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Abstract 

Modern antivirus systems (AVSs) are not able to detect new polymorphic malware 

variants until they emerge, even when signatures of one or more variants belonging to a 

specific polymorphic malware family are known. Polymorphic malware can transform 

into functionally identical variants of themselves. Polymorphism changes the order of the 

viral code but not typically the code itself to avoid signature-based detection. Current 

AVSs detect malware by adopting signatures based on the most essential parts of a known 

virus, such as execution traces, instruction sequences, etc. Virus writers exploit the 

weaknesses of malware signature databases by creating new variants using the same 

engine employed by an already existing polymorphic malware family. In this thesis, virus 

detection and signature extraction techniques are presented. These techniques were 

developed by exploring string matching techniques traditionally employed in 

biosequence analysis. The main contribution of these matching techniques is to extract 

syntactic patterns (i.e. conserved regions/sequences) from semantically rich polymorphic 

hex code. These extracted syntactic patterns act as signatures and are used in the 

identification of polymorphic malware variants belonging to the same family. Moreover, 

these extracted syntactic patterns can help in identifying new variants that make simple 

alterations to their newly generated variants. The string matching approaches presented 

in this thesis may revolutionise our knowledge of polymorphic variant generation and 

give rise to a new era of string-based syntactic AVSs. 
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Chapter 1 Introduction 

This chapter introduces the motivation of this research, followed by a brief introduction 

to the background of this research and related work including syntactic and semantic virus 

detection approaches. This chapter concludes by providing the thesis contribution, 

structure, and related publications. 

1.1 Motivation 

Malware development and spread have reached epidemic proportions, with millions of 

new variants released every year infecting computer systems. Traditional antivirus 

systems (AVSs) have difficulty in coping with this growth. The traditional method for 

dealing with viruses and worms (two of the most common types of malware) is to use 

AVSs to look for ‘signatures’ which represent critical parts of executable code in the 

numerical or alphanumerical form. Whereas a virus requires some action to be 

propagated, such as being attached to a program by the user, a worm can propagate by 

itself. The aim of virus and worm writers is usually to damage computer systems, hence 

the term ‘malware’. Signatures can be calculated from a pattern of operations in the 

malware code or can represent the encryption algorithm used to hide the virus or worm. 

Signatures were originally and continue to be identified and calculated by human experts, 

and are typically a sequence of hexadecimal (hex) numbers intended to identify viruses 

and worms uniquely. There are currently no known methods for automatic generation of 

syntactic signatures for new malware. 

The automatic extraction of malware signatures for use in AVSs remains a relatively 

unexplored area of cyber security, despite the urgent need to find effective solutions to 

the increasing number and severity of attacks (Symantec, 2014; Naidu, Whalley, & 

Narayanan, 2017) that now pose a global risk (WEF, 2012). 

Evidence for this related shortage of research in polymorphic malware (together with its 

variants) detection as well as in automatic signature generation using bioinformatics 

techniques (mainly sequence alignment) comes from a simple sequence of searches using 

Google Advanced Patent Search and Google Scholar (as of April 5th, 2018) and is shown 

in Table 1.1. Table 1.1 shows that there is a lack of research on automatic signature 

generation to polymorphic malware/virus and its variants detection/identification using 

sequence alignment techniques.  
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Table 1.1: Simple sequence of searches indicating the related shortage of research using 

Google Advanced Patent Search and Google Scholar (as of April 5th, 2018). 

Search Terms Google Advanced 

Patent Search 

Google 

Scholar 

“malware” 55,000 hits 157,000 hits 

“malware detection” 19,000 hits 27,100 hits 

“malware identification” 478 hits 922 hits 

“polymorphic malware” 1,210 hits 1,890 hits 

“polymorphic virus” 951 hits 1,360 hits 

“automatic signature generation” 1,580 hits 1,620 hits 

“automatic generation of signatures” 3 hits 66 hits 

“automatic signature extraction” 269 hits 115 hits 

“automatic extraction of signatures” 328 hits 97 hits 

“polymorphic malware detection” 1,050 hits 257 hits 

“polymorphic malware identification” 0 hit 3 hits 

“polymorphic virus detection” 874 hits 492 hits 

“polymorphic virus identification” 0 hit 0 hit 

“sequence alignment” 76,500 hits 917,000 hits 

“polymorphic malware detection” + “automatic signature 

generation” 

6 hits 28 hits 

“polymorphic malware identification” + “automatic signature 

generation” 

0 hit 0 hit 

“polymorphic virus detection” + “automatic signature 

generation” 

108 hits 55 hits 

“polymorphic virus identification” + “automatic signature 

generation” 

0 hit 0 hit 

“polymorphic malware detection” + “automatic signature 

generation” + “variants” 

2 hits 10 hits 

“polymorphic malware identification” + “automatic signature 

generation” + “variants” 

0 hit 0 hit 

“polymorphic virus detection” + “automatic signature 

generation” + “variants” 

51 hits 28 hits 

“polymorphic virus identification” + “automatic signature 

generation” + “variants” 

0 hit 0 hit 

“polymorphic malware detection” + “automatic signature 

generation” + “variants” + “sequence alignment” 

0 hit 5 hits 

“polymorphic malware identification” + “automatic signature 

generation” + “variants” + “sequence alignment” 

0 hit 0 hit 

“polymorphic virus detection” + “automatic signature 

generation” + “variants” + “sequence alignment” 

0 hit 1 hit 

“polymorphic virus identification” + “automatic signature 

generation” + “variants” + “sequence alignment” 

0 hit 0 hit 

Early automatic extraction attempts focused on simulating the way that human experts 

analyse malware to generate signatures for use in AVSs (Kephart & Arnold, 1994; Huda, 

et al., 2017). Typically, an anomalous behaviour of a computer system leads to the 

identification of suspicious code that is then analysed to identify invariant code portions 

(syntax) or code portions that are regularly executed (semantics). Semantics are required 

for the process of code execution behaviour because they can capture the self-modifying 

feature of malware code (Debray, Coogan, & Townsend, 2008; Korczynski & Yin, 2017). 
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Such analysis leads to the generation of malware ‘signatures’ for use by AVSs when 

scanning network packets, user files or memory. Before such signatures can be released, 

they must be checked against non-malware to ensure that the number of false positives is 

kept acceptably low. For instance, signatures based on a malware encryption/decryption 

engine are likely to lead to unacceptably high false positives due to the large proportion 

of normal Internet traffic that also carries encryption/decryption information for integrity 

(e.g. hash algorithms) and authentication (e.g. certified public keys). 

Relying on human expertise alone to provide manually extracted signatures is no longer 

feasible with the growing volume of malware. As a result, automatic signature extraction 

approaches have become increasingly sophisticated. Semantic approaches 

(Christodorescu, Jha, Seshia, Song, & Bryant, 2005; United States Patent No. 

US11523199, 2006; Sathyanarayan, Kohli, & Bruhadeshwar, 2008; Feng, Bastani, 

Martins, Dillig, & Anand, 2017), in addition to standard dynamic and execution 

behaviour analysis (Ellis, Aiken, Attwood, & Tenaglia, 2004; Gao, Reiter, & Song, 2005; 

United States Patent No. US9609015B2, 2017) now include control flow analysis (Cesare 

& Xiang, 2010; United States Patent No. US9817974B1, 2017), behaviour model 

checking (Kinder, Katzenbeisser, Schallhart, & Veith, 2005; Bailey, et al., 2007; United 

States Patent No. US9832211B2, 2017) and executable graph mining (Eskandari & 

Hashemi, 2012; Chen, Jeng, Huang, Chen, & Chou, 2017) as well as formal semantic 

models of analysis (Chaumette, Ly, & Tabary, 2011; Wüchner, Ochoa, & Pretschner, 

2015; Shen, Hsu, & Shieh, 2017). Syntactic, or static approaches (Zhang & Reeves, 2007; 

Leder, Steinbock, & Martini, 2009; Griffin, Schneider, Hu, & Chiueh, 2009; Jidigam, 

Austin, & Stamp, 2015; Zhu, et al., 2018) on the other hand, while initially promising 

because of their ability to extract signatures that may apply to different minor variants of 

the same malware code. And to generate signatures irrespective of differences in 

execution paths, have not managed to keep pace with the latest polymorphic and 

metamorphic techniques used by hackers to obfuscate their malware (Moser, Kruegel, & 

Kirda, 2007; Bearden, 2017; Nguyen, 2018). Static methods typically disassemble or 

reverse engineer the malware executable code so that data mining of the source code is 

possible; techniques such as statistical analysis of parameter values, repeating strings and 

comparative entropy (Schultz, Eskin, Zadoc, & Stolfo, 2001; Baldangombo, Jambaljav, 

& Horng, 2013; United States Patent No. US20170061125A1, 2017), code feature 

selection (Komashinskiy & Kotenko, 2010; Huda, 2017) and feature extraction (Tabish, 

Shafiq, & Farooq, 2009; Sun B. L., 2017; Wang, 2017), and n-grams analysis (Abou-
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Assaleh, Cercone, & Sweidan, 2004; Kolter & Maloof, 2006; Shafiq, Tabish, & Farooq, 

2008; Hassen, 2017) have been used. 

For polymorphic viruses:  

• Where the virus decryption routine may transform, but the virus body carries the same 

code (Zhang, Reeves, Ning, & Iyer, 2007), static analysis can still work (Gurnani, 

2017).  

• This is for the reason that the various executable instances possess a common and 

invariant source body code whether this code is re-ordered or ‘junk’ instructions 

introduced (Kaur & Singh, 2014).  

And for metamorphic viruses: 

• Where each variant of the virus is structurally and syntactically distinct from the last 

version but semantically identical (Borello & Me, 2008), create immense challenges 

for static checkers (Vu, et al., 2017).  

• As a result of which common metamorphic instances of the same virus may not be 

detected as such (Leder, Steinbock, & Martini, 2009).  

• Common metamorphic processes include modifying numerical expressions to 

different but equivalent instructions and modifying constants into computed variables 

(United States Patent No. US7937764B2, 2011).  

• If the morphing part is itself encoded (Sridhara & Stamp, 2013) the critical 

information relevant to structural change may not be obtainable. 

While malware identification is not decidable from a hypothetical viewpoint (Cohen, 

1987; Cohen, 1989; Adleman, 1988; Naidu & Narayanan, 2016), it is still not known 

whether algorithms exist that will consider a random file or script and decide accurately 

if it possesses particular aspects of a malicious file (Zuo & Zhou, 2004; Narayanan, Chen, 

Pang, & Ban, 2013). Due to rising intricacy of obscuration and advancement of unseen 

kinds of transformed malicious program (for instance, ransomware, spyware, adware and 

botnets), malware specialists are still needed to apply the latest variety of polymorphic 

and metamorphic malware identification methods currently known to exist (Idika & 

Mathur, 2007; Robiah, et al., 2009; Fukushima, Sakai, Hori, & Sakurai, 2010; Elhadi, 

Maarof, & Osman, 2012; Khan, Siddiqui, & Ferens, 2017). 
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In this thesis, the focus is mainly about polymorphic virus developed via alterations 

within the encoder and decoder. In the first instance the virus body of a typical 

polymorphic malware consists of encrypted and decrypted virus body which are mutated 

by its mutation engine (Chaumette, Ly, & Tabary, 2011; Ali & Soomro, 2018). Although 

the static components of polymorphic malware like the malware body can be employed 

to identify polymorphic instances of the same malware in spite of the fact that 

transformations in the encoder and decoder, there might be zero static components in a 

metamorphic malware. In comparison to identification of polymorphism via memory-

dependent signature identification, metamorphic malware files are semantically 

examined (for instance, simulated in a virtual sandbox) such that individual instances are 

detected via normal functionality and behaviour (United States Patent No. 

US20120072988A1, 2012; Nhuong, 2014). It is hard to state whether metamorphic virus 

or polymorphic virus is diffcult to identify. However, viruses with functionalties of both 

metamorphism and polymorphism are the most difficult virus to identify and defend 

against (Skoudis & Zeltser, 2004; Naidu & Narayanan, 2016). In this research, the focus 

is mainly with regards to polymorphic virus identification so as to detect virus instances 

solely via syntactic approach, although, one of the chapters in this thesis focuses on the 

detection of a metamorphic malware family via syntactic approach. Polymorphic virus 

consists of three components: the malware structure, the mutation engine and the 

decryptor (see Figure 1.1 below). Where, LM means the language of decryptor instead of 

the complete language of malware (Chaumette, Ly, & Tabary, 2011; Naidu & Narayanan, 

2016). Throughout the infection procedure, a polymorphic malicious file M will replicate 

on its own to a new malicious file M' ∈ LM by choosing a randomly encoded key k, 

encoding the virus structure and consequently the mutation engine by means of the key k 

and eventually creating a new decryptor, embedding k. Because the virus structure and 

mutation engine are encoded through a different randomly generated key, detecting 

polymorphic virus generally means detecting its clear-code decryptor. While both 

metamorphic and polymorphic malware are encrypted to try evade AVSs, polymorphic 

malware (as stated earlier) usually preserves its functionality (body containing payload 

or instructions for infection) with static code and its encryption engine changes with each 

infection to avoid detection. Signatures based on the static parts of polymorphic body can 

then be generated for use in AVSs. Metamorphic malware, however, can generate 

different but functionally equivalent bodies as well as make changes in its encryption 

engine, making signature generation difficult (Borello J.-M. F., 2010; Mohamed & Ithnin, 

2017).  
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Figure 1.1: The process of polymorphic malware infection (Chaumette, Ly, & Tabary, 

2011, p. 41). 

1.2 Background and Related Work 

Some researchers have continued to search for static malware structure analysis 

algorithms (Zhang & Reeves, 2007; Leder, Steinbock, & Martini, 2009; Griffin, 

Schneider, Hu, & Chiueh, 2009; Ye Y. , Li, Jiang, & Wang, 2010; United States Patent 

No. US20170193229A1, 2017) for use in automatic signature generation despite current 

emphasis on semantic-based approaches. Static structure analysis can reveal all possible 

execution paths in a scalable manner, not just those actually followed. Static checkers 

have, however, faced problems in disassembling the executable code and identifying 

complex obfuscation (Moser, Kruegel, & Kirda, 2007; Chua & Balachandran, 2018) 

when attempting to reconstruct the original malware code. 

A potential breakthrough in static structural analysis was demonstrated (Narayanan, et 

al., 2012; Chen, et al., 2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan, 

et al., 2013b) by adopting a nature-inspired and natural computation approach. These 

works explored the effects of giving amino acid representation to problematic machine 

learning data and to evaluate the benefits of supplementing traditional machine learning 

with bioinformatics tools and techniques. The signatures of 60 computer viruses and 60 

computer worms were converted into amino acid representations and first multiply 

aligned separately to identify conserved regions across different families within each 

class (virus and worm). This was followed by a second alignment of all 120 aligned 

signatures together so that non-conserved regions were identified prior to input to a 

number of machine learning techniques. Differences in length between virus and worm 
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signatures after the first alignment were resolved by the second alignment. Their first set 

of experiments indicated that representing computer malware signatures as amino acid 

sequences followed by alignment leads to greater classification and prediction accuracy. 

Although their experiments led to greater classification and prediction accuracy there was 

no comparison made with the other state of the art techniques. Their second set of 

experiments indicated that checking the classification results of data mining algorithms, 

such as Naïve Bayes, J48, LAD Tree, OneR and Perceptron from artificial virus and worm 

data against known proteins can lead to generalisations being made from the domain of 

naturally occurring proteins to malware signatures. However, they stated that further 

work was needed to determine the advantages and disadvantages of different 

representations and sequence alignment methods for handling problematic machine 

learning data. 

Narayanan and Chen (Narayanan, et al., 2012; Chen, et al., 2012a; Chen, et al., 2012b; 

Narayanan, et al., 2013a; Narayanan, et al., 2013b) have shown that malware forms may 

share deep functional connections with naturally existing counterparts in virology, and 

biological knowledge could be utilised to detect malware. Some AVSs use signature 

detection to identify and eliminate viruses. However, by using biological knowledge from 

bioinformatics and by generating malware variants from scratch using knowledge of 

polymorphic viruses, it may be feasible to detect syntactic forms that promote to establish 

if a part of script possesses a malware form along with its instances adopting the 

techniques introduced by Narayanan and Chen (Narayanan, et al., 2012; Chen, et al., 

2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan, et al., 2013b). A 

complicating aspect is that most malware are variants of already existing known types 

with known code. These variations are in the symbolic code of viruses and worms. There 

are currently no known techniques for mining symbolic viral and worm (and their 

variants) code directly. By representing such code in biological form (DNA, amino acids), 

it may be possible to identify the critical regions of malware code that contribute to 

malware function through traditional bioinformatics techniques that also attempt to 

identify sequences through the commonality of biological subsequences. 

1.3 Syntactic and Semantic Approaches 

The syntactic or static approach can be described formally as follows. Given a grammar 

Gm for generating malware code, defined as follows: Gm=(N,T,S,R) where N is the set of 

non-terminal symbols, T is the set of terminal symbols, S is the start symbol and R the set 
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of rewriting rules, the formal language L(Gm) (the set of possible malware programs 

generated by this grammar) = {𝑥 ∈ 𝑇|𝑆 → 𝑥}, i.e. all those strings of terminal symbols x 

reachable from S through the rewriting rules. The signature extraction task can then be 

defined to be - find one or more patterns σ of length l for one or more 𝑥 ∈ 𝑇 of length n, 

where l ≤ n, such that σ is a ‘signature’ of x and therefore of L(Gm). The definition of σ 

will in turn need to take into account partial matches against source code x of T. The 

advantage of static methods is that, given Gm, different σ can be derived for actual and 

possible (i.e. future) x. However, the problem for static methods is that, if 𝐿(𝐺1
𝑚) ≫

𝐿(𝐺2
𝑚) ≫ ⋯ ≫ 𝐿(𝐺𝑘

𝑚), where ‘≫’ means ‘evolves through polymorphism and/or 

metamorphism’, there will need to be a different σ for each Li, i=1..k, despite the ancestry 

relationships in Gm. 

The semantic approach can be described as follows (Preda, Christodorescu, Jha, & 

Debray, 2007): program P is infected by malware M if the semantics of M is part of the 

semantics of P, i.e. 𝑆⟦𝑀⟧ ⊆ 𝑆⟦𝑃⟧, where S signifies ‘semantics’ or execution. If Obf is a 

program transformer that introduces obfuscation into a set of programs P such that Obf: 

P → P, a semantic malware detector can then be defined as D: P x P → {0,1}: D(P,M) = 

1. However, if there are many different semantic interpretations (executions) possible due 

to obfuscation, each will need to be identified separately to determine semantic inclusion 

of M in P. 

The fundamental difficulty for a signature extraction approach based on semantics is that 

a malicious infection must take place in advance before manual signature extraction. 

Anticipating new (unknown) polymorphic (as well as metamorphic) malware instances 

to make commercial AVSs prepare for undiscovered instances has continued to be a 

faraway aim concerning syntactic as well as semantic techniques. In this research, the 

research goal is about emphasising a string-based automatic signature extraction approach 

for use in identifying polymorphic malware. 

As stated earlier (in the abstract section), syntactic techniques toward signature extraction 

relying on the syntactic detection of viruses are comparatively unexamined in contrast 

with semantic techniques. The historical rationale for this is that the same malware 

behaviour can be exhibited in various physical malware code forms, and therefore the 

rationale goes that semantic study alone will unveil commonalities amid variants of the 

same virus for an effective signature generation. There is some previous research on 

representing viral code as sentences of a viral language and identifying the ‘rules’ of the 
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language so that new sentences/viral instances can be created or new instances parsed 

back to the appropriate viral language. The research hypothesis in this thesis is that, it is 

feasible to detect syntactic forms for an existent malware that support to establish if a part 

of malware script possesses a kind of malware along with its malicious variants and, of 

so, to which family of virus (language) the code belongs. A signature, according to this 

approach, represents the fragments of code that exist in some or all variants of a virus 

family. For some simple virus families such as Cascade virus, etc., one signature may be 

sufficient to identify all variants (Beaucamps, 2007). For other viral/worm families such 

as Trident Polymorphic Engine (TPE), Code Red worm, Chameleon virus, Whale virus, 

etc., more than one signature may be required to capture all variants (Kim & Karp, 2004; 

Beaucamps, 2007). As an instance of a polymorphic string-based method, consider the 

structurally-related set of sentences: 

The boy saw the girl 

The girl was seen by the boy 

We see that the boy saw the girl 

We see that the girl was seen by the boy 

Signature extraction is similar to looking for the two patterns ‘boy saw girl’ and ‘girl seen 

boy’ that will help to detect all four sentences as belonging to the same structural set. If 

options and alternatives are permitted, ‘{we see} [boy|girl] [saw|seen] [boy|girl]’ is an 

approximate regular expression (signature) for all four sentences that will also permit 

derivations of new structurally related sentences not so far encountered (e.g. ‘the girl saw 

the boy’). Nevertheless, viral signatures will need to take into account dependencies 

amidst non-adjacent code to deal with specific polymorphic attributes as well as possible 

rearrangements of code that modify the left-to-right order of signatures. Note that 

functionality (semantics) is excluded in these instances. For real viruses, functionality is 

important, but the hex code of viruses already encompasses semantic attributes because 

they exist in machine language. Although some polymorphic code goes deeper than 

mixing of word sequence patterns (as shown above) for malware such as Bistro virus, 

Dark Paranoid virus, etc. (Beaucamps, 2007). Based on the literature review presented in 

this thesis, there has been no such previous syntactic approach used in virus detection and 

signature generation, especially given the immense growth in the understanding of string-

dependent searching techniques in the field of bioinformatics during the last 20 years. 
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1.4 Problem Statements, Research Objectives and Questions 

This section provides the problem statement for the identification of polymorphic viruses 

along with their variants and the research objectives and questions. 

1.4.1 Problem Statements 

Commercial identification methods are presently not effective in identifying polymorphic 

viruses due to two major rationales. Primarily, the group of all instances belonging to a 

polymorphic virus might determine a formal language in non-finite state (Filiol E. , 2007; 

Naidu & Narayanan, 2016) and thus cannot be detected adopting regular expressions 

(Chaumette, Ly, & Tabary, 2011; Wagner, Rind, Thür, & Aigner, 2017). Secondarily, 

semantic-dependent signature extraction methods can be inadequate in dealing with 

unknown polymorphic instances due to alterations in their behaviours using suitable code 

rearrangement independent of their unaltered functionalities. The existent signature 

extraction process is either by a human expert or learning procedure that is, so far, 

unexplored. The learning procedure is based on rules that are defined beforehand for the 

kind of signature to be extracted (United States Patent No. US11523199, 2006). Learning 

sophisticated language categories, such as context-free or regular grammars, are not 

beneficial through positive inputs alone (Gold, 1967). Nevertheless, it is unknown what 

an optimal negative category of malware it shall be (for instance, malware files with their 

payload eliminated, random files, non-malware files, etc.). So far, commercial AVS 

products have practically maintained pace with new instances regardless of the attempts 

needed to manually develop signatures presumably for the reason that polymorphic 

instances to date have demonstrated low levels of complexity (Naidu & Narayanan, 

2016). But the growing use of complex techniques by virus writers might rapidly make 

this technique uncontrollable (Chaumette, Ly, & Tabary, 2011; Naidu & Narayanan, 

2016). 

Also, as stated earlier in page no. 1, the automatic extraction of malware signatures for 

use in AVSs remains a relatively unexplored area of cyber security, despite the urgent 

need to find effective solutions to the increasing number and severity of attacks 

(Symantec, 2014; Naidu, Whalley, & Narayanan, 2017) that now pose a global risk 

(WEF, 2012). In this thesis, the nature of this research is to examine if string-searching 

algorithms, such as the SWA, be able to give rise to string-based syntactic techniques for 

the automatic extraction of syntactic virus signatures, not only for known 

(polymorphic/metamorphic) virus instances (Pk – see page no. 28 for more details) but 
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also for unknown future (polymorphic/metamorphic) virus instances (Px – see page no. 

28 for more details). 

1.4.2 Research Objectives 

The research objectives of this thesis are constructed as follows: 

• To review literature on malware detection techniques employed by modern 

commercial AVSs and previous research into malware detection. 

• Develop techniques that can extract syntactic viral signatures from malware variants 

and measure their performance by testing them against malware datasets. 

• To integrate biosequence analysis techniques into existing approaches of automatic 

signature extraction for malware detection. 

• To assess the performances of modern commercial AVSs by testing them against 

malware datasets and comparing them with proposed approaches. 

1.4.3 Research Questions 

The research questions related to this thesis are formulated as follows: 

Q1: Can the syntactic viral signatures extracted from the process of alignment techniques 

detect the known (Pk) and unknown (Px) variants of polymorphic malware families? Can 

such syntactic viral signatures outperform the detection capabilities of the current 

commercial AVSs in the detection of polymorphic malware families? (Chapter 4) 

Q2a: Which process of alignment techniques (i.e. local – SWA or global alignment - 

NWA) would perform better in the detection of polymorphic known (Pk) variants? Can 

these alignment techniques generate new syntactic viral signatures for viruses that were 

not previously encountered? (Chapter 5 – Part-I) 

Q2b: Can the process of alignment techniques with different combinations of gap 

penalties identify new syntactic viral signatures for both known (Pk) and unknown (Px) 

variants of polymorphic malware families? (Chapter 5 – Part-II) 

Q2c: Which substitution matrices, such as BLOSUM (BLOck SUbstitution Matrix), PAM 

(Point Accepted Mutation), can lead to new syntactic viral signatures with higher 

accuracies in the detection of polymorphic known (Pk) variants? (Chapter 5 – Part-III) 

Q3: Which string representations (i.e. hex, DNA, aligned-DNA) produce syntactic viral 

signatures with higher accuracies in comparison to each other? Can these syntactic viral 
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signatures extracted from the process of data mining, such as NNge (Non-Nested 

generalised exemplars) algorithm supplementing the alignment techniques, detect the 

known (Pk) and unknown (Px) variants of a polymorphic malware family? (Chapter 6) 

Q4: Can the process of phylogenetics classify the syntactic viral signatures extracted from 

the process of biosequence analysis techniques, and can these classified syntactic viral 

signatures detect the known (Pk) and unknown (Px) variants of a metamorphic malware 

family? (Chapter 7) 

Although Chapter 5 – Part-I and III primarily focuses on identifying new syntactic viral 

signatures, the main aim of Chapter 5 – Part-1 is to determine whether local or global 

alignment performs better and that of Chapter 5 – Part-III is to determine which 

substitution matrices perform best with higher accuracies in the detection of malware 

variants. Additionally, the alignment tool adopted in this thesis to extract syntactic viral 

signatures puts sequence length restrictions on longer sequences (more details on page 

nos. 18, 78, 109 and 123). Therefore, these sub-chapters will only use known (Pk) variants 

of JS.Cassandra (Chapter 5 – Part-I and III) and W32.Kitti virus (Chapter 5 – Part-I) to 

test the efficiency, accuracy and effectiveness of the newly generated viral syntactic 

signatures. Efficiency, accuracy and effectiveness are measured with the help of test 

statistics such as sensitivity/recall, specificity, precision and F1 score (see page no. 59 for 

a more detailed description). 

In this thesis, the terms signature, meta-signature, and super-signature indicate different 

kinds of syntactic viral signatures and are defined as follows. A signature is a single string 

that can identify a single or (in some cases) a few known (Pk) malware variants, whereas 

a meta-signature is a string (or a common substring/pattern) that can identify most or all 

known (Pk) malware variants (Naidu, Whalley, & Narayanan, 2017). A super-signature 

is a string (or a common substring/pattern) that can identify not only all the known (Pk) 

malware variants but also some or all unknown (Px) (or new) malware variants. 

1.5 Hypothesis and Proposed Approach 

1.5.1 Drawbacks of Previous Approaches 

It is argued that the limitations of most previous approaches are that a similar malware 

activity can be exhibited in various physical code structures such that only semantic 

analysis will unveil commonalities amid instances of a similar malware. This rationale 
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might be suitable for future, intricate malware types with complicated transmutation 

methods. The understanding amidst former and existent malware types, nevertheless, is 

that existing transmutation methods do easy and uncomplicated modifications to produce 

unseen instances and these might be sufficient to evade identification adopting semantic-

dependent signatures. This thesis claims that by employing string-based syntactic 

approaches such as the string matching SWA and rule-based NNge classifier algorithm, 

these limitations can be overcome. 

1.5.2 Hypothesis 

The research hypothesis (as stated earlier on page no. 9) in this thesis is that, it is feasible 

to detect syntactic forms for an existent malware that support to establish if a part of 

malware script possesses a kind of malware along with its malicious variants. Similar 

research hypothesis can be applied on other malware types such as worms, etc. and will 

be analysed later as a future work. If this hypothesis fails to address uncomplicated 

polymorphic instances of a virus type, it is implausible that syntactic forms/patterns are 

identified for further complicated polymorphic instances. To test this research hypothesis, 

the proposed approach is applied to a more complex polymorphic malware, such as 

metamorphic malware in Chapter 7. Generally, metamorphic malware variants are the 

more evolved versions of polymorphic malware (Beaucamps, 2007). 

1.5.3 Smith-Waterman Algorithm (SWA) 

The string matching SWA will be used in Chapters 4 to 7 to perform the pairwise local 

alignment. Pairwise alignment is a process of either locally or globally aligning two 

sequences in order to determine the regions of similarities (or conserved regions) that 

may indicate structural, functional and/or evolutionary relationships between the 

sequences (Koyutürk, 2005). Techniques such as string matching are used to detect one 

or several locations inside a string/sequence where other strings/sequences know as 

patterns/substrings are identified. Let ‘∑’ be a letter/code (a character) that is a finite set. 

Traditionally, the patterns/substrings and searched string both are vectors of elements of 

‘∑’. Further, the ‘∑’ might be a general alphabet, that is, for example, the alphabets A to 

Z in the known Latin format. Many other techniques might adopt binary codes/numbers 

(that is, ∑ = {0,1}) and in the field of bioinformatics/computational biology, DNA codes 

(that is, ∑ = {A,T,G,C}) (Charras & Lecroq, 1997). 

In this thesis, to extract the most commonly occurring pattern/substring from the 

polymorphic virus variants belonging to the same family, SWA was adopted. The 
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algorithm of SWA performs sequence alignment locally amidst the two sequences/strings 

to search identical segments/sections amidst the two sequences/strings. Those two 

strings/sequences can be an amino acid (protein) or a DNA (nucleotide) sequence/string. 

The algorithm of SWA searches the most paired/matched sub-sequences/substrings amid 

the pattern and search string. Despite scrutinising the entire string/sequence, the algorithm 

of SWA extracts segments of every possible lengths, subsequently differentiates as well 

as improves the rate of similarity. The algorithm of SWA can search for exact matches or 

replaced matches (that is, a code/character within the sequence/string can be replaced by 

a new code/character, together with no code/character (that is gap), inside the 

substring/pattern, and conversely). The algorithm of SWA is an adaptation of the NWA 

(that is Needleman-Wunch algorithm) (Smith & Waterman, 1981). They both are 

considered as dynamic programming algorithms. Typically, the algorithm of SWA is 

guaranteed to search the best/exact alignment locally with reference to the 

substitution/scoring technique that is being adopted (specifically, the substitution and gap 

scoring scheme). Surely there are several substitution/scoring matrices feasible and 

adopted by the algorithm of SWA like PAM, BLOSUM and IDENTITY (ID) substitution 

matrix. Nevertheless, the ID substitution matrix is adopted in most of the research 

experiments in this thesis to conduct exact/identical matching as it provides the most 

parsimonious method in that no assumptions are made as to how symbols may be related 

to each other. The outcomes from the process of SWA are known as ‘alignments’ because 

one or the other or both sequences/strings could be altered by the process of gap insertions 

to generate the best/exact pattern/substring matches. SWA is compared to NWA in 

Chapter 5 – Part-I to determine which dynamic programming performs well. Moreover, 

a traditional version of SWA (Smith & Waterman, 1981) is used in this thesis and it is 

guaranteed to identify the best optimal local alignment (i.e. common 

substrings/signatures) results (Pham, 2011). 

Pairwise local alignment will be carried out using a tool called ‘JAligner’ (Moustafa, 

2010). As stated earlier, ‘JAligner’ is a freely available open-source Java-based tool that 

adopts the algorithm of SWA. 

1.5.4 NNge 

A data mining rule-based classification algorithm known as NNge will be employed in 

Chapter 7 to generate rules, and the rules will later be adopted to extract common 

substring/pattern using the SWA from the polymorphic virus variants belonging to the 
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same family. NNge is a new algorithm that generalises exemplars without overlap or 

nesting. NNge is an expansion of Nge (Salzberg, 1991), which conducts generalisation 

by combining exemplars (Panda & Patra, 2009). A learning method based on generalised 

exemplars begins with a collection of A instances (i.e. training instances), {I1, I2, ….., IA}, 

each one being distinguished by the values of m attributes (the attributes can be nominal, 

numerical or a combination of both) and a class label. The goal of the learning method is 

to create a collection of generalised exemplars (i.e. hyperrectangles), {G1, G2, ….., GB}. 

A hyperrectangle covers a collection of instances, and each of its dimensions is defined 

either by a set of categorical values (i.e. nominal values) or by a set of quantitative values 

(i.e. numerical values). 

In a specific example when a hyperrectangle covers just one instance it is regarded to be 

non-generalised exemplar (Zaharie, Perian, & Negru, 2011). An instance of a 

hyperrectangle is shown below (Martin, 1995): 

class B if p1 = (2 or 4 or 6) AND 

    p2 = (22)  AND 

    (p3 >= 9 AND p3 <= 32) AND 

    p4 = (b or c) 

Within the NNge algorithm (Martin, 1995) (see below), creating the collection of 

hyperrectangles starting from the training collection is an accumulative procedure, where, 

for every instance In the subsequent three stages are consecutively enforced, i.e. 

classification, model adjustment and generalisation. The classification stage locates the 

hyperrectangle Gb which is nearest to In. The model adjustment stage divides the 

hyperrectangle Gb if it covers an inconsistent instance. The generalisation stage extends 

Gb in sequence to cover In, at most if the generalised instance does not overlap/cover an 

inconsistent instance/hyperrectangle (Zaharie, Perian, & Negru, 2011). 

