
ABSTRACTION LAYERED

ARCHITECTURE: IMPROVEMENTS

IN MAINTAINABILITY OF

COMMERCIAL SOFTWARE CODE

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisor

Associate Professor Roopak Sinha

Mr. John Spray (Datamars Ltd)

January 2020

By

Xingbin Cheng

School of Engineering, Computer and Mathematical Sciences

Abstract

Software maintainability significantly impacts the productivity of developing and main-

taining a software code base in Software Development Life Cycle (SDLC). It is said

that 90% of commercial software is under maintenance, so any improvements in main-

tainability can provide high rewards in terms of time and expense. Increased software

maintainability can help improve a company’s profitability by directly reducing ongoing

software development costs.

Abstraction Layered Architecture (ALA) is an innovative reference architecture

which aims to improve the maintainability of a software code base in the long run.

However, its effectiveness in real projects has remained unexplored. This research

explores the extent to which ALA improves the maintainability of commercial software

through a joint industry/academic project. In this research, an existing Windows desktop

application from Datamars Limited was re-developed by using ALA and compared

with the original application based on ISO 25010 maintainability model and ISO

25023 maintainability measures. Specifically, the evaluation of ALA’s effectiveness

was carried out based on the five sub-characteristics of maintainability: modularity,

reusability, analysability, modifiability and testability.

Our experiments show that ALA provides significant improvements in maintain-

ability. During the evaluation, it was found that modularity, reusability, analysability

and testability of the re-developed ALA application were overall higher than for the

original application. However, the modifiability of the ALA-based application was

2

not as high as expected. We investigated the reason for the low modifiability of the

ALA application, concluded that modifiability measures may improve during long-term

maintenance of commercial projects, while the other metrics will remain unaffected.

3

Contents

Abstract 2

Attestation of Authorship 9

Acknowledgements 10

1 Introduction 11
1.1 Background and Context . 11
1.2 Abstraction Layered Architecture (ALA) 13
1.3 Research Questions . 15
1.4 Solution and Contribution . 15
1.5 Significance . 17
1.6 Thesis Structure . 18

2 A Systematic Literature Review of Measures for Code Maintainability 19
2.1 The Systematic Literature Review Process 20

2.1.1 Research Questions . 20
2.1.2 Search Process . 21
2.1.3 Inclusion and Exclusion Criteria 23
2.1.4 Quality Assessment . 24
2.1.5 Data Extraction . 24
2.1.6 Data Synthesis . 26

2.2 Software Maintainability Metrics . 26
2.2.1 Maintainability Metrics Evolution 27
2.2.2 Maintainability Metrics and Classification 29

2.3 Metrics Refinement and Assessment of ALA 37
2.3.1 Modularity Metrics . 38
2.3.2 Reusability Metrics . 40
2.3.3 Analysability Metrics . 42
2.3.4 Modifiability Metrics . 44
2.3.5 Testability Metrics . 45
2.3.6 Summary . 47

2.4 Conclusion and Limitations . 47
2.4.1 Answering Research Question 1 and 2 49

4

2.4.2 Limitations of This Literature Review 50

3 Methodology 51
3.1 Selection of Research Method . 52

3.1.1 Our Approach . 53
3.1.2 Experiment Design and Data Interpretation 54
3.1.3 Data Generation and Gathering 55

3.2 Software Re-development . 56
3.2.1 Requirements Elicitation and Management 57
3.2.2 ALA Architecture Design . 57
3.2.3 Software Development Life Cycle Management 58

3.3 Conclusion and Approaches Validity . 58
3.3.1 Validity of Data . 60
3.3.2 Validity of Experiments . 60

4 Re-developing Datalink with ALA 62
4.1 Architecture Design of ALA Datalink 63

4.1.1 Requirements of Datalink . 63
4.1.2 The Architecture Design Process 66
4.1.3 Architectural Documentation 69

4.2 Implementation of ALA Datalink . 73
4.2.1 Background of ALA Mechanisms for Implementation 73
4.2.2 Driving the Implementation with Scrum 76
4.2.3 Implementation and Examples 79
4.2.4 Deliverable of Implementation 84

4.3 Maintenance Activities of ALA Datalink 86
4.3.1 Resolve Nonconformity Between Design and Implementation 86
4.3.2 Perfective Maintenance . 88
4.3.3 Corrective and Adaptive Maintenance 88

4.4 A General Way to Develop ALA Applications 89
4.4.1 A Waterfall Model to Outline the Process 90
4.4.2 An Agile Model to Carry Out the Process 91

5 Maintainability Evaluation Based on ISO Sub-Characteristics 94
5.1 NDepend Dependency Graph - Overall Views of the Two Code Bases 95

5.1.1 The NDepend Dependency Graphs 95
5.1.2 Zero Coupling of ALA’s Domain Abstractions 98

5.2 Modularity . 99
5.2.1 Components Coupling . 99
5.2.2 Cyclomatic Complexity Adequacy 101
5.2.3 Summary and Correlation with Preliminary Assessment 102

5.3 Reusability . 102
5.3.1 Reusability of Assets . 103
5.3.2 Coding Rules Conformity . 105

5

5.3.3 Summary and Correlation with Preliminary Assessment 106
5.4 Analysability . 107

5.4.1 Ripple Effects Identification . 107
5.4.2 The Ease of Locating Failures or Change Parts 108
5.4.3 Summary and Correlation with Preliminary Assessment 109

5.5 Modifiability . 110
5.5.1 Modification Efficiency . 110
5.5.2 Modification Capability . 112
5.5.3 Summary and Correlation with Preliminary Assessment 113

5.6 Testability . 113
5.6.1 Ease of Test Criteria Establishment and Execution 114
5.6.2 Summary and Correlation with Preliminary Assessment 114

5.7 Analysis, Discussion and Summary . 115
5.7.1 Analysis of ALA’s Low Modifiability 115
5.7.2 Discussion of the Overall and Long-term Maintainability . . . 117
5.7.3 Summary . 118

6 Conclusion 120
6.1 Summary . 120
6.2 Answering Research Questions . 122

6.2.1 Research Question 3 . 123
6.2.2 Research Question 4 . 124
6.2.3 Research Question 5 . 126

6.3 Contributions . 126
6.3.1 A Group of High-Quality C# Domain Abstractions and Pro-

gramming Paradigms . 127
6.3.2 A Strategy of Evaluating the Maintainability of Code Bases . 127
6.3.3 A General Method to Develop ALA Applications 128
6.3.4 Maintainability Improvement Evaluation of ALA in Commer-

cial Software Code Base . 128
6.4 Future Works . 129

6.4.1 Ongoing Maintainability Observations of ALA Datalink . . . 129
6.4.2 Utilization of ALA on Other Platforms 130
6.4.3 Exploring Approach of Optimizing ALA’s Application Layer . 130

6.5 Final Thoughts . 131

References 132

Appendices 138

6

List of Tables

2.1 Quality of Review for Research Questions 25
2.2 Maintainability Top Used Metrics . 34
2.3 Modularity Metrics and Conformity of ALA 39
2.4 Reusability Metrics and Conformity of ALA 41
2.5 Analysability Metrics and Conformity of ALA 43
2.6 Modifiability Metrics and Conformity of ALA 45
2.7 Testability Metrics and Conformity of ALA 46
2.8 Preliminary Assessment of ALA . 48

3.1 Selection of Research Methods . 53
3.2 Selection of Metric Tool . 56

4.1 Programming Paradigms of Datalink 69
4.2 Domain Abstractions of Datalink . 69
4.3 Architecture Documentation Quality of ALA Datalink 72
4.4 The Design Patterns Used in ALA . 75
4.5 The Sprints of Datalink Implementation 77
4.6 Completeness of ALA Datalink . 85

5.1 Comparison of Cyclomatic Complexity Adequacy 101
5.2 Coding Rules Conformity Results . 105
5.3 Summary and Comparison of Assets Reusability 106
5.4 Ease of Ripple Effects Identification . 108
5.5 Summary and Comparison of Analysability 110
5.6 Modification Efficiency Comparison . 111
5.7 Summary and Comparison of Testability 114
5.8 New Paradigms and Abstractions for New User Stories 116
5.9 Task Efficiency of User Story 1 . 116
5.10 Task Efficiency of User Story 2 . 117

B.1 User Story Decomposition of ALA . 150

7

List of Figures

1.1 ALA Layers Structure . 13

3.1 Design Framework of This Research . 59

4.1 The Home Page of Legacy Datalink . 64
4.2 ALA Datalink Architecture Design Process 67
4.3 A Partial Requirements Expression of Datalink 70
4.4 Architecture Documentation of Datalink 71
4.5 Wiring Mechanism of ALA . 74
4.6 The IUI and IUIWizard Programming Paradigm 80
4.7 The Implementation of Menubar Domain Abstraction 81
4.8 A Piece Code of Requirements Expression 82
4.9 A Part of Composite Pattern Utilization 83
4.10 An Unit Test Case of Button . 84
4.11 ALA Datalink Home Page . 85
4.12 A General Process of ALA Application Development 90
4.13 A General Process of ALA Implementation 93

5.1 A Partial Dependency Graph of ALA Datalink 96
5.2 A Partial Dependency Graph of Legacy Datalink 97
5.3 Partial Domain Abstractions of ALA Datalink 98
5.4 Comparison of Afferent Coupling . 100
5.5 Comparison of Efferent Coupling . 100
5.6 Comparison of Cyclomatic Complexity 101
5.7 Comparison of Lack of Cohesion Methods (LCOM) 103
5.8 Comparison of Weighted Methods per Classes (WMC) 104
5.9 Comparison of Number of Children (NOC) 105
5.10 Comparison of Instantiated Times (IT) 105
5.11 Comparison of Lines of Code (LOC) 108
5.12 Comparison of Commenting Percentage (CP) 109
5.13 Modification Efficiency of ALA - User Story 1 111
5.14 Modification Efficiency of ALA - User Story 2 112
5.15 Estimation of Modifications Comparison 113

8

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of student

9

Acknowledgements

This research brings me much challenge in each of the stage, but I still appreciate that I
could have a chance to study here, accomplish all the goals in the whole journey, with
the help of people around.
Professor. Roopak Sinha, thank you for being my first supervisor. You can always give
the most appropriate guidance and advice, but leave the valuable space for me, which
inspires and helps me to improve in the right direction.
Mr. John Spray, thank you for being my second supervisor. You are always patient and
happy to share any techniques, skills, and discuss the problems with me. You are the
most experienced technical specialist that I have ever seen.
My wife Eve, you are always there with me, no matter it is this study, or every moment
in our life. I am so lucky to have you, your love, friendship and encouragement. Thank
you for everything you’ve done for me.
My parents, thank you for nurturing me and support me selflessly for all these years.
Thanks for all the fellows in EMSOFT, you are always nice and helpful.
Thank you all for those who had helped me in this study. This accomplishment
is accumulated by tiny steps, but cannot achieve without your aid. It is difficult,
challenging, frustrated, but more rewarding, exciting and satisfactory.
Looking forward to the next journey of my life.
Xingbin Cheng, January, 2020

10

Chapter 1

Introduction

This chapter gives an overall view of this thesis. Section 1.1 introduces the background

and context of this research. Section 1.3 lists the research questions, which demonstrate

the domain, problems and objectives of this research. Section 1.4 briefly explains our

approach of carrying out this research and the contributions. Section 1.5 gives the

significance of this research. Section 1.6 lays out the rest of the whole thesis.

1.1 Background and Context

Software maintainability impacts the effectiveness and efficiency of developing and

maintaining a code base, and it is directly correlated with the productivity of enterprises

in commercial environments. It is said that 90% of commercial software is under

maintenance, so any improvements here can provide high rewards. Maintainable soft-

ware is easier to update and extend, which helps a company’s profitability by reducing

ongoing software development costs. Abstraction Layered Architecture (ALA) (Spray

& Sinha, 2018) is an innovative architecture that aims to improve the maintainability of

a software code base. This research explores how and to what extent does ALA impact

the maintainability of commercial software through a joint industry/academic project.

11

Chapter 1. Introduction 12

Datamars (New Zealand) is a company which manufactures various hardware and

software solutions for livestock management. Among the software solutions, many code

bases have existed for more than 20 years. Datalink is one of the software products, it

runs on Windows desktop, and connects to the multiple embedded devices of Datamars.

It manages all the data, settings, and updates on the devices. In this research, we

re-developed Datalink with ALA and C# language, then measured the maintainability

of it by assessing the code base and tracing the performance of real maintenance tasks

in Datamars. Comparisons between the re-developed Datalink and the legacy one

were carried out to explore the maintainability improvement ALA brought under such

circumstance.

Callaghan Innovation is a New Zealand government’s innovation agency who

provides services for innovative research and development projects. This research

was funded by Callaghan Innovation due to the following potential values:

1. Spray and Sinha (2018) proposed ALA and they explained the conformity

between ALA and ISO 25023 (2016) measures and proved the maintainabil-

ity through a student-driven embedded project. However, there was a lack of

evidence that ALA works on other kinds of applications, as well as how and

to what extent ALA improves maintainability. This research provides evidence

on how ALA’s mechanisms conform to ISO maintainability measures, and the

maintainability improvement ALA brings to a real desktop application.

2. ALA is an innovative architecture but lacks experience with applying the method

to real applications. This research explores the approach of utilizing ALA in real

projects, which opens a broader way for any potential future projects.

Chapter 1. Introduction 13

Figure 1.1: ALA Layers Structure

1.2 Abstraction Layered Architecture (ALA)

Abstraction layered architecture (ALA) is a reference software architecture, and it is

independent of any specific domain, so it is a general reference architecture. Spray

and Sinha (2018) elaborately explained the process that ALA was proposed in their

article, and the main intention of this architecture was to improve maintainability of

software code bases. ALA consists of four main layer from top to down i.e. application

layer, domain abstractions layer, programming paradigms layer and language layer, as

illustrated in Figure 1.1.

1. Application layer contains knowledge of a specific application, no more and

no less. The application instantiates and wires together the objects of domain

abstractions defined in the second layer.

2. Domain Abstractions layer contains all knowledge specific to the domain. They

Chapter 1. Introduction 14

are usually general functionalities that are non-specific to the application and are

highly reusable. The Domain Abstractions should conform to the types defined

in the third layer.

3. Programming paradigms layer contains all knowledge specific to the types of

computing problem(s) a company’s products solve, such as available program-

ming paradigms and associated frameworks. This layer abstracts out how the

Domain Abstraction layer and Application layer execute.

4. Language layer contributes the most generic knowledge, that of the programming

language and associated libraries.

The dependency relations are also explained in the figure. ALA cares more about

Knowledge Dependencies (Cataldo, Mockus, Roberts & Herbsleb, 2009), which are

more comprehensive from the perspective of a maintainer in developing phase than

Run-time Dependencies (Nicolau, 1989) that happening at the running phase of an

application. This is also the reason that ALA aims to improve maintainability by

organizing code.

Moreover, the abstraction, ubiquity, reusability and stability of the layers will

increase as we going down the layers. With long-term maintenance being carried out,

the units of the lower layers will become more and more abstract, ubiquitous, reusable

and stable. At some point of the maintenance, the main changes of the tasks will

become those at the application layer. Such feature is the strength of ALA, because

the maintainability of a normal code base will decrease as time goes by, while ALA’s

maintainability will adversely increase.

Chapter 1. Introduction 15

1.3 Research Questions

As aforementioned, this research was funded by Callaghan Innovation due to its potential

value. The research questions were formulated in the very early stage before the funding,

which structured the research process and outlined the objective of each phase:

RQ1. What are the most relevant measures for assessing maintainability?

RQ2. Which mechanisms in ALA support these measures?

RQ3. How can the process of re-architecting an existing C# application using ALA be

generalised for use in future projects?

RQ4. How do the existing implementations of the C# application and the new re-

implementation as a result of answering RQ3 compare when assessed for maintainability

using the measures identified in RQ1?

RQ5. How well does the assessment carried out in RQ4 relate to the expected enhance-

ments in maintainability from ALA (as identified in RQ2)?

1.4 Solution and Contribution

Our solution was mainly based on the five formulated research questions. We carried out

a joint industry & academic project to re-architect and re-develop an existing C# desktop

application in Datamars with ALA, which is called Datalink. Then the re-developed

application was used as a case study to answer the research questions. The contributions

of this thesis mainly came from the following four aspects.

A Group of High-Quality C# Domain Abstractions and Programming Paradigms

The re-developed Datalink involves elaborately designed and implemented domain

abstractions and programming paradigms. Those abstractions can be reused in a

wide range of C# desktop applications, which considerably saves time and provides

Chapter 1. Introduction 16

reusability for any possible future projects.

We made part of the source code accessible on a GitHub repository (https://

github.com/cdxybf/ALA_Datalink). This code repository demonstrates how

ALA works in a real project from the implementation perspective.

A Strategy of Evaluating the Maintainability of Code Bases

Maintainability evaluation of a code base is far more than observing the effort of mainten-

ance. The strategy we used in this research is based on the ISO 25010(2011)/25023(2016)

quality model, which involves not only maintenance assessments on Modifiability, but

also other aspects that impact maintainability i.e. Modularity, Reusability, Analysability

and Testability. However, as ISO does not provide measures for code related char-

acteristics e.g. "Coupling" and "Cohesion", we refined the measures to make them

applicable on a pure code base with some commonly used metrics e.g. CK Metric Suite

(Chidamber & Kemerer, 1994), Cyclomatic Complexity (McCabe, 1976).

A General Method to Develop ALA Applications

Based on the re-development of Datalink, we proposed a general method for ALA

application development. This method is a reliable reference that was built on this

real commercial project. It integrates development process management methods to

guide and structure the activities in each phase, as well as approaches and principles to

comprehend and design high-quality ALA applications.

Maintainability Improvement Evaluation of ALA in Commercial Software Code

Base

This research provides empirical evidence on the evaluation of maintainability im-

provement of ALA. According to Spray and Sinha (2018), ALA intends to improve the

https://github.com/cdxybf/ALA_Datalink
https://github.com/cdxybf/ALA_Datalink

Chapter 1. Introduction 17

maintainability of a software code base in the long run. We evaluated the maintainability

improvement by comparing the re-developed Datalink with the legacy one. Our conclu-

sion is that the Modularity, Reusability, Analysability and Testability of ALA are higher

than the legacy code base. Moreover, although the current Modifiability of ALA is

lower, with more and more abstractions being implemented, it would increase gradually.

Overall, if we consider long-term maintenance in an application, the maintainability of

ALA is considerably higher.

1.5 Significance

Software maintainability significantly impacts software systems in the past, at present,

and in the future (Coleman, Lowther & Oman, 1995). Chronologically, the importance

of software maintainability has been growing since the early 1960s when only a small

part of maintenance work was undertaken in software development life cycle (SDLC)

(Chu et al., 2002). One decade later during the 1970s, the maintenance work on the

legacy systems has become the primary activity in SDLC (Bennett, 1993). According to

Grady and Booch (1998), the cost of maintenance is much higher in the 1990s compared

with it in the initial development and 65% to 75% time is occupied by maintenance

(Muthanna, Kontogiannis, Ponnambalam & Stacey, 2000). Up until now, 90% of

commercial software is under maintenance, the cost of which keeps growing as the

complexity of modern software has increased exponentially. Hence, putting more efforts

for making the software maintainable during the SDLC can significantly reduce the

total software cost (Kumar, 2012).

The improvements on software maintainability can provide high rewards. Spray

and Sinha (2018) proved the effectiveness and efficiency of ALA in their experiments

on an embedded software code base, which requires 12 man-years work to complete

the conventional code which compares with one student-year work with ALA. In this

Chapter 1. Introduction 18

research, the utilization of ALA on the desktop application provided supportive evidence

for other types of software rather than embedded one. The general development method

of ALA helped to set the direction of future projects, which opens up a boarder approach

for ALA. Furthermore, evidence shows how much ALA improves the maintainability

of a commercial project in the long run, and the considerable reduction on time and

expense it brings would have long term benefits on commercial companies.

1.6 Thesis Structure

The rest of this thesis is organized as follows. In chapter 2, the literature review is

carried out to identify the most relevant maintainability measures and assess ALA’s

mechanisms with those measures, which aims to address the first two research questions.

Chapter 3 discusses the research methodologies that we adopted to develop solutions for

answering the last three research questions. Chapter 4 records the re-architecting and

re-development process of ALA Datalink. In addition, a general method for developing

ALA applications is proposed. Chapter 5 compares the maintainability of the re-

developed Datalink and the legacy one by applying the measures identified in Chapter

2. Chapter 6 gives a summary to this research, as well as listing the contributions and

possible future research directions.

Chapter 2

A Systematic Literature Review of

Measures for Code Maintainability

A key first step in this research is to establish objective measures for maintainability,

and such measures serve two purposes. Firstly, they can be used to compare ALA

with existing solutions towards maintainability. Secondly, and more specifically to this

project, these measures can be monitored during the architecting/development process

to ensure that an ALA code base remains measurably maintainable. We conducted a

systematic literature review (Kitchenham et al., 2009) to collect these measures, which

helped to answer two important research questions:

RQ1. What are the most relevant measures for assessing maintainability?

RQ2. Which mechanisms in ALA support these measures?

The rest of this chapter is organized as follows. Section 2.1 describes the process

we carried out to conduct the literature review, each step is explained in detail to make

them reproducible. Section 2.2 presents the findings about maintainability measures. In

Section 2.3, the most relevant maintainability measures were identified and refined to

satisfy the aforementioned two research questions. Section 2.4 gives the conclusion and

limitation of this literature review.

19

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 20

2.1 The Systematic Literature Review Process

Bettany and Saltikov (2012) explain that the systematic literature review employs a

scientific methodology to research, appraise and summarize all relevant studies by

starting with a particular review question. Besides that, the process should also be able

to be replicated (Johnson, De Li, Larson & McCullough, 2000) and some techniques

should be applied to minimize any bias (Petticrew & Roberts, 2008). The significance

of a SLR is crucial; Xiao and Watson (2019) state that through reviewing the relevant

literature, the depth and breadth of the existing work could be specified. The sum-

marization and synthesis of current work reveal the contradictions and inconsistencies

(Paré, Trudel, Jaana & Kitsiou, 2015), as well as identifying the gaps to conduct an

exploration. Furthermore, it seeks to to elicit new research activities and suggest areas

for investigation in future work (Keele et al., 2007).

A systematic review involves several discrete activities. In some specific domains

such as medicine where guidelines have different view of the process steps needed

in a systematic review and they usually includes detailed levels of a review model

(Kitchenham, 2004). However, the general stages associated with conducting a system-

atic literature review usually consists of six main stages (Kitchenham et al., 2009). We

discussed the stages respectively in the following subsections i.e. Research Questions

in Section 2.1.1, Search Process in Section 2.1.2, Inclusion and Exclusion Criteria in

Section 2.1.3, Quality Assessment in Section 2.1.4, Data Extraction in Section 2.1.5,

and Data Synthesis in Section 2.1.6.

2.1.1 Research Questions

The research questions define the objectives of the whole systematic review process,

present detailed and suitable findings of a given domain, and help identifying and

scoping future research activities. Thus, the specification of which in any kind of review

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 21

is of crucial importance.

Spray and Sinha (2018) presented Abstraction Layered Architecture (ALA) and

they proved its maintainability through a student-driven project. However, this evidence

is insufficient and requires a deeper investigation, such as the re-architecting of a

commercial code base carried out in this thesis. To assess the maintainability and

feasibility of ALA in commercial software, we need to identify and collect proper

maintainability measures, which helps to quantitatively assess the maintainability of

ALA. Therefore, the two related research questions in the SLR are:

RQ1. What are the most relevant measures for assessing maintainability?

RQ2. Which mechanisms in ALA support these measures?

RQ1 aims to collect the most relevant maintainability measures. RQ2 allows us

to carry out a preliminary assessment by comparing ALA’s design notion with the

collected measures, so that we can evaluate ALA’s maintainability from its design in

advance, which would finally enhance the evaluation of the maintainability of ALA.

2.1.2 Search Process

The key factors in the search process is identifying the databases and the terms for search

activities. The library search engine of Auckland University of Technology was used as

the main source because it integrates the epidemic databases such as Springer, Scopus,

Science Direct, IEEEXplore, ACM Digital Library etc. Google scholar was used as a

secondary source to assure the comprehensiveness of relevant sources. Kitchenham

(2004) outlines the general steps of developing search terms, shown as follows.

Derive major search terms from the research questions by identifying Interven-

tion, Outcome, and Context. First, since this research aims to investigate software

maintainability, the fundamental scope is limited in software and its correlated systems.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 22

Second, maintainability is decomposed in ISO 25010 (2011) quality model as modu-

larity, reusability, analysability, modifiability and reusability, thus the terms involves

maintainability facets as well.

Identify alternative spellings and synonyms for the search terms with the help

of a thesaurus. Maintainability indicates the effort that was paid for maintenance, so

maintenance was chosen as an alternative of maintainability as some studies might

indirectly contributes to such topic. Apart from that, maintainability metrics might

be explained as "assessing and measuring maintainability", so the terms "assess, as-

sessment, measure and measurement" were included as alternatives. As for spelling,

analysability is occasionally used as analyzability, and vice versa.

