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Thesis Abstract 

Obesity in children is a worldwide health problem, and New Zealand is no exception. One 

in three New Zealand children is overweight or obese. Thus, identifying modifiable 

determinants of obesity in children is essential to inform future interventions. Evidence 

shows that time-use behaviours, including physical activity, sedentary behaviour, and 

sleep, are related to obesity in children. However, the associations between these 

individual time-use behaviours and obesity shown in past research have been criticised 

for failing to appropriately adjust for time spent in each of the other behaviours. The 

emerging research field of time-use epidemiology suggests that interactions among these 

time-use behaviours may impact health in ways that cannot be explained by studying 

these behaviours in isolation (e.g., increasing one behaviour displaces another). This has 

prompted a global shift in behavioural epidemiology research where an integrated 

approach focusing on complete (24-hour) days is now a research priority. 

The overall aim of this PhD thesis was to advance the area of time-use research in children 

through four studies, guided by the Viable Integrative Research in Time-Use 

Epidemiology (VIRTUE) framework. Study 1 investigated the concurrent validity of two 

accelerometers (i.e., ActiGraph GT3X+ and Axivity AX3) for measuring children’s time-

use behaviours against direct observation. Both accelerometers reached 65% to 97% 

balanced accuracy for detecting various postures and physical activity intensities, with 

the AX3 offering slightly better accuracy than the GT3X+ accelerometer. These findings 

showed that the AX3 device could effectively measure activity type and intensity in child 

populations. 

Studies 2–4 utilised data from a sample of children who participated in the 8-year wave 

of the Growing Up in New Zealand cohort study. Study 2 investigated if the 24-hour 

AX3-measured time-use behaviours (measured from activity intensity and activity type 
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perspectives) and reallocation of time across these behaviours were associated with 

obesity-related outcomes using compositional data analysis. The 24-hour time-use 

composition was significantly associated with body mass index (BMI). More time spent 

in light-intensity physical activity (LPA) and walking (relative to the other behaviours) 

was associated with lower BMI. Study 3 examined how these children clustered based on 

their lifestyle behaviours (including time-use behaviours and diet) and associations 

between cluster membership and obesity. Three unique clusters were identified, with 

children in the healthiest cluster (lowest sedentary time and sitting time, healthiest diet) 

had the lowest BMI compared to other clusters. Study 4 examined which 

sociodemographic factors were associated with adherence to the New Zealand 24-hour 

Movement Guidelines. Only a small number of children met these guidelines, and child 

gender, ethnicity, mother’s education, and household area (urban vs rural) were 

associated with guideline adherences.  

Overall, the studies in this thesis have made significant contributions to time-use research 

by providing insight into the structure of time-use behaviours and their relationship with 

measures of obesity in New Zealand children. It is hoped that these findings will assist in 

developing and tailoring future interventions to improve child health.  
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1 Chapter 1- Introduction 

Background 

Childhood obesity represents a major public health concern of the 21st century [1]. 

Worldwide obesity and overweight in children have increased by 47% over the last four 

decades [2]. According to the New Zealand Ministry of Health, about one in three New 

Zealand children aged 2–14 years is overweight or obese [3]. The rate of New Zealand 

children classified as overweight or obese has remained almost consistent over the past 

ten years, from 31.6 % in 2011/2012 to 30.8 % in 2020/2021 [4]. The results from the 

2020/2021 New Zealand Health Survey show that the rate of obesity in children has 

increased from 9.5% in 2019/2020 to 12.7% in 2020/2021 [3]. This is concerning as 

childhood obesity is associated with several comorbidities that track to adulthood [5]. 

Evidence shows that children with obesity are at higher risks of cardiovascular and all-

cause mortality in adulthood [5]. In 2006, the healthcare costs on overweight and obesity 

in New Zealand was estimated at USD 424 million, corresponding to 4.4% of the 

country’s total healthcare costs [6]. Treating obesity once being established in children is 

challenging, highlighting the importance of obesity prevention. In addition to healthy 

eating behaviours [7], favourable daily time-use behaviours (i.e., regular physical activity 

[8], reduced sedentary time [9], and sufficient sleep [10]) have been identified as key 

lifestyle behaviours in obesity prevention. 

A substantial body of evidence links time-use behaviours (i.e., physical activity, 

sedentary behaviour, and sleep) to overweight and obesity in children [8-10]. However, 

most of this evidence comes from research assessing and analysing these behaviours 

individually, where the fundamental co-dependency between these behaviours has been 

largely overlooked [11]. As the duration of any given day is fixed and limited to 24 hours, 

any changes in time spent in one behaviour (increase or decrease) is inevitably 
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accompanied by equal and opposite changes in the time available for one or more of the 

remaining behaviours [12]. Thus, the health outcome claimed to be associated with 

increasing or decreasing time in one behaviour may be the result of changes in the 

remaining behaviour within the 24-hour time-use composition [13]. Consequently, 

collective examinations of all these behaviours within the 24-hour time-use composition 

rather than single isolated behaviours is more relevant to the real world. This has resulted 

in behavioural researchers moving away from focusing on a single behaviour to an 

integrated approach targeting all behaviours collectivity [13]. 

The shift has led to integrating physical activity, sedentary behaviour, and sleep research 

into a unified research area called time-use epidemiology [12]. To progress research in 

this new field, a theoretical framework has been proposed called the Viable Integrative 

Research in Time-Use Epidemiology (VIRTUE framework) [12]. This framework 

encompasses five categories of research: 1) methodological research in time-use 

epidemiology (i.e., measurement, surveillance, data processing and analysis), 2) 

outcomes of health-related time-use compositions, 3) time-use compositions (i.e., optimal 

balance, prevalence, and trends), 4) determinants and correlates of optimal time-use, and 

5) time-use interventions (Figure 1-1) [12].

To progress time-use research within this framework, capturing 24-hour time-use 

behaviours is the first step [12]. Accelerometers are commonly used to measure these 

behaviours; however, there are challenges [14]. These include the ever-growing 

availability of various accelerometer devices and the lack of standardised procedures to 

collect and analyse the accelerometer-derived data, which limit the comparability 

between studies [15]. Therefore, establishing the validity of available accelerometers and 

the comparability between different models, and developing standardised data collecting 

and processing procedures are critical for advancing time-use research.  
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Figure 1-1. Viable Integrative Research in Time-Use Epidemiology (VIRTUE framework). 
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Thesis Rationale 

The recent paradigm shift in behavioural research, focusing on time-use behaviours 

collectively within the 24-hour context, is accompanied by two challenges: 1) measuring 

time-use behaviours 24 hours a day, including accurately classifying each behaviour of 

interest, and 2) applying appropriate statistical methods that acknowledge the 

compositional properties of these data.  

Continuous and accurate measurement of 24-hour time-use behaviours is clearly the first 

step for understanding the influence of time-use behaviours on health. This has been 

identified as the first research area within the VIRTUE framework (i.e., methods) for 

future research in time-use epidemiology [12]. Over the past decade, accelerometers have 

been commonly used to measure time-use behaviours. However, previous measurement 

protocols were not designed to capture the entire 24-hour day. Following the traditional 

measurement protocols, individuals were generally not required to wear accelerometer 

devices for the whole 24-hour period, but usually for 8 to 12 hours a day [16]. With the 

new focus on 24-hour time-use data, there has been a movement towards 24-hour wear 

protocols and different wear locations (e.g., wrist and thigh), which has resulted in higher 

compliance rates (approximately 24 hours) [15], compared to an average of 10 hours wear 

time in previous studies [17].  

In addition to collecting time-use data for 24 hours, classifying these acceleration data 

into time-use behaviours is not without challenges. Count-based approaches are 

commonly used to categorise accelerometer-derived data into various activities based on 

their intensities. Here, acceleration data are converted into ‘activity counts’ before cut 

points are applied to these counts to estimate time spent in different activity intensities 

[14]. However, there are various sets of cut points available for different accelerometer 

brands, referred to as the ‘cut point conundrum’. Depending on which cut-point is used, 

the estimate of each activity may differ, which ultimately reduces the comparability 
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between studies [15]. More recently, machine learning techniques have gained attention 

for detecting various activity types from raw accelerometer data and offer promise for 

exploring time-use behaviours in more detail [18, 19].   

The time spent in each behaviour is exclusive and exhaustive parts of a constrained whole 

(24-hour). Consequently, these times are co-dependent and represent compositional data 

in that each component carries relative information [20]. Due to these specific properties, 

compositional data such as time-use data should be handled with an appropriate statistical 

methodology, called compositional data analysis (CoDA)[13].  

Using CoDA, researchers have begun to explore 24-hour time-use behaviour patterns and 

their collective impacts on various health outcomes in several countries within different 

age groups [21]. Investigating the health outcomes of time-use behaviours is outlined as 

the second area of research in the VIRTUE framework [12]. Preliminary evidence from 

these studies suggests that 24-hour time-use compositions are associated with various 

health outcomes in children, including obesity [21]. To date, there is limited evidence on 

the relationship between 24-hour time-use behaviours and obesity in New Zealand 

children. In reality, children engage in these time-use behaviours in a particular way (i.e., 

children with more of one behaviour may have less of another). Therefore, it is of 

importance to explore how these children’s time-use behaviours cluster into distinct 

groups. This information may inform more specific interventions for obesity prevention 

among children.  

Realising the importance of 24-hour time use behaviours in the health and wellbeing of 

children, the New Zealand Ministry of Health released a revised set of physical activity, 

sedentary behaviour, and sleep guidelines for children and young people. These 

recommendations advocate a favourable combination of sleep, physical activity, and 

sedentary behaviour within a given 24-hour period [22]. However, there is currently no 
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evidence to illustrate the adherence to these 24-hour Movement Guidelines among New 

Zealand school-aged children and whether these time-use patterns vary among different 

sociodemographic subgroups. Exploring the prevalence of time-use compositions and 

their determinants are highlighted as the third and fourth areas of future research in the 

VIRTUE framework [12].  

 

Purpose of Research  

Following the VIRTUE framework, the overall goal of this thesis research was to explore 

how time-use behaviours were related to obesity in New Zealand children. This thesis 

consists of four studies covering the first four research areas in the VIRTUE framework. 

The specific objectives of each study are as follows: 

Study 1: To investigate the accuracy of device-based measures of time-use behaviours 

(VIRTUE Research Area 1). 

 To assess the concurrent validity of ActiGraph GT3X+ and Axivity AX3 

accelerometers for measuring time-use behaviours against direct observation.   

Study 2: To examine the associations between 24-hour time-use behaviours and obesity-

related outcomes in children using compositional data analysis (VIRTUE Research Area 

2). 

 To determine the cross-sectional associations between 24-hour time-use 

compositions and obesity in children using compositional multiple linear 

regression.  

 To determine the associations between reallocations of time among time-use 

behaviours and obesity in children using compositional isotemporal 

substitution.  
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 Study 3: To explore whether lifestyle behaviours (i.e., 24-hour time-use and diet 

behaviours) cluster among New Zealand children and the relationships between cluster 

memberships and obesity using compositional analysis techniques (VIRTUE Research 

Areas 2 and 3).  

 To determine clusters of lifestyle behaviours among children using

compositional cluster analysis.

 To examine the associations between cluster membership and obesity among

children.

Study 4: To determine patterns of 24- hour time-use behaviours in New Zealand children 

and the associated sociodemographic correlates (VIRTUE Research Areas 3 and 4). 

 To describe the 24-hour time-use patterns in children, and the associated

sociodemographic factors.

 To determine the proportion of children who meet the New Zealand 24-hour

Movement Guidelines and the sociodemographic factors related to guidelines

adherence.
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Thesis Structure  

This thesis consists of seven chapters, as shown in Figure 1-2. Chapter 2 includes a 

literature review examining the relationships between time-use behaviours and obesity in 

children. Chapters 3–6 are distinct publications adapted in chapter format, either 

published in peer-reviewed journals or under review. Lastly, Chapter 7 provides a general 

discussion, including a summary of key findings, overall limitations, and future 

directions. 
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Thesis Organisation 

Context 

This research consists of two main sections. The first section (Chapter 3) is a validation 

study investigating the concurrent validity of two accelerometers (i.e., Axivity AX3 and 

ActiGraph GT3X+) for detecting various activity intensity and activity types against 

direct observation. This study was conducted among 41 children and 33 adults. The ethics 

approval for this study was received from the AUT University Ethics Committee (17/220) 

(Appendix A).  

The second section is divided into three studies (Chapters 4–6), which utilise data from 

Growing Up in New Zealand (GUiNZ), a birth cohort study of New Zealand children- 

tracking the lives of nearly 7,000 children and their families from before birth until they 

are young adults. This is a diverse but nationally representative sample with adequate 

numbers among ethnic and gender groups. This cohort study was launched in 2008 by 

recruiting pregnant women (estimated delivery in 2009/2010) residing in Auckland, 

Counties-Manukau, and Waikato District Health Boards [23]. Currently, six main Data 

Collection Waves (DCW) have been carried out, including Antenatal, Nine Month, Two 

Year, Four Year, Six Year, and Eight Year waves. The Antenatal DCW happened before 

the child’s birth in which the pregnant mother and her partner completed a face-to-face 

Computer Assisted Personal Interview (CAPI), followed by another CAPI with the 

mother and her partner in the Nine Months DCW. The Two Year DCW (children aged 

two years old) included a CAPI with the parents, direct observations, and developmental 

and anthropometric assessments of the children. The Four and Six DCW happened when 

the children were four and a half and six years old, which involved interviews with the 

parents, child observations and biological sampling. The Eight Year DCW (children aged 

eight years old) included a parent online questionnaire, a child CAPI, direct child 

observations, developmental and anthropometric assessments, and biological sampling. 
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In this DCW, 24-hour time-use behaviours were measured for the first time, using a novel 

dual-accelerometer protocol designed and tested by the researchers at the Human 

Potential Centre, Auckland University of Technology. The research presented in this 

thesis utilises data from a sub-sample (n = 623) of the Eight Year DCW of this cohort 

study.  

 

Candidate contributions 

For the first section, the candidate assisted with the data collection, organised, and 

prepared the data (i.e., video coding and checking), analysed the data, and wrote the 

manuscript (Chapter 3). For the second section, the candidate prepared a project proposal 

outlining the objectives of the study, as well as the required datasets, which was submitted 

to the GUiNZ data access committee (DAC) for approval. The proposal was also 

presented by the candidate before the GUiNZ DAC members. Following the project 

approval by the DAC, the candidate completed a formal Data Access Application to 

access datasets for this research project (Appendix B). The candidate led the data 

checking, analysis procedures, results presentation, and interpretation, and writing the 

manuscripts (Chapters 4–6). 
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2 Chapter 2 - Literature Review 

This chapter is organised into two main sections. The first section reviews the 

relationships between time-use behaviours and obesity in children. This section covers 

the individual and combined relationships between physical activity, sedentary 

behaviour, and sleep and obesity. Measurement of each individual behaviour is also 

included in the first section, whereas the second section focuses on the methods of 

measuring and analysing of time-use behaviours within their 24-hour context.  

 

Health-related outcomes of time-use behaviours  

Associations between individual time-use behaviours and obesity  

Physical activity and obesity 

A recent systematic review looked at the relationship between objectively measured 

physical activity (PA) and adiposity in children and youth aged 5–17 years old [8]. This 

review included 72 studies, of which 62 were observational (14 longitudinal, 48 cross-

sectional) and 13 experimental studies. The majority of the cross-sectional studies showed 

consistent, favourable associations between total PA (18/22 studies), vigorous-intensity 

physical activity (VPA) (14/15 studies), and moderate-to-vigorous-intensity physical 

activity (MVPA) (26/30 studies) and at least one adiposity indicator. Relationships 

between light-intensity physical activity (LPA) and adiposity variables have also been 

explored in several studies showing equal proportions of favourable, unfavourable and 

null relationships (i.e., favourable associations between at least one adiposity indicator in 

3/9 studies, at least one unfavourable association in 3/9 studies and null association in 3/9 

studies). This review demonstrated that most of the physical activity research in children 

has explored the health benefits of higher PA intensities (VPA and MVPA) rather than 

LPA.  
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Accumulation of evidence on the benefits of PA on health, specifically MVPA, led to the 

establishment of physical activity guidelines. The physical activity guidelines are meant 

to deliver a simplified message to the general public regarding the health-enhancing 

benefits of physical activity [24]. In the late 1980s, The American College of Sports 

Medicine pioneered delivering such messages by issuing an opinion statement that 

children and youth should obtain 20–30 minutes of vigorous exercise every day for 

optimal health [25]; however, this statement and following guidelines [26-28] were all 

based on evidence linking physical activity with health risk factors in adults and not 

children [29]. The first child-focused physical activity guidelines based exclusively on 

evidence from child studies were developed in 1998 [30], recommending that children 

and youth should be engaged in at least 60 minutes of moderate-intensity physical activity 

per day. According to the current global physical activity guidelines for children and 

youth (aged 5–17 years old), the accumulation of at least 60 minutes of MVPA daily, 

including various aerobic activities, is needed for optimal health [31].  

As mentioned, historically, most of the physical activity research in children has explored 

the health benefits of higher PA intensities (i.e., MVPA), but over the years, increased 

interest has been paid to LPA, which represents the majority of children’s physical 

activity accumulated during waking hours [32]. Emerging evidence suggests that LPA 

may also be necessary for optimal health and disease prevention [33-35]. This evidence 

of the potential health benefits of all intensities of PA, including LPA, has led to a broader 

focus beyond only one hour of MVPA in 24 hours [8]. Accordingly, recent Canadian 

physical activity guidelines (as part of 24-hour movement guidelines) have included 

recommendations for several hours of structured and unstructured LPA in addition to 60 

minutes of MVPA for children and youth [36]. This approach has been since adopted by 

other countries, including New Zealand [22]. 
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There is a favourable relationship between meeting PA guidelines (60 minutes of MVPA 

daily) and several health indicators, including adiposity [8]. Despite this, there is concern 

that many children are insufficiently active worldwide, including in New Zealand [37, 

38]. Only two-thirds of New Zealand children reach the recommended level of MVPA 

(i.e., at least 60 minutes daily) on most days of the week [39]. As a global health concern, 

physical inactivity (i.e., not meeting the recommended level of MVPA) is identified by 

the World Health Organisation (WHO) as a major modifiable risk factor for 

noncommunicable disease, and it is also associated with other significant health 

outcomes, including obesity [31]. Therefore, promoting PA in this age group is essential, 

but this requires accurate measurement of PA to determine the prevalence of PA and 

efficiency of PA intervention programmes [16]. 

Physical activity measurement 

Accurate assessment of PA is essential for determining the prevalence of PA, and 

identifying the proportion of the population who meet the recommended level according 

to the PA guidelines. Accurate measurement is also necessary to quantify the 

relationships between PA levels and health outcomes and evaluate the effectiveness of 

physical activity intervention programmes [40]. Several methods exist to measure PA, 

typically categorised as subjective and objective [40]. Subjective methods are the most 

convenient and include self- or proxy-report questionnaires, reports or interviews, 

providing useful information about physical activity context, but they are prone to flaws 

due to low validity and biased reports [41]. Conversely, it has been demonstrated that 

accelerometers can provide reliable and valid objective measures of PA in children and 

youth. Accelerometers are now widely used in large-scale epidemiological and 

interventional studies for objectively assessing free-living physical activity [14]. Multiple 
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accelerometers are available, with ActiGraph being the most commonly used device in 

PA research [16]. These wearable monitors provide an objective measure of frequency, 

intensity, and duration of physical activities by recording the acceleration of body parts 

to which they are attached (e.g., waist, hip, wrist) during movement [42]. Accelerometers 

can detect acceleration in different planes of movement; one (uniaxial), two (biaxial) or 

three (triaxial) [40]. Although recall bias is not an issue when assessing PA by 

accelerometers, there are methodological challenges related to accelerometer data 

collection and analysis [16].   

The validity of objective estimates of PA using motion-based accelerometers (e.g., 

ActiGraph and Actical) might be constrained due to technical-related shortcomings, 

significant non-wearing time, non-objectivity and choice of intensity cut-points [43]. 

Technical shortcomings such as the inability of hip- or wrist-worn accelerometers to 

capture activities such as cycling [44] and water-based activities might result in 

underestimating physical activity. Additionally, studies using accelerometers have 

reported low wear-time compliance, potentially resulting in missing data, producing a 

picture that may not represent an individual’s habitual physical activities [45]. Another 

issue with using accelerometers is non-objectivity; objective measurement of acceleration 

by accelerometers is supposed to be independent of human-related factors. However, 

individuals in free-living settings can interfere with the outcome by not wearing the 

device deliberately, changing their routine behaviour, changing device placement or 

shaking the device [43] .  

While using accelerometers to access PA, methodological decisions made by researchers 

before and after data collection may drastically change the outcome. These decisions 

include determining data collection interval (epoch length), non-wear criteria, defining a 

valid day, specifying a minimum number of valid days for a valid dataset, choosing 

intensity cut-points, and algorithms [46]. Differences between studies in these decisions 
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may lead to variabilities in results and mislead research [47]. For example, children and 

youth accelerometer-derived estimations of PA intensities can be significantly affected 

by epoch lengths; however, this may not be an issue when total accumulated PA per day 

is the outcome of interest [48]. Six different epoch lengths have been used in children and 

youth studies, varying from 2 to 60 seconds, with the majority using a 60-second epoch 

[16]. For example, based on 401 adolescents, Aibar et al. (2014) compared the impact of 

different epoch lengths ranging from 3 to 60 seconds for estimating PA intensities (using 

the ActiGraph GT3X). They indicated that using shorter epochs resulted in higher 

estimation of MVPA, consequently, higher compliance with PA guidelines (40.7% for 3-

second vs 24.4% for 60-second epoch lengths), which potentially creates errors when 

studies using different studies epoch lengths are compared [49]. Similarly, another study 

reported that longer epoch length (e.g., 60 sesonds) provided smaller estimates for higher 

intensities PA (i.e., MPA, VPA, and MVPA) compared to shorter epoch lengths [50].  

Non-wear time is the duration of time when the accelerometers are removed for specified 

reasons (i.e., sleeping, showering, or being involved in water-based activities) or for no 

reason. Non-wear duration can be determined by adding up the number of consecutive 

zero counts, and then wear time can be calculated by subtracting non-wear time from the 

total amount of time [16]. Non-wear time is not included in the final analysis, assuming 

the remaining wear time is representative of the entire measurement duration. The ideal 

non-wear criteria may differ based on the type of accelerometer and the study population 

due to having diverse PA and sedentary time patterns [51]. Six different non-wear 

definitions have been reported, ranging from 10 to 180 minutes of continuous zero counts, 

with 10–20 minutes criteria most common in children and youth studies [16]. The choice 

of non-wear time criteria affects the estimation of the level of PA. For example, in a 

sample of 891 11-year-old children, Aadland et al. (2018) compared ten different 

definitions of non-wear time (i.e., 10, 20, 30, 45, 60 and 90 minutes of consecutive zero 



 

16 

 

counts without allowance of interruptions, and 60 and 90 minutes with allowance of 1 to 

2 minutes of interruptions). They found that non-wear criteria influenced estimation of 

total PA (10% difference, 591 to 649 counts per minute), but estimates for time spent in 

different PA intensities were similar between different criteria [51].  

Variability in defining non-wear time may also have an impact on the number of valid 

days; for example, it was reported that the number of participants having four valid days 

(minimum of 10 hours of daily wearing time) differed from 38% to 84%, using 10 minutes 

or 60 minutes of consecutive zero counts criteria to calculate non-wear time, respectively 

[52]. A possible solution to overcome ambiguity surrounding non-wear time is using skin-

taped accelerometers with an inbuilt skin temperature sensor such as the Axivity AX3, 

with which wear time is estimated based on the temperature readings [53].  

Other accelerometer-derived data processing decision rules are to determine the minimum 

number of daily wearing hours for a valid day to be representative of a typical day and 

the minimum number of wearing days for reliable and valid data showing habitual PA 

levels of individuals [54]. Regarding the definition of a valid day, 12 different criteria 

have been used in children studies ranging from 6 to 12 hours, with a minimum of 10 

valid hours of wearing as the most commonly used criteria [16]. These decisions 

ultimately affect the reliability of the physical activity level obtained [16]. 

While processing accelerometer-derived data, detected raw acceleration data are 

converted into dimensionless units called “counts” using proprietary algorithms and then 

are summed over a user-specified period, known as epoch (e.g., 1, 10, or 60 seconds) 

[14]. Subsequently, cut-points are applied to these counts to distinguish between different 

PA intensities. Generally, these cut-points have been determined based on calibration 

studies [14]. Referred to as the “cut point conundrum”[55], there are various and often 

conflicting sets of cut points to estimate the amount of MVPA, LPA and sedentary time, 
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reducing comparability across studies [56]. Diversity in using different PA intensity cut-

points can lead to inconsistencies between findings; for example, the results from the 

National Health and Nutrition Examination Survey comparing five different child-

derived cut points showed that the choice of PA intensity cut-points can influence the 

proportion of individuals who meet the PA guideline, as well as the relationship between 

PA and various health outcomes [57]. Additionally, in a study by Carson et al. (2013), a 

positive association was observed between high LPA cut-points (800 counts/min) and 

cardiometabolic biomarkers, but not with low LPA cut-points (100–799 counts/min) [33]. 

The lower cut-point thresholds may not accurately differentiate between LPA and 

sedentary behaviours, producing inconsistent findings. To address the limitations of cut-

point thresholds, applying machine learning or pattern recognition methods on raw 

accelerometer data is increasingly used as an alternative approach, providing high 

accuracy for recognition of PA type and intensities [58]. Accelerometers such as 

ActiGraph GT3X+ and Axivity AX3 can record raw acceleration data [59, 60]. Shifting 

from a count-based approach to extracting features from raw-data accelerometers will 

increase researchers’ control over the steps involved in processing accelerometer-derived 

data [61].   

 

Sedentary behaviour and obesity  

Although engaging in 1 hour of MVPA daily is beneficial for health, it accounts for a 

small proportion of the 24 hours. Within the remaining 23 hours, children and youth spend 

a considerable amount of their waking hours (about 50–60%) in sedentary behaviour (SB) 

[62, 63]. There is growing support for the importance of limiting sedentary behaviour, 

particularly screen-based activities for health promotion and disease prevention in 

children [9]. According to the recent Sedentary Behaviour Research Network (SBRN)-

Terminology Consensus Project, SB is referred to any waking behaviour with an energy 
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expenditure of ≤1.5 METS in a sitting, reclining or lying position [64], and is 

characterised by the SITT formula; Sedentary behaviour frequency (number of bouts with 

specific duration), Interruption (breaks), Time (period of sitting), and Type (mode of 

sedentary behaviour such as watching TV, computer, video games) [65]. An occupational 

physician first noticed an unfavourable relationship between SB and health outcomes in 

the 17th century [66]. However, a proliferation of research on the health outcomes of SB 

has been seen from nearly two decades ago [12], when researchers started to treat SB as 

a separate and distinct construct from physical inactivity (i.e., insufficient level of 

MVPA) [67-69]. Accumulating evidence suggests that engaging in SB is associated with 

poor physical and psychological health status in both adults and children, which has been 

demonstrated to be statistically independent of the level of MVPA [70-72]. As sedentary 

behaviour habits in the paediatric population tend to persist in adulthood [73], 

determining safe and healthy amounts of these behaviours is essential, especially in 

children. 

The association between SB and adiposity in children has been primarily examined, with 

the majority focusing on screen-based sedentary behaviour, particularly TV viewing [74]. 

One of the first studies in 1985 by Dietz and Gortmaker investigated the health outcomes 

of watching TV. This landmark study recognised watching TV as a potential risk factor 

for obesity in children and adolescents. Using two cross-sectional and one longitudinal 

sample of children and adolescents, an association was observed between obesity (defined 

as a triceps skinfold equal or greater than 85th percentile) and time spent watching TV in 

both study designs. It was reported that obesity prevalence was the highest among 

adolescents aged 12–17 years who had watched TV for 5 hours or more daily at age 6–

11 years old. However, it was acknowledged that TV viewing only accounted for a small 

proportion of the variance of childhood obesity [75]. More recently, another study with 

over 1000 children aged 5–15 years old from New Zealand supported these findings by 
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showing a positive prospective relationship between weekly hours of television viewing 

and BMI status in adulthood [76].  

In a review by Tremblay et al. (2011), a total of 152 observational studies (119 cross-

sectional and 33 longitudinal) and 18 experimental studies (8 randomised control trials 

(RCTs) and 10 other interventions) have examined the relationships between SB and 

various measures of body composition (i.e., body mass index (BMI), body fat percentage 

(BF%), the sum of skinfolds, waist circumference (WC)). The majority of the 

observational studies (about 75%) reported a significant positive relationship between 

sedentary time (particularly time spent watching TV) and higher BMI, weight status, or 

fat mass and increased risk for being overweight or obese. Meta-analysis of the RCTs 

showed that a decrease in sedentary time led to a mean reduction in BMI of -0.89 kg/m2 

(95% CI = -1.67, -0.11, p = 0.03) [71]. However, most of the included studies used 

subjective measurements of sedentary behaviour (i.e., self-report or proxy report), which 

are prone to bias [77]. Carson and colleagues conducted similar systematic reviews to 

Tremblay et al. (2011) in a five-year update. They found 162 new studies (157 

observational and 5 experimental) [9] that had examined the association between SB and 

body composition. In agreement with Tremblay and colleagues’ findings, this review 

indicated a significant unfavourable relationship between higher duration of screen time 

and TV viewing and body composition measures across all the study designs. This review 

provided updated information for recent Canadian sedentary behaviour guideline, 

integrated with other guidelines (i.e., sleep and physical activity), forming the 24-hour 

Movement Guidelines [36].  

A recent systematic review of reviews has been conducted to analyse the links between 

SB and adiposity or weight status [78]. Based on the evidence from cross-sectional 

studies, a small relationship was reported between self-reported TV viewing, screen time 

(i.e., a combination of TV viewing, video game/computer use), and adiposity in children 
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and youth. However, reviews on the association between computer usage and adiposity 

reported mixed findings, with some reporting an association [79], while others did not 

[80, 81]. Although TV viewing or screen-based entertainment is the most favourable 

sedentary behaviour during leisure time, it is not necessarily an appropriate proxy of total 

sedentary time in other contexts such as sitting time in school or passive commuting [82].  

Since the advent of wearable technology such as accelerometers, the research focus has 

been expanded from screen-based sedentary behaviour to total sedentary time. Several 

studies have examined the association between accelerometer-derived total sedentary 

time and body composition. Although these studies’ findings primarily show a null 

association between total sedentary time measured using accelerometers and body 

composition [9, 71, 78], it is essential to note that the findings of these studies need to be 

interpreted with caution due to methodological issues. More specifically, using a 

regression model to examine the relationship between total sedentary time and body 

composition while adjusting for physical activity might produce inaccurate results [20] 

as this model assumes independence between sedentary time and physical activity. Recent 

evidence indicates that time spent in time-use behaviours, including physical activity, 

sedentary behaviour, and sleep, is interdependent. A recent study among Canadian 

children aged 6–17 years old used compositional data analysis instead of traditional 

regression analysis to address this issue. A positive  association  between sedentary time    

and obesity markers was reported [83]. Therefore, studies with novel analytical 

approaches such as compositional data analyses, compatible with the interdependent 

components of 24-hour time-use behaviours, are needed to provide further insights into 

this association.  

It appears that the association between SB and health outcomes is being influenced by the 

way that sedentary behaviour is measured [84]. Until recently, hip-mounted 
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accelerometers (e.g., ActiGraph) were the most commonly used device to objectively 

measure sedentary time [82]. However, these accelerometers may not be sensitive enough 

to differentiate between sitting and upright postures with restricted movements, such as 

passive standing [85, 86] potentially having significant impacts on the relationship 

between SB and health outcomes.  