NNge Algorithm: 

For each instance In in the training collection do: 

Locate the hyperrectangle Gb which is nearest to In /*Classification Stage*/ 

IF D(Gb,In) = 0 THEN 
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IF class(In)≠class(Gb) THEN Divide/Split(Gb,In) /*Adjustment Stage*/ 

ELSE G’:=Extend(Gb,In)                     /*Generalisation Stage*/ 

 IF G’ overlaps with inconsistent hyperrectangles  

  THEN add In as a non-generalised exemplar 

  ELSE Gb:=G’ 

The classification stage is formulated based on the distance D(I,G) between an instance 

I=(I1, I2, ….., In) and a hyperrectangle G as shown in Eq. (3.1). 

𝐷(𝐼, 𝐺) =  √∑ (𝑤𝑘

𝑑(𝐼𝑘, 𝐺𝑘)

𝐼𝑘
𝑚𝑎𝑥 −  𝐼𝑘

𝑚𝑖𝑛
)

2𝑛

𝑘=1

                       𝐸𝑞. (3.1) 

In Eq. (3.1), I
min

k
  and I 

max

k
 indicates the set of numerical values across the training 

collection which corresponds to attribute k. For categorical (i.e. nominal) attributes, the 

length of this set is a constant value of 1. Gk is the interval [G
min

k
 , G

max

k
 ] if Ik is a 

quantitative attribute, and is a list of values if Ik is a categorical attribute. The distance 

between the corresponding hyperrectangle i.e. the ‘side’ and the attribute values is 

formulated based on the type of the attribute as illustrated in Eq. (3.2). 

𝑑𝑛𝑜𝑚(𝐼𝑘 , 𝐺𝑘) = {
0,
1,

 
𝐼𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑑𝑛𝑢𝑚(𝐼𝑘 , 𝐺𝑘) = {

0,

𝐺𝑘
𝑚𝑖𝑛 − 𝐼𝑘 ,

𝐼𝑘 −  𝐺𝑘
𝑚𝑎𝑥 ,

𝐺𝑘
𝑚𝑖𝑛 ≤ 𝐼𝑘 ≤ 𝐺𝑘

𝑚𝑎𝑥

𝐼𝑘 < 𝐺𝑘
𝑚𝑖𝑛

𝐼𝑘 > 𝐺𝑘
𝑚𝑎𝑥

𝐸𝑞. (3.2) 

The constant wk signifies weights corresponding to attributes and can be regulated 

throughout the training procedure (Salzberg, 1991) or can be assigned to the mutual 

information (Zaharie, Perian, & Negru, 2011; Wettschereck & Dietterich, 1995). 

The adjustment stage is implemented when a previously created hyperrectangle covers an 

instance associated with a different class. To circumvent the creation of nested 

hyperrectangles NNge regulates the current hyperrectangle so that the inconsistent 

instance is eliminated. This is accomplished by splitting the hyperrectangle into two or 

more hyperrectangles and potentially into a few isolated variants/instances. The 

generalisation stage comprises of modifying the ‘border’ of the nearest hyperrectangle 
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possessing the same class as the training case in order to cover it. The extension is 

obtained only when the newly split hyperrectangle does not overlap with hyperrectangles 

possessing a separate class. If the overlap is detected the training case is included in the 

model as a non-generalised exemplar (Zaharie, Perian, & Negru, 2011). 

Rule extraction adopting the NNge classifier will be conducted with the use of an open 

source software product known as Weka (Waikato Environment for Knowledge Analysis) 

Weka is a tool that provides a collection of machine learning algorithms for performing 

data mining tasks (Frank, Hall, & Witten, 2016). 

1.5.5 Limitations of Proposed Approach and Possible Solutions 

There are three limitations related to the approaches proposed in this thesis. One is that 

the string matching search using the SWA finds only the most conserved regions, from 

left to right, between two variants in DNA representations resulting in meta-signatures 

(syntactic viral signatures) based solely on syntactic structural commonalities. Such meta-

signatures are not likely to successfully identify all unknown (Px) variants. While meta-

signatures obtained using this approach have been shown to successfully identify 

unknown (Px) variants of the Win32.Kitti and Win32.Cholera polymorphic viruses with 

high precision and recall (see Table 5.10 – page no. 101), it is unlikely that such an 

approach would completely identify all the unknown (Px) variants of a particular family. 

However, it was discovered in this research that in the case of JS.Cassandra signatures 

generated using this approach gave high precision for the randomly generated file but a 

low precision for non-malicious (Pu) files (see Figures E.1-E.3 – page no. 229). The 

reason for these results is that all of the JS.Cassandra non-malicious files (Pu) were still 

executable and as a result, still contain a potential threat. A rule-based approach can be 

used to overcome the limitation of signatures generated in left to right order. Such an 

approach tends to use either a divide and conquer (top-to-bottom) approach or 

alternatively, separate and conquer (bottom-to-top) approach. These methods have the 

potential to find common substrings with deep syntactic structural commonalities and 

ensures that every instance (i.e. every polymorphic variant) of the original training set 

(the variants in DNA representation) is covered by at least one (single) rule, thereby 

reducing/nullifying the false positive and false negative rates (Witten, 2014; Koklu, 

Kahramanli, & Allahverdi, 2015). 

The primary objective of data mining is to search and extract meaningful and valuable 

information, sometimes as rules that represent the patterns and clusters in data, from a 
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vast selection of data (Koklu, Kahramanli, & Allahverdi, 2015; Heikki, 1997). 

Classification is one of the most common tasks in data mining that uses machine learning 

techniques, where, considering two or more different classes of sample data, a classifier 

needs to be constructed by the learner to distinguish between the different classes. Once 

a classifier has been trained it provides a model that can be used to anticipate the 

class/group of unseen data. For large datasets, a common approach involves merging 

association rule mining and classification to produce more efficient and accurate 

classification systems. Association rule mining helps to identify important relationships 

and association in data. The benefits of this combined rule-based classification method 

are the rules that are derived from decision trees, and both the trees and the rules are 

simple to interpret. Furthermore, new occurrences can be classified quickly (Koklu, 

Kahramanli, & Allahverdi, 2015; Datta & Saha, 2011). Rule-based common substrings 

(meta-signatures) obtained in this way might potentially capture knowledge which makes 

the identification of new variants possible. Thus, the rule-based NNge approach is 

explored in this research and detailed in Chapter 6 (see page no. 121). 

The second limitation worth noting is that a string matching search using the SWA is 

‘pairwise’ and only allows alignment of two sequences at a time. Only the regions of 

similarity in these sequences are considered in extracting the signatures rather than using 

knowledge of all the known (Pk) variants. A rule-based data mining approach allows three 

or more sequences at a time to be used to extract signatures through (single) rules. This 

means a rule-based approach is capable of identifying variation (and commonality) in 

patterns of residue i.e. ‘conserved regions’ for all the variants employed in the training 

phase. 

Third (limitation), using the SWA gives ‘out of memory’ error and eventually crashing 

or freezing the software product when aligning larger (DNA/protein) sequences. This 

means that the time and potential for error are increased because to avoid these memory 

issues - meta-signatures must be extracted by performing several separate alignments. 

Larger sequences (greater than 300,000 sequence length) had to be broken down into 

several smaller sub-sequences and then pairwise alignments run on those sub-sequences. 

There are currently no openly available online tools or software products that can perform 

pairwise alignment of larger sequences using the ID substitution matrix (and/or are based 

on the SWA) except for JAligner, and even JAligner cannot cope with all the sequences 

which represent malware variants used in this research. The proposed rule-based method 
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allows several DNA sequences to be input at once and overcomes the issues associated 

with alignment and long sequences. By generating (single) rules that identify deep 

structural commonalities from the input DNA strings effective signatures can be extracted 

(using alignment techniques) which are shorter and require fewer runs of pairwise 

alignment in subsequent steps. 

1.6 Thesis Description 

Coming forward to the four research objectives and questions (discussed in Section 1.4), 

the essential motivation underlying those research objectives and questions have been 

discussed. The main objective of this thesis is to examine if string searching algorithms, 

like the SWA, be able to give rise to syntactic techniques for the automatic extraction of 

syntactic virus signatures/substrings/patterns – not only for known (Pk) malicious variants 

but also for unknown future (Px) malicious variants. In the concluding section (i.e. Section 

8.5) of this thesis, whether string searching algorithms of greater sophistication has given 

any advantage is evaluated. The following subsections (i.e. Subsections 1.6.1-1.6.3) will 

explain the contribution of this thesis, summarise the organisation of the rest of the thesis 

as well as the list of related publications. 

The work in this thesis uses malware datasets that are originally 5-11 years old but their 

variants were generated during the course of this research and were generated on a 

Windows 10 environment. These datasets were used in Chapters 4-7. These chapters 

focused on these old datasets because of the following reasons: 

• The experiments from Chapters 4, 5, 6 (Part-II) and 7 show that modern AVSs still 

cannot completely detect the variants belonging to these virus datasets (Naidu & 

Narayanan, 2016; Naidu, Whalley, & Narayanan, 2017). 

• There is a lack of malware samples (Dumitraş & Neamtiu, 2011) with the capability 

of generating new variants.  

• Furthermore, the aim of this study is to detect the known (Pk) and unknown (Px) 

variants of a polymorphic malware family. Finding a new polymorphic (or any other) 

malware family with proper documentation on its implementation process (Preda & 

Maggi, 2017), variant generation and original source code (Upchurch & Zhou, 2013) 

is difficult.  

However, a more recent malware dataset is used in Chapter 8. This dataset belongs to a 

metamorphic malware family. Its variants were also generated on a Windows 10 
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environment. Two of the four virus families employed in this thesis are a proof of concept 

malware, namely, Transcriptase metamorphic virus (Musale, Austin, & Stamp, 2015; 

Troia, Visaggio, Austin, & Stamp, 2016) and JS.Cassandra polymorphic virus (SPTH, 

2004; SPTH, 2015). 

Some of the malware nowadays are hybrid and may not be purely viruses or worms 

(Fosnock, 2005). The work in this thesis purely focuses on polymorphic (Chapters 5-7) 

and metamorphic (Chapter 8) viruses and doesn’t deal with hybrid or mixed types of 

malware. The main aim of this thesis is to detect the known (Pk) and unknown (Px) 

variants of polymorphic and metamorphic malware through syntactic signatures. Analysis 

of hybrid malware will be considered as a future work. 

The key differences between the previous work (Narayanan, et al., 2012; Chen, et al., 

2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan, et al., 2013b) and the 

work that is conducted in this thesis are as follows: 

• Previous work used pre-existing malware signatures for their experiments and current 

work used the entire hexadecimal (hex) dumps from malware variants. 

• Previous work applied biosequence analysis techniques on the malware signatures 

and current work applied biosequence analysis techniques on the hex dumps of the 

malware variants. 

• Previous work generated JavaNNS/PRISM rules which distinguished viruses from 

worms. Current work generated viral syntactic signatures that were used to detect 

known (Pk) and unknown (Px) variants of a malware family. 

• Previous work adopted a different representation approach for converting hex data 

into amino acid in comparison to current work. 

• Previous work used global alignment (i.e. adopting Needleman-Wunsch algorithm) 

to align their sequences. Current work used both local (i.e. Smith-Waterman 

algorithm) and global (i.e. Needleman-Wunsch algorithm) alignment but mainly used 

local alignment to align its sequences.  

• Previous work used sequence alignment techniques with fixed substitution matrices 

(i.e. GONNET and BLOSUM or None) and default gap penalties to align the malware 

signatures and did not extract the substrings for signature testing purposes, in the same 

way as is done by the work conducted in this thesis. Current work used sequence 

alignment techniques with different substitution matrices (but mainly used ID 
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substitution matrix) and explored the effects of using different gap open and gap 

extend penalties. 

• Previous work did not use the consensus (a by-product of sequence alignment) to 

extract signatures (i.e. common substrings) for signature testing purposes but the 

current work did. Previous work used the consensus for data mining and classification 

purposes. 

• Previous work did not compare their results with the other state of the art techniques. 

But current work compared its results with the other state of the art AVSs. 

• Previous work did not measure its efficiency and effectiveness of their techniques but 

current work did by calculating the test statistics, such as precision, sensitivity, 

specificity, etc. 

1.6.1 Thesis Contribution 

The contribution of this thesis to add to the existing knowledge can be outlined as follows: 

1. A comprehensive literature review of previous work and malware detection 

techniques adopted by the state of the art AVSs are highlighted in Chapter 2. 

2. Chapter 3 contributes to this thesis by discussing the research method adopted in this 

study. 

3. A detailed analysis of the syntactic process of a string-based method for identifying 

several polymorphic virus variants is described in Chapter 4. The proposed string-

based syntactic approach to the extraction of syntactic virus meta-signatures (common 

substrings) automatically is shown to identify each and every known (existing) 

polymorphic virus variants (Pk) belonging to JS.Cassandra virus family. 

4. In Chapter 5, further detailed analyses of the syntactic process of a string-based 

method for identifying several polymorphic virus variants supplemented by the 

following three sub-chapters (parts) are described: 

a. By adopting the two different dynamic programming approaches (Part-I) 

b. By studying the effects of gap open and gap extend penalties using SWA (Part-

II), and 

c. By adopting SWA with several different substitution matrices (Part-III). 
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This chapter demonstrates that through the proposed string-based syntactic 

approaches, it is possible to extract meta-signatures/super-signatures after applying 

data mining classification techniques such as PRISM to the extracted signatures. Such 

meta-signatures/super-signatures can, in turn, be employed as rule-based string 

templates for creating more specific, variant-oriented polymorphic malware 

signatures for detecting polymorphic malware (and its known (Pk) variants) belonging 

to the same family. In other words, the work presented in this chapter has shown how 

to progress from viral code consensus identification for a set of executables for the 

same virus (training set) to the generation of signatures in either regular expression or 

rule format for identification of other known (Pk) variants of the same virus (test set). 

5. Chapter 6 addresses some of the limitations of previous work demonstrated in 

Chapters 4 and 5 (Naidu & Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu & 

Narayanan, 2016c). This chapter demonstrates how representing polymorphic 

malware as sequences of DNA allows traditional data mining and sequence alignment 

approach to extract rule-based meta-signatures that help to identify known/unknown 

(Pk/Px) variants of that particular polymorphic malware family. 

6. Chapter 7 focuses on applying string-based syntactic detection method on detecting 

metamorphic malware. Previous work mainly focused on detecting the known (Pk) 

and unknown (Px) variants of several polymorphic malware families. There was no 

attempt made to test the capability of string-based syntactic detection method on 

detecting metamorphic malware and this chapter makes an attempt to do so. This 

chapter demonstrates the detection of known (Pk) and unknown (Px) variants of a 

metamorphic malware family using syntactic viral signatures extracted adopting the 

techniques proposed in previous chapters. This chapter also distinguishes the 

syntactic viral signatures. 

The intention of this thesis is to aid the global fight against cybercrime through 

understanding the mechanisms leading to new polymorphic variants so that appropriate 

automatic signature extraction techniques can be developed to help reduce their impact. 

1.6.2 Thesis Structure 

The remainder of this thesis is structured into the following six chapters: 

Chapter 2: A detailed introduction to classification of malware, such as virus is supplied 

in this chapter. A review of previous research into malware malware detection is dicussed. 
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The classification of viruses by their masking strategies is discussed. Subsequently, the 

discussion in depth about polymorphism, classification of polymorphism, levels of 

polymorphism, mutation engines, and the polymorphic decryptors. Also, discussion about 

malware detection techniques adopted by the state of the art AVSs and also, emphasises 

on the limitations of those detection techniques. The chapter concludes by discussing the 

history of malware and validation of tool that is adopted in this thesis. 

Chapter 3: This chapter covers sections such as the research design and method that are 

adopted in this thesis, the design of the proposed approach, discussion of results and 

evidence, and analysis and evaluation of approaches. 

Chapter 4: The aim of the research described in this chapter will be to explore effective 

and efficient syntactic (string-based) approaches (without reverse engineering) of 

sequence matching algorithm for the detection of all new (unknown) or some (known) 

polymorphic virus variants automatically adopting the SWA with ID substitution matrix. 

SWA is used extensively in bioinformatics for sequence alignment (finding common 

subsequences or consensuses among a set of variable length sequences). 

Chapter 5: The aim of the research described in this chapter is to explore in depth, the 

efficient and effective (string-based syntactic) bioinformatics approaches (without 

reverse engineering) of sequence matching algorithm for the detection of all new 

(unknown) or some (known) polymorphic virus variants automatically using the SWA, 

in three parts. 

• In Part-I, two different dynamic programming approaches, that is, the Needleman-

Wunsch algorithm (NWA) and the SWA are adopted. The aim here is to compare the 

two different dynamic programming approaches and to determine which one performs 

better. Only two commonly used traditional alignment techniques (Lal & Verma, 

2017; Prasad & Jaganathan, 2018) are considered in this part for the purpose of global 

and local alignments as other existing alignment techniques are basically 

implementations of these techniques (Dohi, Benkrid, Ling, Hamada, & Shibata, 2010; 

Geers, Çağlayan, & Heij, 2013; Tucci, O’Brien, Blott, & Santambrogio, 2017; Patel, 

Gandhi, & Bhatti, 2017) that produce similar results (as shown in Section 2.4 – see 

page no. 48) and are not considered in this part. 

• In Part-II, the approach from Chapter 4 is further examined to see whether string 

searching algorithms of greater sophistication, that is, the SWA with different 
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combinations of gap open and gap extend penalties, be able to give rise to syntactic 

techniques for the extraction of syntactic virus signatures automatically ˗ not only for 

known polymorphic virus variants (Pk) but also for unknown future (Px) virus 

variants. 

• In Part-III, the approach from Chapter 4 is further refined by adopting the SWA with 

several different substitution matrices and to determine which one performs better 

with higher accuracies and generates new syntactic viral signatures. 

Chapter 6: Automatic signature generation has concentrated mainly on semantics rather 

than syntax because of the structural variety shown by viruses in general and polymorphic 

viruses in particular. Initial work (demonstrated in Chapters 5 and 6) (Naidu & 

Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu & Narayanan, 2016c) on string-

based syntactic approach using the SWA of representing the hexadecimal dumps of a 

polymorphic malware and its known (Pk) variants into DNA sequences was promising in 

a number of ways. The aim of the research described in this chapter is to address some of 

the limitations of that work and to investigate a syntactic structure approach to automatic 

signature extraction using data mining algorithm (and sequence alignment approaches). 

Non-nested generalised exemplars (NNge) are used (as a data mining algorithm) to 

extract rule-based meta-signatures for the detection of all new (unknown) or some 

(known) polymorphic virus variants belonging to the same family automatically. Three 

different sets of experiments are conducted in this chapter. 

Chapter 7: A phylogenetic-inspired signature-based syntactic detection method is 

proposed in this chapter. The proposed method follows the concept of automatic signature 

extraction from previous work (Chapters 4-6) of generating malware patterns (syntactic 

viral signatures) in the form of “regions of similarities” (i.e. conserved regions) using 

sequence alignment techniques. Syntactic viral signatures are extracted from the results 

of sequence alignments by applying alignments on a small group of metamorphic 

malware variants belonging to the Transcriptase family. The same group of metamorphic 

malware variants are again used to generate a phylogenetic tree to determine its 

metamorphic relationships. The result of phylogenetic tree analysis is later used in the 

classification of syntactic viral signatures in order to detect the variants of Transcriptase 

family both systematically and thoroughly. 

Chapter 8: The conclusion is described in this chapter, followed by the overview of the 

work performed in this thesis. Lastly, the objectives for future work are described. 
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1.6.3 Publications 

The five research papers below have been composed and published throughout the 

doctoral study of this research thesis (Naidu & Narayanan, 2016a; Naidu & Narayanan, 

2016b; Naidu & Narayanan, 2016c; Naidu, Whalley, & Narayanan, 2017; Naidu, 

Whalley, & Narayanan, 2018). 

1. Naidu, V., and Narayanan, A., A syntactic approach for detecting viral polymorphic 

malware variants, Intelligence and Security Informatics (Springer – LNCS 9650), 

Eleventh Pacific Asia Workshop (PAISI 2016), Auckland, New Zealand, pp. 146-

165, April 19, 2016 (Naidu & Narayanan, 2016a). No CORE ranking is available for 

PAISI workshop. Although the H-Index of Lecture Notes in Computer Science 

(LNCS) is 251, which was obtained from the Scientific Journal Rankings (SJR) – 

SCImago. The work reported in chapter four contributes to this paper. 

2. Naidu, V., and Narayanan, A., Using Different Substitution Matrices in a String-

Matching Technique for Identifying Viral Polymorphic Malware Variants, in the 

Proceedings of IEEE World Congress on Computational Intelligence (WCCI – CEC 

2016), Vancouver, Canada, July 24-29, 2016 (Naidu & Narayanan, 2016b). The 

CORE2018 conference ranking of IEEE CEC conference is rank B. The work 

reported in chapter five – part three contributes to this paper. 

3. Naidu, V., Whalley, J., and Narayanan, A. (2017). Exploring the Effects of Gap-

Penalties in Sequence-Alignment Approach to Polymorphic Virus Detection. Journal 

of Information Security (JIS), 296-327. The Google-based Impact Factor of JIS 

journal is 2.43. The work reported in chapter five – part two contributes to this paper. 

4. Naidu, V., and Narayanan, A., Needleman-Wunsch and Smith-Waterman Algorithms 

for Identifying Viral Polymorphic Malware Variants, in the Proceedings of the 

Fourteenth IEEE International Conference on Dependable, Autonomic and Secure 

Computing (DASC 2016), Auckland, New Zealand, August 8-12, 2016 (Naidu & 

Narayanan, 2016c). The CORE2018 conference ranking of IEEE DASC conference 

is rank C. The work reported in chapter five – part one contributes to this paper. 

5. Naidu, V., Whalley, J., and Narayanan, A. (2018). Generating Rule-Based Signatures 

for Detecting Polymorphic Variants Using Data Mining and Sequence Alignment 

Approaches. Journal of Information Security (JIS), 265-298. The Google-based 
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Impact Factor of JIS journal is 2.43. The work reported in chapter six contributes to 

this paper. 

There is now a clear statement about my contribution to these publications in 1.6.3: 

“For all five papers, I extracted and prepared all the data, ran all the relevant software, 

recorded all the output and analysed all the results with supervision from my two PhD 

supervisors. In all cases, I provided the first full draft, responded to all supervisor 

comments, submitted the articles as first named author, corresponded with the editor on 

responses to referees and helped to prepare the final version for submission. For the three 

conference papers, I made the oral presentations. My contribution to each of these 

publications is 80% or over.”  
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Chapter 2 Malware, Polymorphic Malware, and their 

Detection Approaches 

This chapter provides literature review of classification of malware together with their 

masking strategies and previous research into malware detection. This chapter also 

discusses in depth about polymorphism, classification of polymorphism (based on both 

syntactic and semantic reconstruction), levels of polymorphism, mutation engines, 

polymorphic decryptors and metamorphism. Lastly, the state of the art malware detection 

approaches along with their limitations are discussed. Additionally, information 

regarding the materials and tools, such as malware datasets, alignment tool, etc. used in 

thesis can be found in Appendix C (see page no. 224) and are not discussed in this section. 

2.1 Classification of Malware and Recent Research into Malware 

Detection 

Based on a malware’s mode of operation, it can be divided into several classes. There are 

three features of malware, and they are as follows (Aycock, 2006): 

1. Self-reproducing malware: Malware with this kind of feature when active tries to 

generate by making new instances, or duplicates of itself (Aycock, 2006). 

2. Population expansion of malware: This feature of a malware reports the overall 

variation in the number of new occurrences due to self-reproduction. Malware without 

this self-reproducing feature will on all occasions have zero population expansion, 

but malware with a zero population expansion may self-reproduce. 

3. Parasitic malware: For an existing malware with this kind of feature, it needs some 

additional executable code. ‘Executable’ in this instance can be whatever that can be 

executed, like applications with binary code, decoded code, a disk with a boot block 

code, etc. 

‘Virlock’, has been identified the first polymorphic ransomware that self-replicates but 

also reacts as a parasitic malware. Thus, ‘Virlock’ has all three of the features defined by 

Aycock (2006). There are only six variants of ‘Virlock’ known to have been detected by 

security experts (Paganini, 2014). 

In this section, the focus is primarily on viruses as this malware type is employed for 

experimental purposes in this thesis in order to evaluate a proposed syntactic approach to 

malware detection. 
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2.1.1 Virus 

A virus is a self-reproducing malware and has the capability of population expansion and 

is also a parasitic malware. A virus, when executed, attempts to reproduce itself into 

additional executable code; when it advances, the code is reported to be infected. A virus 

is a malware. The infected code, when in the process, can infect fresh code one after the 

other. The key determining a feature of a virus is this self-reproduction into executable 

code that already exists (Aycock, 2006). The virus called ‘1260’ is the first notorious 

polymorphic virus, which came into existence, in 1989. The virus scanners at that time 

could not cope with the ‘1260’ virus because this virus could not be detected using a 

simple string searching approach (Szőr, 2005). ‘Tequila’ is the first universal 

polymorphic virus that came into existence in 1991 (Sharman, Krishna, Rao, & 

Upadhyaya, 2006). ‘ACG’ is the first DOS-based metamorphic virus that came into 

existence in 1998 (Rad, Masrom, & Ibrahim, 2012). 

Three types of polymorphic virus families and a metamorphic virus family are used in 

this thesis and are discussed in depth in Section 2.5, respectively. 

2.1.2 Previous Research into Malware Detection 

The aim of this thesis is to apply a purely syntactic exploration of the possibility of 

generating signatures automatically from malware source code without the need for 

semantic analysis or information. 

The task of a syntactic learning system for signature generation of polymorphic malware 

using hex code only (i.e. no execution traces) is specified below (see Figure 2.1): 

(a) From the code of a set of seen variants Ps, automatically generate signatures to identify 

unseen variants Pu, where Ps and Pu form currently known variants Pk. 

(b) From the code of a set of known variants Pk, automatically generate signatures to 

identify unknown variants Px for cross-validation. In this case, Px are code variants 

that have not been seen before for either training or testing purposes. 

The learning task is to maximise true positive rates and minimise false positive and false 

negative rates in both cases above. It is currently not known whether matching techniques 

that work well for (a) will continue to work well for (b), or whether bioinformatics and 

data mining techniques that look for patterns in underlying structure are required to allow 

generalisation to unknown (Px) variants. 



 

29 
 

 

Figure 2.1: Distribution of Polymorphic Malware Variants. 

The main body of research over the last fifteen years has concentrated on malware 

detection adopting semantic-based approaches and only a few adopting syntactic-based 

approaches. A list of approaches to automatic signature generation is presented in Table 

2.1. Most of the previous approaches deal with only a restricted set of variants (i.e. small 

datasets) (Devesa, Santos, Cantero, Penya, & Bringas, 2010; Lindorfer, Kolbitsch, & 

Comparetti, 2011; McLaughlin, et al., 2017) either belonging to the same malware family 

or multiple malware families and it is currently not known how generalisable these 

approaches are for trapping other variants of the same family, either unseen Pu or 

unknown Px (Naidu, Whalley, & Narayanan, 2017).  
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Table 2.1: Related research to the automatic signature generation in malware detection. 

Researchers/Application 
Type of 

Malware 

Type of 

Approach 
Description 

Wespi, et al. (1999) Intrusions Semantic 

Variable length patterns from training data consisting of system call 

traces of commands under normal execution were analyzed by a 

sequence-based algorithm called Teiresias for intrusion detection. 

Honeycomb (Kreibich & 

Crowcroft, 2004), 

Autograph (Kim & Karp, 

2004) and EarlyBird 

(Singh, Estan, Varghese, & 

Savage, 2004) 

Worms Syntactic 
Generate signatures that constitute individual adjoining byte strings 

(tokens). 

Polygraph (Newsome, 

Karp, & Song, 2005) 

Polymorphic 

worms 
Syntactic 

Identifies an array of tokens, a subsequence of tokens and Bayes 

signatures based on probabilistic methods to detect polymorphic 

worms. 

Nemean (Yegneswaran, 

Giffin, Barford, & Jha, 

2005) 

Worms Semantic Focus on identifying signatures that defend against worms. 

PAYL (Wang, Cretu, & 

Stolfo, 2005) 
Worms Semantic 

Produces subsequence signature tokens that associate ingress/egress 

payload notifications to detect the initial replication of worms. 

Hamsa (Li, Sanghi, Chen, 

Kao, & Chavez, 2006) 

Polymorphic 

worms 
Semantic 

Produces a set of signature tokens that can deal with polymorphic 

worms by investigating their invariant activity. 

ShieldGen (Cui, Peinado, 

Wang, & Locasto, 2007) 
Worms Semantic 

Generates network signatures for unseen vulnerabilities (worms) 

that are based on protocol-aware for instance. 

AutoRE (Xie, et al., 2008) Botnets Semantic 
Produces a spam signature creation architecture from spam emails 

that use botnets to detect them. 

Coull and Szymanski 

(2008) 
Masquerade Semantic 

Sequence alignment was used to identify masquerade detection by 

comparing ‘audit data’ with legitimate user signatures extracted 

from their actual command line entries. 

Scheirer, et al. (2008) 
Polymorphic 

worms 

Syntactic 

and 

Semantic 

Identification of many polymorphic worms and uses intrusion 

detection techniques such as sliding window schemes and 

instruction semantics. 

Wurzinger, et al. (2009) Botnets Semantic 

Identifies botnets that are under the influence of botmaster 

(malicious body) using network signatures by examining the 

response from a compromised host to a received command and by 

generating detection models. 

Botzilla (Rieck, Schwenk, 

Limmer, Holz, & Laskov, 

2010) 

Malware 

binaries 
Semantic 

Produces signatures for the malicious activities (traffic) created by 

a malware binary executed several times within a controlled 

domain. 

Zhao, et al. (2013) 

General 

malware 

datasets 

Semantic 

Generates signatures through an inverse transcoding method by 

converting the malware sequential information, such as system call 

sequences, propagation dataflow, etc. into amino acid sequences 

and then aligning them using multiple sequence alignment tool. 

ProVex (Rossow & 

Dietrich, 2013) 
Botnets Semantic 

Generates signatures to identify botnets that use encrypted 

command and control (C&C) systems after being given the keys 

and decryption routine employed by the malware be derived using 

binary code reuse strategy. 

FIRMA (Rafique & 

Caballero, 2013) 
Botnets Semantic Detects C&C systems but does not produce signatures for those. 

Ki, et al. (2015) 
Worms, 

Trojans, etc. 
Semantic 

Generates sequences that are typical API call sequence motifs of 

malicious activities belonging to several malware samples and 

employed multiple sequence alignment tool to align those malware 

samples to extract signatures. 

MalGene (Kirat & Vigna, 

2015) 

Evasive 

malware 

samples 

Semantic 

Uses sequence alignment techniques on two sequences of system 

call events belonging to two different analysis environments:  

One environment in which the malware evades the AVS, and the 

other in which it exhibits the malicious activities.  

These events are used to construct an ‘evasion signature’ using 

sequence alignment. 

Fazlali & Khodamoradi 

(2018) 

Metamorphic 

malware 
Semantic 

Extracts set of opcode features from disassembled malware code 

and applies data mining algorithms, such as J48, Random Forest, 

NB-Tree, LAD Tree, etc. to classify and generate decision trees. 

Decision trees are created based on statistics of every opcode 

feature that act as signatures and are used to detect malware. 

They claim that their proposed approach can lead to an extension of 

a detection system for generating an automatic signature for a 

specific malware class. 
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Some other related and selected previous work that primarily focuses on malware 

detection using data mining and bioinformatics approaches are shown in Table 2.2. Some 

research has been undertaken using data mining and bioinformatics approaches for the 

identification of polymorphic virus and its unseen Pu variants, let alone its unknown Px 

variants. Nonetheless, data mining with a novel approach to rule extraction for malware 

detection was first demonstrated by Chen, et al. (2012a; 2012b). 

In contrast to much of the work shown in Tables 2.1 and 2.2, a purely syntactic approach 

is independent of any prior semantic knowledge. Previous use of sequence alignment and 

data mining has for the most part been semantic in nature, depending on system behavior 

patterns (Kirat & Vigna, 2015) or using n-grams of bytes (Shim, Kim, & Im, 2015) instead 

of code or structural patterns for the detection of malware. Also, because of their semantic 

nature, the generalizability of the results to new Pu variants generated through 

polymorphism is unknown. A purely syntactic-oriented approach, on the other hand, is 

based on the intuition that most new Pu (polymorphic) variants are simple syntactic 

variations of existing malware. The complicating aspect is variable length variations. The 

‘expressive power’ of signatures can be estimated by detecting how well these signatures 

generalize to unseen Pu and unknown Px variants of the same family, all obtained through 

polymorphic (structural) alterations to the code. The benefit of a syntactic approach is 

that no semantics is needed. More importantly, as will be shown in this thesis, the number 

of malware training instances required to extract signatures for use against unseen Pu test 

instances is exceptionally small given the sequence alignment and data mining 

approaches adopted in the experiments. 
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Table 2.2: Some related and selected previous work in the detection of malware using data mining and bioinformatics approaches. 

Researchers Data Mining Data Set Type of Malware Type of Approach 

Chen, et al. (2012) 

Data Mining Classifiers Algorithms 

i.e. ANNs (Artificial Neural 

Networks) i.e. JavaNNS and Symbolic 

Rule Extraction i.e. J48 classifier 

60 malicious files, 30 belonging to 

virus group and 30 belonging to worm 

group. 

One family, with a total of 60 

malicious samples, 30 each for 

virus and worm categories. 

Extraction of hexadecimal (hex) sequences 

from viral and worm malicious files.  

Multiple sequence alignment using T-

Coffee was applied on the extracted hex 

sequences for data mining process. 

Prabha & Kavitha (2012) 

Data Mining Classifier Algorithms i.e. 

J48, KNN (K-Nearest Neighbours), 

Naïve Bayes. 

100 binaries out of which 90 were 

benign and 10 were malware binaries. 

15 subfamilies, with a total of 

1,056 malicious viral samples. 

Extraction of hexadecimal 

dumps/Extraction of byte sequences in 

terms of n-grams of different sizes 

Kumar & Mishra (2013) 
Data Mining Classifier Algorithms i.e. 

IBK (k-nearest neighbours classifier) 

Existing dataset: 323 malicious files 

with a combination of viruses and 

worms. 

New upcoming dataset: 323 malicious 

files with a combination of viruses and 

worms. 

Virus and Worm. 

Extraction of hexadecimal (hex) sequences 

from viral files and conversion of hex 

sequences into ASCII sequences.  

Applies multiple sequence alignment on 

the converted ASCII sequences for data 

mining process. 

Srakaew, Piyanuntcharatsr, & 

Adulkasem (2015) 

Data Mining Classifier Algorithm i.e. 

J48 by generating decision trees. 

