Implementation of case retrieval in the application

This screen preserves the layout of the previous screens: the area for nav-

igation on the left-hand side and for reply information on the right-hand side.

Several headings are used for instruction purposes. The table is built to display

recommendation results. The replying text area is constructed with a predefined

message.

Chapter 3. Design and Implementation 71

Whenever the user selects a result from the recommendation table, the

content is prepopulated automatically in the reply box. This allows the user to

see the content of their past replies, as illustrated in Figure 3.16. If the user is

satisfied with the content, they can send the message directly.

Figure 3.16: Implementation of case reuse in the application

The table constructed for the recommendation list has the capability to

populate its content in the given text area. As mentioned previously, it is

triggered by user selection. Thus, every change in selection automatically

changes the populated content, while the details from the origin email that is

about to be replied to is still preserved.

Chapter 3. Design and Implementation 72

However, it is also possible to add more or to revise the content according to

the user’s preference. The editing process is shown in Figure 3.17. The original

content is placed similarly to that in a normal reply at the bottom of the message.

The separator for original and reply content is also provided.

Figure 3.17: Implementation of case revision in the application

The text area provided enables explicit editing of the body part in the reply

message. Considering the limited capability of the text area, the content typed is

treated as plain text. Finally, two buttons are provided to send the email or to

return to the start screen respectively.

Chapter 3. Design and Implementation 73

Replied message screen

At the end of the process, after the user has clicked the send button, the system

delivers the message to the mail server. In addition, the system also retains

the reply message as a solution, making the case solved. Since it resides inside

the database, this pair of incoming and sent replies is able to be retrieved for a

future similar problem.

Further, the colour of the message changes from red to white once it has

been replied to. The detail of the replied message can be retrieved from the

inbox list, as shown in Figure 3.18. The user can be brought back to the start

screen after the system finishes processing the reply message to the mail server

and the database.

Figure 3.18: Implementation of case retain in the application

Chapter 3. Design and Implementation 74

3.6 Restrictions and Limitations

3.6.1 Logic

The prototype has only been developed as a "proof of concept". Therefore,

we developed only the most vital functionality of an email client. These re-

late to sending emails, fetching emails, and checking for an incoming email.

Supplementary features that are commonly available to the email client, such

as message deletion, draft management, and extensive message formatting

capability will be developed in future work.

The system has been configured using the author’s personal email address,

because an email account is a personal matter and is confidential. It would be a

challenge to use another user’s account details, as permission would be needed.

The system has been tested under the Windows and MacOSX operating

systems. Since it was developed using Java, the system should work well as long

as a Java runtime environment has been installed by the client. However, there

should be a DBMS running under the service in order to store the data in the

database.

With respect to inbox management, there are occasions where the messages

form a conversation, which means it could have the attributes of a thread. It is

ideal to group these messages in a conversation thread, as can be seen in the

modern email client. Therefore, this issue can also be addressed in the future.

Chapter 3. Design and Implementation 75

3.6.2 User Interface

The user interface is of a simple design to serve the purpose of providing basic

functionality and to show "proof of concept". For instance, in the message editing

window, no enhanced rich text functionality is implemented. Instead, the user is

presented with a basic text box form.

3.7 Summary

In this chapter, we presented a smart email client prototype design adapted

from the CBR approach. The architecture and components developed for the

system were described. In our Java-based prototype, we utilised Apache Lucene

as the IR component, JavaMail library as the email communication component,

and JavaFX library as the GUI component. In addition, we explained the CBR

cycle and its implementation in our prototype. Finally, we addressed several

restrictions and limitations of our prototype from two points of views: the logic

and the interface.

Chapter 4

Evaluation

In the previous chapters, we identified that similar problems might have similar

solutions. Therefore, the retrieval strategy plays an important role in finding

the most similar past problems (cases) before the solution can be reused. This

chapter provides our experimental design for evaluating the retrieval algorithm.

It begins with a description of the evaluation process, including the dataset

used and the metrics applied. Then, we evaluate the algorithm to explore

the influence of text processing and feature selection on the retrieval quality,

index size, and processing time. After that, we summarise the results using

visualisation. Finally, this chapter finishes with a discussion section, where we

explore and analyse interesting findings based on the results obtained.

4.1 Evaluation Configuration

In our approach, whenever the user selects an email and starts replying using

recommended reply, the retrieval system attempts to find the most similar past

email, rank it according to its degree of similarity with the selected email, and

76

Chapter 4. Evaluation 77

presents it back to the user. In other words, the user triggers an ad-hoc inform-

ation retrieval process. The typical method for measuring ad-hoc information

retrieval consists of: (1) A collection of documents, (2) A test suite, also known

as the queries, and (3) The relevance judgments as a reference (similar to super-

vised learning), whether the test is relevant or irrelevant (Schütze, 2008). This

section identifies our method in performing the evaluation of the retrieval system.

We start by describing the objectives of the evaluation and the relevance metrics

commonly used to measure the objectives. Then we explain the environment

setup where we performed the experiments. Finally, we specify the dataset we

used in this evaluation.

4.1.1 Evaluation methods

Retrieval phase is the first step in the CBR cycle and an effective retrieval process

ensures the system generates the most similar past cases with respect to the given

problem (Aamodt & Plaza, 1994). We identified three objectives in evaluating

the retrieval system. First, it is important that our system returns only the most

relevant results to satisfy the user needs, according to the user query. This is

known as the retrieval effectiveness (Chapelle et al., 2009). Second, the more

cases stored in the case base, the bigger the index size grows. Since cases are

indexed using the terms, it seems important to maintain the size of the index

by only storing the most representative terms. Therefore, we also measure the

index size of the system. Third, it is also essential to provide a seamless response

as the user triggers an ad-hoc retrieval using a query. Thus, we record the time

required to process a query. While this measurement may vary according to the

hardware specifications, the results generated can still provide a general notion

of the system speeds. This is further considered as retrieval efficiency (Chapelle

Chapter 4. Evaluation 78

et al., 2009).

Figure 4.1 depicts a flowchart of how the sequence of the experimentation

phase is implemented. We performed an initial analysis of the dataset and

obtained the term distribution. Then, we selected the case feature (or attribute)

from the dataset along with a text analysis method to conduct the experiments.

We consider the combination of both elements as the experiment trials.