Use Boolean OR and AND to construct search strings. OR is used to connect

terms which as similar meaning, such as measure and measurement described before,

while AND concatenates terms to restrict the research. In this case, the term "software

maintainability metric" is the most top level, the rest of the terms are alternatively

concatenated to build the whole search string.

The search terms were finalized below and the process was performed manually. The

search result of the study showed that over 50,000 items related to maintainability were

presented. As for the sub-characteristics, studies about modularity occupied around

14,500, following was the reusability which resulted in 9,000 results. The number of

published works about testability and modifiability were 3,800 and 1,500 respectively,

and the least was analysability in which 600 records were found approximately.

(software OR software application OR software system OR application OR system)

AND (maintainability OR modularity OR reusability OR modifiability OR analysab-

ility OR analyzability OR testability OR maintenance) AND (metric OR assess OR

assessment OR measure OR measurement)

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 23

2.1.3 Inclusion and Exclusion Criteria

Ryan and Gwen (2010) explain that SLR provides a clear methodology to reduce

bias risks as it follows strict and replicable procedures. The purpose of the inclusion

and exclusion criteria is to set up the basis to find the most relevant studies in soft-

ware maintainability and its correlated domains (Malhotra & Chug, 2016). Generally,

the peer-reviewed papers which propose the standards, measurement, metrics and as-

sessment of maintainability based on any model, investigation and experiments were

supposed to be collected. Specifically, the detailed criteria to filter studies for this

research are listed as follows:

• Studies perform activities or quality model which has direct, indirect influ-

ence, value, or empirical evaluation of the maintainability or the facets or sub-

characteristics of maintainability, metrics, measurement, assessment and predic-

tion were included.

• References to valuable studies in the previous step were included.

• Some articles which have only the literature review on maintainability and its

facets as their main concentration were also included.

• Duplication of studies such as same study of different versions or from different

databases were excluded.

• Some studies were excluded by the incompatible content between the title/abstract,

key words and the topic of this research.

With the inclusion and exclusion criteria being applied, the relevant studies were refined

to 102 results.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 24

2.1.4 Quality Assessment

Quality assessment is a process to identify studies which directly correlated with the

research questions. Keele (2007) describes that quality assessment provides more de-

tailed inclusion and exclusion of the criteria, and an investigation of whether differences

results of study are explained by quality differences. Furthermore, the individual studies

can be weighted when the synthesis of result is performed and it offers the guidelines for

future research and interpretation of findings. In addition to that, the quality of the study

dominates the bias minimization and the maximization of internal and external validity

(Khan et al., 2001). A well-formed quality assessment questionnaire is presented as

follows (Kitchenham et al., 2009):

• Are the review’s inclusion and exclusion criteria described and appropriate?

• Is the literature search likely to have covered all relevant studies?

• Did the reviewers assess the quality/validity of the included studies?

• Were the basic data/studies adequately described?

The four questions above are applied to check if the review addressed the two research

questions which were elicited in Section 2.1.1. The question scores 1 if the criteria was

fully addressed, and a goal of 0.5 is assigned if partially tackled or 0 for not tackled at

all. The total points of each research question is 4 and any that scored more than 3 are

considered to be adequately reviewed. The final points of RQ1 and RQ2 in this research

is illustrated in Table 2.1.

2.1.5 Data Extraction

The objective of data extraction is to design forms to accurately record the information

researchers obtain from the primary studies and the forms should be able to collect

all the information needed to address the research questions and study quality criteria

(Keele et al., 2007). Therefore, a standardized form should include name of the reviewer,

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 25

RQ1 (Scored 3) RQ2 (Scored 3)

Criterion 1

Scored 1. We included as many re-
sources about maintainability as pos-
sible. Meanwhile, inappropriate and
irrelevant studies were removed by con-
ditions.

Scored 1. Based on the reli-
able data of RQ1, the meas-
ures used in RQ2 were prop-
erly filtered.

Criterion 2

Scored 1. We followed systematic steps
to carry out the search process, it is
likely to cover as many relevant studies
as possible.

Scored 1. This is also based
on the result of RQ1 so it has
the same score as RQ1.

Criterion 3

Scored 0.5. The studies are too much
so we paid more attention on the ab-
stract and conclusion, which might not
identify the quality and validity pre-
cisely.

Scored 0.5. It was also based
on the result of RQ1, so it has
the same result as RQ1.

Criterion 4

Scored 0.5. We tried to describe object-
ive and non-ambiguous results. How-
ever, as English is not the first language
of the author, there might exists inevit-
able language bias and ambiguities.

Scored 0.5. The result might
not have been carried out
properly due to language cap-
ability of the author.

Table 2.1: Quality of Review for Research Questions

date of collection, title, author, journal, publication details and space for additional

notes. It is also suggested that a data extraction process should be performed by two

or more researchers working collaboratively to assure the consistency. Alternatively, a

second extraction of some random primary studies can be performed to do a test-retest

process to achieve the same goal. The content of the extracted data will involve the

following information (Kitchenham et al., 2009):

• The source (journal or conference) and full reference.

• Classification of the study Type (SLR, Meta-Analysis MA); Scope (Research

trends or specific technology evaluation question).

• Main topic area.

• The author(s) and their institution and the country where it is situated.

• Summary of the study including the main research questions and the answers.

• Research question/issue.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 26

• Quality evaluation.

• How many primary studies were used in the SLR.

2.1.6 Data Synthesis

Keele (2007) defines the data synthesis as collating and summarizing the results of

the included primary studies. Either qualitative or quantitative synthesis is accepted

but a quantitative summary with descriptive process will be a better approach. For the

qualitative synthesis, the relevant information such as intervention, context and out-

comes should be listed in a manner consistent with the research questions. Comparisons

of similarities and differences between different study outcomes are supposed to be

highlighted and structured in tables, and the recognition of consistencies of different

studies is important in this process.

Kitchenham and Barbara (2004) explain that quantitative synthesis should be per-

formed so that all study outcomes should be presented in a comparable way. A com-

monly used mechanism is forest plot which displays the means and variance for the

difference of each study. The meta-analysis (Mulrow & Oxman, 1997) also offers a stat-

istical way to obtain a quantitative synthesis with the help of techniques. In this review,

both qualitative and quantitative comparisons were carried out on the maintainability

metrics, investigations and the results.

2.2 Software Maintainability Metrics

ISO 25010 (2011)/25023 (2016) defines maintainability of software as the degree

of effectiveness and efficiency with which a product or system can be modified by

the intended maintainers. IEEE (1993) similarly defines maintainability as the ease

with which maintenance activities can be made. Various types of maintenance could

occur after the delivery of a software product, such as correcting faults, improving

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 27

performance or other attributes and adapting to a changed environment. Maintainability

demonstrates the difficulty of performing those maintenance activities.

2.2.1 Maintainability Metrics Evolution

Belady and Lahman (1976) were the first to define the concept of maintainability. In

the period of 1960s to 1970s when procedure-oriented development was extensively

used, researchers and practitioners paid more attention to make better programs rather

than maintainable software (Swanson, 1976). Some frequently referred metrics which

are used for measuring procedural programs were proposed during this period e.g.

McCabe’s Cyclomatic Complexity (McCabe, 1976) and Halstead Volume (Halstead

et al., 1977). The effectiveness and efficiency of these metrics have been evaluated

through empirical studies and Rombach (1987), Wake and Henry (1988) conclude

that software maintainability can be predicted by metrics. From 1990 onward, object-

oriented language started to become popular and Rombach (1990) argued that the

metrics used to measure procedure-oriented programs are not appropriate to be applied

on Object-Oriented ones blindly. For example, the Object-Oriented concepts of classes,

and message passing cannot be characterized by any of the metrics mentioned above

(Li & Henry, 1993).

In 1990s, thus, Object-Oriented design metrics based on characteristics i.e. encapsu-

lation, inheritance and polymorphism were studied and presented such as the CK metrics

(Chidamber & Kemerer, 1994), the suites proposed by Li and Henry (1993), Chen and

Lum (1993), Lorenz and Kidd (1994), the MOOD metrics (Abreu & Carapuça, 1994)

etc. Further, other investigations which aims to evaluate and verify the effectiveness,

efficiency and accuracy of these metrics e.g. A critique of software defect prediction

models (Fenton & Neil, 1999), maintenance and development estimation accuracy

(Kitchenham, Pfleeger, McColl & Eagan, 2002) were carried out as well. Malhotra

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 28

and Chug (2016) state that the empirical investigations on software design metrics

and maintainability successfully identified their correlations. From 2000 onward, re-

searchers started to have the consensus that the maintainability can be measured by the

time-consumption and changes made in the operations during maintenance activities.

However, design metrics are more effective in the prediction of quality in the early stage

of software development life cycle (SDLC), as it is more valuable to forecast and avoid

the risks earlier than handling the maintenance later (Basili, Briand & Melo, 1996).

From 2000 onward, the research into Machine Learning (ML) brought software

maintainability measures to a higher stage. By applying ML, the measures attempt

to construct more complex, dynamic and intellectual strategies to predict and assess

software maintainability. Aggarwal, Singh, Kaur and Malhotra (2006) utilized a model

based on Artificial Neural Network (ANN) on maintainability prediction with Object-

Oriented metrics. Zhou and Leung (2007) conducted a similar study to predict maintain-

ability based on machine learning multivariate regression model. Furthermore, Malhotra

and Chug (2012) compares the performance of applying several Machine Learning

(ML) models to assess maintainability, and some new approaches such as code smell

was utilized by ML to measure the maintainability of a system (Di Nucci, Palomba,

Tamburri, Serebrenik & De Lucia, 2018). Compared to statistical measurements, these

advanced techniques were empirically proved to have better performance (Malhotra &

Chug, 2016).

In summary, common trends could be seen in the evolution of maintainability

metrics. Oman and Hagemeister (1992) proposed Maintainability Index (MI) which

comprises the procedural metrics i.e. Halstead’s volume, McCabe’s cyclomatic complex-

ity, Number Of Comments (NOC) and Lines Of Code (LOC) to measure maintainability.

In addition, the MI, DIT (Depth of Inheritance Tree) (Chidamber & Kemerer, 1994),

Cyclomatic Complexity (McCabe, 1976) and LOC were integrated in to Microsoft’s

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 29

official development environment Visual Studio since 2005 to help developers to im-

prove their code quality. In recent years, researchers and practitioners combine metrics

above as well as some complex ones such as cyclomatic dependency, god compon-

ent (Lippert & Roock, 2006) into a code smell program, and run the program with

the aforementioned ML technique to automatically assess and predict maintainability

from a bigger and holistic picture (Fontana, Mäntylä, Zanoni & Marino, 2016). On

the other hand, approaches for carrying out maintainability metrics keep changing.

Before 2000, metrics were applied manually or with the help of tools. Later after that,

hybrid techniques which mix tools and ML were utilized. Contemporarily, ML is the

main technique of assessing maintainability, as the complexity of modern software has

increased exponentially.

2.2.2 Maintainability Metrics and Classification

ISO 25010(2011) externally outlines the quality model of maintainability as five sub-

characteristics which are modularity, reusability, modifiability, analyzability and test-

ability, while ISO 25023(2016) defines the metrics for each sub-characteristic internally.

Those metrics formulates approaches to quantify each sub-quality, so that maintain-

ability can be reflected by compositions of the sub-characteristics. However, the ISO

measures require the assessors to measure the code base itself, the later maintenance

activities, as well as the test environment establishment, which is supposed to be a

long-term process.

The Object-Oriented design metrics proposed in 1990s were also considered to have

close-knit correlations with maintainability, such as the CK metrics suite (Chidamber &

Kemerer, 1994), Li and Henry (Li & Henry, 1993). These metrics aim at predicting

maintainability from the internal aspects, as they usually require the code base which

has been implemented partially to measure the classes and relations between them. The

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 30

merits of these metrics are that assessors do not need to perform experiments in the

later maintenance phase, but just need to apply them to the code bases in the early

stage to get the predicted results. However, such prediction does not reflect the actual

maintainability of a code base accurately.

Besides, some approaches provide methods to measure maintainability at the soft-

ware architecture stage, which is even earlier than that in the design stage. For ex-

ample, Bengtsson et.al (2004) state that the Architecture Level Maintainability Analysis

(ALMA) provides a method to estimate maintainability of an architecture before imple-

mentation. The estimations are performed based on scenarios elicited by stakeholders,

and architecture documentation such as the 4+1 views (Kruchten, 1995). Specifically,

the potential maintenance efforts of the scenarios are estimated based on the architecture,

so as to predict software maintainability. However, the uncertainty that arises with

the ongoing progress of the project makes this method even harder to indicate the real

maintainability of an application.

In summary, from the studies above, maintainability metrics vary in different stage

of SDLC. Apart from that, the amount of metrics is also huge. A study of Saraiva,

Soares and Castor (2013) demonstrates that there exist 568 maintainability metrics.

Therefore, it is necessary to classify the metrics and identify the proper and applicable

ones for this research. Generally, it can be carried out from multiple dimensions. For

example, some metrics aim to predict while others measure the actual maintainability of

the code base. Here the process of software development life cycle (SDLC) is followed,

makes the classification as architecture, design, code and process. Each classification

represents a different phase in SDLC, but following the successive order, shown as

follows.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 31

Architecture-level Metrics

In a general SDLC, the first step is usually to design the architecture, and the design

usually starts with qualities elicited by the stakeholders. According to ISO 25010

(2011), maintainability is one of the eight qualities in the software product quality

model. The assessment at the architecture level is to measure maintainability and its

parallel qualities to indicate if it satisfied the expectation of the stakeholders.

As no implementation is performed in the architecture phase, the object that can be

measured in this phase is more about the architectural documentation e.g. the 4+1 views

(Kruchten, 1995) which includes the logical view, development view, process view and

physical view. The scenario-based architecture assessment method (SAAM) (Kazman,

Bass, Abowd & Webb, 1994) offers a means to measure the quality of an architecture

by assessing the final version of the design of it. Bengtsson and Bosch (2003) explain

that the scenario-based assessment is a practical approach and the empirical evaluation

of this was presented in architecture-level modifiability analysis (ALMA) (2004), which

provides systematic steps to estimate the effort in future maintenance tasks. The

maintainability of an architecture can then be reflected by comparing the result with the

history data.

Concentrating on modifiability, the ALMA usually involves more of the develop-

ment team, marketing and product as stakeholders. It can be applied from a scenario

classification to elicit the scenarios related or from a scenario first, then by carrying

out the categorization of the scenarios. Besides that, techniques are provided to select

relevant and eliminate redundant scenarios. Ionita, Hammer and Obbink (2002) state

that the ALMA does not provide approaches to decide the accuracy of the analysis

result and it cannot reason about the accuracy of maintenance prediction numbers. The

scenario-based assessment might not provide accurate data for analysis.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 32

Design-level Metrics

The design level metrics are mainly used to measure the classes and their relationships

to a code base. The design phase usually happens after the design of architecture and

this is where elements correlated with interface, classes and methods are carried out.

With these concretes, multivariate metrics related at the class-level can be performed to

produce reliable assessment data.

Chidamber and Kemerer (1994) presented the CK metrics suites which includes

six metrics i.e. Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT),

Number of Children (NOC), Coupling Between Object classes (CBO), Response For

a Class (RFC) and Lack of Cohesion in Methods (LCOM). The effectiveness and

efficiency of which has been evaluated by researchers and practitioners in the last

decades. The CBO and DIT metrics have significantly enhanced the probability of

finding a fault in test (Briand, Wüst, Daly & Porter, 2000) which means the testability

is strengthened. Dubey and Rana (2011) found that the maintainability of systems

can invariably be improved by achieving lower CK values through the assessments on

real projects whereas high values of CK metrics increases the system complexity and

adversely impact the maintainability, testability and reusability (Kulkarni, Kalshetty

& Arde, 2010). However, Li (1998) argued that there were some ambiguity and defi-

ciencies in the CK metrics by applying the metric-evaluation framework (Kitchenham,

Pfleeger & Fenton, 1995) and he made supplements on CK with Number of Ancestor

Classes (NAC), Number of Local Methods (NLM), Class Method Complexity (CMC),

Number of Descendent Classes (NDC), Coupling Through Abstract Data Type (CTA)

and Coupling Through Message Passing (CTM).

The MOOD metric suite (e Abreu, 1995) is another attempt to measure maintain-

ability which emphasizes more about the internal assessments of a class. Method

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 33

Hiding Factor (MHF) and Attribute Hiding Factor (AHF) conform to the encapsu-

lation principle of Object-Oriented programming in that they measure the degree of

information hiding. Method Inheritance Factor (MIF) and Attribute Inheritance Factor

(AIF) assess how many methods and attributes have been inherited for a subclass. Two

other metrics, Coupling Factor (CF) and Polymorphism Factor (PF) are used to test

the coupling between classes and the number of overridden methods in inheritance

respectively. Harrison, Counsell and Nithi (1998) state that the six MOOD metrics

are valid measurements under the theoretical framework (Kitchenham et al., 1995).

Comparing with the CK metrics, the MOOD metrics provide a different approach of

assessment of a system, which is complementary to the CK metrics commutatively.

Another empirical study demonstrates that the MOOD metrics might have a strong

influence in resulting software maintainability and reliability and this is significant for a

project at the planning stage (e Abreu & Melo, 1996).

Besides the suites above, a large number of Object-Oriented design metrics were

proposed and evaluated for the predictions and assessments of maintainability in 1990s.

However, limited topics were seen according to the study of Saraiva, Soares and Castor

(2013), where they surveyed 568 metrics but only five topics were related e.g. coupling,

cohesion, inheritance, size and architecture. They explain that the maintainability

metrics frequently referred are rare, and they statistically synthesized the top extensively

used metrics, from which 9 of 12 metrics is about "Coupling and Cohesion" while 3

ones are about inheritance and size, as demonstrated in Table 2.2.

Code-level Metrics

The measurements in this phase are based on the detail code base, and the metrics

are usually carried out after or during the implementation of a system. The objects to

be measured range from a variable definition and assignment, a statement, a piece of

code, a method and a class, so the metric result of a code base is more detailed and the

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 34

Metric Description Topic #Occurrences
CBO Coupling Between Objects Classes Coupling 43
DIT Depth of Inheritance Tree Inheritance 39

LCOM Lack of Cohesion in Methods Cohesion 39
NOC Number of Children of a Class Inheritance 39
RFC Response For a Class Coupling 36

WMC Weighted Methods Per Class Cohesion 33
LOC Lines of Code Size 25
MPC Message Passing Coupling Coupling 17
CC Class Coupling Coupling 16

DAC Data Abstraction Coupling Coupling 14
TCC Tight Class Cohesion Cohesion 13
LCC Loose Class Cohesion Cohesion 10

Table 2.2: Maintainability Top Used Metrics

amount of data increases drastically which makes the analysis more difficult to perform,

especially on large systems.

Before 1990 when procedural programming was popular, maintainability metrics

such as Cyclomatic Complexity (McCabe, 1976) and Weighted Halstead Effort or

Volume (Halstead et al., 1977) were mainly code-oriented. Meanwhile, Adamov and

Baumann (1987) reviewed some procedure-oriented metrics such as Function Points

(FP) (Albrecht, 1979), Chapin’s Q (Chapin, 1979), Information Flow (Henry & Kafura,

1981), Nesting Level (W. A. Harrison & Magel, 1981) etc. These metrics still play

an non-substitutable role in measuring and indicating the quality of Object-Oriented

program contemporarily, as they can be applied to any implementations of methods in

classes.

Oman and Hagemeister (1992) describe that the factors influence software main-

tainability can be categorized and measured by different metrics from different aspects,

and the result can be combined into a single index of maintainability. They presented

maintainability index (MI) which comprises Halstead’s volume, McCabe’s cyclomatic

complexity, number of comments (NOC) and lines of code (LOC) to measure a code

base from holistic aspects.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 35

In recent years, researchers and practitioners intend to use code smells to evaluate

maintainability and detect the error-prone modules of a code base. According to Rasool

and Arshad (2015), the most widely researched and used code smells are metrics-based

and search-based. The former one is based on source code metrics which integrates

some proper measures such as LOC and Cyclomatic Complexity to the source code,

whereas the latter one utilize advanced techniques such as machine learning to detect

how source code deviates from standard code design and implementations. The search-

based code smell stands at a higher point to achieve a big picture of the code base from

different aspects. With machine learning technique, it performs more accurately that

the principle violation variables, interfaces, classes and components can be detected.

In addition to that, more complex deficiencies and relationships such as Unstable

Dependency (Martin, 2002), Dense Structure (Sharma, Fragkoulis & Spinellis, 2016)

and Scattered Functionality (Garcia, Popescu, Edwards & Medvidovic, 2009) can be

further identified.

Substantial empirical studies have demonstrated the effectiveness and efficiency of

the metrics at design and code level, and they are appropriate attempts to measure and

predict the maintainability of a software product. Moreover, consistencies can be seen

in the progress of code metrics and some of them are still being used for the assessments

of modern code bases, only that advanced techniques needs to carry out to automatically

measure the quality due to the increasing complexity of modern software.

Process-level Metrics

The three types of metrics above are about predicting maintainability by measuring

the software at different concrete levels. While the process metrics measure to what

extent the code is maintainable directly. This phase happens after the delivery of the

software product in SDLC, normal maintenance work is carried out and implementation

of different types of tasks are required. The data recorded in this phase demonstrates

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 36

the maintainability of the code base more accurately.

According to Kaur and Singh (2015), three maintenance types are considered in

SDLC: corrective maintenance is about fixing emergency program and debugging

routine; adaptive maintenance responses to technology updates; and perfective mainten-

ance aims to improve documented and requested enhancement. The maintenance effort

depends on the number of changes and costs e.g. LOC changed, time-consumption,

amount of human-effort requires. Banker, Kauffman and Kumar (1991) proposed the

Annual Change Traffic (ACT) model, which was defined as the fraction of the software

product’s source instructions which undergo change during a typical year, either ad-

dition or modification. However, the LOC is too weak to represent the maintenance

efforts and some factors such as understanding business rules, relevance of external

systems could affect the assessment (Ahn, Suh, Kim & Kim, 2003).

Belady and Lehman (1972) describe that when measuring maintenance efforts,

the considerations on productivity effort, software design and documentation com-

plexity, and the extent of familiarity with the code base should be took. Jorgensen

(1995) explains that cause of the task, code changing degree, code operation type, and

maintainers’ confidence would affect the maintenance effort. Technical constraints

such as response time and platforms, maintenance tools and techniques such as de-

velopment methodology and case tools, factors related to personnel such as number

of programmers, experience directly or indirectly influence the estimation of efforts

(Desharnais, Pare, Maya & St-Pierre, 1997). Generally, various factors might impact the

maintenance efforts when considering process-level assessment, however, the studies

above demonstrate that the outputs of the measurements are inevitably correlated with

maintenance efforts consumption.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 37

2.3 Metrics Refinement and Assessment of ALA

Spray and Sinha (2018) state that the maintainability improvements brought by ALA

increases several-fold on the re-development of an embedded software carried out by

a student comparing with the legacy code base. However, no evidence shows that

ALA would reduce the maintenance efforts in other kinds of commercial projects, like

desktop or mobile applications. Furthermore, they explained the conformity of ALA

to the ISO 25023 (2016) quality metrics but there lack of evidence and evaluation on

that. To assess the conformity and maintainability of ALA, it is necessary to refine the

maintainability metrics to perform more accurate assessments and comparisons on the

architecture and code base. Further on that, preliminary assessments of ALA is carried

out by comparing with the refined metrics to reflect the mechanisms that ALA supports

maintainability.

The refined metrics are based on the ISO 25010 (2011)/25023 (2016) quality model.

The ISO 25010 decomposes maintainability as modularity, reusability, analyzability,

modifiability and testability, while the ISO 25023 defines the specific metrics of each

sub-characteristic. The decomposition of maintainability simplifies the complexity

of performing assessments on a software code base with quantitative measurements.

Wu (2018) states that the software architecture index framework they developed in a

multinational company which based on ISO 25010 has been adopted for more than 100

software products, and it successfully improved their code quality and maintainability

to a great extent. However, some of the metrics of the sub-characteristic defined

by ISO 25023 is not applicable for the measurement of a code base. For instance,

the modularity metrics does not give a clear definition of how to measure coupling.

Hence, some additional metrics are considered and refined to enhance and clarify the

assessments, which are explained respectively and specifically, shown as follows.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 38

2.3.1 Modularity Metrics

The concept of modularity is used primarily to reduce complexity by breaking a system

into varying degrees of interdependence and independence across and "hide the com-

plexity of each part behind an abstraction and interface" (Baldwin & Clark, 2000). In

software engineering, ISO 25010 (2011) defines modularity as "the degree to which a

system or computer program is composed of discrete components such that a change to

one component has minimal impact on other components", and modularity measures

defined by ISO 25023 (BSI ISO, 2016) are used for measuring such degrees.

Table 2.3 illustrates ISO 25023 modularity metrics, the refined metrics, and the

assessments of how ALA conforms to these metrics. The ISO coupling components

metric requires the assessors to count the number of components which have no impact

on others, or no coupling with others. The cyclomatic complexity adequacy is based on

McCabe’s complexity theory (McCabe, 1976). Considering that the ISO 25023 does not

give the measurements to assess whether a component is independent, some coupling

metrics aforementioned in Table 2.2 are studied and refined to measure the coupling of

a code base. The one selected here is CBO, and the reason for that is explained in the

table.