Reference Data Set: 1,200 files in total 

out of which 900 are malicious, and 

300 are non-malicious. 

Application Data Set: 3,251 files in 

total out of which 2,951 are malicious, 

and 300 are non-malicious. 

Reference Data Set: Allapple, 

Podhuha and Virut viral families 

each containing 300 malicious 

samples. 

Application Data Set: Allapple, 

Podhuha and Virut viral families 

with 890, 8 and 2,053 malicious 

samples, respectively. 

Statistical Features Approach: Conversion 

of malicious and non-malicious files into 

hexadecimal sequences for extracting 

statistical aspects using n-grams of bytes. 

Abstract Assembly Approach: Conversion 

of malicious and non-malicious files into 

assembly instructions for extracting 

selected instructions using n-grams of 

interesting opcodes. 

Vu, et al. (2017) 

Data Mining Classifier Algorithms 

like Multilayer Perceptron (MLP), 

Gaussian Naïve Bayes (NB) and 

Support Vector Machine (SVM). 

Dataset: 9,690 samples in total out of 

which 9,390 were malware samples of 

Locker, Mediyes, Winwebsec, Zbot 

and Zeroaccess. 

Metamorphic malware samples. 

Detects metamorphic malware by analysis 

of Portable Executable (PE) with the 

“Longest Common Sequence” (LCS). 

Extracts four different features such as API 

calls, PE header, code sequences and DLLs 

import from malware executables. 

Applies data mining techniques to classify 

and separate the extracted features. 
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2.1.3 Classification of Viruses by Masking Strategies 

One other way of classifying viruses from both an AVS and a computer user’s perspective 

is in the ways viruses mask (or hide) their presence (Aycock, 2006). This type of strategy 

commonly adopted by viruses is simply known as masking. From this section onwards, 

the focus is primarily on simple polymorphism and complex polymorphism (i.e. 

metamorphism) strategies as the malware types that are employed in the experiments in 

this thesis use polymorphism (and metamorphism) as their masking strategy. More 

information on other types of masking strategies are discussed in Appendix A (see page 

no. 208). 

2.1.4 Polymorphism 

Many computer viruses use the approach of polymorphism to hide or obfuscate their 

existence (Hosmer, 2008). Polymorphism is an obfuscating technique that modifies the 

virus code and forms new mutations or variants of the virus. The mutation aims to hide 

the fact that the code contains a virus while still keeping its malicious functions intact. 

The viral code mutates using a polymorphic engine that changes the viral decryption 

routine using an obfuscation method such as inserting garbage code (see Figure 2.2). Each 

time the polymorphic engine is executed, it maintains its original algorithm but changes 

its code. 

Figure 2.2: The structure of a polymorphic malware (SANS Institute, 2003, p. 5). 

Hiding the existence of a computer virus is accomplished by encryption. When the 

polymorphic code gets executed, a decryption function inside the computer virus code 

decrypts the code thereby allowing its tasks to be executed. As soon as the tasks are 

successfully executed, the encryption function encrypts the decrypted code back to its 

original form to avoid AVS detection. Polymorphism does not work just because of the 

encryption. It works largely due to the modification of both the encryption and the 

decryption code, thereby creating a different form of a computer virus each time it 

replicates (Hosmer, 2008; Gragido & Elisan, 2012; Ye Y. , Li, Adjeroh, & Iyengar, 2017).  
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The first widespread computer virus that used a polymorphic engine was called ‘Tequila’ 

and was first discovered in 1991 (Sikora & Zelinka, 2017). The second-most commonly 

known polymorphic computer virus was written in 1992 by the hacker ‘Dark Avenger’ 

whose main intention was to avoid the technique of pattern recognition utilised by most 

of the antivirus programs (Sikora & Zelinka, 2017). ‘Virut’, another polymorphic 

computer virus, is a file infector that has been operating since 2006 and recently in 2013 

a Polish organisation stopped its malicious activities (Hosmer, 2008; Gragido & Elisan, 

2012; Nataraj, et al., 2011; Schwartz, 2013). 

Aycock’s 2006 classification of viruses by their masking strategies is presented in Table 

2.3. 

Table 2.3: Virus Classification by their masking strategies collated from Aycock (2006, 

pp. 34-48). 

Virus Masking Strategy Description Examples 

No Masking 

No concealment at any moment is a camouflage 

strategy which is exceptionally easy to apply in a 

computer generated virus. 

Ply 

Stealth 
Conceals the virus body and also effectively takes 

actions to hide the infection itself. 
Regin 

Encryption 

The virus body structure, which largely contains a 

payload, infection, and trigger, is encrypted making it 

difficult to detect.  

CryptoLocker 

Strong Encryption 

Uses two different approaches by either retrieving the 

decryption key from external or internal source of an 

infected machine for the process of encryption. 

RMNS, 

Dichotomy, 

CryptoLocker 

Metamorphism 

When executed produces a logically identical variant 

of its original source code. It constantly produces 

machine code and never its original source code. 

Simile, Zmist 

Oligomorphism 

(semi-polymorphic) 

An encoded virus which has a tiny, fixed amount of 

several decryptor routines at its disposal.  
Whale, Memorial 

Polymorphic 

Employs an obfuscating technique that modifies the 

viral code by mutation. Each time the polymorphic 

engine is executed, it maintains the function of the 

original infectious algorithm but changes its code. 

1260, Virut, 

JS.Cassandra 

2.1.5 Classification of Polymorphism 

Polymorphic viruses can be further classified into three different classes based on their 

obfuscation techniques, namely: self-identification, syntactic reconstruction, and 

semantic reconstruction. These obfuscation techniques are discussed in depth in 

Appendix C. A summary outlining the classification of polymorphic viruses based on 

obfuscation approach is given in Table 2.4. Of these approaches, the syntactic obfuscation 

approach is a method commonly used by polymorphic viruses to bypass byte level 

identification and classification – an approach used by many AVSs. The syntactic 
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obfuscation approach is explored in this thesis, and the viruses that use this approach and 

are employed in this thesis are JS.Cassandra, W32.CTX and W32.Kitti viruses. 

Table 2.4: Classification of polymorphic viruses based on obfuscation method details 

sourced from Aycock (2006, pp. 38-46) and Cesare (2010, pp. 26-31). 

Obfuscation Method Description Examples 

Self-Identification 

• When a malware mutates to infect a new file, it 

can also modify any form of itself that it 

encounters. 

• Malware that is able to identify itself or any of its 

variants and not infect itself uses self-

identification obfuscation.  

Zperm 

Syntactic Reconstruction 

Syntactic reconstruction involves modifying the 

virus’s syntactic structure without altering its 

semantics.  

Tequila, 

Pathogen, Dark 

Avenger Mutation 

Engine (DAME), 

Virus Creation 

Laboratory 

(VCL), 

JS.Cassandra 

virus, W32.CTX 

virus, W32.Kitti 

virus 

Semantic Reconstruction 

• Semantic reconstruction is an extension to the 

syntactic reconstruction where the new instance is 

a procured creation of the primary malware.  

• Semantic modification of a malware happens due 

to the malware writers changing the primary 

source code or the malware functionality. 

TridenT 

Polymorphic 

Engine (TPE), 

Blaster worm 

variants 

2.1.6 Levels of Polymorphism 

Based on the complication of code in the malware decryption technique, antivirus 

software writers place the polymorphic malware into ordered levels. These levels were 

first defined by Dr. Alan Solomon and then later refined by Vesselin Bontchey. These 

levels of polymorphism as reported by Ferris (2006) are detailed in Table 2.5.  
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Table 2.5: Levels of Polymorphism (Ferris, 2006; Belcebu, n.d.). 

Polymorphism 

level 
Attributes Examples 

Level 1 Virus 

semi-polymorphic 

or oligomorphic 

Level 1 virus have a set of decryptors 

involving interchangeable virus code, 

choosing one during infection process. 

Slovakia 

Cheeba 

Whale 

Level 2 

Polymorphic Virus 

The decryptor of a level 2 virus 

includes one or several interchangeable 

instructions, simultaneously keeping 

the rest of its virus code changeable. 

JS.Cassandra 

Level 3 

Polymorphic Virus 

The decryptor of a level 3 virus 

constitutes of ‘junk’ or non-operating 

functions like CLI, NOP, STI or XOR. 

JS.Cassandra 

Level 4 

Polymorphic Virus 

• Level 4 virus adopts the process of 

instruction mixing which involves 

code modification and transposable 

instructions. 

• Decryptor algorithm of a level 4 

virus stays unchangeable. 

W32.Kitti 

Level 5 

Polymorphic Virus 

• Level 5 virus have every aspect 

described in level 1 to level 4. 

• The decryptor algorithm of level 5 

virus can be changeable. 

• Possibility of semi-encoding of the 

decryptor script and constant 

encoding of the virus script. 

TridenT Polymorphic 

Engine (TPE) 

Level 6 

Polymorphic Virus 

• Level 6 viruses are also called as 

permuting viruses. And their codes 

can be decrypted. 

• While infecting, they are separated 

into chunks that are placed in 

irregular order.  

• Regardless of that, the malware 

survives to be able to deploy. Such 

malware may be decoded but 

generally are not. 

JS.Cassandra, 

AOD.385.B, 

O97M.Cybernet.Gen, 

W32.Finaldo.B@mm, 

TridenT Polymorphic 

Engine (TPE) 

Level 7 

Polymorphic Virus 

Level 7 virus have every aspect 

described in level 1 to level 6 along 

with Heuristic, Entry Point Obfuscation 

(EPO) as well as Goat and Emulator 

counter-measure methods (Hamm & 

Johnson, 2002; Schiffman, 2010). 

W32.CTX/W32.Chole

ra (in this case uses 

EPO method only) 

This thesis deals with levels 2-4 and 6-7, respectively. Three different polymorphic 

malware families are used in this thesis, namely, JS.Cassandra, W32.Kitti and W32.CTX 

virus and adopts the levels of polymorphism as shown in Table 2.5. JS.Cassandra virus 



 

37 
 

adopts levels 2, 3 and 6. W32.Kitti virus adopts level 4 and W32.CTX virus adopts level 

7, respectively. 

2.1.7 Mutation Engine 

A mutation engine is a malicious code; that can be connected or combined with a normal 

program or malware that will perform the following actions (Ferris, 2006; Li, Loh, & 

Tan, 2011): 

1. Encode itself and also the program that is connected to it. 

2. Generate a decryptor that will execute first before the execution of the main program. 

3. All the decryptors generated have a unique malware signature. 

In a polymorphic malware, the malware body and the mutation engine are both encoded. 

When a user executes a program compromised by a polymorphic malware, first the 

decryption routine takes charge of the system, then decodes both the mutation engine and 

the malware body. Later, the decryption routine transports the control of the system to the 

malware, which finds a fresh program to compromise (Ferris, 2006; Li, Loh, & Tan, 

2011). 

At this moment, the malware creates a clone of both the mutation engine and of itself. 

The clones are created in the Random Access Memory (RAM). The malware then 

employs the mutation engine, which arbitrarily creates the decryption routine that decodes 

the malware, yet holds slight or no similarity to any previous versions of the decryption 

routine. Later, the malware encodes this new clone of the mutation engine and the 

malware body. Eventually, the malware attaches this fresh decryptor routine together with 

the mutation engine and the newly encoded virus, to a fresh program. Therefore, not only 

is the malware body encoded but also the malware decryption routine is different from 

one infection to the other (Carlin, O’Kane, & Sezer, 2017). This confuses the antivirus 

software scanner systems looking for the set of bytes i.e. the malware mask (malware 

signature is sometimes called the malware mask), which detects a particular decryption 

routine. With no constant decryption routine and no constant malware signature to scan 

for, no two file infections appear the same (United States Patent No. US5826013A, 1998; 

Ferris, 2006). 

An instance of a polymorphic malware employing a generic mutation engine is shown in 

Figure 2.3 (Ferris, 2006):  
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Figure 2.3: An example of a polymorphic malware using a generic Mutation Engine 

(Ferris, 2006). 

The above code suggests that it is purely a set of insignificant instructions to confound 

antivirus researchers and malware analysts (Ferris, 2006). 

2.1.8 Polymorphic Decryptor (The decryption routine) 

An instance of a partly polymorphic decryptor with a sequence of instructions is shown 

in Figure 2.4 below. The purpose of this set of instructions is such that no individual byte 

of the malware or its decryptor remains consistent while compromising various files 

(Ferris, 2006; Li, Loh, & Tan, 2011). 

Figure 2.4: An example of part of a polymorphic decryptor with a sequence of 

instructions (Ferris, 2006). 

Many of the polymorphic malware employ far more intricate algorithms for their 

decryption technique than the example provided in Figure 2.4. The instructions or their 

equivalents are diluted by not modifying any instructions such as STC, NOP, DEC, STI, 

CLC, and the unused instructions like XCHG, etc. (Ferris, 2006). 

Polymorphic malware of full strength employs more complex algorithms which lead to 

any number of various arbitrary instructions such as XOR, SUB, ROL, ADD, ROR, in 

any arbitrary sequence and in the malware decryptor. All the encryption combinations 

can also be achieved by an arbitrary construction package that may possess essentially 

every instruction available in the Intel or AMD processors (Ferris, 2006) with every 

potential addressing function. 
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There is a set of obviously useless instructions and compositions that are not dismantled 

by debugging software products of some commercial companies. For instance, the 

CS:NOP and CS:CS compositions. So in reality, if the malware writers input some 

untouched instructions and junk together with these useless instruction compositions such 

as CS:CS and CS:NOP, antivirus researchers and malware analyst will have a difficult 

job attempting to crack open the decryption system of that particular malware (Ferris, 

2006; Kolesnikov & Lee, 2004). 

2.1.9 Metamorphism 

Viruses based on metamorphism technique, when executed produces a logically identical 

variant of its original source code (see Figure 2.5 below), where, G1-Gn are the current 

generations, V1-Vn are the virus bodies and File1-Filen are the infected files (Berg, 2011). 

It constantly produces machine code and never its original source code. The aim of 

metamorphism is to avoid getting detected by AVSs (Irshad, al-Khateeb, Mansour, 

Ashawa, & Hamisu, 2018). Computer viruses based on metamorphism converts their 

binary code into an interim representation, modifying by themselves the interim 

representation and then converting the modified pattern back over to machine code 

(Musale, Austin, & Stamp, 2015). Basically, by following that procedure, no area of the 

virus remains the same, as the process of metamorphism alters itself, unlike 

polymorphism that cannot change its original source (Choudhary & Vidyarthi, 2015; 

Troia, Visaggio, Austin, & Stamp, 2016). 

Figure 2.5: The structure of a metamorphic malware (SANS Institute, 2003, p. 5; Berg, 

2011, p. 10). 

The code-changing approaches utilised by polymorphic viruses all relate to metamorphic 

viruses. Both use a mutation engine, except on every infection a polymorphic virus does 

not need to alter its engine because it can reside in the encoded section of the virus. On 

the other hand, a metamorphic virus needs to self-modify its mutation engine after every 

infection (Attaluri, McGhee, & Stamp, 2009; Irshad, al-Khateeb, Mansour, Ashawa, & 

Hamisu, 2018). The mutation engines inside metamorphic viruses whose output and input 

are machine code must be in the position to restructure and destructure machine code. 
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Metamorphism is comparatively easy to execute in viruses that transmit in the form of 

source code, like macro viruses. A virus may depend on the tools available in the infected 

machine for the process of metamorphism. For example, ‘Apparition’, is programmed in 

Pascal and manages its private source code; if a compiler is located on an infected 

machine, the virus introduces junk material into its source code and recompiles on its own 

(Aycock, 2006). 

Metamorphic malware is a complex version of polymorphic malware, where the complete 

inner content is altered (Musale, Austin, & Stamp, 2015). Metamorphic malware is 

occasionally referred as “body polymorphism”. For well-structured metamorphic 

malware, the technique of encoding is not essential, or even beneficial (Musale, Austin, 

& Stamp, 2015; Naidu & Narayanan, 2016). The virus so-called ‘Win95/Regswap’, 

which emerged in 1998, is commonly considered as being the original instance of 

metamorphic malware (Szőr, 2005). 

‘Simile’ discovered in 2002, is a computer virus that uses the approach of metamorphism 

that targets Microsoft based Windows machines. The ‘Simile’ computer virus is written 

in assembly code (Marinescu, 2003; Konstantinou & Wolthusen, 2008). ‘Zmist’, also 

known as ‘Zombie.Mistfall’ discovered in 2002, is a computer virus that uses the method 

of metamorphism and was written by a Russian virus programmer called ‘Zombie’ 

(Konstantinou & Wolthusen, 2008). 

2.2 Malware Detection Techniques 

The first attempt to detect and prevent computer malware were undertaken by malware 

analysts and antivirus engineers who developed specific decryption routines aimed at 

capturing individual polymorphic malware. Manually, they computed specific programs 

designed to identify numerous series of computer code understood to be employed by a 

mutation engine to decode a malware’s body (Szőr, Advanced Code Evolution 

Techniques and Computer Virus Generator Kits, 2005). This virus detection technique 

was time-consuming, lengthy, expensive, and unrealistic because a mutation engine can 

generate supposedly arbitrary programs which can systematically execute decryption and 

thus potentially produce trillions and trillions of variants (Ferris, 2006; United States 

Patent No. US7337471B2, 2008). Virus detection using this technique also tends to 

wrongly detect one polymorphic malware as another. 
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Many polymorphic malware employ the same available mutation engine; credit goes to 

malware authors like ‘Dark Avenger’ and others, who distribute these programs freely, 

sometimes with the source code, to the public. This assists antivirus researchers and 

malware analysts considerably as they have the mutation engine’s decryption program 

beforehand. However, distinct engines employed by specific polymorphic malware in 

many cases produce identical decryption algorithms, which makes any detection based 

solely on decryption algorithms totally untrustworthy. These loopholes helped antivirus 

engineers and malware analysts to create generic decryption methods that deceive a 

polymorphic malware into decoding and disclosing itself (Ferris, 2006; Kaushal, Swadas, 

& Prajapati, 2012). 

When an antivirus group obtains a fresh malware, they extract the binary pattern of the 

malicious file and place it in a database known as the VPF (Virus Pattern File). 

Maintaining the VPF library is a standard practice for all the antivirus software 

companies. During the scanning process, the binary pattern within the VPF database is 

checked with the patterns of the files on the system, and if it is true, then the file is said 

to be compromised with a malware (Ferris, 2006; United States Patent No. 

US8935788B1, 2015). 

Antivirus researchers employ four measures, to identify a fresh malware strain (Ferris, 

2006; Vinod, Laxmi, & Gaur, 2009): 

1. Measure 1: If feasible identify the malware signature (malware mask). 

2. Measure 2: Malware detection with the aid of malware mask after eliminating the 

‘junk’ unused instructions. 

3. Measure 3: Initiate to decrypt the algorithmic virus. 

4. Measure 4: If it is not feasible to locate the malware signature, the antivirus 

researcher would then deploy the ‘Striker’ (Heller, 1996) (also known as the emulator) 

to force the malware decode itself and disclose the malware binary pattern to the 

antivirus engineer (Nachenberg, 1996; Gualtieri, 2002). 

Because of the varied algorithm in the decryption routine and the quantity of ‘junk’, the 

decryptor employs antivirus engineers sometimes are unable to locate the malware mask. 

Level 6 category malware such as ‘AOD.385.B’, ‘O97M.Cybernet.Gen’, and 
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‘W32.Finaldo.B@mm’ are extremely polymorphic and without a doubt would require 

Measure 4 identification (Ferris, 2006; Szőr, 2005). 

Some of the different kinds of existing state of the art AVS approaches for polymorphic 

malware (and general malware) detection are discussed below: 

2.2.1 Machine Learning/Data Mining Approach 

Malware identification with machine learning approaches has now gained acceptance. 

Mitchell (1997) describes machine learning as the analysis of computer-based algorithms 

that enhances via evaluation. Moskovitch, Elovici, & Rokach (2008) suggested 

identification of malicious files based on observing computer activity. They reported that 

employing classification algorithms using only 20 attributes the mean identification 

precision surpassed 90%. The benefit of employing machine learning approaches is that 

it will not only identify known (Pk) malware but may also play a major role in the 

identification of unknown (Px) malware. Well-known machine learning approaches used 

by the researchers for the identification of the second generation based malicious 

programs are Hidden Markov Models (HMMs), Naïve Bayes, Neural Networks, and 

Decision Trees (Sharma & Sahay, 2014). This thesis compares the syntactic signatures 

obtained from the process of biosequence analysis techniques to the state of the art AVSs 

adopting these machine learning approaches for the purpose of malware detection. The 

state of the art AVSs such as McAfee, Symantec, Bitdefender and ESET adopt several 

machine learning approaches to detect the malicious files. For instance, McAfee uses 

“machine infection characteristics for behavior-based detection” (United States Patent 

No. US8266698B1, 2012), “cloud-based” machine learning technique (United States 

Patent No. US15283238, 2016), “Hidden Markov process for outbreak pathology 

inference” (United States Patent No. US9679140B2, 2017), etc. to detect malicious files. 

Symantec uses “sequencing and timing information of behavior events in machine 

learning” (United States Patent No. US8401982B1, 2013), artificial neural network 

(ANN) (United States Patent No. US8775333B1, 2014) as a threat classifier, etc. to 

detect/determine malicious files/process. Bitdefender uses “cascading classifiers” 

(United States Patent No. US20160335432A1, 2016) technique adopting machine 

learning algorithms to detect malicious files and ESET uses “Augur Machine Learning 

engine” (Kubovič, 2017) to detect malicious files. 
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2.2.2 Normalisation Approach 

The malware created by high-level construction sets (toolkits) like UPX (Raphel & 

Vinod, 2015) are very hard to identify. For the identification of such malicious files, 

normalisation approaches can be employed to enhance the identification rate of known 

(Pk) malware. In this approach, the normaliser receives an obscure variant of a malware 

and deletes the malicious activity function performed on the program and then generates 

the normalised executable form. After the process of normalisation, the malware 

(normalised form) signature is excavated and checked against the signature of a non-

malware file. Christodorescu, et al. (2005) developed a normaliser for malware that 

manages three general malware concealment activities which are, junk insertion, code 

reordering, and code packing. Subsequently, Armoun, et al. (2013) implemented a 

universal normaliser for malware which can stock malware concealment algorithms in 

the form of automata compositions and employ them for normalising the metamorphic 

viruses. Currently, a standard normaliser for malware has been implemented in the form 

of automata compositions for normalizing metamorphic viruses, which has an 

identification rate of nearly 81% (Sharma & Sahay, 2014). 

2.2.3 Scan Engine (Signature based Approach) 

The scan engine is a major part of any antivirus software product, and the true measure 

of its calibre. It is the part of an antivirus software program that scans all the files and 

identifies malware (Ferris, 2006; United States Patent No. US8813222B1, 2014). 

It does not matter how good the user interface of an antivirus software program is because 

it is the scan engine that ultimately decides how good the program is at detecting malware. 

When an antivirus software scans a local directory or volume drives, it transmits the files 

one after the other to the scan engine which compares each file with the VPF (Virus 

Pattern File) (United States Patent No. US8935788B1, 2015). An exceptional scan engine 

takes some time, hardly utilising the system resources (United States Patent No. 

US6851058B1, 2005; Ferris, 2006). 

Scanners inbuilt in antivirus programs performs by employing scan strings. They search 

for a series of bytes in a constant position and a constant string. This constant position 

and constant string are known as the malware mask or malware signature. Antivirus 

scanners also utilise ‘Variable Scan Sequences’ technique. During the process of 

searching for malicious files, the antivirus file scanners search for sequence/string bytes 

in a separate position but within a definite sequence/string. All of which is performed 
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inside a virtual machine or an emulator known as “State-based cache for antivirus 

software” (United States Patent No. US5854916A, 1998), and is one of many approaches 

adopted by virus scanners. When an antivirus program is deployed it begins to search/scan 

for malicious files, as each file is included to the scanner, the scanner executes the file 

inside a Random-access memory (RAM) created emulator. The files included inside this 

emulator perform in a similar manner as it does on an actual machine. Antivirus scanner 

verifies as well as handles the executed file in a similar way as it performs within the 

emulator/virtual machine. A malware executing within the virtual machine can cause no 

threat for the reason that it is secluded from the real machine. When a scanner places a 

file compromised by a polymorphic malware into this virtual machine, the malware 

decryption routine runs and decodes the encoded malware body. This reveals the malware 

body to the scanner, which can then look for signatures within the malware body that 

exactly detects the malware strain. If the scanner places a file that is not compromised, 

there is no malware activity to reveal and quarantine. With regards to the non-malware 

activity, the scanner immediately halts the process of executing the file within the virtual 

machine, gets rid of the file from the virtual machine, and continues to scan the following 

file. This process is called generic decryption as it makes the encrypted file to forcefully 

decrypt on its own terms. The major drawback with the procedure of generic decryption 

is the slow process. It has no practical purpose if the procedure of generic decryption 

takes hours awaiting for a polymorphic virus file to decrypt inside an emulator. In 

contrast, provided the procedure of generic decryption stops beforehand, it may dodge a 

polymorphic malware before it is possible to disclose much of itself for the scanner to 

find a substring/signature. Hence, to defeat the problem, the procedure of generic 

decryption adopts the process of heuristics (which will be discussed in detail below) - a 

set of generic instructions that help to differentiate malicious files from non-malicious 

files. Most antivirus scanners have inbuilt heuristic programs (Ferris, 2006; United States 

Patent No. US20090013405A1, 2009). 

In this thesis, the syntactic signatures are compared with the state of the art AVSs such as 

Symantec (United States Patent No. US7130981B1, 2006), Bitdefender (United States 

Patent No. US8813222B1, 2014), etc. that adopts scan engine technology. 

2.2.4 Cryptanalysis 

Cryptanalysis is the process of decoding coded messages and exploration of ciphers, 

codes and encoded text, such as a malware mutation engine (Uto, 2013). The main aim 
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of cryptanalysis is to identify loopholes in a specific program and to decipher the code 

employed to encode the contents unaware of the key to the code (Filiol E. , 2002). It is 

(basically) cracking, but in this case, the antivirus engineers are cracking open a malware 

which employs a particular key (which only the malware writers knows) to decode the 

malware. There are four fundamental measures (Ferris, 2006) in a classic cryptanalysis 

process (Uto, 2013) which are as follows: 

1. Measure 1: To discover the programming language employed to write that specific 

malware. 

2. Measure 2: To discover the type of computer system used by that specific malware. 

This can be a time-devouring phase in the method and comprises of calculating 

character frequency, implementing statistical tests, and looking for recurrent patterns. 

3. Measure 3: To modify particular keys of the system (Singh, Troia, Corrado, Austin, 

& Stamp, 2016). 

4. Measure 4: Modification of the plain text, this measure occurs at the same time as 

the process of measure 3. 

In this thesis, the syntactic signatures are compared with the state of the art AVSs such as 

Symantec (United States Patent No. US5826013A, 1998; United States Patent No. 

US6357008B1, 2002), Bitdefender (United States Patent No. US8813222B1, 2014), 

McAfee (United States Patent No. US7234167B2, 2007; United States Patent No. 

US7346781B2, 2008), etc. that adopts the concept of cryptanalysis. 

2.2.5 Heuristic Approach 

The method aims to detect viruses based on a signature generic to the family of the virus 

or by an inexact match to an existing signature. This approach permits the AVS author to 

modify the antivirus scanner by modifying a malware probability. For instance, a genuine 

non-malware program will, by all means, employ the outcomes from math calculations it 

performs as it executes within an emulator. Similarly, a polymorphic malware may 

conduct similar math calculations; yet eliminates the outcomes as those outcomes are 

inapplicable to the malware. In reality, a polymorphic malware may carry out such 

calculations simply to make it look like a genuine program in an attempt to evade the 

malware scanner. In such cases, a heuristic based approach plays a major role. Heuristic 

based generic decryption searches for such odd activity (United States Patent No. 
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US20090013405A1, 2009; United States Patent No. US20120266244A1, 2011). An odd 

behaviour raises the chances of infection and alerts the scanner that depends on the 

process of heuristic based instructions to increase the time duration a suspicious file runs 

within the virtual machine, granting a possibly compromised file sufficient time to decode 

itself and reveal a hidden malware (Ferris, 2006; United States Patent No. 

US20090013405A1, 2009). 

Generic decryption is dependent on a group of antivirus engineers being able to examine 

billions of possible malware variants, find common areas that all viruses in a family share 

and contain. While AVS vendors do not make it public knowledge exactly how their 

systems operate it is believed that these generic signatures contain fragments of unique 

code from a number of areas in the infected file. These areas are unique to the virus 

family, and it is from these areas a single generic signature can be created (United States 

Patent No. US9858414B2, 2018). 

Below is an instance of how a heuristic-based scanner performs (Ferris, 2006): 

1. Promoter Instructions: If a NOP instruction is detected, then increment the malware 

probability by 0.5%. If the contents of a register are destroyed before scanning, then 

increment the malware probability by 10%. 

2. Inhibitor Instructions: If the program generates DOS interrupts, then decrement the 

malware probability by 15%. If the program does no memory writes among 100 

instruction runs, then decrement the malware probability by 5%. 

The scan engine assumes that each file has a 10% chance of malicious behaviour. If the 

malware probability is greater than zero, the process of emulation proceeds. The malware 

probability is changed throughout the scan each time a file is scanned as the heuristic 

rules monitor malware-like or non-malware-like activity (Ferris, 2006). 

The pitfall of a heuristic-based approach is that it needs progressive evaluation and 

modification. Heuristic-based rules may have adjusted to detect 300 malware, but for 

instance, may ignore 15 of that malware when changed to detect ten new malware. 

Heuristic based rules can also be modified to target any program file, which possesses 

features of being a possible malware, which in return, increases the time duration it 

acquires to scan that specific program (Ferris, 2006). 
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In this thesis, the concept of heuristic approach adopted by the state of the art AVSs such 

as Symantec (United States Patent No. US6357008B1, 2002; United States Patent No. 

US7418729B2, 2008), Bitdefender (United States Patent No. US9460284B1, 2016; 

United States Patent No. US9531735B1, 2016), McAfee (United States Patent No. 

US7917955B1, 2011), etc. are compared with the approaches proposed here, that is, using 

the syntactic viral signatures. 

2.3 History of Malware – Timeline 

1971: Creeper virus – first virus to ever infect computers that were connected to 

ARPANET network (LAVASOFT, 2013). 

1986: Brain virus – first IBM PC based compatible virus and also the first MS-DOS based 

computer virus. 

1987: Vienna virus – first “direct-action” virus to infect Macintosh computers through 

floppy disk. Stoned virus – first boot sector based computer virus (LAVASOFT, 2013). 

1989: 1260 virus – first virus to adopt polymorphism technique to evade AVS detection. 

1990: Chameleon virus – first polymorphic virus. 

1991: Tequila virus – first widespread polymorphic virus  (HubPages, 2014; Johnston, 

2014). Dark Avenger Mutation Engine – first well-known virus construction kit and also 

the first polymorphic generator. 

1995: Concept virus – first macro virus that infected Microsoft word documents. 

1999: Melissa worm – first widespread worm to combine the techniques of macro viruses 

with mass-email bombs. 

2001: Nimda worm – first widespread worm to employ mass-emailing techniques, attack 

network drives and exploit web servers based on Internet Information Services (IIS). 

2003: JS.Cassandra virus – first open source JavaScript polymorphic virus (VX Heavens, 

2006). 

2010: Stuxnet worm – first powerful worm to infect Supervisory Control, and Data 

Acquisition (SCADA) systems (Norton, 2010; Whigham, 2016). 
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2013: CryptoLocker ransomware – first widespread ransomware to use Trojan to attack 

Microsoft Windows-based computer systems, which spreads via a compromised email 

attachment or via a botnet that already exists. This ransomware adopts the approach of 

public-key cryptography based on the RSA (Rivest-Shamir-Adleman) algorithm (Rivest, 

Shamir, & Adleman, 1978). Transcriptase virus – first proof of concept and open source 

JavaScript metamorphic virus (Musale, Austin, & Stamp, 2015; Troia, Visaggio, Austin, 

& Stamp, 2016). 

In this thesis, JS.Cassandra polymorphic virus family first discovered in 2003, 

W32.CTX/W32.Cholera polymorphic virus family first discovered in 2000, and 

W32.Kitti polymorphic virus family first discovered in 2011 are employed in Chapters 4 

to 6 for experimental purposes. And Transcriptase metamorphic virus family first 

discovered in 2013 is utilised in Chapter 7. The above-mentioned virus families are 

discussed in depth in the Appendix C section. 

2.4 Tool Validation 

This thesis adopts the concept of biosequence analysis techniques. One of the techniques 

that is majorly used in this thesis is an alignment tool. This alignment tool is used to align 

two sequences in order to extract the longest common substrings (i.e. syntactic viral 

signatures) between two malware variants and this process is known as pairwise 

alignment. The tool that is commonly used to achieve this sort of alignment in this thesis 

is known as ‘JAligner’ (Moustafa, 2010). ‘JAligner’ implements the SWA algorithm (as 

discussed in page no. 14) and is employed in this thesis to conduct the process of pairwise 

local alignment. More information about this tool is discussed in Appendix C (see page 

no. 226). In this section, the tool is validated using the standard predictive validation and 

by conducting the triangulation approach. For all the alignment processes that are 

conducted in this section using alignment tools, such as ‘JAligner’ (Moustafa, 2010), 

‘Geneious’ (Kearse, et al., 2012) and ‘EMBOSS Water’ (Rice, Longden, & Bleasby, 

2000) as demonstrated below, an ID substitution matrix with a gap open penalty of 10.0 

and gap extension penalty of 1.0 is adopted. 

2.4.1 Predictive Validation 

In this section, predictive validation is conducted using two DNA sequences (as shown 

below) for validation purposes. Predictive validation is a measure developed to reliably 

predict the future results. This can be accomplished by building a strong relationship 

amidst scores on the criterion measure and new measure (Salkind, 2010). Two different 
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processes are conducted in this section in order to achieve a higher degree of predictive 

validity for the ‘JAligner’ tool. Process1 (criterion measure) manually conducts pairwise 

local alignment adopting the technique demonstrated in the literature (Smith & 

Waterman, 1981a; Smith & Waterman, 1981b; CLC bio, 2007) and process2 (new 

measure) conducts pairwise local alignment using ‘JAligner’ tool. Firstly, the sequences 

are aligned manually and the outcome of the alignment is presented. Secondly, the longest 

common substring is extracted. The same process is applied using the ‘JAligner’ tool and 

the results from the two processes are then compared in order to determine if they 

produced similar results which in turn will help to validate the ‘JAligner’ tool. 