Afterwards, we performed retrieval evaluation using a list of queries obtained

from the dataset. These queries also have corresponding right answers, therefore

we can identify whether the provided answers match with the results given by

our retrieval algorithm. At the end of each trial, we recorded the results by

counting the number of terms indexed, the processing time, and the top 10 most

similar email messages ranked by their similarity scores. In addition, we also

calculated the Mean Reciprocal Rank (MRR) score for that query. More details

about MRR are presented in the next section.

4.1.2 Evaluation metrics

As discussed in the previous section, we identified three main objectives in this

evaluation; the retrieval effectiveness, the index size, and the retrieval efficiency.

In this section, we explain the corresponding metrics used for each objective

respectively.

To measure the effectiveness of the retrieval process, we used Reciprocal

Rank (RR). This is a relative score that calculates the average or mean of the

inverse of the ranks at which the first relevant document was retrieved for a set

of queries (Voorhees & Tice, 1999). For instance, if a search for a specific query

returns a relevant document at the 1st position, its relative rank or RR is 1. If

the relevant document is at position 2, then the score is 0.5 and so on. If there

Chapter 4. Evaluation 79

Trial parameters
configured

START

FINISH

Retrieval performed

Results recorded

MRR calculated

Case feature
cn

Text analysis
tn

Combine
 cn + tn

of terms indexed

Processing time

Retrieval results

Retrieval results

Relevance judgments

MRR score

Dataset analysed Terms distribution

Query

Figure 4.1: Diagram showing summary of our experiments process

are no relevant documents then the score is 0.

When averaged across the set of queries, this measure is called the Mean

Reciprocal Rank (MRR). It is associated with the use case where the user wishes

to see only one relevant document for a search, subsequently assuming that

the user will keep scrolling down on the search results until the first relevant

document is found. Thus the document is found at rank n, and the quality of

Chapter 4. Evaluation 80

the retrieval is measured by the reciprocal of the rank (i.e. 1/n).

We observed that each user query has one correct answer and the assumption

is that the user will stop searching once the correct document, based on his/her

preference, is found. Alternatively, the time required by the user to find the

relevant document corresponding to the search is inversely proportional to the

rank (Voorhees & Tice, 1999). In this case, the better the rank, the lower the

time taken by the user to get to the relevant document. For instance, an MRR

score of 0.8 indicates that the information retrieval system is 80% relevant.

In addition, Mean Average Precision (MAP) is also a popular scoring method

used in measuring the effectiveness of an information retrieval system (Voorhees,

2000). It is used mostly when the user is expecting more than one possible

relevant result for their search query (Voorhees, 2000). However, since in our

system we assume that the user chooses only the most relevant answer from the

provided recommendation list, we excluded this metric in our evaluation.

After identifying the retrieval effectiveness measurement, our next objective

was to evaluate the case base index size. We measured the size of the case base

according to the size of indexed terms and counted a number of distinct terms

in the index files. Finally, an evaluation of the retrieval efficiency was performed

by obtaining the processing time that elapsed in the system while performing

the retrieval process on a query.

4.1.3 Dataset description

In order to evaluate our system in conditions closer to a real world scenario,

we considered the following components to find the most appropriate dataset.

First, since we are dealing with email problems, it is best to use a dataset of

email messages. However, due to privacy issues around the nature of email

Chapter 4. Evaluation 81

communication, it was challenging to find a publicly available email dataset.

Until recently, there was only one realistic email dataset available and that

has been widely used for research purposes. The dataset was collected from a

company that went bankrupt called Enron. Originally, this dataset was published

during an investigation into the bankruptcy, then, after the data was compiled

and cleaned up, it was made available to be used in research (Klimt & Yang,

2004)

Our second concern in selecting the dataset was that it should have relev-

ance judgments, meaning the dataset has been manually annotated by experts.

Therefore, when we perform the retrieval evaluation, we already have the list of

an email and its similar or adjacent pairs. We can then compare our retrieval

results with that list.

Interestingly, a study has been done that used a subset of the Enron dataset 1

and annotated it (Minkov et al., 2006). Initially, the authors used this dataset for

person name disambiguation and an intelligent email threading task. While they

examined both email headers (e.g. recipients, date, subject) and email content,

we only used the subject and the content in our evaluation. Mailbox from two

Enron employees was prepared: germany-c and farmer-d. Table 4.1 shows an

example of the email and other similar other emails in the repository, which

annotated by a researcher.

Table 4.1: A query and its annotated relevant response from farmer-c mailbox

Message ID Subject Body
Query 164 Re: HILCORP old ocean

volume
Gary thinks that we will
not have any problems
with this. D

Relevant response 166 Re: HILCORP old ocean
volume

Are we going to have
some quality problems
with this gas? EDG

1http://www.cs.cmu.edu/ einat/datasets.html

Chapter 4. Evaluation 82

The details of both datasets are provided in Table 4.2. It can be seen that

both contain a similar number of email messages. While the germany-c dataset

has slightly more messages than in farmer-d, it has a lower average word count,

reflecting the content of that email. On the other hand, germany-d contains a

blank subject in the message, whereas in farmer-d, the blank parts are mostly

found in the body message.

Table 4.2: Datasets used in this evaluation

Dataset germany-c farmer-d
Overall
Count of email messages 2651 2642
Count of annotated similar email pairs 81 127
Average word count per message 48.36 53.38
Field: Subject
Blank messages 91 (3.4%) 41 (1.6%)
Total word count 10018 11916
Field: Body
Blank messages 276 (10.4%) 289 (10.9%)
Total word count 113778 121514

Initially, the dataset is provided in the text-based format. Therefore, before

proceeding with the evaluation, the dataset need to be changed into a format that

can be imported to the database. We stored the records in the database instead

of the text files so it would match the approach in our real-life implementation.

In the early steps, we trimmed unused information and adjusted the structure to

a comma-separated value (CSV) format. We also replaced the missing values

with the word "null" to avoid errors during the indexing process. We were aware

that its appearance would have no significant effect on the term weighting

calculation. Although the word "null" is indexed, our scoring system would give

a low score to terms that appear too frequently, both in that document and in

the whole corpus.

Chapter 4. Evaluation 83

4.1.4 Experiment configuration

The experiments were performed in a machine with the following specifications:

4.6GHz Intel Core i5 with 16GB RAM memory, 500GB solid-state drive (SSD),

and running Windows 10. The evaluation module was implemented in Java SE

version 8.