 

Sedentary behaviour measurement 

Earlier studies have frequently used subjective methods to quantify sedentary time, such 

as self- or proxy-reported screen time [71]. However, this approach may not accurately 

represent total sedentary time, given that screen time is only a sub-component of total SB 

[84]. For example, it was shown in a nationally representative survey of 2,200 children 

aged 9–16 years old that only 60% of total sedentary time was allocated to screen time, 

with a moderate correlation between screen time and total sedentary time (r = 0.53), 

illustrating that screen time may not be an appropriate proxy of total sedentary time [87]. 

Although subjective measures of SB have been preferred in large-sample studies due to 

their practicality, low costs and burden, these self-reported measurements of SB may 

introduce errors and bias. Conversely, objective measures may provide more reliable and 

valid estimates of SB [88].  

Objective measurements of SB have increased in recent years using two devices, 

including energy expenditure devices and posture classification devices. While most of 

these devices are based on the same underlying technology (accelerometry), data are 

interpreted using different algorithms to estimate energy expenditure or body posture 

[88]. Accelerometers such as ActiGraph GT3X are an example of energy expenditure 

devices. This small triaxial accelerometer measures human movement by recording 

acceleration in three orthogonal planes using vertical, horizontal, and perpendicular axis 
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within user-determined periods (epoch) at different sampling frequencies (e.g., 30 Hz). 

These data are then converted into counts via proprietary algorithms and software [88]. 

Generally, the amount of sedentary time is determined using a threshold of fewer than 

100 counts per minute, which corresponds to energy expenditure levels of sedentary 

behaviour (≤1.5 METs) [88]. While providing valid and reliable estimates of PA, there 

are issues in using these waist/hip-mounted accelerometers for measuring SB as they 

estimate sedentary time based on lack of movement using cut-point protocols rather than 

posture [89], which is not congruent with the conceptual definition of sedentary behaviour 

by SBRN - any waking behaviour with an energy expenditure of ≤1.5 METs in a sitting, 

reclining or lying position [64]. Using a cut-point based approach, a study showed 0% 

accuracy for ActiGraph GT3X in distinguishing standing from sitting, misclassifying 100 

% standing time as sitting [90]. Additionally, it has been demonstrated that different cut-

points might influence the association between SB and health outcomes [91]. 

Alternatively, posture-based accelerometers such as activPAL, a small and thigh-worn 

monitor, which are equipped with an inclinometer, appears to be an accurate monitor to 

estimate SB defined by posture [89]; however, it fails to account for the energy 

expenditure component of the SBRN sedentary behaviour definition (i.e., less than 1.5 

METs) [92]. Accelerometer-derived information about acceleration and thigh position are 

used to determine body posture and transition between postures using proprietary 

algorithms [93]. A laboratory-based study in school-aged children found a perfect 

correlation (r = 1.00) between direct observation and activPAL in time spent sitting/lying, 

standing and walking, and an approximately perfect correlation (r = 0.99) in posture 

transition (i.e., sit-to-stand and stand-to-sit) [94]. Energy expenditure or posture-based 

accelerometers are specialised to measure one component of SB, highlighting the need 

for measurement tools that can simultaneously provide information about both 

dimensions of SB (i.e., posture and energy expenditure). Notably, no single device is 
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capable of measuring both components [95]. However, a novel technique called the 

“multi-method” approach integrating data from multiple accelerometers (i.e., energy 

expenditure and posture-based monitors) have shown to provide a more accurate measure 

of SB [96] and physical activity intensities [97]. Furthermore, in a recent laboratory-based 

study using Axivity AX3 accelerometer to classify PA and SB, dual accelerometers (one 

attached to the lower back and one on thigh) showed greater accuracy in classifying SB 

than a single one back or thigh accelerometer [19]. 

Regardless of whether energy-expenditure or posture classification devices are used to 

measure sedentary time objectively, it is likely that error is introduced at any stage of the 

data generation process from the initial steps in measuring raw acceleration through the 

use of algorithms to decisions on criteria such as cut-points, the definition of non-wear 

time, a valid day of wear and determining the minimum number of days for a valid data 

set [88]. While processing accelerometer data, non-wear time is detected and eliminated 

based on continuous zero counts, which can occur for various reasons, including 

legitimate removal of the accelerometer (e.g., showering, sleeping) or without any reason 

(i.e., non-compliance) and prolonged sitting time, making it difficult to accurately 

discriminate between non-wear time and wear time [98]. This issue leads to biased 

estimation of sedentary time, as shown in a study by Choi et al. (2011) that 50 minutes of 

misclassification of wear time as non-wear time resulted in underestimating sedentary 

time by 8 % [98]. 

Sleep and obesity 

Sleep is defined as a natural and reversible rest state of body and mind. It occurs due to 

inhibition of sensory activities and voluntary muscles, reduced engagement with 

surroundings and consciousness [99]. It has been argued that sleep is as critical for health 
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as physical activity and diet [100]. Sleep duration may lead to obesity through 

mechanisms affecting energy intake and energy expenditure [101]. Reduced sleep 

duration might lead to increased energy intake due to hormonal imbalances or more time 

to eat, especially if this time is replaced by sedentary activities such as watching TV, 

during which snacking is common [102]. Accordingly, the Canadian 24-hour Movement 

Guidelines recommend 9–11 hours of nightly sleep for children aged 6–13 and 8–10 hours 

of sleep for adolescents aged 14–17 years old to maximise health benefits [36].  

A recent systematic review by Chaput et al. (2016) included a total of 71 (70 observational 

and 1 experimental) studies that examined the relationship between sleep duration and 

adiposity in school-aged children and youth [10]. The only randomised controlled trial 

with 37 children aged 8–11 years old found that an experimental increase of children’s 

nightly sleep duration led to a lower weight after three weeks of intervention (mean 

difference in weight of 0.24 kg, p<0.001)[103]. There was 141 minutes difference 

between accelerometer-derived sleep duration between the increase and decrease 

conditions, 10.5 h vs 8.1 h sleep hours, respectively. Among the longitudinal studies, 7 

out of 12 studies reported a significant negative association between short sleep duration 

and adiposity gain, while the remaining studies reported a null association. Only three of 

the included longitudinal studies (2 unique samples) used an objective assessment of sleep 

duration [104-106] and reported mixed findings. Hjorth et al. (2014) found no prospective 

association between accelerometer-derived sleep duration, fat mass index (FMI) and WC 

over a 200-day follow-up period of children aged 8–11 years old [105, 106]. In contrast, 

another study found that compared to children with 7.5–9 hours/night or ≥9 hours/night 

sleep, children with ≤7.5 hours of sleep at age 6–12 years old had higher body weight in 

early adolescence (5 years later) (p<0.01). Furthermore, children with ≤7.5 hours of sleep 

had higher odds of being obese (≥95th BMI percentile) at follow-up than children who 

slept ≥9 h/night (OR = 3.3, 95% CI = 1.09, 9.66,  p<0.05) [104]. In this study, sleep 
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duration was assessed by PSG for a single night only, and these estimates were not 

adjusted for PA, SB, or diet.  

Another longitudinal study with objectively-measured sleep duration (not included in the 

above-mentioned systematic review) reported that each additional hour of nightly sleep 

in children aged 3–5 years old was associated with a 0.56 kg/m2 reduction in BMI at age 

7. However, the association was no longer significant once analyses adjusted for diet and 

physical activity (p=0.053) [107]. This study also showed that each extra hour of sleep at 

ages 3–5 resulted in a reduced risk of being overweight (BMI ≥85th centile) by 0.39 (0.24–

0.63) while adjusting for various confounders, including physical activity and 

fruit/vegetable intake. Among the cross-sectional studies included in the previous 

systematic review, 50 out of 58 studies reported a significant association between short 

sleep duration and adiposity, while eight studies reported no association. However, 

relatively few studies used objective measurement of sleep (i.e., accelerometry). Sleep 

duration was negatively associated with BMI in 6–10-year-old Swedish children (r = - 

0.085, p<0.01) [108], and FMI in 8–11–year–old Danish children (r = -0.17, p<0.001) 

[105]. In contrast, the study on 507 Canadian children 9–11 years of age reported that the 

relationship between sleep duration and BF% was no longer significant after adjustment 

for MVPA and total sedentary time [109]. Overall, the authors of the most recent 

systematic review of the association between sleep duration and adiposity in children and 

youth found a consistent relationship between longer sleep duration and lower adiposity 

markers. However, the quality of evidence was low as most of the studies have used 

subjective assessment of sleep [10]. 

In addition to sleep duration, there is growing evidence that other sleep characteristics, 

including sleep timing, quality, and variability, may also be necessary for optimal health 

[110]. Recent evidence found that sleep timing (i.e., the combination of wake up and 

bedtime) is associated with an unfavourable weight status profile and lower level of 
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physical activity [111], as well as poor diet quality [112] in children, independent of sleep 

duration. More specifically, children who went to bed late and woke up late were 2.16 

times more likely to be obese and 1.77 times more likely to have low MVPA [111], and 

had lower diet quality (p<0.001) [112] compared to those who went to bed early and woke 

up early. Likewise, results from a recent study involving 439 children aged 9–11 years 

old from New Zealand showed that children with a later sleeping timing were less active 

and had a poorer diet than children with an earlier sleeping time. Those children with a 

late sleep and late wake schedule had lower weekly consumption of fruit and vegetables 

(-2.9, 95% CI = -4.9, -0.9, p<0.05) and higher consumption of sweetened beverages (1.8, 

95% CI = 0.2, 3.3, p<0.05) compared with those in the early sleep/early wake category. 

In addition, children in the late sleep and late wake group accumulated fewer minutes of 

MVPA per day than those in the early bedtime and early wake group (-9.4, 95% CI = -

15.3, -3.5, p<0.05) [113].  

 

Sleep measurement 

Polysomnography (PSG) is the most reliable method (gold standard test) for measuring 

sleep, which is a multi-parametric test measuring biophysiological parameters of sleep 

[95]. However, its application is limited to small population studies due to high costs, 

being time-consuming, and burden to the participants [114]. While PSG remains the gold 

standard for assessing sleep and diagnosing sleep-related disorders [115], a limitation is 

that one-night PSG may not represent habitual sleep. On the other hand, sleep diaries are 

more feasible and cheaper for measuring sleep duration over multiple days in large-scaled 

population research, yet are subject to recall bias [116]. There has been an increase in the 

development and use of accelerometers over the last decade for the measurement of sleep 

[117, 118]. These affordable, non-obstructive wearable devices are recognised as a valid 
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method to measure sleep [119]. However, the lack of standardised accelerometer-related 

methodological decisions including device selection, device placement, and classification 

techniques remains a challenge for quantifying sleep-related behaviours, particularly 

beyond simple ‘sleep duration’ measures [46, 120].  

There is still controversy regarding the best device placement for measuring sleep using 

accelerometry. Findings from a recent study comparing ActiGraph GT3X+ and Actical 

wrist and hip worn accelerometers for sleep in children, suggests that there may not be a 

single best placement for detecting all sleep variables (i.e., sleep quantity and sleep 

quality metrics) [121]. While ActiGraph GT3X+ placed at the hip outperformed the more 

traditional wrist placement for estimating sleep duration, the wrist positioned was 

superior for sleep quality metrics including sleep efficiency [121].  

There are several proposed sleep detection algorithms for estimating sleep-related 

behaviours in children depending on the placement of the accelerometer. It has been 

recommended that the Tudor_Locke algorithm [122] to be applied for the hip placement 

and Sadeh algorithm [123] for the wrist [46].  

Recently, it has been shown that machine learning techniques applied to raw data from 

Axivity Ax3 accelerometers were capable of classifying sleep with 97% accuracy in 

adults [124]. In another recent study sleep classification technique have been developed 

for waist-worn ActiGraph accelerometer in preschool-aged children using machine 

learning methods, which has shown a high accuracy (96%) for quantifying both day and 

night sleep [125] .   
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The shift towards 24-hour time-use composition 

Within a 24-hour period, individuals spend their time sleeping, in sedentary behaviour 

(e.g., watching TV), quiet standing or physical activity [12]. Time spent in these daily 

activities are compositional by nature as they are : 1) components of a finite total (i.e., 

24-hour day or any other fixed period of time), so total time spent daily in MVPA, LPA, 

sitting and sleeping is always equal to 24 hours, 2) mutually exclusive components of a 

24-hour period, so an individual can only spend time in one of these activities at the same 

time [13]. These components of time use are perfectly collinear, which means that due to 

the closed nature of a 24-hour period, any change in the total amount of time spent in one 

of these activities causes an opposite change in the total amount of time spent in one or 

all of the remaining activities [12].  

However, traditionally, researchers tend to examine the relationship between time spent 

in each of these time-use behaviours throughout the day and health in isolation, or with 

partial adjustment for remaining behaviours (using traditional statistical methods), 

ignoring the co-dependency of all these time-use behaviours [20]. For example, in an 

analysis of 54 cohort studies on the health impacts of sedentary behaviour, it was reported 

that none of the reviewed studies adequately adjusted for total physical activity (MVPA 

and LPA) and sleep duration [11].  

Additionally, in a recent systematic literature review on the relationship between 

combinations of time-use behaviours and various health outcomes [126], it was revealed 

that most of the included studies assessed combinations of two time-use behaviours 

(typically PA and SB, excluding sleep), and only four studies (three unique samples) 

examined combinations of all three time-use behaviours [105, 106, 109, 127], with one 

study focused on screen time (not total sitting time ) [127], and the other three focused on 

MVPA (not total PA including LPA) [105, 106, 109]. One of these studies study involving 
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507 Canadian children aged 9–11 years old reported that %BF was 9.3% (p<0.05) lower 

among children in the higher tertile for MVPA, lower tertile for SB, and higher tertile of 

sleep, compared with children in the opposite group [109]. Similarly, in another study of 

785 Danish children (8–11 years old), those with a healthy pattern of time-use behaviours 

(higher quartile of MVPA, lower quartile of SB, higher quartile of sleep) had 3.44 units 

lower FMI (p<0.001) compared with children with unhealthy time-use patterns (lower 

quartile of MVPA, higher quartile of SB, lower quartile of sleep)[105]. However, findings 

of these studies in which time spent in each time-use behaviour were studied in isolation 

or with partial adjustment for time spent in the remaining behaviours (i.e., MVPA and 

screen time) using traditional regression (not compositional data analysis) are potentially 

biased due to not acknowledging the collinearity of 24-hour daily time-use behaviour 

components.  

Emerging methodological advances have encouraged research on the amount of time 

spent in daily activity behaviours including sleep, sedentary behaviour, and physical 

activity (LPA and MVPA) as health-related components of time-use. These 

advancements have being integrated into a novel field of public health research known as 

time-use epidemiology [12]. This is defined as the study of determinants, incidence, 

prevalence and effects of health-related time-use patterns in populations and ways to 

prevent unhealthy time-use patterns [12]. Time-use epidemiology covers sleep, physical 

activity, and sedentary behaviour research, but not necessarily all the topics such as 

physical activity policy, attitudes towards physical activity, and sleep disturbances. In 

addition to daily activity behaviours, other time-use variables in relation to health such as 

family/peer time, housework, and leisure time are also being incorporated in time-use 

epidemiology. 

Proposing the Activity Balance Model (AB model), Pedisic (2014) called for an 

integrative approach whereby researchers in behavioural epidemiology should investigate 
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the relationships between time-use behaviours and health by studying the health impacts 

of time spent in PA, SB and sleep collectively rather than in isolation [11]. In this 

paradigm, a composition of time spent in each of the time-use behaviours are treated as 

explanatory variables and health outcomes are considered dependent variables, with the 

possibility of adjusting for potential confounders where necessary. Besides emphasising 

an integrated approach, the author of this paper also highlighted the necessity of using 

appropriate statistical analysis (i.e., compositional data analysis) for these perfectly 

collinear time-use data with compositional properties. 

Recently there has been a shift towards a new paradigm in which all components of time-

use behaviours are considered as a 24-hour composition rather than individual domains. 

Acknowledging the compositional nature of 24-hour time-use behaviours, this approach 

may improve the understanding of how these behaviours may concurrently relate to health 

outcomes. In response to this paradigm shift, a limited number of studies in children have 

assessed collective effects of physical activity (LPA and MVPA), sedentary behaviour 

(total sitting time with or without screen time), and sleep on various outcomes including 

body composition using compositional data analysis [32, 83, 128-131]. Carson et al. 

conducted a study among children aged 6–17 years old [83]. They found that the 

proportion of time spent in MVPA and sleep was negatively associated. In contrast, the 

time spent in LPA and sedentary behaviour was positively associated with BMI and WC 

(p<0.05). In a similar study (3–4 years old pre-schoolers), a significant association was 

found between the composition of time-use behaviours and BMI but not with WC. 

Further, in contrast with the older age group, no association was observed between each 

component relative to the time spent in other components [128]. In both studies, PA and 

SB were measured objectively with an accelerometer, while sleep was self or parent-

reported. 
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In an analysis of data from the International Study of Childhood Obesity, Lifestyle and 

the Environment among children aged 9–11 years old from 12 countries, participants with 

similar behavioural characteristics were categorised into four clusters named Junk Food 

Screenies, Actives, Sitters, and All-Rounders, using compositional cluster analysis. 

Children with highest sedentary time and lowest PA (Sitters cluster) were shown to have 

the highest BMI, largest waist-to-height ratio and BF%, compared with participants in the 

Actives cluster who had the lowest BMI [131] . However, a key limitation of these studies 

is using hip-mounted accelerometers (i.e., ActiGraph or Actical) in measuring 24-hour 

time-use behaviours, which may contribute to biased estimate, given the poor accuracy 

of these devices in differentiating between postures (sitting vs. standing still) [83].   

Advocating this paradigm shift towards 24-hour time-use behaviours, Canada pioneered 

the 24-hour Movement Guidelines for children and youth, which integrated the previous 

separated guidelines for each behaviour [36]. This has been followed by other countries, 

including New Zealand [22]. These guidelines contain integrated recommendations on 

daily amounts of moderate-to-vigorous physical activity (MVPA) (at least 60 minutes), 

screen time (not more than 2 hours), and sleep (9–11 hours for 5–13-year-old children 

and 8–10 hours for those aged 14–17-year-old) for optimal health and wellbeing in 

children aged 5–17 years old [22]. Several studies have examined the adherence to these 

guidelines among children in different countries and the associated sociodemographic 

correlates [132-136]. However, currently, there is no comprehensive evidence on the 

prevalence of meeting these guidelines among New Zealand school-aged children and the 

associated sociodemographic factors.   
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Methods of measuring and analysing time-use behaviours 

Measurement of 24-hour time-use behaviours  

Traditional waking-hour accelerometer protocols required an individual to wear an 

accelerometer while awake and remove it at bedtime; however, missing data during non-

wear time may not provide an accurate representation of 24-hour time-use behaviours. 

Alternatively, 24-hour monitoring protocols (i.e., wearing accelerometers continuously) 

eliminate issues with non-wear time and may offer a more accurate measure of daily 

activities within 24 hours [17, 20]. Compared to waking hour protocols, a 24-hour 

accelerometer protocol may result in higher compliance [45], reducing the need for 

arbitrary decisions to identify non-wear time duration. Measuring 24-hour time-use 

behaviours is difficult, and this challenge might be a reason for the lack of studies on the 

impacts of combinations of 24-hour time-use behaviours on health. The emergence of 

water-proof accelerometers such as ActiGraph GT3X and Axivity AX3, which can be 

worn continuously without the need of removal while bathing or playing water sports, is 

of great importance in achieving 24-hour monitoring. 

In addition to 24-hour monitoring, accurate estimates of 24-hour time-use behaviours are 

needed to capture actual daily activities. Recent technological advances have seen the 

release of the Axivity AX3, the smallest research-grade physical activity monitor capable 

of collecting raw acceleration information [137]. When attached to the thigh and lower 

back, it has been shown that these devices can precisely classify various activity types in 

children (e.g., sitting, standing, lying, walking, running) [19]. An inbuilt temperature 

sensor removes the ambiguity surrounding sensor use and wear time compliance and 

allows the development of robust sedentary behaviour profiles [138]. 
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Analysis of time-use data 

Compositional data analysis (CoDA) proposed by Aitchison [139] has been used in 

various scientific fields such as geology, chemistry and nutritional epidemiology to study 

data that is compositional in nature: data that are proportions of a whole [140]. 

Compositional data have three key properties: 1) they are scale invariant (the analysis 

results remain the same regardless of the scale in which the components are being 

expressed, 2) they show sub-compositional coherence (the relationship between each 

components remains regardless of including or excluding other components), and 3) they 

are permutation invariant (the results remain the same regardless of which sequence the 

components are being reported) [141].  Due to constant-sum constraints of compositional 

data, all components of a compositional dataset are codependent on each other and 

therefore convey relative information. This is why traditional statistical methods, which 

are intended for absolute values cannot be used [13]. Therefore,  CoDA is a more fitting 

statistical approach to deal with this type of data such as time-use data by respecting their 

relative nature [142].  

Through this statistical approach, compositions (representing data in a simplex data space 

with absolute values) are expressed as sets of log-ratios (representing data in a real space 

that are infinite and can take any value). Then  these transformed data can be analysed 

using any traditional statistical methods including regression models [142]. There 

areeveral algorithms for log transformation of compositional data such as additive log-

ratio (alr), cantered log-ratio (clr), and isometric log-ratio (ilr) transformations [143]. The 

ilr transformation is most commonly used which  preserves all metric properties of data 

[143].  

Although CoDA is the best-suited statistical approach for analysing time-use data and is 

being increasingly used in time-use research, there are challenges that remain [13]. One 
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of the main challenges of CoDA is dealing with zero values in the compositional parts 

since the log-ratio transformation cannot be applied to zero [144]. There are three 

replacement methods to address zero problems in time-use epidemiology including 

simple, multiplicative, and log-ratio Expectation-Maximization (lrEM) [145]. The lrEM 

method has been shown to outperform the other replacement methods, which preserves 

the relative structure of time-use data [145]. Another challenge of CoDA is the 

interpretation of results. This is because the statistical analyses are applied to log-

transformed data, making it difficult to interpret the results which are expressed on a log-

scale [140].  

Different compositional techniques have been developed, including compositional 

multivariate analysis of variance (MANOVA): to compare compositions across groups 

[146], compositional isotemporal substitution: to test predicted changes in an outcome 

after reallocation of time [147], compositional linear regression models: to examine 

general associations between a composition and outcome (and vice versa) [142], and 

compositional cluster analysis: to examine how time-use data can be organised into 

distinct groupings [131, 148]. A further disadvantage of using CoDA analysis methods is 

the composition of time use behaviours is comprised of the time spent in various 

behaviours (e.g., minutes per day). This means that current research has been unable to 

capture the relationship between other variables that are not duration-based. For example, 

multi-dimensional sleep health variables (e.g., sleep quality measures) are generally not 

included as part of a composition, only sleep duration.  
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3 Chapter 3 - Concurrent validity of ActiGraph GT3X+ and 
Axivity AX3 accelerometers for estimating physical activity 

and sedentary behaviour 

Preface 

Following the Research Area 1 within the VIRTUE framework (measurement and 

methods), this chapter explores the validity of AX3 and GT3X+ accelerometer for 

measuring time-use behaviours in terms of activity intensity and activity types in children. 

The full paper from this chapter is currently published in the March 2021 issue of the 

Journal for the Measurement of Physical Behaviour.  
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Abstract 

Background: Accelerometers are commonly used to assess time-use behaviours related 

to physical activity, sedentary behaviour, and sleep; however, as new accelerometer 

technologies emerge, it is important to ensure consistency with previous devices. This 

study aimed to evaluate the concurrent validity of the commonly-used accelerometer, 

ActiGraph GT3X+, and the relatively new Axivity AX3 (fastened to the lower back) for 

detecting physical activity intensity and body postures when using direct observation as 

the criterion measure.  

Methods: A total of 41 children (aged 6–16 years) and 33 adults (aged 28–59 years) wore 

both monitors concurrently while performing 10 prescribed activities under laboratory 

conditions. GT3X+ data were categorised into different physical activity intensity and 

posture categories using intensity-based cut points and ActiGraph proprietary 

inclinometer algorithms, respectively. AX3 data were first converted to ActiGraph counts 

before being categorised into different physical activity intensity categories, while 

activity recognition models were used to detect the target postures. Sensitivity, 

specificity, and the balanced accuracy for intensity and posture category classification 

was calculated for each accelerometer. Differences in balanced accuracy between the 

devices and between children and adults were also calculated.  

Results: Both accelerometers obtained 74% to 96% balanced accuracy with the AX3 

performing slightly better (~4% higher, p<0.01) for detecting postures and physical 

activity intensity. Error in both devices was greatest when contrasting sitting/standing, 

sedentary/light intensity, and moderate/light intensity.  

Conclusions: In comparison with the GT3X+ accelerometer, AX3 was able to detect 

various postures and activity intensities with slightly higher balanced accuracy in children 

and adults.  
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Introduction 

Time-use behaviours related to physical activity, sedentary behaviour, and sleep are 

associated with a number of important health outcomes in children and adults, including 

adiposity, cardiometabolic health, and cardiorespiratory fitness [21]. Accelerometers are 

currently the preferred method of assessing these behaviours in free-living settings. As 

there are many types of accelerometers available, it is of importance to investigate the 

comparability between different devices. The ActiGraph GT3X+ accelerometer is one of 

the most commonly-used motion sensing devices to assess physical activity and sedentary 

behaviour in epidemiological research, particularly when worn on the hip [59], and it is 

consequently often utilised in investigations of sensor-based time-use [149, 150]. Using 

the ActiGraph system, ‘counts’ are translated into different physical activity intensity 

categories using cut-points [14]. Count-based approaches can result in all non-ambulatory 

activities (i.e., lying, sitting, and standing still) being classified as sedentary behaviour 

[151]. This may confound the assessment of the health-related effects of these non-

ambulatory activities [20, 152], highlighting the importance of the accurate differentiation 

between activities for understanding the true relationships between time-use behaviours 

and health. 

The addition of an inclinometer feature to the GT3X+ accelerometer makes it possible 

for the data to be characterised as lying, sitting, standing and device removal [153]. This 

development may provide richer information on daily time-use activities by estimating 

both activity intensity (based on activity counts) and posture (based on inclinometer 

information) simultaneously. Methodological shortcomings include a typically low 

compliance rate when placed on the hip (~10 hours per day)[17], lack of waterproofing, 

and difficulty differentiating between non-wear time and a true sitting time [51]. The 

Axivity AX3, on the other hand, is a relatively new accelerometer that is waterproof, has 

a temperature sensor (which can help to remove the ambiguity around wear time 
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estimation), and appears to result in reasonable wear time compliance (median of 168 

hours/week in adults, and 160 hours/week in children) when taped directly to the skin 

[53, 138]. The AX3 has demonstrated relatively high accuracy in detecting activity and 

postures in children and adults using machine learning techniques [19, 154]. 

The AX3 has been attached to the lower back (and thigh) in several recent studies to 

assess physical activity, including the large HUNT4 cohort study in Norway [155], the 

TEACHOUT study in Denmark [156] and the Growing Up in New Zealand study [53]. 

Despite the several large studies using the AX3 on the lower back, only one study has 

compared the AX3 (worn on the lower back) and GT3X+ (worn on the hip) in a small 

free-living study in adults [157]. The study reported poor agreement between AX3 (lower 

back) and GT3X+ (hip) for epoch-by-epoch physical activity intensity estimates. No 

existing studies have compared the AX3 and GT3X+ against a criterion measure, or 

compared postural information obtained from AX3 with the inclinometer output of the 

GT3X+. This information will be useful when comparing physical activity estimates 

between studies that use these different devices at the lower back and hip placement sites. 

Therefore, the aim of the present study was to investigate the concurrent validity of these 

two devices for detecting activity intensity and postures in both children and adults.  

 

Methods 

Participants 

After this study received ethical approval from the AUT University Ethics Committee 

(17/220), children from a local school and their parents were invited to participate in the 

present study. A total of 33 parents (17 female; aged 28 to 59 years) and 41 children (22 

female; aged 6 to 16 years) agreed to take part. Written informed consent was received 
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from each parent, who also provided parental consent for their child. Assent was also 

obtained from all child participants. 

 

Instrumentation 

The ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL, USA) and the Axivity AX3 

(Axivity, York, UK) are accelerometers that measure movement across three axes: 

vertical (Y-axis), anterior-posterior (X-axis), and medio-lateral (Z-axis). ActiLife 

(version 6.11.9, ActiGraph, Pensacola, FL) and OmGui (version 1.0.0.30, open 

Movement, Newcastle University, UK) software were used to initialise and download the 

data from the GT3X+ and AX3, respectively. Both the GT3X+ and AX3 were set to 

record raw data at a sampling rate of 100 Hz, and all devices were initialised on the same 

computer. To create an indicator for the alignment of the accelerometer data with the 

video record, an identifiable spike was created in the accelerometer data. This was done 

by firstly placing the accelerometers in a bag, remaining stationary for a short period, 

before carefully striking the bag with the researcher’s hand, while in the view of the three 

cameras.  

 

Procedure 

Participants performed 10 activities during a single laboratory visit. Table 3-1 shows each 

activity, the duration and the assigned posture, and the activity intensity. All walking and 

running activities were performed on a treadmill (slow walk, 2 mph; fast walk, 2.5 mph; 

run, 4 mph). Participants started on the treadmill from a stationary position, but the 

acceleration and deceleration periods were not included in the trial. These speeds were 

selected to accommodate the age range of the sample. These were performed in a 

randomised order by participants while simultaneously outfitted with two accelerometers 
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placed at the centre of the mass: the GT3X+ at the top of their iliac crest (fixed by an 

elastic waist belt), and the AX3 on their lower back, offset from the spine (adhered with 

foam pouches or medical tape) [138]. Each data collection session took approximately 

one hour per participant. The instruction for starting and finishing each activity was given 

by one observer who was responsible for recording the start and finish time of each 

activity. Each session was recorded with three cameras to cover all angles of the 

laboratory setting.  

 

Table 3-1. Activities performed by each participant. 

LPA= Light intensity physical activity; MPA = Moderate-intensity physical activity; VPA= Vigorous-intensity 
physical activity. 

 

 

Data treatment 

ActiGraph  

The GT3X+ data were collapsed to 5-second epochs and converted to time spent sitting, 

lying and standing, or off (non-wear) using ActiGraph’s proprietary inclinometer 

algorithms. The 5-second epoch was chosen to align with the AX3 posture recognition 

model requirements (see “Axivity” section). Running and walking activities were 

considered as a standing posture. Next, the sum of activity counts from the vertical axis 

(VA) was obtained before being scored into four intensity categories: sedentary, light-

intensity physical activity (LPA), moderate-intensity physical activity (MPA), and 

Activities         Duration (min)      Assigned posture/activity intensity 
Sitting (chair)                            6 Sitting/sedentary 
Sitting (floor) in children only                            6 Sitting/sedentary 
Sitting (stool) in adults only                         6 Sitting/sedentary 
Lying (supine)                                     2 Lying/sedentary 
Lying (prone)                                       2 Lying/sedentary 
Lying (side)                                        2 Lying/sedentary 
Reclining                                            6 Sitting/sedentary 
Standing                                            6 Standing/sedentary 
Slow walking (2 mph)                                   2 Standing/LPA 
Fast walking (2.5 mph)                                   2 Standing/MPA 
Running (4 mph)                                          2 Standing/VPA 
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vigorous-intensity physical activity (VPA). The Freedson [158] and Evenson [159, 160] 

cut-points were used for adults and children, respectively. 

 

Axivity  

To generate comparable data from the AX3, the raw data were first resampled to 30Hz 

and then converted to ActiGraph counts using recently published algorithms [161]. This 

method aggregates raw data into 1-second epochs using an eight-step process, including 

applying filters, down sampling to 10Hz, truncation, rectification and conversion to 8-bit 

resolution. The authors suggest the estimated error is −0.11 ± 0.97 (mean ± SD) counts 

per 10 seconds. This approach was chosen as there are no published intensity detection 

algorithms specific to the AX3 when attached to the lower back. The counts were then 

collapsed to 5-second epochs before the Freedson and Evenson cut-points were applied. 