DNA Sequence 1: ACTCTG 

DNA Sequence 2: AGTTCTG 

Process1 - Result of alignment process conducted manually: An alignment matrix 

table is created through which an optimal alignment score is calculated and the longest 

common substring is extracted. A match score of 1 and mismatch score of -1 is adopted 

in this process. Figure 2.6 shows the local alignment matrix table of two DNA sequences 

generated manually, where, diagonal arrow indicates either match or mismatch, left arrow 

indicates deletion and up arrow indicates insertion. 

Figure 2.6: The manually generated local alignment matrix table of two DNA sequences. 

Given, Sequence 1 = ACTCTG and Sequence 2 = AGTTCTG. Match (a, a) = +1 and 

mismatch (a, b) = -1 are the scoring functions, therefore, the optimal local alignment is 

as follows: 

 (AC)TCTG 

   |||| 

(AGT)TCTG 

Giving an optimal alignment score of 4. 
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Figure 2.6 also gives the following optimal local alignment adopting the trace back 

analysis, which is achieved by tracing back from the maximum alignment score in the 

matrix: 

DNA Sequence 1: 3 TCTG 6 

DNA Sequence 2: 4 TCTG 7 

From Figure 2.6, it can be seen that the optimal alignment score of process1 is 4 (the cell 

highlighted in orange with the highest score). The longest common substring extracted 

from this process is TCTG (the cells highlighted in orange). The length of the longest 

common substring is 4 (TCTG). The identity and similarity percentages are 100%, 

respectively, as the length of the longest common substring is 4 for both the sequences. 

The gap score is 0 as no gaps were introduced in this experiment. 

Process2 - Result of alignment process conducted using JAligner: The alignment 

result of two DNA sequences generated using ‘JAligner’ tool is presented below: 

Sequence #1: DNA Sequence 1 

Sequence #2: DNA Sequence 2 

Length #1: 4 

Length #2: 4 

Matrix: IDENTITY 

Gap open: 10.0 

Gap extend: 1.0 

Length: 4 

Identity: 4/4 (100.00%) 

Similarity: 4/4 (100.00%) 

Gaps: 0/4 (0.00%) 

Score: 4.00 

DNA Sequence 1      3 TCTG      6 

                       |||| 

DNA Sequence 2      4 TCTG      7 

From the above result, it can be seen that the optimal alignment score of process2 is 4. 

The longest common substring extracted from this process is TCTG. The length of the 

longest common substring is 4. The identity and similarity percentages are 100%, 

respectively. The gap score percentage is 0% as no gaps were introduced in this 

experiment. 
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The experiments conducted in this section show that both the alignment processes 

produced similar results/scores, indicating a strong correlation between process 1 and 

process 2 therefore providing a higher degree of predictive validity for the ‘JAligner’ tool. 

2.4.2 Triangulation Approach 

In this section, triangulation approach is achieved by conducting three different 

experiments from three different sources. Triangulation approach is a powerful cross-

verification process where similar experiments from two or more sources are conducted 

in order to validate the tool (Rothbauer, 2008) used in this thesis (in this case, ‘JAligner’). 

Source1 conducts pairwise local alignment using ‘JAligner’ tool. Source2 conducts 

pairwise local alignment using ‘Geneious’ (Kearse, et al., 2012) tool. Source3 conducts 

pairwise local alignment using ‘EMBOSS Water’ (Rice, Longden, & Bleasby, 2000) tool. 

All of the above experiments are conducted using the same DNA sequences as the 

experiments conducted in the predictive validation section. The results from the three 

different sources are then compared for the experimental study of the same condition, in 

this case, the pairwise local alignment. 

Source1 - Result of alignment process conducted using JAligner: The alignment result 

of two DNA sequences generated using ‘JAligner’ tool is presented below: 

Sequence #1: DNA Sequence 1 

Sequence #2: DNA Sequence 2 

Length #1: 4 

Length #2: 4 

Matrix: IDENTITY 

Gap open: 10.0 

Gap extend: 1.0 

Length: 4 

Identity: 4/4 (100.00%) 

Similarity: 4/4 (100.00%) 

Gaps: 0/4 (0.00%) 

Score: 4.00 

DNA Sequence 1      3 TCTG      6 

                       |||| 

DNA Sequence 2      4 TCTG      7 

Source2 - Result of alignment process conducted using Geneious: The alignment 

result of two DNA sequences generated using ‘Geneious’ tool is presented below: 
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>pairwise alignment - Alignment of 2 sequences: DNA Sequence 1, DNA 

Sequence 2 

 

Score = 4.0, Identities = 4/4 (100%),  

Positives = 4/4 (100%), Gaps = 0/4 (0%) 

 

DNA Sequence 1   3 TCTG 6  

                   TCTG    

DNA Sequence 2   4 TCTG 7  

Source3 - Result of alignment process conducted using EMBOSS Water: The 

alignment result of two DNA sequences generated using ‘EMBOSS Water’ tool is 

presented below: 

######################################## 

# Program: water 

# Commandline: water 

#    -auto 

#    -stdout 

#    -asequence emboss_water-p1m.asequence 

#    -bsequence emboss_water-p1m.bsequence 

#    -datafile IDENTITY 

#    -gapopen 10.0 

#    -gapextend 1.0 

#    -aformat3 pair 

#    -snucleotide1 

#    -snucleotide2 

# Align_format: pair 

# Report_file: stdout 

######################################## 

 

#======================================= 

# Aligned_sequences: 2 

# 1: DNA Sequence 1 

# 2: DNA Sequence 2 

# Matrix: IDENTITY 

# Gap_penalty: 10.0 

# Extend_penalty: 1.0 

# 

# Length: 4 

# Identity:       4/4 (100.0%) 

# Similarity:     4/4 (100.0%) 

# Gaps:           0/4 (0.0%) 

# Score: 4.0 

#======================================= 

DNA Sequence 1      3 TCTG      6 

                      |||| 

DNA Sequence 2      4 TCTG      7 

 

#--------------------------------------- 

#--------------------------------------- 

From the above results, it can be seen that the optimal alignment score of sources1-3 is 4. 

The longest common substring extracted from all the three sources is TCTG. The length 
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of the longest common substring from all the three sources is 4. The identity and similarity 

percentages are 100%, respectively, for all the three sources. The gap score percentage is 

0% as no gaps were introduced in these experiments. 

The experiments conducted in this section show that all the alignment sources produced 

similar results/scores, indicating the successful validation of the ‘JAligner’ tool adopting 

triangulation approach. 

2.5 Summary 

The classes of malware were discussed. In particular, virus was outlined which have two 

potential capabilities and are diagnostic of polymorphic malware. That is, they both have 

self-replicating and population expansion (variant generation) capabilities. Three kinds 

(or families) of viruses that are polymorphic are employed in the experiments detailed in 

Chapters 4 to 6. As stated earlier, the polymorphic viruses used are JS.Cassandra virus, 

W32.CTX/W32.Cholera virus and W32.Kitti virus. Furthermore, in Chapter 7, a 

metamorphic virus family known as Transcriptase virus is employed. 

Classification of viruses based on the type of masking strategy they employ was 

discussed. Different masking approaches, such as stealth masking, oligomorphism, 

metamorphism, and encryption, were explored and are detailed in the appendix section 

(see page no. 208). 

Classification of polymorphism was discussed. This chapter also outlined seven different 

levels of polymorphism. Then the process of generation of polymorphic variants was 

discussed focusing on the mutation engine and decryption routines employed by 

polymorphic malware. Malware detection techniques and the history of malware 

timelines were discussed in this section. 

This chapter also presented a discussion on previous research into malware detection. 

The existing state of the art malware detection approaches, including signature-based, 

cryptanalysis and heuristic approaches adopted by commercial AVSs were presented 

along with a discussion of their limitations in page nos. 43-45. These limitations along 

with a lack of research in syntactic-based approaches for malware detection as indicated 

in page nos. 29-32, provide the rationale for the research undertaken in this thesis.
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Chapter 3 Research Design 

Chapters 1 and 2 identified a gap in the literature that of a lack of automatic syntactic 

signature generation methods and the inability of commercial AVSs to identify malware 

not previously encountered. The use of string searching algorithms, such as the SWA for 

the automatic extraction of viral syntactic signatures was proposed. Moreover, Chapter 2 

focused on the state of the art malware detection approaches and highlighted that these 

methods are not currently adequate for identifying polymorphic (as well as metamorphic) 

malware and its variants. Hence, the first research question (as stated earlier in page no. 

11) is introduced: 

Can string searching algorithms, such as the SWA lead to string-based syntactic 

techniques for the extraction of syntactic virus signatures automatically - not only for 

known (polymorphic and metamorphic) virus variants (Pk) but also for unknown 

(polymorphic and metamorphic) virus variants (Px)? 

Epistemology in a scientific research is a part of philosophy that deals with the origin of 

knowledge (Crotty, 1998). The origin of knowledge (Audi, 2002) can be classified into 

four categories as follows: 

• Intuitive knowledge (when determining the initial concept for research) 

• Authoritarian knowledge (when reviewing the literature) 

• Logical knowledge (when interpreting findings) 

• Empirical knowledge (when conducting experiments that induces these findings) 

This thesis combines all of these origins of knowledge stated above. There are five 

classes/paradigms of epistemology (Scotland, 2012) and they are as follows: 

• Positivism (discover truth that’s out there) 

• Constructivist/Interpretivism (develop truth on the basis of social interaction) 

• Pragmatism (ideal method that resolves problems) 

• Subjectivism (where every knowledge is simply an element of perspective) 

• Critical (where social reality is initiated) 

In this thesis, the author adopts a pragmatic epistemology (Armitage, 2007) as it is an 

ideal method that clarifies problems by combining different perspectives to help 

understand the data. 
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The analytical feature of any research method, given the primary research question (as 

stated above) and lack of preliminary work in the space covered by the research question, 

it was deemed a requirement to construct a hypothesis, design the experiment, collect the 

results, and analyse the results, report the outcomes and then if necessary reconstruct the 

hypothesis, and so on (Garhwal, 2018). This set of procedures is reiterated until, 

preferably, the ideal solution is established for the ideal test requirements or, as is true of 

in this thesis, not much time is left. When not much time is left, the benefits of what has 

been attained requires being assessed both on its importance and innovation as well as the 

likelihood of extension (Liu, 2014). This thesis will come back to reviewing the benefits 

of what has been attained in Chapter 8. 

This chapter discusses the research design and method adopted in this thesis. 

3.1 Research Design 

The type of research that is conducted in this thesis is quantitative research. There are two 

types of quantitative research widely used by researchers, namely, experimental and non-

experimental (Marczyk, DeMatteo, & Festing, 2005). This thesis adopts an experimental 

approach. Furthermore, the experimental approach is divided into three different 

categories, namely, true experimental, quasi-experimental and pre-

experimental/nonexperimental (Marczyk, DeMatteo, & Festing, 2005; Creswell, 2014). 

In this thesis, the type of research design that is adopted is a quasi-experimental design 

(Marczyk, DeMatteo, & Festing, 2005; Johanson & Williamson, 2013) as this study 

conducts a series of individual experiments. The type of quasi-experimental design that 

is adopted in this thesis is a “non-equivalent comparison-group – post-test only” design 

(Marczyk, DeMatteo, & Festing, 2005; Privitera & Ahlgrim-Delzell, 2018). This design 

is selected in this study as it is the most widely adopted quasi-experimental design 

(Marczyk, DeMatteo, & Festing, 2005). Furthermore, this design can produce valid 

conclusions with careful evaluation and interpretation (Marczyk, DeMatteo, & Festing, 

2005). The main significance of this sub-design (“non-equivalent comparison-group”) is 

that it compares the dependent variables obtained from the treatment group to the non-

equivalent control group (Privitera & Ahlgrim-Delzell, 2018). In this thesis, the syntactic 

viral signatures (dependent variables) from the proposed approach (treatment group) are 

compared with the modern AVSs (non-equivalent control group) after the 

experiments/treatments (i.e. a post-test study). 
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This thesis follows the concept of “Scientific Method” (SM) (Kothari, 2004; Marczyk, 

DeMatteo, & Festing, 2005; Creswell, 2014) as its research method to address each 

research objective and question. The scientific method relies on the empirical method 

(Yanow & Schwartz-Shea, 2015). The empirical method is an evidence-based method 

that depends on the information obtained from experimentation and thorough observation 

(Marczyk, DeMatteo, & Festing, 2005). Scientific decisions are made based on the 

information obtained from experimentation and thorough observation (Kothari, 2004). 

The empirical method is the perfect guiding principle responsible for all research 

performed in correspondence with the SM (Marczyk, DeMatteo, & Festing, 2005; 

Creswell, 2014). Standard steps of the scientific method (Marczyk, DeMatteo, & Festing, 

2005) are as follows: 

1. Define questions 

2. Construct hypothesis 

3. Perform experiments 

4. Analyses 

5. Draw conclusions 

6. Replication 

Figure 3.1: SM cycle. 
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An overview of the SM cycle adopted in this thesis is demonstrated in Figure 3.1. It 

demonstrates that the research method of this thesis can be divided into following four 

steps: 

1. Identifying and analysing the problem 

2. Defining research objectives and questions 

3. Designing the proposed approach and conducting experiments 

4. Analysis and evaluation 

3.2 Identifying and analysing the problem 

In this step, the addressed problems determined from a literature review are explained. 

The gap in research has been identified and defined to frame the problem statement as 

indicated in Chapter 1 (see page no. 10) of this thesis. 

3.3 Defining research objectives and questions 

In this step, the research objectives and questions of this study were framed from the 

current problem addressed from previous related research. These research objectives and 

questions help to define the hypothesis of this research. The aim is to propose a desirable 

solution to address the issues indicated through the research questions. The research 

objectives and questions are discussed in Chapter 1 (see page no. 11). 

3.4 Designing the proposed approach and conducting experiments 

This step is one of the most crucial segments of this research. The proposed approach 

along with the limitations of previous approaches are discussed in Chapter 1 (see page 

no. 12). 

In Chapters 4 to 7, for the string-based syntactic approaches adopting the SWA and the 

NNge, a four-stage experimental method is designed (see Figure 3.2). These major stages 

will be common for all the experiments that will be conducted in Chapters 4 to 7. 

Depending on the experiments extra steps may be required and added where appropriate 

– these will be detailed in the respective chapters. 
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Stage I: Hex dump extraction

Stage II: Hex to DNA/Amino Acid conversion

Stage III: Alignment

Stage IV: DNA/Amino Acid to Hex conversion & signature testing

Evaluate results and revisit research questions

 

Figure 3.2: The four major stages that will drive this research in Chapters 4 to 7. 

Stage I – Hex Dump Extraction: Hex (i.e. hexadecimal) dumps of the polymorphic 

malware along with its malicious variants of a particular family will be extracted using 

‘sigtool’ which is available from the ClamAV website (ClamAV, 2018). 

Stage II – Hex to DNA/Amino Acid Conversion: In this stage, the hex dumps obtained 

in Stage I will be converted into DNA/amino acid sequences. 

Stage III – Alignment: DNA/amino acid sequences from Stage II will be pairwisely 

aligned using ‘JAligner’ (Moustafa, 2010). Common substrings (i.e. meta-signatures) will 

be extracted at this stage. This stage also includes identification and extraction of 

consensuses and longest common substrings. Also, in this stage, the experiments from 

Chapters 5-7 perform both multiple and pairwise sequence alignments in some of their 

steps to extract syntactic viral signatures. Furthermore, Chapter 7 performs the process of 

phylogenetics for the classification of syntactic viral signatures. 

Stage IV – DNA/Amino Acid to Hex Conversion and Signature Testing: In this stage, 

common substrings extracted in Stage III will be converted into hexadecimal format. 

After the conversion, the common substrings in their hexadecimal format will be tested 

against that particular polymorphic family for malicious detection using ClamAV (the 

‘clamscan’ antivirus scanner) (ClamAV, 2018). 
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3.5 Discussion of Results and Evidence 

In this research, the analysis and validation will be conducted by comparing the string-

based syntactic approaches with the commercial state of the art AVSs. The comparison 

will be conducted using one or more polymorphic malware family along with their known 

(Pk) and unknown (Px) variants. The results will be presented in a tabular format which 

will contain the detection performance (test statistics) measures as discussed in the next 

section. 

3.6 Analysis and Evaluation 

The effectiveness of the string-based syntactic approaches for each of the polymorphic 

(and metamorphic) malware families is measured based on test statistics using the 

following metrics: true positive rate (sensitivity/recall), true negative rate (specificity), 

positive predictive value (precision), detection ratio (along with accuracy) and F1 score 

(the harmonic mean of the positive predictive value and true positive rate). F1 score is 

needed in this thesis as it seeks a balance between precision and recall.  

The following formulae will be used to calculate these performance measures (Baratloo, 

Hosseini, Negida, & El Ashal, 2015; Naidu, Whalley, & Narayanan, 2017): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 ÷ (𝑇𝑁 + 𝐹𝑃) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) ÷ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

Where, 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of true negatives, 𝐹𝑃 is the 

number of false positives, and, lastly, 𝐹𝑁 signifies the total number of false negatives. 

The Detection Ratio is computed using the following formula: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑓𝑖𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠 𝑠𝑐𝑎𝑛𝑛𝑒𝑑
 

And the F1 score (Sebastián, Rivera, Kotzias, & Caballero, 2016) is calculated by the 

following formulae: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) ÷ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  
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More specifically, in this thesis,  

• true positives are the total number of malicious files (i.e. malware) correctly detected 

as malicious (i.e. malware),  

• true negatives are the total number of non-malicious files (i.e. non-malware) correctly 

detected as non-malicious (i.e. non-malware), 

• false positives are the total number of non-malicious files (i.e. non-malware) 

incorrectly detected as malicious (i.e. malware) and 

• false negatives are the total number of malicious files (i.e. malware) incorrectly 

detected as non-malicious (i.e. non-malware) 

Furthermore, recall signifies “how many malware were spotted (True Positives) among 

the files found in the test set (True Positives + False Negatives)?”. Specificity signifies 

“how much non-malware were spotted (True Negatives) among the files found in the test 

set (True Negatives + False Positives)?”. Precision signifies “how many files are actual 

malware (True Positives) among the files that are considered as malware (i.e. True 

Positives + False Positives)?”. High recall (i.e. fewer false negatives) signifies that the 

detected (malicious) files are correctly spotted as malware. High specificity (i.e. fewer 

false positives) signifies that the detected (non-malicious) files are inauthentic non-

malware. High precision (i.e. fewer false positives) signifies that the detected (malicious) 

files are authentic malware (Aniello, 2016; Narudin, Feizollah, Anuar, & Gani, 2016). 

3.7 Overview of thesis 

Chapters 4-7 are the experimental chapters in this thesis. Chapter 4 determines whether it 

is possible to extract syntactic virus signatures adopting sequence alignment techniques. 

The main contribution of this chapter is to detect all the known and unknown variants of 

polymorphic malware families using the newly extracted syntactic virus signatures. 

Additionally, other contribution is to compare the proposed approach with the other 

commercial antiviruses to determine their detection capabilities against these 

polymorphic malware families.  

Chapter 5 is divided into three sub-parts. Chapter 5 – Part I compares the two standard 

sequence alignment techniques, namely, global and local alignment in order to determine 

which one perform better. The main contribution of this part of the chapter is to extract 

never seen before syntactic virus signatures adopting global and local alignments and 

simultaneously determining which ones perform better by testing the newly extracted 
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signatures against the polymorphic malware family. Chapter 5 – Part II explores different 

combinations of gap open and gap extend penalties to determine how generalisable the 

newly extracted signatures are in the detection of known and unknown variants of the 

polymorphic malware families. This experiment is necessary as the previous chapter (i.e. 

Chapter 4) only extracts signatures adopting a fixed combination of gap open and gap 

extend penalties. The main contribution of this part of the chapter is to find the optimal 

combination of gap open and gap extend penalties that are successful in detecting the 

known and unknown variants completely and extract new syntactic virus signatures that 

are not extracted in the previous chapters. Additionally, a comparison is made amidst the 

newly extracted virus signatures and state of the art antivirus products in order to 

determine their detection capabilities. Chapter 5 – Part III compares different substitution 

matrices to determine which one perform better as previous chapters only adopt ID 

substitution matrix. The other aim is to determine which substitution matrix produce new 

and more effective syntactic virus signatures in the detection of variants belonging to 

polymorphic malware families. The main contribution of this chapter is to determine the 

better performing substitution matrix with better accuracies in the detection of 

polymorphic malware families and extract new effective signatures. 

Chapter 6 addresses some of the limitations of previous chapters adopting sequence 

alignments (see page nos. 17-19). This chapter extracts further new syntactic virus 

signatures by combining a data mining algorithm with sequence alignment techniques. 

This chapter generates malware rules which are then used in the extraction of new 

signatures for the detection of known and unknown variants of a polymorphic virus 

family. The contributions of this chapter are as follows: 

• Adopting a data mining algorithm, to generate rule-based signatures automatically 

from real malware data. 

• Comparing variable length data mining algorithm to equal length data mining 

algorithm using NNge on malware source code by conducting three different 

experiments (Experiments I-III). 

• Distinguishing malicious variants from non-malicious with the help of rules generated 

using the data mining algorithm, NNge. 

• Testing the derived rule-based signatures against real malware data and comparing 

the results to other commercial AVSs. 
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• Comparing the overall performance metrics such as true positive rate, false positive 

rate, precision, recall, etc. with other related work on malware detection using data 

mining algorithms. 

Chapter 7 aims to extract syntactic virus signatures adopting biosequence analysis 

techniques in the detection of metamorphic virus family. This chapter focuses on the 

detection of variants belonging to a metamorphic virus family. Previous chapters focus 

on detecting the variants belonging to polymorphic virus families. This chapter mainly 

focuses on a metamorphic virus family which is a complex version of polymorphic virus  

(Musale, Austin, & Stamp, 2015). Another aim is to classify the extracted syntactic virus 

signatures adopting phylogenetics. The contributions of this chapter are as follows: 

• Classifying viral signatures acquired from the metamorphic Transcriptase malware 

family adopting biosequence analysis techniques. 

• Distinguishing Transcriptase malware variants adopting phylogenetics. 

• Generating syntactic variable-length viral signatures from Transcriptase malware 

family adopting sequence alignment techniques. 

• Testing the classified viral signatures against two different Transcriptase malware 

datasets and comparing the test results against seven individual commercial antivirus 

products. 

• Testing the classified viral signatures against benign datasets for false positives. 

3.8 Summary 

This chapter presents a research design in the context of sequence analysis, which adds 

knowledge to the existing techniques of automatic signature generation for malware 

detection. It is an ideal strategy to concentrate on the research procedure and systematise 

the research by constructing and stating the research problem and extracting conclusions 

that contemplate the real world. 

The research design forms a critical inference, which is that our contribution of inspiration 

from biology will be commenced not from the very beginning of the research but at a 

point in the research where it is most preferable to do so. Chapter 2 shows that there is a 

wealth of available literature concerning malware detection methods. Although, these 

traditional detection methods are well accepted and, in most instances commercially 

established, they represent a compromise and cannot in all cases completely and 

successfully detect the known (existing) polymorphic malware variants (Pk), let alone 
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future (new/unknown) variants (Px). This does not mean that this study have to begin with 

a clean slate as such an approach would be throwing away useful and valuable existing 

foundations which this research may be built on. The objective of this thesis is to explore 

those features of signature extraction that are well accepted and relevant to this research, 

and structural detection of polymorphic malware using previously unexplored syntactic 

approaches rather than semantic approaches. 

Along with the research objectives and questions presented in Section 1.4.2 (see page no. 

11), a recommended approach is suggested. This approach is devised in order to see how 

much further this study can reach with modern approaches, extending them where 

appropriate to make them more desirable and useful for polymorphic malware detection. 

Once it is determined that this research study have advanced as far as feasible with these 

conventional approaches, further research investigates how syntactic approaches to 

signature extraction methods (Chapters 4 to 7) can contribute to malware detection. This 

work is motivated, as discussed in Section 1.1 (see page no. 1), by the need for automatic 

signature generation methods and effective approaches for the identification of 

polymorphic malware variants belonging to that particular family. 

The main objective of the next chapter is to see whether it is possible to extract syntactic 

patterns from semantically rich (polymorphic) hex code using string searching 

algorithms. An investigation into whether current string searching algorithms, such as the 

SWA, be able to give rise to string-based syntactic techniques to the extraction of 

polymorphic syntactic virus signatures automatically is presented in an attempt to answer 

research question 1.
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Chapter 4 A String-Based Method for Syntactically 

Identifying Polymorphic Virus Variants 

This chapter focuses on the identification of polymorphic malware and its variants 

adopting the Smith-Waterman algorithm (SWA). SWA is adopted in this chapter for the 

following reasons: 

• It is commonly adopted in the field of bioinformatics for performing local 

sequence alignment (Zahid, Hasan, Khan, & Ullah, 2015). Local alignments are 

more advantageous for dissimilar sequences that are expected to contain areas of 

similarities (Moreland, 2006). This chapter conducts local sequence pairwise 

alignments adopting SWA on dissimilar variable length sequences belonging to 

polymorphic malware families. 

• It finds areas of high similarities between two or more variable length sequences 

(Xu, et al., 2017). In this chapter, the aim is to find areas of high similarities 

between polymorphic malware variants. 

• It is the most accurate algorithm for conducting local sequence alignment (Xu, et 

al., 2017) and optimal in identifying local sequence alignments (Zahid, Hasan, 

Khan, & Ullah, 2015). 

• It is a well-known algorithm that finds the longest common substring between two 

or more variable length sequences (Chen, Wan, & Liu, 2006). This chapter 

focuses on identifying the longest common substrings (i.e. syntactic patterns) 

which are employed as syntactic virus signatures in the detection of polymorphic 

malware variants. 

The main purpose of the research presented in this chapter is to see whether it is possible 

to extract syntactic patterns from semantically rich (polymorphic) hex code and whether 

the extracted syntactic patterns can be employed for the complete identification of 

polymorphic malware variants including some or all new variants. Further, the results of 

the detection capabilities of the proposed approach are compared with that of the 

commercial AVSs for the detection of known (Pk) and unknown (Px) variants belonging 

to the corresponding polymorphic virus families. The results are compared by generating 

their test statistics, such as accuracy, precision, recall, specificity, etc. as discussed in the 

previous chapter (see page no. 59). 
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4.1. Introduction 

The goal of this chapter will be to investigate if existent string-based algorithms supported 

over its growing ability on how to heuristically implement the string-based algorithm for 

maximal effects, (like the SWA), be able to give rise to syntactic methods to the extraction 

of polymorphic syntactic virus signatures automatically not only for the variants already 

seen (Ps) but also for the unseen (Pu) and unknown (Px) variants. JS.Cassandra virus along 

with its known (Pk) virus variants belonging to Cassandra polymorphic virus family are 

used for the experiments conducted in this chapter. Once the method was established for 

signature testing using the JS.Cassandra family, the method was later tested using the 

W32.CTX and the W32.Kitti families. 

4.2. String-Based Syntactic Detection of Polymorphic Malware 

Variants Method: An Overview 

Hex Dump Extraction

Hex to DNA Conversion

Extraction of Longest Substrings

Extraction of Longest Common 

Substrings

Local Pairwise Alignment and Common Substring (Meta-Signature) Extraction

DNA to Hex Conversion

Virus Identification
Virus & 

Variants

Local Pairwise Alignment

 

Figure 4.1: The seven steps in the String-Based Syntactic Detection of Polymorphic 

Malware Variants method. 
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The method adopted here consists of seven steps (see Figure 4.1). Obtaining the original 

virus (Ps) and its known (Pk) variants, together with extraction of their hex (hexadecimal) 

dump and the testing process were carried out on an isolated system in order to avoid any 

other unexpected system infections. Services of network connectivity is only adopted 

during the testing process but is carried out adopting ‘Oracle VM VirtualBox’ together 

with a previously installed Linux operating system (VirtualBox, 2018). 

4.3. String-Based Syntactic Detection of Polymorphic Malware 

Variants Method: Systems and Methods 

An overview of the experimental method, in four stages, was presented in Figure 3.2 and 

briefly discussed in Section 3.4 (see page no. 57). In this experiment, these stages where 

appropriate are further divided into clear experimental steps in order to provide a 

reproducible method (Figure 4.1). The first three stages of the general method presented 

in Section 3.4 (see page no. 57) are used in this experiment. Firstly in Stage I, ‘sigtool’ is 

used to extract hexadecimal dumps of the virus and its variants. In Stage II these 

hexadecimal sequences are converted to binary format and then into DNA representation 

using the rules detailed in the next section. In Stage III common substrings are extracted 

– this stage is divided here into four steps. First, a local pairwise alignment between all 

of the DNA sequences using the SWA implemented in the JAligner tool was undertaken 

(Moustafa, 2010). Next, the longest substring from very pairwise (local) alignment was 

identified and extracted, and from those longest substrings, the longest common substring 

that captures all the variants in the family of malware tested is identified in Step-5. 

Finally, in Step-6, a second process of pairwise alignment using the SWA is performed 

this time between the DNA sequences of the virus and its variants and the longest 

common substring to extract a meta-signature obtained in Step-5. 

In Stage IV signature testing is undertaken. This stage consists of two distinct steps 

namely DNA to hexadecimal conversion and finally in Step-7, the effectiveness of the 

signature, using ‘clamscan’, for identifying the virus and its known (Pk) variants is 

evaluated. 

The next section describes the seven steps in detail. JS.Cassandra and its sources, as well 

as the software tools used in this experiment, are detailed in the materials and tools section 

(i.e. Appendix C section – see page no. 224). 
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4.3.1 Hex Dump Extraction 

Step-1: Forty-two variants of the 351 JS.Cassandra known (Pk) variants and the original 

JS.Cassandra virus (Ps) were selected for this experiment. This gives a sum of 43 

malicious files (Pk) and is considered in this chapter as the training set. A new set of 43 

non-malicious (Pu) JS.Cassandra files (training set) with no payload were generated by 

taking out their fundamental polymorphic engines manually. However, most of these 

newly created non-malicious (Pu) JS.Cassandra files possessed active polymorphic 

functions. An additional new set of 43 files (test set) were randomly created using RDFC 

which creates binary files of random size up to a limit of 150 KB. The output RDFC 

executable files (*.exe) were converted into JavaScript files (*.js). These files are now in 

the correct format for inclusion in the set of test files and are used to check for correct 

false positive and false negative rates. 

The uniqueness of the 43 malicious (Pk) virus variants together with 43 non-malicious 

(Pu) variants and 43 randomly generated files was double-checked by generating a 

“CRC32b hash” value for each of the variants (see Appendix D section – page no. 231). 

The hash values proved that each variant was indeed unique as no two files had the same 

hash value, and none of them had the same file size. These files (43 non-malicious – Pu 

and 43 malicious – Pk variants) were further checked using ‘VirusTotal’ (VirusTotal, 

2018) to determine whether their viral payloads were taken out in the 43 non-malicious 

(Pu) variants and maintained in the 43 malicious (Pk) variants of JS.Cassandra virus. 

Furthermore, the randomly created 43 Java files were verified adopting ‘VirusTotal’ in 

order to confirm that these files did not already exist in the VirusTotal database. None of 

the randomly generated files were recognised suggesting that these generated variants are 

unique. 

Also, in this step, the processes of hex dump extraction were carried out on the 43 non-

malicious (Pu) variants and 43 malicious (Pk) variants adopting ‘sigtool’. 

4.3.2 Hex to DNA Code Conversion 

Step-2: In this step, after the hex dump extraction, the hex dumps were 

converted/translated into binary code and subsequently into DNA strings/sequences. This 

step is necessary because in the field of bioinformatics the string matching algorithms do 

not merely look for the absence or presence of codes/bases in specific locations but at the 

same time also manage the strings in such a manner that deletion and insertion of 

codes/bases are allowed in order to increase the count of matching codes/bases. 
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Scoring/substitution matrices during the sequence alignment process are also utilised in 

order to enable a match amidst unmatched codes/bases provided there is a possibility of 

mutation/transformation to another code/base. Similar substitution matrices could be 

produced experimentally through former string matches/alignments or a priori based on 

a fixed substitution rules (Narayanan, et al., 2012; Chen, et al., 2012a; Chen, et al., 2012b; 

Narayanan, et al., 2013a; Narayanan, et al., 2013b). In this research, a different approach 

is taken. That is translation of malicious virus code into a suitable biological 

representation/encoding is adopted prior to the process of sequence matching/alignment, 

with translation back to hexadecimal code for the process of signature testing. 

Translation of hexadecimal sequence into binary code sequence was conducted adopting 

the subsequent rules: 

0 → 0000 4 → 0100 8 → 1000 c → 1100 

1 → 0001 5 → 0101 9 → 1001 d → 1101 

2 → 0010 6 → 0110 a → 1010 e → 1110 

3 → 0011 7 → 0111 b → 1011 f → 1111 

Subsequent conversion of the bits into nucleotide bases and thus binary code into DNA 

sequences for input to JAligner was conducted adopting the following rules: 

00 → A; 01 → C; 11 → T and 10 → G 

An in-house generated macro was developed in order to carry out the conversion from 

hexadecimal representation to DNA representation, via binary representation, using 

EmEditor (Professional edition, 64-bit version) (EmEditor, 2018). All of the 43 extracted 

hexadecimal dumps of the malicious (Pk) files and 43 hexadecimal dumps of the non-

malicious (Pu) JS.Cassandra files were translated into DNA codes adopting this in-house 

macro. These sequences were then retained for their use in step-3 to step-7. 

Demonstration of the translation of a 32-bit binary sequence into a 16-bit nucleotide 

(DNA) sequence is presented as follows: 

01010010100100101010010111101101 (32-bit binary code) 

CCAGGCAGGGCCTGTC (16-bit nucleotide bases) 
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4.3.3 Process of Pairwise Local Sequence Alignment 

String matching algorithm of SWA is adopted in order to extract the most commonly 

occurring pattern/substring from the 43 polymorphic malicious variants. 

Step-3: In this sequence alignment step, a process of pairwise sequence alignment 

between two of the generated DNA sequences was conducted locally adopting the SWA 

with the Identity matrix and ‘JAligner’. For example, in this process imagine that there 

are four variants represented in DNA sequences, namely, D1, D2, D3, and D4, then a 

process of pairwise sequence alignment will be conducted locally amidst D1 and D2, then 

D2 and D3 and finally amidst D3 and D4. This procedure was adopted to perform local 

pairwise sequence alignment on the 43 translated malicious DNA codes. 