In addition to the machine specification, we prepared a spreadsheet docu-

ment to manage the results, as shown in Figure 4.3, along with an example of

the recorded retrieval process. In this document, we list the query and its cor-

responding relevance judgment, as provided in the dataset. Next, we specified

columns to store our retrieval results, their similarity scores, and the processing

time over three repetitions. We then matched the retrieved results with answers

from the relevance judgment and found its position in the rank according to the

similarity score. Finally, we calculated the RR score with respect to the rank.

Table 4.3: Template used to record experiment results

Query Answer
Retrieved
Results
(1-10)

Rank
Reciprocal
Rank

Similarity
Score
(1-10)

Runtime
(1-3)

messageId messageId messageId 0-10 0-1 0-1 in nanosecond
Example

23 33

21
33
287
...
3730

2 0.5

1
0.914552
0.831411
...
0.673435

1655383632
1576946565
1661965385

109 ...

Chapter 4. Evaluation 84

4.2 Results

In this section, we presented the results of evaluating the retrieval algorithm.

We performed an initial exploration of the dataset by analysing its term distri-

bution. Then, as mentioned in the previous section, we described the results

based on three indicators that we measured in this evaluation: the quality of

retrieval results, index size, and processing time elapsed. Finally, we identified

several interesting issues arising from the evaluation results and discussed the

justification.

4.2.1 Dataset distribution

Before we started the experiment, we performed an initial analysis to see the

distribution of the terms in our dataset. To do this, the email messages were

tokenised to obtain the bag of words and stored them as index terms. These

terms were counted and ranked with respect to the frequency of occurrence

in each document in the corpus. We only kept terms that have a frequency

of at least two in the corpus. We considered trimming this to provide better

distribution visualisation.

The term frequency calculation was obtained using Luke 2. This is an open

source GUI tool that examines the Lucene index files. The interface of the tool is

shown in Figure 4.2. We can select the feature indexed, either subject or body,

and copy the results from the table on the right-hand side of the pane.

The term frequency obtained is meaningful for two reasons. First, we can

see that some of the most frequent terms that occur in the corpus are stopwords.

Therefore, we considered examining the stopwords removal influence in our

experiment.
2https://github.com/DmitryKey/luke

Chapter 4. Evaluation 85

Figure 4.2: Luke: An open source tool to read Lucene index files

Second, we compared our term distribution with Zipfian Law, which is also

commonly referred to as Zipf’s distribution. In the implementation of this

distribution in the linguistics domain, the frequency of a word is inversely

proportional to its rank in the frequency count. A study by Ha et al. (2002)

demonstrated Zipf’s distribution in a corpus using a graph. We also attempted to

observe the data according to this distribution by plotting it on a log-log graph,

were each log represents log(rank order) in the y-axis and log(frequency) in the

x-axis.

It can be seen from Figure 4.3 that the term distribution is a near fit to Zipf’s.

The deviation seems to appear in the most frequent words since the plot merges

with the trend line at half way. Both datasets show similar behaviour, while

slight differences are only present between the log (rank) of 2 and 4.

Chapter 4. Evaluation 86

(a) germany-c (b) farmer-d

Figure 4.3: Dataset distribution according to Zipf’s Law distribution

4.2.2 Experiment results

Exploring the term distribution provides the insight that some frequent words are

stopwords. Therefore we considered dealing with this issue using text analysis

techniques. The following are the results categorised by the three indicators

mentioned in the earlier chapter. We describe the results using charts and tables.

In this way it is possible to perform a comparison between the experiment’s

methods and to examine the trends in the results.

Retrieval effectiveness

The retrieval effectiveness of our algorithm was measured by comparing the

retrieved results with the relevance judgments given for each corresponding

query, as annotated by Minkov et al. (2006). The MRR score reflects the retrieval

effectiveness according to the score. The higher the score, the more relevant the

results retrieved by our algorithm.

Furthermore, Table 4.4 presents the detailed MRR score from 18 different

trials. Overall, the highest MRR score was achieved by applying the SA method

to the case feature subject. Then, combining the features subject and body as

Chapter 4. Evaluation 87

all during retrieval still yields a higher MRR score compared to that in the body

only. It is interesting to see that the SA_NOSTM method gives a better score when

implemented in all case features.

Table 4.4: MRR score from experiments in both dataset

MRR score SA1 SE2 SA_
NOSTM3

SE_
NOSTM4

SA_
NOSWR5

SE_
NOSWR6

Lexical analysis ✓ ✓ ✓ ✓ ✓ ✓
Stopwords removal ✓ ✓ ✓ ✓
Stemmer ✓ ✓ ✓ ✓
Synonym expansion ✓ ✓ ✓
Germany-C
All 0.2970 0.1026 0.3326 0.1287 0.2126 0.1177
Body 0.1126 0.0592 0.1146 0.0680 0.0416 0.0491
Subject 0.7881 0.5741 0.7757 0.6008 0.7716 0.5936
Farmer-D
All 0.1610 0.0608 0.2627 0.0719 0.1591 0.0618
Body 0.0177 0.0234 0.0457 0.0195 0.0245 0.0209
Subject 0.8543 0.6647 0.8340 0.6890 0.7940 0.6604
1Standard analysis, 2Synonym expansion
3Standard analysis without stemmer, 4Synonym expansion without stemmer
5Standard analysis without stopwords removal, 6Synonym expansion without stopwords removal

In order to provide better visualisation for comparison, Figure 4.4 depicts the

summary of the results in a chart. It is apparent from this chart that the MRR

score shows a decreasing trend when the SE method is applied in the trials, in

spite of the stemming and stopwords removal techniques. Moreover, the results

also affirm that the case feature subject returns more relevant emails that match

the relevance judgments. This is followed by all and the body.

While the MRR score was used as the primary metrics for measuring re-

trieval effectiveness, we also examined the cosine similarity score generated

from matching a query with documents in the corpus. This examination was

performed for both datasets, farmer-d and germany-c, to determine the influ-

ence of synonym expansion. Thus, SA represents results from standard analysis

techniques, while SE enhances standard analysis SA with synonym expansion.

Chapter 4. Evaluation 88

(a) germany-c (b) farmer-d

Figure 4.4: Retrieval effectiveness as represented by MRR score

We particularly observed the trends from the top 10 retrieved results with the

highest cosine similarity score on two case features: body and subject.