To obtain sitting, standing, and lying postures, activity recognition models developed 

specifically for the AX3 placed on the lower back were used [18, 19]. 

 

Video criterion 

The start and end of each activity were noted from the video data. Each activity block 

(duration presented in Table 1) only contained one activity type. The first and last epoch 

in each activity block were removed (if less than 5-seconds) to ensure that all epochs were 

5-seconds in duration. The physical activity type obtained from direct observation was 

treated as the criterion measure. Each 5-second segment of the video record (synchronised 

with the accelerometer data) was assigned an activity type corresponding to one of the 

activities shown in Table 1. The criterion measure of intensity was based on calculated 

metabolic equivalent (MET) values for each activity. Firstly, the Physical Activity 

Compendium was used to assign MET values to each activity type for adults [162]: slow 
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walk (2 mph) = 2 METs, fast walk (at 2.5 mph) = 3 METs, and run (at 4 mph) = 6 METs. 

For children, the Youth Compendium was used to assign MET values to walking and 

running activities specific for each age group: slow walk (2.5 – 2.9 METs), fast walk (4.6 

– 5.1 METs), and run (6.6 –7.7 METs) [163]. Finally, each 5-second segment was

assigned an intensity category using MET intensity thresholds for children and adults 

(i.e., for children: sedentary behaviour: ≤1.5 METs, LPA 1.5 – 4 METs, MPA: >4 – 6 

METs and VPA: ≥6 METs and for adults: sedentary behaviour: ≤1.5 METs, LPA 1.5 – 3 

METs, MPA: >3 – 6 METs and VPA: ≥6 METs).  

Statistical Analysis 

To determine the concurrent validity of GT3X+ and AX3 for detecting different activity 

intensity categories and postures, each 5-second epoch of accelerometer data was 

compared with the corresponding 5-second segment of the video criterion. Both the 

calculated postures (sitting, standing, lying) and the estimated intensity category 

(sedentary, LPA, MPA, and VPA) were compared. The sensitivity, specificity and 

balanced accuracy (i.e., the mean of sensitivity and specificity) were calculated. 

Sensitivity refers to the proportion of actual positive cases that are correctly identified as 

such (e.g., sitting as sitting), while specificity refers to the actual negative cases that are 

correctly identified as such (e.g., non-sitting as non-sitting). Confusion matrices with 

overall accuracy were calculated for each posture and activity intensity category. Kappa 

statistics were also reported for the intensity outcomes. The differences in balanced 

accuracy between adults and children were examined using independent-samples t-tests, 

while differences between the GT3X+ and AX3 accelerometers were examined using 

paired t-tests. All statistical analyses were performed in R (version 3.6.1, RStudio, 

Boston, MA). 
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Results 

Forty-one children (22 females) and 33 adults (17 females) participated in the study. In 

total, 25.6 hours of data (18,396 epochs) was obtained from the child sample, and 20.6 

hours (14,801 epochs) from the adult sample. Table 3-2 and Table 3-3 present the 

sensitivity, specificity, and balanced accuracy of the AX3 and the GT3X+ for posture and 

activity intensity detection when compared with direct observation. In the combined 

sample, the balanced accuracy for posture detection by the AX3 was ≥ 81.6% for both 

sitting and standing positions, and > 96 % for lying. The balanced accuracy for GT3X+ 

was ≥ 74.9 % for sitting and standing, and > 88% for lying position. AX3 achieved 

slightly higher balanced accuracy compared with GT3X+ for detecting all four activity 

intensities. The AX3 balanced accuracy was ≥ 95% for both sedentary and VPA, 90% for 

LPA, and 81.4 % for MPA. These values for GT3X+ were ≥ 92 for sedentary and VPA, 

86% for LPA, and 73.7% for MPA. 
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Table 3-2. Concurrent accuracy of ActiGraph GT3X+ and Axivity AX3 accelerometers for detecting posture in children and adults when compared with 
direct observation. 

                      Sitting                   Standing                       Lying Off (non-wear) 

Metric  ActiGraph                             Axivity 
   GT3X+                                  AX3 
                                     

ActiGraph                              Axivity 
  GT3X+                                    AX3 
 

ActiGraph                            Axivity 
  GT3X+                                  AX3 
 

ActiGraph                         Axivity 
  GT3X+                               AX3 
 

Children (n = 41)              
Sensitivity 65.2  86.3 75.1  62.6 78.6  98.4    
Specificity 82.4  75.0 78.6  94.6 96.2  95.8 96.9  N/A 
Balanced accuracy 73.8  80.7 76.9  78.6 87.4  97.1    
Total time (device) 508  646 374  303 201  242    
Total time (video) 
 

 779   498   256   0  

Adults (n = 33)             
Sensitivity 67.2  77.2 78.5  80.2 89.0  97.6    
Specificity 85.4  86.0 87.6  90.2 91.0  94.1 97.7  N/A 
Balanced accuracy 76.3  81.6 83.0  85.2 90.0  95.9    
Total time (device) 412  467 324  325 184  195    
Total time (video) 
 

 613   414   206   0  

Combined (n = 74)             
Sensitivity 66.0  82.3 76.6  70.6 83.2  98.0    
Specificity 83.8  80.0 82.6  92.7 93.8  95.0 97.3  N/A 
Balanced accuracy 74.9  81.8 79.6  81.6 88.5  96.6    

All values are presented as percentages except for total time (in minutes).  
Total time (video) is the total minutes of each posture observed, while total time (device) is the total number of minutes of each posture classified by each accelerometer during this period. 
N/A = not available in AX3 output. 
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Table 3-3. Concurrent accuracy of ActiGraph GT3X+ and Axivity AX3 accelerometers for detecting physical activity intensity in children and adults 
when compared with direct observation. 

                           Sedentary                            LPA                            MPA VPA 

Metric  ActiGraph                               Axivity 
   GT3X+                                    AX3                                

 ActiGraph                          Axivity 
    GT3X+                               AX3 

  

   ActiGraph                            Axivity 
      GT3X+                                 AX3 

ActiGraph                        Axivity 
   GT3X+                             AX3 

Children (n = 41)              
Sensitivity 92.1  93.8      80.2  92.7    31.1  49.6    89.2  90.8 
Specificity 93.0  97.8      89.0  92.0    99.5  99.4   99.9  99.7 
Balanced accuracy 92.6  95.9      84.6  92.3    64.6  74.5   94.6  95.3 
Total time (device) 1204  1226      64  74   25  42   55  56 
Total time (video) 
 

 1340      82   87   62  

Adults (n = 33)             
Sensitivity 97.1  98.3    81.4  82.3    72.2  79.1   77.2  92.4 
Specificity 93.1  94.1    95.8  97.4    99.1  99.4   100  100 
Balanced accuracy 95.1  96.2    88.6  89.8    85.6  89.3   88.6  96.2 
Total time (device) 1011  1023   55  56   47  51  37  55 
Total time (video) 
 

 1041     68   65   60  

Combined (n = 74)             
Sensitivity 94.3  95.8    80.2  85.1    48.1  63.6   84.0  91.7 
Specificity 93.0  96.2    92.0  94.6   99.0  99.3   99.9  99.7 
Balanced accuracy 93.7  96.0    86.0  89.9   73.7  81.4   92.0  95.7 

All values are presented as percentages except for total time (in minutes).  
Total time (video) is the total minutes of each activity intensity observed, while total time (device) is the total number of minutes of each activity intensity classified by each accelerometer 
during this period.  
LPA = Light-intensity physical activity; MPA = Moderate-intensity physical activity; VPA = Vigorous-intensity physical activity.
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Table 3-4 presents differences in balanced accuracy between the AX3 and GT3X+ for 

detecting intensity and posture. Compared with GT3X+, The AX3 showed higher 

balanced accuracy in detecting various postures and activity intensities (∼4%, p< 0.01). 

Table 3-5 presents differences in balanced accuracy between AX3 and GT3X+ for 

detecting posture and activity intensity compared between children and adults. Both 

GT3X+ and AX3 showed higher balanced accuracy for assessing posture and intensity 

among adults, although the only significant difference between adults and children was 

observed for GT3X+ intensity output (p<0.01).  

Table 3-4. Mean balanced accuracy difference between Axivity AX3 and ActiGraph GT3X+ in 
estimating intensity and posture. 

Metric Axivity 
AX3 

 (n=74) 

ActiGraph 
GT3X+ 
(n=74) 

Paired difference 
(95% CI) 

t value df P-value

Intensity (%) 91.0 87.0 - 3.8 (-5.6 – -2.1) - 4.44 73  <0.01 
Posture (%) 87.7 82.2 - 5.5 (-7.6 – -3.4) - 5.33 73  <0.01 

 CI = Confidence interval. 

Table 3-5. Mean balanced accuracy difference between Axivity AX3 and ActiGraph GT3X+ in 
estimating intensity and posture between children and adults. 

Metric     Children Adults           Difference 
   (95% CI) 

t value df P-value

ActiGraph 
GT3X+ 
Intensity (%) 84.6 90.2 5.6 (1.3 – 9.8) 2.65 63 < 0.01 
Posture (%) 81.0 84.1 3.1(- 0.6 –7.5) 1.70 72 0.09 

Axivity AX3 
Intensity (%)  89.7 92.6 2.9 (-1.1 – 6.9) 1.44 65 0.15 
Posture (%) 87.0 89.0 2.0 (-1.5 – 5.1) 1.08 46 0.28 

CI= Confidence interval. 

Figure 3-1 and Figure 3-2 illustrate the percentage of correct and incorrect 5-second 

epochs detected by each accelerometer for each posture and activity intensity category in 

children and adults. Compared with GT3X+, the AX3 showed higher overall accuracy 

and a higher kappa statistic for detecting posture and activity intensity. Overall, the 

accuracy for detecting activity intensity was ≥91.2% (Kappa = 71.2–86.3%) for the AX3 
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and ≥88 % for the GT3X+ (Kappa = 61.2–78.9%). The accuracy for detecting posture 

was lower, with ≥80.6% for the AX3, and ≥70.4% for the GT3X+. The main 

misclassifications for posture were between sitting and standing for both devices (Figure 

3-1). For intensity, the main areas of confusion were between sedentary/light intensity

(light intensity was commonly misclassified as sedentary), and between moderate/light 

intensity (moderate intensity was frequently misclassified as light intensity) (Figure 3-2). 

Figure 3-1. Confusion matrices for posture detection between ActiGraph GT3X+ and Axivity 
AX3 in adults and children (values represent the percentage of cases correctly classified or 
misclassified in each category). 
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Figure 3-2. Confusion matrices for activity intensity detection between ActiGraph GT3X+ and 
Axivity AX3 in adults and children (values represent the percentage of cases correctly classified 
or misclassified in each category). 

Discussion 

 This study represents the first investigation of the concurrent validity of GT3X+ and 

AX3 for detecting posture and activity intensity in both children and adults. Overall, the 

findings of this study showed both accelerometers were able to identify different postures 

and activity intensities with the balanced accuracy ranging from 74% to 96%, with the 

AX3 performing slightly better than GT3X+ for recognising postures (especially for lying 

and sitting) and physical activity intensity. 

Previous findings investigating the accuracy of ActiGraph GT3X/GT3X+ for detecting 

postures in children are contrasting, with an accuracy of 15%, 20% and 94% for lying, 

standing and sitting in one study [153], and the equivalent values of 48%, 99.5%, and 

54.6% in another study [164]. Given the similarity between these studies in terms of the 
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study protocol and sample population, the difference between these two studies might be 

due to differences between GT3X and GT3X+, which was also pointed out by the authors. 

A limited number of studies have investigated the validity of the inclinometer function of 

waist-worn ActiGraph (GT3X or GT3X+) in children [153, 164] and adults [86, 165-

171]. Compared with the only published study investigating the accuracy of GT3X+ in 

children aged 11–15 years old [164], our findings provided evidence for higher accuracy 

of GT3X+ inclinometer for detecting sitting and lying postures and lower accuracy for 

standing posture detection. These inconsistencies might be due to the different age ranges 

of the participants and the prescribed activity trials. In previous lab-based studies in 

adults, the accuracy of GT3X+ ranged from 58–65% for sitting, 60.6–93.7% for standing, 

and 66.7–80.8% for lying postures [86, 167, 170]. Consistent with previous studies, it 

was observed that some of the sitting and lying times were wrongly classified as non-

wear (off). [86, 164, 166]. ActiGraph’s proprietary inclinometer algorithms seem to 

detect some stationary periods as ‘off’ time. As seen in Figure 3-1, this primarily occurred 

during the lying activity, particularly in children.  

Compared with the GT3X+, the AX3 showed higher sensitivity in detecting all three types 

of postures in both children and adults except for standing in children (which was 13% 

less accurate), although the balanced accuracy was still higher compared with the GT3X+. 

Unlike most of the studies examining the validity of the ActiGraph inclinometer, we 

reported the balanced accuracy (mean of sensitivity and specificity) and kappa statistics, 

along with other measures of accuracy. This may provide a better estimation of the 

accuracy, particularly since there were an unequal number of observations within each 

activity category. Both the AX3 and the GT3X+ were able to detect lying better than 

sitting and standing, which were commonly confused. The ability of back- or hip-worn 

accelerometers to detect lying better than standing and sitting is due to the distinct back 

orientation when lying (i.e., horizontal) versus sitting and standing (i.e., both vertical). To 
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overcome this measurement challenge, physical activity researchers have used an extra 

accelerometer to take into account leg orientation as a way of differentiating between 

standing and sitting postures. When using dual AX3 accelerometers (one on the thigh and 

one on the lower back), sitting and standing postures have been classified with high 

balanced accuracy (greater than 98 %) in both children and adults [19].  

In terms of intensity output, both accelerometers performed similarly, with sedentary and 

vigorous intensities classified with the highest accuracy. Compared with one study 

investigating the accuracy of GT3X+ for detecting sedentary and light physical activity 

in adults, we found similar accuracy for categorising walking slowly (1.0 mph) as light 

intensity activity (75%) and slightly higher accuracy for sedentary behaviour (88–96%) 

[86]. Although both devices showed high accuracy for detecting sedentary and vigorous 

categories, they both performed poor for detecting other intensities, especially MPA, 

which was commonly misclassified as LPA. A similar study has compared epoch-level 

activity counts between an AX3 on the lower back and a GT3X+ on the hip [157]. The 

authors concluded that despite reasonably similar day-level averages, the epoch-by-epoch 

activity counts varied, as did the time spent in each intensity category. Count-based 

approaches are commonly used to derive activity intensity estimates from accelerometers; 

however, researchers have started to use other approaches such as machine learning 

techniques on raw data, which is promising but requires further exploration [154]. 

 This study has several limitations that should be considered. Firstly, the measurement 

took place in a lab-based setting with a standardised protocol. Although we tried to 

include many types of activities, the findings may not be generalisable to free-living 

settings. This also means that the standardised treadmill speeds used in this study may not 

represent the typical walking or running speeds of each participant. Secondly, while the 

AX3 placed on the lower back has been shown to produce reasonably similar day-level 
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estimates compared to the GT3X+ on the hip [157], it is possible that any differences in 

posture and intensity observed in this study could be confounded by sensor placement. 

Thirdly, we did not consider participants weight status, which has been shown to have an 

influence on posture prediction via inclinometer [172]. Additionally, MET values from 

the Compendium of Physical Activities were used as the criterion measurement of activity 

intensity, which are absolute values that do not take into account individual characteristics 

such as weight, sex, and physical fitness [173]. Finally, as seen with the GT3X+ 

inclinometer data, it is possible that some activities can be incorrectly classified as non-

wear time. As a specific non-wear protocol was not part of this study, we are unable to 

say how this may have impacted the results. 

  

Conclusions 

This lab-based study provides evidence of the accuracy of the relatively new AX3 

accelerometer for detecting posture and activity intensity (when attached to the lower 

back) and how this compared with the widely-used GT3X+ accelerometer. Overall, 

compared with the GT3X+, the AX3 (placed at the lower back) showed slightly higher 

accuracy for classifying various postures (87.7% vs 82.2 %) and activity intensities (91.0 

% vs 87.0%) in children and adults.  
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4 Chapter 4 - Utilising compositional data analysis to 
compare 24-hour time-use behaviours and obesity in New 

Zealand children 

Preface 

In the previous chapter, the validity of the Axivity AX3 accelerometer (placed on the 

lower back) was established for measuring time-use behaviours in children. In that study 

it was shown that an AX3 placed on the lower back performs similarly compared to the 

most-commonly used accelerometer (i.e., ActiGraph GT3X+) for measuring time-use 

behaviours from both activity intensity and activity type perspectives. Accordingly, in the 

subsequent Chapters, which are focused on AX3-measured time-use behaviours and 

obesity in children, data from AX3 on the lower back was used to derive children’s time-

use behaviour profiles based on activity intensity. However, for activity type profiles, 

data from both lower back and thigh AX3s were utilised, which previously were shown 

to be more accurate compared to a single AX3 on the lower back when detecting various 

activity types [18, 19]. 

This chapter focuses on the Research Area 2 of the VIRTUE framework (the link between 

time-use behaviours and outcomes) by examining the relationships between AX3-

measured 24-hour time-use behaviours and obesity-related outcomes among New 

Zealand children. These relationships are examined using a compositional data analysis 

approach, as recommended from the reviewed literature. The paper from this chapter is 

currently under review at the International Journal of Behavioural Nutrition and Physical 

Activity. 
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Abstract 

Background: In recent years, compositional data analysis (CoDA) has emerged as the 

preferred method for understanding the health-related associations of time-use 

behaviours. This statistical approach acknowledges the compositional properties of time-

use data, properties that are often overlooked in behavioural analyses. Using CoDA, a 

limited number of studies have investigated the effects of 24-hour time use behaviours on 

obesity in children, typically quantifying daily behaviours by intensity (i.e., sedentary 

behaviour (SB), light-intensity physical activity (LPA), moderate-to-vigorous physical 

activity (MVPA) and sleep). The present study examined associations between 24-time 

use behaviours, measured from two perspectives (activity intensity and activity type), and 

obesity outcomes in children. We also investigated the theoretical changes in the obesity 

outcomes associated with the reallocation of time between these time-use behaviours.  

Methods: Data from the 8-year wave of the longitudinal Growing Up in New Zealand 

study were used (n = 623, age =7.8). Axivity AX3 accelerometers were used to measure 

time-use behaviours over seven consecutive 24-hour periods. Obesity measures included 

body mass index (BMI) z-score, waist circumference, and waist-to-height ratio. 

Compositional linear regression and compositional isotemporal substitution methods 

were used to explore associations among 24-hour time-use behaviours and obesity-related 

outcomes.  

Results: A significant negative (favourable) relationship was observed between LPA 

(relative to the remaining behaviours) and BMI z-score (p = 0.005), while time spent in 

SB, MVPA and sleep was not associated with any of the obesity outcomes. For the 

activity type composition, time spent walking and running, relative to the other 

behaviours, had a significant negative association with BMI z-score (p = 0.002). No other 

significant associations were observed. More time reallocated to LPA, walking, and 
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running (from each of the remaining behaviours) was significantly associated with 

favourable changes in BMI z-score (p <0.05).  

Conclusions: The present findings showed that increasing LPA (within the activity 

intensity composition) and walking and running (within the activity type composition) 

may be the most effective way to reduce BMI z-scores in New Zealand children. Given 

the cross-sectional nature of this study, these findings require further investigation using 

longitudinal data.  
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Introduction 

Child obesity has become a worldwide epidemic, increasing tenfold over the past four 

decades [174]. New Zealand is no exception, with one in every three children being 

overweight or obese [3]. Obesity in children is associated with short- and long-term 

adverse health outcomes [5]. These accelerating and concerning trends underscore the 

need for further research on modifiable lifestyle factors that can inform effective 

intervention strategies. 

Existing research has shown that lifestyle behaviours such as time spent in physical 

activity, sedentary behaviour, and sleep are associated with adiposity in children [8-10]. 

However, the majority of previous studies have examined these behaviours as individual 

domains, independent from each other, yet intrinsic dependencies exist between these 

behavioural constructs [11]. Across a day, the total time spent in each of these behaviours 

sums up to a finite total (i.e., 24 hours), meaning that any changes in time spent in one 

behaviour is compensated with an equal and opposite change in the duration of the 

remaining behaviour(s). Accordingly, a new paradigm of research called time-use 

epidemiology has emerged, urging researchers to examine these time-use behaviours 

relative to each other within a 24-hour context rather than in isolation [12]. As 24-hour 

time-use data are compositional in nature, they are not compatible with traditional data 

analysis techniques [13]. An alternative statistical approach called compositional data 

analysis (CoDA) has been recently applied in time-use research to accommodate the 

properties of these data [13]. 

Some studies have investigated the impacts of daily time-use compositions on obesity 

among children and youth using a compositional paradigm [21]. For example, in 434 

Canadian children aged 10–13 years, the more time spent in moderate-to-vigorous 

physical activity (MVPA) relative to the other behaviours (i.e., light physical activity 
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(LPA), sedentary behaviour (SB), and sleep) was favourably associated with body mass 

index (BMI) z-score and waist circumference (WC). In contrast, an unfavourable 

association was observed for additional LPA. There was no association between time 

spent in SB or sleep (relative to the other behaviours) and obesity markers [129]. In 4,169 

Canadian children aged 6–17 years, the proportion of time spent in MVPA and sleep were 

beneficially associated with BMI z-score and WC, while a detrimental association was 

seen between time spent in SB or LPA [83].  

The 24-hour time-use compositions of children in these studies have been described as a 

4-part composition based on the intensity of activities using accelerometer ‘counts’. With 

advances in technology and the utilisation of machine learning techniques, researchers 

have detected activity types from raw accelerometer data with excellent accuracy and 

resolution [18, 19]. This is important given the limitations associated with the validity of 

count-based methods for classifying ranges of physical activity intensity and SB [14]. 

Previously, we identified how New Zealand children structure their 24-hour time-use 

composition from an activity intensity (based on counts) and an activity type (based on 

machine learning) perspective [175] ; however, the associations of these 24-hour activity 

compositions with obesity measures have yet to be explored. 

The aims of the present study were (1) to determine the associations between time-use 

compositions and obesity in children while adjusting for diet quality and selected 

sociodemographic variables, and (2) to examine how the reallocation of time among 

selected behaviours is associated with changes in obesity outcomes in a sample of New 

Zealand children. 
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Methods 

Participants 

The present study utilised data from the 8-year data collection wave of the Growing Up 

in New Zealand (GUiNZ) birth cohort study. A detailed profile of the cohort and study 

design has been reported elsewhere [23]. Briefly, GUiNZ is a large longitudinal study of 

New Zealand children recruited via enrolment of their pregnant mothers with an estimated 

delivery date between April 2009 and March 2010. A total of 5,556 children participated 

in the 8-year wave of this study; however, accelerometers were only worn by a subsample 

of children. In total, 952 children wore accelerometers, although the final analytic sample 

used in this study was 623 children. Ethical approval for GUiNZ was received from the 

Ministry of Health Northern Y Regional Ethics Committee (NTY/08/06/055).  

 Measurements 

24-hour time-use behaviours

24-hour time-use behaviours were captured continuously over seven days using two

Axivity AX3 accelerometers. These sensors were attached directly to the thigh and lower 

back skin using medical dressing or purpose-built foam pouches [53]. Accelerometry data 

were downloaded using the Open Movement Software (OMGUI, version 1.0.0.30, open 

Movement, Newcastle University, UK). Wear time was assessed using the inbuilt 

temperature sensor described elsewhere [53, 138]. Children with at least one day of 24-

hour wear time were included for analyses. The 24-hour time-use composition of each 

child was described from two perspectives: the activity intensity composition (i.e., SB, 

LPA, MVPA, and sleep) and the activity type composition (i.e., sitting, standing, walking, 

running, lying). To derive the activity intensity composition, the accelerometer data from 

the lower back sensor were converted to counts congruent with the ActiGraph GT3X+ 
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accelerometer [161, 176]. Subsequently, each 5-second epoch was categorised as SB, 

LPA, or MVPA using the Evenson cut-points [159]. The Tudor-Locke algorithm was 

applied to detect sleep duration [122]. Sleep duration was calculated from 12am to 12 am. 

Finally, the minutes accumulated in each behaviour were averaged across valid days. For 

the activity type composition, each 5-second epoch from both thigh and lower back 

sensors were categorised into various activity types using machine learning algorithms 

developed to classify activity types in children. These algorithms have shown ≥97% 

accuracy in the lab [19] and ≥ 90 % accuracy in free-living settings [18].   

Obesity measures 

In the present study, body mass index (BMI) z-score, waist circumference (WC), and 

waist-to-height ratio (WHtR) were considered as obesity markers. Weight was measured 

using a digital scale (Seca) to the nearest 0.1 kg. Height was measured with a wall-

mounted laser stadiometer (Seca) to the nearest millimetre. WC was measured using a 

tape measure to the nearest millimetre at the midpoint between the lowest rib and the top 

of the iliac crest. WHtR was calculated as WC (cm) divided by height (m). BMI was 

calculated as weight (kg) divided by squared height (m2) and was transformed into z-

scores following the age-and sex-specific World Health Organisation reference data 

[177]. 

Covariates 

Covariates included gender, ethnicity, deprivation, mother’s education, and diet 

behaviours, given these are known confounders of the primary associations of interest 

(time use behaviour and obesity) [83, 129]. Mothers reported their child’s daily 
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consumption of fruits and vegetables (from ‘never’ to ‘four or more’ servings), weekly 

consumption of soft drinks and fast food (from ‘never’ to ‘six times or more’), and 

frequency of breakfast consumption (‘never’ to ‘7 days’). Child ethnicity was classified 

into the following major ethnic groups: 1) European, 2) Māori, 3) Pacific, 4) Asian, 5) 

Middle Eastern, Latin American and African (MELAA), and 6) Other. MELAA and 

Other were combined as “Other” due to small numbers in each group. Children who 

answered, “I don’t know” to the ethnicity question were also categorised as “Other”. 

Socio-economic deprivation was estimated using the New Zealand Index of Deprivation 

2013 [178]. Households were categorised into three categories: low deprivation (deciles 

1–3), medium (deciles 4–7) and high deprivation (deciles 8–10). Mother’s education was 

derived from the antenatal dataset and was reported as 1) “less than a bachelor’s degree” 

or 2) “bachelor’s degree or higher”. 

 

Statistical Analysis 

All statistical analyses were performed in R software (version 3.6.1; The R Foundation 

for Statistical Computing, Vienna, Austria). Standard descriptive statistics were 

calculated for demographic and diet variables. Time-use behaviours were treated as 

compositional data, and therefore compositional data analysis approaches were used for 

explanatory analyses using the compositions [179] and deltacomp 

(github.com/tystan/deltacomp) R packages. Firstly, missing values and parts of each 

composition that contained zeros were imputed using log-ratio expectation-maximisation 

[180]. This method of zero imputation has been shown to produce the least bias [145]. 

The average daily minutes spent in each 24-hour time-use behaviour was reported as both 

arithmetic and geometric means. The geometric mean of each behaviour was normalised 

to 1440 minutes to calculate compositional means.   

https://github.com/tystan/deltacomp
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The associations between 24-hour time-use composition and each obesity outcome were 

assessed using compositional multiple linear regression models. Firstly, the 24-hour 

activity intensity and activity type compositions were expressed as isometric log-ratio 

(ilr) coordinates. These ilr coordinates were created using the sequential binary partition 

(SBP) process [142] with the following sign matrix: 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4
𝑖𝑖𝑖𝑖𝑖𝑖1 +1 −1 −1 −1
𝑖𝑖𝑖𝑖𝑖𝑖2 0 +1 −1 −1
𝑖𝑖𝑖𝑖𝑖𝑖3 0 0 +1 −1

 

  

where x1, x2, x3, and x4 are the four parts for the activity intensity composition, and ilr1, 

ilr2, and ilr3 are the resulting ilr coordinates. The first ilr coordinate (ilr1) represents the 

time spent in behaviour x1 relative to all other behaviours. The second ilr coordinate (ilr2) 

represents the ratio of x2 in relation to x3 and x4, while ilr3 is the ratio of x3 to x4. As the 

primary contrast of interest is one behaviour relative to the remaining behaviours, the 

above sign matrix was subsequently permuted, such that each part of the composition was 

represented as x1 [142]. A similar process was used for the activity type composition, but 

this resulted in four ilr coordinates, given the 5-part composition. The SBP and sign 

matrix for the activity type composition is shown below: 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
𝑖𝑖𝑖𝑖𝑖𝑖1 +1 −1 −1 −1 −1
𝑖𝑖𝑖𝑖𝑖𝑖2 0 +1 −1 −1 −1
𝑖𝑖𝑖𝑖𝑖𝑖3 0 0 +1 −1 −1
𝑖𝑖𝑖𝑖𝑖𝑖4 0 0 0 +1 −1

 

 

The corresponding first ilr coordinates (ilr1) were used as explanatory variables in the 

regression models, while obesity indictors (i.e., BMI z-score, WC, and WHtR) were 

treated as dependent variables. All models were then adjusted for potential confounders: 
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gender, ethnicity, mother’s education, deprivation index, fruit intake, vegetable intake, 

frequency of fizzy drink and fast-food consumption, and breakfast consumption. Finally, 

using compositional isotemporal substitution, we also examined the theoretical changes 

in obesity indicators through “one-to-remaining” reallocation, where time was 

proportionally reallocated from/to one behaviour to/from the remaining behaviours 

within the composition (-60 to +60 minutes in 15-minute increments around the mean 

composition of each behaviour) [147]. For this analysis, time spent walking and running 

was combined, given the small volume of running observed in the dataset. These models 

also adjusted for the covariates described above.  

 

Results  

Table 4-1 summarises the characteristics of the study population. The mean age of the 

participants was 7.8 years. The majority were NZ European (43.8%) and were from low 

or medium deprived households (80.0%). Sociodemographic characteristics varied 

between our analytical sample (those with accelerometer data) and those participated in 

the 8 year wave but excluded due to not having accelerometer data (results presented in 

Chapter 6 (Table 6-1)). Of the participants, almost 78.0% ate between 1–3 servings of 

fruits and vegetables daily, 47.4% ate fast food at least one time per week, and 46.0% 

consumed fizzy drink 1–3 times per week. Most participants ate breakfast every day 

(90.0%). 
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Table 4-1. Participants characteristics. 
Characteristics Number (%) 
Gender   
   Boy 302 (48.5) 
   Girl 321 (51.5) 
Ethnicity  
   European 273 (43.8) 
   Māori 119 (19.1) 
   Pacific 45 (7.2) 
   Asian  74 (11.9) 
   Other 107 (17.2) 
   Missing <10 (0.8) 
Household deprivation   
   Low 222 (35.6) 
   Medium 276 (44.3) 
   High 122 (19.6) 
  Missing <10 (0.5) 
Mother’s education   
   Less than a bachelor’s degree 300 (48.2) 
   Bachelor’s degree or higher  323 (51.8) 
   Missing 0 
Fruit intake (per day)   
   Never 11 (1.8) 
   <1serving 32 (5.1) 
   1 serving 126 (20.2) 
   2 servings 233 (37.4) 
   3 servings 128 (20.6) 
   4 servings 71(11.4) 
   Missing 22 (3.5) 
Vegetable intake (per day)  
   Never 13 (2.1) 
   <1 serving 34 (5.5) 
   1 serving 109 (17.5) 
   2 servings 199 (31.9) 
   3 servings 198 (31.8) 
   4 servings 48 (7.7) 
   Missing 22 (3.5) 
Fizzy drink consumption (per week)  
   Never 248 (39.8) 
   1 time  180 (28.9) 
   2 or 3 times  110 (17.7) 
   4 or 5 times  17 (2.7) 
   6 times or more  18 (2.9) 
   Missing                                            50 (8) 
Fast food consumption (per week)  
   Never  120 (19.3) 
   1 time    295 (47.4) 
   2 or 3 times    160 (25.7) 
   4 or 5 times    11 (1.8) 
   6 times or more  <10 (0.6) 
   Missing   33 (5.2) 
Breakfast consumption (per week)  
   Never <10 (0.6) 
   1 or 2 days                                           <10 (0.6) 
   3 or 4 days    10 (1.6) 
   5 or 6 days     24 (3.9) 
   7 days      560 (89.9) 
   Missing      21 (3.4) 
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Table 4-2 shows the arithmetic and compositional means of time spent in each component 

of the activity intensity and activity type compositions. Relative to all other behaviours, 

children spent most of their time asleep, followed by SB, LPA and MVPA. From an 

activity type perspective, most of the day was spent lying and sitting postures, followed 

by standing, walking, and running.  