Step-4: Following the procedure of sequence alignment, extraction of longest substrings 

from the resulting pairwise sequence alignments were carried out, emanating in 42 longest 

malicious substrings resulting from the 43 malicious DNA sequences. 

Step-5: In this extraction step, amid the 42 longest malicious substrings, the longest 

common malicious substring is extracted. The extraction of such longest common 

malicious substring signifies the longest common pattern/substring (encoded in DNA) 

within the ‘polymorphic family’ consisting of 43 malicious JS.Cassandra variants. 

Remainder of the 41 longest malicious substrings were retained for their usage in the 

process of Step-6. 

Step-6: In this second sequence alignment step, a process of pairwise sequence alignment 

was carried out locally amidst the 43 malicious sequences encoded in DNA (acquired 

from the process of Step-2) and longest common malicious substring encoded in DNA 

(acquired from the process of Step-5 above) one after the other. It shows that there is a 

common syntactic pattern/substring that is same for every polymorphic virus variants 

belonging to the same family. Such syntactic common substring is the syntactic meta-

signature that is employed in order to identify the known (Pk) polymorphic malicious 

variants of the JS.Cassandra family. In any case, if the first acquired longest common 

syntactic substring does not provide the optimal common syntactic substring, in that case, 

the procedure of Step-6 is repeated employing the second retained longest common 

syntactic substring, otherwise, in that case, the procedure of Step-6 is repeated again 

employing the third retained longest common syntactic substring, and so on. In total, one 
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meta-signature (syntactic virus signature) was extracted in this step for the JS.Cassandra 

virus family. 

4.3.4 Meta-Signature Virus Testing 

Step-7: In the last step of signature translation and testing, the optimal common syntactic 

substring encoded in DNA codes is translated back into hexadecimal code. The translated 

syntactic hex (malicious) meta-signature was verified on the 42 known (Pk) polymorphic 

malicious variants and JS.Cassandra original (Ps) virus adopting ‘clamscan’ (ClamAV, 

2018) for the sole purpose of their identification. The translated syntactic hex (malicious) 

meta-signature of 40 characters long that was acquired in this step, is presented as follows: 

537472696e672e66726f6d43686172436f646528 

Steps 3 to 7 processes were conducted on the 43 JS.Cassandra non-malicious (Pu) 

sequences encoded in their DNA representation. The syntactic common non-malicious 

substring (that is, the syntactic meta-signature) is acquired during the process of Step-7. 

This syntactic non-malicious meta-signature is exactly similar to the one acquired in 

previous steps from the 43 JS.Cassandra malicious variants. Steps 1 to 7 were also applied 

on the other two polymorphic virus families and two meta-signatures were extracted, one 

for each polymorphic virus family. Except in this case only two variants were selected 

randomly as the training set (Pk) from the individual polymorphic virus family and no 

non-malicious (Pu) files were generated. Steps 1 to 7 were applied on the corresponding 

two variants and the meta-signatures were extracted in a similar way as JS.Cassandra 

virus. 

4.4. Experimental Results 

In this section, the 43 files belonging to three groups, namely, malicious (Pk), non-

malicious (Pu) and random, respectively, were scanned using the 12 commonly used 

AVSs and meta-signatures obtained in this chapter. These experiments were performed 

in order to determine the detection capabilities of AVSs and the meta-signatures against 

the polymorphic virus families. The scan results of those experiments are detailed below. 

The 43 files from the three separate groups were scanned individually employing the 12 

commercial AVSs. This experiment was conducted to determine the detection capability 

of these AVSs against these files. Appendix D (see page no. 232) provides the scan results 

and test statistics of some of the AVSs tested against these files. 
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The syntactic meta-signature acquired from the process of Step-7 was scanned against the 

three individual groups. A signature database file is developed in .ndb signature file 

format (that is, ClamAV Extended Signature File) for validating the syntactic meta-

signature adopting the scanner tool called ‘clamscan’ antivirus scanner belonging to 

ClamAV (ClamAV, 2018). The format of signature database for scanner tool ‘clamscan’ 

is specified using the standardised structure, that is, “MalwareName: TargetType: Offset: 

HexSignature” (Naidu & Narayanan, 2016). More information regarding the clamscan 

database file can be found in Appendix D (see page no. 228). The screenshots of the 

clamscan scan results for the three individual groups utilising the syntactic meta-signature 

acquired through the proposed seven-step method are presented in Appendix D (see page 

no. 229). 

The scan results show that 43 of the 43 JS.Cassandra malicious (Pk) variants, 43 of the 43 

JS.Cassandra non-malicious (Pu) variants along with 0 of the 43 randomly created Java 

programs were fully identified as infected/malicious with the help of ‘clamscan’ scanner 

tool involving the syntactic meta-signature in under 0.3 seconds, respectively. The 

detection accuracy of the ‘clamscan’ scanner tool utilising the syntactic meta-signature 

with regards to the original polymorphic (Ps) JS.Cassandra virus file together with its set 

of 43 known (Pk) malicious as well as 43 non-malicious (Pu) variants, was altogether 

100%. Further experiments were conducted in this section and the results of those 

experiments are presented in Appendix D (see page no. 233). These experiments were 

conducted to determine whether it was possible to generate variants from the 

JS.Cassandra non-malicious (Pu) files. The same meta-signature obtained from the above 

experiments was tested against these newly generated variants. The results are presented 

in Appendix D (see page no. 235). 

Finally, the original polymorphic (Ps) JS.Cassandra virus together with its set of 351 

known (Pk) malicious variants (test set) were all-around tested for the process of malicious 

identification employing commercial AVSs such as ‘Microsoft’, ‘clamscan’ and ‘ESET’. 

Both the Microsoft and the ESET scanners were installed on a Microsoft Windows 

operating system (Windows 10 Professional edition). Installation of the ‘clamscan’ 

scanner tool was done on a Linux-based operating system employing ClamAVs built-in 

database and adopting the database created in this research incorporating the syntactic 

meta-signature encoded in hex code. The signature databases of the three AVSs were 

comprehensively up to date together with the most recent updates, at the time of the 
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experiments, installed. The scan results show that the original polymorphic (Ps) 

JS.Cassandra file together with its set of 351 known (Pk) malicious variants were fully 

identified as malicious/infected in well under 0.995 sec by the ‘clamscan’ utilising the 

meta-signature (see Appendix D for scan result – page no. 235). Only the ‘Microsoft’ 

antivirus tool and identification utilising the syntactic meta-signature could fully detect 

each and every malicious variants with an identification ratio of 352 out of the 352 

malicious files and a detection accuracy of exactly 100% (Table 4.1). 

Identification of the other two polymorphic viruses together with their unknown (new) 

malicious variant files (Px) were also tested employing the newly generated syntactic 

meta-signature: the scan results were altogether 100% (see Table 4.1). Even though some 

commercial AVS products could fully detect each and every malware variants they were 

uncongenial in fully detecting the polymorphic viruses as well as their known (Pk) and 

unknown (Px) variants (Table 4.1). For instance, ‘Microsoft’ scanner be able to merely 

detect 80 of the 1106 unknown (Px) malicious ‘Win32.Kitti’ variants with an 

identification accuracy of 7% (overall) but at the same time be able to fully detect each 

and every malicious variants belonging to other two polymorphic virus types 

demonstrating the inconsistency of its detection algorithm. 

The syntactic meta-signature acquired through the proposed seven-step syntactic method 

for the same polymorphic family of JS.Cassandra virus (Ps) together with its known (Pk) 

malicious variants was decrypted into a text and signifies a JavaScript function – 

‘String.fromCharCode(’. Such function is usually a Java code function within the 

original source code belonging to the polymorphic JS.Cassandra virus (Ps) along with its 

known (Pk) malicious variants. While such viruses do not have a readily available source 

code due to which malware analysts require to reverse engineer the malware files in order 

to retrieve the source code adopting a very sophisticated procedure (Naidu & Narayanan, 

2016). Provided, in this thesis, the source code of JS.Cassandra (Ps) virus along with its 

known (Pk) malicious variants was readily available, although commonly, viruses created 

using JavaScript scripts are either password protected or enciphered. As noted earlier, the 

scan engines of AVS products adopt the technique of traditional “Variable Scan 

Sequences”. The crucial problem with this approach is that it is too tedious (Ferris, 2006).
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Table 4.1: Test statistics and time interval to the identification of three individual polymorphic viruses as well as their known (Pk) and unknown (Px) 

malicious variants adopting ‘clamscan’ scanner tool, ESET, Windows Microsoft Defender and the Syntactic Meta-Signature (extracted from the proposed 

seven-step approach). 

Virus JS.Cassandra together with its 351 known (Pk) malicious variants (Test set) Win32.Kitti Virus together with its 1105 unknown (Px) malicious variants (Test set) 

AVS Microsoft Defender ESET clamscan Meta-Signature Microsoft Defender ESET clamscan Meta-Signature 

Detection rate 352/352 (100%) 296/352 (84%) 340/352 (97%) 352/352 (100%) 80/1106 (7%) 1106/1106 (100%) 1/1106 (0.09%) 1106/1106 (100%) 

Sensitivity/Recall 100% 84% 97% 100% 7% 100% 0.09% 100% 

Specificity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Precision 100% 100% 100% 100% 100% 100% 100% 100% 

F1 Score 100% 91% 98% 100% 13% 100% 0.18% 100% 

Detection time  unknown 4 seconds 30.613 seconds 0.995 seconds unknown 43 minutes and 23 seconds 39.378 seconds 14.003 seconds 

 

Virus 2 x Win32.Cholera together with its 198 unknown (Px) malicious variants (Test set) 

AVS Microsoft Defender ESET clamscan Meta-Signature 

Detection rate 200/200 (100%) 200/200 (100%) 67/200 (33%) 200/200 (100%) 

Sensitivity/Recall 100% 100% 33% 100% 

Specificity 0.0% 0.0% 0.0% 0.0% 

Precision 100% 100% 100% 100% 

F1 Score 100% 100% 50% 100% 

Detection time  unknown 23 seconds 34.009 seconds 1.008 seconds 
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4.5. Summary 

In this chapter, the efficient and effective syntactic approach of using string matching 

algorithms such as the SWA for the automatic extraction of signatures for the detection 

of some or all new polymorphic variants was examined. The experiments reported in this 

chapter demonstrate to some extent that current and modern state of the art AVS products 

cannot completely and successfully detect the known (existing – Pk) and future 

(new/unknown – Px) polymorphic malware variants. By downloading the original 

polymorphic JS.Cassandra virus together with its known (Pk) malicious variants in its 

original JavaScript code as well as generating new (unknown – Px) variants of the other 

two polymorphic malware using information contained in documents concerning 

polymorphic versions, the authenticity of the polymorphic variants was assured. By 

removing the payload from each of the JS.Cassandra malicious variants and checking all 

86 variants (43 malicious – Pk and 43 non-malicious – Pu variants) against a number of 

AVS systems (using the ‘VirusTotal’ online tool), it has been verified that these variant 

files (and the code they represent) represent malicious (Pk) and non-malicious (Pu) 

variants. All the (pairwise) alignments were conducted with the ID matrix rather than 

biologically plausible mutation matrices (such as BLOSUM and PAM), addressing the 

concern that biological bias was being introduced into the alignment results. All the 

(pairwise) alignments were conducted using a fixed combination of gap open penalty (i.e. 

10) and gap extend penalty (i.e. 1). By using an in-house macro tool, this chapter has 

shown that a natural computation approach of projecting polymorphic malware 

(hexadecimal) code onto biological representational space (i.e. DNA) and vice-versa and 

then using bioinformatics algorithms (i.e. pairwise alignment and SWA) can successfully 

automate signature extraction using the proposed (seven-step) string-based syntactic 

approach developed in this research. 

In this chapter, all the syntactic meta-signature (common substring) testing against the 

malicious variants of polymorphic virus families was conducted adopting the ‘clamscan’ 

scanner tool, which belongs to a module in the ClamAV AVS product (ClamAV, 2018). 

Experimental results from this testing process are shown in Table 4.1. Based on Table 

4.1, this chapter demonstrates how the proposed string-based syntactic method adopting 

the traditional algorithm of string matching SWA can fully detect the previously known 

(existing) malicious variants (Pk) belonging to the same family of original JS.Cassandra 

polymorphic virus (Ps) and outperform the detection capabilities of commercial AVSs. 

In-depth, it was demonstrated that it is possible to extract syntactic patterns from 
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semantically rich (polymorphic) hex code and that the extracted syntactic patterns (i.e. 

common substrings/meta-signatures) can be used for the complete identification of 

polymorphic malware variants. This proposed string matching approach adds knowledge 

to the automatic signature generation contributing to understanding the polymorphic 

variant and signature extraction and be able to give rise to a modern era of string-

dependent syntactic AVSs. 

The next chapter investigates whether further refined string searching algorithms, such as 

the SWA and NWA, can lead to syntactic techniques for the automatic extraction of new 

polymorphic viral signatures. Experiments are reported that are designed to address the 

second research question and its sub-questions (Q2a to Q2c).
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Chapter 5 Exploring Advanced Sequence Alignment 

Techniques in a String-Based Syntactic 

Method for Identifying Malicious Variants of 

Polymorphic Virus Families 

In the previous chapter, the efficient and effective syntactic based technique employing 

the algorithms of string matching for the detection of all new or some malicious variants 

of polymorphic virus families using the automatically extracted syntactic signatures was 

investigated. In this chapter, this work is extended. The chapter is presented in three parts. 

Part-I (addressing research sub-question – Q2a) introduces two different dynamic 

programming methods i.e. Needleman-Wunsch algorithm (NWA) and Smith-Waterman 

algorithm (SWA) as methods for improving the detection of viral polymorphic malware 

variants. Both approaches are evaluated for two different polymorphic malware and their 

known (existing – Pk) and unknown (new – Px) variants. More detailed information on 

why this part focuses only on NWA and SWA is outlined on the next page. Part-II 

(research sub-question – Q2b) examines the effects of different combinations of gap open 

and gap extend penalties using the SWA. In Chapter 5 the approach employed a fixed 

combination of gap open penalty (i.e. 10) and gap extend penalty (i.e. 1). The approaches 

developed in this section will be demonstrated using three different polymorphic malware 

and their known (Pk) and unknown (Px) variants. Part-III (research sub-question – Q2c) 

will adopt SWA with six different substitution matrices. In this part, the process of the 

first pairwise sequence alignment will be conducted for 71 different pairwise alignments 

with 71 different substitution matrices. The research in this thesis reported in Chapter 4 

conducted pairwise alignment using the ID substitution matrix solely. The work in this 

part will be demonstrated using one polymorphic malware and its known (Pk) variants.
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Part-I: Comparing Needleman-Wunsch and Smith-Waterman 

Algorithms for Identifying Viral Polymorphic Malware Variants 

In this set of experiments the focus is on the string matching algorithm and the NWA and 

SWA will be compared to see which performs best for the extraction of signatures for 

identifying polymorphic variants of viral malware. This part mainly focuses on 

conducting experiments using two different sequence alignment techniques, namely, 

global and local alignments, and are also the two commonly-used standard techniques of 

sequence alignment (Troy, et al., 2003). Global alignment aligns the entire sequence from 

beginning to end in order to find the best potential alignment between two or more 

sequences (Kumar & Filipski, 2007), whereas, local alignment finds the “local regions 

with highest level of similarities” between two or more sequences (Vijan & Mehra, 2011). 

The standard algorithm to perform a global alignment is NWA and local alignment is 

SWA (Zarka, Cordier, Egyed-Zsigmond, Lamontagne, & Mille, 2013; Ghayyur, Aleem, 

& Islam, 2018). Further, NWA and SWA are the only two standard dynamic 

programming algorithms of sequence alignment ( Xia, 2007). Therefore, for these exact 

reasons, the current part only focuses on comparing NWA and SWA in the extraction of 

new syntactic viral signatures for their use in the detection of polymorphic virus variants. 

5.1. Introduction 

Initial work (Chapter 4) exploring string-based approaches for the automatic extraction 

of signatures for the detection of some or all new polymorphic variants was promising. 

However, that initial work was limited by a number of experimental features. One such 

aspect was that only one sequence alignment method was considered – SWA. The 

research question (in detail) investigated is “Do dynamic programming approaches (i.e. 

the NWA and SWA) in bioinformatics for conducting task such as sequence alignment 

produce consensuses that not only ‘fit’ the known (Pk) variants (training set) but also 

generalise well to unknown (Px) variants (test set)” (Q2a). The goal of the research 

addressed in this part of the chapter is to explore the effects of using NWA and SWA 

(both refined by dynamic programming) in string-based algorithms for the automatic 

extraction of syntactic signatures in order to detect all new or some malicious variants of 

polymorphic virus families. 

The aim of this thread of research is to analyse if modern string matching methods, such 

as the NWA and SWA, can lead to innovative syntactic techniques for the automatic 

extraction of syntactic virus signatures not only for known (Pk) malicious variants 
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belonging to polymorphic virus families but also for unknown (new/future) viral variants 

(Px). As stated earlier, the initial research (Chapter 4, also published in Naidu and 

Narayanan (2016)) was largely focused on the detection of polymorphic malware variants 

using the SWA (i.e. by performing local pairwise sequence alignment), but the current 

aim is to compare the two different dynamic programming approaches i.e. the NWA and 

SWA for the identification of polymorphic malware variants, by adopting both pairwise 

and multiple sequence alignments. The JS.Cassandra and the W32.Kitti viruses are 

employed along with their known (Pk) and unknown (Px) polymorphic viral variants for 

experimental purposes. This part of the current chapter only focuses on these two 

polymorphic virus families due to sequence length restrictions (Kim & Pramanik, 1994; 

Yu, Bundschuh, & Hwa, 2002; Chakraborty & Bandyopadhyay, 2013) placed by the 

alignment tool (more details on page no. 18) adopting NWA (global alignment). The third 

polymorphic virus family was not considered in this part of the chapter due to its overly 

long sequences. 
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5.2. Comparing NWA and SWA for the Detection of Polymorphic 

Malware Variants Method: An Overview 

Hex Dump Extraction

Hex to DNA Conversion

Pairwise alignment 

method?

Local Global

Extract Common Substrings

Meta-Signatures

Multiple Sequence Alignment

Consensus Extraction

Local Pairwise Alignment and Super-Signature Extraction

DNA to Hex Conversion

Virus Identification
Virus & 

Variants

 

Figure 5.1: Eight-step method for comparing the Identification of Polymorphic Malware 

Variants by NWA and SWA. 

The method in this part consists of eight steps (see Figure 5.1). As for the earlier research 

reported in this thesis, obtaining families of polymorphic viruses along with its known 

(Pk) malicious variants, generation of unknown (Px) malware variants together with 

extraction of hex (hexadecimal) dump as well as the process of testing, was carried out 

on an isolated system in order to avoid any other unexpected system infections. Services 

of network connectivity is only adopted during the testing process as indicated in the 

previous chapter. 

The method in this part employs two polymorphic malware – JS.Cassandra virus and 

W32.Kitti virus. 
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5.3. Comparing NWA and SWA for the Identification of 

Polymorphic Malware Variants Method: Systems and Methods 

A detailed outline of the method is supplied below; a complete description follows the 

method. 

1. Step-1: Extract hexadecimal dumps from polymorphic malware and its variants of 

the same family using ‘sigtool’ (ClamAV, 2018) – this step belongs to Stage I as 

presented in Figure 3.2. 

2. Step-2: Convert the extracted hexadecimal dump sequences into a binary form and 

subsequently into DNA bases – this step belongs to Stage II as presented in Figure 

3.2. 

3. Step-3: Perform pairwise sequence alignments (global – NWA and local - SWA) 

using ‘JAligner’ (Moustafa, 2010) between the two converted polymorphic DNA 

sequences obtained in Step-2 – this step belongs to Stage III as presented in Figure 

3.2. 

4. Step-4: Extract common substrings (meta-signatures) after the process of first 

pairwise (global and local) sequence alignment conducted in Step-3 – this step 

belongs to Stage III as presented in Figure 3.2. 

5. Step-5: Perform multiple sequence alignment using T-Coffee (Notredame, Higgins, 

& Heringa, 2000) on the extracted meta-signatures obtained in Step-4 – this step 

belongs to Stage III as presented in Figure 3.2. 

6. Step-6: Extract consensuses after the process of multiple sequence alignment 

conducted in Step-5 – this step belongs to Stage III as presented in Figure 3.2. 

7. Step-7: Perform pairwise (local - SWA) sequence alignments using ‘JAligner’ 

(Moustafa, 2010) between the extracted consensuses (retrieved in Step-6) and the 

polymorphic DNA sequences (retrieved in Step-2) belonging to the polymorphic 

malware (and its variants) of the same family one by one. This step will give us the 

common substrings (super-signatures) which will be employed to detect the 

polymorphic malware and all its known (Pk) and unknown (Px) variants of that 

particular family – this step belongs to Stage III as presented in Figure 3.2. 

8. Step-8: Convert the meta-signatures and super-signatures from their current 

representations in DNA format into the hexadecimal sequence format and then test 

the converted hex meta-signatures and hex super-signatures against the groups of 

polymorphic viruses along with its known (Pk) and unknown (Px) malicious variants 
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belonging to the same family using ClamAV (ClamAV, 2018) – this step belongs to 

Stage IV as presented in Figure 3.2. 

5.3.1 Hex Dump Extraction 

Step-1: In this experiment, one variant v_000.js was selected from the 351 known (Pk) 

variants of JS.Cassandra virus along with the original (Ps) JS.Cassandra virus. Variant 

v_000.js and original (Ps) JS.Cassandra virus were selected as previous work reported in 

Chapter 4 showed that the same common substring (meta-signature) being found in all 

the alignments between the first 43 variants. 

Table 5.1: File Identification Information for JS.Cassandra and its “v_000.js” variant. 

Filename File Identification Information 

JS.Cassandra.js 

(Original (Ps) Virus) 

MD5 dc5f0d63fee16e7897aa47cce9b098f4 

SHA1 e2d9e58a81cbe19d0ccc2ae6961f5c6053fd0a9c 

SHA256 
256b7d22a3475e70e9ca443f9c7357b496bac38db54

244b1af0b6a2dc3e1a962 

ssdeep 

192:s1c9NzNywp1N/zUQzVFsUlE4BcFEOsNpQS

4oL/P08/8HnjOfRN+tMBG5k:McDNEEIE3NYoH

8Hj+CeBGe 

File Size 7.6 KB ( 7767 bytes ) 

File Type Text 

Magic Literal 
ASCII text, with very long lines, with CRLF line 

terminators 

TrID Unknown! 

v_000.js 

(Variant 1 – Pk) 

MD5 994ee689fcc1c13fe100d909a4a17b3c 

SHA1 29d232725a388962d40d1a9cf5172fd733171cc9 

SHA256 
3176a9e5b01ef9b3109d43bf93c090e2d1c28df4bd0

9cdec0be3fd61966d4e14 

ssdeep 

96:ZrIhhqY/QQ2p0yazCBU93sW5StZ6luh7aZxgf1

N33fSUJxPMyVwjp60PhVpYcfKu:Zr4Ypu7rvAh7

qW1FrC6KhVCuKJs 

File Size 8.1 KB ( 8324 bytes ) 

File Type C++ 

Magic Literal 
ASCII C++ program text, with very long lines, with 

CRLF line terminators 

TrID Unknown! 

The aim of this chapter is also to find more than one meta-signature (syntactic viral 

signatures) using only the two files with the help of global and local alignments. As for 

previous experiments, the uniqueness of these two malicious programs was cross-verified 

by creating their file identification information using VirusTotal. File identification 

information was obtained from ‘VirusTotal’ (VirusTotal, 2018) and the results are given 

in Table 5.1. 
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Table 5.2: Analysis and Detection Ratio based on the 55 AVSs acquired from the 

‘VirusTotal’ for the Two Malicious Files of JS.Cassandra Polymorphic Virus. 

 

Table 5.2 provides the results of attempting to detect these two variants using 55 

commonly used AVSs. The original (Ps) JS.Cassandra virus was successfully detected by 

39 of the AVSs while the v_000 variant was correctly identified by only 19 of the 35 

AVSs. 
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Hex dumps are subsequently extracted followed by the AVS scan tests from the two 

malicious programs adopting the ClamAV (ClamAV, 2016) software tools openly 

accessible on their webpage, which utilises an application known as ‘sigtool’, in order to 

create hexadecimal dumps. 

5.3.2 Hex to DNA Code Conversion 

Step-2: In this step of code conversion, following the extraction process, the two 

extracted malicious hex dumps belonging to JS.Cassandra virus files were translated into 

DNA (nucleotide/nucleic acid) sequences adopting the DNA encoding method as shown 

in Section 4.3.2 (see page no. 66). 

5.3.3 First Pairwise (Global and Local) Sequence Alignment and Meta-

Signature Extraction 

The string matching NWA and SWA were employed to extract the most common 

substrings/patterns from the two JS.Cassandra files. The NWA conducts sequence 

alignment globally amidst the two biologically represented strings in order to obtain the 

optimal matching segments, whereas, the process of SWA performs sequence alignment 

locally. For use in the NWA and the SWA, the two strings are normally represented either 

as proteins (chains of amino acids) or nucleotide sequences (DNA/RNA). Both the NWA 

and SWA identify the most matched substrings between the search string and pattern. 

Rather than identifying the complete sequence, the NWA and SWA extract the sections 

of all possible length, then compares and enhances the similarity rate. The NWA and 

SWA can verify for identical matches or substituted matches (i.e. a character in the string 

can be replaced by a different character, together with no character (gap), in the pattern, 

and vice versa). The SWA is assured to identify the optimal local alignment and the NWA 

to identify the optimal global alignment with reference to the scoring scheme being 

adopted (i.e. the gap scoring and the substitution strategy). There are several substitution 

matrices available and utilised by the NWA and SWA like BLOSUM, ID, and PAM 

matrix. However, fixed match/mismatch scoring strategy was adopted in these 

experiments to carry out exact matching. Match score was given a value of 2, whereas, 

mismatch score was given a value of -1, respectively. The outcomes of the NWA and 

SWA are known as ‘alignments’ since either or both strings can be altered with gap 

insertions to produce optimal pattern matches. 

Step-3: In this step, pairwise (global and local) alignment was performed adopting the 

NWA and the SWA with a fixed match/mismatch scoring strategy between the DNA 
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sequence representations of JS.Cassandra and its v_000 variant using ‘JAligner’. In total, 

two pairwise local alignments were performed in this step, one for NWA and one for 

SWA, respectively. 

Step-4: After the phase of global and local alignment, all the feasible common substrings 

from the two pairwise alignments (NWA and SWA) were extracted, resulting in 37 

substrings (meta-signatures), 16 from NWA and 21 from SWA. Table 5.3 presents the 

sequence lengths of all the 37 extracted meta-signatures in their DNA representation 

obtained in this step. The minimum and maximum sequence lengths of NWA meta-

signatures extracted for JS.Cassandra virus were 30 and 104, respectively, with a mean 

(sum, median and standard deviation of 830, 36 and 28.25, respectively) of 51.875 for 16 

meta-signatures in their DNA representation. The minimum and maximum sequence 

lengths of SWA meta-signatures obtained for JS.Cassandra virus were 29 and 104, 

respectively, with a mean (sum, median and standard deviation of 1139, 46 and 27.65, 

respectively) of 54.2381 for 21 meta-signatures in their DNA representation. The 

minimum and maximum sequence lengths of SWA meta-signatures obtained for 

W32.Kitti virus were 28 and 3736, respectively, with a mean (sum, median and standard 

deviation of 7331, 36.5 and 543.07, respectively) of 135.7593 for 54 meta-signatures in 

their DNA representation. 

5.3.4 Multiple Sequence Alignment and Consensus Extraction 

Step-5 (Multiple sequence alignment): In this step, a multiple sequence alignment was 

performed on the meta-signatures obtained in Step-4 using T-Coffee (Notredame, 

Higgins, & Heringa, 2000) with alignment again confined to the ID substitution matrix. 

This means that alignment is carried out through matching of nucleic acids in particular 

positions rather than the usual bioinformatics approach of using biologically informed 

mutation rates. Two separate multiple alignments were performed, one for the 16 meta-

signatures obtained using the NWA and one for the 21 meta-signatures obtained from the 

SWA. 
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Table 5.3: Sequence Lengths for Meta-signatures extracted from DNA representations 

from JS.Cassandra and its v_000 variant, where, MS is the meta-signature. 

NWA SWA 

Meta-Signature  Sequence Length Meta-Signature Sequence Length 

MS1 104 MS1 46 

MS2 100 MS2 100 

MS3 30 MS3 104 

MS4 44 MS4 48 

MS5 60 MS5 29 

MS6 32 MS6 61 

MS7 30 MS7 49 

MS8 56 MS8 33 

MS9 30 MS9 56 

MS10 32 MS10 29 

MS11 100 MS11 56 

MS12 36 MS12 32 

MS13 36 MS13 30 

MS14 30 MS14 101 

MS15 80 MS15 101 

MS16 30 MS16 37 

- - MS17 37 

- - MS18 39 

- - MS19 30 

- - MS20 91 

- - MS21 30 

Step-6 (Consensus generation and extraction): In this step, the consensus was 

generated after the procedure of multiple sequence alignment, and the procedure was 

repeated two times, one for each dynamic programming algorithm (NWA and SWA). No 

threshold of common occurrence of a DNA character (nucleic acid) in a specific position 

was chosen in this step. Overall, two consensuses were extracted in this step. 

5.3.5 Second Pairwise Local Sequence Alignment and Super-Signature 

Extraction 

Step-7: In this step, a pairwise (local) sequence alignment was performed adopting the 

SWA with ID matrix amidst the consensus and the converted DNA sequence of the 

original virus employing ‘JAligner’. SWA with the ID matrix was used as previous 

experiments reported in Chapter 4 gave a 100% accuracy for known (Pk) polymorphic 

malware variants. Altogether, two individual pairwise local alignments were conducted, 

one for each dynamic programming algorithm (NWA and SWA). A suitable gap open 

penalty of 10 and a gap extend penalty of 1 was adopted as previous experiments 

demonstrated in Chapter 4 gave a 100% detection rate for existing polymorphic variants 

adopting these penalties. Four super-signatures for JS.Cassandra were extracted in this 

step, two arising from the NWA and two from the SWA approach. 
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5.3.6 DNA to Hex Conversion as well as Meta-Signature and Super-

Signature Testing 

Step-8: In this last step, the 37 meta-signatures (retrieved in Step-4) and four super-

signatures (obtained in Step-7) in their DNA format were converted into hexadecimal 

format. The converted hex meta-signatures and hex super-signatures were scanned 

against JS.Cassandra and all known (Pk) variants using clamscan. 

5.4. Experimental Results 

Table 5.4 gives the detection rates (with accuracy) for the detection of JS.Cassandra 

polymorphic malware and its known (Pk) variants employing ‘clamscan’ by testing the 

37 meta-signatures extracted in Step-4. 

Table 5.4: Test Statistics for the Detection of JS.Cassandra Polymorphic Malware and 

its known (352) variants (Pk) employing ‘clamscan’ by testing the 37 Meta-Signatures 

acquired in Step-4 from NWA and SWA. 

 

* Where MS is the meta-signature. 
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Most of the meta-signatures extracted using the NWA identified the variants as well as 

the original (Ps) JS.Cassandra virus (Table 5.4). Of the NWA meta-signatures six had an 

accuracy of 96.57% and two signatures resulted in 100% accuracy. Four of the NWA 

generated meta-signatures failed to detect the virus and its variants. Among the meta-

signatures extracted using SWA four failed to detect any of the variants, including the 

original (Ps) virus, and only one meta-signature detected 100% viral files tested. Eleven 

SWA meta-signatures gave a detection rate of 96.57%. 

The four super-signatures acquired from Step-7 were tested in the same way that the meta-

signatures were tested. The results (see Figure 5.2) indicate that using either of the NWA 

super-signatures, the JS.Cassandra variants along with the original (Ps) virus, were 

successfully identified as infected by clamscan with an accuracy of 96.59% in 0.285 

seconds and 0.313 seconds. The first SWA super-signature gave the same detection 

accuracy in 0.297 seconds. None of the viral variants were detected as infected using the 

second SWA super-signature. 

 

Figure 5.2: Bar graph demonstrating the detection results of JS.Cassandra virus family 

using the super-signatures of NWA and SWA.  
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Table 5.5: Identification of W32.Kitti and its 1,105 unknown (Px) variants using the 54 

meta-signatures extracted using the SWA, where, MS is the meta-signature. 

Meta-Signature 
Detection Rate 

(Accuracy) 

Sensitivity

/Recall 

Specificity Precision F1 Score 

MS1 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS2 438/1106 (39.6%) 39.6% 0.0% 100% 56.73% 

MS3 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS4 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS5 572/1106 (51.72%) 51.72% 0.0% 100% 68.2% 

MS6 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS7 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS8 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS9 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS10 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS11 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS12 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS13 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS14 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS15 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS16 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS17 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS18 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS19 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS20 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS21 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS22 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS23 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS24 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS25 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS26 972/1106 (87.88%) 87.88% 0.0% 100% 93.55% 

MS27 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS28 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS29 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS30 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS31 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS32 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS33 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS34 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS35 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS36 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS37 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS38 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS39 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS40 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS41 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS42 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS43 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS44 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS45 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS46 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS47 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS48 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS49 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS50 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS51 0/1106 (0.00%) 0.0% 0.0% 100% 0.0% 

MS52 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS53 1106/1106 (100.00%) 100% 0.0% 100% 100% 

MS54 1106/1106 (100.00%) 100% 0.0% 100% 100% 
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Step-1 to Step-8 were repeated for the W32.Kitti virus. Fifty-four meta-signatures were 

extracted in DNA format using SWA. One multiple alignment was performed in Step-5, 

and a consensus of sequence length 5321 was extracted in Step-6. Two super-

signatures/common substrings of sequence lengths 137 and 3472 were obtained in Step-

7 from SWA in their DNA format. In the last step (i.e. Step-8), the 54 meta-signatures 

and two super-signatures were converted to the hexadecimal format and tested using 

‘clamscan’. 

Table 5.5 provides the results of the detection rates (with accuracy and sequence lengths 

of the DNA and Hex representations) for the identification of W32.Kitti and its unknown 

(Px) variants using ‘clamscan’ by testing the 54 SWA generated meta-signatures. Most of 

the meta-signatures identified the unknown (Px) variants, and the original (Ps) 

polymorphic malware, with the exception of eight meta-signatures that failed to identify 

any of the files as infected. These meta-signatures are called “unknown signatures” in this 

research and the exact reason for its failure to detect the virus variants remains unknown. 