The mechanisms of ALA conforms to a great extent to component coupling metrics.

Among the four layers of ALA, developers need to concentrate on the first three layers

merely. The application layer depends on the rest layers, so it inevitably has coupling

with all the components. However, as the primary elements of ALA, assets of domain

abstraction layer depend on no assets at the same layer, neither does it in programming

paradigm layer. Thus, ALA is supposed to have low coupling values so its modularity

is reversely high. In terms of Cyclomatic Complexity, it is difficult to tell whether

ALA has a proper CC value at a predictive stage, as such metrics is correlated with the

actual design and implementation. However, Table 2.3 demonstrates that Cyclomatic

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 39

ISO
25023
(2016)

1. Coupling of components: X = A/B
- A = Number of components which are implemented with no impact on
others;
- B = Number of specified components which are required to be inde-
pendent;
2. Cyclomatic complexity adequacy: X = 1– A/B
- A = Number of software modules which have a cyclomatic complexity
score that exceeds the specified threshold;
- B = Number of software modules implemented.

Refined
Metrics

1. CBO (Coupling Between Objects Classes) (Chidamber & Kemerer,
1994). This metric includes two aspects of coupling i.e. afferent coup-
ling which means the number of components depends on a component,
and efferent coupling which means the number of components that a
component depends on. CBO is chosen because both the objective of
CBO and the main unit of ALA are classes, so it would be easy to apply
CBO to the code base. Besides, CBO explicitly shows the relations
between classes and interfaces which gives a intuitionistic reflection of
whether a component has coupling with others.
2. CC (Cyclomatic Complexity). CC is used for the measurement of
cyclomatic complexity adequacy. This metric is based on McCabe’s
complexity (McCabe, 1976), and it reflects the complexity of the control
flow in a function or a class.

ALA
(Spray
& Sinha,
2018)

1. Coupling:
- zero coupling between domain abstractions;
- zero coupling between programming paradigms;
2. Cyclomatic Complexity:
- cyclomatic complexity can be dealt by hierarchical layer-based decom-
position;
- cyclomatic complexity is reduced because modules based on abstrac-
tions naturally have a single responsibility.

Table 2.3: Modularity Metrics and Conformity of ALA

Complexity of ALA could be dealt with and reduced due to the design mechanism of

its hierarchical structures and domain abstractions. Hence, we assume that cyclomatic

complexity of ALA is considerably pertinent.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 40

2.3.2 Reusability Metrics

Reuse is the use of previously acquired concepts and objects in a new situation. Re-

usability is a measure of the ease with which one can use those previous concepts and

objects in the new situation (Prieto-Diaz & Freeman, 1987). In ALA, all abstractions

and programming paradigms are designed for reuse. Similar with the situation of modu-

larity, ISO 25023 does not provide a clear definition of what characteristics a reusable

asset should have. To measure that, metric suites of CK (Chidamber & Kemerer, 1994)

and MOOD (e Abreu, 1995) provides different approaches to investigate the classes

from multiple aspects e.g. inheritance and encapsulation. However, some of these

metrics are not appropriate for ALA. For example, there is no inheritance in ALA and

the application of all inheritance metrics merely result meaningless values.

Considering the mechanisms of ALA, we refined metrics for measuring its reusab-

ility, as illustrated in Table 2.4. CBO, LCOM, WMC and IT are used to assess the

potential that an asset could be reused in future development. Among which CBO,

LCOM, WMC intends to predict the reusability, while IT reflects the actual times an

asset has been reused (instantiated) in current code base. For coding rules conformity

assessment, the result of Layer Violations (LV) provides evidence to demonstrate if

dependencies happened in a right way, as well as if domain abstractions conformed

to the defined interfaces of programming paradigms. Sarkar et al., (2006) state that

Layer Violations can be categorized as back-call, which means a lower layer calls the

layer up to it, skip-call which means a upper layer calls at least two layers down to

it, and cyclic dependencies which means two layers call each other bidirectionally. In

ALA, the skip-call is allowed between upper layers and lower layers, so we removed

the skip-call measure but keep the rest two. In addition, the parallel-call should be

considered to ensure no dependencies between classes or interfaces on the same layer.

Mechanisms of ALA is assessed through refined metrics. CBO and NOC could

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 41

ISO
25023
(2016)

1. Reusability of assets: X = A/B
- A = Number of assets which are designed and implemented to be
reusable;
- B = Number of assets in a system;
2. Coding rules conformity: X = A/B
- A = Number of software modules conforming to coding rules for a
specific system;
- B = Number of software modules implemented.

Refined
Metrics

1. Reusability of assets:
- CBO (Coupling Between Objects Classes). Excessive coupling weaken
the encapsulation of a class and inhibits reuse (Laing & Coleman, 2001).
- LCOM (Lack of Cohesion Methods). If a method referred more vari-
ables externally, it is more specific to the application and less reusable
(Chidamber & Kemerer, 1994).
- WMC (Weighted Methods per Class). Large method number of a class
demonstrates more specific functionality to application, limiting the pos-
sibility to reuse (Goel & Bhatia, 2012). While a class with single and
simple responsibility has a higher chance to be reused.
- NOC (Number of Children). More children means more reuse
(Chidamber & Kemerer, 1994). In ALA, this indicates interfaces re-
usability, as there is no class inheritance.
- IT (Instantiated Times). The actual reused times of a class.
2. Coding rules conformity:
- LV (Layer Violations) (Sarkar, Rama & Shubha, 2006). The layered
architecture makes the dependencies only happening from up to down
unidirectionally in ALA. Higher layer violations means lower coding
rules conformity.

ALA
(Spray
& Sinha,
2018)

1. Reusability of assets:
- Reusability increases typically by an order of magnitude as we go down
each layer.
- Two layers are dedicated to reuse, layer 2 for reuse at the domain level,
and layer 3 for reuse at the programming paradigm level.
- Interfaces and domain abstractions are reusable types.
2. Coding rules conformity:
- Domain abstractions conform to coding rules via interfaces.
- The interfaces that exist for connecting domain abstractions are at the
reuse level (and abstraction level) of the framework layer.

Table 2.4: Reusability Metrics and Conformity of ALA

result better result because of the low coupling design and highly reusable program-

ming paradigms. IT is supposed to be high with ALA’s mechanism, as each asset at

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 42

abstraction layer and paradigms layer are abstract, and the application layer instantiates

the abstractions for multiple times to construct and express various requirements. Ac-

cording to Spray and Sinha (2018), the code at the application layer usually occupies

1% of the total amount of code, and any changes of requirements would be directly

expressed at the application layer instead of modifying the deeper layers. Such mech-

anism demonstrates that there might exist 99% of the code that is reusable. In terms

of coding rules, it is indispensable for an ALA code base to conform completely to

the layered architecture to achieve the expected reusability. However, as it requires

the concrete code base to support applying the metrics, the conformity can only be

evaluated at the implementation phase.

2.3.3 Analysability Metrics

ISO 25010 (2011) defines analysability as "the degree of effectiveness and efficiency

with which it is possible to assess the impact on a product or system of an intended

change to one or more of its parts, or to diagnose a product for deficiencies or causes

of failures, or to identify parts to be modified". However, such concept is hard to

be correlated with the measures defined by ISO 25023 (2016), where it concentrates

more on system logs and diagnosis functions, as shown in Table 2.5. Besides, ALA

does not define or outline any rules about system log and diagnosis functions and it

is meaningless and difficult to apply those measures to ALA. Thus, the refinement of

analysability metrics is mainly considered from its definition, which can be summarized

as two goals: (1)The ease of ripple effects identification of an intended change; (2)The

ease to locate the parts that need to change with specific maintenance intention; We

came up with the refined metrics list for measuring analysability, as illustrated in Table

2.5.

Whether ripple effects of a modification on a class happens usually depend on if

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 43

ISO
25023
(2016)

1. System log completeness: X = A/B
- A = Number of logs that are actually recorded in the system;
- B = Number of logs for which audit trails are required during operation;
2. Diagnosis function effectiveness: X = A/B
- A = Number of diagnostic functions useful for causal analysis;
- B = Number of diagnostic functions implemented;
3. Diagnosis function sufficiency: X = A/B
- A = Number of diagnostic functions implemented;
- B = Number of diagnostic functions required.

Refined
Metrics

- CBO (Coupling Between Object Classes). This metric is used for
measuring the ripple effects of any changes on a class or an interface
(Chidamber & Kemerer, 1994) (the first and second goal).
- LCOM (Lack of Cohesion Methods). Similar with CBO, but stands at
the methods level. A method which has less reference of other variables
out of it has less side effects when making a modification, so it increases
the analysability (Chidamber & Kemerer, 1994) (the first and second
goal).
- LOC (Lines of Code) (Albrecht & Gaffney, 1983). If an asset had
more lines of code, the difficulty of analysis activities might increase
(the second goal).
- CP (Commenting Percentage) (Steidl, Hummel & Juergens, 2013).
Proper comments helps maintainers locating where to change, enhance
the analysability of a code base (the second goal).

ALA
(Spray
& Sinha,
2018)

- requirement changes are overlaid first on the top-level application, with
changes decomposed and localized to interfaces and domain abstractions.
- Use of abstractions (rather than just modules) together with the emphasis
on knowledge dependencies rather than run-time dependencies.

Table 2.5: Analysability Metrics and Conformity of ALA

there existed other classes which has coupling with it. For example, if a large number of

classes had dependencies on a single class, then changes on this class would probably

impact those has coupling with it. If there were more classes depend on those impacted

classes, then more ripple effects might be caused. Thus, the coupling metric CBO is

considered as a measurement of assessing the possibility of arising ripple effects. A

lower CBO value of a class means less coupling and it would be easier to identify ripple

effects of changes. CBO also works on the second goal to identify the relationships

between classes. Besides the metrics LOC, CP and LCOM can be used to measure the

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 44

internal side of a class i.e. properties, methods.

It is not feasible to carry out the assessment of ALA’s analysability in current

phase. Among the metrics refined, the only predictive one is CBO due to the design

mechanism of ALA, and it has been explained in the previous sections. The other

metrics are determined by the way the code base is implemented. Moreover, Spray

and Sinha (2018) do not give clear explanations of the two goals for analysability we

identified before, neither of the ISO 25023 measures. They focus more on requirements

decomposition and dependencies, as shown in Table 2.5. Therefore, we assume that

analysability of ALA might not be ideally tackled and the analysability of it is low.

2.3.4 Modifiability Metrics

Modifiability is conceptualized as "the degree to which a product or system can be

effectively and efficiently modified without introducing defects or degrading existing

product quality, and it is influenced by modularity and analysability" (BSI ISO, 2011).

Measures defined by ISO 25023 (2016) can be directly applied on a code base, as they

are all about the ease of carrying out concrete maintenance activities with real intended

modifications e.g. deficiencies correctness, new feature implementations. Thus, it is

not necessary to refine metrics for modifiability, but just compare ISO measures with

ALA’s mechanisms, as shown in Table 2.6.

Modifiability cannot be directly assessed under such circumstances. As aforemen-

tioned, measures presented by ISO 25023 mainly work on a concrete code base, and

real maintenance activities are required in the assessments. Apart from that, Spray and

Sinha (2018) did not give clear clues of how ALA conforms to the measures, but more

on explaining the independence of abstractions and interfaces, as shown in Table 2.6.

Hence, prediction of ALA’s modifiability primarily comes from the combination of

modularity and analysability, as stated by ISO 25023 (2016). Previous assessments

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 45

ISO
25023
(2016)

1. Modification efficiency: ∑(Ai/Bi)/n
- Ai = Total work time spent for making a specific type of modification i;
- Bi = Expected time for making the specific type of modification i;
- n = Number of modifications measured, i ranges from 0 to n;
2. Modification correctness: X = 1 – (A/B)
- A = Number of modifications that caused an incident or failure within a
defined period after being implemented;
- B = Number of modifications implemented;
3. Modification capability: X = A/B
- A = Number of items actually modified within a specified duration;
- B = Number of items required to be modified within a specified duration.

ALA
(Spray
& Sinha,
2018)

- Domain abstractions have zero coupling.
- Domain abstractions and interfaces can be checked individually.
- Module dependencies are always on interfaces that are at least one
abstraction level more stable.

Table 2.6: Modifiability Metrics and Conformity of ALA

demonstrate that modularity of ALA is considerably high while analysability of ALA is

low, so we assume that modifiability of ALA is medium.

2.3.5 Testability Metrics

ISO 25010 (2011) defines software testability as "the degree of effectiveness and

efficiency with which test criteria can be established for a system, product or component

and tests can be performed to determine whether those criteria have been met". The

measures of testability is not directly reflected and defined in ALA, so we refined the

metrics from the definition of testability. In this case, we mainly consider the ease of

test criteria establishment and execution, we refined the metrics as CBO, LOC, WMC

and LCOM, as illustrated in Table 2.7.

For testability assessment in this phase, measures defined by ISO 25023 (2016) is

not correspondingly explained in ALA, as shown in Table 2.7. However, we can specify

the ease of tests of ALA from its mechanisms and testability definitions. First, test

criteria/functions are easy to establish for both unit test and integration test. Domain

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 46

ISO
25023
(2016)

1. Test function completeness: X = A/B
- A = Number of test functions implemented as specified;
- B = Number of test functions required;
2. Autonomous testability: X = A/B
- A = Number of tests that can be simulated by stub among the tests
which depend on other systems;
- B = Number of tests which depend on other systems;
3. Test restartability: X = A/B
- A = Number of cases in which maintainer can pause and restart execut-
ing test run at desired points to check step by step;
- B = Number of cases in which executing test run can be paused.

Refined
Metrics

- CBO (Coupling Between Object Classes) (Chidamber & Kemerer,
1994). Less coupling with other components makes it easier to write an
unit test case and run it.
- LOC (Lines of Code) (Albrecht & Gaffney, 1983). It is about the size
of the code base, a class with bigger size is supposed to be harder to test.
- WMC (Weighted Methods per Class) (Chidamber & Kemerer, 1994). It
measures the cyclomatic complexity of a class. A higher value of WMC
means the class is more complex, increase the effort to test.
- LCOM (Lack of Cohesion Methods) (Chidamber & Kemerer, 1994).
Similar with CBO, but stands at the method level inside a class. A
method which has less reference of other variables will be easier to test,
as less conditions need to be considered.

ALA
(Spray
& Sinha,
2018)

- Domain abstractions can be tested individually.
- Internal working of domain abstractions can be tested with straightfor-
ward integration tests by wiring each possible combination of abstraction.
- Application can be tested easily using mocked or modified versions of
I/O abstractions.

Table 2.7: Testability Metrics and Conformity of ALA

abstractions are independent units that can be tested individually, as well as being

combined to verify a specific function or requirement. Second, single and simple

responsibility of domain abstractions makes it effortless to achieve test goals, whether

with autonomous test or manual test. Third, small sizes of unit tests and integration tests

promotes to establish break points, and preliminary conditions for such break points.

Hence, we conclude that testability of ALA is supposed to be significantly high.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 47

2.3.6 Summary

Based on the quality model of ISO 25010 (2011) and ISO 25023 (2016), we carried out

metrics refinements of each sub-characteristics of maintainability, making them directly

applicable for ALA code base.

A preliminary assessment of ALA was carried out from its design mechanisms

by comparing with ISO standards and the refined metrics, as illustrated in Table 2.8.

We conclude that the modularity, reusability and testability of ALA is considerably

high, as they conform to a great extent to the measures reviewed. Analysability is

not well handled, because little common points could be identified between ALA

mechanisms and the measures. So we assume that analysability of ALA might be low

tentatively. Modifiability cannot be assessed in this phase because the metrics requires

concrete maintenance activities. Thus we simply combined the result of modularity and

analysability under the definition of ISO 25010, conclude that modifiability of ALA is

medium.

For maintainability evaluations in the subsequent phases, metrics for modularity,

reusability, analysability and testability can be applied directly on the code base. Thus

this can be done once the code base is finished, and such measurements would produce

data for predicting the potential efforts for future developments. However, to measure

the actual performance of modifiability, maintenance activities needs to be carried out

under real commercial environment. Such activities would generate data for analysing

the actual modifiability of a code base.

2.4 Conclusion and Limitations

In this chapter, studies related to maintainability, metrics of it and its sub-characteristic

were systematically reviewed. We specifically highlighted maintainability measures and

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 48

Metrics ALA’s Mechanism Result

Modularity 1. CBO
2. CC

1."Zero coupling" between abstractions;
"zero coupling" between programming
paradigms.
2.Cyclomatic Complexity can be dealt by
single-responsibility domain abstractions.

High

Reusability

1. CBO
2. LCOM
3. WMC
4. NOC
5. IT
6. LV

1.Same as CBO in Modularity.
2.Depends on how many properties exist in
a domain abstraction and how they are re-
lated, determined by implementation.
3.The CC of methods, would be lower than
that in a class.
4.The NOC of programming paradigms
would be significantly high.
5.All domain abstractions would be instanti-
ated by more than one time.
6.ALA restricts the responsibility of layers,
and theoretically LV would be 0.

High

Analysability

1. CBO
2. LOC
3. CP
4. LCOM

1.Same as CBO in Modularity.
2.A single-responsibility domain abstraction
would have considerably reasonable LOC,
determined by implementation.
3.The domain abstractions would be prop-
erly commented, determined by implement-
ation.
4.Same as LCOM in Reusability.

LOW

Modifiability Not
Refined

As the measures require concrete mainten-
ance activities, and ISO 25010 (2011) ex-
plains that Modifiability is influenced by
Modularity and Analysability, we simply
assume Modifiability of ALA is medium.

Medium

Testability

1. CBO
2. LOC
3. WMC
4. LCOM

1.Same as CBO in Modularity.
2.Same as LOC in Analysability.
3.Same as WMC in Reusability.
4.Same as LCOM in Reusability.

High

Table 2.8: Preliminary Assessment of ALA

the preliminary assessment of ALA by comparing its mechanisms with those measures.

Finally we came up with the answers for the two research questions.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 49

2.4.1 Answering Research Question 1 and 2

Through the literature review, the two research questions can be answered:

RQ1. What are the most relevant measures for assessing maintainability?

RQ2. Which mechanisms in ALA support these measures?

In terms of RQ1, ISO 25010 (2011) quality model decomposes maintainability as

modularity, reusability, analysability, modifiability and testability, while ISO 25023

(2016) provides measurements for the sub-characteristics respectively. The ISO models

systematically involves factors that have impact on maintainability in the SDLC and

the metrics it defined are considerably relevant measures for assessing maintainability.

Besides, it explicitly demonstrates the characteristics and mechanisms of a maintainable

code base, or an architecture. However, as some measures of ISO 25023 cannot be

directly applied on a code base, we reviewed and refined more general maintainability

metrics e.g. McCabe’s Cyclomatic Complexity (McCabe, 1976), CK Metric Suite

(Chidamber & Kemerer, 1994), MOOD Metric Suite (Abreu & Carapuça, 1994) to

make them applicable on a code base under the ISO quality model, and these refined

metrics are correlated with maintainability as well.

With respect to RQ2, through the analysis of ALA’s mechanisms and the identified

measures of a maintainable code base, we conclude that ALA potentially and ideally

supports modularity, reusability and testability to a great extent. Analysability might not

be well handled in ALA, as no straightforward evidence shows ALA conforms to the

refined metrics, neither for ISO standards. Modifiability cannot be measured without

the code base and maintenance tasks, thus we speculated that it is at a medium level

due to the performance of modularity and analysability. Overall, because most of the

sub-characteristics of maintainability is well supported by ALA, we conclude that ALA

code bases have considerable maintainability.

Chapter 2. A Systematic Literature Review of Measures for Code Maintainability 50

2.4.2 Limitations of This Literature Review

There exist multiple factors that might have influence on the interpretation of the

findings in this literature review, and they are listed as follows:

1. The size of the studies is limited. Given the limited time to conduct the SLR,

the lack of an even deeper analysis can be seen as a potential limitation of these

findings.

2. Bias might not be removed due to the cultural background as English is the second

language of the author that some studies might not be correctly understood and

interpreted in the review.

3. A lack of prior studies on ALA makes the review having limited knowledge on

the background and applications of this architecture.

Chapter 3

Methodology

This chapter discusses the methods used to answer each of the following five research

questions:

RQ1. What are the most relevant measures for assessing maintainability?

RQ2. Which mechanisms in ALA support these measures?

RQ3. How can the process of re-architecting an existing C# application using ALA be

generalised for use in future projects?

RQ4. How do the existing implementation of the C# application and the new re-

implementation as a result of answering RQ3 compare when assessed for maintainability

using the measures identified in RQ1?

RQ5. How well does the assessment carried out in RQ4 relate to the expected enhance-

ments in maintainability from ALA (as identified in RQ2)?

For RQ1 and RQ2, a systematic literature review was conducted (see Chapter 2).

The rest of this chapter is organized to explore the approaches for answering RQ3–5.

Section 3.1 explains the process followed to select a research method. This process

resulted in choosing a mixed-methods strategy, as well as specific ways to generate,

gather and analyze data. Section 3.2 describes the method for re-architecting and

implementing the ALA code base to assure that this research is reproducible. Finally,

51

Chapter 3. Methodology 52

Section 3.3 provides concluding remarks with additional information about the validity

of data and experiments.

3.1 Selection of Research Method

General research methods involve qualitative, quantitative, or mixed-methods studies

(Creswell, 2014). In this case, as we aim to achieve different research goals for

RQ3, RQ4 and RQ5, a mixed-methods strategy which integrates both qualitative and

quantitative methods was considered. However, according to Easterbrook et al.,(2008),

there exist a lot of concrete methods which can be used for specific researches. Thus,

we explored a number of options before choosing specific methods for this research:

Case Studies is particularly helpful in the situation where some specific problems

and phenomena that need to be studied and explained in great-depth (Noor, 2008). A

case study might not address the generalizability well, but the data being collected could

be abundant.

Design Science works specifically when an artefact or a recommendation is con-

sidered to be the desired research goal, and such research could be carried out in either

an academic or an organizational environment (Dresch, Lacerda & Antunes, 2015).

Controlled Experiments and Quasi-Experiments are widely applied in science

research. They allow us to investigate how various variables are related, and whether

there exists a cause-effect relationship between them based on some testable hypothesis

(Easterbrook et al., 2008).

Survey Research refers to a set of methods which focuses on both qualitative and

quantitative analysis, where data from a large number of sources would be collected

through questionnaires, interviews, published and unpublished statistics, and the data

were analysed with statistical techniques (Gable, 1994).

Ethnographies are a scientific approach to discovering and investigating social and

Chapter 3. Methodology 53

cultural patterns and meaning in communities, institutions and other social settings

(Schensul, Schensul & LeCompte, 1999).

Action Research produces highly relevant research results, because it is grounded

in practical actions, aimed at solving an immediate problem situation while carefully

informing theory (Baskerville, 1999).

3.1.1 Our Approach

Considering the characteristics of the listed methodologies above, in this case, we mixed

Case Study and Quantitative Experiments to achieve the research goals of RQ3, RQ4

and RQ5. The rationale of the selected methods to answer the corresponding research

questions is explained in Table 3.1.

RQ Methodology Rationale

RQ3 Case Study

1. ALA is a reference architecture which was proposed
and explained on its design mechanisms by Spray and
Sinha (2018). A method to develop such kind of ap-
plication needs to be established on a concrete project;
2. Since we don’t have many cases for this new ar-
chitecture, a case study is the first step to explore the
feasibility of ALA, and it would generate abundant
data which can help infer a general method of ALA
application development.

RQ4, RQ5
Quantitative
Experiments

1. It is not feasible to compare the re-developed code
base with the legacy one directly. However, the main-
tainability metrics refined in Section 2.3 resulted in
quantitative data which makes the comparison of the
two code bases possible.
2. The actual modifiability can be measured and re-
flected by carrying out real maintenance tasks on the
two code bases respectively.

Table 3.1: Selection of Research Methods

This mixed approach helps to improve the depth of data productions and collections,

analysis and interpretations from multi-perspectives, and compensates for the limitations

Chapter 3. Methodology 54

of each other (Creswell & Creswell, 2017).

3.1.2 Experiment Design and Data Interpretation

Experiment design structures the process of carrying out the experiments to address the

research questions. To evaluate the maintainability of ALA, we need to construct an

ALA code base with the requirements of the existing application, and apply the metrics

refined in Section 2.3 to it as well as the legacy code base to gather data for analysis.

Mason et al.(2003) and Wohlin et al. (2012) explain that experiment design usually

involves critical stages:

1. Problem definition. This was identified through the five formulated research

questions RQ1–5.

2. Experimental planning. A qualitative case study was selected to achieve the

research goal of RQ3, and a quantitative experiment approach was selected to

address RQ4 and RQ5 (Table 3.1).

3. Operation or execution. We crucially followed the method of ALA architecture

design and software development method (Section 3.2), and used a tool to generate

and gather the metrics result (Section 3.1.3).

4. Interpretation or statistical analysis. We carried out both qualitatively and quantit-

atively comparative analysis.