 

Table 4-2. Arithmetic and compositional means of time spent in each component of the activity 
intensity and activity type compositions. 

24-hour time-use composition Arithmetic mean 
Minutes/day (%) 

Compositional mean 
Minutes/day (%) 

Activity intensity composition    
  SB  427 (29.7) 427 (29.7) 
  LPA  307 (21.3) 307 (21.3) 
  MVPA 98 (6.8) 94 (6.5) 
  Sleep 
 

608 (42.2) 612 (42.5) 

Activity type composition    
  Sitting  480 (33.3)   481 (33.4) 
  Standing  160 (11.1)                          153 (10.6) 
  Walking                           108 (7.5) 105 (7.3) 
  Running     9 (0.6)    7(0.5) 
  Lying   686 (47.5)   694 (48.2) 

SB = Sedentary behaviour; LPA= Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical 
activity. 
 
 
 
 
 
Tables 4-3 and 4-4 present results from regression models examining the association 

between 24-hour activity intensity and activity type compositions (respectively) and 

obesity outcomes. Time spent in SB (p = 0.007), LPA (p = <0.001), and MVPA (p = 

0.005), relative to the remaining behaviours, was associated with BMI z score; however, 

after adjustment for covariates, only time spent in LPA (p=0.005) had a significant 

negative (favourable) association with BMI z-score (relative to the remaining 

behaviours). Time spent in SB was positively associated with WC, and time spent in LPA 

was negatively associated with WC; however, these associations were no longer 

statistically significant after adjusting for covariates. No association was observed 

between time spent in any component of the activity intensity composition and WHtR. 
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For the activity type composition, time spent walking relative to the other behaviours had 

a significant negative (favourable) association with the BMI z-score. No associations 

were observed between time spent in any other activity type behaviours and WC or 

WHtR. Additionally, results from a sensitivity analysis where the analysis sample 

required at least three valid days of 24-hour time-use data (n = 482) revealed similar 

associations between the 24-hour activity intensity and activity type time-use 

compositions and obesity-related outcomes among these children (Supplementary Tables 

S1 and S2). 
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Table 4-3. Relationship between activity intensity compositions (expressed as isometric log-ratio coordinates) and obesity outcomes. 
Obesity 
outcomes 

Isometric log-ratio predictor Unadjusted model 
ß– coefficient 

P-value Model R 
 squared 

Adjusted model 
ß– coefficient 

P-value Model R 
squared 

BMI z-score ilr SB/LPA*MVPA*SLEEP 0.725  0.007 
0.025 

0.283 0.336 
0.086 ilr LPA/SB*MVPA*SLEEP –1.123  <0.001 – 0.913 0.005 

ilr MVPA/SB*LPA*SLEEP 0.450 0.005 0.314 0.110 
ilr SLEEP/SB*LPA*MVPA – 0.053 0.868 0.315 0.367 

WC ilr SB/LPA*MVPA*SLEEP 4.331  0.012 
0.023 

0.726 0.700 
0.086 ilr LPA/SB*MVPA*SLEEP –7.117        <0.001 – 3.931 0.061 

ilr MVPA/SB*LPA*SLEEP 2.686 0.009 0.737 0.558 
ilr SLEEP/SB*LPA*MVPA 0.100 0.960 2.466 0.270 

WHtR ilr SB/LPA*MVPA*SLEEP 0.019 0.092 
0.003 

– 0.001 0.931 
0.038 ilr LPA/SB*MVPA*SLEEP – 0.023 0.058 – 0.014 0.336 

ilr MVPA/SB*LPA*SLEEP 0.008 0.239 0.003 0.773 
ilr SLEEP/SB*LPA*MVPA – 0.004 0.736 0.013 0.416 

ilr = isometric log-ratio, is the first isometric log-ratio coordinate representing each time-use behaviour relative to the remaining behaviours; BMI z-score = Body mass index z-score;  
WC = Waist circumference; WHtR= Waist-to-height ratio; SB = Sedentary behaviour; LPA= Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical activity. 
Models were adjusted for gender, ethnicity, deprivation, mother’s education, fruit intake, vegetable intake, frequency of fizzy drink and fast food consumption, and breakfast consumption. 
Bold values represent significant associations.  
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Table 4-4. Relationship between activity type compositions (expressed as isometric log-ratio coordinates) and obesity outcomes. 

Obesity 
outcomes 

Isometric log-ratio predictor Unadjusted 
model 

ß–coefficient 

P-value Model  
R squared 

Adjusted model 
ß–coefficient 

P-value Model 
 R squared 

BMI z-score  ilr Sit/Stand*Walk*Run*Lie 0.157 0.411 0.011          – 0.033 0.872 0.088 
ilr Stand/Sit*Walk*Run*Lie 0.140 0.362 0.311 0.072 
ilr Walk/Sit* Stand*Run*Lie        –  0.594 0.003          – 0.641 0.002 
ilr Run/Sit* Stand*Walk*Lie 0.119 0.076 0.094 0.204 
ilr Lie/Sit* Stand*Walk*Run 

 
0.176 0.407 0.268 0.242 

WC ilr Sit/Stand*Walk*Run*Lie 1.696 0.167 0.007 0.504 0.703 0.082 
ilr Stand/Sit*Walk*Run*Lie         –1.180 0.229 0.283 0.798 
ilr Walk/Sit* Stand*Run*Lie         –1.353 0.294           –1.891 0.169 
ilr Run/Sit* Stand*Walk*Lie           0.430 0.316 0.336 0.481 
ilr Lie/Sit* Stand*Walk*Run 

 
          0.406 0.764 0.766 0.602 

WHtR ilr Sit/Stand*Walk*Run*Lie 0.013 0.105 0.005 0.003 0.709 0.040 
ilr Stand/Sit*Walk*Run*Lie 0.004 0.460 0.008 0.281 
ilr Walk/Sit* Stand*Run*Lie        –  0.016 0.052          – 0.016 0.092 
ilr Run/Sit* Stand*Walk*Lie 0.002 0.353 0.002 0.519 
ilr Lie/Sit* Stand*Walk*Run         – 0.004 0.656 0.002 0.824 

ilr = isometric log-ratio, is the first isometric log-ratio coordinate representing each time-use behaviour relative to the remaining behaviours; BMI z-score = Body mass index z-score;  
WC = Waist circumference; WHtR= Waist-to-height ratio. 
Models were adjusted for gender, ethnicity, deprivation, mother’s education, fruit intake, vegetable intake, frequency of fizzy drink and fast food consumption, and breakfast consumption. 
Bold values represent significant associations. 
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Figure 4-1 illustrates the predicted theoretical changes in the obesity outcomes when 

time from one behaviour is reallocated to the remaining behaviours within activity 

intensity and activity type compositions. With regards to activity intensity 

composition, reallocating more time to LPA from the remaining behaviours was 

significantly associated with favourable changes in BMI z-score (p <0.05). When the 

time was reallocated to sleep and MVPA (from all the other behaviours), this was 

related to unfavourable changes in all the obesity measures. Adding time to sedentary 

(from the remaining behaviours) resulted in unfavourable changes in BMI z-score and 

WC, but favourable changes in WHtR; however, none of these trends were 

significant. Reallocating more time to sitting from all the remaining behaviours was 

associated with unfavourable obesity measures. Conversely, increasing the time spent 

walking and running showed a significant favourable association with BMI z-score 

(p <0.05). Increasing standing time was detrimentally associated with BMI z-score 

and WHtR but beneficially associated with WC. Adding more time to lying had 

beneficial impacts on BMI and WHtR while negatively affecting WC (although not 

statistically significant). These predicted changes have been reported in Tables 4-5 

and  4-6. Additionally, the results for the reallocation of time as a percentage 

difference are presented in Supplementary Tables S3 and S4. These results align with 

the previous results (in terms of statistically significant reallocations) when using 

minutes across the behaviours.   



 

68 

 

 

 

Figure 4-1. Estimated changes in obesity outcomes associated with reallocating ± 60 minutes in 
15 mins to/from one behaviour to/from the remaining behaviours within activity intensity and 
activity type compositions.  
Results are adjusted for gender, ethnicity, deprivation, mother’s education, fruit intake, vegetable 
intake, frequency of fizzy drink and fast food consumption, and breakfast consumption.  
BMI z-score = Body mass index z-score, WHtR= Waist-to-height ratio, Sedentary = Sedentary 
behaviour; Light = Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity 
physical activity.  
Note: the sedentary estimate is directly underneath the sleep estimate in the top left panel. 
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Table 4-5. Predicted change (95% CI) in obesity outcomes following reallocation of time between behaviours within the activity intensity composition. 

Obesity 
outcomes 

Changes in behaviour 
(minutes/day) 

SB  
to/from remaining 

LPA  
to/from remaining 

MVPA  
to/from remaining 

Sleep  
to/from remaining 

BMI z-score       
 -60 0.05 (-0.15 –0.05) 0.21 (0.06 – 0.36) -0.28 (-0.64 – 0.08) -0.05 (-0.15 – 0.05) 
 -45 -0.04(-0.11 –0.04) 0.16 (0.04 – 0.27) -0.18 -0.41 – 0.05) -0.04 (-0.11 – 0.04) 
 -30 -0.02 (-0.08 – 0.03) 0.10 (0.03 – 0.17) -0.11 (-0.24 – 0.03) -0.02 (-0.07 – 0.03) 
 -15 -0.01 ( -0.04 –0.01) 0.05 (0.01 – 0.09) -0.05 (-0.11 – 0.01) -0.01 (0.04 – 0.01) 
 0 0 0 0 0 
 15 0.01 (-0.01 – 0.04) -0.05 (-0.08 – -0.01) 0.04 (-0.01 – 0.10) 0.01 (-0.01 – 0.04) 
 30 0.02 (-0.03 –0.07) -0.10 (-0.16 – -0.03) 0.08 (-0.02 – 0.18) 0.02 (-0.03 – 0.07) 
 45 0.04 (-0.04 – 0.11) -0.14 (-0.24 – -0.04) 0.11(-0.03 – 0.26) 0.04 (-0.04 – 0.11) 
 60 0.05 (-0.05 – 0.14) -0.18 (-0.31 – -0.05) 0.14 (-0.04 – 0.33) 0.05 (-0.05 – 0.15) 
WC      
 -60 -0.14 (-0.81– 0.54) 0.92 (-0.05 – 1.88) -0.70 (-3.00 – 1.59) -0.36 (-1.03 – 0.31) 
 -45 -0.10 (-0.60 – 0.40) 0.67 (-0.03 – 1.38) -0.45 (-1.94 –1.03) -0.27 (-0.77 – 0.23) 
 -30 -0.07 (-0.40 – 0.26) 0.44 (-0.02 – 0.90) -0.27 (-1.15 – 0.61) -0.18 (-0.51 – 0.15) 
 -15 -0.03 (-0.20 – 0.13) 0.22 (-0.01– 0.44) -0.12 (-0.52 – 0.28) -0.09 (-0.25 – 0.08) 
 0 0 0 0 0 
 15 0.03 (-0.13 – 0.19) -0.21 (-0.43 – 0.01) 0.11 (-0.24 – 0.45) 0.09 (-0.08 – 0.25) 
 30 0.06 (-0.25 – 0.38) -0.41 (-0.84  – 0.02) 0.20 (-0.45 – 0.85) 0.18 (-0.15 – 0.50) 
 45 0.09 ( -0.38 – 0.56) -0.60 (-1.24 – 0.03) 0.28 (-0.64 – 1.21) 0.27 (-0.22 – 0.75) 
 60 0.13 (-0.50 – 0.75) -0.79 (-1.63 – 0.04) 0.36 (-0.81 –1.53) 0.35 (-0.30 –1.00) 
WHtR      
 -60 0 (-0.004 – 0.005) 0.003 (-0.003 – 0.010) -0.001(-0.017  – 0.015) -0.002 (-0.007 – 0.002) 
 -45 0 (-0.003 – 0.004) 0.002 (-0.003 – 0.007) -0.001(-0.011 – 0.010) -0.002(-0.005 – 0.002) 
 -30 0 (-0.002 – 0.002) 0.002 (-0.002 – 0.005) 0 (-0.007 – 0.006) -0.001 (-0.003 – 0.001) 
 -15 0 (-0.001 – 0.001) 0.001(-0.001 – 0.002) 0 (-0.003 – 0.003) -0.001 (-0.002 –0.001) 
 0 0 0 0 0 
 15 0 (-0.001 – 0.001) -0.001 (-0.002 – 0.001) 0 (-0.002 – 0.003) 0.001 (-0.001 – 0.002) 
 30 0 (-0.002 – 0.002) -0.001 (-0.004 – 0.002) 0 (-0.004 – 0.005)                0.001(-0.001 – 0.003) 
 45 0 (-0.004 – 0.003) -0.002 (-0.007 – 0.002) 0 (-0.006 – 0.007) 0.002 (-0.002 – 0.005) 
 60 0 (-0.005 – 0.004) -0.003 (-0.009 – 0.003) 0.001 (-0.008 – 0.009) 0.002 (-0.002 – 0.007) 

BMI z-score = Body mass index z-score, WC = Waist circumference, WHtR =Waist-to-height ratio.  
SB = Sedentary behaviour; LPA = Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical activity.  
Bold values refer to significance values at p<0.05. 
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Table 4-6. Predicted change (95% CI) in obesity outcomes following reallocation of time between behaviours within the activity type composition. 
Obesity outcomes Changes in behaviour 

(minutes/day) 
Sitting  

to/from remaining 
Standing  

to/from remaining 
Walking and running 
 to/from remaining 

Lying 
to/from remaining 

BMI z-score 
-60 0.00 (-0.07 – 0.07) -0.14 (-0.30 – 0.03) 0.29 (0.04 – 0.54) -0.02 (-0.10 – 0.06)
-45 0.00 (-0.05 –0.05) -0.10 (-0.21 – 0.02) 0.20 (0.03 – 0.37) -0.01 (-0.07 – 0.04)
-30 0.00 (-0.04 – 0.03) -0.06 (-0.13 – 0.01) 0.12 (0.02 – 0.22) 0.01 (-0.05 – 0.03)
-15 0.00 (-0.02 – 0.02) -0.03 (-0.06 – 0.01) 0.06 (0.01 – 0.10) 0.00 (-0.02 – 0.01)
0 0 0 0 0 
15 0.00 (-0.02 – 0.02) 0.03 (-0.01 – 0.06) -0.05 (-0.09 – -0.01) 0.00 (-0.01 – 0.02) 
30 0.00 (-0.03 – 0.03) 0.05 (-0.01 – 0.11) -0.09 (-0.18 – -0.01) 0.01 (-0.03 – 0.05) 
45 0.00 (-0.05 – 0.05) 0.07 (-0.01  – 0.16) -0.14 (-0.25 – -0.02) 0.01 (-0.04  – 0.07) 
60 0.00 (-0.07 – 0.07) 0.10(-0.02 – 0.21) -0.17 (-0.32 – -0.03) 0.02 (-0.06 – 0.10) 

WC 
-60 -0.10 (-0.56 – 0.36) -0.08 (-1.13 – 0.97) 0.94 (-0.66 – 2.54) -0.09 (-0.59 – 0.41)
-45 -0.08 (-0.42 – 0.27) -0.06 (-0.80 – 0.69) 0.63 (-0.45 – 1.72) -0.07 (-0.44 – 0.31)
-30 -0.05 (-0.28 – 0.18) -0.03 (-0.50 – 0.43) 0.39 (-0.27 – 1.05) -0.04 (-0.29 – 0.21)
-15 -0.02 (-0.14 – 0.09) -0.02 (-0.24 – 0.21) 0.18 (-0.13 – 0.49) -0.02 (-0.15 – 0.10)
0 0 0 0 0 
15 0.02 (-0.09 – 0.13) 0.02 (-0.19 – 0.22) -0.16 ( -0.43 – 0.11)    0.02 (-0.10 – 0.15) 
30 0.05 (-0.17 – 0.27) 0.03 (-0.36 – 0.42) -0.30 ( -0.82 – 0.21)    0.04 (-0.20 – 0.29) 
45 0.07 (-0.26 – 0.40) 0.04 (-0.53 – 0.61) -0.44 (-1.18 – 0.31) 0.06 (-0.31 – 0.44) 
60 0.09 (-0.34 – 0.53) 0.05 (-0.68 – 0.79) -0.56 (-1.50 – 0.39) 0.09 (-0.41 – 0.58) 

WHtR 
-60 -0.001 (-0.004 – 0.002) -0.004 (-0.011– 0.004) 0.007 (-0.004 – 0.018) 0 (-0.00 – 0.004) 
-45 -0.001 (-0.003 – 0.002) -0.003 (-0.008 – 0.003) 0.005 (-0.003 – 0.012) 0(-0.002 – 0.003) 
-30 0 (-0.002 –0.001) -0.002 (-0.005 – 0.002) 0.003 (-0.002 – 0.007) 0 (-0.002 – 0.002) 
-15 0 (-0.001 – 0.001) -0.001 (-0.002 – 0.001)   0.001 (-0.001 – 0.003) 0 (-0.001 – 0.001) 
0 0 0 0 0 
15 0 (-0.001 – 0.001) 0.001(-0.001 – 0.002) -0.001 (-0.003 – 0.001) 0 (-0.001 – 0.001) 
30 0 (-0.001 – 0.002) 0.001(-0.001 – 0.004) -0.002 (-0.006 – 0.001) 0 (-0.002 – 0.002) 
45 0.001 (-0.002 – 0.003) 0.002 (-0.002 – 0.006) -0.003 (-0.008 – 0.002) 0 (-0.003 – 0.002) 
60 0.001 (-0.002 – 0.004) 0.003 (-0.003 – 0.008) -0.004 (-0.011 – 0.003) 0 (-0.004 – 0.003) 

BMI z-score = Body mass index z-score; WC =Waist circumference; WHtR= Waist-to-height ratio. 
Bold values refer to significance values at p<0.05.
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Discussion 

The present study utilised CoDA to investigate associations between both 24-hour 

activity intensity and activity type compositions and obesity measures in New Zealand 

children. We found that within a 24-hour activity intensity composition, only the relative 

time spent in LPA had a significant negative (favourable) association with BMI z-score 

after adjusting for covariates. For activity types, only time spent walking (relative to other 

behaviours) was favourably associated with BMI z-score in the fully adjusted models. 

Compositional isotemporal substitution was also used to examine the theoretical changes 

in obesity outcomes associated with time reallocation between behaviours. Reallocating 

more time to LPA and walking (proportionally taking time away from other behaviours) 

was associated with favourable changes in BMI z-score. No significant differences were 

observed for other behaviours.  

No significant associations were observed between time spent in SB and any of the 

obesity measures (in the fully adjusted models). This is in line with some [129, 181] but 

not all the previous compositional studies [83, 142]. However, it should be noted that 

these studies focused on total sitting time and did not take sitting patterns into account. 

As shown in previous studies, prolonged sitting time is associated with higher adiposity 

[182]. A recent CoDA-based study found that sitting patterns, not total sitting time, were 

significantly associated with adiposity among school-aged children [183]. In particular, 

time spent in sedentary bouts of 10–29 minutes in duration was associated with higher fat 

mass and visceral adipose tissue in children [183]. This highlights the importance of 

considering sitting patterns in future compositional time-use studies to better understand 

the effect of SB on obesity in children.  

Our analyses revealed favourable associations between LPA time (relative to other 

behaviours) and BMI z-score. This is in contrast with findings of previous CoDA-based 
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studies where detrimental impacts were reported between time spent in LPA (relative to 

other behaviours) and BMI (or BMI z-score) [83, 129, 142, 181]. As evidenced by a recent 

CoDA study, these inconsistencies might be related to the patterns in which LPA is 

accumulated ( i.e., short bouts versus long bouts) [184]. Higher levels of LPA in short 

bouts could be associated with a lower BMI z-score and waist circumference, while 

longer bouts of LPA have been associated with a higher BMI z-score and waist 

circumference among children [184]. The use of different LPA cut points between studies 

could be another reason behind these different results. Considering other measurement 

techniques, such as machine learning without arbitrary threshold decisions, might be 

beneficial in this regard. Accordingly, in the current study, we also measured children’s 

time-use behaviours in terms of activity types. Results from analysing the activity type 

compositions showed that only the time spent walking was favourably associated with 

BMI z-score. To our knowledge, this represents the first work to have examined the 

associations between 24-hour activity type composition and obesity outcomes in children. 

Results from compositional isotemporal substitution analysis showed that the BMI z-

score could be reduced by increasing LPA time at the expense of other behaviours. 

Contrary to this finding, previous compositional studies have reported unfavourable 

impacts on obesity when LPA substitutes other behaviours [129, 142, 181]. For example, 

Taylor et al. reported that 10% more time in LPA was associated with a higher BMI z-

score among New Zealand children aged 6–10 years old [181].  

In contrast to previous compositional studies [32, 129, 130, 185], we observed that 

reallocating more time to MVPA from other behaviours was associated with unfavourable 

obesity outcomes. Although not statistically significant, this could be due to the higher 

compositional mean of MVPA (98 minutes/day) in our sample compared to previous 

similar compositional studies. Therefore, these unfavourable estimates in the obesity 
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measures may not be necessarily due to more time in MVPA, but less time in other 

activities such as sleep. Although we did not observe any association between sleep and 

obesity outcomes in this study, it has been shown that shorter sleep duration may increase 

the odds of obesity in children [10]. It is important to note that the null association 

between time spent in MVPA, sleep, and sedentary behaviour with obesity-related 

outcomes in this study do not imply that these behaviours are not related to adiposity. 

This means that, for example, the amount of time in MVPA in relation to the trade-offs 

in time from other behaviours (i.e., sleep and sedentary behaviour) is neutral in relation 

to obesity-related measures [186].     

 

Strengths and limitations 

The main strengths of our study include the use of CoDA to examine the 24-hour time-

use composition and the assessment of time-use compositions from two separate 

perspectives (intensity and type of activities) using dual accelerometers. Additionally, the 

regression models were adjusted for various covariates, including diet. This study also 

has several limitations. Firstly, the cross-sectional design of this study precludes any 

casualty from being inferred; however, given the longitudinal nature of the GUiNZ study, 

changes in 24-hour time-use behaviours over time and their associations with adiposity 

(and other health outcomes) could be examined. Secondly, although we considered three 

different indicators to measure obesity, no direct measurement of body composition was 

included in the current study. Moreover, the 24-hour time-use data in this study may not 

represent habitual time-use behaviours given the inclusion of children with a minimum 

of one 24-hour day of wear time. Further, the Tudor-Locke sleep algorithm was developed 

for a hip-worn accelerometer placement, but we applied this algorithm to the lower back. 

Although this still represents the centre of mass, it is possible this decision affect sleep 
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estimates. Lastly, it is possible the associations we observed with LPA (as opposed to 

MVPA) could be due to misclassifications of activity type and activity intensity (Chapter 

3). 

Conclusions 

Using compositional data analysis, we found that the 24-hour time-use behaviours of 

children were associated with BMI z-score. For activity intensity, LPA relative to other 

behaviours was associated with favourable changes in BMI z-score. In terms of activity 

type, time spent walking was the key behaviour associated with favourable BMI z-scores. 

Additionally, reallocating additional time to LPA (from the remaining behaviours) was 

associated with a reduced BMI z-score among children. Similar results were observed 

when reallocating time to walking and running from the remaining behaviours. These 

findings need to be confirmed in future longitudinal studies to provide more robust 

evidence on how time use could be optimised to obtain the most favourable impacts on 

obesity measures in children.  
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5 Chapter 5 - Clustering of lifestyle behaviours and obesity in 
New Zealand children: A compositional data analysis 

approach 

Preface  

The preceding chapter revealed that 24-hour time-use compositions are associated with 

BMI in children and reallocating more time to LPA was associated with lower BMI. 

However, in reality, children tend to engage in particular patterns of lifestyle behaviours 

(including time-use and diet behaviours), so reallocating time from one behaviour to 

another might be more (or less) realistic for some groups of children. Thus, this chapter 

explores how New Zealand children cluster in terms of their lifestyle behaviours, and 

examines the association between cluster membership and measures of obesity. This 

study is primarily aligned with the Research Area 3 in the VIRTUE framework (patterns, 

prevalence, and optimal balance), but also contributes to Research Area 2 given the 

obesity focus. The paper from this chapter is currently under review at the International 

Journal of Behavioural Nutrition and Physical Activity. 
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Abstract 

Background: Physical activity, sedentary behaviour, sleep, and dietary intake are 

individually associated with obesity in children. However, less is known about how these 

modifiable lifestyle behaviours cluster in children, and whether there is an association 

between the cluster of these behaviours and obesity.  

Methods: Cluster analysis was used to identify distinct behavioural clusters among 623 

children from the 8-year wave of the Growing Up in New Zealand cohort study. 

Clustering input variables included 24-hour time-use behaviours (in terms of activity 

intensity and activity type) along with screen time and dietary behaviours. Time-use 

behaviours were treated as compositional data and were expressed as isometric log-ratios. 

Obesity-related measures (i.e., body mass index z-score (BMI z-score), waist 

circumference (WC), waist-to-height ratio (WHtR) were compared among clusters using 

ANOVA.  

Results: Three distinct lifestyle behaviour clusters were identified separately for activity 

intensity and activity type compositions: For activity intensity: Cluster 1 (41% of the 

sample, lowest sedentary behaviour and screen time), Cluster 2 (31% of the sample, 

highest moderate-to-vigorous physical activity (MVPA) and highest unhealthy diet 

score), and Cluster 3 (28% of the sample, highest sedentary behaviour and screen time 

score, lowest healthy diet score). For activity type: Cluster 1 (41% of the sample, lowest 

sitting time, lowest screen time and highest standing time), Cluster 2 (31% of the sample, 

high sitting time, lowest standing time, and highest unhealthy diet score), and Cluster 3 

(28% of the sample, highest sitting time and screen time score, lowest healthy diet score). 

For both activity intensity and activity type compositions, Cluster 2 had the highest BMI 

z-score, WC, and WHtR, and the highest proportion of overweight and obese children. 
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After adjusting for potential covariates (i.e., gender, ethnicity, and deprivation), only the 

BMI z-score remained significantly different between the clusters. 

Conclusions: Distinct patterns of lifestyle behaviours exist among New Zealand children. 

The cluster with the highest MVPA and highest unhealthy diet score (from an activity 

intensity perspective) and the cluster with high sitting time and highest unhealthy diet 

score (from an activity type perspective) were associated with poorer obesity-related 

outcomes.  
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Introduction 

Child obesity is a significant health problem and is increasingly prevalent worldwide 

[174, 187], including in New Zealand, where one in three children are currently classified 

as overweight or obese [3]. Although obesity is related to sociodemographic factors such 

as gender, ethnicity, and socioeconomic deprivation [188], it is well established that 

modifiable lifestyle behaviours such as physical activity (PA), sedentary behaviour (SB) 

(including screen time), sleep, and dietary intake are individually associated with obesity 

in children [8-10]. In reality, these behaviours occur as clusters (or patterns) of behaviours 

and not in isolation [131, 189]. Therefore, understanding patterns of these behaviours and 

their relationship with obesity in children is imperative in developing more effective 

interventions to tackle the obesity epidemic.  

Using data reduction techniques such as cluster analysis, previous research has explored 

patterns of lifestyle behaviours among children [190]. However, to date, a limited number 

of studies have investigated the clustering of all these lifestyle behaviours together (i.e., 

PA, SB, sleep, and diet) and their associations with obesity in children [131, 191-194]. 

However, most of these studies were based on proxy or self-reported measures of time-

use behaviour (i.e., PA, SB, and sleep). Only one study has used 24-hour accelerometer 

to measure all these time-use behaviours and explored how these behaviours (including 

diet) cluster in children [131]. The findings showed four distinct lifestyle behaviour 

clusters among 5,710 children from 12 countries, and cluster membership was associated 

with Body Mass Index (BMI) [131]. This study also treated time-use behaviours as 

compositional data during the cluster analysis to account for the compositional properties 

of time-use behaviours. This is important as daily time-use behaviours are bound to 24-

hours per day, and the time spent in one behaviour is co-dependent on the remaining 

behaviour(s) [13]. 
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Until now, the clustering approach has mainly been used to examine time-use 

compositions in terms of intensity (i.e., moderate-to-vigorous intensity activity and 

sedentary behaviour) and not activity type (i.e., sitting, standing, walking, running, lying). 

Activity type information may be more sensitive to identifying patterns of behaviour and 

associated health outcomes. For example, different patterns of sitting and standing are 

known to have different physiological effects [64], but these types of behaviour are 

commonly grouped as sedentary, particularly when using device-based measures [91].  

Two previous studies have discovered distinct clusters of behaviours among New Zealand 

adolescents [195, 196]; however, to our knowledge, there is no study on how New 

Zealand children cluster their lifestyle behaviours. Therefore, by using compositional 

cluster analysis, this study aimed (1) to identify how lifestyle behaviours in children (i.e., 

24-hour time use behaviour in terms of both activity intensity and activity type, along

with screen time and diet) cluster, and (2) to examine the associations between these 

clusters and obesity measures in a sample of New Zealand children.  

Methods 

Participants 

Participants in this study were from the 8-year wave of the Growing Up in New Zealand 

(GUiNZ) cohort study [23]. This is a large longitudinal study of New Zealand children 

who were recruited via enrolment of their pregnant mothers with an estimated delivery 

date between April 2009 and March 2010. Further details about this study can be found 

elsewhere [23]. The study protocol was approved by the Ministry of Health Northern Y 

Regional Ethics Committee (NTY/08/06/055). A total of 5,556 children participated in 

the 8-year wave of this study; however, accelerometers were only worn by a subsample 
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of children (n =952). The final analytic sample used in this study consisted of 623 children 

aged eight years.  

 

Measurements  

24-hour time-use behaviours  

Time-use behaviours were measured using a dual Axivity AX3 accelerometer 

continuously for seven consecutive days. Two AX3 devices (one on the lower back and 

one on the thigh) adhered to the skin with medical tape or a foam patch [53]. Open 

Movement Software (OMGUI, version 1.0.0.30, open Movement, Newcastle University, 

UK) was used to set up the devices and download the accelerometer data. Wear time was 

determined using the inbuilt temperature sensor described elsewhere [53, 138]. A day 

with 24 hours of accelerometer wear time was considered valid, and children with at least 

one valid day of accelerometer data were included in the analysis. Children’s 24-hour 

time-use behaviours were described in terms of activity intensity and activity types. For 

activity intensity, accelerometer data from the lower back sensor were converted to 

ActiGraph GT3X+ counts following the procedures explained elsewhere [161, 176]. Then 

each 5-second epoch was classified as sedentary behaviour (SB), light-intensity physical 

activity (LPA), or moderate-to-vigorous physical activity (MVPA) using the scaled 

Evenson cut-points [159]. Sleep duration was estimated using the Tudor-Locke algorithm 

[122]. Sleep duration was calculated from 12am to 12 am.  Finally, the total minutes spent 

in these activities were summed and averaged over valid days to derive the 24-hour 

activity intensity composition. To identify activity types, we used algorithms derived 

from machine learning techniques to classify each 5-second epoch into sitting, standing, 

walking, running, or lying. These algorithms have shown high levels of accuracy for 

detecting activity types in children [18, 19]. The minutes spent in these activities were 
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combined to obtain the 24-hour activity type composition. Using the 24-hour Movement 

Guidelines for New Zealand children [22], participants were classified as meeting the 

MVPA guideline if they had accumulated, on average, 60+ minutes of MVPA daily. 