Further work is required to determine the cause of this and is not considered in this 

research. Although it may be the fact that those meta-signatures capture variants that 

either belong to a small set of special variants that were generated using a different 

obfuscation method or are the ones that have not yet encountered (unknown – Px). 

Figures 5.3 – 5.4 displays the clamscan results for the two SWA super-signatures. Figure 

5.3 shows that 100% of the W32.Kitti viral variants together with the original (Ps) virus, 

were successfully identified as infected by ‘clamscan’ using the first SWA super-

signature, in 17.249 secs. None of 1106 W32.Kitti viral variants (along with the original 

(Ps) virus) were successfully identified as infected using the second SWA super-signature 

(Figure 5.4). 
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Figure 5.3: Screenshot of the clamscan result for the first SWA super-signature for the 

W32.Kitti virus. 

 

Figure 5.4: Screenshot of the clamscan result for the second SWA super-signature for 

the W32.Kitti virus. 

5.5. Summary 

In this chapter, the use of advanced sequence alignment techniques was explored. A 

syntactic structure approach was taken – conducting sequence alignments with the help 

of a fixed match/mismatch scoring scheme to automate signature extraction using both 

the NWA and the SWA. Interestingly, both the NWA and the SWA identified the same 

meta-signature, MS3 (NWA) and MS13 (SWA) that captured all the known (Pk) variants 

of JS.Cassandra virus. 
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It was anticipated that shorter signatures would identify more variants than the longer 

signatures as the chances of finding a short sequence repeated is likely to be higher than 

for longer sequences. But in this case, for JS.Cassandra virus, the MS3 NWA meta-

signature with a sequence length of 30 and the MS15 NWA meta-signature with a 

sequence length of 80 both gave 100% accuracies. Furthermore, MS1, MS2 NWA meta-

signatures and MS2, MS3, and MS14 SWA meta-signatures with lengths of under 105 

resulted in malware detection accuracies of over 96%. The shortest variant file has a 

length of 15,534 hexadecimal characters, and the longest of the most effective signatures 

is 105 hexadecimal characters long or 0.7% of the shortest variant file. Thus, the 

signatures are remarkably small relative to the variant files in general and support the 

theory that shorter files are more likely to detect the variants. However, if the signatures 

are too short, it is likely that all files might contain the pattern or sequence defined by the 

signature. It was for this reason that random files were tested in the experiments in 

Chapter 4 to ensure that the signatures were specific enough only to detect the malware 

variants. Similar observations were also seen for W32.Kitti virus. Because there is not a 

significant variation in the lengths of the meta-signatures when compared to the lengths 

of the variant files, it is unlikely that the length of the meta-signatures generated using 

this method is an important factor in detection. 

Meta-signatures: In total, 37 new syntactic viral signatures (i.e. meta-signatures) were 

extracted from this research, 16 from NWA and 21 from SWA. Based on the detection 

rates for JS.Cassandra variants, 25% NWA meta-signatures, and 19% SWA meta-

signatures identified none of the known (Pk) variants, respectively. Although, 50% NWA 

meta-signatures and 57.14% SWA meta-signatures identified over 96% of the known (Pk) 

variants, respectively. This shows that the SWA meta-signatures are more effective than 

the NWA meta-signatures indicating that the SWA-based local syntactic viral signatures 

perform better than the NWA-based global syntactic viral signatures. Super-signatures: 

Based on the detection rates of JS.Cassandra variants, two of the two NWA super-

signatures and one of the two SWA super-signatures identified over 96% of the known 

(Pk) variants, respectively. Also, one of the two super-signatures identified 100% of the 

unknown (Px) variants of W32.Kitti virus. It is difficult to say whether the NWA or the 

SWA super-signatures are better as SWA super-signature identified all the unknown (Px) 

variants (test set) of W32.Kitti virus. Moreover, it cannot be said whether meta-signatures 

or super-signatures are better, as meta-signatures tend to work on some or all the known 

(Pk) set but would not be completely effective against the unknown (never seen before) 
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(Px) set. Super-signatures, on the other hand, would be completely (or in some cases, 

comparatively) effective against the unknown (Px) set (see Figure 5.3). 

The next part of this chapters investigates whether further refined string searching 

algorithms, such as the SWA with different combinations of gap open and gap extend 

penalties, can lead to syntactic techniques to the automatic extraction of polymorphic 

syntactic viral signatures. Experiments are reported that are designed to address the 

second part of the second research question (Q2b). More information will follow in the 

succeeding part.
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Part-II: The Effects of Gap Open and Gap Extend Penalties in a 

String-Based Approach for Detecting Polymorphic Malware Variants 

The experiments reported so far have used a fixed gap open and a fixed gap extend 

penalty. The next set of experiments was designed to assess how different gap open and 

gap extend penalty combinations affect the outcome of the virus identification process: 

whether or not optimal penalties can be established, whether or not these optimal penalties 

can be applied in general to different polymorphic viruses; and if the same penalties can 

be used for detecting unknown (Px) variants. These experiments were designed to answer 

research question Q2b in more detail: “Do gap open and extend facilities produce 

consensuses that not only ‘fit’ the known (Pk) variants (training set) but also generalise 

well to unknown (Px) variants (test set)”. 

Hex Dump Extraction

Hex to DNA Conversion

Extract Common Substrings (Meta-Signatures)

Multiple Sequence Alignment

Consensus Extraction

Local Pairwise Alignment and Super-Signature Extraction

DNA to Hex Conversion

Virus Identification
Virus & 

Variants

Local Pairwise Alignment

Gap Open 

Penalties

Gap 

Extend 

Penalties

 

Figure 5.5: Eight-step method for the Effects of Gap Penalties in a String-Based 

Approach for Detecting Polymorphic Malware Variants. 
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5.6. Effects of Gap Penalties in a String-Based Approach for 

Detecting Polymorphic Malware Variants Method: An Overview 

This method is comprised of eight steps (see Figure 5.5). The effects of gap open and gap 

extend penalties adopting SWA will be explored in relation to the detection of three 

different polymorphic viruses (JS.Cassandra, W32.Kitti, and W32.CTX/W32.Cholera) 

and their known (Pk) and unknown (potential future – Px) variants. All the three 

polymorphic virus families are used in this part of the research as there is no sequence 

length restrictions (Kim & Pramanik, 1994; Yu, Bundschuh, & Hwa, 2002; Chakraborty 

& Bandyopadhyay, 2013) placed by the alignment tool (more details on page no. 18) 

adopting SWA with different combinations of gap penalties. 

5.7. Effects of Gap Penalties in a String-Based Approach for 

Detecting Polymorphic Malware Variants Method: Systems and 

Methods 

Steps 1-8 are the same as those used previously in this research except for Step-3 in which 

the different combinations of gap penalties are introduced (See Section 5.3 – page no. 

79). 

5.7.1 Hex Dump Extraction 

Step-1: As for previous experiments (Chapter 4 and Chapter 5 – Part-I): six variants (the 

original (Ps) plus five known (Pk) variants for each of the viruses tested) were chosen for 

testing. 

Table 5.6: Generated CRC32b hash values and file sizes for the 18 malicious files. 

Polymorphic 

Malware 
Filename 

CRC32b 

Hash Value 

File Size 

(bytes) 

JS.Cassandra  

JS.Cassandra.js (original – Ps) 26489347 7,767 

v_000.js (Pk) 848562f1 8,324 

v_002.js (Pk) 7c4ea313 9,938 

v_003.js (Pk)  bd3b9fdc 8,759 

v_004.js (Pk)  9904ef9c 8,392 

v_005js (Pk)  511621c7 9,400 

W32.CTX/W3

2.Cholera  

W32.CTX.Cholera.Virus.10853.exe (original – Ps) c99df9b3 45,147 

actmovie.exe (Px)  26a6ed27 13,837 

cisvc.exe (Px)  c6f2560a 15,453 

dcomcnfg.exe (Px)  2387735d 16,968 

forcedos.exe (Px)  1231e17d 17,473 

MRT.exe (Px)  6f66d56d 17,473 

W32.Kitti  

OC.exe (original – Ps) a6d1f306 124,416 

absdmfcj.exe (Px)  33867b60 124,416 

adehsjud.exe (Px)  3106fb13 124,416 

crilunah.exe (Px) 8d9b920b 124,416 

nafybgho.exe (Px)  dedbcdce 124,416 

nalgjahg.exe (Px)  19e70a50 124,416 
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As for the previous experiments in this thesis the 18 files were checked for uniqueness by 

generating CRC32b hash value for each variant (Table 5.6). The 18 files were also 

checked using ‘VirusTotal’ to confirm that malicious functionality was preserved (Table 

5.7). 

Table 5.7 provides the detection rate for each of the 18 variants (Table 5.6) of 55 common 

AVS products. Only 53.69% of the AVSs successfully detected the 15 malicious variants 

and 73.3% of the three original polymorphic viruses. 

Table 5.7: Detection Ratio Based on the 55 State-of-the-Art AVS Products obtained from 

the ‘VirusTotal’ Website for the 18 Malicious Variants. 

Polymorphic Malware 1 Filename Detection Ratio 

JS.Cassandra Virus 

JS.Cassandra.js (Original Virus 

– Ps) 
39/55 

v_000.js (Variant 1 – Pk) 19/55 

v_002.js (Variant 2 – Pk) 21/55 

v_003.js (Variant 3 – Pk) 15/55 

v_004.js (Variant 4 – Pk) 17/55 

v_005.js (Variant 5 – Pk) 17/55 

Polymorphic Malware 2 Filename Detection Ratio 

W32.CTX/W32.Cholera Virus 

W32.CTX.Cholera.Virus.10853 

(Original Virus – Ps) 
38/55 

actmovie.exe (Variant 1 – Px) 41/55 

cisvc.exe (Variant 2 – Px) 42/55 

dcomcnfg.exe (Variant 3 – Px) 37/55 

forcedos.exe (Variant 4 – Px) 39/55 

MRT.exe (Variant 5 – Px) 39/55 

Polymorphic Malware 3 Filename Detection Ratio 

W32.Kitti Virus 

OC.exe (Original Virus – Ps) 44/55 

absdmfcj.exe (Variant 1 – Px) 41/55 

adehsjud.exe (Variant 2 – Px) 41/55 

crilunah.exe (Variant 3 – Px) 44/55 

nafybgho.exe (Variant 4 – Px) 12/55 

nalgjahg.exe (Variant 5 – Px) 18/55 

Hex dumps were then extracted from the 18 malicious variants using ‘sigtool’ ready for 

conversion to DNA (nucleotide) and protein (amino acid) representation. 

5.7.2 Hex to DNA and Amino Acid Conversion 

Step-2: In this step, the extracted hex dump sequences were converted into DNA and 

amino acid sequences. Two different representational methods (i.e. DNA and amino acid) 

were used to investigate the effectiveness of the string-based approach. In the case of 

DNA, the files were converted using the DNA representational method shown in Section 

5.3.2 (see page no. 82). 



 

96 
 

Conversion of hexadecimal into amino acid sequences for input to JAligner was carried 

out adopting the rules shown in Table 5.8. A short example of the conversion of 16-bit 

hexadecimal code into 16 amino acid characters is shown below: 

4d5a800001000000 (16-bit hexadecimal code) 

KDLAQGGGGHGGGGGGG (16 amino acid characters) 

Table 5.8: Rules for converting hexadecimal into amino acid characters. 

Hexadecimal Amino Acid Hexadecimal Amino Acid 

0 G 8 Q 

1 H 9 P 

2 I a A 

3 R b B 

4 K c C 

5 L d D 

6 M e E 

7 N f F 

The six extracted hex dumps for the JS.Cassandra malicious variants were converted into 

DNA sequences. The remaining 12 extracted hex dumps for the W32.CTX and W32.Kitti 

malicious variants were converted into amino acid sequences. 

5.7.3 First Pairwise Local Sequence Alignment and Meta-Signature 

Extraction 

Step-3: In this step, a pairwise (local) alignment was performed adopting the SWA with 

an ID substitution matrix using JAligner. 

Ten different combinations of gap open and gap extend penalties were used to conduct 

the pairwise local alignments. The gap open penalty is the penalty for opening a gap in 

the alignment, whereas gap extend penalty is the penalty for extending a gap by one 

residue (Clustal, 2012). In this case, six variants, i.e. V1, V2, V3, V4, V5 and V6 (where 

V1 is the original (Ps) virus and V2-V6 are its polymorphic variants). So between V1 and 

V2, ten different combinations of gap open and gap extend penalties were applied, which 

then led to ten different pairwise local alignments. The same procedure was applied to 

the remaining four pairs i.e. on V2 and V3, V3 and V4, V4 and V5, and V5 and V6, 

respectively. In total, 150 pairwise local alignments were carried out in this step, 50 for 

each of the three polymorphic malware. Other combinations such as V1 and V3, V1 and 

V4, etc. were not considered in this step as the purpose of this research is to examine the 

feasibility of adding more sophisticated search facilities. In the case of the W32.Kitti 
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virus, only the first 46,000 amino acid characters were aligned due to longer lengths of 

the amino acid sequences belonging to its six variants. In the case of amino acid 

sequences, JAligner allows pairwise alignment of two sequences to a maximum combined 

sequence length of 92,000 amino acids. To cope with such long sequences JAligner 

requires an initial memory allocation of 13,312 MB and a maximum heap memory 

allocation of 15,360 MB to be assigned to JAligner. And in the case of nucleotide 

sequences (DNA), JAligner (Moustafa, 2010) allows pairwise alignment of two larger 

sequences to a maximum combined sequence length of 225,500. 

Step-4: Common substrings, or meta-signatures, from the pairwise local alignments 

which had the highest percentage of identities and similarities, were extracted. A 

threshold of greater than or equal to 85% was applied to extract twelve common 

substrings from the 23 pairwise local alignments for JS.Cassandra virus, 17 from the ten 

pairwise local alignments for the W32.CTX/W32.Cholera virus and 30 from the 25 

pairwise local alignments for the W32.Kitti virus. These common substrings are the meta-

signatures (i.e. syntactic viral signatures) that were used to identify all the known (Pk) 

polymorphic variants of each virus family. Detection was carried out using the same 

process as detailed in Part-I. 

The longest JS.Cassandra DNA meta-signature contained 397 bases and the shortest 14 

amino acids. The mean sequence length for the twelve JS.Cassandra meta-signatures was 

152, the median 131.5 and they have a standard deviation of 108.9. For W32.CTX virus 

the longest and shortest amino acid meta-signatures were 1069 and 30 amino acids long, 

respectively. These 17 meta-signatures in amino acid representation have a median of 

276, a mean of 436 and a standard deviation of 397.7. The minimum and maximum 

sequence lengths of the W32.Kitti amino acid meta-signatures were 790 and 1868, 

respectively. These meta-signatures have a mean length of 1689 amino acids, a median 

of 1868 and a standard deviation of 407.706. 

5.7.4 Multiple Sequence Alignment and Consensus Extraction 

Step-5 (Multiple sequence alignment): Once again, multiple alignment was performed 

using T-Coffee with alignment constrained to the ID matrix. 

Step-6 (Consensus generation and extraction): As per previous experiments, see Step-

6 in Section 5.3.4 (page no. 83), three consensuses were extracted using T-Coffee. One 

for each of the three virus families tested. 
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5.7.5 Second Pairwise Local Sequence Alignment and Super-Signature 

Extraction 

Step-7: Pairwise (local) alignment amidst the consensus and the sequence of the original 

(Ps) virus was performed adopting the SWA with an ID matrix using JAligner and the 

optimal penalty gaps (of gap open 10 and gap extend one) were chosen. As stated earlier, 

these optimal penalty gaps were chosen as previous experiments demonstrated in Chapter 

4 gave a 100% accuracy for existing polymorphic variants adopting these penalties. There 

should be a single common substring, a super-signature, for each virus and its variants. If 

the first common substring is not a super-signature, this step is repeated with the sequence 

of a variant of the same family. If this does not result in a super-signature, then this step 

is repeated using another variant, and so on. A JS.Cassandra super-signature was obtained 

in two iterations from variant 1. For W32.CTX/W32.Cholera and W32.Kitti viruses the 

super-signature was extracted from the original (Ps) virus in a single iteration. 

In total, three JS.Cassandra super-signatures, three W32.CTX/Cholera super-signatures 

and five W32.Kitti super-signatures were extracted. 

5.7.6 DNA and Amino Acid to Hex Conversion as well as Meta-Signature 

and Super-Signature Testing 

Step-8: In this last step, the extracted meta-signatures and super-signatures were 

converted back to hexadecimal format. Each of these signatures was tested against the 

relevant viruses and their known (Pk) and unknown (Px) variants using clamscan. 

5.8. Experimental Results 

Table 5.9 provides the results of the pairwise local alignments that were performed in 

Step-3. Only the desired pairwise local alignment results with the highest percentage of 

identities and similarities, and that produced effective meta-signatures are shown in Table 

5.9. Full results are presented in Appendix G (see Table G.1 – page no. 247). 

The percentages of identities and similarities for JS.Cassandra were higher than 85%, 

indicating that there were higher percentages of the amino acid or DNA (malicious) 

residues conserved in the biologically represented sequences. 
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Table 5.9: Results of the pairwise local alignments that were performed in Step-3. 

Polymorphic Malware Pairwise Alignment 
Gap Open 

Penalty 

Gap Extend 

Penalty 

Identity 

Percentage 

Similarity 

Percentage 

Gaps 

Percentage 

Alignment 

Length 

Alignment 

Score 

JS.Cassandra Virus 

Original and Variant 1 

20 1 98.51% 98.51% 1.49% 269 242.00 

25 0.5 98.51% 98.51% 1.49% 269 238.50 

25 1 98.51% 98.51% 1.49% 269 237.00 

Variant 1 and Variant 2 

15 1 89.30% 89.30% 10.70% 430 310.00 

20 1 89.30% 89.30% 10.70% 430 300.00 

25 0.5 89.30% 89.30% 10.70% 430 312.00 

25 1 89.30% 89.30% 10.70% 430 290.00 

Variant 2 and Variant 3 

15 1 85.33% 85.33% 14.67% 450 262.00 

20 1 85.33% 85.33% 14.67% 450 242.00 

25 0.5 85.33% 85.33% 14.67% 450 253.00 

25 1 85.33% 85.33% 14.67% 450 222.00 

Variant 3 and Variant 4 

10 1 95.22% 95.22% 4.78% 418 360.00 

15 0.5 95.22% 95.22% 4.78% 418 359.00 

15 1 95.22% 95.22% 4.78% 418 350.00 

20 0.5 95.22% 95.22% 4.78% 418 349.00 

20 1 95.22% 95.22% 4.78% 418 340.00 

25 0.5 95.22% 95.22% 4.78% 418 339.00 

25 1 95.22% 95.22% 4.78% 418 330.00 

Variant 4 and Variant 5 

10 1 100.00% 100.00% 0.00% 397 397.00 

15 1 100.00% 100.00% 0.00% 397 397.00 

20 1 100.00% 100.00% 0.00% 397 397.00 

25 0.5 100.00% 100.00% 0.00% 397 397.00 

25 1 100.00% 100.00% 0.00% 397 397.00 

W32.CTX/W32.Cholera Virus 

Original and Variant 1 25 1 99.29% 99.29% 0.71% 1553 1507.00 

Variant 1 and Variant 2 5 1 96.15% 96.15% 3.85% 2309 2015.00 

Variant 2 and Variant 3 10 1 96.41% 96.41% 3.59% 2060 1804.00 

Variant 3 and Variant 4 5 1 94.40% 94.40% 5.60% 2017 1707.00 

Variant 4 and Variant 5 

10 1 100.00% 100.00% 0.00% 736 736.00 

15 1 100.00% 100.00% 0.00% 736 736.00 

20 0.5 100.00% 100.00% 0.00% 736 736.00 

20 1 100.00% 100.00% 0.00% 736 736.00 

25 0.5 100.00% 100.00% 0.00% 736 736.00 

25 1 100.00% 100.00% 0.00% 736 736.00 
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Polymorphic Malware Pairwise Alignment 
Gap Open 

Penalty 

Gap Extend 

Penalty 

Identity 

Percentage 

Similarity 

Percentage 

Gaps 

Percentage 

Alignment 

Length 

Alignment 

Score 

W32.Kitti Virus 

Original and Variant 1 

5 1 86.35% 86.35% 13.65% 3297 2061.00 
10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 1 and Variant 2 

10 1 100.00% 100.00% 0.00% 1868 1868.00 
15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 2 and Variant 3 

5 1 88.12% 88.12% 11.88% 3266 2130.00 
10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 3 and Variant 4 

5 1 88.18% 88.18% 11.82% 3265 2129.00 
10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 4 and Variant 5 

5 0.5 87.03% 87.03% 12.97% 3285 2349.00 
5 1 90.51% 90.51% 9.49% 3225 2217.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 
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In the case of W32.Kitti, the percentage of identities and similarities was 100%. For the 

W32.CTX virus, the percentages of identities and similarities was over 94% and in some 

cases 100%. Not unsurprisingly, the gap percentage increases with lower gap open 

penalties (see Columns ‘Gap Open Penalty’ and ‘Gaps Percentage’ in Table 5.9), 

indicating that the number of insertions or deletions required to maximise the number of 

matches was also lower. In previously adopted methods a fixed combination of a gap 

open of 10 and gap extend of 0.5 penalties was used and considered optimal. It can be 

seen from the results in Table 5.9 that the percentages of identities and similarities were 

higher when both the gap open and gap extend penalties were higher than employed 

previously, indicating that the (pairwise local) alignments were compact, thereby 

restricting the amount of gaps (with lower gap percentages) and increasing their 

importance (see Columns ‘Gap Open Penalty’, ‘Gap Extend Penalty’ and ‘Gaps 

Percentage’ in Table 5.9). 

The best gap open and gap extend penalties are 10 and 1, and 20 and 1, respectively, as 

both gap penalty combinations consistently have identities and similarities of over 85%. 

In most cases of W32.Kitti virus and some cases of W32.CTX virus, these gap penalty 

combinations have identities and similarities of 100%. In one or two overall cases, the 

best gap open and gap extend penalties are 5 and 1, and 25 and 1, respectively, with 

identities and similarities of over 88%. 

Table 5.10 provides the detection performance results for the identification of the three 

polymorphic malware along with their known (Pk) and unknown (Px) polymorphic 

variants. In total, 59 meta-signatures were tested, but only the results using the most 

effective meta-signatures are provided in Table 5.10. The detection was carried out using 

‘clamscan’ and the most effective meta-signatures – those that detected over 90% of the 

polymorphic variants. 

As for all virus detection methods developed in this research, the performance of this 

proposed method was compared with that of the top five commercial products available 

at the time of this research in 2016. The results are presented in Table 5.10.
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Table 5.10: Detection rates for detection of three polymorphic malware using the best 

performing meta-signatures. 

Polymorphic 

Malware 1 

AVS 

Product/Pairwise 

Alignment 

Detection 

Method 

Detection Ratio (with Accuracy) and Statistical 

Measures 

JS.Cassandra 

Virus 

AntiVirus 

Ranked No. 1 

Bitdefender 

Antivirus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 
Sensitivity/Recall 0.2841% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 0.5666% 

AntiVirus 

Ranked No. 2 

Kaspersky 

Anti-Virus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 
Sensitivity/Recall 0.2841% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 0.5666% 

AntiVirus 

Ranked No. 3 

McAfee 

AntiVirus 

Detection Ratio (Accuracy) 152/352 (43.18%) 
Sensitivity/Recall 43.18% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 60.31% 

AntiVirus 

Ranked No. 4 

Norton 

Security 

Detection Ratio (Accuracy) 5/352 (1.42%) 
Sensitivity/Recall 1.42% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 2.80% 

AntiVirus 

Ranked No. 5 

F-Secure 

Anti-Virus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 
Sensitivity/Recall 0.2841%) 

Specificity 0.00% 
Precision 100.00% 
F1 Score 0.5666% 

Original and 

Variant 1 
MS1 

Detection Ratio (Accuracy) 340/352 (96.59%) 
Sensitivity/Recall 96.59% 

Specificity 0.00% 
Precision 100% 
F1 Score 98.26% 

Variant 1 and 

Variant 2 
MS4 

Detection Ratio (Accuracy) 339/352 (96.31%) 
Sensitivity/Recall 96.31% 

Specificity 0.00% 
Precision 100% 
F1 Score 98.12% 

Variant 2 and 

Variant 3 

MS5 

Detection Ratio (Accuracy) 339/352 (96.31%) 
Sensitivity/Recall 96.31% 

Specificity 0.00% 
Precision 100% 
F1 Score 98.12% 

MS6 

Detection Ratio (Accuracy) 325/352 (92.33%) 
Sensitivity/Recall 92.33% 

Specificity 0.00% 
Precision 100% 
F1 Score 96.01% 

MS7 

Detection Ratio (Accuracy) 340/352 (96.59%) 
Sensitivity/Recall 96.59% 

Specificity 0.00% 
Precision 100% 
F1 Score 98.26% 

MS8 

Detection Ratio (Accuracy) 339/352 (96.31%) 
Sensitivity/Recall 96.31% 

Specificity 0.00% 
Precision 100% 
F1 Score 98.12% 

Variant 3 and 

Variant 4 
MS10 

Detection Ratio (Accuracy) 325/352 (92.33%) 
Sensitivity/Recall 92.33% 

Specificity 0.00% 
Precision 100% 
F1 Score 96.01% 
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Polymorphic 

Malware 2 

AVS 

Product/Pairwise 

Alignment 

Detection 

Method 

Detection Ratio (with Accuracy) and Statistical 

Measures 

W32.CTX/W32

.Cholera Virus 

AntiVirus 

Ranked No. 1 

Bitdefender 

Antivirus 

Detection Ratio (Accuracy) 176/200 (88.00%) 
Sensitivity/Recall 88.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 93.62% 

AntiVirus 

Ranked No. 2 

Kaspersky 

Anti-Virus 

Detection Ratio (Accuracy) 86/200 (43.00%) 
Sensitivity/Recall 43.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 60.14% 

AntiVirus 

Ranked No. 3 

McAfee 

AntiVirus 

Detection Ratio (Accuracy) 27/200 (13.50%) 

Sensitivity/Recall 13.50% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 23.79% 

AntiVirus 

Ranked No. 4 

Norton 

Security 

Detection Ratio (Accuracy) 177/200 (88.50%) 
Sensitivity/Recall 88.50% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 93.89% 

AntiVirus 

Ranked No. 5 

F-Secure 

Anti-Virus 

Detection Ratio (Accuracy) 191/200 (95.50%) 
Sensitivity/Recall 95.50% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 97.69% 

Variant 1 and 

Variant 2 
MS4 

Detection Ratio (Accuracy) 183/200 (91.50%) 
Sensitivity/Recall 91.50% 

Specificity 0.00% 
Precision 100% 
F1 Score 95.56% 

Variant 2 and 

Variant 3 
MS7 

Detection Ratio (Accuracy) 189/200 (94.50%) 
Sensitivity/Recall 94.50% 

Specificity 0.00% 
Precision 100% 
F1 Score 97.17% 

Variant 3 and 

Variant 4 

MS12 

Detection Ratio (Accuracy) 189/200 (94.50%) 
Sensitivity/Recall 94.50% 

Specificity 0.00% 
Precision 100% 
F1 Score 97.17% 

MS13 

Detection Ratio (Accuracy) 200/200 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 100.00% 

MS14 

Detection Ratio (Accuracy) 192/200 (96.00%) 
Sensitivity/Recall 96.00% 

Specificity 0.00% 
Precision 100% 
F1 Score 97.96% 

MS15 

Detection Ratio (Accuracy) 200/200 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 100.00% 

MS16 

Detection Ratio (Accuracy) 200/200 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 100.00% 

Variant 4 and 

Variant 5 
MS17 

Detection Ratio (Accuracy) 200/200 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 
Precision 100.00% 
F1 Score 100.00% 
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Polymorphic 

Malware 3 

AVS 

Product/Pairwise 

Alignment 

Detection 

Method 

Detection Ratio (with Accuracy) and Statistical 

Measures 

W32.Kitti 

Virus 

AntiVirus 

Ranked No. 1 

Bitdefender 

Antivirus 

Detection Ratio (Accuracy) 324/1106 (29.29%) 

Sensitivity/Recall 29.29% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 45.31% 

AntiVirus 

Ranked No. 2 

Kaspersky 

Anti-Virus 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

AntiVirus 

Ranked No. 3 

McAfee 

AntiVirus 

Detection Ratio (Accuracy) 293/1106 (26.49%) 

Sensitivity/Recall 26.49% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 41.88% 

AntiVirus 

Ranked No. 4 

Norton 

Security 

Detection Ratio (Accuracy) 450/1106 (40.69%) 

Sensitivity/Recall 40.69% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 57.84% 

AntiVirus 

Ranked No. 5 

F-Secure 

Anti-Virus 

Detection Ratio (Accuracy) 333/1106 (30.11%) 

Sensitivity/Recall 30.11% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 46.28% 

Original and 

Variant 1 
MS1-MS6 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

Variant 1 and 

Variant 2 
MS7-MS10 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

 

Variant 2 and 

Variant 3 

MS11, 

MS13-M16 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

MS12 

Detection Ratio (Accuracy) 1105/1106 (99.91%) 
Sensitivity/Recall 99.91% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 99.95% 

 

Variant 3 and 

Variant 4 

MS17, 

MS19-

MS22 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

MS18 

Detection Ratio (Accuracy) 1105/1106 (99.91%) 
Sensitivity/Recall 99.91% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 99.95% 

Variant 4 and 

Variant 5 

MS23, M25, 

MS27-

MS30 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 
Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

* Where MS is the meta-signature generated using the proposed two-phase alignment with the two viral 

variants detailed in Column ‘AVS Product/Pairwise Alignment’ and signature extraction method detailed 

in this section. The detection was carried out using ‘clamscan’.  
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Fifty-seven of the 59 meta-signatures tested detected some or all of the polymorphic 

variants (Table 5.10). Two meta-signatures failed to detect any of the variants (the results 

for these two signatures are not shown in Table 5.10). The results of these virus detection 

tests also show that in the majority of cases the top five commercially available AVSs 

evaluated could not detect all of the variants. Moreover, in the case of JS.Cassandra three 

of the commercial AVSs, Bitdefender, Kaspersky, and F-Secure, were only able to detect 

the original (Ps) virus. The one exception was the Kaspersky anti-virus tool which was 

found to successfully detect all of the unknown (Px) polymorphic variants of the 

W32.Kitti virus. 

For JS.Cassandra virus, detection rates of over 92% were observed when detection using 

seven of the 12 novel automatically generated syntactic meta-signatures developed in this 

research were employed. In the case of W32.Kitti virus, for 26 of the 28 most effective 

meta-signatures the detection rates were 100% and for the remaining two, the detection 

rates were over 99% (Table 5.10). A similar performance was noted for the W32.CTX 

virus, where four of the eight most effective meta-signatures achieved detection rates of 

100% and for the remaining four, the detection rates were over 91% (Table 5.10). 

The eleven super-signatures were also tested on the three polymorphic malware variants 

employing ‘clamscan’. All 352 JS.Cassandra viral variants (together with the original (Ps) 

virus) were successfully identified as infected by ‘clamscan’ using one of the new 

automatically generated super-signatures (Figure 5.6). Of the two remaining 

JS.Cassandra super-signatures one performed well detecting 96.58% of the variants 

(including the original (Ps) virus) but the other performed poorly detecting 15 of the 352 

variants (4.26%). All 200 of the W32.CTX viral variants (including the two original (Ps) 

viruses) were successfully identified by the ‘clamscan’ using one of its super-signatures 

(Figure 5.7). The remaining two W32.CTX super-signatures resulted in a reasonable 

accuracy of 94.5% and a very poor accuracy of 9.5%. Figure 5.8 shows that all 1106 of 

the W32.Kitti variants (together with the original (Ps) virus) were successfully identified 

by three of the five super-signatures. The remaining two super-signatures failed to detect 

any of the 1106 variants. As stated earlier (see page no. 88), these signatures are 

considered in this research as “unknown signatures” and the exact reason for its failure to 

detect any virus variants remains unknown. Although it may be that some of the super-

signatures performed poorly or failed to detect any was due to the fact that those super-

signatures capture variants that either belong to a small set of special variants that were 
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generated using a different obfuscation method or are the ones that have not yet 

encountered. None of the scans took longer than 15 seconds, with most the majority of 

the scans taking under three seconds. 

 

Figure 5.6: Clamscan screenshot for JS.Cassandra and known (Pk) variants using the best 

performing super-signature. 

 

Figure 5.7: Clamscan screenshot for W32.CTX and unknown (Px) variants using the best 

performing super-signature. 
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Figure 5.8: Clamscan screenshot for W32.Kitti and unknown (Px) variants using the best 

performing super-signature. 

5.9. Summary 

In this chapter, advanced sequence alignment techniques were explored by investigating 

the effects of different combinations of gap open and gap extend penalties not only for 

the identification of known (Pk) polymorphic variants (training set) but also for the 

identification of unknown (Px) polymorphic variants (test set). For the process of all the 

first (pairwise) sequence alignments, ten different combinations of gap open and gap 

extend penalties were used. Experimental results from the first alignment process are 

shown in Table 5.9. The process of all the second (pairwise) sequence alignments were 

conducted using a fixed optimal combination of gap open penalty (i.e. 10) and gap extend 

penalty (i.e. 1). Using an in-house macro tool and the proposed eight step string based 

approach, that takes a natural computation approach of projecting polymorphic malware 

(hexadecimal) code onto biological representational space (i.e. DNA and amino acid) and 

using bioinformatics algorithms (i.e. pairwise/multiple sequence alignments and SWA) 

has been demonstrated to be a successful method for automating malware signature 

extraction. The effectiveness of these extracted meta-signatures and super-signatures in 

the detection of polymorphic viruses was then evaluated. The vast majority of these 

signatures used in conjunction with ‘clamscan’ were shown to outperform the popular 

AVSs used to benchmark the proposed malware detection method developed in this 

research. 
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Experimental results from Table 5.9 show that optimal gap penalty combinations of a gap 

open of 10 and gap extend of 1 as well as gap open of 20 and gap extend of 1, in some 

cases have identities and similarities of over 85%, and, in most cases have 100%. Meta-

signatures generated from these gap penalty combinations not only detected known (Pk) 

variants with accuracies of over 92% but also detected unknown (Px) variants with 

accuracies of over 94% (Table 5.10). Selected super-signatures generated from the 

optimal combinations of a gap open of 10 and gap extend of 1 detected all the known (Pk) 

as well as unknown (Px) variants (Figures 5.6-5.8). 