To answer the research questions, we simply carried out comparative analysis to

report the findings. Comparison is a significant test of focused questions in which

specific intentions can be evaluated by comparing the obtained data (Rosenthal, Rosnow

et al., 1985). In this case, the interpretation needs to be both qualitative and quantitative:

Chapter 3. Methodology 55

RQ3 was answered qualitatively, because we mainly recorded the development

process and steps to infer a method for ALA development under a general frame-

work.

RQ4 was addressed quantitatively, as metrics are quantitative in nature which

allows us to compare the two code bases in a straightforward manner.

RQ5 requires both qualitatively and quantitatively reasoning, as the result of

experiments might either support or oppose the preliminary assessment result. A

mixed interpretation was used to help us identify the merits and downsides of

ALA.

3.1.3 Data Generation and Gathering

For RQ4 and RQ5, we needed to collect data from the legacy and the re-developed code

bases by applying the metrics refined in Section 2.3. However, the metrics could not be

applied manually due to the size of the code bases and the complexity of the identified

metrics. The legacy code base includes more than 30,000 lines of code and more than

400 classes according to the metric tool of Visual Studio 2017. Further on that, some

metrics such as Cyclomatic Complexity required us to investigate all the branches of

each line of code. As such activities is impossible to complete manually in a limited

duration, an automatic tool was considered to generate and collect data.

We compared three tools: Designite (Sharma, Mishra & Tiwari, 2016), NDepend

(Smacchia, 2007) and Visual Studio Metric Tool (Table 3.2). All of them were Visual

Studio plugins and specifically designed for C# code bases. We finally concluded that

NDepend is more suitable and effective for this research for the following reasons:

1. NDepend integrated all the metrics identified in Section 2.3.

2. NDepend provides an overall view of the dependency relations of all the classes,

Chapter 3. Methodology 56

Metrics Other

Designite
(Sharma,
Mishra
& Tiwari,
2016)

It computes more than
30 design metrics, but
only 6 out of 12 metrics
identified in Section 2.3
are included.

1. It is an intelligent tool as it integrates
code smells based on machine learning.
2. It offers a rich set of visualizations for
software developers, designers, and archi-
tects to visualize various issues affecting
the maintainability of their software.

NDepend
(Smacchia,
2007)

It implements more than
20 metrics, and 12 out
of 12 metrics identified
in Section 2.3 are in-
cluded.

1. It provides an overall view of the de-
pendency relations of all the classes, in-
terface even methods, which provides a
higher-level view of the code base.
2. It supports customized query based on
programmable conditions, so the user can
combine the possible metric result by pro-
gramming.

Visual Stu-
dio Metric
Tool

It includes 4 out of
12 metrics identified in
Section 2.3.

1. An official plugin of Microsoft and it
is profoundly integrated in Visual Studio
Environment, it is free and easy to use.

Table 3.2: Selection of Metric Tool

interface even methods, which helps us to specify maintainability from an overall

view.

3. NDepend supports customized query based on programmable query language,

which provides more flexibility when generating data.

3.2 Software Re-development

This section explains the methods correlated with the requirements, architecture design

and SDLC management. Section 3.2.1 describes the way to elicit the requirements and

manage the correctness and consistency of the requirements. Section 3.2.2 presents the

way of re-architecting the legacy application with ALA. In Section 3.2.3, the process

management method of carrying out the re-development is discussed and determined.

Chapter 3. Methodology 57

3.2.1 Requirements Elicitation and Management

For re-architecting an existing application, the first goal was to make sure it has the

same requirements as the legacy application. In this case, we took three measures to

assure the correctness, comprehensiveness and consistency of the requirements:

1. The requirement and development documentations of the legacy code base, as

well as the legacy application itself, were referred to carry out the design and

implementation.

2. The maintainer of the legacy application participated in the design process to

provide accurate and consistent information on the requirements.

3. During the design and implementation, no requirement was allowed to change

when comparing with that in the legacy application.

3.2.2 ALA Architecture Design

Software architecture design usually includes a series of activities such as requirements

analysis and decomposition, and finally results architectural documentations such as

the 4+1 views (Kruchten, 1995). The architecture design of ALA is similar, but more

specifically focuses on the design of Programming Paradigms and Domain Abstractions

which are the design activities, and Expression of Requirements which is the architectural

documentation (Chapter 4).

Spray and Sinha (2018) state that the architecture design of ALA intends to put

architectural elements and requirements together and express them in a straightforward

manner. This specific method made the output of an ALA architecture design a diagram

which includes abstractions (classes), programming paradigms (interfaces) and wiring

instances of abstractions (requirements). To achieve that goal, we critically followed

Chapter 3. Methodology 58

the design notions and principles of ALA, make sure that we did not introduce any

technical and personal bias in the design phase.

3.2.3 Software Development Life Cycle Management

Despite of the requirements and architecture aforementioned, we need to apply a method

to manage the software development life cycle to simulate the commercial environment

of Datamars and manage the process of ALA software development. Such method

helped to formalize the re-development process and generate evidence for generalizing

an ALA development method for RQ3.

The basic idea is to choose an agile method due to its extensive use for commercial

projects like Datalink, but we specifically selected Scrum (Schwaber, 1997) to drive the

re-development, because:

1. Scrum is a representative methodology in the agile family and it is used widely in

companies nowadays, which helps us to investigate the feasibility and maintain-

ability of ALA under such circumstance.

2. Since Datamars also adopts Scrum to drives its commercial projects, using Scrum

helps us to simulate such commercial environment and create comparative found-

ations for the maintenance experiments in the later phases of this research.

3. The Scrum method conforms to the original research plan in the very first step,

where an iteration zero was used to design the architecture of Datalink with ALA.

3.3 Conclusion and Approaches Validity

In this chapter, we explored methods for carrying out the research activities. Basically,

the whole research was under a Design Science framework (Figure 3.1). A hybrid

Chapter 3. Methodology 59

strategy was used to address each research question. We mainly adopted a case study to

answer RQ3, and quantitative experiments to answer RQ4 and RQ5. In addition, we

followed the ALA architecture design and a general software development method to

manage the operation and execution. Besides, a metric tool (NDepend) was used to

automatically generate and collect metrics data.

Figure 3.1: Design Framework of This Research

Chapter 3. Methodology 60

3.3.1 Validity of Data

It is up to the researchers and research participants who attempt to build validity into

the different phases of the research from data collection through to data analysis and

interpretation (Zohrabi, 2013). Data validity is fundamental and indispensable for what

concerned with the reliability and evaluations of the research objectives. Researchers

usually use different instruments to collect data, so that the quality of these instruments

is very critical because the conclusions researchers draw are based on the information

they obtain using these instruments (Fraenkel, Wallen & Hyun, 2011). In this case, we

adopted measures to assure the data validity:

1. Metrics were applied objectively with NDepend and data were recorded under

the same metrics refined.

2. For data collection in the experiments, NDepend was used to generate and gather

a united form of data for maintainability metrics which alleviates the difficulty

for data comparisons and analysis.

3.3.2 Validity of Experiments

Both "applied" and "theoretical" experiments almost always have the goal of general-

izing the results to populations that are comprised partly (or wholly) of measures of

future behaviors (Lynch Jr, 1982). However, it is impossible to randomly assign the

experimental population here. To reduce the bias of the results, we utilised a commercial

development environment, under which we created the similar foundations as the legacy

Datalink to carry out the experiments. The measures for experiments validity are:

1. We utilised a commercial environment for producing reliable data. As foremen-

tioned, a systematic software development life cycle method was followed to

Chapter 3. Methodology 61

manage the development procedure, and the whole process was carried out in a

real company (Datamars).

2. The design notions and principles of ALA was stringently followed, making sure

that we did not introduce technical and personal bias to the code base to provide

more reliable and valid population for the experiment and analysis stages.

Chapter 4

Re-developing Datalink with ALA

This chapter details the process of re-architecting and implementing the legacy Datalink

with ALA. We carried out the corresponding activities i.e. architecture design, imple-

mentation and maintenance of the general process of a SDLC. We adopted the Scrum

(Schwaber, 1997) method to drive each activity, which aimed to simulate the real en-

vironment of Datamars. Based on the whole re-development, we proposed a general

method to develop ALA applications.

The rest of this chapter is organized as follows. Section 4.1 describes iteration

zero which was carried out to re-architect Datalink with ALA based on the require-

ments of the legacy application. The architectural elements of ALA i.e. programming

paradigms, domain abstractions and requirements expression were iteratively designed

and documented. Section 4.2 describes the way of using Scrum to drive the implement-

ation. We also explained the technical background that helps the implementation and

gave some examples of the code. At the end of the implementation, we inspected the

completeness of the re-developed ALA Datalink by comparing with the legacy one.

Section 4.3 discusses the maintenance activities in the re-developed ALA code base.

Section 4.4 summarizes the re-development and proposes a general way to develop

ALA applications.

62

Chapter 4. Re-developing Datalink with ALA 63

4.1 Architecture Design of ALA Datalink

Bass et al., (2003) states that "software architecture design is the process that decom-

poses the requirements into structures or structures of the system, which comprise

software elements, the externally visible properties of those elements, and the rela-

tionships among them". For ALA Datalink, Spray and Sinha (2018) emphasized the

importance of up-front design, in which the functional requirements need to be reviewed

thoroughly, and then be composed from domain abstractions.

The rest of this section is based on the architecture design of ALA Datalink. First,

we explored the requirements of Datalink in Section 4.1.1, both functional and non-

functional. Second, Section 4.1.2 details the process of designing Datalink architecture,

and decomposing the identified requirements with ALA. Finally, Section 4.1.3 explains

the way we documented the architecture design of ALA Datalink.

4.1.1 Requirements of Datalink

Software requirements can be classified as functional and non-functional (Loucopoulos

& Karakostas, 1995). Functional requirements includes the features, functionalities

that define the behavior of a system (Pohl, 2010), while non-functional requirements

refer to the quality attributes of a system (L. Chen, Babar & Nuseibeh, 2012). For ALA

Datalink, the requirements also come from the two aspects.

Functional Requirements

Datalink was designed for the customers of Datamars to manage the data of the portable

embedded livestock devices through a computer. It is a Windows desktop application

that was developed in C#, which allows the livestock devices to connect with it through

the USB ports of a computer, and manage the data on the connected devices.

Figure 4.1 illustrates the home page of the legacy Datalink, which consists of

Chapter 4. Re-developing Datalink with ALA 64

Figure 4.1: The Home Page of Legacy Datalink

several function areas e.g. the menu bar "File", "Tools" and "Help" at the top, the

operational buttons at the down side of the menu bar, and the data displaying section

that occupies most of the page in the middle and bottom. The data in the grids comes

from a connected "XR3000" device which is marked as "Connected to XR3000" at the

bottom left side, and the data is transported through USB cable from the device to the

application.

Since we aim to re-develop the existing application, the requirements of Datalink

were determined to be the same as the legacy application. We summarized the main

requirements that we sought to accomplish in this research, shown as follows:

1. It is able to connect to all livestock management devices of Datamars e.g.

"XR3000", "XRS", "XRS2" through USB ports to interact with the connected

devices i.e. sending messages, receiving messages.

2. The data in any connected devices can be downloaded and displayed in the

corresponding presentation areas. In Datalink, the data of a device is classified

Chapter 4. Re-developing Datalink with ALA 65

as session files and session data. The former includes the basic information of

session files e.g. name, date, which is presented in the grid at the left side in

Figure 4.1, while the latter is the content of each session file which consists of

the concrete animal information such as "EID", "Weight", and it is displayed in

the grid at the right side of Figure 4.1.

3. The session data in any connected device can be downloaded and saved to csv

files in the computer with a given format.

4. Any formatted session csv files can be imported to the application and uploaded

to a connected device through the application.

5. The session data can be uploaded to the cloud services e.g. NAIT (National

Animal Identification and Tracing is a system of agricultural animal tracing in

New Zealand for bio-security and human health).

Non-functional Requirements

The implementation of non-functional requirements lies in the architecture, which

significantly impacts the quality attributes of a system (L. Chen et al., 2012). For the

re-developed Datalink, the architecture we adopted is determined with ALA, and this

architecture was supposed to improve the maintainability of the code base. However,

there exists other quality attributes need to be considered:

• Interoperability. According to ISO 25023 (2016), interoperability reflects the

degree of information exchange and successful use of the exchange between

more than two components, systems, and products. Datalink needs to fetch data

from the devices or upload data to the devices, thus the interaction between the

application and the devices needs to be considered through interoperability.

Chapter 4. Re-developing Datalink with ALA 66

• Usability. ISO 25023 (2016) explains usability as the degree of the system or

product can be used by particular users for achieving specific intentions under

specific context, and the process is considerably effective, efficient and satisfied.

In Datalink, the usability is an indispensable attribute because it is developed for

the ordinary users, and it directly impacts the value of the software for customers.

4.1.2 The Architecture Design Process

Spray and Sinha (2018) state that the designer of an ALA application needs the skills

of a software architect who should possess the knowledge of the design principles

presented in their article. In this case, the design of ALA Datalink was under the

help of the software architect of Datamars, and the maintainer of the legacy Datalink.

The former provided suggestions and decisions on the design, while the later afforded

accurate information on the details of the requirements.

The architecture design of Datalink with ALA is the process that decomposes

the previously identified functional requirements into ALA elements i.e. domain

abstractions, programming paradigms and requirements expression, which constitute

the three programmable layers of ALA.

A General Process of ALA Architecture Design

The architecture design of ALA Datalink is not like building a mansion where each

level (layer) is constructed from bottom to top after the lower level is accomplished.

According to Spray and Sinha (2018), ALA design involves one requirement and design

for it at a time, until all the requirements are included and designed.

Therefore, the whole architecture design is an iterative process, as illustrated in

Figure 4.2. We started with picking up one requirement and decomposing it into

programming paradigms and domain abstractions. We specified the requirements by

Chapter 4. Re-developing Datalink with ALA 67

Figure 4.2: ALA Datalink Architecture Design Process

increasing the depth and breadth, the programming paradigms and domain abstractions

were confirmed by the ongoing iterations.

Principles of Designing Domain Abstractions

Visser (2007) states that abstraction is the only way to achieve knowledge separation

ultimately. Domain abstractions in ALA aims to get rid of knowledge from the specific

requirements, and providing general and reusable functionalities to build specific applic-

ations under the way they are wired. Based on the experience of the software architect

of Datamars, as well as the actual design activities we carried out, some suggestions are

given to design high-quality domain abstractions:

1. Spray and Sinha (2018) state that any object-oriented system that is developed in

any language involves certain degree of data flow, control, and user interactions

considerably. Such commonalities bring us some frequently used abstractions,

for example, a data grid which displays two-dimensional data with a giving data

source, and a sort which orders the data in a data structure with an assigned

sequence.

Chapter 4. Re-developing Datalink with ALA 68

2. A good abstraction does not possess any knowledge of the application. Specific-

ally, such abstractions usually have general functionalities, and it is hard to know

the way it correlates with the application until it is instantiated, configured and

wired.

3. A good abstraction usually has fewer input and output ports. Input ports of an

abstraction represent the interfaces it implements, whereas output ports mean

the interface fields it declares inside its class body. More input or output ports

increases the particularity and complexity of wiring, correspondingly, decrease

the extent of abstract.

The maintainability of ALA depends significantly on the quality of the domain

abstractions. Good domain abstractions reduce the maintenance efforts to a great extent,

where the potential maintenance intentions can usually be satisfied by wiring existing

abstractions. Otherwise, the design and implementation of new abstractions would

considerably increase the maintenance efforts. Thus, it is indispensable to follow the

principles to design high-quality domain abstractions.

The Deliverable

The architecture design resulted nine programming paradigms and 47 domain abstrac-

tions, as illustrated in Table 4.1 and 4.2 (refer Appendix A to see the whole list and

detailed explanations of the functionalities and design notions of those elements). The

requirements expressions that located at the application layer is the way to wire the

suitable abstractions to satisfy the requirements, which is illustrated in Section 4.1.3.

The domain abstractions in Table 4.2 are able to represent all the requirements

of Datalink under different wiring compositions. Before these abstractions being

instantiated and wired, it is hard to relate them with the requirements, because they

are good abstractions that only provide general functionalities and are less specific to

Chapter 4. Re-developing Datalink with ALA 69

Type Paradigms
UI IUI, IUIWizard

Event IEvent, IEventB
Data Flow IDataFlow, IDataFlowB, ITableDataFlow
Connector EventConnector, DataFlowConnector

Table 4.1: Programming Paradigms of Datalink

Type Abstractions

UI

Button, Grid, MainWindow, Menu, MenuItem, Menubar, Hori-
zontal, OpenFileBrowser, OpenWindowsExplorer, OptionBox,
OptionBoxItem, Panel, Picture, PopupWindow, ProgressBar,
RightJustify, RowButton, SaveFileBrowser, StatusBar, Text,
ToolBar, Tool, Vertical, Wizard, WizardItem

Data Processing
ConvertTableToDataFlow, ConvertToEvent, Count, Equals, Fil-
ter, Iterator, LiteralString, Map, Not, Select, Sort, StringFormat,
Transact, Value

Gate DataFlowGate, EventGate

SCP and I/O
LifeDataSCP, SCPDeviceSense, SCPProtocol, SessionDataSCP,
SessionListSCP, CSVFileReaderWriter

Table 4.2: Domain Abstractions of Datalink

the application. Apart from the SCP and I/O abstractions which were specifically

designed for the interaction between the devices and Datalink, the other abstractions

can be commonly used in many different projects.

4.1.3 Architectural Documentation

According to Kruchten (1995), software architecture documentation involves the 4+1

views i.e. logical view, development view, process view and physical view. In ALA,

Spray and Sinha (2018) state that the logical view plays the most important role

as it impacts the maintainability directly. The architecture documentation of ALA

Datalink was completely based on the logical view, but elaborates the design notions

of the domain abstractions and programming paradigms, as well as the requirements

expressions, which makes it possible to effectively guide the implementation.

Chapter 4. Re-developing Datalink with ALA 70

Figure 4.3: A Partial Requirements Expression of Datalink

Documenting the Design of ALA Datalink

Since we already have the domain abstractions designed in the previous section, we

can wire them to satisfy the requirements of Datalink. Figure 4.3 partially illustrates

the requirements expression of the data grid at the left side in Figure 4.1. Generally,

the lines represent the wiring relations between the abstractions, while the arrow lines

demonstrate that they are events or data flows go that direction, and whether it is event

or data flow depends on the input port of the directed abstraction. For example, there

exists a "Start" event for Transact, which means when the event triggers, the Transact

starts to work and feeds data to the Grid.

Figure 4.4 partially illustrates the architecture documentation of ALA Datalink. The

three rec-tangled sections represent the domain abstractions, programming paradigms

and application layer respectively. The domain abstractions and programming paradigms

were put in a list to explain the rationale of the design and functionalities (refer Appendix

A to see the whole list of the detailed design of domain abstractions and programming

paradigms), while the requirements expression describes the way the domain abstrac-

tions are wired to satisfy the requirements.

Besides, the software we used to document the architecture design is XMind. We

Chapter 4. Re-developing Datalink with ALA 71

Figure 4.4: Architecture Documentation of Datalink

selected XMind for the following reasons:

1. XMind turns out to be a fine way to draw ALA design because it keeps itself laid

out, leaving us free to represent requirements and invent abstractions as we go.

2. The red cross lines are also very quick to do, and can be tidied up relatively and

easily to wire the instances of abstractions that are reused for multiple times in

different requirements expressions.

A complete architecture design documentation of ALA Datalink can be download

from here: https://github.com/cdxybf/ALA_Datalink/blob/master/

ALA_DataLink/Application/Datalink.xmind.

Quality of ALA Datalink Documentation

A well-documented architecture plays an indispensable role in software development

which helps to promote the effectiveness and efficiency of the implementation and

https://github.com/cdxybf/ALA_Datalink/blob/master/ALA_DataLink/Application/Datalink.xmind
https://github.com/cdxybf/ALA_Datalink/blob/master/ALA_DataLink/Application/Datalink.xmind

Chapter 4. Re-developing Datalink with ALA 72

maintenance. According to Clements et al., (2002), a sound architectural documentation

should cover seven fundamental principles, as shown in Table 4.3. We systematically

compared the ALA architecture documentation with the principles, concluded that the

architectural documentation of ALA Datalink is sound.

Principles ALA Documentation

Writing from the perspective
of the reader

The potential readers are developers, as it guides
the development and maintenance. The docu-
mentation was also written from the perspective
of implementation (Section 4.1.3).

Avoid unnecessary repetition
There exists only one documentation, and each
section has clear and independent responsibility
(Figure 4.4).

Avoid ambiguity

Programming paradigms and domain abstraction
are easy to understand as they are small pieces,
while requirements are straightforward and ex-
ecutable (Figure 4.4 and Appendix A).

Use a standard organization

It is easy to define and manage the organiza-
tion style in one documentation. The document-
ation was developed by XMind, which unites
the standard (Section 4.4 and downloading the
whole design documentation from the link given
above).

Record rationale

The technical elements are briefly but precisely
explained, to the extent that it is able to be imple-
mented (Appendix A or downloading the whole
documentation).

Keep documentation current
but not too current

Always keep updating before the development
as well as maintenance (Section 4.3).

Review documentation for fit-
ness of purpose

Bidirectional updates are required between it
and the code base, so it is reviewed during the
implementation and maintenance (Section 4.3).

Table 4.3: Architecture Documentation Quality of ALA Datalink

Chapter 4. Re-developing Datalink with ALA 73

4.2 Implementation of ALA Datalink

Based on the architecture design carried out previously, in this section, we followed

the Scrum (Schwaber, 1997) method to systematically implement Datalink with ALA.

Section 4.2.1 explains the background of ALA’s key mechanisms which are required for

the implementation. Section 4.2.2 describes the process we followed Scrum method to

carry out the implementation. Section 4.2.3 presents the code related affairs and some

examples are provided. Section 4.2.4 discusses the completeness of the re-developed

Datalink.

4.2.1 Background of ALA Mechanisms for Implementation

The background mechanisms for an ALA application development is necessary, because

ALA is an reference architecture, and it might be difficult to start the implementation

before possessing the required fundamental knowledge of the way it works. Therefore,

this section discusses two mechanisms that need to be learnt before implementation,

which mainly comes from the technical perspective.

The Way Wiring Method Works

Wiring is an important concept at the application layer of ALA. As aforementioned,

the main effect of ALA’s application layer is wiring the domain abstraction to satisfy

the requirements. However, it is not possible to wire any two selected abstractions.

According to Spray and Sinha (2018), only those abstractions that conforms to a same

programming paradigm can be wired.

Figure 4.5 illustrates the way wiring works in the application layer of ALA. Basically,

the wiring intends to connect any two compatible abstractions to express a specific

requirements. The compatible abstractions in the graph is abstraction B and C, where B

has a field that declares with the type programming paradigm (interface) A, while C

Chapter 4. Re-developing Datalink with ALA 74

Figure 4.5: Wiring Mechanism of ALA

implements A. Such compatibility makes B able to wire to C at run-time to assign an

instance of C to the field of B’s instance.

Besides, in the actual development, some additional explanation needs to be clarified

to help comprehending wiring:

1. The implementation of wiring method utilizes advanced characteristic of a lan-

guage i.e.reflection to implicitly assign the instance of the wired abstraction to

the declared field of an wiring abstraction.

2. Wiring allows multiple abstractions wire to a single one, but a declared field in the

wiring abstraction can only be assigned once with a compatible instance value.

3. ALA allows an abstraction to conform to multiple programming paradigms. Thus,

an abstraction can wire to the same abstraction on its different declared fields,

based on how many fields overlaps with the programming paradigm types that

the wired abstraction implemented.

Chapter 4. Re-developing Datalink with ALA 75

Two Important Design Patterns

Design pattern in software engineering aims to solve common problems that could

happen in different contexts (Pree & Gamma, 1995). In ALA, the two design patterns

that need to be learnt are the Composite and Decorator. Both of the two design patterns

are categorised as structural pattern, and they are concerned with how classes and

objects are composed to form larger structures (Gamma, 1995). The way the two

abstraction works in ALA is briefly explained in Table 4.4.

Pattern Definition Rationale in ALA

Composite

Composite pattern lets cli-
ents treat individual objects
and compositions uniformly
(Gamma, 1995).

ALA uses wiring to put all related
elements in a tree structure to repres-
ent the application hierarchy, so the
system can be driven by events and
data flows once it starts.

Decorator

It allows behavior to be ad-
ded to an individual object
dynamically without affecting
the behavior of other objects
from the same class (Gamma,
1995).

Reusable abstraction in ALA needs
to have single-responsibility. Such
design pattern allows us to keep the
simplicity of the abstractions while
achieve the complexity of the applic-
ation.

Table 4.4: The Design Patterns Used in ALA

With respect to Composite pattern, it is the fundamental mechanism of driving an

ALA application. In the implementation of an abstraction, the fields are supposed to

wire instances of other abstractions by declaring programming paradigm (interface)

types, which means the abstraction does not know which abstractions would be wired

at run-time. However, it treats any type of instances uniformly through programming

paradigm (interface) types to eliminate all the coupling between abstractions, merely

adding dependencies on the programming paradigm layer.

In terms of the Decorator pattern, the decorated object is carried out through

programming paradigms (interfaces). The decorating activity happens at run-time

when an instance is wired to a declared field. The class possesses that field would

Chapter 4. Re-developing Datalink with ALA 76

dynamically add responsibility to that instance without changing the simplicity of the

wired abstraction. Decorator is mainly used in data processing abstractions such as Sort,

Select and Filter (refer Appendix A to see the details of the abstractions).