Children with 9–11 hours of sleep per 24-hours were categorised as meeting the sleep 

guideline.  

 

Screen time 

Mothers were asked to indicate the time (hours and minutes) that their child spent (1) 

watching television, including free-to-air, online, and pay-tv or DVDs, either on TV or 

other screen-based devices, and (2) doing activities or tasks (e.g., homework, playing 

games, or sending messages) on any screen-based devices including computers, laptops, 

tablets, smartphones, or gaming devices. These questions were asked for a typical 

weekday and a weekend day. From this, the daily average of screen time (in hours) was 

obtained. Children with an average of less than two hours of daily screen time were 

categorised as meeting the screen time guideline [22].  

 

Dietary behaviour  

Children’s dietary habits were assessed by asking five questions from their mothers. The 

mothers reported on average how many servings of (1) fruits and (2) vegetables their 

children ate per day (less than 1 serving, 1 serving, 2 servings, 3 servings, 4 or more 

servings). They were also asked about the number of days in the last week that their 

children (3) had a fizzy or soft drink, and (4) ate any food purchased from a fast-food 

place or takeaway shop. Finally, they reported the number of days each week that their 

child (5) eats breakfast (one day to seven days). To identify dietary habits among the 
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children, an exploratory factor analysis was conducted, which resulted in two distinct 

components, (1) healthy dietary habits (i.e., positive loadings for fruits, vegetables, and 

breakfast consumption), and (2) unhealthy dietary habits (i.e., positive loadings for fast 

food and fizzy drink consumption)[131]. 

 

Obesity measures 

Height was measured without shoes to the nearest millimetre using a wall-mounted laser 

stadiometer (Seca), and weight was measured to the nearest 0.1 kg with a digital scale 

(Seca). Body mass index (BMI) was calculated as weight (kg) divided by square of height 

(m2) and transformed to z-scores according to the age- and sex-specific World Health 

Organisation (WHO) reference data [177]. Each child was categorised as normal weight, 

overweight, or obese using the WHO classification [177]. Waist circumference (WC) was 

measured at the midpoint between the lowest rib and the top of the iliac crest to the nearest 

millimetre. The waist-to-height ratio (WHtR) was calculated as weight (cm) divided by 

height (m). 

 

Covariates 

Covariates included gender, ethnicity, and deprivation. Child ethnicity was classified into 

the following major ethnic categories: (1) European, (2) Māori, (3) Pacific Island, (4) 

Asian, (5) Middle Eastern, Latin American and African (MELAA), and 6) Other. 

MELAA and Other were combined as “Other” due to small numbers in each group. 

Children who answered, “I don’t know” to the ethnicity question were also categorised 

as “Other”. Deprivation was estimated using the New Zealand Deprivation Index 2013 

(NZDep2013) [178]. NZDep2013 reflects the area-level deprivation status for each 
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meshblock (small geographic census unit) based on nine variables from the 2013 census 

data. Each meshblock is assigned a deprivation score ranging from 1 (least deprived) to 

10 (most deprived). 

 

Statistical Analysis 

Using the compositions and cluster R packages, cluster analysis was conducted to identify 

how lifestyle behaviours aggregate in children. As children’s 24-hour time-use 

behaviours represent compositional data, activity compositions were first converted to 

isometric log-ratio (ilr) coordinates using the isometric log-ratio transformation [142]. 

These ilr coordinates, along with screen time, healthy diet, and the unhealthy diet z-

scores, were used for clustering. The cluster analysis process was performed separately 

for the activity intensity and activity type compositions. Firstly, agglomerative 

hierarchical clustering was performed. Dissimilarity was measured using Euclidean 

distance, and total within-cluster variance was minimised using Ward’s minimum 

variance method. Next, k-means clustering was performed, with k set to the optimal 

number of clusters. Visual inspection of the dendrogram and silhouette value and gap 

statistic were used to determine the optimal number of distinct clusters [131]. This process 

aligns with compositional cluster analyses performed previously. Obesity measures were 

compared among the clusters using ANOVA, and adjusted models were then computed 

by adding child gender, child ethnicity and deprivation as covariates (ANCOVA). For 

both models, estimated means and contrasts between each cluster were performed using 

the emmeans R package, with multiple comparisons adjusted using the Holm correction. 

Lastly, the proportion of overweight and obese children and the proportion of children 

meeting the MVPA, screen time, and sleep guidelines were compared among the clusters 

using chi-squared tests.  
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Results 

From 623 children with accelerometer data, 24-hour activity intensity and activity type 

compositions were extracted for 620 and 602 children, respectively. The mean age of the 

participants was 7.8 years (51.5% girls, 43.8% NZ European, 19.1% Māori, 7.2% Pacific, 

11.9% Asian, 17.2% Other). Sociodemographic characteristics varied between our 

analytical sample (those with accelerometer data) and those participated in the 8 year 

wave but excluded due to not having accelerometer data (results presented in Chapter 6 

(Table 6-1)). 

Cluster analysis on behavioural data revealed three distinct clusters among the 

participants. Table 5-1 and Table 5-2 show the characteristics of the three clusters 

separately for the activity intensity and activity type compositions. For the activity 

intensity composition, the first cluster accounted for 41% of the sample (n = 253) and had 

the lowest SB and screen time score and the longest sleep duration. This cluster also had 

the highest rates of meeting all three 24-hour movement guidelines (20.2 %). The second 

cluster (31%, n = 192) was characterised by the highest level of MVPA (88% of this 

cluster met the MVPA daily recommendation) and the highest unhealthy diet score. 

Cluster 3 (28%, n = 175) was characterised by the highest sedentary behaviour and screen 

time score and the lowest healthy diet score. For activity type, Cluster 1 (41%, n = 244) 

had the lowest sitting time and screen time scores and the highest standing time. The 

second cluster (31%, n= 188) had a higher sitting time compared to the first cluster but 

had the lowest standing time among the three clusters. This cluster also had the highest 

unhealthy diet score. Cluster 3 (28%, n = 170) was characterised by the highest sitting 

time and the highest screen time score with the lowest healthy diet score.   
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Table 5-1. Characteristics of activity intensity clusters. 
Cluster 1 Cluster 2 Cluster 3 P-value

 N 253 192 175 

Time-use behaviours (minutes/day) 
 SB  414 432 442 
 LPA 309 309 301 
 MVPA  93  97  90 
 Sleep 624 603 607 

Meeting 24-hour Movement 
Guidelines n (%) 
 MVPA recommendation        170 (67.1) 170 (88.5) 151 (86.3)   0.048 
 Screen time recommendation  60 (29.5) (n =203)   10 (7.5) (n=132)  5 (3.7) (n=135) <0.001 
 Sleep recommendation  170 (67.2) 119 (62.0) 98 (56.0)   0.062 
 MVPA + Screen time + Sleep  41 (20.2)  7 (3.6) 2 (1.5) <0.001 

Screen time (mean z-score) -0.58 0.20 0.61 

Dietary behaviour (mean z-score) 
 Healthy diet score    0.54 0.74 -1.59
 Unhealthy diet score -0.81 1.49 -0.46

Overweight/obese n (%)    51 (20.1)        68 (35.4)      51 (29.1)  0.001 

SB = Sedentary behaviour; LPA= Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical 
activity.  
Values are presented as a compositional mean for time-use variables.  
Note: The actual sample sizes for the screen time comparisons are indicated in superscripts as screen time information 
was not available for all the participants.    

Table 5-2. Characteristics of activity type clusters. 
Cluster 1 Cluster 2 Cluster 3 P-value

N 244 188 170 

Time-use behaviours (minutes/day) 
 Sitting 469 486 492 
 Standing 161 146 151 
 Walking  108 104 101 
 Running  8 7 6 
 Lying 694 698 690 

Screen time (mean z-score) -0.57 0.18 0.60 

Dietary behaviour (mean z-score) 
 Healthy diet score   0.50 0.77 -1.61
 Unhealthy diet score -0.82 1.48 -0.46

Overweight/obese n (%) 49 (20) 69 (36.7) 51 (30) 0.001 

Values are presented as a compositional mean for time-use variables. 
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Table 5-3 shows the obesity measures across the activity intensity and activity type 

clusters. For the activity intensity clusters, Cluster 2 was associated with the highest BMI 

z-score and had the highest proportion of overweight or obese children. Cluster 2 also had 

the highest WC and WHtR (significantly different from Cluster 1). In terms of activity 

type, similar results were observed for Cluster 2, having the highest BMI z-score 

(significantly different from Cluster 1 and 3) and the highest WC and WHtR (significantly 

different from Cluster 1).  

 

Table 5-3. Associations between activity intensity and activity type clusters and obesity outcomes 
(unadjusted). 

 Cluster 1 Cluster 2 Cluster 3 
Activity intensity clusters    
 BMI z-score 0.22 (0.07 – 0.36)  0.69 (0.52 – 0.85)a 0.41 (0.24 – 0.58) 
 WC 57.6 (56.7 – 58.5)        60.1 (59.0 – 61.1)b 58.4 (57.3 – 59.5) 
 WHtR 0.44 (0.43 – 0.45)  0.46 (0.45 – 0.46)b 0.45 (0.44 – 0.46) 
 
Activity type clusters  

   

 BMI z-score 0.21 (0.07 – 0.36) 0.72 (0.55 – 0.89)a 0.42 (0.25 – 0.60) 
 WC 57.7 (56.7–  58.6) 60.0 (59.0 – 61.1)b          58.4 (57.3 – 59.6) 
 WHtR          0.44 (0.43 – 0.45)       0.46 (0.45 – 0.46)b 0.45 (0.44 – 0.46) 

BMI z-score = Body mass index z-score; WC = Waist circumference; WHtR= Waist-to-height ratio. 
Values are estimated means (95% confidence interval). 
a: Significant difference from Clusters 1 and 3 (p < 0.05). 
b: Significant difference from Cluster 1 (p < 0.01). 
 
 

After adjusting for potential covariates (Table 5-4), only the BMI z-score remained 

significantly different between the clusters. Specifically, for activity intensity, Cluster 2 

membership was associated with the highest BMI z-score, which was significantly 

different from Cluster 1. For the activity type composition, the BMI z-score of Cluster 2 

was significantly higher than both Cluster 1 and 3. We also undertook a sensitivity 

analysis where participants had three or more days of valid wear time (n = 482).  This 

also resulted in three distinct clusters among participants. The patterns of associations 

between cluster membership and obesity-related outcomes were in alignment with our 



 

87 

 

initial results from participants with at least one day of 24-hour time-use data 

(Supplementary Tables S5 and S6). 

 

Table 5-4. Associations between activity intensity and activity type clusters and obesity outcomes 
after adjusting for gender, ethnicity and household deprivation. 

 Cluster 1 Cluster 2 Cluster 3 
Activity intensity clusters    
 BMI z-score 0.44 (0.27 – 0.61)a 0.78 (0.61 – 0.95) 0.53 (0.35 – 0.70) 
 WC        59.2 (58.2 – 60.3) 60.8 (59.8 – 61.9) 59.2 (58.2 – 60.3) 
 WHtR 0.45 (0.44 – 0.46) 0.46 (0.45 – 0.47) 0.45 (0.45 – 0.46) 
 
Activity type clusters  

   

 BMI z-score  0.45 (0.27– 0.62)a   0.83 (0.66 – 1.00)b 0.54 (0.36 – 0.72)  
 WC 59.3 (58.2 – 60.4)        60.9 (59.8 – 62.0) 59.3 (58.1 – 60.4) 
 WHtR 0.45 (0.45 – 0.46) 0.46 (0.45 – 0.47) 0.45 (0.45 – 0.46) 

BMI z-score = Body mass index z-score; WC = Waist circumference; WHtR= Waist-to-height ratio. 
Values are estimated means (95% confidence interval). 
a: Significant difference from Cluster 2 (p < 0.01). 
b: Significant difference from Cluster 3 (p < 0.05). 
 

 

Discussion 

This study utilised cluster analyses to examine the grouping of lifestyle behaviours and 

their associations with obesity-related outcomes in a sample of New Zealand children. 

We found that children in this study could be grouped into unique clusters based on their 

lifestyle behaviours. Cluster patterns characterised by longer sedentary time, longer 

screen time and the unhealthiest diet score (or the lowest healthy diet score) were 

associated with worse obesity-related outcomes.  

To our knowledge, this study provided the first evidence of how New Zealand children 

cluster based on their lifestyle behaviour. However, there are two previous studies, which 

have explored lifestyle behaviour clusters among New Zealand adolescents [195, 196]. 

Consistent with our results, they identified distinct clusters of lifestyle behaviours, which 

were associated with weight status.  For example, using 24-hour time-use recall, Ferrar et 

al. (2013) found three different time-use behaviour clusters among boys (labelled as 
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techno active, quiet movers, and social studious) and girls (labelled as social, sporty, 

screenie tasker, and super studious). In that study cluster membership was linked to 

weight status among girls but not boys [195]. 

A recent systematic review on the clustering of lifestyle behaviours among children [190] 

has identified five studies that have focused on the same lifestyle behaviours as in the 

present study (i.e., physical activity, sedentary behaviour and or screen time, sleep and 

diet) using cluster analysis [131, 192, 193] or latent class analysis [191, 194]. In those 

studies, distinct patterns of lifestyle behaviours have been grouped in two clusters [193, 

194], three [191], four [131], and five clusters [192]. Additionally, all except one study 

[193] observed that children with specific patterns of behaviours were more likely to be 

overweight or obese. Specifically, clusters of children characterised with high sedentary 

time [131, 191], high sedentary time and poor diet quality [194], and short sleep and 

inactive patterns [192] had a higher risk of being overweight or obese compared to the 

other identified clusters. In line with these findings, we found three distinct clusters of 

lifestyle behaviours among New Zealand children. The cluster categorised with high 

sedentary time and the highest unhealthy diet score (Cluster 2) had the highest BMI z-

score, WC and WHtR, and the highest proportion of overweight or obese children. 

Children in this cluster also had the highest rate of meeting MVPA guidelines relative to 

the other clusters. In a study by Periira et al. (2015), a similar cluster characterised by 

high PA, high screen time, and poor diet quality, labelled as “active, low diet quality”, 

has been identified among 9–11-year-old children [194]. Meeting the MVPA guideline 

but having unhealthy eating patterns has also been seen among 5,873 children aged 9–11 

years from 12 countries [197]. This observation of clustering health impairing behaviours 

(e.g., unhealthy diet or sedentary behaviour) with health-enhancing behaviours (e.g., 

engaging in physical activity) in children highlights the importance of considering the 

patterns of lifestyle behaviours rather than focusing on individual behaviours.  
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In addition to the activity intensity compositions, we also clustered children’s lifestyle 

behaviours from a 24-hour activity type perspective. Although similar cluster grouping 

and patterns were observed between these two perspectives, this was the first attempt to 

cluster children’s lifestyle behaviours based on their 24-hour activity type composition. 

We observed that children with the lowest sitting time, highest standing time, lowest 

screen time and overall healthy diet had the most favourable obesity measures compared 

to the other clusters.  

Key strengths of this study include the measurement of 24-hour time-use behaviours, both 

in terms of activity intensity and activity type using 24-hour accelerometry. Another 

strength is the use of compositional data analysis to respect the compositional properties 

of time-use data, which has been overlooked in many previous lifestyle behaviour cluster 

studies. However, this study also has several limitations. Firstly, the cross-sectional 

design of the study precludes any causal relationships between behaviour and obesity to 

be inferred. Secondly, screen time and children’s dietary behaviours were parent-reported 

and therefore may be subject to recall bias. Finally, due to the inclusion of children with 

a minimum of one day of 24-hour accelerometer data, the 24-hour time-use composition 

data might not represent children’s habitual time use over a longer period.  

 

Conclusions  

Of the three lifestyle behaviour clusters that were identified (for both activity intensity 

and activity type), the cluster with a favourable combination of sedentary time (or sitting 

time), screen time, and diet was related to the most favourable obesity-related outcomes, 

while clusters of unhealthy behaviours were related to poorer obesity outcomes. Although 

adjustment for sociodemographic variables attenuated some of these associations, the 

relationship between cluster membership and BMI z-score remained significant. This 
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emphasises the need to consider lifestyle behavioural patterns in children rather than 

focusing on individual behaviours. 
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6 Chapter 6 - Patterns and sociodemographic correlates of 
24-hour time-use behaviours in New Zealand children 

Preface  

The preceding chapters demonstrated that time-use behaviours are associated with BMI 

in children. In particular, children with the healthiest combination of time-use and diet 

behaviours had the most favourable obesity measures and were more likely to meet the 

New Zealand 24-hour Movement Guidelines. Thus, it is essential to identify the 

prevalence of time-use behaviours (and guideline adherence) among New Zealand 

children and sociodemographic factors that are associated with these behaviours. 

Identifying these factors is necessary to develop and tailor preventive interventions. This 

chapter explores the patterns of time-use behaviours, adherence to the 24-hour Movement 

Guidelines, and the associated sociodemographic factors, covering the Research Areas 3 

(patterns, prevalence, and optimal balance) and 4 (determinants) within the VIRTUE 

framework. The full paper from this chapter is currently published in the October 2022 

issue of the International Journal of Behavioural Nutrition and Physical Activity. 
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Abstract 

Background: The time that children spend in physical activity, sedentary behaviour, and 

sleep each day (i.e., 24-hour time-use behaviours) is related to physical and mental health 

outcomes. Currently, there is no comprehensive evidence on New Zealand school-aged 

children’s 24-hour time-use behaviours, adherence to the New Zealand 24-hour 

Movement Guidelines, and how these vary among different sociodemographic groups.  

Methods: This study utilises data from the 8-year wave of the Growing Up in New 

Zealand longitudinal study. Using two Axivity AX3 accelerometers, children’s 24-hour 

time-use behaviours were described from two perspectives: activity intensity and activity 

type. Compositional data analysis techniques were used to explore the differences in 24-

hour time-use compositions across various sociodemographic groups.  

Results: Children spent on average, 31.1%, 22.3%, 6.8%, and 39.8% of their time in 

sedentary behaviour, light physical activity, moderate-to-vigorous physical activity, and 

sleep, respectively. However, the daily distribution of time in different activity types was 

33.2% sitting, 10.8% standing, 7.3% walking, 0.4% running, and 48.2% lying. Bothe the 

activity intensity and activity type compositions varied across groups of child ethnicity, 

gender, and household income or deprivation. The proportion of children meeting each 

of the guidelines was 90% for physical activity, 62.5% for sleep, 16% for screen time, 

and 10.6% for the combined guidelines. Both gender and residence location (i.e., urban 

vs. rural) were associated with meeting the physical activity guideline. Whereas, child 

ethnicity, mother’s education, and residence location were associated with meeting the 

screen time guideline. Only child ethnicity was significantly associated with the 

adherence to the combined 24-hour movement guidelines. 

Conclusions: This study provided comprehensive evidence on how New Zealand 

children engage in 24-hour time-use behaviour, adherence to the New Zealand 24-hour 
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Movement Guidelines, and how these behaviours differ across key sociodemographic 

groups. These findings should be considered in designing future interventions for 

promoting healthy time-use patterns in New Zealand children. 
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Introduction 

There has been growing evidence that time-use behaviours comprised of physical activity 

[8], sedentary behaviour (including screen-based activities) [9] and sleep [10] are linked 

with physical and mental health outcomes in school-aged children and youth. However, 

most of this evidence is based on studies examining the time spent in each behaviour in 

isolation, ignoring the intrinsic interplay between them [11]. Since daily time-use 

behaviours are bound to 24-hours per day, the time spent in one behaviour is co-dependent 

on the remaining behaviour(s) [11]. That is, an increase in the time allocated to one 

behaviour (e.g., physical activity) leads to less time for the remaining behaviours (e.g., 

sedentary behaviour and/or sleep). Favourable health outcomes (e.g., decreased body 

mass index) might not be merely due to the increase in one activity (e.g., physical activity) 

but changes in the remaining activities (less sedentary and/or more sleep). To fully 

understand the relationships between health and time-use behaviours, researchers are 

moving away from investigating these behaviours as independent correlates of health and 

towards an integrated approach exploring the associations between compositions of 

behaviours and health [21]. This integrated approach has been conceptualised in a newly 

established health research area called time-use epidemiology [12].  

Advocating this approach, Canada pioneered the 24-hour Movement Guidelines for 

children and youth, which integrated the previous distinct guidelines for each behaviour 

[36]. This has been followed by other countries, including New Zealand [22]. These 

guidelines contain integrated recommendations on daily amounts of moderate-to-

vigorous physical activity (MVPA) (at least 60 minutes), screen time (not more than 2 

hours), and sleep (9–11 hours for 5–13-year-old children and 8–10 hours for those aged 

14–17 years old) for optimal health and wellbeing in children aged 5–17 years old [22]. 

Meeting these guidelines has been associated with favourable health indicators in children 

[5], yet international studies suggest that only a small proportion of children regularly 
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meet these recommendations. For example, findings from a 12-country study indicate that 

only 7% of children aged 9–11 years met all three guidelines [136]. Findings from limited 

studies suggest that sociodemographic factors and parental factors (age and education) 

were associated with adherence to these guidelines [132, 133]. These findings on the 

potential sociodemographic correlates of the time-use behaviours can help tailor future 

interventions to promote optimal time-use patterns. Currently, there is no comprehensive 

evidence on the prevalence of meeting these guidelines among New Zealand school-aged 

children and the associated sociodemographic factors.  

To date, accelerometers have been commonly used to derive the daily activity 

compositions in 24-hour time-use research, with the majority of the studies focusing on 

quantifying the time spent in different activity intensities (i.e., sedentary behaviour (SB), 

light-intensity physical activity (LPA), MVPA, sleep) using count-based methods [32, 

150, 185, 198]. Here, the acceleration data are converted into “activity counts” using 

proprietary algorithms [14]. Subsequently, cut-points are applied to these counts to 

distinguish between different activity intensities. There are various and often conflicting 

sets of cut-points to estimate the amount of MVPA, LPA and SB, reducing the 

comparability across studies [15]. To help address this issue, extracting activity type and 

posture from raw accelerometer data through machine learning and other algorithms is 

gaining interest [154]. These techniques are capable of detecting postures (i.e., sitting, 

standing, lying) and other ambulatory activities (i.e., walking, and running) with high 

accuracy in the lab and free-living settings [18, 19]. However, to the best of our 

knowledge, no study has yet quantified complete 24-hour time-use behaviours in terms 

of activity type in children (i.e., sitting, standing, walking, running, lying).  

Activity researchers are increasingly using compositional data analysis (CoDA) to 

analyse 24-hour time-use behaviours to adequately account for the compositional 
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properties of time-use data [13]. Using this statistical approach, the aims of this study 

were 1) to describe the 24-hour time-use behaviours of New Zealand children, both in 

terms of activity intensity and activity type, 2) to examine differences in 24-hour time-

use behaviours among different sociodemographic groups, and 3) to determine the 

adherence to the individual and combined 24-hour Movement Guidelines for New 

Zealand children. 

Methods 

Participants 

This study is a secondary analysis of children participating in the 8-year data collection 

wave (when the children were 8 years old) of the Growing Up in New Zealand study 

(GUiNZ) – an ongoing longitudinal cohort study started in 2009. In the GUiNZ study, 

data have been collected at several time points. However, the current study uses the 8-

year dataset, and several sociodemographic variables collected at birth (antenatal dataset). 

Additional details regarding this study are available elsewhere [23]. A total of 5,556 

children participated in the 8-year wave of this study; however, accelerometers were only 

worn by a subsample of children. In total, 952 children wore accelerometers, although the 

final analytic sample used in this study was 623 children. The GUiNZ study was approved 

by the Ministry of Health Northern Y Regional Ethics Committee (NTY/08/06/055). 

Measurements 

24-hour time-use behaviours

The Axivity AX3 accelerometer was used to assess the 24-hour time-use behaviours. A 

pair of Axivity AX3 accelerometers were placed on the dominant thigh and lower back 
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using medical dressing or purpose-built foam pouches [53]. Participants were asked to 

wear these monitors for seven consecutive days. The devices were initialised to collect 

data at a sampling rate of 100 Hz and were downloaded using the Open Movement 

Software (OMGUI, version 1.0.0.30, open Movement, Newcastle University, UK). 

Wear/non-wear time was detected using the in-built temperature sensor following 

procedures described elsewhere [53, 138]. To be included in the study, children needed 

to have valid accelerometer data (both thigh and lower back) for at least one day over the 

seven days of measurement. A valid day was defined as 24-hours of concurrent wear time 

for both sensors. Two separate 24-hour time-use compositions were created, one for 

activity intensity (based on energy expenditure) and one for activity type (based on 

posture). For the activity intensity composition, raw data from the back sensor were 

converted into counts congruent with the ActiGraph GT3X device, using published 

algorithms [161]. The scaled Evenson cut-points were then applied to categorise each 5-

second epoch as SB, LPA or MVPA [159]. Sleep duration was derived using the Tudor-

Locke algorithm for the centre of mass [122], which was calculated from 12am to 12 am. 

The minutes of each behaviour per day were averaged over the number of valid days for 

each participant. For the activity type composition, machine learning models were applied 

to each 5-second epoch from the thigh and lower back monitors. These models were 

previously developed and tested in both lab and free-living settings in children [18, 19]. 

The activity intensity composition was comprised of the following four parts: SB, LPA, 

MVPA, and sleep. For activity type, a 5-part composition was created containing: sitting, 

standing, walking, running, and lying.     

 

24-hour Movement Guidelines adherence  

Using the 24-hour Movement Guidelines for New Zealand children, participants were 

classified as meeting the MVPA guideline if they had accumulated on average 60+ 
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minutes of MVPA daily. To assess adherence to the screen time guideline, each child’s 

mother was asked to report the hours and minutes that their child usually 1) watched 

television, including free-to-air, online, and pay-tv or DVDs, either on TV or other screen-

based devices, 2) spent time doing activities or tasks ( e.g., homework, playing games, or 

sending messages) on any screen-based devices including computers, laptops, tablets, 

smartphones or gaming devices, separately for a weekday and weekend day. The 

responses to these two questions were summed to calculate total screen time (for the 

weekday and weekend days separately). Subsequently, the average of these values was 

calculated to obtain the average daily screen time. Children who engaged in less than 2 

hours of screen time per day were categorised as meeting the screen time 

recommendation. Finally, children with 9–11 hours of sleep per 24-hours were classified 

as meeting the sleep guideline.  

 

Sociodemographic variables  

The child’s age at the time of data collection was calculated using their date of birth, and 

the mother’s age was calculated at the date of delivery (i.e., age of the mother when the 

child was born). Child ethnicity was classified into the following major ethnic groups: 1) 

European, 2) Māori, 3) Pacific, 4) Asian, 5) Middle Eastern, Latin American and African 

(MELAA), and 6) Other. MELAA and Other were combined as “Other” due to small 

numbers in each group. Children who answered, “I don’t know” to the ethnicity question 

were also categorised as “Other”. Household annual income and New Zealand 

Deprivation index 2013 (NZDep2013) [178] were used as a proxy for household 

socioeconomic status. Mothers were asked to report their household income over the past 

12 months, categorised into four groups: (NZD <$70,000, 70,000 –100,000, 100,000 –

150,000, and >150,000). NZDep2013 reflects the area-level deprivation status for each 
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meshblock (small geographic census unit) based on nine variables from the 2013 census 

data. Each meshblock is assigned a deprivation score ranging from decile 1 (least 

deprived) to decile10 (most deprived). From these scores, three categories were created: 

1) low deprivation (deciles 1–3), 2) medium deprivation (deciles 4–7), and 3) high 

deprivation (deciles 8–10). The residence location was categorised as either urban or 

rural.  

Information on the mother’s highest level of education was obtained from the antenatal 

dataset (as it is not available in the 8-year dataset). Mothers were asked about their highest 

qualification at the time. They could choose from the following categories: 1) without a 

secondary school qualification, 2) secondary school/National Certificate of Educational 

Achievement (NCEA) levels 1–4, 3) diploma/Trade certificate/NCEA levels 5–6, 4) 

bachelor’s degree 5) higher degree. These categories were dichotomised into 1) “less than 

a bachelor’s degree” and 2) “bachelor’s degree or higher”. Mother’s weekly work hours 

were obtained from the 8-year dataset and subsequently categorised as <15, 15–30, 30–

40 and ≥40 hours. Information on the family structure was classified as either: 1) single 

parent 2) both parents 3) parent(s) with extended family or parent(s) living with non-kin.  

 

Statistical Analysis 

All the analyses were carried out in R (version 3.6.1; The R Foundation for Statistical 

Computing, Vienna, Austria). Descriptive characteristics, including frequency 

(categorical variables) and means (continuous variables), were calculated. 

Sociodemographic differences between children with and without accelerometer data at 

the 8-year time point were compared using Chi-squared tests and independent samples t-

tests for continuous variables. This study used a compositional data analysis approach. 

Firstly, missing values and parts of each composition that contained zeros were imputed 
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using log-ratio expectation-maximisation [180]. This method of zero imputation has been 

shown to produce the least bias [145]. For descriptive statistics, the geometric mean was 

calculated for time spent in each activity intensity and activity type component and then 

normalised to 1440 minutes (24-hours) to obtain the compositional mean for each activity 

over a 24-hour period. Compositional multivariate analysis of variance (MANOVA) was 

used to compare activity intensity and activity type components among different 

sociodemographic groups (i.e., gender, ethnicity, mother’s age, mother’s education, 

mother’s work hours, household structure, household income, household deprivation, and 

residence location) [146]. Compositional parts were first transformed using the isometric 

log-ratio transformation, before being entered into each model as the dependant variable. 

For each model, partial eta squared (ηp
2) was calculated as an indication of effect size. 

Hoteling’s T-square tests with the Holm adjustment were applied as post-hoc 

comparisons for sociodemographic variables with more than two levels [146]. To identify 

the specific component(s) of each composition responsible for significant overall 

differences, between-group log-ratio differences along with bootstrapped 95% 

confidence intervals were estimated for each component [146]. These estimated log-ratio 

differences were back-transformed into percentages using the following formula:  

(exp (log-ratio difference) – 1) * 100. These differences were also visualised using 

compositional geometric mean bar plots.  

Lastly, the association between meeting each component of the 24-hour movement 

guidelines and sociodemographic factors was assessed using Chi-squared tests. In cases 

where the expected cell counts were less than 5 (six occurrences), the Fisher’s exact test 

was used instead. For each test, Cramer’s V was calculated as an indication of effect size. 

Statistical significance was set at 0.05 for all analyses.   
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Results 

Of the 5,556 participants in the 8-year wave of GUiNZ, 623 (51.5% girls, mean age = 7.8 

(0.24) years old) had valid accelerometer data for at least one complete day (24 hours 

wear time) for both sensors simultaneously, making them eligible for this study. Other 

reasons for exclusion were: only had data from one sensor (n = 79; either due to the child 

only consenting to wearing one sensor, a lost sensor, or data were unable to be 

downloaded), corrupt raw data or failure to time synchronise the thigh and back sensors 

(n = 30). The mean number of valid days was 4.9, which contained, on average, 1.3 

weekend days. Table 6-1 describes the characteristics of the GUiNZ participants with and 

without accelerometer data. Sociodemographic characteristics varied between those with 

and without accelerometer data in terms of child age, ethnicity, mother’s age, mother’s 

education, mother’s working hours, household income, and household deprivation. No 

significant differences were seen for gender, residence location, or household structure. 



 

102 

 

Table 6-1. Characteristics of the participants in the 8-year wave of the GUiNZ (with/without 
accelerometer data). 