The next section investigates further refinement of the string searching algorithms using 

a different type of substitution matrix. Experiments are reported that are designed to 

address the third part of the second research question (Q2c). More information will follow 

in the succeeding part.
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Part-III: Using Different Substitution Matrices in a String-based 

Syntactic Approach for Identifying Viral Polymorphic Malware 

Variants 

In this work JS.Cassandra virus and its variants are used. Only one polymorphic virus 

family is used in this research due to sequence length restrictions (Kim & Pramanik, 1994; 

Yu, Bundschuh, & Hwa, 2002; Chakraborty & Bandyopadhyay, 2013) placed by the 

alignment tool (more details on page no. 18) adopting many different types of substitution 

matrices. The same experimental steps will be employed as previous research, but each 

experiment will employ a different substitution matrix for the SWA. In previous work the 

ID matrix was used and this approach is the benchmark for these experiments. This work 

aims to answer research question Q2c in more detail: “Does using frequency-based 

substitution matrices produce new and more-effective signatures for detecting new 

polymorphic malware variants?”. ID matrix is a simple non-biological substitution square 

matrix in which all the components of the primary diagonal are ones, and all other 

components are zeros. The other well-known matrices, such as BLOSUM (Block 

Substitution Matrix) and PAM (Point Accepted Mutation) are complex biological 

substitution/mutation matrices, all of which are used in this part as frequency-based 

approaches for experimental purposes. 

5.10. Introduction 

The SWA which is used in this research as a step in a proposed approach to automatic 

signature extraction from polymorphic viruses depends on gap parameters and on a 

substitution matrix or score matrix. Previous work reported in this chapter investigated 

the critical gap parameters. This work investigate frequency scoring matrices (e.g. 

BLOSUM (Henikoff & Henikoff, 1992)), explicit evolutionary model-based scoring 

matrices (e.g. PAM (Dayhoff, Schwartz, & Orcutt, 1978)), simple scoring matrix (e.g. 

MATCH), scoring matrix for DNA (e.g. EDNAFULL (Lowe, 1992)), scoring matrix 

inspired from PAM250 (e.g. GONNET (Prlić, Domingues, & Sippl, 2000)), and a newly 

transformed mutation matrix in correspondence to PAM250 (e.g. DAYHOFF (Dayhoff, 

Schwartz, & Orcutt, 1978; Gonnet, 1998)). The 71 frequency scoring matrices used in 

this part are as follows: BLOSUM30, BLOSUM35, BLOSUM40, BLOSUM45, 

BLOSUM50, BLOSUM55, BLOSUM60, BLOSUM62, BLOSUM65, BLOSUM70, 

BLOSUM75, BLOSUM80, BLOSUM85, BLOSUM90, BLOSUM100, BLOSUMN, 

PAM10, PAM20, PAM30, PAM40, PAM50, PAM60, PAM70, PAM80, PAM90, 

PAM100, PAM110, PAM120, PAM130, PAM140, PAM150, PAM160, PAM170, 
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PAM180, PAM190, PAM200, PAM210, PAM220, PAM230, PAM240, PAM250, 

PAM260, PAM270, PAM280, PAM290, PAM300, PAM310, PAM320, PAM330, 

PAM340, PAM350, PAM360, PAM370, PAM380, PAM390, PAM400, PAM410, 

PAM420, PAM430, PAM440, PAM450, PAM460, PAM470, PAM480, PAM490, 

PAM500, DAYHOFF, GONNET, IDENTITY, EDNAFULL, and MATCH. 

The substitution matrix assigns a score for aligning any possible pair of residues in the 

pairwise sequence alignment. Typically, for bioinformatics sequence alignment and 

pattern recognition using the SWA a frequency based matrix is used not an ID matrix. 

Examples of such substitution matrix generation algorithms include BLAST (Altschul, 

1991), BLOSUM. 

In BLOSUM the score is calculated as the log-ratio of the observed probability of 

substitution of one amino acid by another divided by the probability of the substitution 

occurring due to chance (Pearson, 2013). BLOSUM is based on the conservation of 

domains in proteins. PAM, on the other hand, is based on the rate of divergence between 

sequences or evolutionary distances. DAYHOFF matrix is a frequency based mutation 

matrix like the PAM matrix and has a close resemblance to the PAM250 matrix. As stated 

earlier, GONNET is also inspired from the PAM250 matrix. MATCH matrix is a simple 

scoring matrix like the ID matrix and is used in this part as it provides the most 

parsimonious frequency based method in that no assumptions are made as to how symbols 

may be related to each other. EDNAFULL matrix is used in this part for nucleotides as 

this frequency based scoring matrix is purely made for scoring alignments of DNA 

sequences. 

This experiment also evaluates an approach using PRISM (Cendrowska, 1987) a rule 

induction algorithm which converts a decision tree based on Quinlan’s ID3 algorithm 

(Quinlan, 1979) into a rule set. PRISM is used in this part to generate rules. These rules 

are then employed to generate super-signatures by performing alignments. 

5.11. Using Different Substitution Matrices in a String-Based Syntactic 

Approach for Detecting Polymorphic Malware Variants Method: 

Systems and Methods 

This method is comprised of eight steps (see Figure 5.9). The effects of using different 

substitution matrices will be explored in relation to the detection of JS.Cassandra 

polymorphic virus and its known (Pk) variants. 
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Figure 5.9: Eight-step method for using Different Substitution Matrices in a String-Based 

Syntactic Approach for Detecting Polymorphic Malware Variants. 

Steps 1-8 are the same as those used previously (Part-I) in this research except for Step-

3 in which the different substitution matrices are introduced (see Section 5.3 – page no. 

79). Also, in Step-6 consensuses have been extracted after performing multiple sequence 

alignment (Step-5) on the newly generated meta-signatures. Next, rule induction (data 

mining) on the meta-signatures is performed (Step-5) to extract a set of (single) rules 

(Step-6). The next step involves several pairwise local sequence alignments using SWA 

and ‘JAligner’ (Step-7). Thus, Step-7 results in two sets of super-signatures (more details 

in Section 5.11.6). As for the previous experiments, the meta-signatures and super-
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signatures are converted back to hexadecimal format and then tested using ‘clamscan’ 

(Step-8). 

5.11.1 Hex Dump Extraction 

Step-1: Two variants of JS.Cassandra, v_004.js and v_005.js, were used in this 

experiment. Hex dumps of each were extracted using ‘sigtool’ and the files tested with 

56 AVSs retrieved from ‘VirusTotal’ (Table 5.11). Only 20 of the AVSs could detect 

variant 1 and 21 could detect variant 2. 

Table 5.11: Analysis and detection ratio using the 56 AVSs retrieved from the 

‘VirusTotal’ website for the two JS.Cassandra variants in hexadecimal format. 

Antivirus Variant 1 (v_004.js) Variant 2 (v_005.js) 

Ad-Aware No No 

AegisLab Js.Cassa.B!c Script.Troj.Agent!c 

AhnLab-V3 No No 

Alibaba No No 

ALYac No No 

Antiy-AVL No No 

Arcabit No No 

Avast JS:Cassa-A [Wrm] JS:Cassa-A [Wrm] 

AVG JS/Cassa JS/Cassa 

Avira (no cloud) JS/Cassa.B.8392 No 

AVware Trojan.JS.Cassan.a (v) Trojan.JS.Cassan.a (v) 

Baidu JS.Virus.Cassa.b JS.Virus.Cassa.b 

Baidu-International No No 

Bitdefender No No 

Bkav No No 

CAT-QuickHeal No No 

ClamAV Win.Trojan.Cassa-1 Win.Trojan.Cassa-1 

CMC No No 

Comodo UnclassifiedMalware UnclassifiedMalware 

Cyren JS/Cassa.A!Eldorado JS/Cassa.A!Eldorado 

DrWeb No No 

Emsisoft No No 

eScan No No 

ESET-NOD32 JS/Cassa.B JS/Cassa.B 

Fortinet No No 

F-Prot JS/Cassa.A!Eldorado JS/Cassa.A!Eldorado 

F-Secure No No 

GData No Script.Trojan.Agent.U7IEZA 

Ikarus Trojan.JS.Cassa Trojan.JS.Cassa 

Jiangmin No No 

K7AntiVirus Exploit ( 04c555e01 ) Exploit ( 04c555e01 ) 

K7GW Exploit ( 04c555e01 ) Exploit ( 04c555e01 ) 

Kaspersky No No 

Kingsoft No No 

Malwarebytes No No 

McAfee JS/Cassan JS/Cassan 
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Antivirus Variant 1 (v_004.js) Variant 2 (v_005.js) 

McAfee-GW-Edition BehavesLike.JS.Downloader.x

m 

BehavesLike.JS.Downloader.zm 

Microsoft Trojan:JS/Cassa.B.gen Trojan:JS/Cassa.B.gen 

NANO-Antivirus No No 

nProtect No No 

Panda No No 

Qihoo-360 Script/Virus.8c8 Script/Trojan.617 

Rising No No 

Sophos JS/Cassan-A JS/Cassan-A 

SUPERAntiSpyware No No 

Symantec No No 

Tencent No Js.Virus.Cassa.Ajle 

TheHacker No No 

TrendMicro No No 

TrendMicro-HouseCall No No 

VBA32 No No 

VIPRE Trojan.JS.Cassan.a (v) Trojan.JS.Cassan.a (v) 

ViRobot No No 

Yandex No No 

Zillya No No 

Zoner No No 

Detection Ratio 20/56 21/56 

5.11.2 Hex to DNA conversion 

Step-2: In this step, extracted hex dump sequences were converted into binary and then 

into DNA format adopting the DNA encoding method shown in Section 4.3.2 (see page 

no. 66). 

5.11.3 First Pairwise Local Alignment and Meta-Signature Extraction 

Step-3: In this step, several pairwise (local) alignments were performed using the SWA 

with the usual gap open and gap extend penalties of 10 and 1 respectively. In total, 71 

pairwise local alignments were performed in this step. Only the alignment results with 

the highest combinations of identity and similarity percentages were retained in this step. 

Based on this criterion, alignment results of BLOSUM40, DAYHOFF, IDENTITY, 

MATCH, PAM100, and PAM350 were selected, that is, in total six alignment results 

were chosen in this step. Table 5.12 shows selected results from the six pairwise local 

alignments that were performed in Step-3. Full results obtained in this step are presented 

in Appendix E (Table E.1 – see page no. 236). 

Step-4: After the procedure of local alignment, the common substrings (meta-signatures) 

were extracted. In total, 161 common substrings were extracted: 34 using BLOSUM40, 

24 using DAYHOFF, one using IDENTITY, 24 using MATCH, 31 using PAM100 and 

47 using the PAM350 matrix.



 

114 
 

Table 5.12: Selected results of the six pairwise local alignments performed in Step-3. 
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BLOSUM40 10 1 52.83% 57.81% 27.22% 41181 177285.00 

DAYHOFF 10 1 49.41% 62.32% 21.70% 39868 112237.00 
IDENTITY 10 1 100.00% 100.00% 0.00% 397 397.00 

MATCH 10 1 63.57% 63.57% 18.81% 6083 1192.00 
PAM100 10 1 51.60% 62.28% 25.74% 40656 91799.00 

PAM350 10 1 47.05% 69.15% 24.62% 40532 165839.00 

5.11.4 Multiple Sequence Alignment and Data Mining 

Step-5: In this step, a multiple alignment was performed on all the meta-signatures 

retrieved in Step-4 adopting T-Coffee with alignment being restricted to the ID 

substitution matrix. Overall, five independent multiple alignments were performed (i.e. 

on 34, 24, 24, 31 and 47 meta-signatures, respectively), one for each of the five 

substitution matrices. IDENTITY matrix was not considered in this step as multiple 

sequence alignment requires two or more sequences for its process – ID matrix generated 

only one substring in Step-4. But the ID matrix meta-signature will be considered in this 

sub-step of data mining (more details below). As stated earlier, the main aim of multiple 

alignment here is to produce consensuses (more details in Step-6). 

Also, in this step, a data mining classification algorithm known as PRISM (Cendrowska, 

1987) was applied on all the 161 extracted meta-signatures (obtained in Step-4, including 

the meta-signature obtained from the ID matrix) to extract rules. The purpose of data 

mining in this step was important as multiple alignment did not take into account all the 

161 meta-signatures. Rule extraction using the supervised PRISM learning (with the 

training set option) was performed with the help of an open source software product called 

Weka (Waikato Environment for Knowledge Analysis). As stated earlier, Weka is a tool 

that provides a collection of machine learning algorithms for performing data mining 

tasks (Frank, Hall, & Witten, 2016). Some of the PRISM rules for BLOSUM40 (with 

62% accuracy) obtained in this step are as follows (observe that ‘pos’ and ‘B40’ are 

acronyms for position and BLOSUM40 in the rules shown below): 

If pos30 = A then B40 

If pos3 = C and pos18 = G then B40 

If pos22 = A and pos7 = T then B40 

If pos66 = A and pos2 = T then B40 



 

115 
 

5.11.5 Extraction of Consensuses and PRISM Rules 

Step-6: As stated earlier, T-Coffee, similar to other alignment tools, produces a consensus 

sequence that signifies the most common residues (nucleotide) in each position of the 

sequences after alignment. In this step, the consensus was stored, and the procedure was 

followed five times, one for each of the five substitution matrices. No threshold of 

common occurrence of a nucleotide in a certain position was adopted/set in this step. 

Overall, five consensuses were extracted in this step. 

Also, in this step (after the process of data mining using PRISM in Step-5), a total of five 

single PRISM rules (one for each of the five selected substitution matrices) were extracted 

with an accuracy of 62%. Single PRISM rule was obtained by merging all the nucleotide 

characters from all the positions for that specific substitution matrix. For instance, from 

the few PRISM rules given above for BLOSUM40, the following single rule is obtained: 

ACGATAT. 

5.11.6 Second Pairwise Local Alignment and Super-Signature Extraction 

Step-7: In this step, two sets of pairwise (local) alignments, using the usual gap open and 

gap extend penalties of 10 and 1 respectively, were performed adopting the SWA with 

ID matrix (see Chapters 4 and 5 – Part-II). One set between the consensuses and the 

original (Ps) JS.Cassandra virus and variant 1. The other set between the single PRISM 

rules and the original (Ps) JS.Cassandra virus and variant 1, both using ‘JAligner’. 

Overall, 20 individual pairwise local alignments were performed in this step, 10 for each 

consensus and 10 for each single PRISM rule. Forty-seven super-signatures were 

extracted from the two sets, 21 from the consensuses-based pairwise alignments and 26 

from the single PRISM rules-based pairwise alignments. 

5.11.7 DNA to Hex Conversion as well as Meta-Signature and Super-

Signature Testing 

Step-8: Again all the 161 meta-signatures and 47 super-signatures were converted back 

into a hexadecimal format before testing their effectiveness using ‘clamscan’. 

5.12. Experimental Results 

Table 5.13 supplies the results of the detection rates (with accuracy) for the detection of 

JS.Cassandra polymorphic malware and its known (Pk) variants adopting ‘clamscan’ 

using the meta-signatures. In total, 161 meta-signatures were tested.
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Table 5.13: Detection rates for the detection of JS.Cassandra polymorphic malware and its known (351) variants (Pk) employing ‘clamscan’ by testing 

the 161 meta-signatures acquired in Step-4. 

BLOSUM40 DAYHOFF 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x25) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x24) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS1 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS35 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS2 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS36 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS3 – 11 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS37 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS4 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS38 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00% 

MS5 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS39 – 23 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS6 – 14 333/352 (94.60%) 94.60% 0.0% 100.00% 97.22% MS40 – 50 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS7 – 23 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS41 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS8 – 13 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS42 – 10 322/352 (91.50%) 91.50% 0.0% 100.00% 95.56% 

MS9 – 40 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS43 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS10 – 52 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS44 – 44 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS11 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS45 – 29 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS12 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS46 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00% 

MS13 – 12 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS47 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS14 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS48 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS15 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS49 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS16 – 24 326/352 (92.61%) 92.61% 0.0% 100.00% 96.16% MS50 – 45 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS17 – 22 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS51 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS18 – 28 314/352 (89.20%) 89.20% 0.0% 100.00% 94.29% MS52 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS19 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS53 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS20 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS54 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS21 – 96 328/352 (93.20%) 93.20% 0.0% 100.00% 96.5% MS55 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS22 – 18 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS56 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92% 

MS23 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS57 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS24 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS58 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS25 – 44 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% - - - - - - 
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BLOSUM40 IDENTITY 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x9) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x1) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS26 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS59 – 198 14/352 (4.0%) 4.0% 0.0% 100.00% 7.69% 

MS27 – 15 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% PAM100 

MS28 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 
Meta-Signatures 

with their Sequence 

Lengths in Hex (x21) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS29 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS84 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS30 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS85 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS31 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92% MS86 – 10 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS32 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS87 – 10 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS33 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS88 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS34 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS89 – 18 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MATCH MS90 – 16 337/352 (95.74%) 95.74% 0.0% 100.00% 97.82% 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x13) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score MS91 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00% 

MS60 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS92 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS61 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS93 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS62 – 82 309/352 (87.80%) 87.80% 0.0% 100.00% 93.5% MS94 – 10 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS63 – 34 255/352 (72.44%) 72.44% 0.0% 100.00% 84.02% MS95 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS64 – 22 293/352 (83.24%) 83.24% 0.0% 100.00% 90.85% MS96 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS65 – 32 132/352 (37.5%) 37.5% 0.0% 100.00% 54.54% MS97 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS66 – 24 336/352 (95.45%) 95.45% 0.0% 100.00% 97.67% MS98 – 24 326/352 (92.61%) 92.61% 0.0% 100.00% 96.16% 

MS67 – 18 280/352 (79.54%) 79.54% 0.0% 100.00% 88.6% MS99 – 22 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS68 – 18 288/352 (81.82%) 81.82% 0.0% 100.00% 90.001% MS100 – 28 314/352 (89.20%) 89.20% 0.0% 100.00% 94.3% 

MS69 – 22 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS101 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS70 – 16 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS102 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00% 

MS71 – 28 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS103 – 96 328/352 (93.20%) 93.20% 0.0% 100.00% 96.5% 

MS72 – 18 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS104 – 26 311/352 (88.35%) 88.35% 0.0% 100.00% 93.81% 
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MATCH PAM100 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x11) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x10) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS73 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS105 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS74 – 198 14/352 (4.0%) 4.0% 0.0% 100.00% 7.69% MS106 – 44 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS75 – 50 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS107 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS76 – 16 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS108 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS77 – 65 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS109 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS78 – 60 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS110 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS79 – 52 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS111 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92% 

MS80 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS112 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS81 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS113 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS82 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS114 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS83 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% - - - - - - 

PAM350 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x13) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x13) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS115 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS139 – 8 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS116 – 9 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS140 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS117 – 10 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS141 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS118 – 7 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS142 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS119 – 7 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS143 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS120 – 6 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS144 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS121 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS145 – 45 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS122 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS146 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS123 – 23 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS147 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS124 – 13 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS148 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS125 – 40 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS149 – 6 343/352 (97.44%) 97.44% 0.0% 100.00% 98.7% 

MS126 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS150 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS127 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS151 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 
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PAM350 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x11) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Meta-Signatures 

with their Sequence 

Lengths in Hex (x10) 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

MS128 – 52 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS152 – 7 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS129 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS153 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS130 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS154 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS131 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS155 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS132 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS156 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% 

MS133 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS157 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92% 

MS134 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS158 – 6 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS135 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS159 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS136 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS160 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

MS137 – 7 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS161 – 6 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

MS138 – 8 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%       

* Where MS is the meta-signature. 

From Table 5.13, it can be seen that 123 out of the 161 meta-signatures identified JS.Cassandra and its known (Pk) variants. 112 of the meta-signatures 

(~70%) gave a detection accuracy of over 96%. Seven meta-signatures accurately detected all the variants (100%) and 38 (~ 24%) of the signatures 

identified none of the known (Pk) variants of JS.Cassandra. The PAM350 substitution matrix resulted in the highest number of successful meta-signatures 

with 38 out of the 47 meta-signatures (about 80.85%) identifying at least 96% known (Pk) variants of the JS.Cassandra virus. That is, on an average, the 

meta-signatures (or the cells) that are highlighted in bold and within the PAM350 category (see Table 5.13) identified 96% known (Pk) variants of the 

JS.Cassandra virus. Moreover, PAM350 substitution matrix gave the highest number of new meta-signatures in comparison to other substitution matrices. 

Table 5.14 supplies the results of the identification of JS.Cassandra and its known (Pk) variants employing ‘clamscan’ using the 47 extracted super-

signatures. More details on page no. 119.
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Table 5.14: Detection rates for the detection of JS.Cassandra polymorphic malware and 

its known (351) variants (Pk) employing ‘clamscan’ by testing the 47 super-signatures 

acquired in Step-7. 

 

Super-Signatures 

with their 

corresponding 

Substitution 

Matrices 

Detection Rate 

(Accuracy) 

Sensitivity/

Recall 
Specificity Precision F1 Score 

Super-

Signatures 

(x21) 

obtained 

from 

Consensuses-

based 

Pairwise 

Alignments 

From 

Original 

Virus (x12) 

SS1 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS2 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS3 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS4 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS5 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS6 - IDENTITY 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2% 

SS7 - IDENTITY 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76% 

SS8 - MATCH 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS9 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS10 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS11 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS12 - PAM350 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

From 

Variant 1 

(x9) 

SS13 - BLOSUM40 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS14 - BLOSUM40 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS15 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS16 - IDENTITY 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS17 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS18 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS19 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS20 - PAM100 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS21 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

Super-

Signatures 

(x26) 

obtained 

from single 

PRISM 

Rules-based 

Pairwise 

Alignments 

From 

Original 

Virus (x19) 

SS22 - BLOSUM40 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS23 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS24 - DAYHOFF 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS25 - DAYHOFF 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS26 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS27 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS28 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS29 - IDENTITY 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2% 

SS30 - IDENTITY 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76% 

SS31 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS32 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS33 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS34 - MATCH 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2% 

SS35 - MATCH 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76% 

SS36 - PAM100 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% 

SS37 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS38 - PAM350 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS39 - PAM350 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS40 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

From 

Variant 1 

(x7) 

SS41 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

SS42 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS43 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS44 - IDENTITY 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS45 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS46 - PAM100 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00% 

SS47 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% 

* Where SS is the super-signature. 
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From Table 5.14, it can be seen that 34 of 47 super-signatures (~ 72%) correctly identified 

the JS.Cassandra variants. Sixteen of the 47 super-signatures had an accuracy of 100%, 

and 12 had an accuracy of 96.59%. Thirteen out of the 47 super-signatures (~28%) did 

not identify any of the variants. Super-signatures obtained from the pairwise alignments 

between consensuses and variant 1 as well as between single PRISM rules and variant 1 

had the highest number of successful super-signatures with 12 out of the 47 super-

signatures (~ 26%) identifying 100% of the known (Pk) variants. On the other hand, super-

signatures obtained from the pairwise alignments between consensuses and the original 

(Ps) virus and between single PRISM rules and the original (Ps) virus had the lowest 

number of successful super-signatures (~ 8.51%) identifying all known (Pk) variants but 

had the highest number of successful super-signatures (~26%) identifying 96.59% known 

(Pk) variants of the JS.Cassandra virus. 

5.13. Summary 

In this chapter, sequence alignment techniques for automatically extracting polymorphic 

malware synatctic signatures were explored in more depth. The effects of using different 

substitution matrices (Part-III) were evaluated as well as the effects of gap penalties (Part-

II). It was found that better super-signatures for JS.Cassandra could be generated from 

variant 1 using the PRISM single rule-based method (see Table 5.14) while the PAM350 

substitution matrix gave the highest number of new and successful meta-signatures (see 

Table 5.13). 

Because the PRISM approach to extracting super-signatures seems promising the set of 

experiments detailed in the next chapter further investigate a syntactic structure approach 

to the automatic generation of polymorphic viral signatures using a data mining (NNge) 

approach for extracting rules. Experiments are reported that are designed to address the 

third research question (Q3). More information will follow in the succeeding chapter.
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Chapter 6 Identifying Viral Polymorphic Malware Variants 

using Data Mining Rule-Based NNge 

Classification Algorithm 

Initial work (presented in Chapters 4 and 5) employed an approach which involved the 

conversion of hexadecimal dumps of polymorphic malware (and variants) into biological 

sequences before employing a sequence alignment algorithm to extract signatures was 

promising but also had some limitations. In an attempt to address these limitations, 

discussed in Section 1.5.5 (see page no. 17), non-nested generalised exemplars (NNge) 

are used in an attempt to further improve this proposed approach to the automatic 

identification of polymorphic malware. By representing polymorphic malware as DNA 

(or base sequences), it enables not only sequence alignment approaches but also data 

mining methods to be used. It is likely that rule induction techniques, well established in 

data mining, can be used to extract rule-based virus meta-signatures. The key differences 

between the previous proposed approaches (Chapters 4 and 5) and current chapter are as 

follows: 

• Previous work adopted left-to-right string matching techniques to find the most 

optimally-conserved meta-signatures. The work presented in this chapter adopts a 

rule-based or top-down approach that attempts to find underlying patterns. 

• Previous work generated equal length consensuses using sequence alignment 

techniques, whereas the current chapter generates variable length consensuses 

adopting a variable length data mining technique (NNge). 

• Previous work adopted pairwise alignment techniques for extracting signatures which 

only allowed alignment of two viral sequences at a time taking into account only the 

information available in the sequence pair. This work allows all sequences to be used 

to extract signatures and so takes into account all the information in all the sequences 

at the same time, including both family generic and variant specific information. 

6.1. Introduction 

In this chapter, the focus is on polymorphic malware generated through modification in 

the encryptor and decryptor. Whereas the previously explored syntactic approaches 

(Chapters 4 and 5) had the aim of generating string templates for signatures, the aim of 

this work is to investigate whether such string templates are themselves rule-based and 

could, therefore, be derived directly using data mining algorithms in conjunction with 
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sequence alignment algorithms. If it is possible to generate a rule-based signature 

automatically then it should be possible to automatically create a signature that can detect 

entirely new variants that have not previously been encountered. In other words, it is 

possible to construct ‘pre-emptive’ AVSs that already know, to some extent, what future 

variants of a virus may look like based on encountering known (Pk) variants of that virus. 

Only JS.Cassandra virus family – known (Pk) and unknown (Px) variants are used in this 

chapter due to sequence length restrictions put by the alignment tool (see page no. 18 for 

more details) as some of the experiments in this chapter adopt sequence alignment to 

extract the meta-signatures. Other two polymorphic virus families are not considered in 

this chapter due to its overly long sequences. 

6.2. Objectives of this chapter 

Three sets of experiments were performed for two main reasons. Firstly, to examine the 

effectiveness of the rule-based classifier (NNge) employed here, all the three sets of 

experiments were solely performed by using the rule-based classifier (NNge) as the 

primary approach to obtain more divergent, meaningful and valuable (single) rules each 

time. Secondly, to test the capability of this rule-based classifier (NNge) to handle larger 

sequences, the length of sequences in each set of experiments was increased either by 

using a different more verbose representational approach (i.e. DNA) or by multiple 

sequence alignment. 

In the first set of experiments, hexadecimal (hex) dumps of JS.Cassandra and its known 

variants – Pk (training set) were loaded into Weka, whereas, in the second set of 

experiments, hex dumps of JS.Cassandra virus and its known variants – Pk (training set) 

were represented as DNA sequences, thereby increasing the length of (DNA) sequences 

by two times (from its original hex length) and then loaded into Weka (Frank, Hall, & 

Witten, 2016), exclusively to obtain (NNge) rule-based meta-signatures in both sets of 

experiments. In the third set of experiments, hex dumps of JS.Cassandra virus and its 

known variants – Pk (training set) were represented as DNA sequences and then multiply-

aligned using MAFFT - a multiple sequence alignment online tool (Katoh, Misawa, 

Kuma, & Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) thereby increasing the 

length of the sequences by six-fold. Multiple sequence alignment was used for two main 

reasons. Firstly, because most data mining rule-based approaches assume fixed length 

sequences (Xinguang, et al., 2009) and all of the generated hex dumps of JS.Cassandra 

virus were of variable sequence lengths. Pairwise sequence alignment was not used in 
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this stage because pairwise alignment does not produce fixed length sequences, each run 

of pairwise alignment produces a variable length sequence. Secondly, as the first set of 

experiments (using hex dumps) generated NNge rules with 100% accuracy, and the 

second set of experiments (using DNA representation) generated NNge rules with 100% 

inaccuracy, DNA represented sequences from the second set of experiments were 

multiply-aligned, primarily to obtain NNge rules with 100% accuracy (third set of 

experiments). The three sets of experiments discussed here were performed with a 

matching number of unchanged instances (i.e. 22 instances) in every set of experiments. 

For every set of experiments discussed here, the process of pairwise sequence alignment 

was employed at a later stage. Pairwise sequence alignment was employed primarily to 

extract common substrings/meta-signatures from the (NNge) single rules. 
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A -  First Set of Experiments 

6.3. Experiment I - Identification of viral variants using NNge rule 

extraction from variants in hexadecimal format: Systems and 

Methods 

The method for Experiment I consists of six steps (see Figure 6.1). As usual, the steps 

involving download of JS.Cassandra polymorphic virus and variants and hexadecimal 

dump extraction were performed on a stand-alone system. Network connectivity was used 

at the testing stage as the previous approaches. 

Rule Extraction

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

NNge classification

Meta-signature testing
 

Figure 6.1: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining 

Rule-Based NNge Classification Algorithm (Experiment I)’ method comprising of six 

steps. 

A complete description of the method is supplied below. 

6.3.1 Hex Dump Extraction 

Step-1: As for previous experiments, 11 variants of JS.Cassandra were extracted 

including the original virus (Ps). In this case, since most data mining approaches assume 
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two or more classes, an additional 11 non-malicious/non-payload (Pu) files were 

generated by eliminating their main polymorphic engines. As for earlier experiments, the 

uniqueness of all variants was verified by generating their CRC32b hash value (see 

Appendix H – page no. 250). ‘VirusTotal’ was used to ensure that malicious activity was 

maintained in the 11 malicious (Pk) variants and eliminated in the 11 non-malicious (Pu) 

variants. 

Table 6.1 gives the detection ratio, based on the 56 AVSs using ‘VirusTotal’. Only four 

of the 56 AVSs detected one or more of the non-malicious (Pu) variant files (Table 6.1). 

It is likely that variants 1, 3, 4 and 9 were detected as malicious as they still had their 

polymorphic functions in place but no payload. 

Table 6.1: Detection Ratio for each JS.Cassandra variant based on the 56 AVSs in 

‘VirusTotal’. 

Malicious (Pk) Filename 

D
et

ec
ti

o
n

 

R
a

ti
o
 

Non-Malicious (Pu) Filename 

D
et

ec
ti

o
n

 

R
a

ti
o
 

JS.Cassandra.js (Original Malicious 

Virus – Ps) 
40/56 JS.Cassandra_NP.js (Non-Malicious Virus – 

Pu) 
0/56 

v_000.js (Malicious Variant 1 – Pk) 19/56 v_000_NP.js (Non-Malicious Variant 1 – Pu) 1/56 

v_001.js (Malicious Variant 2 – Pk) – 

for use in Step-4 and Step-5 
12/56 v_002_NP.js (Non-Malicious Variant 2 – Pu) 0/56 

v_002.js (Malicious Variant 3 – Pk) 22/56 v_003_NP.js (Non-Malicious Variant 3 – Pu) 1/56 

v_003.js (Malicious Variant 4 – Pk) 19/56 v_004_NP.js (Non-Malicious Variant 4 – Pu) 1/56 

v_004.js (Malicious Variant 5 – Pk) 22/56 v_005_NP.js (Non-Malicious Variant 5 – Pu) 0/56 

v_005.js (Malicious Variant 6 – Pk) 21/56 v_006_NP.js (Non-Malicious Variant 6 – Pu) 0/56 

v_006.js (Malicious Variant 7 – Pk) 21/56 v_007_NP.js (Non-Malicious Variant 7 – Pu) 0/56 

v_007.js (Malicious Variant 8 – Pk) 20/56 v_008_NP.js (Non-Malicious Variant 8 – Pu) 0/56 

v_008.js (Malicious Variant 9 – Pk) 20/56 v_009_NP.js (Non-Malicious Variant 9 – Pu) 1/56 

v_009.js (Malicious Variant 10 – Pk) 20/56 v_010_NP.js (Non-Malicious Variant 10 – 

Pu) 
0/56 

v_010.js (Malicious Variant 11 – Pk) 20/56 – – 

Hex dumps were then extracted using ‘sigtool’. 

6.3.2 Data Mining 

Step-2: A rule-based classification algorithm known as NNge was employed in this step 

to extract rules from the variants in hexadecimal format. As stated earlier, NNge first 

introduced by Martin (1995) is a nearest neighbour algorithm which generalises by 

merging exemplars and forming hyperrectangles in feature space that represent 

conjunction rules (if-then rules) with internal disjunction. The learning is incremental; 
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each example is first classified and then generalised by joining the example to its nearest 

neighbour, either a single instance or a hyperrectangle, in the same class. Each 

hyperrectangle is converted into a production rule. NNge was chosen for this research 

because the exclusive generalised exemplars produced result in a useful set of rules and 

has been proven to reduce classification time without sacrificing accuracy. 

Rule generation using the NNge classifier was conducted using its implementation in 

Weka. 

An ARFF (Attribute-Relation File Format) file was created which contained the hex 

dump sequences for the 22 JS.Cassandra variants. Since most data mining approaches 

assume fixed length sequences (Xinguang, et al., 2009), the variable length 22 hex dump 

sequences were converted into fixed length sequences by adding the letter ‘x’ at the end 

of short sequences. In total, the ARFF file consisted of 24,565 attributes and two classes 

(malicious and non-malicious). The file size of the ARFF file was 2.49 MB. The NNge 

classifier was trained on the full dataset. No cross-validation was performed in this step 

as the sole purpose of this chapter is to extract (single) consequential rules and hence, 

only the training on the full dataset was conducted. Figures F.1 and F.2 (see Appendix F 

– page no. 238) are screenshots of the pre-process panel, the classifier model and 

evaluation information (with/on full training set) within the classifier panel obtained from 

Weka during the generation of NNge rules in this step. Figure F.3 (see Appendix F – page 

no. 240) is a screenshot of the visualize panel showing 275 individual plot matrices 

between pos1-pos25 and pos13633-pos13643, where, blue circles are malicious (‘m’) and 

red circles are non-malicious (‘nm’). Two NNge rules (one for each class) were generated 

with an accuracy of 100%. A partial segment of two NNge (hex) rules obtained in this 

step for the malicious (m), and 11 non-malicious (nm) hex sequences are shown below: 

Malicious (m) - class m IF : pos1 in {2,6} ^ pos2 in {0,3} ^ pos3 in {6,7} ^ pos4 in 

{a,b,1,2,3,7,9} ^ pos5 in {6,7} ^ pos6 in {a,e,1,2,3,5,6,7,9} ^ pos7 in {6,7}...and so on. 