The observations from Figures 4.5 and 4.6 show that both datasets provided

a similar decreasing trend in their respective body and subject features as the

ranking goes lower from 1 to 10. This decreasing trend seems linear in the

case feature body. However, the score in the case feature subject, as depicted

in Figures 4.5b and 4.6b, shows gradually higher disparities between SA and SE

compared to the results in Figures 4.5a and 4.6a. Thus, we could conclude that

synonym expansion SE outperforms the standard analysis SA techniques in terms

of the cosine similarity score. As a result, it could generate a higher chance of

relevant matching, as shown in the higher score, compared to SA.

According to the results presented previously, it can be seen that the decreas-

ing trends occur over the higher rank, despite the case features. This is possibly

due to the sorting of the retrieval results according to the highest similarity score.

However, it also seems interesting to examine the percentage of increase before

and after applying synonym expansion. This increase is calculated from cosine

similarity score of SA and SE. Given the same query, when the score of SA and SE

is 0.5 and 0.75 respectively, the rate of increase 50%.

Chapter 4. Evaluation 89

(a) body (b) subject

Figure 4.5: Average similarity score over top 10 results in germany-c dataset

(a) body (b) subject

Figure 4.6: Average similarity score over top 10 results in farmed-d dataset

In contrast to the decreasing trend over the higher ranks in the cosine

similarity score, Figure 4.7 depicts that nearly 40-60% of the increasing rate

appears in the body feature, with a relatively low disparity between both datasets.

However, this disparity gradually increases in the subject feature. This validates

our previous findings that synonym expansion could improve the chance of

retrieving more relevant matching, even in the lower ranks, by increasing the

cosine similarity score up to 30% in the subject and up to 60% in the body.

Chapter 4. Evaluation 90

Figure 4.7: Similarity score increase rate before (SA) and after (SE) applying
synonym expansion with respect to case features body and subject

Although SE could increase the cosine similarity score, its MRR score shows

the opposite. This might be related to the relevance judgments provided by

Minkov et al. (2006). Since it is highly dependent on human annotation, it

might affect the MRR score. This is further explained in the discussion section.

Index size

In addition to measuring the retrieval effectiveness, we also examined the

influence of text analysis and case feature selection on the size of the index.

According to Table 4.5, the SE_NOSTM method generated the highest number of

terms over all case features. In addition, the case feature all had the most terms,

whereas the subject seems to have the least.

It is also shown in Figure 4.8 that a significant amount of terms are generated

by synonym expansion SE method. In addition, by not applying the stemming

method, as shown in SA_NOSTM and SE_NOSTM, more terms are generated com-

pared to other methods.

Chapter 4. Evaluation 91

Table 4.5: Total terms indexed from experiments in both dataset

Terms indexed SA1 SE2 SA_
NOSTM3

SE_
NOSTM4

SA_
NOSWR5

SE_
NOSWR6

Lexical analysis ✓ ✓ ✓ ✓ ✓ ✓
Stopwords removal ✓ ✓ ✓ ✓
Stemmer ✓ ✓ ✓ ✓
Synonym expansion ✓ ✓ ✓
Germany-C
All 8292 17474 9994 20456 8325 17507
Body 7999 17101 9622 19978 8032 17134
Subject 1482 5678 1651 6187 1512 5709
Farmer-D
All 12060 17110 10200 19864 8561 17143
Body 11214 16618 9746 19296 8154 16651
Subject 2317 6027 1898 6455 1766 6052
1Standard analysis, 2Synonym expansion
3Standard analysis without stemmer, 4Synonym expansion without stemmer
5Standard analysis without stopwords removal, 6Synonym expansion without stopwords removal

(a) germany-c (b) farmer-d

Figure 4.8: Index size as represented in a count of terms indexed

While the collected terms are used in measuring index size, we can see a

different perspective on term distribution by plotting the term frequency before

and after we apply synonym expansion. Figures 4.9 and 4.10 illustrate the term

distribution before and after the synonym expansion was applied. Both present

a flatter distribution in the higher ranks and fit Zipf’s distribution in the lower

frequency.

Chapter 4. Evaluation 92

(a) before applying synonym expansion (b) after applying synonym expansion

Figure 4.9: Influence of synonym expansion for term distribution in germany-c

(a) before applying synonym expansion (b) after applying synonym expansion

Figure 4.10: Influence of synonym expansion for term distribution in farmer-d

Retrieval efficiency

Finally, we also measured the retrieval efficiency as represented by the processing

time elapsed for executing a retrieval process in each query. We argued in the

previous section that although the processing time might be highly dependent

on the hardware used, we can still compare the influence of the different text

analyses performed in the trials. We obtained the results by averaging the

processing time from three trial repetitions. This processing time was generated

using the Java nanotime library, which provided a more precise calculation as it

was captured within nanoseconds.

Chapter 4. Evaluation 93

In Figure 4.11, it is clear that the retrieval process that used the case fea-

ture subject was the fastest above all other features. In addition performing

synonym expansion, as shown in any SE methods, generates a slightly slower

processing time. Overall, applying stemming and stopwords removal seems not

to significantly affect the processing time.

(a) germany-c (b) farmer-d

Figure 4.11: Retrieval efficiency as represented in processing time elapsed

4.3 Discussion

In the previous section, we presented the results obtained from the evaluation

process. Therefore in this section, we provide a further justification of the results.

We explore the influence of text analysis, case feature selection, and the dataset.

4.3.1 Influence of text analysis and case feature selection

During the experiment, we performed trials using several text analysis techniques.

First was the lexical analysis. This technique treats whitespace, symbols, and

punctuation marks. Table 4.6 shows the implementation of this technique on

the query by removing an apostrophe (’), a dot (.), and a slash (/). As all the

Chapter 4. Evaluation 94

words in the content were transformed to lowercase, there is a likelihood of

increasing the chance of matching that particular word. This normalisation is

typically useful when an abbreviation is misspelt, for instance, "EtNG" instead of

"ETNG".

Table 4.6: Lexical analysis: words are treated equally by normalisation

No Lexical Analysis Case feature: Body
Query #1 I know it, you know it, who’s telling all the single

women??
Query #2 I have based this transport against Tennessee LA

Index, as follows April May TGP Index 2.83 3.03
Fuel/commodity .138 .145 TGP Demand .02 .02 Gas
Cost into ETNG 2.988 3.195

With Lexical Analysis Case feature: Body
Query #1 i know it you know it whos telling all the single

women
Query #2 i have based this transport against tennessee la index,

as follows april may tgp index 283 303 fuelcommod-
ity 138 145 tgp demand 02 02 gas cost into etng
2988 3195

Potential match #1 I know, tell all the women you know.