Variables Participants without 
accelerometer data 

n (%) or mean 
n = 4856 

Participants with 
accelerometer data 

n (%) or mean 
n = 623 

P- value* 
  

Age (years) 
 

                7.6               7.8                   <0.001 

Gender           0.117 
  Boy 2516 (51.8) 302 (48.5)  
  Girl 
 

2340 (48.2) 321 (51.5)  

Ethnicity    0.003 
  European 1623 (38.2) 273 (44.2)  
  Māori 968 (22.8) 119 (19.3)  
  Pacific  470 (11.1) 45 (7.3)  
  Asian 460 (10.8) 74 (12.0)  
  Other 727 (17.1) 107 (17.3)  
  Missing 
 

608 <10  

Mother’s age 
at delivery (years) 

                  < 0.001 

  ≤20  276 (5.7) 13 (2.1)  
  ≤25  720 (14.8) 66 (10.6)  
  ≤30 1284 (26.4) 155 (24.9)  
  ≤35 1585 (32.6) 237 (38.0)  
  ≤40 864 (17.8) 137 (22.0)  
  >40 126 (2.6) 15 (2.4)  
  Missing 
 

<10 0   

Mother’s level of education                      < 0.001 
  Less than a bachelor’s degree  2804 (63.0) 300 (48.2)  
  Bachelor’s degree or higher     2039 (37.0) 323 (51.8)  
  Missing 
 

13 0  

Mother’s work hours (weekly)    0.001 
  <15 1807 (41.2) 181 (31.5)  
  15 – 30 819 (18.7) 121 (21.0)  
  30 – 40 731(16.7) 107 (18.6)  
  ≥ 40 1030 (23.4) 166 (28.9)  
  Missing 
 

469 48  

Household structure    0.176 
  Single parent 433 (9.5)  62 (10.0)  
  Both parents 3172 (69.5) 447 (72.2)  
  Parent(s) with extended family 
or non-kin 

958 (21.0) 110 (17.8)  

 Missing 
 

293 <10  
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Table 6-1. (continued). 
Variables Participants without 

accelerometer data 
n (%) or mean 

n = 4856 

Participants with 
accelerometer data 

n (%) or mean 
n = 623 

P- value*

Household income     0.001 
  ≤70 k 1092 (29.9) 118 (21.0) 
   70 –100k 655 (18.0) 120 (21.4) 
  100 –150k 860 (23.6) 141 (25.1) 

>150k 1040 (28.5) 183 (32.6) 
Missing 1209 61 

Household deprivation**      <0.001 
  Low (1 – 3) 1576 (35.1) 222 (35.8) 
  Medium (4 – 7) 1639 (36.5) 276 (44.5) 
  High (8 – 10) 1280 (28.5) 122 (19.7) 
  Missing 361 <10 

Residence location 0.350 
  Urban 3973 (88.4) 540 (87.1) 
  Rural  522 (11.6) 80 (12.9) 
  Missing 361 <10 

Screen time (minutes/day) 278 272 0.607 
 Missing 1949 151 

*Chi-square test (categorical variables) or independent sample t-test (continuous variables).
** According to the New Zealand Index of Deprivation 2013.

Of the 623 children with valid accelerometer data, information on activity intensity and 

activity type compositions could be extracted for 620 and 602 children, respectively (due 

to algorithm or imputation errors). Table 6-2 shows the compositional means of time 

spent in each component of the activity intensity and activity type compositions for the 

total sample, and separately by gender, ethnicity, and other sociodemographic factors. 

From the activity intensity perspective, children spent, on average, 31.1%, 22.3%, 6.8%, 

and 39.8% of their time in SB, LPA, MVPA and sleep, respectively. However, the daily 

distribution of time in different activity types was 33.2 % sitting, 10.8% standing, 7.3% 

walking, 0.4% running, and 48.2% lying do
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Table 6-2. Compositional means (in minutes) for different components of activity intensity and activity type compositions by gender, ethnicity, and 
sociodemographic status. 

        Activity intensity components 
       (n = 620) 

Activity type components 
(n = 602) 

SB LPA MVPA Sleep Sitting Standing Walking Running Lying 

Total 448 321 98 573 479 155 106 7 694 
Gender 
 Boy 450 311 109 570 486 137 109 8 700 
 Girl 446 331  89 575 476 170  101 5 688 
Ethnicity  
 European 443 322 99 576 476 152 106 7 698 
 Māori 449 320 101 569 482 142 108 7 701 
 Pacific  458 307 103 572 507 141  93 5 694 
 Asian 458 334  91 556 496 172 100 5 666 
 Other 445 319  96 580 474 160 104 7 695 
Mother’s age at 
delivery (years) 
 ≤20 484 294 93 569 530 132 91 4 682 
 ≤25 452 321 98 570 495 151 97 6 690 
 ≤30 439 328 101 571 465 160 106 7 702 
 ≤35 448 325 97 571 480 154 107 7 693 
 ≤40 452 312 98 578 486 148 106 7 692 
>40 454 317 85 584 511 152 89 5 683 

Mother’s education
level
Less than a

bachelor’s degree
452 319 97 571 487 153 102 6 692 

Bachelor’s degree or
higher

444 323 98 574 488 153 102 6 691 
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Table 6-2. (continued). 
 Activity intensity components 

(n = 620) 
 Activity type components 

(n = 602) 
           SB LPA MVPA Sleep 

 
 Sitting Standing Walking Running Lying 

Mother’s work hours            
  <15 453 319 97 571  480 151 102 6 701 
  1 5 – 30 438 322 99 581  465 159 109 7 701 
  30 – 40 446 318 100 576  502 145 99 7 688 
  ≥ 40 
Household structure 

449 327 98 566  479 158 109 8 686 

   Single parent 462 309 92 576  487 141 97 6 710 
   Both parents 443 323 99 575  478 155 106 7 693 
   Parents with extended 
family or living with non-

kin 

460 321 96 563  489 151 102 6 691 

Household income           
  <70K 455 310 97 578  479 152 99 6 704 
  70 –100k 455 320 96 570  488 157 101 6 687 
  100 –150k 432 333 100 575  475 165 109 7 685 
  >150k 446 324 99 571  477 148 107 8 701 
Household deprivation           
   Low 449 320 97 574  476 154 108 8 694 
   Medium 442 324 100 574  474 155 106 7 698 
   High 461 320  93 566  505 149  96         5         686 
Residence location           
   Urban 451 321  97 572  484 152 104 7 694 
   Rural 431 326 104 578  460 167 111 7 694 

 SB = Sedentary behaviour; LPA= Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical activity. 



 

106 

 

Activity intensity composition  

Table 6-3 presents the results for the MANOVA tests, which were used to compare these 

compositions among sociodemographic groups. For the activity intensity composition, 

there were significant overall differences between gender (p <0.001; ηp2 = 0.19), with 

girls spending significantly less time in MVPA (-18%, 95% CI = -22 – -14%) but more 

time in LPA (6%, 95% CI = 3–8%), compared to boys. However, no significant difference 

in sedentary and sleep time between gender was observed (Figure 6-1 C).  

The overall intensity composition was different among groups based on child ethnicity (p 

= 0.003; ηp2 = 0.16), and the Hoteling’s post hoc test revealed that Asian children had 

significantly different compositions compared to European (p = 0.015), Māori (p = 0.028) 

and Pacific (p = 0.004) children. As shown in Figure 6-2, Asian children were involved 

in more LPA compared to European (4%, 95% CI = 0.2–7%), Māori (4%, 95% CI = 0.2–

9%) and Pacific (9%, 95% CI = 3–16%) children. They also slept less than European (-

3.5%, 95% CI = -6 – -1%) and Pacific (-3%, 95% CI = -6 – -0.5%) children.  

Lastly, overall intensity compositions were different among annual household income 

groups (p = 0.04; ηp2 = 0.01), with post hoc tests revealing differences between <$70k 

and $100–150k groups (p = 0.022). Children from households with an annual income of 

$100–150K were less sedentary (-5%, 95% CI = -8 – -1%) and involved more in LPA 

(7%, 95% CI = 3–11%) compared to those from households with a $70k annual income. 

(Figure 6-3). 

We also carried out a sensitivity analysis where participants had three or more days of 

valid time-use data (n = 482). Aligning with our initial results, similar patterns of 

differences between activity intensity and activity type compositions between gender, 

ethnicity, household income, and household deprivation groups were observed 

(Supplementary Table S7). 
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Table 6-3. Results of compositional MANOVA of differences in daily activity intensity and activity type compositions between sociodemographic factors. 

 The levels of each factor can be seen in Table 6-2. 
 Bold values represent significant differences.

Activity intensity composition Activity type composition 
Pillai’s trace F df P-value ηp2 Pillai’s trace F df P-value ηp2 

Gender 0.187 47.26 3, 616 <0.001 0.187 0.171 30.87  4, 597 <0.001 0.171 
Ethnicity 0.048 2.48 12, 1830  0.003 0.160 0.069  2.60 16, 2368 <0.001 0.017 
Mother’s age at delivery 0.032 1.33 15,1842 0.178 0.011 0.037 1.48 15,1788 0.106 0.012 
Mother’s education level 0.003 0.66 3, 616 0.575 0.003 0.010 1.57  4, 597 0.179 0.010 
Mother’s work hours 0.018 1.16 9,1704 0.313 0.006 0.025 1.55 9,1653 0.126 0.008 
Household structure 0.019 2.03 6, 1224 0.057 0.009 0.014 1.07 8, 1186 0.374 0.007 
Household income 0.031 1.96 9, 1668 0.040 0.010 0.039 1.79 12, 1617 0.044 0.013 
Household deprivation  0.014 1.48 6, 1226 0.181 0.007 0.035 2.70 8, 1188 0.005 0.017 
Residence location 0.010 2.15 3, 613 0.092 0.010 0.010 1.62  4, 594 0.167 0.010 
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Figure 6-1. A and B: Compositional geometric mean bar plots comparing the geometric mean of 
the entire sample and the geometric mean of each activity intensity and activity type components 
by gender. C and D: The percentage differences (with 95% confidence interval) in times spent in 
each activity intensity and activity type components between genders. Estimates above the 
reference line mean girls have a higher proportion of an activity, relative to boys (reference 
group).  
Light = Light-intensity physical activity; MVPA = Moderate-to-vigorous intensity physical 
activity. 
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Figure 6-2. A: Compositional geometric mean bar plots comparing the geometric mean of each 
activity intensity component for each child ethnicity group with the geometric mean of the entire 
sample. B, C and D: The percentage differences (with 95% confidence interval) in time spent in 
each activity intensity component between Asian and European, Asian and Māori, and Asian and 
Pacific, respectively. Estimates above the reference line mean that ethnic group has a higher 
proportion of an activity, relative to the reference group. 
Light = Light-intensity physical activity; MVPA = Moderate-to-vigorous intensity physical 
activity. 
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Figure 6-3. A: Compositional geometric mean bar plots comparing the geometric mean of each 
activity intensity component for each household income category group with the geometric mean 
of the entire sample. B: The percentage differences in time spent in each activity intensity 
component between households with less than NZ$70K annual income and households with 
NZ$100–150k annual income. Estimates above the reference line mean households with 
NZ$100–150k annual income have a higher proportion of an activity, relative to <70k (reference 
group). 
Light = Light-intensity physical activity; MVPA = Moderate-to-vigorous intensity physical 
activity. 
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Activity type composition 

Significant differences also existed between gender for the overall activity type 

composition (p <0.001; ηp2 = 0.17). The percentage differences in Figure 6-1 D suggest 

that girls spent significantly more time (23%, 95% CI = 17–31%) and less time walking 

(-7%, 95% CI = -12– -1%) and running (-35%, 95% CI = -44 – -25%) compared to boys. 

The overall activity type composition was different among groups based on child 

ethnicity (p <0.001; ηp2 = 0.02), and the Hoteling’s post hoc test revealed Asian and 

European (p = 0.002), and Asian and Māori (p = 0.003) were different. Figure 6-4 shows 

spent more time standing (13%, 95% CI = 3–23%) and less time running (-25%, 95% CI 

= -40 – -3%) and lying down (-5%, 95% CI = -8 – -1%) compared to European children. 

Asian children also spent more time standing (21%, 95% CI = 8–34%) and less time 

running (-24%, 95% CI = -44 – -0.3%) and lying down (-5%, 95% CI = -9 – -1%) 

compared to Māori children. 

Household deprivation was also related to the overall activity type composition (p = 

0.005; ηp2 = 0.02); specifically, children from highly deprived areas were different from 

those in areas of low (p = 0.002) and medium (p = 0.012) deprivation. Children from the 

most deprived areas spent more time sitting (6%, 95% CI = 2–11%) and less time walking 

(-11%, 95% CI = -17 – -3%) and running (-31%, 95% CI = -46 – -16%) compared to 

those from areas of low deprivation. Similar contrasts were seen for medium to high 

deprivation (Figure 6-5). 

Although the MANOVA showed possible significant differences between household 

income groups for activity type compositions, results from the post hoc analyses did not 

show any significant differences between household income groups for activity type 

compositions after adjusting for multiple comparisons. 
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Results from the sensitivity analysis revealed overall significant differences for activity 

type composition between gender, and among ethnicity, mother’s age at delivery, and 

household deprivation groups.  

 

 

Figure 6-4. A: Compositional geometric mean bar plots comparing the geometric mean of each 
activity type component for each child ethnicity group relative to the entire sample. B and C: The 
percentage differences in time spent in each activity intensity component between Asian and 
European, Asian and Māori, respectively. Estimates above the reference line mean that ethnic 
group has a higher proportion of an activity, relative to the reference group. 
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Figure 6-5. A: Compositional geometric mean bar plots comparing the geometric mean of each 
activity type component for each household deprivation category relative to the entire sample. B 
and C: The percentage differences in time spent in each activity intensity component between low 
and high, and medium and high levels of deprivation, respectively. Estimates above the reference 
line mean that level of deprivation has a higher proportion of an activity, relative to the reference 
group.  
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Adherence to 24-hour Movement Guidelines  

Table 6-4 provides information on the proportion of children who met the individual and 

combined components of the 24-hour movement guidelines, as well as the associated 

sociodemographic factors. Significantly, more boys (93.3%) than girls (86.6%) met the 

PA guideline (p = 0.006; Cramer’s V = 0.11). The percentage of children meeting the PA 

guideline was significantly different between children from rural and urban areas (97.5% 

vs. 88.6%, p = 0.015; V = 0.10). Meeting the screen time guideline was also associated 

with the child’s ethnicity (p = 0.021; V = 0.15), mother’s level of education (p = 0.006; 

V = 0.12 and residence location (p = 0.033; V = 0.10). A higher proportion of European 

(20.4%) and Asian children (20%), met the screen time guideline compared to Māori 

(7.1%) and Pacific (6.2%). Mother’s education (p = 0.017) and child’s ethnicity (p = 

0.008; V = 0.16) were related to meeting the combined 24-hour guidelines.  
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Table 6-4. Proportion of children meeting the MVPA, screen time, and sleep recommendations and combinations of these recommendations, and 
associated sociodemographic factors. 

      MVPA Screen time           Sleep       MVPA+ Screen time + Sleep 

Met Not met p [V] Met Not met p [V] Met Not met p [V] Met Not met p [V] 
Gender 0.006 [0.11] 0.89 [0.01] 0.786 [0.01] 0.305 [0.05] 
  Boy 279 (93.3) 20 (6.7) 37 (15.9) 196 (84.1) 185 (61.9) 114 (38.1)  28 (12.1) 203 (87.9) 
  Girl 278 (86.6)  43 (13.4) 39 (16.3) 200 (83.7) 202 (62.9) 119 (37.1) 22 (9.2) 217 (90.8) 
Child ethnicity 0.182* [0.10] 0.021 [0.15] 0.562 [0.07] 0.008* [0.16] 
 European 245 (90.1) 27 (9.9) 44 (20.4) 172 (79.6) 176 (64.7) 96 (35.3) 32 (14.9) 183 (85.1) 
 Māori 112 (94.9) <10 <10  78 (92.9) 68 (57.6) 50 (42.4)     <10  80 (96.4) 
 Pacific  41(91.1) <10 <10 30 (93.8) 31 (68.9) 14 (31.1) 0 32 (100) 
 Asian 62 (84.9) 11(15.1) 11 (20.0) 44 (80.0) 43 (58.9) 30 (41.1)      <10  50 (90.9) 
 Other 94 (87.9) 13 (12.1) 66 (61.7) 41(38.3) 10 (12.3)  71 (87.7) 
Mother’s age 
(years) 

0.823* [0.06] 0.76* [0.08] 0.087 [0.12] 0.260* 0.12] 

 ≤20 11 (84.6) <10 0     <10 <10 <10 0 <10 
 ≤25 61 (92.4) <10 <10 41 (89.1)  50 (75.8) 16 (24.2) <10 44 (95.6) 
 ≤30 141(91.6) 13 (8.4) 20 (16.8) 99 (83.2)  93 (60.4) 61 (39.6) 10 (8.4) 109 (91.6) 
 ≤35 209 (88.6)   27 (11.4) 29 (15.7) 156 (84.3) 136 (57.6) 100 (42.4)   21 (11.4) 163 (88.6) 
 ≤40 121 (89.0) 15 (11) 19 (18.4) 84 (81.6) 92 (67.6) 44 (32.4)  14 (13.7)  88 (86.3) 
>40 14 (93.3) <10 <10 10 (76.9) <10 <10   <10 10 (76.9) 

Mother’s
education

0.940 [<0.01] 0.006 [0.12] 0.184 [0.05] 0.017 [0.11] 

Less than a
bachelor’s
degree

268 (89.9) 30 (10.1) 24 (11.1) 193 (88.9) 178 (59.7) 120 (40.3) 15 (6.9) 201 (93.1) 

  Bachelor’s 
degree or 
higher 

289 (89.8) 33 (10.2) 52 (20.4) 203 (79.6) 209 (64.9) 113 (35.1) 35 (13.8) 219 (86.2) 
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MVPA = Moderate-to-vigorous intensity physical activity; V = Cramer’s V effect size; *Fisher’s exact test. 
Bold values represent significant differences.  

 
 

 
 
Table 6-4. (continued). 

           

 MVPA Screen time Sleep   MVPA+ Screen time + Sleep 
 

 Met Not met p [V] Met Not met p [V] Met Not met p [V] Met Not met p [V] 
Mother’s work 
hours 

  0.524 [0.06]   0.162 [0.11]   0.115 [0.10]    0.610 [0.06] 

  <15 166 (92.2) 14 (7.8)  22 (17.5) 104 (82.5)  113 (62.8) 67(37.2)  14 (11.1) 112 (88.9)  
  15 – 30 110 (90.9) 11 (9.1)  21 (21.2) 78 (78.8)  82 (67.8) 39 (32.2)  12 (12.1)  87 (87.9)  
  30 – 40 93 (86.9)  14 (13.1)  10 (11.8) 75 (88.2)  72 (67.3) 35 (32.7)  <10    76 (9.4)  
  ≥ 40 147 (89.6)  17 (10.3)  15 (11.7) 113(88.3)  91 (55.5) 73 (44.5)  <10  117 (92.9)  
Household 
structure 

  0.851 [0.02]   0.217 [0.08]   0.177 [0.08]   0.156* [0.09] 

  Single parent  56 (91.8) <10   <10  40 (88.9)   43 (70.5) 18 (29.5)  <10  41 (91.1)  
  Both parents 400 (89.9) 45 (10.1)   61 (17.8) 282 (82.2)  280 (62.9) 165 (37.1)  42 (12.3) 299 (87.7)  
  Parents with 
extended family 
or living with 
non-kin 

98 (89.1) 12 (10.9)  <10  72 (88.9)  62 (56.4)  48 (43.6)  <10  77 (95.1)  

Household 
income 

  0.698 [0.05]   0.442 [0.08]   0.094 [0.11]   0.519 [0.07] 

   <70K   105 (89.7) 12 (10.3)  <10  71 (88.8)   82 (70.1) 35 (29.9)  <10  74 (93.7)  
   70 –100k  107(89.2)  13 (10.8)  13 (13.8) 81 (86.2)   65 (54.2) 55 (45.8)  <10  85 (90.4)  
   100 –150k  131(92.9)   10 (7.1)  23 (19.2) 97 (80.8)   88 (62.4) 53 (37.6)  15 (12.5) 105 (87.5)  
   >150k  163 (89.6)  19 (10.4)  25 (17.0) 122 (83.0)  112 (61.5) 70 (38.5)  17 (11.6) 129 (88.4)  
Household  
Deprivation 

  0.776 [0.03]   0.551 [0.05]   0.179 [0.07]   0.311 [0.07] 

  Low  201 (91.0) 20 (9.0)  25 (13.7) 157 (86.3)  134 (60.6) 87 (39.4)  14 (7.7) 167 (92.3)  
  Medium  246 (89.1) 30 (10.9)  37 (17.8) 171 (82.2)  182 (65.9) 94 (34.1)    25 (12.0) 183 (88.0)  
  High  107 (89.2) 13 (10.8)  13 (16.0) 68 (84.0)   68 (56.7) 52 (43.3)    10 (12.5)  70 (87.5)  
Residence 
location 

  0.015 [0.10]   0.033 [0.10]   0.198 [0.05]   0.058 [0.09] 

  Urban 476 (88.6) 61 (11.1)  59 (14.5) 348 (85.5)  329 (61.3) 208 (38.7)  38 (9.4) 367 (90.6)  
  Rural   78 (97.5)  29 (2.5)  16 (25.0)  48 (75.0)   55 (68.8)   25 (31.2)    11 (17.2) 53 (82.8)  
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Discussion 

This study provided a detailed description of 24-hour time use behaviours in New Zealand 

school-aged children. The prevalence of meeting the New Zealand 24-hour movement 

guidelines, and the association with selected sociodemographic factors was also 

investigated. Overall, 24-hours activity intensity and activity type compositions differed 

by children’s gender, ethnicity, household income and household deprivation. Although 

most children met the PA recommendation, only 62.5% and 16% met the sleep and screen 

time recommendations, respectively. The compliance to the combined 24-hour movement 

guidelines was even lower (10.6%). Meeting the individual and combined 24-hour 

Movement Guidelines was also associated with several sociodemographic factors. 

 

24-hour activity intensity and activity type compositions  

From an activity intensity perspective, children spent 31.1 % of their day sedentary (448 

minutes), 29.1% in physical activity (419 minutes; 6.8% MVPA) and 39.8% sleeping 

(573 minutes). These figures are comparable to the findings from a recent study in 690 

New Zealand children aged 6–10 years [181]. Compared to Canadian children aged 6–17 

years old, children in our study were less sedentary (~100 minutes less), more physically 

active (~47 more minutes in MVPA and ~58 minutes in LPA), and had similar amounts 

of sleep [83]. Similarly, children in our study were less sedentary (~33–125 minutes less) 

and more engaged in MVPA (~29–55 minutes more) compared to 9- to 11-year-old 

children from 12 countries [150]. These results suggest New Zealand children obtain 

almost the same amount of sleep as Australian and UK children, but more than Canadian, 

European, American, Asian and African children [150].  
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Children’s 24-hour activity intensity compositions have been linked with various physical 

and mental health outcomes [83, 129, 150]. However, using count-based approaches to 

derive these activity intensity compositions is not without challenges; specifically, the 

detection of sedentary behaviour where all non-ambulatory activities, including standing, 

are potentially misclassified as sedentary behaviour [151]. This error in estimating 

sedentary behaviour may ultimately confound the true health-related impacts of the 24-

hour time-use compositions. On the other hand, activity type recognition models have 

shown high accuracy in detecting sitting, standing, and other activity types [18, 19]. Using 

these models, we also described the 24-hour activity type compositions of children, 

which, to our knowledge, is the first study where the 24-hour compositions of children 

have been described from an activity type perspective.  

 

Sociodemographic correlates of 24-hour activity intensity and activity type 

compositions  

In this study, boys spent significantly more time in MVPA (20 minutes) and less time in 

LPA (20 minutes) than girls, which is in accordance with previous studies identifying 

gender as a correlate of physical activity in children [199, 200]. In terms of activity type, 

girls had less walking and running time and more standing time than boys. Measuring 

daily activities of Malaysian children (aged 9–11 years) using activPAL, it was shown 

that on average, girls had more standing time than boys, which aligns with our findings. 

However, in the aforementioned study, girls had significantly less lying/sitting time 

compared to boys [201]. This is distinct from our observations, where no gender 

differences were observed for sitting or lying time. These inconsistencies could be 

attributable to different accelerometers and methods for measuring daily activity types.  
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Differences in children’s activity intensity compositions were observed across ethnicities. 

Asian children spent less time in MVPA and sleep than other ethnicities while engaged 

in more LPA and sedentary time. In Taylor et al.’s study of New Zealand children (aged 

6–10 years), Asian children were less active (less MVPA and LPA) and more sedentary 

compared to all other ethnicities and had shorter sleep duration compared to European 

and Māori children [181]. This is congruent with findings from previous international 

studies where minoritised ethnic groups had more sitting [202, 203] and lower PA [203]. 

Additionally, children from high-income households ($100–150K) spent significantly 

more time in LPA and were less sedentary than children from low-income households 

($70k and less). No association was identified between the amounts of MVPA across the 

household income categories. In a study of Australian children (aged 9–11 years), a weak 

positive association was observed between household income and MVPA, but no 

association was observed between household income and sedentary time [204]. In that 

study, parental education was used jointly with household income as an indicator of 

social-economic status. It showed no association between parental education and MVPA 

or sedentary time, which aligns with our findings. Contrary to these findings, a weak 

negative association was found between parental education and sedentary time in a study 

of UK school-aged children [205].  

The activity intensity compositions did not differ among children from different areas of 

deprivation, a finding consistent with that reported by Taylor et al. [181]. In contrast, we 

found that the activity type compositions were significantly different between children 

from high deprivation and those from low to medium deprived households. Specifically, 

children from a high level of deprivation had less running and walking time and more 

sitting time than their peers from less deprived areas. This finding highlights the 
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importance of assessing activity type, in addition to activity intensity, in order to provide 

a better understanding of 24-hour time-use behaviours in children.  

 

24-hour Movement Guidelines adherence and associated sociodemographic factors  

Regarding the proportion of children meeting the individual and combined 24-hour 

movement guidelines, the majority met the MVPA recommendation (90%), while 62.5% 

and 16% met the sleep and screen time recommendations, respectively. Significant 

differences were observed in meeting the MVPA guideline between genders, with higher 

adherence in boys than girls (93.3% vs 86.6%). This is supported by previous evidence 

on children from Canada [206] and Mozambique [133]. We also observed that a higher 

proportion of children residing in rural areas met the MVPA guideline than those living 

in urban areas (97.5% vs 88.6%). A similar study among children (9–11 years) in 

Mozambique also showed a higher prevalence of meeting the MVPA guideline among 

rural children [133].   

Adherence to the screen time guideline was extremely low (16%). In a study investigating 

the temporal patterns of meeting the screen time guideline among the same population at 

an earlier age, a decrease of 26% in adherence rate of children at age 54-months (18.4%) 

was observed compared to 24-months (44.4%) [207] Collectively, this decreasing trend 

in screen time adherence among New Zealand children warrants immediate attention 

considering the detrimental health impacts associated with high screen time [9]. 

Consistent with other studies [208, 209], children with mothers who have higher 

educational qualifications had a greater adherence rate to screen time guideline. 

Additionally, children’s screen time was significantly associated with the child’s 

ethnicity, with European being more likely to meet the screen time guideline than other 
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ethnicities. Similar observations were made in other studies in New Zealand [207] and 

other countries [210], where minoritised ethnic groups were more likely to exceed the 

screen time recommendations. We also found that those residing in rural areas had higher 

odds of meeting the screen time guideline. Others have also found that rural children tend 

to have less screen time than their urban peers [133]. This observation might mean that 

children in rural settings have higher opportunities to spend time outdoors and, therefore, 

are less engaged in screen-based activities than urban children. 

In this study, 62.5% of the children met the sleep duration recommendation, which is less 

than Australian and UK children [136] but higher than American, Canadian, Chinese, 

African [136], and Chilean children [211]. Only a small proportion of children (10.6%) 

met the combined 24-hour movement guidelines. This observation of low adherence to 

these guidelines among children is in agreement with previous evidence from several 

countries showing that only 5–15% of children aged 9–11 met all three recommendations 

in the 24-hour movement guidelines [136, 211, 212]. 

This study is one of only a small number to investigate the sociodemographic factors of 

meeting the 24-hour movement guidelines. In our study, meeting the combined 24-hour 

movement guidelines was associated with the child’s ethnicity and mother’s education. 

As shown in a recent review [21], a limited number of studies have examined 

sociodemographic correlates of meeting the combined 24-hour movement guidelines 

among children [132, 133]. These studies suggest an association between parental 

education, outdoor time, school location (urban vs rural), maternal activity level, and TV 

viewing time before pregnancy and meeting the combined 24-hour movement guidelines 

[132, 133]. More studies need to investigate the sociodemographic correlates of meeting 

these guidelines to provide evidence for developing more effective interventions targeting 

those more likely to engage in unhealthy time-use patterns. 
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There are several strengths to this study. We used 24-hour accelerometry to measure 24 

time-use behaviours. The 24-hour time-use compositions of children were described from 

two perspectives: activity intensity (using accelerometer-derived counts) and activity type 

(using machine learning algorithms). Additionally, we applied CoDA to investigate 

sociodemographic differences in 24-hour time use behaviours. To our knowledge, this is 

the first study in which CoDA methods have been applied to determine the group 

differences in time-use compositions among children. Adequately accounting for the 

compositional nature of time-use behaviours, these methods should be used while dealing 

with compositional data [13]. There are also several limitations that need to be considered. 

Firstly, there were significant differences between sociodemographic characteristics of 

those included and excluded in this study, which could reduce the generalisability of the 

findings. Also, screen time was parent-reported, which is prone to bias [77], and 25% of 

the children were missing screen time data which may limit the representativeness of the 

screen time results. Additionally, as children with at least one day of valid accelerometer 

data were included in the analysis, potential variability between weekday and weekend 

time-use patterns, and individual vs. multiple days, were not taken into account.  

Also, the limited amount of higher intensity physical activity observed (particularly 

running) meant that the confidence intervals for these activities were much wider, and the 

estimates less precise. Hence, these results should be interpreted with caution. We were 

also not able to tease out how the interrelationships between socioeconomic status and 

ethnicity in children might impact our findings, which should be examined in the future 

time-use research. Finally, the cross-sectional design of the study precludes any causative 

conclusions from being drawn regarding the sociodemographic correlates of 24-hour 

time-use patterns. 
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Conclusions 

In this study, child gender, ethnicity, household income, and household deprivation were 

associated with the 24-hour activity intensity and activity type compositions in New 

Zealand children. Girls were more at risk of lower MVPA (and walking and running) 

compared to boys. Asian children had higher LPA, but less sleeping time compared to the 

other ethnicity groups. Children from high deprived households were at higher risk of 

spending more time sitting and less time walking or running compared to the children 

from less deprived households.  Overall, a small proportion of New Zealand school-aged 

children met the combined 24-hour Movement Guidelines.  Sociodemographic factors 

including child gender, ethnicity, mother’s education, and household area were associated 

with meeting these Guidelines. These findings may help to design more effective future 

interventions to promote optimal 24-hour movement patterns for New Zealand children. 



  

 

124 

 

7 Chapter 7 - General Discussion 

The overall aim of this PhD thesis was to explore how time-use behaviours were related 

to obesity in New Zealand children by performing a series of studies guided by the 

VIRTUE framework. To address Research Area 1 in this framework (i.e., methods), a 

laboratory-based validation study was carried out to investigate the concurrent validity 

between two accelerometers (i.e., Axivity AX3 and ActiGraph GT3X+) for measuring 

time-use behaviours in terms of activity intensity and activity type (Chapter 3). 

Subsequently, the relationships between AX3-measured 24-hour time-use behaviours and 

obesity, as well as the patterns and determinants of these behaviours among school-aged 

children were explored in three separate cross-sectional studies (Chapters 4–6), fitting 

within Research Areas 2, 3, and 4 of the VIRTUE framework.  