4.2.2 Driving the Implementation with Scrum

Since we followed the Scrum (Schwaber, 1997) method to carry out the implementation

of ALA Datalink, the standard steps of Scrum were considered in the process. However,

as only one developer participated in the re-development, we did not carry out the

activities correlated with team building and collaborations. Therefore, we merely took

some necessary steps in the sprints i.e. Sprint Plan, Daily Stand-up Meeting and Sprint

Review.

Sprint Plan

The sprint plan is usually a meeting that determines the tasks of the next sprint with all

the people of a Scrum team participating in (Schwaber, 1997). In this case, although

only one developer was considered, we still planned the sprints to simulate what a

development team does in a real company.

Sprint planning was mainly carried out based on the architecture design docu-

mentation, which were supposed to be the backlog of the sprints. Objectives of the

implementation is not only exploring the method of ALA development, but also creating

a code base for maintainability evaluation. Apart from that, we have to avoid repeated

and time consuming tasks at the beginning due to time limitations. Thus, three measures

were adopted in the planning to generate such code base:

1. Constructing the main UI abstractions first at the early stage as they provide

straightforward evidence on the progress and are also container for displaying

data;

Chapter 4. Re-developing Datalink with ALA 77

2. We implemented the requirements horizontally from left to right based on the

design documentation, as both the depth and breadth of the requirements grow in

that direction.

3. Finishing the home page of Datalink first because it creates a place for all the

functionalities. Moreover, the home page presents the primary data flows of

Datalink, which is one of the main functions of the application.

Paradigms Abstractions Requirements

IUIWizard,
IUI

MainWindow, Menubar, Menu,
MenuItem, Wizard, WizardItem,
Panel, StatusBar, Vertical, Text

Building the main window,
menus, wizard and organiz-
ational UI abstractions

IDataFlow,
IEvent

OptionBox, OptionBoxItem,
RightJustify, RowButton, Hori-
zontal, SCPProtocol

UI abstractions, seeks to
find the way of download-
ing data from devices

IRequestResp-
onseDataflow

SCPProtocol, Transact, SessionList-
SCP, SCPDeviceSense, ConvertTab-
leToDataFlow

Connect a plugin device,
fetching and handling ses-
sion list data

ITableData-
Flow

SessionListSCP, Grid, SessionData-
SCP, Map, Select, Sort, String-
Format, ConvertToEvent

Handle session list data;
Downloading session data
from device

N/A
SessionDataSCP, LifeDataSCP,
Count, Equals, LiteralString, Not

Session data processing
and transacting for display-
ing in grid

IDataFlowB,
IEventB

ProgressWindow, ProgressBar, But-
ton, Filter, Tool, Toolbar, Value,
DataFlowGate

Downloading progress of
session list data; Gates for
blocking and triggering op-
erations

ITableData-
Flow

Transact, SessionDataSCP, Iter-
ator, OpenFileBrowser, Open-
WindowsExplorer, EventGate,
CSVFileReaderWriter

Downloading session/life
data iteratively and save to
csv file

N/A
CSVFileReaderWriter, Save-
FileBrowser, SessionListSCP,
SessionDataSCP

Exporting session data
from multiple csv files to
device

Table 4.5: The Sprints of Datalink Implementation

Table 4.5 illustrates the eight sprints that we carried out in the implementation

process, based on the measures mentioned above. One thing that should be notified

Chapter 4. Re-developing Datalink with ALA 78

is that the eight sprints were not planned completely at the beginning. Instead, every

sprint was planned after the previous one was finished. Some of the paradigms and

abstractions in later sprints might overlap those in the previous ones, which means

we optimized those elements in later sprints as they might not conform to the original

design and are not reusable as expected.

Daily Stand-up Meeting and Sprint Review

According to Schwaber (1997), both the stand-up and sprint review require the whole

development team participating in the meeting. Although there was only one developer

for the re-developed ALA Datalink, the two meetings were still convened with the

architect of Datamars, but for more specific purposes.

With respect to daily stand-up meeting, it aims to notify the progress of each member

in the team, as well as expose the potential issues (Schwaber, 1997). However, in this

case, the daily stand-up meeting mainly serves two purposes:

1. It was usually convened at the end or the beginning of a day to explore the issues

that encountered in the implementation, or the architect provided suggestions on

the development of domain abstractions.

2. The finished abstraction of a day was reviewed by the architect to assure the qual-

ity, because the quality of abstractions is of crucial importance at the maintenance

stage.

The daily stand-up meeting was convened everyday in the first four sprints, because

studying and understanding the domain abstractions is difficult for a beginner of ALA,

and deviations between implementation of abstractions and the design arises frequently.

With the developer getting better understanding of ALA and the requirements, we did

not have stand-up meetings at the last four sprints.

Chapter 4. Re-developing Datalink with ALA 79

In terms of the sprint review meeting, it was convened at the end of every sprint.

Schwaber (1997) states that such meeting usually involves the product owner who

can review the functional quality of the application. In this case, the product quality

was reviewed by comparing the re-developed application with the legacy one, as well

as the requirements identified in Section 4.1.1. Apart from that, we summed up the

problems in the implementation and tried to resolve them in a general way. Such as the

principles of designing abstraction (Section 4.1) and ALA mechanisms required before

implementation (Section 4.2.1).

4.2.3 Implementation and Examples

This section details the implementation of ALA Datalink from the technical perspective.

Moreover, we specifically explained the composite pattern utilization in ALA. To

give an example, we present the implementation of programming paradigms, domain

abstractions and requirements in the first sprint.

The first sprint aims to create the structure of the home presentation page of Datalink,

thus most of the programming paradigms and domain abstractions are correlated with

UI. As the dependencies in ALA happens from top to down based on its layers, we

firstly created the IUI interface (programming paradigm), which allows us to establish

the domain abstractions depending on it, and then constructed the UI structure through

the method in the interface uniformly.

Building Programming Paradigms

There exist two programming paradigms in the first sprint i.e. IUI and IUIWizard.

However, they were not implemented simultaneously. The IUIWizard was created when

we realized that the IUI cannot satisfy the way Wizard and WizardItem wire to each

other, as they need more interactions rather than UI, then we used IUIWizard specifically

Chapter 4. Re-developing Datalink with ALA 80

Figure 4.6: The IUI and IUIWizard Programming Paradigm

for the two abstractions.

Nevertheless, no matter if it is IUI or IUIWizard, the principles and methods of

implementation are similar. The objective of the paradigms is creating an united

interface so that the abstractions implement them would be wirable. Figure 4.6 illustrates

the implementation of the two interfaces. IUIWizard extends IUI and it is more specific

for the Wizard and WizardItem abstractions.

Building Domain Abstractions

Most of the designed domain abstractions were accomplished when we created the IUI

interface, because those abstractions only depend on IUI. The abstractions implement

the IUI interface and they return the WPF element when the method is called. This

approach unites the interactions of the UI abstractions through IUI, which provides

consolidated ports when the abstractions are wired to express requirements.

Figure 4.7 illustrates the way we implemented the Menubar abstraction. The Line

11 indicates that this abstraction implements IUI interface, so it is an IUI abstraction

that can be wired to other abstractions which declares IUI as a field. The 14 line shows

that it can wire to multiple IUI abstractions, as a Menubar usually contains different

menus. In the implementation method at line 25 to 29, we can specify that all the

abstractions wired to it would be accessed through the IUI interface method and add

Chapter 4. Re-developing Datalink with ALA 81

Figure 4.7: The Implementation of Menubar Domain Abstraction

the WPF element to it, so it would display all the UI elements wired to it.

This graph also demonstrates that the domain abstractions are not specific to the

application since they do not know where they would be wired to and what abstractions

they would wire until they are instantiated and wired in the application layer.

Requirements Expression

The requirements expression happens at the application layer, where the domain ab-

stractions are wired in a way intended to satisfy the requirements. Figure 4.8 depicts the

way we wired the abstractions implemented in sprint 1 to build the home presentation

Chapter 4. Re-developing Datalink with ALA 82

Figure 4.8: A Piece Code of Requirements Expression

page of ALA Datalink. The UI structure includes Menubar and Menus, as well as the

popup Wizard and its sub-items when the menu items are selected.

Figure 4.9 partially illustrates the way the Composite pattern is used in ALA applic-

ation. The graph is specifically explained for the composition of IUI correlated domain

abstractions. From the perspective of an overall view, the rationale of any other kind of

paradigms and abstractions is similar. With more and more abstractions implemented

and wired, the scale of the composition would increase until all the requirements are

expressed.

The Decorator pattern is not discussed here, because it is more about data processing

which occurs in the later sprints. The difference between Composite and Decorator

pattern is that the former usually handles multiple objects to form a large structure,

whereas the later intends to decorate one object to add responsibility to that object,

which is simpler comparing with the former one.

Chapter 4. Re-developing Datalink with ALA 83

Figure 4.9: A Part of Composite Pattern Utilization

Verification

Verification in ALA Datalink mainly exists in domain abstractions and requirements

expression. The former aims to assess the quality of the abstractions while the later

intends to check the correctness of the functionalities.

In this case, we carried out unit tests to verify the quality of domain abstractions.

According to Spray and Sinha (2018), the domain abstractions are independent assets

and it is very easy to build and run unit tests for them. The unit test cases in ALA

Datalink were built based on the design notions and functionalities of the abstractions.

Figure 4.10 illustrates the unit test case we built for Button abstraction. This

abstraction can layout to an assigned shape and title, and generate event when clicked.

We verified UI, title and event which are the functionalities of the abstraction to assure

its quality.

In terms of functional verification, we simply compare the re-developed Datalink

with the legacy one. Moreover, we also verified the functionalities based on the

functional requirements identified in Section 4.1.1.

Chapter 4. Re-developing Datalink with ALA 84

Figure 4.10: An Unit Test Case of Button

4.2.4 Deliverable of Implementation

As previously mentioned, we carried out eight sprints to re-develop Datalink with

ALA. At the end of the implementation, we accomplished most of the requirements

summarized in Section 4.1.1, and the designed 47 domain abstractions were completely

implemented. Figure 4.11 depicts the home page of Datalink developed with ALA.

Comparing with the graph illustrated in Figure 4.1, we could hardly find difference

between them. However, the code bases that generate such application is totally different.

ALA Datalink was developed under the rules of ALA, which could be referred from

https://github.com/cdxybf/ALA_Datalink, and it was constructed on

the domain abstractions. In terms of the legacy one, we cannot provide the source code

https://github.com/cdxybf/ALA_Datalink

Chapter 4. Re-developing Datalink with ALA 85

Figure 4.11: ALA Datalink Home Page

due to confidential agreements, but the source lines of code is about ten times of ALA

Datalink, and each functionality is specifically designed and implemented, which is

different from ALA’s notion of abstractions.

Requirements Finished
It is able to connect to any livestock management devices of
Datamars e.g. "XR3000", "XRS", "XRS2" through USB ports
to interact with the connected devices i.e. sending messages, re-
ceiving messages.

Connect to
XR3000
merely

The data in any connected devices can be downloaded and dis-
played in the corresponding presentation areas.

YES

The session data in any connected device can be downloaded and
saved to csv files in the computer with a given format.

YES

Any formatted session csv files can be imported to the application
and uploaded to a connected device through the application.

YES

The session data can be uploaded to the cloud services e.g NAIT. NO

Table 4.6: Completeness of ALA Datalink

Table 4.6 depicts the completeness of ALA Datalink based on the functional require-

ments we identified in Section 4.1.1. Except the fifth one, the other requirements were

Chapter 4. Re-developing Datalink with ALA 86

fully completed in ALA Datalink. One thing needs to notify is that the application can

only connect to XR3000 at the end of the re-development, as it is the most representat-

ive device of Datamars. Once it is able to connect to XR3000, the connection of other

devices would be much easier, and the functionalities of other devices in the application

are the same as XR3000.

4.3 Maintenance Activities of ALA Datalink

Maintenance activities usually happen after the delivery of the software, and the object-

ive is to achieve the availability when environment changes or unexpected error happens.

Kaur and Singh (2015) explain that three forms of maintenance are considered:

1. Corrective maintenance is about fixing emergency program and debugging routine;

2. Adaptive maintenance are performed when it is needed to response to technology

updates;

3. Perfective maintenance aims to improve documented and requested enhancement.

In the maintenance of ALA Datalink, the first thing is to assure the conformity

between the code base and the design documentation. The design documentation is

the direct representation of the code base and requirements, and it is straightforwardly

comprehensive and intelligible rather than a pure code base for readers which improves

the effectiveness of maintenance to a great extent.

4.3.1 Resolve Nonconformity Between Design and Implementation

It is important to resolve the inconformity between design and implementation before

any maintenance in ALA. The impact of design documentation demonstrates that any

inconformity between it and implementation might negatively mislead the activities

Chapter 4. Re-developing Datalink with ALA 87

correlated with it in SDLC. To make matters worse, more time might be spent on the

analysis of code base to acquire the knowledge of the way it works, which directly

reduce the maintainability.

From the experience and practice that we encountered in the process, the noncon-

formity between design diagram and code base mainly comes from three aspects. Before

the actual maintenance, these nonconformity should be corrected:

1. The implementation of programming paradigms and domain abstractions does

not completely achieve the functionalities designed, or deviates from the original

design. This happens when the programming paradigms or domain abstraction

were not elaborately implemented. For example, a "Grid" abstraction which is

usually used as the destination of a "Transact" for displaying data, but sometimes

it is also used as the source of a "Transact", so the "Grid" should be implemented

both source and destination functions.

2. The architectural design has not been considered in a proper way, so that it

generates some inappropriate abstractions, or produces ambiguity. It is not always

effective of the design, because some abstraction might not be abstract enough,

or over-designed. For example, the abstraction "Value" which was proved to be

useless in our later maintenance, we can use "DataFlow" instead.

3. The requirements expression (wiring) does not completely conform to that in the

design diagram. This is especially important, because the wiring in document-

ation is the only guidance to follow for composing the requirements in ALA’s

application layer. If it was not completely and correctly followed, more efforts

would be spent in later maintenance activities to achieve the correctness and

effectiveness.

Chapter 4. Re-developing Datalink with ALA 88

4.3.2 Perfective Maintenance

In ALA Datalink, regular perfective maintenance is carried out to continuously satisfy

the evolutionary marketing and ongoing customer requirements. For such kind of

maintenance, the process is similar to the way we re-developed Datalink with ALA,

which has been discussed previously in the architecture design (Section 4.1.2) and

implementation (Section 4.2).

Apart from that, we also need to pay attention on the design documentation and the

potential modifications on paradigms and abstractions:

1. The design diagram describes the overall UI and data flow explicitly that the

location of the potential changes is discoverable with less efforts for specific

requirements. Thus, maintenance is easier to carry out by following the design

diagram rather than the code base.

2. Requirements implementation by making modifications on existing domain ab-

stractions is not advocated in ALA, neither on programming paradigms. Because

modifications on existing abstractions requires re-testing all the correlated in-

stances and wired requirements, which brings more uncertainty and effort for the

maintenance activity.

4.3.3 Corrective and Adaptive Maintenance

Corrective maintenance aims to fix the errors and emergencies in a software product.

Such kind of maintenance mainly operates the application layer and domain abstraction

layer:

1. Some mistakes occur when unexpected wiring exists. The way to fix this is

to check the corresponding area of the design documentation, re-wiring the

abstractions and change the wiring in the code.

Chapter 4. Re-developing Datalink with ALA 89

2. If there existed errors at the internal side of domain abstractions, the maintenance

needs to inspect the code of those abstraction. However, implementation of

abstractions is not described in the design documentation as ALA does not

put concerns on implementation, thus such maintenance would not result any

modification in design diagram.

In terms of adaptive maintenance, the string-head of it exists at the language layer

of ALA’s architecture, which directly or indirectly influences the other three layers that

depending on it. However, those effects are usually not described in the design diagram

as we emphasize little about layers in design. Therefore, the way to carry out adaptive

maintenance is to inspect the code without changing the design documentation.

For example, if .NET framework updates from a lower version to a higher version,

there might exist some updates to do at the domain abstraction layer. However, the func-

tionalities and the fundamental design of the application and abstractions will not change.

Thus, what we need to do is adjust the updates at the .NET framework (language) layer

to make the upper three layers work as usual, while the design documentation will not

change.

4.4 A General Way to Develop ALA Applications

We reported the process that we carried out to develop Datalink with ALA previously,

which conforms highly to a Waterfall model (Balaji & Murugaiyan, 2012). However,

when we specify each step in the process, the measures we took is more close to an

agile model (Martin, 2002).

In this section, we discuss the generalization of ALA from two aspects. First, the

Waterfall model is used to outline the stages need to take in the development. Second,

the agile model is referred to iteratively carry out the concrete activities in each stage.

Chapter 4. Re-developing Datalink with ALA 90

Figure 4.12: A General Process of ALA Application Development

4.4.1 A Waterfall Model to Outline the Process

Generally, a Waterfall model includes requisite steps i.e. requirements analysis, archi-

tecture design, implementation, verification and maintenance (Balaji & Murugaiyan,

2012), as illustrated in Figure 4.12.

Requirements Analysis

Requirements analysis is not required in ALA, because modern commercial software

usually needs fast changes to respond to the market. Thus, the requirements in ALA are

merely the input for the next stage.

Architecture Design

In an ALA application, the architecture does not need to be designed, because ALA

has its own four layers architecture and such architecture should keep consistent at any

time in ALA. The design here refers more to the design of programming paradigms

and domain abstractions (Section 4.1), which directly impacts the maintainability in

later phases.

Chapter 4. Re-developing Datalink with ALA 91

Implementation and Verification

The implementation and verification in ALA is similar to general software development.

The implementation aims to transfer the design and requirements into an executable

code base, while the verification intends to verify the quality of the software from

functional and non-functional aspects (Section 4.2.3).

Maintenance

Maintenance in ALA should be particularly highlighted, as ALA was designed to im-

prove maintainability for code bases. However, the ALA maintenance is different from

that in a Waterfall model, because ALA always require the maintainer to design pro-

gramming paradigms and domain abstractions for any perfective maintenance (Section

4.3), and this is why there exists an additional connection between maintenance and

requirements in Figure 4.12, which do not usually exist in a general Waterfall model.

4.4.2 An Agile Model to Carry Out the Process

The Agile software development method aims to create a prototype, and add frequent

increments on that prototype to continuously satisfy the customer requirements (Martin,

2002). In ALA, the artefacts being iteratively added are not only the requirements,

but also the design, implementation and verification, which refers to each step in the

Waterfall model.

Iterative Design of Programming Paradigms and Domain Abstractions

The design activity in ALA application development is the process that transfer the

requirements to reusable domain abstractions and programming paradigms. However,

this activity is different from the general software requirements decomposition, because

Chapter 4. Re-developing Datalink with ALA 92

the extent of abstract and reusability of the abstractions need to be considered when

carrying out the design.

Generally, the programming paradigms and domain abstractions are designed from

both non-technical and technical aspects:

1. The non-technical aspect mainly comes from the process of the design (Section

4.1.2), where we described the iterative steps.

2. The technical aspect aims to help designing more reliable and high-quality domain

abstractions (Section 4.1.2), which is supposed to have significant influence on

the maintainability of ALA code bases.

Incremental Releases of Domain Abstractions and Requirements

Before the actual implementation, we suggest it is better to study the correlated know-

ledge of ALA (Section 4.2.1). The knowledge helps designers and developers to

understand the mechanisms of ALA and design abstractions.

The domain abstractions and requirements are not completed separately in the

actual implementation. Instead, it is also an iterative process that goes in the depth-first

direction, which means after we finished an abstraction, we wired it in the application

layer to make it satisfy some requirements, verify it and implement the next abstraction.

Figure 4.13 illustrates the iterative process of implementing the abstractions and

requirements. The implementation is accompanied by verification and each requirement

is complete through the order from domain abstractions, requirements to verification.

Such iterations assure the quality of both the abstractions and the implementation of

requirements.

Chapter 4. Re-developing Datalink with ALA 93

Figure 4.13: A General Process of ALA Implementation

Chapter 5

Maintainability Evaluation Based on

ISO Sub-Characteristics

ISO 25010 quality model (2011) decomposes Maintainability as Modularity, Reusability,

Analysability, Modifiability and Testability. In this chapter, we evaluated the sub-

characteristics of ALA and legacy Datalink code bases with metrics refined in Section

2.3.

Generally, the evaluation was based on the comparisons of the metrics results of the

two code bases, which leads to the organization of the rest of this chapter. First, with the

help of the NDepend, we give a structural overview of the two code bases to reflect how

they are different from each other at a design-level sight (Section 5.1). Second, based

on the ISO maintainability model, we carried out the comparisons of metrics results

of the five sub-characteristics. We also connected the result of the comparisons to the

preliminary assessments in Section 2.3. Finally, we summarized the comparisons and

correlations and give a conclusion to this chapter. The result is Modularity, Reusability,

Analysability and Testability of ALA Datalink are higher whereas Modifiability is lower

than the legacy application. Our investigation demonstrates that ALA could bring

long-term Maintainability on a code base (Section 5.7).

94

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 95

5.1 NDepend Dependency Graph - Overall Views of the

Two Code Bases

NDepend (Smacchia, 2007) allows us to have overall views of the two code bases about

their components/classes, interfaces and the relations between them, which is defined as

dependency graph in NDepend. In this section, we compared the dependency graphs

of the two code bases, which explicitly demonstrates the differences of the structures.

Particularly, we highlighted the classes in the domain abstraction layer of ALA Datalink,

which clearly reflects the "zero coupling" feature of ALA.

5.1.1 The NDepend Dependency Graphs

The NDepend dependency graph is similar with a class diagram (Rumbaugh et al.,

1991), but emphasizes more on the external connections with other elements rather

than the internal methods and properties. It puts all the elements in a hierarchical

structure and connects them with directed lines. The connections represent all the

possible dependencies of the class diagram i.e. abstraction, realization, association and

aggregation but is not specified to a specific type in the graph.

As the dependency graph is very large, we can merely provide clipped ones here.

The complete graph can be downloaded from https://github.com/cdxybf/

ALA_Datalink/tree/master/Dependency%20graphs.

ALA Datalink Dependency Graph

Figure 5.1 depicts a part of the dependency graph of the re-developed ALA Datalink.

From the direction left to right, the elements can be layered correspondingly as the three

programmable layers of ALA i.e. application, domain abstractions and programming

paradigms. The application layer merely involves one class, which expresses all the

https://github.com/cdxybf/ALA_Datalink/tree/master/Dependency%20graphs
https://github.com/cdxybf/ALA_Datalink/tree/master/Dependency%20graphs

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 96

Figure 5.1: A Partial Dependency Graph of ALA Datalink

requirements by wiring the instances of the classes at the domain abstraction layer in

the middle of the graph. While programming paradigms which locate to the right side

e.g. IUI, IEvent defines the standard followed by the domain abstractions, makes them

able to describe their own functionalities and become interactive.

Overall, the ALA dependency graph can be regarded as well-organized, properly

ordered and straightforwardly expressed relations that build on classes and interfaces.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 97

Figure 5.2: A Partial Dependency Graph of Legacy Datalink

The Legacy Datalink Dependency Graph

Figure 5.2 depicts the dependency graph of the legacy Datalink. It is strenuous to follow

such a complex and messy graph from the first sight. The intuitionistic view of those

chaotic connections makes it difficult to find a start point. To make matters worse, the

red lines which represents bidirectional dependencies is inundated in the graph, and

such relations creates a large amount of circular dependencies in the code base, which

increases the efforts of potential maintenance to a great extent.

As this code base has been maintained for over twenty years, it is hard to tell which

class or pieces of code is not used anymore and has no actual influence on the main-

tenance. We can merely tell from the appearance that the complexity increases much

more than that in ALA, and the unceremonious, disordered and crossing connections

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 98

Figure 5.3: Partial Domain Abstractions of ALA Datalink

between elements is extremely hard to follow by intended maintainers.

5.1.2 Zero Coupling of ALA’s Domain Abstractions

Zero Coupling is a specialized and prominent feature of the domain abstraction layer

of ALA. According to Spray and Sinha (2018), domain abstractions should have no

direct or indirect dependency with any other domain abstractions at compiling time.

While in run-time, this happens inevitably because the domain abstractions are wired

and interact with each other to express a specific requirement.

Figure 5.3 illustrates a part of the domain abstractions dependency graph generated

by NDepend. We can specify that all the abstractions are isolated and there are no

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 99

relations with others in this layer. However, Map and Filter were two exceptions that

depend on the delegates. The delegates provide lambda expression for customizing the

functionalities when the abstraction is instantiated, and the lambda expression allows

a program to use anonymous methods as parameters (Schildt, 2010), which provides

more flexibility and extensibility for a class. In this case, it helps us to move the

application knowledge out of the two abstractions, and leave them as the decisions for

the application. As the delegates are only used for the two abstractions, this dependency

does not break the "zero coupling" feature of ALA.

The Zero Coupling mechanism of ALA makes domain abstractions extraordin-

arily modular and testable, thus creating stable and reusable foundations for future

development and maintenance.