While lexical analysis technique allows terms to be "treated" as equal, it can

be seen that the chance of matching could be improved by applying the second

technique, stemming. For instance, the word "telling" could match "tell" if the

suffix -ing is chopped. Another example of stemming implementation in our

evaluation is shown in Table 4.7, where term "handling" can match "handle"

if both terms are stemmed. The new term "handl" seems to be an unknown

English word for human, but the computer could process it. The Porter stemmer

simplifies this analysis for computer processing (Porter, 1980). It should be

considered however, that the stemming process would typically be done after

the synonym matching process, otherwise, the chance of matching a word with

Chapter 4. Evaluation 95

its synonym pairs might be less likely. The stemmed word "handl" might have no

match, but "handling" might.

Table 4.7: Advantages of stemming: more discovery of matching terms

No Stemmer Case feature: Body
Query Chris, Isabel Resendez is handling Ashland Chemical, her

ext. is 3-0440. Jeff
Retrieval result Who handles the billing for Ashland Chemical?
Matching terms Ashland, Chemical

With Stemmer Case feature: Body
Query Chris, Isabel Resendez is handl Ashland Chemical, her ext.

is 3-0440. Jeff
Retrieval result Who handl the bill for Ashland Chemical?
Matching terms handl, Ashland, Chemical

Furthermore, not all the terms should be indexed. There are set of words

that are likely to appear frequently in textual content and these are commonly

identified as stopwords. While humans have no issue with this, a computer

considers these words as less rare in term weighting if they occur too often. The

appearance of stopwords in our dataset can be seen in Table 4.8. Our results are

in line with Baeza-Yates & Ribeiro-Neto (1999), which shows that by removing

stopwords, we could compress the index size.

Interestingly, we found that applying lexical analysis and stopwords removal

generally improved the number of relevant retrieved emails, as shown in the

increase of the MRR score. It seems possible that the removal of these words

could reduce the noise in the content and might also increase the chance of

distinct terms to be fairly calculated while comparing between two documents.

Another text analysis technique used in evaluation is synonym expansion.

Chapter 4. Evaluation 96

Table 4.8: Advantages of stopwords removal: reduced number of terms indexed

No stopwords removal Case feature: Body
Query Daren would you look at the price for 29 and

30th of March 2000. There are no prices for these
days but volume was scheduled for these days.
Thanks Charlene

Retrieval result Charlene, We should not have scheduled any
volume for the 29-30th. No price was negoti-
ated that I can find. However, since gas did flow,
I rolled the last price on the deal to cover those
days. What price is Hesco showing? D

Stopwords found at, the, for, and, of, no, these, but, was, that, on,
not, to, is, are, there

Index size 54

With stopwords removal Case feature: Body
Query Daren would you look price 29 30th March 2000.

prices days volume scheduled days. Thanks Char-
lene

Retrieval result Charlene, We should have scheduled any volume
29-30th. price negotiated I can find. However,
since gas did flow, I rolled last price deal cover
those days. What price Hesco showing? D

Index size 37

This technique is performed by matching terms with their corresponding syn-

onyms. In our experiment, we utilised WordNet as additional linguistic know-

ledge, and this provided the database of semantic relations. In an early observa-

tion, we found this technique could extend the capability of exact matching by

searching through a word’s synonym pairs too, as shown in Table 4.9

Table 4.9: Synonym expansion: extending the capability of exact matching

Message Case feature: Body
Query It’s fine with me to allocate everything to Torch if they are

paying for it. D
Synonym found fine⇒ alright, o.k., ok, okay, cool, very well
Retrieval result That’s fine. D
Retrieval result HPL is ok. D
Retrieval result So, is this ok now? D

Chapter 4. Evaluation 97

The next observation shows a trend where experiments that use synonym

expansion tend to show an increase in the retrieval execution time for each

query. This might be due to the larger number of terms to be calculated between

the documents. The increasing number of terms, as described in Table 4.10,

occurred because the synonym words were also considered in the similarity

calculation.

Table 4.10: Expanding terms with their corresponding synonyms in the content

Message Case feature: Body
Query Should this deal be extended?
Terms calculated 3⇒ (should, deal, extended)
Synonym #1 found deal ⇒ trade, bargain, address, consider, take, cope,

manage, care, handle
Synonym #2 found extended⇒ widen, broaden, extend, continue, stretch,

expand, continue
Terms calculated 19⇒ 7 (synonym "deal") + 9 synonym "extended" +

3 (should, deal, extended)

We also observed that different selected feature could affect the retrieval of

relevant messages. By using the case feature subject, the retrieval effectiveness

yielded a higher score compared to when the body was used. There could be

several possible explanations for this result. First, the subject line is likely to

have fewer words, which might lead to a higher chance of matching keywords.

Second, we found that the subject content contains a relatively uniform

pattern. For instance, in the given relevance judgments, the query and its

relevant judgment are shown in the Table 4.11. It is a trivial problem for the

algorithm if it only considers the subject, because of the high number of exact

matching words.

As can be seen from the experiment results, it is challenging for the case

feature body to generate a higher MRR score since our retrieved email mostly

did not match the relevance judgments. However, our observations showed

Chapter 4. Evaluation 98

Table 4.11: Retrieval results using "subject"; italic indicates matching keywords

Message Subject
Query Re: HPL Meter #980074 Bammel HPL D/P to

Transco
Relevance judgment HPL Meter #980074 Bammel HPL D/P to Transco
Retrieval result rank #1 HPL Meter #980074 Bammel HPL D/P to Transco
Retrieval result rank #2 Re: HPL Meter #980070 RUSK D/P - LONE STAR

HPL
Retrieval result rank #3 HPL Meter #981525 Texoma D/P- GSU HPL

that applying the synonym expansion technique could increase the chance of

matching relevant results, even in the lower rank. This finding is similar to

Abdalgader & Skabar (2010), who argue that synonym expansion leads to an

improvement in the similarity measurement. Hence, we presume that this

might be related to the collection method implemented by Minkov et al. (2006)

when building the relevance judgments. In the next section, we discuss our

justifications for this issue.

4.3.2 Dataset critique

Earlier in this chapter we talked about the challenge of performing an evaluation

using a real-life email dataset due to the privacy concerns. However, we over-

came this by discovering that the Enron email dataset is available online. This

dataset came in a collection of raw messages, until some researchers annotated

them for study purposes (Minkov et al., 2006).