  

Summary of Research 

Chapter 3 provided the first investigation of the concurrent validity of GT3X+ (waist-

worn) and AX3 (attached to the lower back) against direct observation for classifying 

various postures and activity intensity in children and adults under laboratory conditions. 

The most significant measurement error was observed for both devices when contrasting 

sitting/standing, sedentary/light intensity, and moderate/light intensity. Both devices 

demonstrated 65% to 97% balanced accuracy for detecting various postures and physical 

activity intensities in children, with the AX3 performing slightly better than the GT3X+ 

accelerometer. The findings showed that the AX3 device could be effectively used to 

identify activity type and intensity in child populations. 
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Chapter 4 investigated the relationship between 24-hour time-use behaviours (measured 

in terms of activity intensity and activity type), as well as the reallocation of time between 

these behaviours, and obesity-related outcomes (i.e., BMI z-score, waist circumference 

(WC), and waist-to-height ratio (WHtR) among New Zealand school-aged children using 

compositional data analysis (CoDA). From an activity intensity perspective, time spent 

in LPA, relative to other behaviours, was negatively associated with BMI z-score and 

WC. Time spent in SB (relative to other behaviours) was positively associated with BMI 

z-score and WC. However, after adjusting for gender, ethnicity, and deprivation, only the 

relationship between LPA and BMI z-score remained significant. From an activity type 

perspective, time spent in walking and running (relative to other behaviours) were 

negatively associated with BMI z-score. Additionally, reallocation of time to LPA and 

walking and running (from the other behaviours) were associated with reduced BMI z-

score among children. These findings demonstrated the importance of allocating time to 

targeted time-use behaviours to improve favourable obesity-related outcomes. 

To further our understanding of the relationships between time-use behaviours and 

obesity in New Zealand children, Chapter 5 examined how these 24-hour time-use 

behaviours (measured from two perspectives of activity intensity and activity type) 

cluster with other modifiable lifestyle behaviours, including dietary behaviours and 

screen time. The relationship between these cluster memberships and obesity-related 

outcomes were also examined. Three distinct lifestyle clusters were identified, and cluster 

membership was associated with BMI z-score, WC, and WHtR among New Zealand 

children. Children from the cluster with favourable combinations of sedentary time, 

screen time, and dietary behaviour had more favourable obesity-related outcomes than 

those with unhealthy behaviours (unhealthy diet and high sedentary time). This study 
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highlighted the importance of considering lifestyle behavioural patterns rather than 

focusing on isolated behaviours.  

Chapter 6 investigated the sociodemographic correlates of 24-hour time-use behaviours 

among New Zealand children and adherence to the New Zealand 24-hour Movement 

Guidelines. Behaviour patterns were measured from two perspectives: activity intensity 

and activity type. Child gender, ethnicity, household income, and deprivation were 

associated with the 24-hour activity intensity and activity type compositions. While most 

children met the physical activity recommendation, 62.5% and 16% met the sleep and 

screen time recommendations, respectively. Failing to meet the screen time 

recommendation was the driving factor for very low compliance to all three 

recommendations (10.6%). Child gender, ethnicity, mother’s education, and household 

area (urban vs. rural) were associated with meeting each of these guidelines individually 

and collectively. This study showed that some sociodemographic groups are at higher risk 

of engaging in suboptimal time-use compositions, which should be taken into account 

when developing future interventions.  

 

Significance of Findings  

This body of work makes significant contributions to time-use research in children by 

addressing several research areas in the VIRTUE framework. These important 

contributions specific to each research area within this framework are highlighted and 

discussed in the following sections: 
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Methods of assessing and analysing time-use behaviours (VIRTUE Research Area 

1) 

Measuring time-use behaviour is one of the main topics within the first stage of the 

VIRTUE framework [12]. Accurate measurement of these behaviours is clearly the first 

step for advancing the field of time-use epidemiology. Accelerometers are widely used to 

quantify time-use behaviours [14]. Therefore, it is essential to investigate the accuracy of 

these accelerometers and the comparability between different devices for measuring 

various components of time-use behaviour. The results presented in Chapter 3 of this 

thesis represent the first validation study of a widely used accelerometer, ActiGraph 

GT3X+, and a newer accelerometer, Axivity AX3, by comparing these devices against 

direct observation for measuring time-use behaviours from both activity intensity (using 

activity counts) and activity type (using machine learning) perspectives. Most 

accelerometer-derived intensity-based measures of time-use behaviour (including 

sedentary behaviour (SB), light physical activity (LPA), and moderate-to-vigorous 

physical activity (MVPA)) rely on activity counts and involve arbitrary decisions with 

regards to cut points and epoch lengths [14]. These arbitrary decisions could lead to 

different estimates of intensity-based components of time-use behaviours and ultimately 

different findings [14]. For example, in Chapter 4, we observed that LPA was associated 

with favourable obesity-related outcomes, which is contrary to most previous time-use 

studies that found the amount of time spent in MVPA, not LPA, was associated with most 

favourable obesity-related outcomes [83, 129, 181]. A possible reason for these 

inconsistencies could be the use of different cut-points and other data processing 

decisions. On the other hand, deriving activity type from postural information using raw 

accelerometer data could offer a solution to overcome this challenge. 
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Investigating the health-related impacts of time-use behaviours measured from an activity 

type (postural) perspective is essential, as different activity types such as sitting and 

standing still can trigger different metabolic responses [64]. These estimates could be 

overlooked when count-based approaches are applied, as activities with limited 

movements are all grouped and reported as sedentary behaviour [151]. Moreover, 

interpreting activity types might provide more understandable estimates of time-use 

behaviours. For example, in Chapter 4, we showed that reallocating time to LPA (from 

an intensity-based perspective), and to walking and running (from an activity type 

perspective) were associated with favourable obesity-related outcomes. The latter 

(walking and running) could be a more interpretable behaviour to understand and promote 

in interventions targeting childhood obesity prevention in the future.  

Chapter 3 demonstrated that a single AX3 accelerometer (attached to the lower back) was 

slightly better for detecting postures than the waist-worn GT3X+. However, the overall 

accuracy was still much lower for detecting activity type when compared to using two 

AX3 accelerometers worn simultaneously at different body placements [18, 19]. 

Therefore, when detecting time-use behaviours that contain postural information, two 

sensors are preferred, which is the method utilised in the 8-year wave of the Growing Up 

in New Zealand (GUiNZ) cohort study. These accelerometer data were used in Chapters 

4–6 of this thesis to investigate 24-hour time-use behaviour patterns and their collective 

impacts on obesity-related outcomes in New Zealand children.  

Another key topic in the first area of research within the VIRTUE framework is the use 

of appropriate analytical methods for time-use data [12]. In particular, the use of 

compositional data analysis (CoDA) instead of traditional statistical methods to 

investigate time-use behaviours. This is because time-use data are compositional in 

nature, and these properties are appropriately acknowledged within the CoDA framework 
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[13]. When compositional data are not treated as compositional, it can lead to spurious 

correlations and incorrect inferences [12]. In the current research, various CoDA methods 

have been applied (including compositional regression, compositional isotemporal 

substitution, compositional MANOVA, and compositional cluster analysis) to investigate 

the patterns of 24-hour time-use behaviours and to disentangle the combined impacts of 

these behaviours on obesity-related outcomes in children. The results presented in this 

thesis are among the first compositional estimates of these time-use behaviours and their 

associations with obesity in New Zealand children. 

 

Health outcomes of time-use behaviours (VIRTUE Research Area 2) 

There has been a recent conceptual shift in behavioural research towards an integrated 

time-use approach, focusing on the relationships between health and time-use behaviours 

collectively within their 24-hour context [12]. This shift in time-use research 

acknowledges the natural co-dependency between these behaviours as parts of 24-hour 

time-use compositions [13]. The second research area in the VIRTUE framework is 

focused on exploring the health impacts of all these time-use behaviours relative to each 

other within a compositional framework, rather than in isolation [12]. In Chapter 4 of this 

thesis, we used CoDA to explore the relationship between accelerometer-measured 24-

hour time-use behaviours and indicators of obesity in New Zealand children. A novel 

aspect of this study was to quantify children’s time-use behaviours from an activity type 

perspective, in addition to the traditional measure of activity intensity. We observed that 

the amount of time spent in LPA and walking, relative to the other behaviours, was 

favourably associated with BMI z-score (but not WC and WHtR). The only other study 

to investigate New Zealand children’s time-use composition and obesity-related outcome 
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found MVPA as the most important component associated with a lower BMI z-score 

[181]. It should be noted that findings from our study show that how theoretical 

reallocations across activities within 24-hour time-use compositions affect obesity 

indicators; however, whether these modifications are practical in the real world are yet to 

be examined in the future intervention studies. The ultimate goal of the VIRTUE 

framework is to develop interventions for promoting healthy time-use, and our findings 

could be utilised to develop such time-use interventions for childhood obesity prevention. 

According to our findings, future interventions should aim at increasing LPA (or walking 

and running) for favourable obesity-related outcomes in school-aged children. Although, 

these cross-sectional findings need to be firstly confirmed in the future longitudinal 

studies before being used for developing interventions.  

Results from Chapter 5 revealed that different clusters of lifestyle behaviours exist among 

these children and cluster membership was related to obesity. These findings have also 

important implications for developing and tailoring future interventions targeting 

childhood obesity. For example, children from one cluster with specific patterns of 

behaviours may not equally benefit from the same interventions as children from another 

clusters. Therefore, a different intervention may be applied depending on what 

behavioural cluster every individual fall into. To our knowledge, only one other study has 

explored the cross-sectional relationship between clusters of these behaviours and obesity 

in children using a compositional approach [131]. Thus, future longitudinal studies are 

warranted for stronger evidence.  

This research also provides valuable evidence for developing future 24-hour Movement 

Guidelines. The current guidelines are mainly based on evidence from studies that 

examined the health-related effects of time-use behaviours individually, ignoring their 

co-dependency on each other. Therefore, studies using CoDA to examine the collective 
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health impacts of time-use behaviours are critical for informing future guidelines. 

Additionally, findings from this research offer evidence for developing specific 

recommendations on daily time that should be spent in LPA and total sedentary behaviour 

(not only screen-based activities) for children, which are not currently included in the 24-

hour Movement Guidelines.   

Prevalence and patterns of time-use behaviours (VIRTUE Research Area 3) 

The third research area in the VIRTUE framework is dedicated to investigating the 

prevalence, optimal balance, as well as trends of time-use behaviours. In Chapter 6, we 

explored how New Zealand children spend their time, on average, within a 24-hour day. 

This was also the first study to assess the adherence to individual and integrated New 

Zealand 24-hour Movement Guidelines in school-aged children. Overall, the proportion 

of individuals meeting all the New Zealand 24-hour Movement Guidelines was very low 

(10.6%). This low figure was predominantly due to the low adherence to the screen time 

guideline (16%). Therefore, strategies to limit screen time among New Zealand children 

are warranted.    

Importantly, individuals engage in particular patterns of these behaviours. By exploring 

how these lifestyle behaviours cluster, we were able to identify the most healthy and 

unhealthy patterns (Chapter 5). This evidence is among the first on lifestyle patterns 

among children using an appropriate statistical approach (CoDA). We observed that the 

healthiest cluster (healthy diet and being less sedentary) had the lowest rate of meeting 

MVPA guideline. This co-occurrence of healthy and unhealthy lifestyle behaviours 

indicates the need for future childhood obesity prevention interventions, to be designed 

to target patterns of lifestyle behaviours (rather than being single behaviour focused). 
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Determinants and correlates of time-use behaviours (VIRTUE Research Area 4) 

Identifying determinants (including sociodemographic determinants) of time-use 

behaviours is advocated in the fourth research area in the VIRTUE framework. In Chapter 

6, we used CoDA to explore the cross-sectional relationship between sociodemographic 

factors and children’s 24-hour time-use. To our knowledge, this was the first attempt to 

understand how sociodemographic correlates influence time-use behaviours collectively 

within their 24-hour context rather than in isolation in New Zealand children. The 

associated sociodemographic factors with adherence to the individual and integrated New 

Zealand 24-hour Movement Guidelines were also determined. Differences observed in 

24-hour time-use patterns by gender, ethnicity, household income, and household 

deprivation among these children. This highlights the need for the future interventions to 

be tailored to be gender, ethnicity, and socioeconomic status specific, for promoting 

healthy time-use patterns among New Zealand children. 

 

Study limitations and future directions  

There are several limitations in this thesis that need to be acknowledged. Firstly, the 

estimates of children’s 24-hour activity intensity compositions in this research were 

derived from the lower back-worn AX3 through count-based approaches, which has been 

shown to perform poorly in differentiating between LPA and MVAP [176] (results shown 

in Chapter 1). Although capturing activity intensities through application of machine- 

learning algorithms on raw accelerometer data might be superior to count-based 

approaches, such activity-intensity detection algorithms specific to the lower-back 

mounted AX3 is yet to be developed and published (to our knowledge). Therefore, future 

time-use research might consider using AX3 on different placement sites such as wrist, 
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which has been shown to outperform traditional count-based approaches when detecting 

activity intensity [213]. Moreover, future work on examining the health-related impacts 

of 24-hour activity type compositions in children, might also consider including other 

activity types, such as cycling, swimming, and dynamic standing. There is evidence 

showing that these activities could be detected with high accuracy using AX3 [18]. It 

should be acknowledged that applying machine learning techniques for extracting activity 

intensity and activity type information from raw accelerometery data requires high level 

of mathematical and programming skills, and thus, developing methods for making these 

techniques readily accessible to all the researchers without specialist 

programming/coding skills is warranted. 

Secondly, this research used a cross-sectional design to investigate the relationships 

between time-use behaviours and obesity in children using secondary data from the 8-

year wave of the GUiNZ cohort study (Chapters 4–6). This study design limits the ability 

to determine cause and effect relationships from the findings. However, GUiNZ is a 

longitudinal study that allows future longitudinal research to combine data from multiple 

data collection waves. This means it may be possible to investigate the trends of these 

behaviours over time and to explore causal relationships between time-use behaviours 

and health in the future research. This is particularly important as evidence from 

longitudinal time-use studies in children suggests that children tend to involve in less 

MVPA and more sedentary behaviour as they get older [214, 215]. Additionally, inherent 

to the nature of the secondary data analysis, the selection of time-use correlates and 

covariates in this research was constrained to the availability of such data in the 8-year 

GUiNZ dataset. Thus, future time-use research in New Zealand children should consider 

examining the potential impacts of other correlates of time-use such as parental time-use 

profiles, mode of travel to school, and geographical location of school (rural vs. urban). 
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These have been shown as significant correlates of time-use patterns and meeting the 24-

hour Movement Guideline in the previous time-use research in children [21, 133, 141].    

Participants in the 8-year wave of the GUiNZ study were required to wear the 

accelerometers continuously for seven days. For this thesis, however, every participant 

with at least one day of 24-hour accelerometer data was included in the analyses (the 

average accelerometer wear time was 4.9 days, of which 1.3 days were weekend days). 

Due to this short duration of time-use measurement, we were not able to consider the 

variations between weekdays and weekend days’ time-use, or across seasons. Research 

has demonstrated differences in time-use between weekday, weekend, and across seasons 

[216]. As a result, time-use data presented in this research may not be representative of 

habitual time-use in this population. Therefore, future research with a longer 

measurement period is required to better understand the time-use patterns in children and 

their relationship with health outcomes, including obesity. It should be noted that we have 

also rerun the analyses in Chapters 4–6 where participants had three or more days of valid 

time-use data (as opposed to at least one day of wear time). Overall, the results have 

remained the same, with slightly wider confidence intervals in some cases (as expected 

with a lower sample size). Given these almost identical results, therefore, we have 

included participants with at least one day of valid wear time in the analyses. This 

decision led to a larger sample size (623 vs. 482), and narrower confidence intervals, and 

hence higher confidence in the model estimates. The full sensitivity analysis results are 

shown in Supplementary Tables S1, S2 and S5 – S7. 

In this research, we did not consider the way in which children accumulated their time 

spent in SB and PA (i.e., shorter vs. more prolonged bouts). As evidence from recent 

compositional studies suggests that different PA and SB accumulation patterns might be 

associated with adiposity status in children [13, 14], future research is encouraged to 
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consider these behavioural patterns when investigating their collective impacts on health 

outcomes. Additionally, in this study, we only examined sleep in terms of duration, but 

as other characteristics of sleep such as quality, timing, and day-to-day variability might 

be of relevance to health [217]. Researchers should consider these factors in future time-

use studies.  In this research, we predominantly focused on the relationships between 

obesity and daily structure of time-use in children in terms of duration of time spent in 

each activity. However, developing future compositional data analysis methods which 

could cope with integrating different layers of information such as type and context of 

each behaviour, timing of each behaviour (e.g., time of day or weekday/weekend), and 

geographical data (e.g., neighbourhood context) could further provide insights into links 

between time-use and health outcomes. 

Future CODA studies may also explore the optimal 24-hour time-use composition for 

favourable obesity-related outcomes in children. While findings are gradually 

accumulating on the optimal time-use for various health outcomes including adiposity 

among children [198, 218, 219], more evidence is needed to establish how a 24-hour day 

(or even a week) should look like for optimal health outcomes. Emerging findings, 

however, show that ideal 24-hour time-use might differ depending on the health outcomes 

of interest. For example, optimal durations of time-use for favourable adiposity might not 

be the same for other health outcomes such as mental wellbeing. This highlights the need 

for moving away from one-size-fits-all healthy time-use recommendations provided by 

the current guidelines, towards more personalised recommendations depending on 

individual’s health and well-being priorities. Recently a decision-making tool had been 

developed, which could be used to customise time-use recommendations according to 

personal or public health preferences [218, 219].  
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Conclusions 

This PhD thesis aimed to understand children’s time-use behaviour patterns and if these 

patterns differed between different sociodemographic groups, as well as their cross-

sectional association with measures of obesity. Together, the four studies presented in 

this thesis contribute to the growing body of knowledge in time-use research in children. 

For measurement of time-use behaviours, we found that both GT3X+ and AX3 

accelerometers could be used to measure various activity intensity and activity types, with 

the AX3 performing slightly better. We demonstrated that 24-hour time-use was 

significantly associated with indicators of obesity in children, and reallocating more time 

to LPA, and walking and running, was associated with a favourable BMI in this 

population. It was also observed that 24-hour time-use behaviours and diet behaviours 

occur together in distinct clusters, and cluster membership was associated with obesity-

related outcomes in children. Despite the important role of time-use behaviours in 

adiposity, only a small minority (10.6%) of New Zealand children met all three 

recommendations in the New Zealand 24-hour Movement Guidelines. Sociodemographic 

factors, including child ethnicity and mother’s education were associated with meeting 

the combined 24-hour Movement Guidelines. This thesis provided insight into time-use 

behaviours and measures of obesity in children, and it is hoped that these findings will 

assist in the development and tailoring of future interventions.  
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Appendix C. Supplementary Tables  

The results presented in Table S1– S2 and S5 – S7 are from a sensitivity analysis, where the analysis sample required at least three valid 

days of 24-hour time-use data. 

 
 
Table S1. Relationship between the activity intensity composition (expressed as isometric log-ratio coordinates) and obesity outcomes. 

Obesity 
outcomes  

Isometric log-ratio predictor Unadjusted model 
ß– coefficient 

P-value Model R  
squared 

Adjusted model 
ß– coefficient 

P-value Model R 
squared 

BMI z-score ilr SB/LPA*MVPA*SLEEP 0.898  0.023 

0.04 

0.325 0.362 

0.09 
ilr LPA/SB*MVPA*SLEEP           -1.472 <0.001             -1.470        <0.001 
ilr MVPA/SB*LPA*SLEEP 0.539   0.005 0.534 0.023 
ilr SLEEP/SB*LPA*MVPA 

 
0.033   0.935 0.617 0.163 

WC ilr SB/LPA*MVPA*SLEEP 4.66 0.029 

0.05 

1.78 0.440 

0.08 
ilr LPA/SB*MVPA*SLEEP          -10.14        <0.001 -7.14 0.003 
ilr MVPA/SB*LPA*SLEEP 3.26 0.008 1.76 0.239 
ilr SLEEP/SB*LPA*MVPA 

 
2.22 0.397 3.59 0.210 

WHtR ilr SB/LPA*MVPA*SLEEP  0.027 0.069 
0.02 

0.008 0.627 
0.04 ilr LPA/SB*MVPA*SLEEP            -0.04 0.003             -0.040 0.028 

ilr MVPA/SB*LPA*SLEEP  0.015 0.089 0.013 0.193 
ilr SLEEP/SB*LPA*MVPA 0.003 0.880 0.016 0.419 

ilr = isometric log-ratio, is the first isometric log-ratio coordinate representing each time-use behaviour relative to the remaining behaviours. 
BMI z-score = Body mass index z-score; WC = Waist circumference; WHtR= Waist-to-height ratio; SB = Sedentary behaviour; LPA= Light-intensity physical activity; MVPA= Moderate-
to-vigorous intensity physical activity. 
Models were adjusted for gender, ethnicity, deprivation, mother’s education, fruit intake, vegetable intake, frequency of fizzy drink and fast food consumption, and breakfast consumption. 
Bold values represent significant associations.  
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Table S2. Relationship between the activity type composition (expressed as isometric log-ratio coordinates) and obesity outcomes. 
Obesity 
outcomes 

Isometric log-ratio predictor Unadjusted model 
ß–coefficient 

P-value Model R 
 squared 

Adjusted model 
ß–coefficient 

P-value Model R 
 squared 

BMI z-score  ilr Sit/Stand*Walk*Run*Lie  0.297 0.168  
 

0.023 

0.065 0.777  
 

0.014 
ilr Stand/Sit*Walk*Run*Lie 0.187 0.918 0..281 0.183 
ilr Walk/Sit* Stand*Run*Lie -0.592 0.018 -0.787 0.003 
ilr Run/Sit* Stand*Walk*Lie 0.126 0.163 0.177 0.064 
ilr Lie/Sit* Stand*Walk*Run 

 
0.150 0.538 0.262 0.328 

WC ilr Sit/Stand*Walk*Run*Lie 1.602 0.251  
 

0.023 

0.837 0.578  
 

0.015 
ilr Stand/Sit*Walk*Run*Lie -1.759 0.135 0.181 0.893 
ilr Walk/Sit* Stand*Run*Lie -2.072 0.198 -2.796 0.101 
ilr Run/Sit* Stand*Walk*Lie 0.648 0.267 0.560 0.367 
ilr Lie/Sit* Stand*Walk*Run 

 
1.580 0.316 1.217 0.484 

WHtR ilr Sit/Stand*Walk*Run*Lie 0.013 0145  
 

0.018 

0.006 0.561  
 

0.030 
ilr Stand/Sit*Walk*Run*Lie 0.001 0.897 0.004 0.623 
ilr Walk/Sit* Stand*Run*Lie              -0.021 0.051 -0.018 0.115 
ilr Run/Sit* Stand*Walk*Lie 0.004 0.312 0.003 0.416 
ilr Lie/Sit* Stand*Walk*Run               0.002 0.795 0.004 0.711 

ilr = isometric log-ratio, is the first isometric log-ratio coordinate representing each time-use behaviour relative to the remaining behaviours; BMI z-score = Body mass index z-score; WC 
= Waist circumference; WHtR= Waist-to-height ratio. 
Models were adjusted for gender, ethnicity, deprivation, mother’s education, fruit intake, vegetable intake, frequency of fizzy drink and fast food consumption, and breakfast consumption. 
Bold values represent significant associations. 
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Table S3. Predicted change (95% CI) in obesity outcomes following reallocation of time between behaviours within the activity intensity composition. 
Obesity 
outcomes 

Changes in 
behaviour (%) 

SB  
to/from remaining 

LPA  
to/from remaining 

MVPA  
to/from remaining 

Sleep  
to/from remaining 

BMI z-score       
 -15 -0.247 (-0.8 – 0.31) 1.787 (0.88 – 2.69) 0.679 (0.07 – 1.29) -0.365 (-0.88 – 0.15) 
 -10  -0.149 (-0.48 – 0.19) 0.964 (0.48 – 1.45) 0.679 (0.07 – 1.29)                 -0.235 (-0.57 – 0.1) 
 -5 -0.07 (-0.23 – 0.09)                  0.42 (0.21 – 0.63)  -0.671 (-1.28 – -0.07) -0.114 (-0.28 – 0.05) 
 0 0 0 0 0 
 5 0.063 (-0.08 – 0.2) -0.352 (-0.53 – -0.17) 0.278 (0.03 – 0.53) 0.111 (-0.05 – 0.27) 
 10 0.122 (-0.15 – 0.4) -0.663 (-1.00 – -0.33) 0.465 (0.05 – 0.88) 0.221 (-0.09 – 0.53) 
 15  0.178 (-0.22 – 0.58) -0.948 (-1.43 – -0.47) 0.611 (0.06 – 1.16)                 0.332 (-0.14 – 0.8) 
      
WC -15 -1.437 (-5.03 – 2.16) 8.715 (2.84 – 14.59) 2.395 (-1.58 – 6.37) -2.008 (-5.34 – 1.32) 
 -10 -0.871 (-3.05 – 1.31) 4.698 (1.53 – 7.87) 2.395 (-1.58 – 6.37) -1.291 (-3.43 – 0.85) 
 -5 -0.405 (-1.42 – 0.61) 2.049 (0.67 – 3.43)                 -2.371 (-6.31 – 1.57) -0.629 (-1.67 – 0.41) 
 0 0 0 0 0 
 5 0.367 (-0.55 – 1.28) -1.718 (-2.88 – -0.56) 0.981 (-0.65 – 2.61)                  0.61 (-0.4 – 1.62) 
 10 0.709 (-1.06 – 2.48) -3.235 (-5.42 – -1.05)                  1.640 (-1.08 – 4.36) 1.214 (-0.8 – 3.23) 
 15 1.037 (-1.56 – 3.63) -4.622 (-7.74 – -1.51) 2.152 (-1.42 – 5.73) 1.826 (-1.2 – 4.86) 
      
 -15 -0.005 (-0.03 – 0.02)                 0.046 (0 – 0.09) 0.016 (-0.01 – 0.04) -0.011 (-0.03 – 0.01) 
 -10 -0.003 (-0.02 – 0.01)                 0.025 (0 – 0.05) 0.016 (-0.01 – 0.04) -0.007 (-0.02 – 0.01) 
WHtR -5 -0.001 (-0.01 – 0.01)                 0.011 (0 – 0.02)                 -0.016 (-0.04 – 0.01)                 -0.004 (-0.01 – 0) 
 0 0 0 0 0 
 5 0.001 (-0.01 – 0.01)               -0.009 (-0.02 – 0)                   0.006 (0 – 0.02)                  0.003 (0 – 0.01) 
 10 0.002 (-0.01 – 0.01)               -0.017 (-0.03 – 0) 0.011 (-0.01 – 0.03)  0.007 (-0.01 – 0.02) 
 15 0.003 (-0.01 – 0.02)               -0.024 (-0.05 – 0) 0.014 (-0.01 – 0.04) 0.01 (-0.01 – 0.03) 
      

BMI z-score = Body mass index z-score, WC = Waist circumference, WHtR =Waist-to-height ratio.  
SB = Sedentary behaviour; LPA = Light-intensity physical activity; MVPA= Moderate-to-vigorous intensity physical activity.  
Bold values refer to significance values at p<0.05. 
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Table S4. Predicted change (95% CI) in obesity outcomes following reallocation of time between behaviours within the activity type composition. 

Obesity outcomes Changes in behaviour 
 (%) 

Sitting 
 to/from remaining 

Standing  
to/from remaining 

Walking and running 
 to/from remaining 

Lying 
to/from remaining 

      
BMI z-score -15          -0.05 (-0.38 – 0.28) 0.163 (-0.12 – 0.45) -0.728 (-1.25 – -0.21) -0.184 (-0.52 – 0.15) 
 -10 -0.031 (-0.24 – 0.17)          -0.617 (-1.7 – 0.47) -0.728 (-1.25 – -0.21)        -0.12 (-0.34 – 0.1) 
 -5 -0.015 (-0.11 – 0.08) -0.148 (-0.41 – 0.11)                 0.697 (0.2 – 1.2) -0.059 (-0.17 – 0.05) 
 0 0 0 0 0 
 5 0.014 (-0.08 – 0.1) 0.095 (-0.07 – 0.26) -0.332 (-0.57 – -0.09) 0.059 (-0.05 – 0.17) 
 10 0.026 (-0.15 – 0.2) 0.168 (-0.13 – 0.46) -0.561 (-0.96 – -0.16)         0.119 (-0.1 – 0.34) 
 15 0.039 (-0.22 – 0.3) 0.229 (-0.17 – 0.63) -0.743 (-1.27 – -0.21) 0.181 (-0.15 – 0.51) 
      
WC -15          -0.418 (-2.56 – 1.72)          -0.066 (-1.91 – 1.78) -3.514 (-6.86 – -0.17)         -1.454 (-3.64 – 0.73) 
 -10 -0.259 (-1.59 – 1.07) 0.25 (-6.71 – 7.21) -3.514 (-6.86 – -0.17) -0.949 (-2.38 – 0.48) 
 -5 -0.123 (-0.75 – 0.51) 0.06 (-1.61 – 1.73) 3.371 (0.16 – 6.58) -0.468 (-1.17 – 0.24) 
 0 0 0 0 0 
 5           0.114 (-0.47 – 0.7) -0.039 (-1.12 – 1.04) -1.601 (-3.13 – -0.08) 0.466 (-0.24 – 1.17) 
 10 0.222 (-0.92 – 1.36) -0.068 (-1.97 – 1.83) -2.708 (-5.29 – -0.13) 0.938 (-0.47 – 2.35) 
 15 0.328 (-1.35 – 2.01) -0.093 (-2.68 – 2.49)                -3.583 (-7.00 – -0.17)         1.428 (-0.72 – 3.58) 
      
WHtR -15 -0.004 (-0.02 – 0.01) 0.002 (-0.01 – 0.02) -0.018 (-0.04 – 0.01) -0.004 (-0.02 – 0.01) 
 -10 -0.003 (-0.01 – 0.01) -0.009 (-0.06 – 0.04) -0.018 (-0.04 – 0.01) -0.002 (-0.01 – 0.01) 
 -5          -0.001 (-0.01 – 0) -0.002 (-0.01 – 0.01)                  0.018 (0 – 0.04)        -0.001 (-0.01 – 0) 
 0 0 0 0 0 
 5           0.001 (0 – 0.01) 0.001 (-0.01 – 0.01)                 -0.008 (-0.02 – 0)         0.001 (0 – 0.01) 
 10 0.002 (-0.01 – 0.01) 0.002 (-0.01 – 0.02)                 -0.014 (-0.03 – 0) 0.002 (-0.01 – 0.01) 
 15 0.003 (-0.01 – 0.02) 0.003 (-0.01 – 0.02) -0.019 (-0.04 – 0.01) 0.004 (-0.01 – 0.02) 
      

BMI z-score = Body mass index z-score; WC =Waist circumference; WHtR= Waist-to-height ratio.  
Bold values refer to significance values at p<0.05. 
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Table S5. Associations between activity intensity and activity type clusters and obesity outcomes 
(unadjusted). 

 Cluster 1 Cluster 2 Cluster 3 
Activity intensity clusters    
  BMI z-score   0.22 (0.07 – 0.36) a 0.61 (0.41 – 0.82) 0.42 (0.20 – 0.65) 
  WC 57.7 (56.7 – 58.7) 59.2 (58.0 – 60.5)  58.4 (56.8 – 59.6)  
  WHtR 0.44 (0.44 – 0.45) 0.45 (0.44 – 0.46) 0.44 (0.43 – 0.45) 
 
Activity type clusters  

   

  BMI z-score   0.41 (0.24 – 0.59) a 0.71 (0.51 – 0.92) 0.54 (0.31 – 0.77) 
  WC 59.2 (58.0 – 60.5) 60.0 (58.7 – 61.3) 59.2 (57.7 – 60.6) 
  WHtR 0.45 (0.45 – 0.46) 0.46 (0.45 –0.47) 0.45 (0.44 – 0.46) 

BMI z-score = Body mass index z-score; WC = Waist circumference; WHtR= Waist-to-height ratio. 
Values are estimated means (95% confidence interval). 
a: Significant difference from Cluster 2 (p < 0.05). 
 