5.2 Modularity

According to the Modularity metrics refined in Section 2.3.1, the ones used here are

Coupling Between Objects classes (CBO) and Cyclomatic Complexity (CC). The CBO

can be classified as afferent coupling and efferent coupling. Afferent coupling measures

the number of components that depends on a component, whereas efferent coupling

assesses the number of components a component depends on. In this case, the unit of

the component is classes and interfaces, as they are the fundamental elements of both

ALA and the legacy code bases.

5.2.1 Components Coupling

Figure 5.4 and 5.5 illustrates the afferent coupling and efferent coupling of the two code

bases respectively. Generally, the coupling of ALA code base is much lower than the

legacy one, which means the ALA components are more independent and they have

lower a coupling value. Moreover, the diagram also provides evidence on the "zero

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 100

Figure 5.4: Comparison of Afferent Coupling

Figure 5.5: Comparison of Efferent Coupling

coupling" feature of ALA. However, the "zero coupling" feature refers more to the

efferent coupling rather than the afferent coupling, because 98% of ALA’s components

demonstrates zero efferent coupling whereas only 2% depicts zero afferent coupling.

According to ISO 25023 (2016), Component Coupling is the ratio between the

components that implemented to be independent and designed to be independent. In

this case, the result of ALA Datalink is 100%, because the implementations conform

completely to the design that all the domain abstractions were independent from their

parallel elements. In terms of the legacy Datalink, we cannot infer the result because it

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 101

Figure 5.6: Comparison of Cyclomatic Complexity

has been maintained for over 20 years, so it is impossible to explore the original design

to find the components that need to be isolated. Nevertheless, from the overall view,

components of ALA Datalink are intended to be much more modular than the legacy

ones.

5.2.2 Cyclomatic Complexity Adequacy

Figure 5.6 presents the Cyclomatic Complexity (CC) statistics of the two code bases.

From the pie charts, we cannot calculate the Cyclomatic Complexity Adequacy. Because

ISO 25023 (2016) defines it as the percentage of components that does not exceeds

a specific CC value (Section 2.3.1). Besides, it is hard to determine the specific CC

value here, as it varies in different projects and organizations. Thus, in this case, we

simply used the mean CC value of the two code bases as the threshold, and calculated

the Cyclomatic Complexity Adequacy of the two code bases respectively.

Code Base Mean CC CC Adequacy (ALA) CC Adequacy (Legacy)
ALA Datalink 8.32 67.74% 96.77%

Legacy Datalink 27.83 50.56% 74.61%

Table 5.1: Comparison of Cyclomatic Complexity Adequacy

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 102

Table 5.1 presents the results of the calculations. The mean cyclomatic complexity

value of ALA and legacy Datalink is 8.32 and 27.83 respectively. If the former is

used as threshold, ALA can achieve 67.74% for its Cyclomatic Complexity Adequacy,

while it is 50.56% for the legacy one. If the later is used as threshold, the Cyclomatic

Complexity Adequacy of ALA increases to 96.77% whereas the legacy Datalink grows

up to 74.61%.

5.2.3 Summary and Correlation with Preliminary Assessment

In summary, no matter if we consider Components Coupling or Cyclomatic Complexity

Adequacy, ALA code base performs much better than the legacy one. However, as

the legacy Datalink has been maintained for over 20 years, it is hard to specify the

components design for calculating the rate of Components Coupling. Under such

circumstances, it is impossible to further quantify the improvements in modularity ALA

brings by comparing with the legacy application.

Nevertheless, the modularity of ALA has increased by at least 24% even if we

merely count the growth in Cyclomatic Complexity Adequacy. Furthermore, "zero

coupling" of ALA is obviously a significant feature that contributes to modularity,

and it eliminates the dependencies between domain abstractions. Such result provides

evidence to support the high modularity of ALA and it conforms to the result of the

preliminary assessment in Section 2.3.1, where we concluded that the modularity of

ALA is considerably high by comparing its mechanisms with the ISO 25023 (2016)

measures and the refined metrics.

5.3 Reusability

ISO 25023 (2016) describes that reusability measures consists of Reusability of Assets

and Coding Rules Conformity. The former assesses the ratio between the assets that

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 103

Figure 5.7: Comparison of Lack of Cohesion Methods (LCOM)

implemented to be reusable and the total assets of the code base. While the later

measures the percentage of modules that conform to coding rules for a specific system.

In this case, the unit of assets and modules is united as the class or interface, as both of

them are the fundamental elements of the two code bases.

5.3.1 Reusability of Assets

The metrics refined in section 2.3.2 for measuring reusability are Coupling Between

Objects classes (CBO), Lack of Cohesion Methods (LCOM), Weighted Methods per

Class (WMC), Number of Children (NOC) and Instantiated Times (IT). The first three

metrics aim to measure the possibility that the assets can be potentially reused, while

the last two metrics intend to measure the actual times the assets has been reused.

CBO has been discussed previously in Section 5.2, where we concluded that the

coupling of ALA code base is much lower than the legacy one. In this case, we

calculated the mean CBO of the two code bases, the result of ALA is 3.61 while it is

10.75 for the legacy Datalink. Thus, no matter from the average coupling values, or

from the overall trend presented before, the components of ALA code base are much

more possible to be reused.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 104

Figure 5.8: Comparison of Weighted Methods per Classes (WMC)

Figure 5.7 and 5.8 illustrates the LCOM and WMC result of the two code bases.

According to Chidamber and Kemerer (1994), both high LCOM and WMC value

increases the complexity of a class, which limit the reuse possibility. The assets with

LCOM value 0-0.2 occupy 50% in the legacy Datalink, which is much more than the

27% of the ALA one. Thus we conclude that the legacy code base is more reusable.

However, in terms of WMC, it is apparent that the ALA code base is more reusable

because 95% of the assets have lower WMC value. Such adverse result of LCOM and

WMC does not mean there exist conflicts, because LCOM cares about the code level

reusability, whereas WMC aims to measure the method level reusability.

Figure 5.9 and 5.10 depicts the NOC and IT metric result of the two code bases.

As inheritance is not used in ALA, the NOC simply represents the number of interface

implementations for ALA. The greater NOC values represents greater reuse (Chidamber

& Kemerer, 1994). In this case, the percentages of reused interfaces and ancestor classes

are approximately identical for the two code bases. With respect to IT, it gives the actual

number of a classes has been instantiated. The graph demonstrates that ALA classes

have been reused for more times, and the reusability of ALA code base is higher.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 105

Figure 5.9: Comparison of Number of Children (NOC)

Figure 5.10: Comparison of Instantiated Times (IT)

5.3.2 Coding Rules Conformity

ALA and the legacy Datalink follow different coding rules. According to the metrics

refined in Section 2.3.2, the metrics for ALA and the legacy code base are Layer

Violation and Circular Dependency Violation.

Code Base Metric Result Coding Rule Conformity
ALA Layer Violation 0% 100%

Legacy Circular Dependency Violations 15.14% 84.86%

Table 5.2: Coding Rules Conformity Results

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 106

Table 5.2 illustrates the results of the two metrics. Layer Violation of ALA is zero

because during the re-development of Datalink, we crucially followed ALA rules to

make sure that no incorrect dependency would be introduced. On the other hand, the

legacy Datalink did not follow its rules as expected by the maintainers. Among the

total 449 classes and interfaces, there totally exists 141 circular dependencies, and the

number of correlated classes is 68. Therefore, we conclude that the ALA code base has

higher Coding Rules Conformity.

5.3.3 Summary and Correlation with Preliminary Assessment

We applied five metrics to measure the reuse ratio of the two code base. Table 5.3

illustrates the statistic of assets reuse ratio of the two code bases. We simply picked the

percentage most reusable assets from each pie chart to constitute the table. We gave a

mean value of reuse ratio for the two code bases, the figure of ALA is 49.8%, which is

higher than 37.1% of the legacy Datalink.

Metrics ALA Legacy Description
CBO 50% 14.5% mean value of 0 afferent and efferent coupling data

LCOM 27% 50% pick the value between LCOM 0 to 0.2
WMC 95% 68% pick the value between WMC 0 to 20
NOC 15% 18% pick the value more than (include) NOC 1

IT 62% 35% pick the value more than (include) IT 2
Mean 49.8% 37.1% mean reusable ratio of the two code bases

Table 5.3: Summary and Comparison of Assets Reusability

However, such result does not conform to the expected reuse ratio we carried out in

the preliminary assessments, where we concluded that Reusability of Assets of ALA

could achieve 99% theoretically, whereas the measured result of ALA here is merely

49.8%. Nevertheless, both of Reusability of Assets and Coding Rules Conformity of

ALA is higher than the legacy Datalink. The former exceeds 12.7% while the later

over-tops 15.14%. Thus we conclude that the average reusability enhancement of ALA

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 107

is 13.92% comparing with the legacy Datalink.

5.4 Analysability

According to the metrics refined in section 2.3.3, the metrics used for measuring

analysability is CBO, LCOM, LOC and CP. However, these metrics does not conform

to the original measures of ISO 25023. In this case, we mainly adopted the metrics to

measure analysability from two aspects, which come from analysability definition of

ISO 25023 (2016):

1. The ease of ripple effects identification of an intended change;

2. The ease to locate the parts with deficiencies or causes of failure, and intended

maintenance activities.

5.4.1 Ripple Effects Identification

Ripple effects of changes are directly associated with the extent of coupling. Coupling

of analysability assessments here can be classified as internal coupling and external

coupling. The internal coupling is measured by LCOM, where it emphasizes the

methods and properties of a class. While the external coupling is measured by CBO,

where it cares more about the dependencies between classes.

Both CBO and LCOM has been discussed before in section 5.2 and 5.3. However,

the two metrics gave us adverse results when applying them on the two code bases. We

analysed the reason for that and conclude ALA is effortless in identifying ripple effects

between classes, while the legacy code base is easier to identify ripple effects inside

classes, as illustrated in Table 5.4.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 108

ALA Legacy Description

Mean CBO 3.61 10.75
For this metric, the ALA code base performs bet-
ter on the external analysability between classes.

Mean LCOM 0.43 0.37
For this metric, the legacy code base performs
better on the internal analysability of classes,
mainly on the properties and methods.

Table 5.4: Ease of Ripple Effects Identification

Figure 5.11: Comparison of Lines of Code (LOC)

5.4.2 The Ease of Locating Failures or Change Parts

In this section, we applied the metrics LCOM, LOC and CP to measure the ease of

locating failures or changes to parts. The reason we used LCOM again is that failures

of the assets usually lie on the internal side of them. The result of LCOM has been

discussed before in Section 5.3, we concluded that the legacy code base is considered

to be easy to locate failures and changes to parts.

Figure 5.11 and 5.12 depicts the result of LOC and CP for the two code bases. For

LOC, we conclude ALA code base is more analysable, because classes of ALA intend

to have less lines of code. In terms of CP, excessive low and high CP value would

decrease the analysability. Arafat and Riehle (2009) studied different open source

projects, concluded that the average commenting percentage is 19%. Such value is less

than the mean value 33% of ALA, and more than the mean value 14% of the legacy

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 109

Figure 5.12: Comparison of Commenting Percentage (CP)

code base. However, if we consider the sections that close to 19%, the two sections

11% to 20% and 21% 30% were counted, and the result of ALA and the legacy code

base changed to 39% and 6% respectively. Hence, from this point, the ALA code base

is considerably more analysable.

5.4.3 Summary and Correlation with Preliminary Assessment

In this section, four metrics were applied to measure the analysability of the two code

bases. In summary, CBO, LOC and CP results better analysability for ALA code base,

whereas LCOM results better analysability for the legacy one. We simply picked the

most analysable sections presented in the pie chart for the statistic of analysability, as

shown in Table 5.5. Particularly, as both of CBO and LCOM contributes to Ripple

Effects Identification, we calculated LCOM twice to come up with the mean analysability

value.

When correlating this result with the preliminary assessment, the actual analysability

of ALA is higher than the expectation. From the preliminary assessment, we concluded

that the analysability of ALA might be low due to the inconformity between ALA’s

mechanism and ISO 25023 (2016) measures, as well as the unrealistic utilization of

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 110

Metrics ALA Legacy Description
CBO 50% 14.5% mean value of 0 afferent and efferent coupling data

LCOM 27% 50% pick the value between LCOM 0 to 0.2
LOC 68% 56% pick the value between LOC 0 to 20
CP 39% 6% pick the value of sections close to 19%

Mean 42.2% 35.3% mean analysable ratio of the two code bases

Table 5.5: Summary and Comparison of Analysability

the refined metrics. However, according to the actual result presented in Table 5.5, the

mean analysable percentage of ALA is 42.2%, while the ratio of the legacy code base is

35.3%. Thus, the analysability of ALA is higher than the legacy Datalink.

5.5 Modifiability

According to ISO 25023 (2016), modifiability measures involve Modification Efficiency,

Modification Correctness and Modification Capability. As these measures were proper

ones for modifiability, we did not refine them and merely apply them to the two code

bases directly. However, we were not able to measure Modification Correctness due to

time limitation, as it requires the assessor to track the correctness of those modifications

for a specific period.

To measure Modification Efficiency and Modification Capability, we involved six

real user stories that proposed by the product manager of Datamars. However, we only

implemented two of them due to the time limitation of the legacy Datalink maintainer.

The time-consumption of the rest four user stories were merely estimated and analysed

to assess the efficiency and capability.

5.5.1 Modification Efficiency

Figure 5.13 and 5.14 illustrates the time-consumption of the modification tasks for the

two user stories (refer Appendix B to see the detailed user stories) on the ALA code

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 111

Figure 5.13: Modification Efficiency of ALA - User Story 1

base. For the legacy one, as the maintainer intended to implement the user story as a

whole, we were not able to record the time-consumption for the sub-tasks. However,

we recorded the total time-consumption for the two user stories on the legacy code base,

which allows us to calculate the modification efficiency of it.

Code Base User Story 1 User Story 2 Mean Modification Efficiency
ALA Datalink 78.33% 84.58% 81.46%

Legacy Datalink 80% 83.33% 81.67%

Table 5.6: Modification Efficiency Comparison

The corresponding implementation time and estimation time for the two user stor-

ies were 4/5 and 20/24 respectively for the legacy code base, and we calculated the

Modification Efficiency and compare it with the ALA one, as shown in table 5.6. The

result demonstrates that the Modification Efficiency of ALA and the legacy Datalink are

approximately identical.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 112

Figure 5.14: Modification Efficiency of ALA - User Story 2

5.5.2 Modification Capability

Figure 5.15 illustrates the estimation of time consumption for the four additional user

stories (refer Appendix B.1 to see the details). Despite of user story 3, the estimated

time consumption of the other user stories of ALA is higher than the legacy code base.

Generally, ALA requires 56 hours in total to finish all the four user stories, whereas the

legacy Datalink merely needs 39 hours.

Therefore, during a unit time period (we assume it is one hour), the Modification

Capability of the legacy code base is 1/39, whereas the ALA code base is 1/56. Cor-

respondingly, the percentage of the Modification Capability of the two code bases are

2.6% and 1.8% respectively. The ALA code base decreases 30.78% when comparing

with the legacy one.

However, if we specify the Modification Capability of the implemented 2 user

stories, the total time for the legacy and ALA code base is 29 and 32.3 respectively.

Under such circumstance, the Modification Capability is 1/29 and 1/32.3, which are

3.45% and 3.1% in percentage, and the ALA code base decreases 10.21% comparing

with the legacy one.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 113

Figure 5.15: Estimation of Modifications Comparison

5.5.3 Summary and Correlation with Preliminary Assessment

Overall, the Modification Efficiency of the two code bases is approximately identical. In

this case, the factor that determines the modifiability is mainly Modification Capability.

From the assessments we carried out previously, we can conclude that the modifiability

of the legacy code base is higher than the ALA one. Such result does not conform to

the preliminary assessment, where we concluded that modifiability of ALA is medium.

The result here demonstrates that the modifiability of ALA might be low.

5.6 Testability

According to the metrics refined in Section 2.3.5, the ones used to evaluate testability

are CBO, LCOM, WMC and LOC. As these metrics do not conform to the original

measures of ISO 25023, in this case, we merely correlated them with testability defini-

tion proposed by ISO 25023 (2016), which is the ease of test criteria establishment and

execution.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 114

5.6.1 Ease of Test Criteria Establishment and Execution

The metrics CBO and LCOM have been discussed before in the previous sections.

According to Chidamber and Kemerer (1994), high-coupling components require more

test efforts to make them rigorous, whereas high LCOM value makes the components

more difficult to test. We conclude that the former results better testability in ALA code

base, while the later results better testability in the legacy code base.

In terms of WMC and LOC, both of them are correlated with the size and complexity

of the class. The complexity determines the time that might be consumed to develop

and test the class (Chidamber & Kemerer, 1994). In this case, the two metrics have

been discussed before, where the results of ALA code base performed better than the

legacy one. Thus, for both of the two metrics, we conclude that the ALA code base has

higher testability.

5.6.2 Summary and Correlation with Preliminary Assessment

In this section, we carried out four metrics to measure the testability of the two code

bases. Three of them indicates that ALA has higher testability, while one of them

demonstrates the legacy code base possess higher testability. We picked the most

representative sections in the pie charts to seek the improvements of ALA on testability,

as shown in Table 5.7.

Metrics ALA Legacy Description
CBO 50% 14.5% mean value of 0 afferent and efferent coupling data
LOC 68% 56% pick the value between LOC 0 to 20

LCOM 27% 50% pick the value between LCOM 0 to 0.2
WMC 95% 68% pick the value between WMC 0 to 20
Mean 60% 47.13% mean testable ratio of the two code bases

Table 5.7: Summary and Comparison of Testability

The figure demonstrates that the highly testable assets of ALA is 60%, whereas it is

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 115

47.13% of that for the legacy code base. However, as both of the two code bases did not

provide measurable concretes for the original measures defined by ISO 25023 (2016),

we merely correlated them with the refined metrics. Consequently, such metric results

conform to the preliminary assessment, where we concluded that the testability of ALA

is particularly high.

5.7 Analysis, Discussion and Summary

In this chapter, we assessed and compared the performance of the two code bases based

on ISO sub-characteristics i.e. Modularity, Reusability, Analysability, Modifiability and

Testability. Except Modifiability, the other sub-characteristics performed as expected or

exceeded the expectations. This section analyses the reasons for the low Modifiability

of ALA code base, and then gives a summary to this chapter.

5.7.1 Analysis of ALA’s Low Modifiability

According to ISO 25023 (2016), Modifiability is impacted by Modularity and Analysab-

ility. However, in this case, although Modularity and Analysability of ALA Datalink

were much higher than the legacy one, the actual Modifiability of ALA was adversely

low. We analysed the tasks carried out for the implemented two user stories, conclude

that such low Modifiability was impacted by the construction of new abstractions and

the complexity of the application layer.

Construction of New Abstractions

As we discussed in Section 4.3, the implementation of new user stories was categorized

as perfective maintenance, and such kind of maintenance in ALA usually needs to wire

existing abstractions to satisfy the requirements, which is considered to be effortless.

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 116

However, if the new requirements need to design and implement new abstractions,

Boehm (1996) states that the intention of developing such reusable assets would increase

the effort. Table 5.8 illustrates the new programming paradigms and domain abstractions

that built for the two user stories (refer the detailed decomposition of user stories in

Appendix B.2), both of the two user stories required new abstractions, which increased

the time-consumption.

User Story New Paradigms and Abstractions Implemented
User Story 1 DeviceIdSCP

User Story 2
IIterator, ListOfFiles, SelectExternal, FileSessions,
ConvertIteratorToTable

Table 5.8: New Paradigms and Abstractions for New User Stories

Complexity of The Application Layer

According to Spray and Sinha (2018), the application layer of ALA is designed to

to manage all the knowledge that is specific to the application. On the one hand,

such mechanisms make the abstractions free of application-specific knowledge and

make them more reusable and stable, improving maintainability. On the other hand,

if we implement more functionalities, the growing size and complexity of the applica-

tion file increases the difficulties of analysing and modifying it, which decreases the

maintainability of the code base.

US 1/Tasks T1 T2 T3
Estimated(hrs) 3 2 3

Actual(hrs) 2 1.5 2.8
Efficiency 150% 133.33% 107.14%

Table 5.9: Task Efficiency of User Story 1

Table 5.9 and 5.10 illustrate the task efficiency of the two implemented user stories,

and we calculated the results as the division of actual and estimated implementation time.

For both user stories, the last task in the tables is the one that correlated with application

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 117

US 2/Tasks T1 T2 T3 T4 T5 T6 T7 T8
Estimated(hrs) 1 3 4 3 2 3 5 8

Actual(hrs) 1 2 4 2.5 1.5 2 3 10
Efficiency 100% 150% 100% 120% 133% 150% 167% 80%

Table 5.10: Task Efficiency of User Story 2

(wiring instances of abstractions to satisfy the requirements), we can conclude from the

figure that:

1. There exists a trend that the more complex the user story is, the more time was

spent on the application layer. Correspondingly, the efficiency of the application

task decreases.

2. For both user stories, the efficiency of the application tasks is the lowest. Con-

sidering the efficiency of all the other tasks exceed 100%, the application task

becomes the main factor that impact Modification Efficiency we evaluated in

Section 5.5.1.

3. If we have all the domain abstractions implemented, the only activity carried out

in the maintenance would only be the application task, which is the desirable

maintenance in ALA. With more and more abstractions being implemented, there

exists considerable possibility for such circumstance, and the Modifiability of

ALA code base merely need to consider the application layer, which would

increase Modifiability to a great extent.

5.7.2 Discussion of the Overall and Long-term Maintainability

According to the evaluation carried out in the previous sections, Modularity, Reusability,

Analysability and Testability of ALA are considerably higher than the legacy code base,

whereas Modifiability of ALA is lower. We were not able to integrate all the results of

each measure and each sub-characteristic into Maintainability, as we do not know to

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 118

what extent each result contributes to Maintainability. Therefore, we merely discuss

each sub-characteristic respectively.

Spray and Sinha (2018) state that ALA aims to improve the long-term maintain-

ability of a software code base. If we consider long-term maintenance for a ALA

software code base, we can conclude that although we have not implemented enough

reusable abstractions currently, the ongoing maintenance would help to improve the

maintainability of ALA:

1. Modularity would not change too much if more abstractions and wiring code

were added, because the "Zero Coupling" feature would always keep ALA highly

modular.

2. Reusability would increase with maintenance being carried out, because more

abstractions would be implemented and reused.

3. Analysability might decrease as more new features means more complexity on

application layer, which increases the difficulty for analysis. But this cannot be

avoided in any software code bases.

4. Modifiability would increase to a great extent, because the point that no or less

new abstractions required would be met, and the maintenance merely need to

work on the application layer.

5. Testability would not be influenced, because we mainly discuss the unit test,

which is correlated with single abstractions.

5.7.3 Summary

In this chapter, we carried out the assessments of the legacy Datalink and the re-

developed ALA Datalink. Based on the ISO 25010 (2011) quality model, and ISO

Chapter 5. Maintainability Evaluation Based on ISO Sub-Characteristics 119

25023 (2016) maintainability measures, the results of the evaluations were compared

between the two code base on Modularity, Reusability, Analysability, Modifiability

and Testability. Besides, the dependency graphs of the two code bases were presented,

which allows us to have an overall view of the two code bases straightforwardly on their

structures.

According to the assessment results, Modularity, Reusability, Analysability and

Testability of ALA Datalink were higher than the legacy one. However, the Modifiability

of ALA Datalink was not as expected. We analysed the reason for that based on the

two user stories and the sub-tasks we carried out, concluded that the construction

of new abstractions and the increasing complexity of the application layer leaded to

the low Modifiability. Nevertheless, with more and more reusable abstraction being

implemented, the overall Maintainability of ALA Datalink would keep increasing

considerably.

Chapter 6

Conclusion

This chapter gives a summary of the whole research, which was based on the re-

architecting and re-developing of an existing desktop application with ALA, and evalu-

ating the maintainability of that code base based on ISO 25010 (2011) quality model

and ISO 25023 (2016) measures within a commercial environment.

The rest of this chapter is organized as follows. Section 6.1 provides a summary

to this research as a whole and discusses the activities carried out and observations

obtained in the previous chapters. Section 6.2 summarizes the answers of the last three

research questions (the first two questions were answered in Chapter 2). Section 6.3

discusses the contribution of this research, mainly on the feasibility of utilization in

commercial projects, as well as maintainability in long-term maintenance for ALA.

Finally, three potential directions of future works are involved for future researches.

6.1 Summary

The scope of this research is to explore the maintainability of the Abstraction Layered

Architecture (ALA) (Spray & Sinha, 2018) through a real C# desktop application.

Maintainability measures were extensively reviewed in the systematic literature

120

Chapter 6. Conclusion 121

review, from architecture-level, design-level, code-level to process-level (Section 2.2.2).

The accuracy of the categories increases when measuring maintainability because

they require different objects for assessments. However, applying only one type of

measures does not provide enough evidence to prove ALA’s maintainability. Therefore,

the ISO 25010 (2011) quality model was reviewed and considered. It decomposes

maintainability as modularity, reusability, analysability, modifiability and testability,

which simplifies the complexity of maintainability. Moreover, ISO 25023 (2016)

provides measures for each sub-characteristic, which integrates measures in design,

code and process level. ISO 25010/25023 provide us a holistic model and comprehensive

measures for maintainability.