When we performed an evaluation using this dataset, we found that the

results from the subject field tended to be high, as seen in the MRR score when

compared to that of the body feature. We presume that the process of performing

a relevance judgment might be to consider the small number of features instead

of all features in the email message. Then we found that, according to the

Chapter 4. Evaluation 99

authors, the relevant messages were annotated using the subject line and time

stamp only (Minkov et al., 2006). This also explains why using the feature all

still generated higher result than the body. This could be due to the combination

of the content subject and body, but it still provides a higher chance of matching

the relevance judgments.

We also noticed that in a number of messages, the subject line contains fewer

meaningful words in terms of context. We consider this as less meaningful since

they have an empty value or are only one word with three or fewer characters.

This is described in Table 4.12, along with the frequency of the corresponding

messages in the corpus. While it might reflect the reality of email communication,

where people are likely to reply using the same subject, it is challenging in a

retrieval task, which considers the subject only. Thus, it is important to consider

another field such as the body itself.

Table 4.12: Summary of messages with less meaningful context

Subject line Number of messages Occurrences in corpus
Germany-C
<null> 97 3.7%
Re: 81 2.6%
Hey 81 1.1%
Yo 27 1%
Farmer-D
<null> 41 1.5%
Re: 19 0.7%

We also attempted to analyse our retrieval results using the case feature body,

which did not match with the relevance judgments. Table 4.13 shows that the

relevance judgment content is less relevant compared to our results. This can be

seen from the number of matching terms in the content. In addition, the context

of the message in our retrieval results seems to be slightly more relevant from

our point of view.

Chapter 4. Evaluation 100

Table 4.13: Given relevance judgment compared to our retrieval results; italics
indicates matching keywords

Message Body
Query Janet, Please submit this name change to the TPC as

soon as possible. Thanks, hgm
Relevance judgment Toni, Attached is the job posting for my group. Please

process this as soon as possible. Thanks. Daren
Retrieval result is it possible that his first name show as "J Darren" ?

Daren is his middle name and the name that everyone
addresses him by. We would also be glad to submit
the change in SAP if the system will accept J Darren
as the first name. Please advise. Thanks for your help,
hgm

Retrieval result Once this is fixed in SAP I will be able to change it in
PEP. The Data Integrity Team is being really strict on
the name field. It has to be changed in SAP before I
am allowed to change it in PEP. Please let me know
when this has been done and I will make the change
asap. Enron Capital & Trade Resources Corp.

Finally, we concluded that this dataset is more appropriate for finding a

relevant email by considering the email header, such as sender, recipient, date

and time. The subject field is also suitable for use as a case retrieval feature.

However, we found that the body field is less useful since the annotation process

might not consider this field.

4.4 Summary

Earlier in this chapter, we stated that retrieval is the first step in the CBR cycle.

We started by describing the evaluation configuration using a combination of text

analysis and case feature. We used the email dataset with relevance judgments

from a real-life scenario. Then, we summarised our results according to the

objective of the evaluation: retrieval effectiveness, efficiency, and index size. We

also assessed the compatibility of the dataset with respect to our results.

Chapter 4. Evaluation 101

Our experiments showed that text analysis techniques such as lexical analysis,

stemming, and stopwords removal enhance the effectiveness of our retrieval

algorithm. Synonym expansion tends to be less effective„as reflected in the lower

MRR score. This might be related to the relevance judgments provided in the

dataset. In contrast, this technique improves the similarity score of the retrieval

results, which align with the study conducted by Abdalgader & Skabar (2010).

We found that the relevance judgments provided in the dataset might be less

appropriate when evaluating the case feature body as during annotation, other

features, such as subject and date, were considered (Minkov et al., 2006).

Chapter 5

Conclusions

5.1 Conclusions

Today email is still considered one of the most preferred channels of communic-

ation and is widely used for information exchange. As a result, a large number

of emails are received every day by many people, leading to overwhelmed and

cluttered email management. This phenomenon is commonly referred to as the

email overload problem. One of the tasks discussed in this problem relates to

the behaviour of a user in replying to the incoming email messages.

To address this problem, this thesis presents a smart email client; a desktop-

based email client application enhanced with a reply recommendation system.

This application is designed to assist users in replying to an incoming email,

potentially considered as a query, by providing a reply message template. It

starts from an assumption that a similar query might have a similar solution, and

that these queries have probably been answered in the past. Therefore, users

could reply to the query efficiently without writing from scratch. The system

already provides a similar past reply as a starting template, so this should be

achievable.

102

Chapter 5. Conclusions 103

The nature of the problem that we are attempting to solve is closely related

to a problem-solving method called Case-Based Reasoning (CBR). The CBR

method solves a new problem by using the stored past cases, which consist of

a problem description and the corresponding solution. The process of solving

a new problem in CBR is organised in a 4R’s cycle: Retrieve similar past cases

from the case base, Reuse its solution, Revise the solution if necessary in order

to fit to the problem, and Retain the solved problem along with its solution for

future similar problems. Further, the implementation of CBR can use a variety

of approaches. In this thesis, we noted that the problem domain in email is

closely related to textual information. Thus, we employed techniques related

to text-based processing, such as information retrieval and natural language

processing.

One of the challenges encountered in this study was related to how the

email domain can be mapped into CBR methodology. Through discussion, we

found that the retrieval process plays an important role throughout the CBR

cycle. Therefore, we decided to evaluate our retrieval algorithm in order to

identify which combination of parameters provided the better results so we

could implement them in our prototype. These parameters include various text

analysis technique and case feature selection.

Our retrieval algorithm relies heavily on the terms found in the email mes-

sage, since we utilised the Vector Space Model (VSM) approach. By calculating

the term weights according to the frequency of occurrence, two documents can

be transformed into vector space. Since these vectors form an angle, similar-

ities between the two can be obtained by measuring the cosine angle. In the

implementation, the ranked top 10 results with the highest similarity score are

presented to the users.

Chapter 5. Conclusions 104

Our evaluation methods also involved relevance judgments obtained from

the email dataset. As each query was already annotated with the correct re-

sponse, we could measure that against the number of matching queries from the

retrieved results. According to the results, we found that standard text analysis

techniques, such as lexical analysis, stemming and stopwords removal, enhanced

our retrieval process.

In addition, our evaluation using the relevant judgments showed that most

matched cases were retrieved when the algorithm used the case feature subject.