 
 
 

Table S6. Associations between activity intensity and activity type clusters and obesity outcomes 
after adjusting for gender, ethnicity and household deprivation. 

 Cluster 1 Cluster 2 Cluster 3 
Activity intensity clusters    
  BMI z-score   0.20 (0.05 – 0.35) a 0.65 (0.46 – 0.84) 0.41 (0.19 – 0.63) 
  WC         59.1 (58.0 – 60.3) 60.0 (58.7 – 61.3) 59.2 (57.7 – 60.7) 
  WHtR 0.45 (0.44 –0.46) 0.46 (0.45 – 0.47) 0.45 (0.44 – 0.46) 
 
Activity type clusters  

   

   BMI z-score 0.40 (0.22 –0.58) a 0.76 (0.55 –0.96) 0.53 (0.30 – 0.77) 
 WC 57.7 (56.8 – 58.4) 59.2 (58.7 – 60.8) 58.4 (57.9 – 60.2) 
 WHtR 0.46 (0.45 – 0.47) 0.45 (0.44 – 0.46) 0.45 (0.44 – 0.46) 

BMI z-score = Body mass index z-score; WC = Waist circumference; WHtR= Waist-to-height ratio. 
Values are estimated means (95% confidence interval). 
a: Significant difference from Cluster 2 (p < 0.01). 
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Table S7. Results of compositional MANOVA of differences in daily activity intensity and activity type compositions between sociodemographic factors. 

 Bold values represent significant differences. 
\ 
 

 

 

  

 Activity intensity composition Activity type composition 
 Pillai’s trace  F df P-value ηp2 Pillai’s trace  F df P-value ηp2 

Gender 0.176 33.25 3 ,464 <0.001 0.177 0.220 31.78 4,450 <0.001 0.220 
Child ethnicity 0.044 1.71 12,1386 0.057 0.014 0.092 2.66 16,1796 <0.001 0.231 
Mother’s age at delivery 0.035 1.12 15,1386 0.334 0.011 0.069 2.13 15,1347 0.107 0.023 
Mother’s education level 0.019 3.05 3,464 0.028 0.019 0.019 2.23 4.450 0.064 0.019 
Mother’s work hours 0.027 1.28 9,1281 0.240 0.008 0.032 1.53 9,1245 0.130 0.010 
Household structure 0.031 2.44 6,922 0.023 0.015 0.030 1.72 8,894 0.090 0.015 
Household income 0.042 2.04 9,1275 0.031 0.014 0.047 1.64 12,1236 0.075 0.015 
Household deprivation  0.015 1.17 6,924 0.320 0.007 0.036 2.06 8,896 0.036 0.018 
Residence location 0.010 1.65 3,462 0.176 0.010 0.008 0.944 4,448 0.438 0.008 
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Appendix D. R  Analysis Code 

This appendix contains the main analysis code used throughout the thesis. It does not 
include the code used to create the datasets used for analysis (from the GUiNZ database), 
nor does it include all the code used to make the graphs/visualisations used in the thesis. 

 

Chapter 3 

Code for the analysis of the validation study 

library(tidyverse) 
library(caret) 
library(broom) 
 
setwd("C:/Users/lhedayat/Desktop/Paper 1") 

 

Incline/posture results 

df.child <- read_csv('all_data_merged.csv') %>%  
  filter(child == 1) 

 
child_inc <- confusionMatrix(df.child$incline, df.child$observation) 

%>%  
  tidy() %>%  
  mutate(child = 1, 
         type = 'incline', 
         device = 'actigraph') 

 
child_inc <- rbind(child_inc, confusionMatrix(df.child$axivity_pos, 

df.child$observation) %>%  
  tidy() %>%  
  mutate(child = 1, 
         type = 'incline', 
         device = 'axivity')) 

 
write_csv(child_inc, 'results/child_incline_results.csv', na = "") 
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Intensity results 

df <- read_csv('all_data_merged.csv') %>%  
  filter(child == 1) 
 
 
child_int <- confusionMatrix(df.child$actigraph, df.child$MET_cat) %>%  
  tidy() %>%  
  mutate(child = 1, 
         type = 'intensity', 
         device = 'actigraph') 
 
child_int <- rbind(child_int, confusionMatrix(df.child$axivity, df.chi
ld$MET_cat) %>%  
                     tidy() %>%  
                     mutate(child = 1, 
                            type = 'intensity', 
                            device = 'axivity')) 
 
write_csv(child_int, 'results/child_intensity_results.csv', na = "") 

 

Comparing devices (t tests) 

df <- read_csv('all_data_merged_ttest.csv') 

df_intensity <- df %>%  
  filter(type == 'intensity') 
 
t.test(bal_accuracy ~ device, data = df_intensity, paired = TRUE) 
 
df_intensity %>%  
  group_by(device) %>%  
  summarise(mean(bal_accuracy)) 

df_incline <- df %>%  
  filter(type == 'incline') 
 
t.test(bal_accuracy ~ device, data = df_incline, paired = TRUE) 
 
df_incline %>%  
  group_by(device) %>%  
  summarise(mean(bal_accuracy)) 
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Chapter 4 

Code for compositional multiple regression. Note that the accelerometer dataset was 
prepared for compositional analysis by imputing zeros (see Chapter 6 below). 

#devtools::install_github('tystan/deltacomp') 
library(compositions) 
library(lubridate) 
library(tidyverse) 
library(car) 
library(performance) 
library(deltacomp) # install from github 
library(psych) 
library(plyr) 
 
setwd ("Z:/RF resources/Leila2/") 

df <- read_rds("leila_dataset_manuscript_3_imputed.rds")  

 

Recoding variables 

df_all <- df %>% 
  filter(acc_sample == 'acc_sample') %>%  
  select(sedentary, light, mvpa, sleep_duration_24h,                        
# composition (intensity) 
         sitting, standing, walking, lying, running,                        
# composition (type) 
         WHtR, zbmi, waist_avg,                                                   
# outcomes 
         child_gender, child_ethnicity, deprivation, mother_education,            
# covariates 
         fruit_intake, vegetable_intake, fizzy_drink2, fast_food2, bre
akfast) %>% # covariates 
   
  mutate_at(vars(fruit_intake, vegetable_intake, fizzy_drink2, fast_fo
od2, breakfast), as.factor) %>%  
   
  mutate(fizzy_drink2 = fct_collapse(fizzy_drink2,  
                                     '2 or 3' = c('2', '3'),  
                                     '4 or 5' = c('4', '5'),  
                                     '6+' = c('6','7','9','14'))) %>%  
 
  mutate(fast_food2 = fct_collapse(fast_food2,  
                                   '2 or 3' = c('2', '3'),  
                                   '4 or 5' = c('4', '5'),  
                                   '6+' = c('6','7','10','15'))) %>%  
   
  mutate(fruit_intake = fct_recode(fruit_intake,  
                                     'Does not eat' = '0',  
                                     '<1 serve' = '1',  
                                     '1 serve' = '2', 
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                                     '2 serve' = '3', 
                                     '3 serve' = '4', 
                                     '4 serve' = '5', 
                                     NULL = '98', 
                                     NULL = '99')) %>%  
   
  mutate(vegetable_intake = fct_collapse(vegetable_intake,  
                                         'Does not eat' = '0',  
                                         '<1 serve' = '1',  
                                         '1 serve' = '2', 
                                         '2 serve' = '3', 
                                         '3 serve' = '4', 
                                         '4 serve' = '5', 
                                         NULL = '99')) %>% 
   
  mutate(breakfast = fct_collapse(breakfast, 
                               '1 or 2' = c('1', '2'), 
                               '3 or 4' = c('3', '4'), 
                               '5 or 6' = c('5','6'), 
                               NULL = '99')) 

Descriptive table 1 

table(df_all$child_gender, exclude = NULL) 
table(df_all$child_ethnicity, exclude = NULL) 
table(df_all$deprivation, exclude = NULL) 
table(df_all$mother_education, exclude = NULL) 
table(df_all$fruit_intake, exclude = NULL) 
table(df_all$vegetable_intake, exclude = NULL) 
table(df_all$fizzy_drink2, exclude = NULL) 
table(df_all$fast_food2, exclude = NULL) 
table(df_all$breakfast, exclude = NULL) 

 

Descriptive table 2 

# Activity intensity 
df_all %>% 
  select(sedentary, light, mvpa, sleep_duration_24h) %>% 
  describe() 
 
 
comp <- acomp(cbind(df_all$sedentary, df_all$light, df_all$mvpa, df_al
l$sleep_duration_24h)) 
round(mean(comp),2) 
round(clo(mean(comp), total=1440)) 
round(var(comp),3) 

# Activity type 
df_all %>% 
  select(sitting, standing, walking, running, lying) %>% 
  describe() 
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comp <- acomp(cbind(df_all$sitting, df_all$standing, df_all$walking, d
f_all$running, df_all$lying)) 
round(mean(comp),2) 
round(clo(mean(comp), total=1440)) 
round(var(comp),3) 

 

Compositional multiple regression 

Building the sequential binary partition matrices 

               # sed, lpa, mvpa, sleep 
sbp_sed <- matrix(c(1, -1, -1, -1,   
                    0,  1, -1, -1, 
                    0,  0,  1, -1), 
                  ncol=4,   byrow=TRUE) # ilr1 = sed/lpa+mvpa+sleep   
 
sbp_lpa <- matrix(c(-1, 1, -1, -1,   
                    -1, 0,  1, -1, 
                    -1, 0,  0,  1), 
                  ncol=4,   byrow=TRUE) # ilr1 = lpa/sed+mvpa+sleep 
 
sbp_mvpa <- matrix(c(-1, -1, 1, -1,  
                     -1, -1, 0,  1, 
                      1, -1, 0,  0), 
                   ncol=4,  byrow=TRUE) # ilr1 = mvpa/sed+lpa+sleep 
 
sbp_sleep <- matrix(c(-1, -1, -1, 1,     
                      -1, -1,    1, 0, 
                      -1,    1,  0, 0), 
                    ncol=4, byrow=TRUE)  # ilr1 = sleep/sed+lpa+mvpa 
 
 
colnames(sbp_sed)   <- c('Sedentary',   'LPA', 'MVPA', 'Sleep') 
rownames(sbp_sed)   <- c('ilr1',    'ilr2', 'ilr3') 
sbp_sed  

 

Creating isometric log ratios 

sbp <- gsi.buildilrBase(t(sbp_mvpa)) # Select correct sbp from above (
REPEAT 4 TIMES, 1 FOR EACH) 
 
ilr.comp <- ilr(comp, V = sbp)  

Fit model (m0 = unadjusted, m1 = adjusted) 

m0 <- lm(df_all$zbmi ~ ilr.comp) 
m1 <- lm(df_all$zbmi ~ ilr.comp + df_all$child_gender + df_all$child_e
thnicity + df_all$deprivation +  
           df_all$fruit_intake + df_all$vegetable_intake + df_all$ fas
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t_food2 + df_all$fizzy_drink2 +  
           df_all$ breakfast) 
 
Anova(m0) 
Anova(m1) 

 

Check assumptions (residual normality etc.) 

check_model(m1) 

The above workflow is repeated, except for activity type, using a 5-part SBP 

 

sbp_sit <- matrix(c(1, -1, -1, -1, -1,   
                    0,  1, -1, -1, -1, 
                    0,  0,  1, -1, -1, 
                    0, 0, 0, 1, -1), 
                 ncol=5,   byrow=TRUE) # ilr1 = Sit/Stand*Walk*Run*Lie  
 
sbp_stand <- matrix(c(-1, 1, -1, -1, -1,     
                       1, 0,  -1, -1,-1, 
                       0,   0,  1,  -1, -1, 
                       0, 0, 0, 1, -1), 
                 ncol=5,   byrow=TRUE) # ilr1 = Stand/Sit*Walk*Run*Lie 
 
sbp_walk <- matrix(c(-1, -1, 1, -1, -1,  
                      1, -1, 0, -1, -1,  
                      0, 1, 0,  -1, -1, 
                      0, 0, 0, 1, -1), 
                 ncol=5,  byrow=TRUE) # ilr1 = Walk/Sit* Stand*Run*Lie 
 
sbp_run <- matrix(c(-1, -1, -1, 1, -1,   
                     1, -1, -1, 0, -1, 
                     0, 1, -1,  0, -1, 
                     0, 0,  1,  0, -1), 
                 ncol=5, byrow=TRUE)  # ilr1 = Run/Sit* Stand*Walk*Lie 
 
 
sbp_lie <- matrix(c(-1, -1, -1, -1, 1,   
                     1, -1, -1, -1, 0, 
                     0,  1, -1,-1, 0, 
                     0, 0, 1, -1, 0 ), 
               ncol=5,   byrow=TRUE)  # ilr1 = Lie/Sit* Stand*Walk*Run 

Compositional isotemporal substitution 

Increment (mins) 

RA = 15 

Substitution for zbmi 
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df_pred <- predict_delta_comps(data = df_all,                                                 
                               y = "zbmi",                                                  
comps = c("sedentary", "light", "mvpa", "sleep_duration_24h"),   

covars = c('child_gender','child_ethnicity','deprivation', 
                                          'fruit_intake','vegetable_in
take','fast_food2','fizzy_drink2','breakfast'),      
                               comparisons = "prop-realloc",                                       
                               deltas = seq(-60, 60,by=RA)/(24*60),                            
                               alpha = 0.05) 

df_pred %>%  
  as_tibble() %>%  
  mutate(realloc = rep(seq(-60, 60,by=RA), each = 4)) %>%  
  select(1:3, 9, 4:8) %>%  
  write_csv('reallocations_intensity_zbmi.csv') 

And this is repeated for each outcome 
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Chapter 5 

Code for compositional cluster analysis 

library(compositions) 
library(tidyverse) 
library(cluster) 
library(dendextend) 
library(factoextra) 
library(psych) 
 
library(missForest) # Need for imputation of diet + screen_time 
library(jmv) 
library(emmeans) 
library(parameters) # To check factor analysis assumptions 
library(car) 
 
setwd ("Z:/RF resources/Leila2/") 

df <- read_rds("leila_dataset_manuscript_4_imputed.rds") # 623 partici
pants with accelerometer data 

 

Factor analysis for nutrition variables 

df_fact <- df %>%  
  select(fruit_intake, vegetable_intake, fizzy_drink2, fast_food2, bre
akfast) %>%  
  as.data.frame() %>%  
  mutate_all(as.numeric) 
 
# Impute missing values in nutrition data 
imputed <- missForest::missForest(df_fact, ntree = 1000)$x %>% round()  
 
fa_model <- factanal(imputed, 2, rotation="varimax", scores = 'Bartlet
t') # perform factor analysis 
 
fa_model  

parameters::check_factorstructure(imputed) # Assumptions: okay for fac
tor analysis 

# Imputing missing screen time 
imputed$screen_time <- df$screen_time 
imputed$screen_time <- ifelse(imputed$screen_time > 600, NA, imputed$s
creen_time) 
imputed <- missForest::missForest(imputed, ntree = 1000)$x # Impute sc
reen time data 

#Adding new variables to main dataset 
df <- df %>%  
  mutate(unhealthy_food = fa_model$scores[,1],  
         healthy_food = fa_model$scores[,2], 
         screen_time = imputed$screen_time) %>%  
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  mutate(z_screen_time = scale(screen_time)) %>%  
  mutate(pid = row_number()) 

 

Composition 

Just for intensity (everything below this is then repeated for type) 

df1 <- df %>%  
  select(pid, sedentary, light, mvpa, sleep_duration_24h, z_screen_tim
e,  
         healthy_food, unhealthy_food) %>%  
  filter(complete.cases(.)) 
 
comp <- acomp(cbind(df1$sedentary, df1$light, df1$mvpa, df1$sleep_dura
tion_24h))  
 
ilr_comp <- cbind(ilr(comp), df1$z_screen_time, df1$healthy_food, df1$
unhealthy_food)  

Heirarchical clustering 

clust <- agnes(x = ilr_comp, 
               diss = FALSE,  
               metric = "euclidean",  
               method = "ward") 
 
p <- clust %>%  
  as.dendrogram %>%  
  set("labels", "") %>%  
  set("branches_lwd", 0.2) %>%  
  set("branches_k_color", k = 3) 
 
ggplot(p) 
 
ggplot(p) + 
  scale_y_reverse(expand = c(0.3, 0)) + 
  coord_polar(theta="x") 

 

K-means clustering 

distance <- get_dist(ilr_comp) 
 
fviz_dist(distance, gradient = list(low = "#00AFBB", mid = "white", hi
gh = "#FC4E07")) 
 
 
fviz_nbclust(ilr_comp, kmeans, method = "wss") 
fviz_nbclust(ilr_comp, kmeans, method = "silhouette") 
clusGap(ilr_comp, FUN = kmeans, nstart = 25, K.max = 10, B = 75) %>% f
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viz_gap_stat() 
 
k_clust <- kmeans(as.data.frame(ilr_comp), centers = 3, nstart = 25) 
fviz_cluster(k_clust, data = ilr_comp) 
k_clust 
 
result <- df %>%  
  filter(pid %in% df1$pid) %>%  
  mutate(cluster = factor(k_clust$cluster)) 

 

Cluster descriptives 

result %>%  
  descriptives(vars = c('zbmi', 'WHtR', 'waist_avg',  
                        'healthy_food', 'unhealthy_food', 
                         'z_screen_time'),  
               splitBy = 'cluster', 
               median = F, 
               max = F, 
               min = F, 
               sd = T, 
               freq = T)  

 

Comparing clusters 

Just for zbmi, repeated for each outcome 

# ANOVA  
m <- lm(zbmi ~ cluster, data = result) # change the outcome zbmi/WHtR/
waist_avg 
Anova(m, type = 'III') # anova results 
 
em <- emmeans(m, specs = 'cluster') # estimated means per cluster 
em 
 
pairs(em, adjust = 'holm') # pairwise contrasts between cluster estima
ted means 

# ANCOVA  
m1 <- lm(zbmi  ~ cluster + child_gender + child_ethnicity + deprivatio
n, data = result)  
Anova(m1, type = 'III') 
 
em1 <- emmeans(m1, specs = 'cluster') 
em1 
pairs(em1, adjust = 'holm') 

# Comparing guideline adherance 
contTables(result, rows = 'PA_guideline', cols = 'cluster', pcCol = T, 
phiCra = T) 
contTables(result, rows = 'SL_guideline', cols = 'cluster', pcCol = T, 
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phiCra = T) 
contTables(result, rows = 'ST_guideline', cols = 'cluster', pcCol = T, 
phiCra = T) 
contTables(result, rows = 'guidelines', cols = 'cluster', pcCol = T, p
hiCra = T) 
contTables(result, rows = 'zbmi_c', cols = 'cluster', pcCol = T, phiCr
a = T) 
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Chapter 6 

Dataset preparation 

Imputation of zeros 

library(zCompositions) 
library(tidyverse) 
library(compositions) 
library(visdat) 
 
setwd ("Z:/RF resources/Leila2/") 

df <- read_rds("leila_dataset_paper1.rds")  

# Imputation of zeros and missing via log-ratio expectation-maximisati
on 
# For references see: https://rdrr.io/cran/zCompositions/man/lrEM.html 
 
# Activity Type ------------------------------------------------------
----- 
 
df_type <- df %>% 
  select(cid, sitting, standing, walking, running, lying) %>% 
  group_by(cid) %>%  
  mutate(n_missing = sum(ifelse(is.na(c_across()), 1, 0))) %>%  
  ungroup() %>%  
  filter(n_missing < 4) %>% # Cannot impute if 4/5 parts are missing 
  select(-n_missing) 
 
# Visualise NAs and 0s 
vis_miss(df_type) 
zPatterns(df_type[,2:6], label = NA) 
zPatterns(df_type[,2:6], label = 0) # Only 1 person has '0' running 
 
# Firstly, impute the NA values 
df_type[df_type == 0] <- 0.0001 # Placeholder for actual actual zeros 
df_type[,2:6] <- lrEM(X = df_type[,2:6], label = NA, imp.missing = TRU
E) 
 
# Secondly, impute the zeros 
df_type[df_type == 0.0001] <- 0 # Replacing the actual zeros (detectio
n limit = 5 seconds) 
df_type[,2:6] <- lrEM(X = df_type[,2:6], label = 0, dl = rep((5/60), 5
)) 
 
vis_miss(df_type) # Looks good 

# Activity Intensity -------------------------------------------------
----- 
 
df_intensity <- df %>% 
  select(cid, sedentary, light, moderate, vigorous, sleep_time) %>% 
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  group_by(cid) %>%  
  mutate(n_missing = sum(ifelse(is.na(c_across()), 1, 0))) %>%  
  ungroup() %>%  
  filter(n_missing < 4) %>%  
  select(-n_missing) 
 
visdat::vis_miss(df_intensity) # A couple of people missing sleep_time 
zPatterns(df_intensity[,2:6], label = NA) 
zPatterns(df_intensity[,2:6], label = 0) # No body has any zeros 
 
# Impute the NA values 
df_intensity[,2:6] <- lrEM(X = df_intensity[,2:6], label = NA, imp.mis
sing = TRUE) 

# Joining imputed compositions back to original dataset --------------
----- 
 
df <- df %>%  
  select(-c(sitting, standing, walking, running, lying, # Remove origi
nal  
            sedentary, light, moderate, vigorous, sleep_time)) %>%  
  left_join(df_type, by = 'cid') %>%  
  left_join(df_intensity, by = 'cid') 
 
 
df <- write_rds(df, "leila_dataset_paper1_imputed.rds")    

 

Main analysis 

#devtools::install_github('TheTS/CodaContrast') 
library(zCompositions) 
library(tidyverse) 
library(compositions) 
library(RVAideMemoire) 
library(psych) 
library(CodaContrast) 
library(jmv) 
library(lubridate) 
library(broom) 
library(heplots) 
 
setwd ("Z:/RF resources/Leila2/") 

 

Recoding variables 

df <- read_rds("leila_dataset_paper1_imputed.rds") %>% # 6853 
  filter(birth_order == 'First') %>% # 6751 remove twins 
  filter(participated == T) %>% # 5479 remove not particpate at 8 
 
  # If 'n_days' is missing, no accelerometer 
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  mutate (acc_sample = ifelse(!is.na(n_days), "acc_sample", "no_acc_sa
mple")) %>%  
 
        

   
  # Age                                                      # 1st Jun
e 2017) %>%  
  mutate(child_age = as.duration(as.Date('2017-06-01') - child_dob) / 
dyears()) %>%   
   
  # Mothers age & work hours 
   
  mutate(mother_age_cat = case_when(mother_age_am <= 20 ~ '< 20', 
                                    mother_age_am<= 25 ~ '< 25', 
                                    mother_age_am <= 30 ~ '< 30', 
                                    mother_age_am <=35 ~ '< 35', 
                                    mother_age_am <= 40 ~ '< 40', 
                                    is.na(mother_age_am) ~ NA_characte
r_, # Fix for missings 
                                    TRUE ~ '40+')) %>%  
   
                                  
   
  mutate(mother_work_cat = case_when(mother_work_hours <= 15 ~ '< 15', 
                                     mother_work_hours <= 30 ~ '< 30', 
                                     mother_work_hours <= 40 ~ '< 40', 
                                     is.na(mother_work_hours_am) ~ NA_
character_, 
                                     TRUE ~ '40+')) %>%  
   
  # collapsing ethnicity ---------------------------------------------
------- 
  mutate (child_ethnicity = fct_collapse(child_ethnicity, "Other" = c(
"Other",  
                                                                      
"I don't think about it", 
                                                                      
"MELAA")), 
         ethnicity_am = fct_collapse(ethnicity_am, Other = c('Other',  
                                       'New Zealander','MELAA'))) %>% 
   
  # Collapsing NZDEP 
 mutate(deprivation = as.factor(deprivation)) %>%  
 mutate(deprivation = fct_collapse(deprivation, 'low' = c('1','2','3')
, 'med' = c('4','5','6','7'), 'high' = c('8','9','10'))) %>%  
   
  # Assigning labels to income  
  mutate(house_income = factor(house_income, levels = 1:7,  
         labels = c('<20k', '20-30k', '30-50k', '50-70k', '70-100k',  
                                          '100-150k', '>150k'))) %>%  
  mutate(house_income = fct_collapse(house_income, '<70K' = c('<20k', 
'20-30k', '30-50k', '50-70k'))) %>%  
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   # Assigning labels to education 
  mutate(mother_education = factor(mother_education, levels = 0:4,  
        labels = c('Without school qualification',  
                   'School or NCEA 1-4', 'Diploma', 
              'Bachelor degree', 'Higher degree'))) %>%  

 
  mutate(mother_education = fct_collapse(mother_education, 'lower than 
bachelor' = c('Without school qualification', 
             'School or NCEA 1-4', 'Diploma'),  
             'bachelors or higher' = c('Bachelor degree',  
                                      'Higher degree'))) %>%  
   
  # Assigning labels to household structure 
  mutate(household_structure = factor(household_structure, levels = 1:
4,  
         labels = c('Single parent', 'Both parents', 
                   'Parents with extended family', 
                  'Parents living with nonkin'))) %>%   

 
  mutate(household_structure = fct_collapse(household_structure, 'with
extendedfamily' = c('Parents with extended family', 
                    'Parents living with nonkin'))) %>%  
   
  # Screen time + Meeting Guidelines (yes/no) 
  mutate(screen_time_wd = (tv_wd + electronic_wd)*60, # hours to minut
es 
         screen_time_we = (tv_we + electronic_we)*60) %>%  
  rowwise() %>%  
  mutate(screen_time = mean(c_across(screen_time_wd:screen_time_we), n
a.rm = TRUE)) %>%  
  ungroup() %>%  
  mutate(screen_time = ifelse(is.na(screen_time_wd) & is.na(screen_tim
e_we), NA, screen_time), 
         PA_guideline = as.numeric(mvpa >= 60), 
         SL_guideline = as.numeric((sleep_time >= 540) & (sleep_time <
= 660)), 
         ST_guideline = as.numeric(screen_time < 120), 
         guidelines = as.numeric(PA_guideline & SL_guideline & ST_guid
eline), 
         guidelines = ifelse(is.na(PA_guideline) | is.na(SL_guideline) 
| is.na(ST_guideline), NA, guidelines)) 

 

Descriptive tables 

table(df$child_ethnicity, df$acc_sample, exclude = NULL) 
table(df$deprivation, df$acc_sample, exclude = NULL) 
table(df$house_income, df$acc_sample, exclude = NULL) 
table(df$mother_education, df$acc_sample, exclude = NULL) 
table(df$household_structure, df$acc_sample, exclude = NULL) 
table(df$rurality,df$acc_sample,exclude = NULL) 
table(df$mother_age_cat,df$acc_sample,exclude = NULL) 
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table(df$screen_time,df$acc_sample,exclude = NULL) 
table(df$mother_age,df$acc_sample,exclude = NULL) 
table(df$mother_work_cat,df$acc_sample,exclude = NULL) 
table(df$guidelines,df$acc_sample, exclude = NULL) 
table(df$ST_guideline,df$acc_sample, exclude = NULL) 
 
table(df$ethnicity_am,df$acc_sample) 
table(df$acc_sample) 
table(df$mother_age_cat,df$acc_sample, exclude = NULL) 
table(df$mother_work_cat,df$acc_sample, exclude = NULL) 

Comparing with and without accelerometer 

 # gender 
contTables(df, rows = 'child_gender', cols = 'acc_sample', pcCol = T, 
exp = T) 
# ethnicity 
contTables(df, rows = 'child_ethnicity', cols = 'acc_sample', pcCol = 
T) 
 # education 
contTables(df, rows = 'mother_education', cols = 'acc_sample', pcCol = 
T ) 
# income 
contTables(df, rows = 'house_income', cols = 'acc_sample', pcCol = T) 
# deprivation 
contTables(df, rows = 'deprivation', cols = 'acc_sample', pcCol = T) 
# household_structure 
contTables(df, rows = 'household_structure', cols = 'acc_sample', pcCo
l = T) 
# residence location 
contTables(df, rows = 'rurality', cols = 'acc_sample', pcCol = T) 
# mother age 
contTables(df, rows = 'mother_age_cat', cols = 'acc_sample', pcCol = T
) 
# mother work hours 
contTables(df, rows = 'mother_work_cat', cols = 'acc_sample', pcCol = 
T) 
# mother ethnicity 
contTables(df, rows = 'ethnicity_am', cols = 'acc_sample', pcCol = T) 
 
# Contiinuous variables 
ttestIS(data = df, vars = 'child_age', group = 'acc_sample', meanDiff 
= T, welchs = T) 
ttestIS(data = df, vars = 'mother_age', group = 'acc_sample', meanDiff 
= T, welchs = T) 
ttestIS(data = df, vars = 'mother_work_hours', group = 'acc_sample', m
eanDiff = T, welchs = F) 
ttestIS(data = df, vars = 'screen_time', group = 'acc_sample', meanDif
f = T, welchs = F ) 
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Guideline adherence 

#PA Guidelines 
contTables(filter(df, acc_sample == 'acc_sample'),  
           rows = 'PA_guideline',  
           cols = 'child_gender', pcCol = T, exp = T, phiCra = T) 
 
t <- table(df_acc$PA_guideline, df_acc$ethnicity_am) 
fisher.test(t) 
 
# Repeated for other variables and guidelines 

 

Compositional descriptive 

# Overall 
df_all <- df %>% 
  select(sedentary,light,mvpa,sleep_time) %>% 
  filter(complete.cases(.)) 
 
comp <- acomp(df_all) 
 
round(mean(comp),2) 
 
round(clo(mean(comp), total=1440)) 

# By gender 
 
dfboy <- df %>%  
  select(sleep_time, sedentary, light, mvpa, child_gender) %>%  
  filter(child_gender == 'Boy') %>%  
  select(-child_gender) %>%  
  filter(complete.cases(.)) 
 
dfgirl <- df %>%  
  select(sleep_time, sedentary, light, mvpa, child_gender) %>%  
  filter(child_gender == 'Girl') %>%  
  select(-child_gender) %>%  
  filter(complete.cases(.)) 
 
comp_boy <- acomp(dfboy) 
mean(aplus(dfboy)) 
round(mean(comp_boy), 2) 
round (clo(mean(comp_boy), total = 1440)) 
 
comp_girl <- acomp(dfgirl) 
mean(aplus(dfgirl)) 
round(mean(comp_girl), 2) 
round (clo(mean(comp_girl), total = 1440)) 
 
# Repeated for other sociodemographics 
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Compositional MANOVA 

#intensity ~ gender 

df_all <- df %>% 
 select(sedentary, light, mvpa, sleep_time, child_gender) %>% 
 filter(complete.cases(.)) 

comp <- acomp(df_all[,1:4]) 

mean(comp) 
round (clo(mean(comp), total = 1440)) 

round(variation(comp), 2) 

m1 <- manova(ilr(comp) ~ df_all$child_gender) 
summary(m1) 

etasq(m1) 

# Geomeric mean plot 
plot_geo_means(composition = comp, group = df_all$child_gender, type = 
'component') 

# Contrasts 
lr <- log_ratio_difference(composition = comp, 

 group = df_all$child_gender) 

print(lr) 
plot_log_ratio_difference(lr) 

# type ~ household structure 

df_Household_structure <- df %>% 
 select(sitting, standing, walking, running ,lying, household_structu

re) %>% 
 filter (complete.cases(.)) 

comp <- acomp( df_Household_structure[,1:5]) 

m1 <- manova(ilr(comp) ~  df_Household_structure$household_structure) 
summary(m1) 
etasq(m1) 

pairwise_hotelling_test(comp = ilr(comp), groups =  df_Household_struc
ture$household_structure) 
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