ISO 25023 measures cannot be directly used for ALA, whether it is comparing with

the mechanisms of ALA, or applying the measures on a concrete ALA code base. The

main reason is although ISO 25023 defines the measures for the sub-characteristics,

for example, the "Coupling of Components" measure for modularity, it does not give

measures to assess "Coupling". Therefore, we refined the ISO 25023 measures, making

them measurable for not only the mechanisms of ALA, but also for a potential code

base (Section 2.3).

In order to investigate the way that ALA supports maintainability, a preliminary

assessment of ALA was carried out by comparing the refined ISO 25023 measures with

ALA’s mechanisms. The assessment was performed through all the sub-characteristics

of maintainability, and the result of each sub-characteristics was presented respectively

(section 2.3). However, as modifiability measures were correlated with concrete main-

tenance, we did not assess it and merely predicted the modifiability based on the results

of modularity and analysability.

We followed Scrum (Schwaber, 1997) to re-develop Datalink with ALA. Such

method was intended to simulate the real environment of Datamars, so we could

Chapter 6. Conclusion 122

investigate the feasibility of ALA under such circumstance (Section 4.2.2). The re-

developed code base involves the same functional and non-functional requirements of

the legacy one, which created foundations for the later assessments and comparative

experiments on the sub-characteristics of the two code bases (Section 4.1.1. Furthermore,

a general software development method with ALA was formulated based on the software

development life cycle we followed, as well as the actual activities we carried out in the

re-development of Datalink (Section 4.4).

We opted to use NDepend (Smacchia, 2007) to apply all the refined measures

on the two code bases to compare the result of modularity, reusability, analysability

and testability. As modifiability is correlated with real maintenance, we carried out

two user stories which were presented by the product manager of Datamars on the

two code bases, recorded the effort required and compared the result. Apart from that,

we analysed the reason that ALA possesses high modularity, reusability, analysability

and testability, but low modifiability. We concluded that the maintainability of ALA

would be considerably high if the desired abstractions were implemented before the

maintenance.

6.2 Answering Research Questions

As aforementioned, we have five research questions in total and RQ1 and RQ2 were

clearly answered in Section 2.4.1. In this section, we discuss the answers of the rest

three questions:

RQ3. How can the process of re-architecting an existing C# application using

ALA be generalised for use in future projects?

RQ4. How do the existing implementation of the C# application and the new

re-implementation as a result of answering RQ3 compare when assessed for

Chapter 6. Conclusion 123

maintainability using the measures identified in RQ1?

RQ5. How well does the assessment carried out in RQ4 relate to the expected

enhancements in maintainability from ALA (as identified in RQ2)?

6.2.1 Research Question 3

According to the process we generalized in Section 4.4, the ALA development method

can be explained from two aspects.

The first aspect mainly refers to Software Development Life Cycle (SDLC). Each

step we took in the development conforms more to a Waterfall (Balaji & Murugaiyan,

2012) model, because we have carried out the corresponding activities i.e. architecture

design (Section 4.1), implementation (Section 4.2) and maintenance (Section 4.3), and

the output of each step would be the input of the next. However, if we investigate the

process of each activity, the essence of those activities is close to an Agile (Martin,

2002) model:

1. In the design and implementation, the programming paradigms and domain

abstractions were consummated through iterations by specifying requirements

with increasing depth and breadth (Section 4.2.2).

2. In terms of maintenance (mainly refers perfective maintenance here), the new

requirements are composed in the same way of design and implementation de-

scribed above (Section 4.3).

The second aspect is more specific to ALA, because ALA works in an innovative

way of building layers. Spray and Sinha (2018) state that ALA allows the assets at a

higher layer have knowledge dependency (Cataldo et al., 2009) on all the layers at the

downside. It does not care about run-time dependency (Nicolau, 1989) because the

Chapter 6. Conclusion 124

instances of the abstractions would interact with each other to make the system running.

In this case, feasible measures of building an ALA application are:

1. The Composite and Decorator design patterns and the wiring method make

abstractions of ALA forming a structure, which explicitly expresses the require-

ments, and is executable (Section 4.2.1).

2. Designing programming paradigms and domain abstractions can be guided by the

principles from the experience of Datamars’ architect and the correlated activities

we carried out (Section 4.1.2).

3. The design documentation is an indispensable part of ALA. The implementation

and maintenance should completely follow the design, which in turn improves

the maintainability of the code base (Section 4.3).

6.2.2 Research Question 4

The comparison of maintainability assessment of the two code bases was carried out

based on the five sub-characteristics defined by ISO 25010 (2011) quality model. Our

experiments show that Modularity, Reusability, Analysability and Testability of ALA

are higher, while Modifiability of ALA is lower at a point in time.

Modularity

Modularity assessment consists of Components Coupling and Cyclomatic Complex-

ity Adequacy. For Components Coupling, it is 100% for ALA Datalink because all

components (abstractions) were designed and implemented to be independent. While

we were not able to measure that of the legacy code base due to the uncertainty of the

number of components that were designed to be independent. In terms of Cyclomatic

Chapter 6. Conclusion 125

Complexity Adequacy, the figure of ALA Datalink over-tops at least 24.05% of the

legacy one (Section 5.2).

Reusability

Reusability assessment involves Reusability of Assets and Coding Rules Conformity.

We calculated the mean value of percentage for potential reusable code, concluded that

ALA Datalink is 49.8% while the legacy Datalink is 37.1%. With respect to Coding

Rules Conformity, the figure of ALA code base is 100% whereas it is 84.86% for the

legacy one. Thus, the overall mean increasement of Reusability ALA brings is 13.92%

(Section 5.3).

Analysability

Analysability assessment includes Ripple Effects Identification and Ease of Locating

Failures or Change Parts. For the former assessment, ALA code base performs better

on the external analysis of classes, while the legacy one performs better on the internal

analysis of classes. In terms of the later assessment, the ease of ALA Datalink is 42.2%,

which is better than 35.3% of the legacy Datalink (Section 5.4).

Modifiability

Modifiability assessment contains Modification Efficiency and Modification Capability.

The Modification Efficiency of the two code bases are approximately identical, which

are 81.46% for ALA and 81.67% for the legacy code base. However, the Modification

Capability of the legacy Datalink is higher, which exceeds 10.21% for the implemented

user stories and 30.78% for the estimated user stories (Section 5.5).

Chapter 6. Conclusion 126

Testability

Testability is directly related to Case of Test Criteria Establishment and Execution.

We merely calculated the mean value based on the metric result, concluded that the

percentages of testable code for ALA and the legacy code base are 60% and 47.13%

respectively (Section 5.6).

6.2.3 Research Question 5

For the five evaluated sub-characteristics, the results of Modularity, Reusability and

Testability conform to the preliminary assessment we carried out in Section 2.3, whereas

that of Analysability and Modifiability do not conform to the preliminary assessment.

Analysability of ALA Datalink is higher than the expectation, because the "Zero

Coupling" feature and clear structural code layers of ALA makes it highly analysable

(Section 5.4).

However, Modifiability of ALA is much lower than the expectation. We analysed

the reasons, concluded that the construction of new abstractions and the increasing

complexity of application file lowered Modifiability of ALA. Nevertheless, with more

and more abstraction being finished, there exists some point that the maintenance of new

requirements merely needs to work on wiring existing abstraction, which is supposed to

improve Modifiability of ALA to a great extent if long-term maintenance is required

(Section 5.5).

6.3 Contributions

In this research, we re-developed an existing C# application of Datamars with ALA,

and evaluated the maintainability of the application within a commercial environment,

which leads to the contributions.

Chapter 6. Conclusion 127

6.3.1 A Group of High-Quality C# Domain Abstractions and Pro-

gramming Paradigms

The re-developed Datalink is considered to be a successful ALA application because it

not only achieved the requirements completeness of the legacy one, but also demon-

strated the maintainability of that code base. The domain abstractions and programming

paradigms in this application were elaborately designed and implemented. They can

be reused in a wide range of C# desktop application development and are valuable

references for any future ALA projects.

We make part of the source code publicly accessible on a GitHub repository

(https://github.com/cdxybf/ALA_Datalink). Due to the confidential

agreement of Datamars, some abstractions that are used to interact with the devices

were removed. The rest of the code base involves all the UI and some of the data

processing abstractions, as well as all the programming paradigms. Besides, we also

kept part of the application file, which demonstrates how the application works with the

mechanism of ALA.

6.3.2 A Strategy of Evaluating the Maintainability of Code Bases

The strategy of evaluating the maintainability of the two code bases in this research was

constructed on ISO 25010 (2011) quality model and ISO 25023 (2016) measures. Such

strategy was built to measure maintainability for a pure code base because:

1. Saraiva et al., (2013) surveyed 568 maintainability metrics which makes the

selection of the most relevant ones difficult. Building a strategy on ISO model

helps us to select the most related measures.

2. The original ISO measures involve holistic aspects of software development from

a higher view that correlated with components, assets and third-party systems, but

https://github.com/cdxybf/ALA_Datalink

Chapter 6. Conclusion 128

it does not provide measures to assess characteristics e.g "Coupling", "Cohesion",

which makes it inapplicable directly on a pure code base.

Therefore, comparing with other maintainability measures such as CK suites

(Chidamber & Kemerer, 1994) and Maintainability Index (Oman & Hagemeister, 1992),

our strategy provides not only the comprehensiveness of the ISO quality model, but

also the feasibility and flexibility of applying it on a pure code base.

6.3.3 A General Method to Develop ALA Applications

The re-development of Datalink allows us to propose a general method to develop

ALA applications. This method involves non-technical and technical aspects. The non-

technical aspect refers Software Development Life Cycle (SDLC), which was completely

based on Waterfall (Balaji & Murugaiyan, 2012) and Agile (Martin, 2002) model. The

technical aspect includes the rationale of ALA mechanisms which drives the application

to run, and the principles of designing programming paradigms and domain abstractions

that help to improve the quality of the design and implementation.

This method provides a general way for any potential ALA application development

in the future. It is a reliable reference that built based on a real project in commercial

environment. Considering that ALA was proposed in 2018, and there is a lack of

approaches of guiding software development with it, the method we presented would

significantly promotes any utilization of ALA.

6.3.4 Maintainability Improvement Evaluation of ALA in Com-

mercial Software Code Base

Spray and Sinha (2018) describe that ALA improves the maintainability of commercial

code bases in the long run by integrating the best practices from real software devel-

opment experiences. This research provides empirical evidence on the maintainability

Chapter 6. Conclusion 129

improvement of ALA by evaluating and comparing the re-developed ALA code base

with the legacy one in commercial environment.

The result demonstrates that Modularity, Reusability, Analysability and Testability

of the ALA code base is higher than the legacy one. However, the Modifiability of the

ALA code base is surprisingly low. We analysed the reasons and concluded that it is

mainly because the maintenance has not reached the point that no new abstractions need

to be constructed. Due to time limitations, we were not able to implement more user

stories to reach that point. Nevertheless, regardless of the new abstractions, our opinion

is that the overall Maintainability of the ALA code base was considered to improve

with long-term maintenance being carried out.

6.4 Future Works

There are multiple potential directions for future research, and some of them are

discussed as follows.

6.4.1 Ongoing Maintainability Observations of ALA Datalink

The re-developed Datalink is considered as a successful and significant utilization of

ALA. The reproduced functionalities of ALA Datalink were approximately restored

comparing with the legacy one. However, the accomplishment of ALA Datalink

development in this research does not put an end to the project. The re-developed

Datalink was originally planned to replace the existing one, and Datamars has already

hired three summer students to carry on the maintenance.

Hence, it would be interesting to track the ongoing activities, on one hand it would

produce more practice of optimizing the method of ALA application development, and

providing evidence of maintainability performance for any possible additional analysis

on the other hand.

Chapter 6. Conclusion 130

6.4.2 Utilization of ALA on Other Platforms

The ALA application in this research was specifically developed with C# and WPF

(Windows Presentation Foundation). Further on that, we have used many advanced

features of C# e.g. Reflection (Draheim, Lutteroth & Weber, 2005), Lambda Expression

(Schildt, 2010) and Linq (Pialorsi & Russo, 2007). These features are not the key factors

that make ALA work, but also play important roles in the application.

A possible research direction is to explore the feasibility and maintainability of

ALA on other platforms with other programming languages. Spray and Sinha (2018)

describe that ALA considers any applications with some degree of data flows, events

and user interactions, and it also works for pure algorithm problems. Thus, there exists

a wide range of possible programs that can be developed by ALA.

6.4.3 Exploring Approach of Optimizing ALA’s Application Layer

When we investigated the causes for ALA’s low Modifiability in Section 5.7.1, one

reason is the increasing size and complexity of the application file. Currently, it is easy

to maintain this file by following the way abstraction wired in the design documentation.

However, as we can foresee, the growing functionalities of a commercial project would

continuously increase the size and complexity of the application file. Theoretically, this

file might become a god class at some point which includes a very large number of

objects that is impossible to maintain.

Therefore, it would be significantly valuable to explore the approach to simplify

and share the responsibility of ALA’s application layer. However, such approach should

still follow the design notions of ALA and its mechanisms, and does not decrease the

maintainability of ALA.

Chapter 6. Conclusion 131

6.5 Final Thoughts

It was quite challenging to undertake this research at the beginning, but it is proved to

be worthy and valuable to organize the knowledge learned from the papers and books

to carry out the whole research. The objective is mainly exploring the maintainability

of ALA by re-developing the existing Datalink, and comparing it with the original

code base. Based on the re-development process, we also explored the method of

developing ALA applications. The result demonstrates that the Modularity, Reusability,

Analysability and Testability of ALA is particularly high, whereas the Modifiability is

low at the initial stage, but gradually increases with more and more abstractions being

implemented.

The five research questions were properly answered with supporting empirical

evidence. This research and results should provide meaningful and valuable approaches,

references and confidence for any possible projects that aim to develop with ALA. We

are delighted with the research procedure and the contributions made within such a

limited time frame.

References

Abreu, F. B. & Carapuça, R. (1994). Object-oriented software engineering: Measuring
and controlling the development process. In Proceedings of the 4th international
conference on software quality (Vol. 186, pp. 1–8).

Adamov, R. & Baumann, P. (1987). Literature review on software metrics (Vol. 87).
Institut für Informatik, Universität Zürich-Irchel.

Aggarwal, K., Singh, Y., Kaur, A. & Malhotra, R. (2006). Application of artificial neural
network for predicting maintainability using object-oriented metrics. Transactions
on Engineering, Computing and Technology, 15, 285–289.

Ahn, Y., Suh, J., Kim, S. & Kim, H. (2003). The software maintenance project effort
estimation model based on function points. Journal of Software maintenance and
evolution: Research and practice, 15(2), 71–85.

Albrecht, A. J. (1979). Measuring application development productivity. In Proc. joint
share, guide, and ibm application development symposium, 1979.

Albrecht, A. J. & Gaffney, J. E. (1983). Software function, source lines of code, and
development effort prediction: a software science validation. IEEE transactions
on software engineering(6), 639–648.

Arafat, O. & Riehle, D. (2009). The commenting practice of open source. In Pro-
ceedings of the 24th acm sigplan conference companion on object oriented
programming systems languages and applications (pp. 857–864).

Balaji, S. & Murugaiyan, M. S. (2012). Waterfall vs. v-model vs. agile: A comparative
study on sdlc. International Journal of Information Technology and Business
Management, 2(1), 26–30.

Baldwin, C. Y. & Clark, K. B. (2000). Design rules: The power of modularity (Vol. 1).
MIT press.

Banker, R. D., Kauffman, R. J. & Kumar, R. (1991). An empirical test of object-based
output measurement metrics in a computer aided software engineering (case)
environment. Journal of Management Information Systems, 8(3), 127–150.

Basili, V. R., Briand, L. C. & Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on software engineering,
22(10), 751–761.

Baskerville, R. L. (1999). Investigating information systems with action research.
Communications of the association for information systems, 2(1), 19.

Bass, L., Clements, P. & Kazman, R. (2003). Software architecture in practice.
Addison-Wesley Professional.

132

References 133

Belady, L. & Lehman, M. (1972). An introduction to growth dynamics in statistical
computer performance evaluation. Academic Press: New York NY.

Belady, L. A. & Lehman, M. M. (1976). A model of large program development. IBM
Systems journal, 15(3), 225–252.

Bengtsson, P. & Bosch, J. (2003). Architecture level prediction of software maintenance.
Proceedings of the Third European Conference on Software Maintenance and
Reengineering (Cat. No. PR00090), 139–147. doi: 10.1109/csmr.1999.756691

Bengtsson, P. O., Lassing, N., Bosch, J. & Van Vliet, H. (2004). Architecture-level
modifiability analysis (ALMA). Journal of Systems and Software, 69(1-2), 129–
147. doi: 10.1016/S0164-1212(03)00080-3

Bennett, K. (1993). An overview of maintenance and reverse engineering. In The redo
compendium (pp. 13–34).

Bettany-Saltikov, J. (2012). How to do a systematic literature review in nursing: a
step-by-step guide. McGraw-Hill Education (UK).

Boehm, B. (1996). The cocomo 2.0 software cost estimation model. American
Programmer.

Briand, L. C., Wüst, J., Daly, J. W. & Porter, D. V. (2000). Exploring the relationships
between design measures and software quality in object-oriented systems. Journal
of systems and software, 51(3), 245–273.

BSI ISO. (2011). BS ISO/IEC 25010:2011 Systems and software engineering
— Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models. BSI Standards Publication. Re-
trieved from https://bsol-bsigroup-com.ezproxy.aut.ac.nz/
PdfViewer/Viewer?pid=000000000030215101

BSI ISO. (2016). BS ISO/IEC 25023:2016 Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — Meas-
urement of system and software product quality. BSI Standards Publication. Re-
trieved from https://bsol-bsigroup-com.ezproxy.aut.ac.nz/
PdfViewer/Viewer?pid=000000000030280200

Cataldo, M., Mockus, A., Roberts, J. A. & Herbsleb, J. D. (2009). Software depend-
encies, work dependencies, and their impact on failures. IEEE Transactions on
Software Engineering, 35(6), 864–878.

Chapin, N. (1979). A measure of software complexity. Proceedings of the 1979 NCC,
995–1002.

Chen, J. & Lu, J. (1993). A new metric for object-oriented design. Information and
software technology, 35(4), 232–240.

Chen, L., Babar, M. A. & Nuseibeh, B. (2012). Characterizing architecturally significant
requirements. IEEE software, 30(2), 38–45.

Chidamber, S. R. & Kemerer, C. F. (1994). A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6), 476–493.

Chu, W. C., Chih-Wei Lu, Chih-Hung Chang, Yeh-Ching Chung, Yueh-Min Huang
& Baowen Xu. (2002, Aug). Software maintainability improvement: integrat-
ing standards and models. In Proceedings 26th annual international computer
software and applications (p. 697-702). doi: 10.1109/CMPSAC.2002.1045083

https://bsol-bsigroup-com.ezproxy.aut.ac.nz/PdfViewer/Viewer?pid=000000000030215101
https://bsol-bsigroup-com.ezproxy.aut.ac.nz/PdfViewer/Viewer?pid=000000000030215101
https://bsol-bsigroup-com.ezproxy.aut.ac.nz/PdfViewer/Viewer?pid=000000000030280200
https://bsol-bsigroup-com.ezproxy.aut.ac.nz/PdfViewer/Viewer?pid=000000000030280200

References 134

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J. & Little, R. (2002).
Documenting software architectures: views and beyond. Pearson Education.

Coleman, D., Lowther, B. & Oman, P. (1995). The application of software maintain-
ability models in industrial software systems. Journal of Systems and Software,
29(1), 3–16.

Creswell, J. W. (2014). The selection of a research approach. Research design:
Qualitative, quantitative, and mixed methods approaches, 3–24.

Creswell, J. W. & Creswell, J. D. (2017). Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications.

Desharnais, J., Pare, F., Maya, M. & St-Pierre, D. (1997). Implementing a measurement
program in software maintenance–an experience report based on basili’s approach.
In Ifpug conference, cincinnati, oh.

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A. & De Lucia, A. (2018).
Detecting code smells using machine learning techniques: are we there yet?
In 2018 ieee 25th international conference on software analysis, evolution and
reengineering (saner) (pp. 612–621).

Draheim, D., Lutteroth, C. & Weber, G. (2005). Generative programming for c#. ACM
SIGPLAN Notices, 40(8), 29–33.

Dresch, A., Lacerda, D. P. & Antunes, J. A. V. (2015). Design science research. In
Design science research (pp. 67–102). Springer.

Dubey, S. K. & Rana, A. (2011). Assessment of maintainability metrics for object-
oriented software system. ACM SIGSOFT Software Engineering Notes, 36(5),
1–7.

e Abreu, F. B. (1995). The mood metrics set. In proc. ecoop (Vol. 95, p. 267).
e Abreu, F. B. & Melo, W. (1996). Evaluating the impact of object-oriented design

on software quality. In Proceedings of the 3rd international software metrics
symposium (pp. 90–99).

Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. (2008). Selecting empirical
methods for software engineering research. In Guide to advanced empirical
software engineering (pp. 285–311). Springer.

Fenton, N. E. & Neil, M. (1999). A critique of software defect prediction models. IEEE
Transactions on software engineering, 25(5), 675–689.

Fontana, F. A., Mäntylä, M. V., Zanoni, M. & Marino, A. (2016). Comparing and
experimenting machine learning techniques for code smell detection. Empirical
Software Engineering, 21(3), 1143–1191.

Fraenkel, J. R., Wallen, N. E. & Hyun, H. H. (2011). How to design and evalu-
ate research in education. New York: McGraw-Hill Humanities/Social Sci-
ences/Languages.

Gable, G. G. (1994). Integrating case study and survey research methods: an example
in information systems. European journal of information systems, 3(2), 112–126.

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.
Pearson Education India.

Garcia, J., Popescu, D., Edwards, G. & Medvidovic, N. (2009). Toward a catalogue of
architectural bad smells. In International conference on the quality of software

References 135

architectures (pp. 146–162).
Goel, B. M. & Bhatia, P. K. (2012). Analysis of reusability of object-oriented system

using CK metrics. International Journal of Computer Applications, 60(10),
32–36.

Grady, B. (1998). Object-Oriented Analysis and Design with Applications. 2-nd ed. In
Library of congress cataloging-in-publication data.

Halstead, M. H. et al. (1977). Elements of software science (Vol. 7). Elsevier New
York.

Harrison, R., Counsell, S. J. & Nithi, R. V. (1998). An evaluation of the MOOD set of
object-oriented software metrics. IEEE Transactions on Software Engineering,
24(6), 491–496.

Harrison, W. A. & Magel, K. I. (1981). A complexity measure based on nesting level.
ACM Sigplan Notices, 16(3), 63–74.

Henry, S. & Kafura, D. (1981). Software structure metrics based on information flow.
IEEE transactions on Software Engineering(5), 510–518.

IEEE Standard for a Software Quality Metrics Methodology. (1993, March). IEEE Std
1061-1992, 1-96. doi: 10.1109/IEEESTD.1993.115124

Ionita, M. T., Hammer, D. K. & Obbink, H. (2002). Scenario-based software architecture
evaluation methods: An overview. In Workshop on methods and techniques for
software architecture review and assessment at the international conference on
software engineering (pp. 19–24).

Johnson, B. R., De Li, S., Larson, D. B. & McCullough, M. (2000). A systematic
review of the religiosity and delinquency literature: A research note. Journal of
Contemporary Criminal Justice, 16(1), 32–52.

Jorgensen, M. (1995). Experience with the accuracy of software maintenance task effort
prediction models. IEEE Transactions on software engineering, 21(8), 674–681.

Kaur, U. & Singh, G. (2015). A review on software maintenance issues and how to
reduce maintenance efforts. International Journal of Computer Applications,
118(1).

Kazman, R., Bass, L., Abowd, G. & Webb, M. (1994). Saam: A method for analyzing
the properties of software architectures. In Proceedings of 16th international
conference on software engineering (pp. 81–90).

Keele, S. et al. (2007). Guidelines for performing systematic literature reviews in
software engineering (Tech. Rep.). Technical report, Ver. 2.3 EBSE Technical
Report. EBSE.

Khan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., Kleijnen, J. et al. (2001).
Undertaking systematic reviews of research on effectiveness: Crd’s guidance for
carrying out or commissioning reviews (No. 4 (2n). NHS Centre for Reviews and
Dissemination.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK,
Keele University, 33(2004), 1–26.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J. & Linkman,
S. (2009). Systematic literature reviews in software engineering–a systematic
literature review. Information and software technology, 51(1), 7–15.

References 136

Kitchenham, B., Pfleeger, S. L. & Fenton, N. (1995). Towards a framework for software
measurement validation. IEEE Transactions on software Engineering, 21(12),
929–944.

Kitchenham, B., Pfleeger, S. L., McColl, B. & Eagan, S. (2002). An empirical study
of maintenance and development estimation accuracy. Journal of systems and
software, 64(1), 57–77.