However, compared to the standard analysis techniques, retrieval effectiveness

was reduced when the synonym expansion technique was applied. In contrast,

the similarity score was improved up to 30% in the case feature subject and

up to 60% in the case feature body. This finding aligns with a study conducted

by Abdalgader & Skabar (2010), who argued that synonym expansion leads to

improvement in the similarity score. Thus, further investigation found that the

relevance judgments provided by Minkov et al. (2006) may only be suitable for

evaluating the case feature subject, not the body, since in the process of annotat-

ing, the only features considered were elements such as subject, recipients, and

the date.

5.2 Future Work

In this thesis, we have described our proposed solution in the form of a smart

email client application. The system design and implementation adapted the

CBR approach. While the system was only developed for proof of concept, the

reply content could be further enhanced by performing an automatic name

extraction, using the information extraction technique. This information could

be used at the beginning of the reply message as the salutation, for instance. On

Chapter 5. Conclusions 105

the other hand, the name-based entity can be omitted from the reply message in

order to provide a more generic reply message.

We also explained that the retrieval process has a significant influence on

the CBR cycle. Thus, we performed an evaluation of our retrieval algorithm.

Although our evaluation showed good results by implementing a standard

text analysis (including lexical analysis, stemming, and stopwords removal),

the retrieval algorithm still uses a linear search to compare email messages.

The efficiency could be improved by identifying or grouping potential similar

messages first instead of directly calculating the similarity score in each message.

Thus the algorithm could narrow down the scope of the retrieval to a particular

group. This kind of approach has been studied by Lenz & Burkhard (1996),

combined information extraction and other techniques to form case retrieval

nets (CRN).

Finally, we believe that more insights could be gained if testing involved a

group of users. It might be interesting to see their behaviour when presented

with the list of recommended replies. it would be useful to study the users’

preferences when selecting the recommendations in order that they can be

improved.

References

Aamodt, A. & Plaza, E. (1994). Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications, 7(1),
39-59.

Abdalgader, K. & Skabar, A. (2010). Short-text similarity measurement using
word sense disambiguation and synonym expansion. In Australasian joint
conference on artificial intelligence (p. 435-444). Springer.

Abdrabou, E. & Salem, A. M. (2010). A breast cancer classifier based on a
combination of case-based reasoning and ontology approach. In Computer sci-
ence and information technology (imcsit), proceedings of the 2010 international
multiconference on (p. 3-10). IEEE.

Ayodele, T. & Zhou, S. (2008). Applying machine learning algorithms for email
management. In Pervasive computing and applications, 2008. icpca 2008. third
international conference on (Vol. 1, p. 339-344). IEEE.

Ayodele, T. & Zhou, S. (2009). Applying machine learning techniques for e-mail
management: Solution with intelligent e-mail reply prediction. Journal of
Engineering and Technology Research, 1(7), 143-151.

Baeza-Yates, R. & Ribeiro-Neto, B. (1999). Modern information retrieval
(Vol. 463). ACM press New York.

Bergmann, R., Kolodner, J. & Plaza, E. (2005). Representation in case-based
reasoning. The Knowledge Engineering Review, 20(03), 209-213.

Białecki, A., Muir, R., Ingersoll, G. & Imagination, L. (2012). Apache lucene 4.
In Sigir 2012 workshop on open source information retrieval (p. 17).

Chapelle, O., Metlzer, D., Zhang, Y. & Grinspan, P. (2009). Expected reciprocal
rank for graded relevance. In Proceedings of the 18th acm conference on
information and knowledge management (p. 621-630). ACM.

Coussement, K. & Van den Poel, D. (2008). Improving customer complaint
management by automatic email classification using linguistic style features
as predictors. Decision Support Systems, 44(4), 870-882.

106

REFERENCES 107

De Mantaras, R. L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
. . . Forbus, K. (2005). Retrieval, reuse, revision and retention in case-based
reasoning. The Knowledge Engineering Review, 20(03), 215-240.

Dredze, M., Brooks, T., Carroll, J., Magarick, J., Blitzer, J. & Pereira, F. (2008).
Intelligent email: Reply and attachment prediction. In Proceedings of the 13th
international conference on intelligent user interfaces (p. 321-324). ACM.

Díaz-Agudo, B., González-Calero, P. A., Recio-García, J. A. & Sánchez-Ruiz-
Granados, A. A. (2007). Building cbr systems with jcolibri. Science of Computer
Programming, 69(1), 68-75.

Fisher, D., Brush, A. J., Gleave, E. & Smith, M. A. (2006). Revisiting whittaker
& sidner’s email overload ten years later. In Proceedings of the 2006 20th
anniversary conference on computer supported cooperative work (p. 309-312).
ACM.

Fox, C. (1989). A stop list for general text. In Acm sigir forum (Vol. 24, p. 19-21).
ACM.

Grevet, C., Choi, D., Kumar, D. & Gilbert, E. (2014). Overload is overloaded:
Email in the age of gmail. In Proceedings of the sigchi conference on human
factors in computing systems (p. 793-802). ACM.

Ha, L. Q., Sicilia-Garcia, E. I., Ming, J. & Smith, F. J. (2002). Extension of zipf’s
law to words and phrases. In Proceedings of the 19th international conference
on computational linguistics-volume 1 (p. 1-6). Association for Computational
Linguistics.

Heckler, M., Grunwald, G., Pereda, J., Phillips, S. & Dea, C. (2014). Javafx 8:
Introduction by example. Apress.

Hewlett, W. R. & Freed, M. (2008). An email assistant that learns to suggest
reusable replies. In Aaai workshop, technical report ws-08-04 (p. 28-35).

Hliaoutakis, A., Varelas, G., Voutsakis, E. P., M., E. G. & Milios, E. (2006).
Information retrieval by semantic similarity. International journal on semantic
web and information systems (IJSWIS), 2(3), 55–73.

Klimt, B. & Yang, Y. (2004). The enron corpus: A new dataset for email
classification research. In European conference on machine learning (p. 217-
226). Springer.

Kolodner, J. (1991). Improving human decision making through case-based
decision aiding. AI magazine, 12(2), 52.

REFERENCES 108

Kosseim, L., Beauregard, S. & Lapalme, G. (2001). Using information extrac-
tion and natural language generation to answer e-mail. Data & Knowledge
Engineering, 38(1), 85-100.

Lamontagne, L. & Lapalme, G. (2003). Applying case-based reasoning to email
response. In Iceis (p. 115-123). Citeseer.

Lapalme, G. & Kosseim, L. (2003). Mercure: Towards an automatic e-mail
follow-up system. IEEE Computational Intelligence Bulletin, 2(1), 14-18.

Lenz, M., Bartsch-Spörl, B., Burkhard, H. & Wess, S. (2003). Case-based reasoning
technology: from foundations to applications (Vol. 1400). Springer.

Lenz, M. & Burkhard, H. (1996). Case retrieval nets: Basic ideas and extensions.
In Annual conference on artificial intelligence (p. 227-239). Springer.

Liddy, E. D. (2001). Natural language processing. Encyclopedia of Library and
Information Science, 2nd Ed.

Lipscomb, C. E. (2000). Medical subject headings (mesh). Bulletin of the Medical
Library Association, 88(3), 265.

López, B. (2013). Case-based reasoning: a concise introduction. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 7(1), 1-103.

Malik, R., Subramaniam, L. V. & Kaushik, S. (2007). Automatically selecting
answer templates to respond to customer emails. In Ijcai (Vol. 7, p. 1659-
1664).

Manning, C. D., Raghavan, P. & Schütze, H. (2008). Introduction to information
retrieval (Vol. 1) [Book]. Cambridge university press Cambridge.

Manning, C. D. & Schütze, H. (1999). Foundations of statistical natural language
processing (Vol. 999). MIT Press.

Martin, A., Uthra, R., Kavitha, A., Divya, B. & Venkatesan, V. P. (2012). A
business intelligence model for predicting bankruptcy using cbr with essential
features. International Journal of Information Technology and Engineering,
3(1-2), 91-97.

Mayhew, D. J. (1999). The usability engineering lifecycle. In Chi’99 extended
abstracts on human factors in computing systems (p. 147-148). ACM.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of
the ACM, 38(11), 39-41.

REFERENCES 109

Minkov, E., Cohen, W. W. & Ng, A. Y. (2006). Contextual search and name
disambiguation in email using graphs. In Proceedings of the 29th annual
international acm sigir conference on research and development in information
retrieval (p. 27-34). ACM.

Nielsen, J. & Pernice, K. (2010). Eyetracking web usability. New Riders.

Osiński, S. & Weiss, D. (2005). Carrot2: Design of a flexible and efficient web
information retrieval framework. In International atlantic web intelligence
conference (p. 439-444). Springer.

Partridge, C. (2008). The technical development of internet email. IEEE Annals
of the History of Computing, 30(2).

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.

Radicati. (2015). Email statistics report, 2015-2019 (Tech. Rep.). The Radicati
Group.

Robertson, S. E. & Jones, K. S. (1976). Relevance weighting of search terms.
Journal of the American Society for Information Science, 27(3), 129-146.

Rohall, S. L., Gruen, D., Moody, P., Wattenberg, M., Stern, M., Kerr, B., . . .
Wilcox, E. (2004). Remail: a reinvented email prototype. In Chi’04 extended
abstracts on human factors in computing systems (p. 791-792). ACM.

Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic
text retrieval [Journal Article]. Information processing & management, 24(5),
513-523.

Salton, G., Wong, A. & Yang, C. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11), 613-620.

Schank, R. C. (1983). Dynamic memory: A theory of reminding and learning in
computers and people. Cambridge University Press.

Schütze, H. (2008). Introduction to information retrieval. In Proceedings of the
international communication of association for computing machinery conference.

Sneiders, E. (2016a). Review of the main approaches to automated email
answering. In New advances in information systems and technologies (p. 135-
144). Springer.

Sneiders, E. (2016b). Text retrieval by term co-occurrences in a query-based
vector space. Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics, 2356–2365.

REFERENCES 110

Sneiders, E., Sjöbergh, J. & Alfalahi, A. (2016). Email answering by matching
question and context-specific text patterns: Performance and error analysis. In
New advances in information systems and technologies (p. 123-133). Springer.

Stahl, A. & Roth-Berghofer, T. R. (2008). Rapid prototyping of cbr applications
with the open source tool mycbr. In European conference on case-based reasoning
(p. 615-629). Springer.

Voorhees, E. M. (1986). The efficiency of inverted index and cluster searches.
In Proceedings of the 9th annual international acm sigir conference on research
and development in information retrieval (p. 164-174). ACM.

Voorhees, E. M. (2000). Variations in relevance judgments and the measurement
of retrieval effectiveness. Information processing & management, 36(5), 697-
716.

Voorhees, E. M. & Tice, D. M. (1999). The trec-8 question answering track
evaluation. In Trec (Vol. 1999, p. 82).

Watson, I. (1999). Case-based reasoning is a methodology not a technology
[Journal Article]. Knowledge-based systems, 12(5), 303-308.

Weber, R. O., Ashley, K. D. & Brüninghaus, S. (2005). Textual case-based
reasoning. The Knowledge Engineering Review, 20(03), 255-260.

Weng, S. & Liu, C. (2004). Using text classification and multiple concepts to
answer e-mails. Expert Syst. Appl., 26(4), 529-543.

Whittaker, S. & Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of the sigchi conference on human
factors in computing systems (p. 276-283). ACM.

	Attestation of Authorship
	Acknowledgements
	Abstract
	Introduction
	Thesis Contribution
	Thesis Structure

	Related Literature
	Email Client
	Email Overload
	Responding to a New Email
	Automatic email answering or template generation
	Predicting reply action
	Reusing previously authored reply message

	Case-Based Reasoning
	CBR Cycle
	Categorisation of the CBR System
	Textual CBR for text-based problems

	Related tasks and techniques in textual CBR
	Information Retrieval
	Natural Language Processing
	Document Preprocessing

	Summary

	Design and Implementation
	Overview of Smart Email Client
	System Architecture
	Functionality Design
	Email Communication
	Information Retrieval (IR)
	Graphical User Interface (GUI)

	Adapting the CBR in Smart Email Client
	Process Flowchart
	Case Representation
	Case Base Population
	Case Retrieval
	Case Reuse
	Case Revision
	Case Retain

	Implementation Results
	Restrictions and Limitations
	Logic
	User Interface

	Summary

	Evaluation
	Evaluation Configuration
	Evaluation methods
	Evaluation metrics
	Dataset description
	Experiment configuration

	Results
	Dataset distribution
	Experiment results

	Discussion
	Influence of text analysis and case feature selection
	Dataset critique

	Summary

	Conclusions
	Conclusions
	Future Work