Kruchten, P. B. (1995). Architectural Blueprints - The 4+ 1 view model of architecture.
Software, IEEE, 12(6), 42–50. Retrieved from http://ieeexplore.ieee
.org/xpls/abs{_}all.jsp?arnumber=469759

Kulkarni, U. L., Kalshetty, Y. R. & Arde, V. G. (2010, Nov). Validation of ck
metrics for object oriented design measurement. In 2010 3rd international
conference on emerging trends in engineering and technology (p. 646-651). doi:
10.1109/ICETET.2010.159

Kumar, B. (2012, Sep.). A survey of key factors affecting software maintainability.
In 2012 international conference on computing sciences (p. 261-266). doi:
10.1109/ICCS.2012.5

Laing, V. & Coleman, C. (2001). Principal Components of Orthogonal Object-Oriented
Metrics. Software Assurance Technology Center, White Paper SATC-323-08-14,
NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771.

Li, W. (1998). Another metric suite for object-oriented programming. Journal of
Systems and Software, 44(2), 155–162.

Li, W. & Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal
of systems and software, 23(2), 111–122.

Lippert, M. & Roock, S. (2006). Refactoring in large software projects: performing
complex restructurings successfully. John Wiley & Sons.

Lorenz, M. & Kidd, J. (1994). Object-oriented software metrics: a practical guide.
Prentice-Hall, Inc.

Loucopoulos, P. & Karakostas, V. (1995). System requirements engineering. McGraw-
Hill, Inc.

Lynch Jr, J. G. (1982). On the external validity of experiments in consumer research.
Journal of consumer Research, 9(3), 225–239.

Malhotra, R. & Chug, A. (2016, 10). Software maintainability: Systematic literature
review and current trends. International Journal of Software Engineering and
Knowledge Engineering, 26, 1221-1253. doi: 10.1142/S0218194016500431

Malhotra1, R. & Chug, A. (2012). Software maintainability prediction using machine
learning algorithms. Software Engineering: An International Journal (SEIJ),
2(2).

Martin, R. C. (2002). Agile software development: principles, patterns, and practices.
Prentice Hall.

Mason, R. L., Gunst, R. F. & Hess, J. L. (2003). Statistical design and analysis of
experiments: with applications to engineering and science (Vol. 474). John Wiley
& Sons.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software
Engineering(4), 308–320.

http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=469759
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=469759

References 137

Mulrow, C. & Oxman, A. (1997). Cochrane collaboration handbook. The Cochrane
collaboration Handbook (Version 3.0). San Antonio Cochrane collaboration.

Muthanna, S., Kontogiannis, K., Ponnambalam, K. & Stacey, B. (2000). A main-
tainability model for industrial software systems using design level metrics. In
Proceedings seventh working conference on reverse engineering (pp. 248–256).

Nicolau, A. (1989). Run-time disambiguation: coping with statically unpredictable
dependencies. IEEE Transactions on Computers, 38(5), 663–678.

Noor, K. B. M. (2008). Case study: A strategic research methodology. American
journal of applied sciences, 5(11), 1602–1604.

Oman, P. & Hagemeister, J. (1992). Metrics for assessing a software system’s maintain-
ability. In Proceedings conference on software maintenance 1992 (pp. 337–344).

Paré, G., Trudel, M.-C., Jaana, M. & Kitsiou, S. (2015). Synthesizing information sys-
tems knowledge: A typology of literature reviews. Information & Management,
52(2), 183–199.

Petticrew, M. & Roberts, H. (2008). Systematic reviews in the social sciences: A
practical guide. John Wiley & Sons.

Pialorsi, P. & Russo, M. (2007). Introducing microsoft® linq. Microsoft Press.
Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques.

Springer Publishing Company, Incorporated.
Pree, W. & Gamma, E. (1995). Design patterns for object-oriented software develop-

ment (Vol. 183). Addison-wesley Reading, MA.
Prieto-Diaz, R. & Freeman, P. (1987). Classifying software for reusability. IEEE

software, 4(1), 6.
Rasool, G. & Arshad, Z. (2015). A review of code smell mining techniques. Journal of

Software: Evolution and Process, 27(11), 867–895.
Rombach, H. D. (1987). A controlled experiment on the impact of software structure

on maintainability. IEEE Transactions on Software Engineering(3), 344–354.
Rombach, H. D. (1990). Design measurement: Some lessons learned. IEEE Software,

7(2), 17–25.
Rosenthal, R., Rosnow, R. L. et al. (1985). Contrast analysis: Focused comparisons in

the analysis of variance. CUP Archive.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. E. et al. (1991).

Object-oriented modeling and design (Vol. 199) (No. 1). Prentice-hall Englewood
Cliffs, NJ.

Ryan, G. (2010). Guidance notes on planning a systematic review. James Hardiman Lib-
rary (dostęp na http://www. library. nuigalway. ie/media/jameshardimanlibrary/-
content/documents/support/Guidance% 20on% 20planning% 20a% 20system-
atic% 20review. pdf).

Saraiva, J., Soares, S. & Castor, F. (2013). Towards a catalog of object-oriented software
maintainability metrics. In 2013 4th international workshop on emerging trends
in software metrics (wetsom) (pp. 84–87).

Sarkar, S., Rama, G. M. & Shubha, R. (2006). A method for detecting and measuring
architectural layering violations in source code. In 2006 13th asia pacific software
engineering conference (apsec’06) (pp. 165–172).

References 138

Schensul, S. L., Schensul, J. J. & LeCompte, M. D. (1999). Essential ethnographic meth-
ods: Observations, interviews, and questionnaires (Vol. 2). Rowman Altamira.

Schildt, H. (2010). C# 4.0: The complete reference. Tata McGraw-Hill Education.
Schwaber, K. (1997). Scrum development process. In Business object design and

implementation (pp. 117–134). Springer.
Sharma, T., Fragkoulis, M. & Spinellis, D. (2016). Does your configuration code smell?

In 2016 ieee/acm 13th working conference on mining software repositories (msr)
(pp. 189–200).

Sharma, T., Mishra, P. & Tiwari, R. (2016). Designite: a software design quality
assessment tool. In Proceedings of the 1st international workshop on bringing
architectural design thinking into developers’ daily activities (pp. 1–4).

Smacchia, P. (2007). Ndepend. Product description on company website at
http://www.ndepend.com.

Spray, J. & Sinha, R. (2018). Abstraction layered architecture: Writing maintainable
embedded code. In European conference on software architecture (pp. 131–146).

Steidl, D., Hummel, B. & Juergens, E. (2013). Quality analysis of source code
comments. In 2013 21st international conference on program comprehension
(icpc) (pp. 83–92).

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2nd
international conference on software engineering (pp. 492–497).

Visser, E. (2007). Webdsl: A case study in domain-specific language engineering. In
International summer school on generative and transformational techniques in
software engineering (pp. 291–373).

Wake, S. & Henry, S. (1988). A model based on software quality factors which predicts
maintainability. In Proceedings. conference on software maintenance, 1988. (pp.
382–387).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. & Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

Wu, W., Cai, Y., Kazman, R., Mo, R., Liu, Z., Chen, R., . . . Zhang, J. (2018).
Software architecture measurement—experiences from a multinational company.
In European conference on software architecture (pp. 303–319).

Xiao, Y. & Watson, M. (2019). Guidance on conducting a systematic literature review.
Journal of Planning Education and Research, 39(1), 93–112.

Zhou, Y. & Leung, H. (2007). Predicting object-oriented software maintainability using
multivariate adaptive regression splines. Journal of systems and software, 80(8),
1349–1361.

Zohrabi, M. (2013). Mixed method research: Instruments, validity, reliability and
reporting findings. Theory & practice in language studies, 3(2).

Appendix A

The Design of ALA Datalink

A.0.1 Domain Abstractions and Programming Paradigms of ALA

Datalink

This phase was about getting fully understanding of the requirements and design the

domain abstractions. We obey the rules of the ALA architecture and decomposed the

system into 4 layers from top to bottom.

• The application layer which depends on the domain abstraction layer and the

programming paradigms only.

• The domain abstraction layer which depends on the programming paradigms and

the language layer only.

• The programming paradigms layer which depends on the language layer only.

• The programming language layer which we do not have to concern too much

about because it is decided by the operating system and it is stable to use.

A.0.2 Notion of the Designed Programming Paradigms

• IUI - Hierarchical containment structure of the UI.

139

Appendix A. The Design of ALA Datalink 140

• IEvent - Events or observer pattern (publish/subscribe without data. It can be

asynchronous or synchronous. No data, can be bidirectional. Analogous to

Reactive Extensions without the duality with iteration - the flow only uses hot

observable, and never completes.

• IDataFlow - A data flow with a single scalar value with a primitive data type

and a "OnChanged’ event. OR think of it as an event with data, the receivers

are able to read the data at any time. Or think of it as an implementation of a

global variable and an observer pattern, with access to the variable and observer

pattern restricted to the line connections on the diagram. Unidirectional - every

line is one direction implying sender(s) and receiver(s). You can have multiple

senders and receivers. The data is stored in the wire so receivers that don’t act on

the event can read its value at any time. Receivers cant change the data or send

the event. Analogous to Reactive Extensions without the duality with Iteration -

unlike RX the flow only uses hot observable, and so never completes. It is just

a connection point for drawing convenience and has no special meaning. Lines

may have a > or < sign to indicate the direction.

• IRequestResponseDataFlow - Another kind of data flow. However, it is asyn-

chronous.

• ITableDataFlow - A data flow connection that carries rows and self-describing

columns that have names and types. Sometimes one directional and sometimes

bi-directional depending on the operators (some are bidirectional). Data only

moves when an operator called a transact is fired. (Called transact because it

transfers the whole table at once so it remains self-consistent). Transactions

can be triggered in either direction. Transact can be near the source, or the

destination, or anywhere in-between. Thus if the transaction is initiated at the

source it is analogous to RX (Reactive extensions) with a hot observable. If the

Appendix A. The Design of ALA Datalink 141

transaction is at the destination, it is analogous to a query. Some abstractions

are sources (SessionListSCP), some are destinations (read-only grid) and many

are both (FileReaderWriter, DatabaseTable, SessionDataSCP). Some abstractions

transform data and are not considered a source or destination, so they send the

data through, transformed, when a transaction occurs anywhere in their stream.

The ITableDataFlow interface also has a ’current row’. At the logical level, all

rows are transmitted on a transaction. For example, several of these interfaces

can be connected directly to a single destination and the destination will show the

last transaction sent from any of the sources. In practice only the rows that are

actually needed are transferred, so a grid actually requests the data it needs for the

display even if the transact itself is at the source. This will cause less data to be

brought off the device or from the database. If the sink is say a file or a website,

then all data must be queried. When this happens for a slow device, the data is

queried in chunks that can be adjusted for efficiency. Many decorators can be

implemented such as the equivalent of Select (Map), Where (Filter), Aggregate

(Reduce). When the inputs change, a new transaction will be sent from that

point. For example when a filter input port changes, a new transaction is sent

logically consisting of the new set of rows. Three or more ITableDataFlows can

be connected to a single point. Transacts or inactive Gates will block them. If

there is more than one active destination, the data flows to all destinations. When

there are multiple active sources it will cause an error. Rule: When you have

more than two ITableDataFlows connected to a single point, all but one must have

a Transact so it is clear which two the data is flowing through on a transaction.

Every column has a visibility control.

Appendix A. The Design of ALA Datalink 142

A.0.3 Notion of the Designed Domain Abstractions

• PopupWindow - A GUI element that is a stand alone window. Implements a

IEvent on the left which causes the window to open. On the right it has a list of

IUI.The window tells all the IUI in the list to display and arranges them vertically.

It has a IEvent port for closing the window. Click events are sent to the contained

widget at the location of the click.

• Menubar - Menubar as found on most applications Displays Menu’s horizontally.

Implements IUI. Has a list of Menus which are IUI.

• Menu - One Menu that sits on a Menubar. Has a list of MenuItems which are

IUIs. Displays MenuItems vertically when the menu is clicked. Implements IUI.

• MenuItem - A menu item of a menu that can be clicked. Has a IEvent port on the

RHS. When the item is clicked, it generates and event.

• Toolbar - A toolbar typically has tool icons pictures layout horizontally. Imple-

ments IUI. Has a list of Tools which are IUIs.

• Tool - A tool used by the the Toolbar. Implements IUI. When clicked, generates

an event on its RHS port.

• Horizontal - Arranges contained UI elements horizontally Automatically sizes

them.

• Vertical - Arranges contained UI elements vertically. Automatically sizes the

widths to be the same and the heights to be shared according to the contain

elements fixed size, else, minimum size if there is room, otherwise equally

shared.

• Wizard - A window with a list of WizardItems which display as radio buttons,

and Buttons for Next, Cancel, and optionally Back. Each WizardItem has it’s

Appendix A. The Design of ALA Datalink 143

own boolean output. When the Next key is pressed, the selected WizardItem’s

output goes true and emits an event. The Wizard hides but remains in an ’active’

state which holds that output. The Back key, which only appears if it is connected

somewhere, hides and deactivates the wizard. It typically connects to the left

input of a previous wizard (which causes it to re-display as it is usually active

but hidden). The Cancel port is a bidirectional IEvent. When the Cancel key is

pressed, or an event is received on this port, the wizard hides and deactivates,

which releases any held output. See Macro for implementation. Wizard instance

builds the other instances according to the macro diagram and information from

the list of WizardItems.

• WizardItem - One of the radio buttons of a Wizard. Boolean data output that is

true for the selected radio button and false for the rest, and an event. Goes false

when the wizard is cancelled or the whole operation completes.

• Panel - A rectangular container of other UI elements with a title.

• Picture - An IUI abstraction that display an image with the input of the image

path.

• OptionBox - A UI element that presents a drop down list of options. The set of

options are a list of OptionBoxItems. This list is type IDataFlow with a string

type, so the OptionBox can directly read the string values of the options. Op-

tionBox itself has two output ports of type IDataFlow: - The string value of the

selected option. - the index number of the selected option. The OptionBoxItem

has a IDataFlow output port of type boolean, which outputs true while that option

is selected, and emits an event when first selected. This provides a convenient

way of getting separate boolean outputs for each option when they are needed for

Appendix A. The Design of ALA Datalink 144

example to control gates. The OptionBox sends true/false events to the Option-

BoxItems to tell them they are selected or not selected. An unresolved problem

is that IDataFlow interface does not support these events, so another interface

type is needed between the OptionBox and the OptionBoxItem. All the other

similar pair situations such as MenuBar/Menu, Menu/MenuItem, Toolbar/Tool,

RadioButtons/RadioButtonItem, Tabs/Tab, Wizard/WizardItem also have restric-

ted grammar (must be used in pairs, even though other IUI types may actually

work.) So they perhaps should all be different interfaces based on IUI, even if

they are functionally identical to IUI. Every one of these has a concept of either

being in focus or being selected. So the OptionBox/OptionBoxItem pair seems

like an unusual case because it doesn’t use the IUI interface.

• OptionBoxItem - This type could just be a LiteralString except that we want it to

have a boolean output port.

• LiteralString - use StringFormat with nothing connected to the list of inputs.

• Text - Display any kind of text information on UI.

• RightJustify - Layout the sub-elements at the right side of a parent element.

• StringFormat - Really just like a formatted string function found in languages.

Takes a string property which contains C-Sharp style data insertion points e.g.

"Data=1, Data2=2". Has a port which is a list of IDataFlows that are converted to

strings and inserted at the insertion points according to their index numbers, so

the ordering of the connections shown in the diagram are important.

• Map - A ITableDataFlow decorator that maps one column in a data stream to a

new type/value Column is the column to be mapped Lambda is the conversion

expression. A variation is to map all the columns into a new set of columns (like

Appendix A. The Design of ALA Datalink 145

a C-Sharp RX Select statement can map to a new result class using fields from

the source class.)

• Filter - A ITableDataFlow decorator that filters rows Lambda is the expression

that can use any of the columns but must result in a boolean.

• Select - Takes an ITableDataFlow and keeps certain columns.

• Gate - Can block a data stream. One version for each of ITableDataFlow, IData-

Flow, IEvent, IUI. Has an input data stream and an output data stream. Has a

control port that must be a IDataFlow with a boolean type.

• Grid - UI element with rows and columns. The Port Left is an IUI so it can

be connected to anything requiring an IUI, such as a window, panel, horizontal,

vertical. Port 1 must be an ITableDataFlow which is the data source. The Grid

displays the data and allows the user to select a cell and change the data. The

ITableDataFlow defines the columns that are displayed. The Primary key column

is not displayed by default. The user can select a row and column. Port 2 is an

output, the current row Primary Key.

• Transact - Decorator of ITableDataFlow that does a data transfer, either left or

right. Matches the column names and copies the data in the rows. If a column

does not exist on the destination, then attempts to create that column. If columns

have different compatible types (e.g. string with any other type) then tries to

convert the data on a row by row basis. If columns have incompatible types (e.g.

date and number) then doesn’t transfer data, and generates an error. Matches

rows by ID’s. Error messages are output as rows on an Error Port which is a

ITableDataFlow. Error messages can be for a whole columns, a whole row, or a

specific cell.

• RowButton - Just a button that looks like a row of a grid.

Appendix A. The Design of ALA Datalink 146

• SessionDataSCP - Sends SCP commands to it connected serial port to get session

data off of an SCP based device SCP commands are like FN, device responds

with like [982000000123456, 123.5, 2018-11-23].

• LifeDataSCP - similar to SessionDataSCP except send a command to select life

data first.

• SCPDeviceSense - sends ZN command which returns a device name like [3000].

• Iterator - Takes a ITableDataFlow on it RHS port. When a transaction occurs on

this port, it starts iterating through the rows. It has a output called CurrentRow

which is a ITableDataFlow with a single Row and the same columns as the input

table. It generates a Transact operation. It has a output port called Started of

type IEvent. It has an output port called Index of type IDataFlow of type number

which outputs the index of the current row. It has an input port called Next or

type IEvent that causes it to go to the next row of the input table. It has an output

called Complete of type IEvent. It has an input called Stop or type IEvent, which

can be used to stop the iterator before it finishes all the rows.

• Count - To get the number of the elements in a container.

• ConvertToEvent - Converts the activation event within the IUI interface to an

IEvent. Converts a IDataFlow event to an IEvent.

• ConvertTableToDataFlow - Select a specific row of a table and pick the given

column to get the cell data then output it as a string data flow.

• Equals - Outputs a true when the input equals the configured property value.

Used frequently for recognizing connected device names and generates a true

output that turns on many gates for that device. Use generics to implement? e.g.

Equals<string>.

Appendix A. The Design of ALA Datalink 147

• Value - Can have multiple IDataFlow inputs and outputs. As implied by the way

the IDataFlow interfaces works, stores the value when an event comes from an

input, and emits events to the outputs. All the outputs can read the value at any

time.

Appendix B

User Stories and Task Decomposition

B.1 The Selected User Stories For Comparative Exper-

iments

We did not aim to select any specific user stories when we carried out the experiments.

The product manager of Datamars has proposed more than 30 user stories, which were

supposed to be added on the legacy Datalink. However, due to the low maintainability

of it, these user stories were put off until a proper technical solution is found.

In this case, we merely selected the first six user stories for the experiments, which

are listed as follows. Among them US1 and US2 were completely implemented, while

the rest four ones were measured by estimations.

US1. When a new device is connected for the first time the desktop application will ask

the user if they would like to automatically download sessions from this device.

US2. If the user chooses yes, the desktop application will automatically download

any new sessions on the device and display them to the user. When the device is

disconnected these will still be available in a sessions view.

148

Appendix B. User Stories and Task Decomposition 149

US3. If the user chooses no, the desktop application will only download those sessions

the user clicks on to view.

US4. The user can change this auto-download setting for a device at any time.

US5. Sessions that have been downloaded will automatically sync to MiHub Livestock

can be saved to a custom location on the users’ computer for emailing etc, and can be

sent to national traceability programs, and can be deleted from the desktop application.

US6. When viewing sessions on a device the user can choose to delete sessions off

the device - either some sessions, or all sessions. This makes it simple to delete many

devices at once, rather than doing it one-by-one on the device UI.

B.2 Task Decomposition for Implemented User Stories

in ALA Datalink

In this section, the way that the user stories were decomposed as tasks are explained.

As the maintainer of the legacy Datalink aimed to implement the user stories as a whole,

here we merely show the decomposition of the two implemented user stories in ALA

Datalink, as illustrated in table B.1.

US1 was decomposed as three tasks, among which one new abstractions were

required and it is generally a simple user story that advantages the ALA code base.

US2 was decomposed as eight tasks, among which four new abstractions were required,

and the new abstractions were not easy to implement. This story is considered to

disadvantage the ALA Datalink since it has to construct four new abstractions and one

new programming paradigm. Moreover, it changes the way the existing Iterator works,

so some old code needs to change to fit this new design.

Appendix B. User Stories and Task Decomposition 150

Story Task Description

US1

T1. new abstraction: DeviceIdSCP T1. Get the unique ID of a connec-
ted device.

T2. refine abstraction: Filter T2. Refine existing abstraction to
make them more reusable.

T3. wiring T3. wire abstractions to make them
work

US2

T1. new interface: IIterator T1. A new programming paradigm
for iterating.

T2. new abstraction: ListOfFiles T2. List the files with a given folder
name.

T3. new abstraction: SelectExternal T3. Dynamically select the fields
and combine them with give para-
meters.

T4. new abstraction: FileSessions T4. Cache the session data read
from the csv files.

T5. new abstraction: ConvertIter-
atorToTable

T5. Convert iterator to table with a
given column name.

T6. refine abstraction: Select, CSV-
FileReaderWriter

T6. Make it able to read header in-
formation from a csv file

T7. refine Iterator T7. Change the way iterator works
and re-wiring the existing logic that
relates to Iterator

T8. wiring T8. Wire the new and existing ab-
straction to satisfy the user story

Table B.1: User Story Decomposition of ALA

	Abstract
	Attestation of Authorship
	Acknowledgements
	Introduction
	Background and Context
	Abstraction Layered Architecture (ALA)
	Research Questions
	Solution and Contribution
	Significance
	Thesis Structure

	A Systematic Literature Review of Measures for Code Maintainability
	The Systematic Literature Review Process
	Research Questions
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment
	Data Extraction
	Data Synthesis

	Software Maintainability Metrics
	Maintainability Metrics Evolution
	Maintainability Metrics and Classification

	Metrics Refinement and Assessment of ALA
	Modularity Metrics
	Reusability Metrics
	Analysability Metrics
	Modifiability Metrics
	Testability Metrics
	Summary

	Conclusion and Limitations
	Answering Research Question 1 and 2
	Limitations of This Literature Review

	Methodology
	Selection of Research Method
	Our Approach
	Experiment Design and Data Interpretation
	Data Generation and Gathering

	Software Re-development
	Requirements Elicitation and Management
	ALA Architecture Design
	Software Development Life Cycle Management

	Conclusion and Approaches Validity
	Validity of Data
	Validity of Experiments

	Re-developing Datalink with ALA
	Architecture Design of ALA Datalink
	Requirements of Datalink
	The Architecture Design Process
	Architectural Documentation

	Implementation of ALA Datalink
	Background of ALA Mechanisms for Implementation
	Driving the Implementation with Scrum
	Implementation and Examples
	Deliverable of Implementation

	Maintenance Activities of ALA Datalink
	Resolve Nonconformity Between Design and Implementation
	Perfective Maintenance
	Corrective and Adaptive Maintenance

	A General Way to Develop ALA Applications
	A Waterfall Model to Outline the Process
	An Agile Model to Carry Out the Process

	Maintainability Evaluation Based on ISO Sub-Characteristics
	NDepend Dependency Graph - Overall Views of the Two Code Bases
	The NDepend Dependency Graphs
	Zero Coupling of ALA's Domain Abstractions

	Modularity
	Components Coupling
	Cyclomatic Complexity Adequacy
	Summary and Correlation with Preliminary Assessment

	Reusability
	Reusability of Assets
	Coding Rules Conformity
	Summary and Correlation with Preliminary Assessment

	Analysability
	Ripple Effects Identification
	The Ease of Locating Failures or Change Parts
	Summary and Correlation with Preliminary Assessment

	Modifiability
	Modification Efficiency
	Modification Capability
	Summary and Correlation with Preliminary Assessment

	Testability
	Ease of Test Criteria Establishment and Execution
	Summary and Correlation with Preliminary Assessment

	Analysis, Discussion and Summary
	Analysis of ALA's Low Modifiability
	Discussion of the Overall and Long-term Maintainability
	Summary

	Conclusion
	Summary
	Answering Research Questions
	Research Question 3
	Research Question 4
	Research Question 5

	Contributions
	A Group of High-Quality C# Domain Abstractions and Programming Paradigms
	A Strategy of Evaluating the Maintainability of Code Bases
	A General Method to Develop ALA Applications
	Maintainability Improvement Evaluation of ALA in Commercial Software Code Base

	Future Works
	Ongoing Maintainability Observations of ALA Datalink
	Utilization of ALA on Other Platforms
	Exploring Approach of Optimizing ALA's Application Layer

	Final Thoughts

	References
	Appendices
	The Design of ALA Datalink
	Domain Abstractions and Programming Paradigms of ALA Datalink
	Notion of the Designed Programming Paradigms
	Notion of the Designed Domain Abstractions

	User Stories and Task Decomposition
	The Selected User Stories For Comparative Experiments
	Task Decomposition for Implemented User Stories in ALA Datalink