Non-Malicious (nm) - class nm IF : pos1 in {2,6,7} ^ pos2 in {f,6} ^ pos3 in {2,6,7} ^ 

pos4 in {f,1,5} ^ pos5 in {2,6,7} ^ pos6 in {e,0,2} ^ pos7 in {2,6,7}...and so on. 

6.3.3 Rule Extraction 

Step-3: In this step, two strings in hex format (one each for malicious and non-malicious) 

were extracted from the two NNge rules. For example, for (m) the first substring at pos 1 

becomes the first substring in the new NNge rule extracted string resulting as follows: 
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‘260367ab1237967ae123567967...’. The length of the malicious string was 246,676 hex 

characters, whereas, the length of the non-malicious string was 74,498 hex characters. 

Since the two generated NNge rules were in the form of associations with position 

numbers, only hex data (by excluding the letter ‘x’) from the two NNge rules were 

extracted. The extracted NNge hex data were then converted into DNA sequences for the 

process of pairwise (local) sequence alignment. 

6.3.4 Hex to DNA Conversion 

Step-4: The extracted hex dump sequences were converted into binary. Conversion of 

hexadecimal into binary code was accomplished as per previous experiments (see Section 

4.3.2 for the conversion rules – page no. 66). Three of the variants JS.Cassandra.js , 

v_000.js and v_001.js, were then converted into DNA sequences using the previously 

established conversion rules (see Section 4.3.2 – page no. 66). A short instance of the 

conversion of 16-bit binary code into 8 DNA characters is presented below: 

1001110100101010 (16-bit binary code) 

GCTCAGGG (8 DNA characters) 

6.3.5 Pairwise Local Sequence Alignment 

Step-5: The two converted NNge DNA sequences were pairwisely-aligned with 

polymorphic (converted) DNA sequences of original (Ps) JS.Cassandra virus 

(JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and malicious variant 2 

(v_001.js), successively, using SWA and ID substitution matrix. The processes of 

pairwise alignments were primarily performed to extract the common substrings/meta-

signatures, which will be used to detect the original (Ps) malware and all its available 

variants (Pk and Px) of the JS.Cassandra polymorphic family. In total, nine meta-

signatures in DNA representation were extracted in this set of experiments (see Table 6.2 

for more details).  

Four meta-signatures from the alignment with the DNA sequence extracted using the 

NNge rule for malicious (Pk) variants and five meta-signatures from the DNA sequence 

extracted from the NNge rule for the non-malicious (Pu) variants. Table 6.2 gives the 

sequence lengths of these meta-signatures. where, (1) denotes that the meta-signatures 

were obtained from the first set of experiments. The minimum and maximum sequence 

lengths of meta-signatures obtained from the first set of alignments involving malicious 
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NNge sequence were 12 and 125, respectively, with a mean (sum, median and standard 

deviation of 339, 101 and 52.411, respectively) of 84.75 for four signatures in their DNA 

representation. The minimum and maximum sequence lengths of signatures obtained 

from the second set of alignments involving non-malicious NNge sequence were 12 and 

59, respectively, with a mean (sum, median and standard deviation of 151, 18 and 22.543, 

respectively) of 30.2 for five signatures in their DNA representation (Table 6.2). 

Table 6.2: Sequence lengths of all the nine extracted meta-signatures (i.e. common 

substrings) in its DNA representation obtained in Step-5. 

Class Pairwise Alignment 
Meta-Signature 

(1) 

S
eq

u
en

ce
 

L
en

g
th

 

Malicious 

(m) 

Malicious DNA NNge Rule and Original Malicious 

JS.Cassandra (JS.Cassandra.js) DNA Sequence 
MS1 (1) 121 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 1 (v_000.js) DNA Sequence 

MS2 (1) 12 

MS3 (1) 125 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 2 (v_001.js) DNA Sequence 
MS4 (1) 81 

Non-

Malicious 

(nm) 

Non-Malicious DNA NNge Rule and Original Malicious 

JS.Cassandra (JS.Cassandra.js) DNA Sequence 
MS5 (1) 50 

Non-Malicious DNA NNge Rule and JS.Cassandra 

Malicious Variant 1 (v_000.js) DNA Sequence 

MS6 (1) 12 

MS7 (1) 59 

Non-Malicious DNA NNge Rule and JS.Cassandra 

Malicious Variant 2 (v_001.js) DNA Sequence 

MS8 (1) 12 

MS9 (1) 18 

6.3.6 DNA to Hex Conversion and Meta-Signature Testing 

Step-6: In this final step, the nine meta-signatures (obtained in Step-5) in DNA sequence 

representation were converted back into hexadecimal format. 

6.4. Summary – First Set of Experiments 

To summarise the first set of experiments, 351 polymorphic malicious (Pk) variants of 

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352 

polymorphic malicious files) were downloaded from the official virus author’s web page 

(SPTH, 2004; SPTH, 2015). 11 out of the 352 polymorphic malicious (Pk) files (including 

the original (Ps) JS.Cassandra virus) were selected for the experiments (see Table 6.1 for 

the list of selected malicious variants). One of the additional polymorphic malicious (Pk) 

file (i.e. v_001.js) out of the 352 malicious (Pk) files was selected for use in Step-4 and 

Step-5. An additional 11 non-malicious/non-payload (Pu) files (ignoring the additional 

polymorphic malicious file) were produced by eliminating their main polymorphic 

engines, making a total number of 22 files. Hex dumps were extracted from all the 22 
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files (including the additional polymorphic malicious – Pk file for use in Step-4 and Step-

5), and they were all of the variable sequence lengths. All the 22 variable length hex 

sequences (ignoring the additional polymorphic malicious – Pk file) were converted into 

fixed length sequences by adding the letter ‘x’ towards the end of each sequence until all 

the 22 sequences were of equal length. As stated earlier, this conversion was necessary 

as most of the rule-based data mining classifiers accept fixed length sequences (Xinguang, 

et al., 2009). All the converted fixed length hex sequences were used to create an ARFF 

file (with two classes – one for malicious and the other one for non-malicious) and then 

later fed into Weka (see Figure F.1) (Frank, Hall, & Witten, 2016). Using the fed ARFF 

file as the training set, NNge rule-based classifier was conducted, which generated two 

long NNge rules with 100% accuracy (see Figure F.2). One NNge rule was generated for 

the malicious class, whereas, the other NNge rule was generated for the non-malicious 

class (see Figure F.2). Since the two generated NNge rules were in the form of 

associations with position numbers, only hex data (by excluding the letter ‘x’) from the 

two NNge rules were extracted. The extracted NNge hex data were then converted into 

DNA sequences for the process of pairwise (local) sequence alignment. Furthermore, 11 

of the polymorphic malicious hex sequences, most importantly, JS.Cassandra original 

(Ps) virus and its malicious variant 1 (plus the additional polymorphic malicious variant 

2) were converted into DNA sequences, also for the process of pairwise sequence 

alignment. As stated earlier, this conversion was essential as the pairwise alignment of 

hex data cause issues to string matching algorithms due to algorithmic complications in 

managing numeric data and code. The two converted NNge DNA sequences were 

pairwisely-aligned with polymorphic (converted) DNA sequences of original (Ps) 

JS.Cassandra virus (JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and 

malicious variant 2 (v_001.js), successively, using SWA and ID substitution matrix. The 

processes of pairwise alignments were primarily performed to extract the common 

substrings/meta-signatures, which will be used to detect the original (Ps) malware and all 

its available (Pk and Px) variants of the JS.Cassandra polymorphic family. In total, nine 

meta-signatures in its DNA representations were extracted in this set of experiments (see 

Table 6.2 for more details). These meta-signatures (in its DNA representations) were 

converted back into a hexadecimal format for testing against the JS.Cassandra 

polymorphic malware family (see Table 6.6 and Figures 6.4 to 6.6 in Section 6.9 for more 

details – page nos. 141, 144-145). This conversion of DNA into hex was necessary as all 

the malware (and non-malware) files can be represented in hex, as it is the traditional 

human-decipherable representation of each byte’s value. 
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B -  Second Set of Experiments 

6.5. Experiment II - Identification of viral variants using NNge rule 

extraction from variants in DNA format: Systems and Methods 

The method for Experiment II consists of six steps (see Figure 6.2). 

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

Meta-signature testing

Rule Extraction

NNge classification

 

Figure 6.2: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining 

Rule-Based NNge Classification Algorithm (Experiment II)’ method comprising of six 

steps. 

The same procedure as Experiment I was used along with the same JS.Cassandra variants 

were used the only difference is that the variants were converted into DNA format prior 

to NNge rule generation. The conversion to DNA format was undertaken as normal using 

the DNA representational method as detailed in Section 4.3.2 (see page no. 66). 

As for Experiment I, fixed length sequences were here created by adding the letter ‘X’ at 

the end of each sequence to the length of the longest variant. In total, the resultant 3.87 

MB ARFF file contained 49,129 attributes and two class labels (malicious and non-
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malicious). The final and error-free version of ARFF file was loaded into Weka, and 

NNge classification undertaken using all the data as the training set. After the first 

iteration, two NNge rules (one for each class) was generated in under seven minutes. 

Figures F.4 and F.5 (see Appendix F – page no. 241) are screenshots of the preprocess 

panel and the classifier model and evaluation information (with/on full training set) within 

the classifier panel obtained from Weka during the generation of NNge rules in this step 

(Step-3). Figure F.6 (see Appendix F – page no. 243) is a screenshot of the visualize panel 

showing 275 individual plot matrices between pos1-pos25 and pos36663-pos36673, 

where, blue circles are malicious (‘M’), and red circles are non-malicious (‘NM’). A 

partial segment of the two NNge (DNA) rules are shown below: 

Malicious (M) - class M IF : pos1 in {A,C} ^ pos2 in {G} ^ pos3 in {A} ^ pos4 in {A,T} ^ 

pos5 in {C} ^ pos6 in {T,G} ^ pos7 in {A,G,C} ^ pos8 in {T,G,C}...and so on. 

Non-Malicious (NM) - class NM IF : pos1 in {A,C} ^ pos2 in {T,G} ^ pos3 in {T,C} ^ 

pos4 in {T,G} ^ pos5 in {A,C} ^ pos6 in {T,G} ^ pos7 in {A,T,C}...and so on. 

Rules were extracted in the same way as for Experiment I from these two NNge rules as 

in Experiment I the sub-sequences in each position were concatenated as illustrated here 

for the Malicious class: ‘ACGAATCTGAGCTGC...’. 

The sequence length of the malicious NNge DNA string was 132,103 bases, whereas, the 

sequence length of non-malicious NNge DNA string was 41,670 bases. Pairwise local 

alignment was then performed using SWA and the ID matrix in a process similar to that 

described for Experiment I. In this case alignment was conducted between the NNge 

DNA string for the malicious class rule and the malicious JS.Cassandra variants in DNA 

format one by one. And this was again repeated for the NNge DNA string created based 

on the NNge rule for non-malicious files. 

Overall, 14 common substrings (i.e. meta-signatures) were obtained in this step (Step-5). 

Nine meta-signatures were obtained from the alignment between the sequence extracted 

from the malicious DNA NNge rule and the three malicious DNA sequences (i.e. original 

(Ps) JS.Cassandra, variant 1 (Pk) and variant 2 (Pk) sequences as for Experiment I), 

whereas, five meta-signatures were obtained from the alignment between non-malicious 

extracted DNA NNge rule and the three malicious DNA sequences. Table 6.3 shows the 

sequence lengths of all the 14 extracted meta-signatures obtained in this step (Step-5), 

where, (2) denotes that the meta-signatures were obtained from the second set of 
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experiments. The minimum and maximum sequence lengths of meta-signatures obtained 

from the first set of alignments involving malicious NNge sequence were 12 and 125, 

respectively, with a mean (sum, median and standard deviation of 404, 14 and 49.604, 

respectively) of 44.89 for nine signatures in their DNA representation. The minimum and 

maximum sequence lengths of signatures obtained from the second set of alignments 

involving non-malicious NNge sequence were 12 and 59, respectively, with a mean (sum, 

median and standard deviation of 152, 18 and 22.345, respectively) of 30.4 for five 

signatures in their DNA representation (Table 6.3). 

Table 6.3: Sequence lengths of the extracted meta-signatures in DNA representation. 

Class Pairwise Alignment 
Meta-Signature 

(2) 

S
eq

u
en

ce
 

L
en

g
th

 

Malicious 

(M) 

Malicious DNA NNge Rule and Original Malicious 

JS.Cassandra (JS.Cassandra.js) DNA Sequence 

MS1 (2) 14 

MS2 (2) 12 

MS3 (2) 121 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 1 (v_000.js) DNA Sequence 

MS4 (2) 14 

MS5 (2) 12 

MS6 (2) 125 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 2 (v_001.js) DNA Sequence 

MS7 (2) 13 

MS8 (2) 12 

MS9 (2) 81 

Non-

Malicious 

(NM) 

Non-Malicious DNA NNge Rule and Original Malicious 

JS.Cassandra (JS.Cassandra.js) DNA Sequence 
MS10 (2) 50 

Non-Malicious DNA NNge Rule and JS.Cassandra 

Malicious Variant 1 (v_000.js) DNA Sequence 
MS11 (2) 59 

Non-Malicious DNA NNge Rule and JS.Cassandra 

Malicious Variant 2 (v_001.js) DNA Sequence 

MS12 (2) 13 

MS13 (2) 12 

MS14 (2) 18 

In the final step (Step-6), the 14 meta-signatures (Table 6.3) in DNA sequence 

representation were converted back into hexadecimal format. The converted nine hex 

meta-signatures were tested against the JS.Cassandra original (Ps) virus and all its 351 

known (Pk) polymorphic malware variants using ‘clamscan’. 

6.6. Summary – Second Set of Experiments 

To summarise the second set of experiments, 351 polymorphic malicious variants of 

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352 

polymorphic malicious files) were retained from the first set of experiments. All the 22 

extracted hex dumps and the subsequent 22 converted DNA sequences of JS.Cassandra 

virus (including DNA sequence of the additional polymorphic malicious file i.e. v_001.js 

for use in Step-5) were also retained from the first set of experiments, for the process of 
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data mining and pairwise sequence alignment. As stated earlier, this conversion to DNA 

was essential as the pairwise alignment of hex data cause issues to string matching 

algorithms due to algorithmic complications in managing numeric data and code. All the 

22 converted variable length DNA sequences (ignoring the additional polymorphic 

malicious file) were converted into fixed length DNA sequences by adding the letter ‘X’ 

towards the end of each sequence until all the 22 DNA sequences were of equal length. 

As stated earlier, this conversion was necessary as most of the rule-based data mining 

classifiers accept fixed length sequences (Xinguang, et al., 2009). All the converted fixed 

length DNA sequences were used to create an ARFF file (with two classes – one for 

malicious and the other one for non-malicious) and then later fed into Weka (see Figure 

F.4) (Frank, Hall, & Witten, 2016). Using the fed ARFF file as the training set, NNge 

rule-based classifier was started, which generated two long NNge rules (see Figure F.5). 

One NNge rule was generated for the malicious class, whereas, the other NNge rule was 

generated for the non-malicious class (see Figure F.5). Since the two generated NNge 

rules were in the form of associations with position numbers, only DNA data (by 

excluding the letter ‘X’) from the two NNge rules were extracted for the process of 

pairwise (local) sequence alignment. The two extracted NNge DNA (data) sequences 

were pairwisely-aligned with polymorphic (converted) DNA sequences of original (Ps) 

JS.Cassandra virus (JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and 

malicious variant 2 (v_001.js), successively, using SWA and ID substitution matrix. The 

processes of pairwise alignments were primarily performed to extract the common 

substrings/meta-signatures. In total, 14 meta-signatures in its DNA representations were 

extracted in this set of experiments (see Table 6.3 for more details). These meta-signatures 

(in its DNA representations) were converted back into a hexadecimal format for testing 

against the JS.Cassandra polymorphic malware family (see Table 6.6 and Figures 6.4 to 

6.6 in Section 6.9 for more details – page nos. 141, 144-145). This conversion of DNA 

into hex was necessary as all the malware (and non-malware) files can be represented in 

hex, as it is the traditional human-decipherable representation of each byte’s value. 
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C -  Third Set of Experiments 

6.7. Experiment III - Identification of viral variants using NNge rule 

extraction from multiply aligned variants in DNA format: 

Systems and Methods 

The method for Experiment III consists of seven steps (see Figure 6.3). 

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

Meta-signature testing

Rule Extraction

NNge classification

Multiple Sequence 

Alignment

 

Figure 6.3: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining 

Rule-Based NNge Classification Algorithm (Experiment III)’ method comprising of 

seven steps. 

The same 22 hexadecimal dumps, 11 malicious (Pk) variants and 11 non-malicious (Pu) 

variants of JS.Cassandra were employed in this experiment as were used in Experiments 

I and II (see Section 6.3.1 – page no. 124). As for Experiment II, these 22 hexadecimal 

dumps were converted into DNA sequences (Step-2) (see Section 6.3.4 – page no. 127). 
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This experiment takes a different approach than Experiments I and II, to dealing with the 

need for fixed length sequences in order to generate rules using a data mining approach. 

Multiple sequence alignment is undertaken prior to NNge rule generation to convert the 

variable length sequences into fixed length sequences by inserting gaps. In Step-3, a 

multiple sequence alignment using MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002; 

Katoh & Standley, 2013; Katoh, 2018) was conducted on the 22 DNA sequences. All the 

gaps introduced at this stage were substituted by the letter ‘X’. Figures F.7 and F.8 (see 

Appendix F – page no. 244) are screenshots of the preprocess panel and the classifier 

model and evaluation information (with/on full training set) within the classifier panel 

obtained from Weka during the generation of NNge rules in this step (Step-4). Figure F.9 

(see Appendix F – page no. 246) is a screenshot of the visualize panel showing 275 

individual plot matrices between pos1-pos25 and pos47087-pos47097, where, blue 

circles are malicious (‘M’), and red circles are non-malicious (‘NM’). 

In Step-4, the same NNge classification was undertaken using Weka. The data was 

converted into Weka’s ARFF file format. The 7.38MB file consisted of 93,438 attributes 

and two classes malicious and non-malicious in this ARFF file. Three NNge rules (one 

for the malicious class and two for the non-malicious class) were generated with an 

accuracy of 100% in under 33 minutes. A partial segment of each of these NNge rules are 

shown below: 

Malicious (M) - class M IF : pos1 in {A,X} ^ pos2 in {G,X} ^ pos3 in {A,X} ^ pos4 in 

{A,X} ^ pos5 in {C,X} ^ pos6 in {T,G,X} ^ pos7 in {A,G,X} ^ pos8 in {T,G,C,X} ^ pos9 in 

{C,X} ^ pos10 in {T,G,X}...and so on. 

Non-Malicious 1 (NM1) - class NM IF : pos1 in {X} ^ pos2 in {X}… ^ pos96 in {T,X} ^ 

pos97 in {A,X} ^ pos98 in {G,X} ^ pos99 in {A,X} ^ pos100 in {A,X} ^ pos101 in {C,X} ^ 

pos102 in {T,G,X} ^ pos103 in {G,C,X}...and so on. 

Non-Malicious 2 (NM2) - class NM IF : pos1 in {X} ^ pos2 in {X}… ^ pos1294 in {X} ^ 

pos1295 in {C} ^ pos1296 in {A} ^ pos1297 in {G} ^ pos1298 in {T} ^ pos1299 in {C} ^ 

pos1300 in {A} ^ pos1301 in {T}...and so on. 

In Step-5, three strings in DNA format were constructed based on each of these NNge 

rules. The process of extraction of strings from the rules is the same as detailed in 

Experiments I and II and any ‘X’ string extension characters were ignored. An example 

of this string extract process from the rules for NM1 is: ‘TAGAACTGGC...’. The sequence 
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length of the resultant malicious DNA string was 161,495, whereas, the sequence lengths 

of the non-malicious DNA strings were 59,740 (NM1) and 11,860 (NM2). Next, local 

pairwise sequence alignment between these DNA sequences extracted from each of the 

NNge rules and the polymorphic DNA sequences (obtained in Step-2) was performed 

using SWA and the ID matrix, as per Experiments I and II. In this step (Step-6), common 

substrings that are the meta-signatures for JS.Cassandra were extracted. In total 48 meta-

signatures were obtained: 31 from the alignment between the DNA sequence extracted 

from the malicious NNge rule and the malicious DNA sequences, nine from the alignment 

of the NM1 NNge rule and eight from the NM2 NNge rule (see Table 6.4). 

The minimum and maximum sequence lengths of meta-signatures obtained from the first 

set of alignments involving malicious NNge sequence were 12 and 117, respectively, with 

a mean (sum, median and standard deviation of 1315, 32 and 27.201, respectively) of 

42.42 for 31 signatures in their DNA representation. The minimum and maximum 

sequence lengths of signatures obtained from the second set of alignments involving the 

first non-malicious NNge sequence (NM1) were 35 and 162, respectively, with a mean 

(sum, median and standard deviation of 566, 41 and 42.165, respectively) of 62.89 for 

nine signatures in their DNA representation. The minimum and maximum sequence 

lengths of signatures obtained from the third set of alignments involving the second non-

malicious NNge sequence (NM2) were 29 and 120, respectively, with a mean (sum, 

median and standard deviation of 475, 45 and 38.127, respectively) of 59.37 for eight 

signatures in their DNA representation (Table 6.4). 

In the final step (Step-7), the meta-signatures were converted from DNA sequence format 

into the hexadecimal format and then tested against JS.Cassandra and its known (Pk) 

variants using five AVSs. 

Scan results for AVG, AntiVir, and F-Prot were obtained from an open source online tool 

known as ‘Gary’s Hood’ (Hood, 2016). ‘Gary’s Hood’ was used as it allows multiple files 

to be scanned at once using these AVSs. As previously discussed in earlier chapters, 

ESET AVS was installed on a private machine with a Windows operating system while 

‘clamscan’ was installed on a private machine with a Linux Mint operating system. The 

tests were run using the ClamAV database and using the own generated (.ndb) databases 

containing the meta-signatures (see Appendix D – page no. 228 for more details). As 

usual, the databases of all the AVSs had the latest updates installed at the time of the 

experiments. 
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Table 6.4: Sequence lengths of all 48 extracted meta-signatures in DNA representation. 

Class Pairwise Alignment 
Meta-Signature 

(3) 

S
eq

u
en

ce
 

L
en

g
th

 

Malicious 

(M) 

Malicious DNA NNge Rule and Original Malicious 

JS.Cassandra (JS.Cassandra.js) DNA Sequence 

MS1 (3) 21 

MS2 (3) 50 

MS3 (3) 102 

MS4 (3) 20 

MS5 (3) 79 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 1 (v_000.js) DNA Sequence 

MS6 (3) 21 

MS7 (3) 59 

MS8 (3) 110 

MS9 (3) 117 

Malicious DNA NNge Rule and JS.Cassandra Malicious 

Variant 2 (v_001.js) DNA Sequence 

MS10 (3) 50 

MS11 (3) 29 

MS12 (3) 33 

MS13 (3) 32 

MS14 (3) 32 

MS15 (3) 15 

MS16 (3) 22 

MS17 (3) 32 

MS18 (3) 66 

MS19 (3) 33 

MS20 (3) 35 

MS21 (3) 28 

MS22 (3) 33 

MS23 (3) 12 

MS24 (3) 31 

MS25 (3) 35 

MS26 (3) 68 

MS27 (3) 26 

MS28 (3) 32 

MS29 (3) 32 

MS30 (3) 35 

MS31 (3) 25 

Non-

Malicious1 

(NM1) 

Non-Malicious (NM1) DNA NNge Rule and Original 

Malicious JS.Cassandra (JS.Cassandra.js) DNA Sequence 
MS32 (3) 88 

Non-Malicious (NM1) DNA NNge Rule and JS.Cassandra 

Malicious Variant 1 (v_000.js) DNA Sequence MS33 (3) 162 

Non-Malicious (NM1) DNA NNge Rule and JS.Cassandra 

Malicious Variant 2 (v_001.js) DNA Sequence 

MS34 (3) 45 

MS35 (3) 35 

MS36 (3) 36 

MS37 (3) 81 

MS38 (3) 39 

MS39 (3) 41 

MS40 (3) 39 

Non-

Malicious2 

(NM2) 

Non-Malicious (NM2) DNA NNge Rule and Original 

Malicious JS.Cassandra (JS.Cassandra.js) DNA Sequence 

MS41 (3) 120 

MS42 (3) 29 

Non-Malicious (NM2) DNA NNge Rule and JS.Cassandra 

Malicious Variant 1 (v_000.js) DNA Sequence 

MS43 (3) 120 

MS44 (3) 29 

Non-Malicious (NM2) DNA NNge Rule and JS.Cassandra 

Malicious Variant 2 (v_001.js) DNA Sequence 

MS45 (3) 38 

MS46 (3) 46 

MS47 (3) 44 

MS48 (3) 49 
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6.8. Summary – Third Set of Experiments 

To summarise the third set of experiments, 351 polymorphic malicious variants of 

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352 

polymorphic malicious files) were retained from the first set of experiments. All the 22 

extracted hex dumps and the subsequent 22 converted DNA sequences of JS.Cassandra 

virus (including DNA sequence of the additional polymorphic malicious file i.e. v_001.js 

for use in Step-5) were also retained from the first set of experiments, for the process of 

data mining and pairwise sequence alignment. As stated earlier, this conversion to DNA 

was essential as the pairwise alignment of hex data cause issues to string matching 

algorithms due to algorithmic complications in managing numeric data and code. All the 

22 converted variable length DNA sequences (ignoring the additional polymorphic 

malicious file) were converted into fixed length DNA sequences by the process of 

multiple sequence alignment using MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002; 

Katoh & Standley, 2013; Katoh, 2018). As stated earlier, this conversion was necessary 

as most of the rule-based data mining classifiers accept fixed length sequences (Xinguang, 

et al., 2009). All the converted fixed length DNA sequences were used to create an ARFF 

file (with two classes – one for malicious and the other one for non-malicious) and then 

later fed into Weka (see Figure F.7) (Frank, Hall, & Witten, 2016). Using the fed ARFF 

file as the training set, NNge rule-based classifier was started, which generated three long 

NNge rules with 100% accuracy (see Figure F.8). One NNge rule was generated for the 

malicious class, whereas, the other two NNge rules were generated for the non-malicious 

class (see Figure F.8). Since the three generated NNge rules were in the form of 

associations with position numbers, only DNA data (by excluding the letter ‘X’) from the 

two NNge rules were extracted for the process of pairwise (local) sequence alignment. 

The three extracted NNge DNA (data) sequences were pairwisely-aligned with 

polymorphic (converted) DNA sequences of original (Ps) JS.Cassandra virus 

(JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and malicious variant 2 

(v_001.js), successively, using SWA and ID substitution matrix. The processes of 

pairwise alignments were primarily performed to extract the common sub-strings/meta-

signatures, which will be used to detect the original (Ps) malware and all its available 

variants (Pk and Px) of the JS.Cassandra polymorphic family. In total, 48 meta-signatures 

in its DNA representations were extracted in this set of experiments (see Table 6.4 for 

more details). These meta-signatures (in its DNA representations) were converted back 

into a hexadecimal format for testing against the JS.Cassandra polymorphic malware 
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family (see Table 6.6 and Figures 6.4 to 6.6 in Section 6.9 for more details – page nos. 

141, 144-145). This conversion of DNA into hex was necessary as all the malware (and 

non-malware) files can be represented in hex, as it is the traditional human-decipherable 

representation of each byte’s value. 

6.9. Experimental Results 

6.9.1 Comparison of the data mining results obtained from three sets of 

experiments as well as from other related and selected previous work 

Table 6.5 presents the results of Experiments I, II and III and compares those results with 

the virus detection results presented in previously published works. In the case of the 

work by Chen et al., 2012b only the percentage of correctly detected and incorrectly 

detected instances were reported (as for J48 method) and in the case of Prabha and 

Kavitha (2012) no performance metrics were reported. In the case of Srakaew, 

Piyanuntcharatsr, and Adulkasem (2015) other overall performance metrics such as true 

positive rate, false positive rate, precision, recall and F1 score were not reported but 

instead reported metrics for the four individual datasets. These results are not presented 

here. 

Experiments I and III gave results which outperformed those previously reported 

achieving 100% correctly classified instances and thus 0% incorrectly classified 

instances. Although Experiment II reported achieving 100% incorrectly classified 

instances and thus 0% correctly classified instances, the meta-signatures extracted in this 

experiment successfully identified the JS.Cassandra variants. Meta-signatures extracted 

in Experiment III were the most effective (~62%) of all followed by the meta-signatures 

extracted in Experiments I (~55%) and II (43%). The fact that the meta-signatures in DNA 

format performed better if the DNA sequences were aligned prior to rule mining 

(Experiment III vs. Experiment II) and extraction is reflected somewhat in the results of 

the work reported by Chen et al., 2012b where improved classification was observed if 

J48 classification was performed after a double alignment process.  
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Table 6.5: Comparison of the results of Experiments I-III with those reported previously 

for data mining approaches to malware detection reported in the literature. 

Data Mining based 

Techniques 
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F
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Experiment I 100.00% 0.00% 1 0 1 1 1 

Experiment II 0.00% 100.00% 0 1 0 0 0 

Experiment III 100.00% 0.00% 1 0 1 1 1 

Chen, et al., 

2012b – J48 

before 

alignment 

Training 85.00% 15.00% - - - - - 

5-fold cross 

validation 
60.00% 40.00% - - - - - 

10-fold cross 

validation 
63.33% 36.67% - - - - - 

15-fold cross 

validation 
68.33% 31.67% - - - - - 

20-fold cross 

validation 
60.00% 40.00% - - - - - 

Chen, et al., 

2012b – J48 after 

double 

alignment 

Training 96.67% 3.33% - - - - - 

5-fold cross 

validation 
78.33% 21.67% - - - - - 

10-fold cross 

validation 
66.67% 33.33% - - - - - 

15-fold cross 

validation 
70.00% 30.00% - - - - - 

20-fold cross 

validation 
63.33% 36.67% - - - - - 

(Kumar & 

Mishra, 2013) 

Existing 

(known) dataset 
95.9752% 4.0248% 0.96 0.094 0.962 0.96 0.959 

New (unknown) 

Dataset 
86.6873% 13.3127% 0.867 0.275 0.872 0.87 0.858 

(Prabha & 

Kavitha, 2012) 
- - - - - - - - 

Statistical 

methods 

(Srakaew, 

Piyanuntcharatsr, 

& Adulkasem, 

2015) 

Reference Set 98.9167% 1.0833% - - - - - 

Application Set 95.0477% 4.9523% - - - - - 

10-fold cross 

validation 
95.333% 4.667% - - - - - 

Abstract assembly 

method (Srakaew, 

Piyanuntcharatsr, 

& Adulkasem, 

2015) 

Reference Set 99.75% 0.25% - - - - - 

Application Set 98.39% 1.661% - - - - - 

10-fold cross 

validation 
99.5% 0.5% - - - - - 

6.9.2 An evaluation of the state of the art AVSs and the meta-signatures on 

the detection of JS.Cassandra polymorphic malware and its variants 

Table 6.6 presents the detection ratio obtained using the meta-signatures generated in 

Experiments I to II and five current state of the art AVSs. The malicious meta-signatures 

MS4 (1), MS9 (2), and MS26 (3) and the non-malicious meta-signatures MS35 (3) and 

MS37 (3) all successfully identified all 352 known (Pk) malicious polymorphic variants 

of the JS.Cassandra virus. None of the five state of the art AVSs fully identified all of 

these known (Pk) JS.Cassandra variants. 
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Table 6.6: Detection ratio using five state of the art AVSs and the 14 most effective 

malicious and 8 non-malicious meta-signatures from Experiments I to III with 

‘clamscan’. 

Files Scanned Metrics 

Virus Identification Method 

AVG AntiVir ClamAV ESET F-Prot 

352 known (Pk) 

JS.Cassandra 

Malicious Variants 

Detection Ratio 

(Accuracy) 

312/352 

(88.64%) 

25/352 

(7.10%) 

340/352 

(96.59%) 

296/352 

(84.09%) 

4/352 

(1.14%) 

Sensitivity/Recall 88.64% 7.10% 96.59% 84.09% 1.14% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 93.97% 13.26% 98.26% 91.36% 2.25% 

43 JS.Cassandra 

Non-Malicious (Pu) 

Variants 

Detection Ratio 

(Accuracy) 
0/43 (0.00%) 1/43 

(2.32%) 

0/43 

(0.00%) 

0/43 

(0.00%) 

0/43 

(0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 97.67% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Files Scanned Metrics 

Malicious 

MS1 (1) and 

MS3 (2) Non-

Malicious 

MS41 (3) and 

MS43 (3) 

Malicious 

MS3 (1) 

and MS6 

(2) 

Malicious 

MS7 (2) 

Malicious 

MS4 (1) 

MS9 (2) 

Non-

Malicious 

MS37 (3) 

Malicious 

MS5 (3) 

352 known (Pk) 

JS.Cassandra 

Malicious Variants 

Detection Ratio 

(Accuracy) 

340/352 

(96.59%) 

85/352 

(24.15%) 

325/352 

(92.33%) 

352/352 

(100%) 

340/352 

(96.59%) 

Sensitivity/Recall 96.59% 24.15% 92.33% 100% 96.59% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 98.26% 38.90% 96.01% 100% 98.26% 

43 JS.Cassandra 

Non-Malicious (Pu) 

Variants 

Detection Ratio 

(Accuracy) 
6/43 (13.95%) 1/43 

(2.32%) 

20/43 

(46.51%) 

43/43 

(100%) 

8/43 

(18.60%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 86.05% 97.67% 53.49% 0.00% 81.39% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 
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Files Scanned Metrics 
Malicious 

MS9 (3) 

Malicious 

MS15 (3) 

Malicious 

MS20 (3) 

Malicious 

MS24 (3) 

Malicious 

MS26 (3) 

352 known (Pk) 

JS.Cassandra 

Malicious Variants 

Detection Ratio 

(Accuracy) 

329/352 

(93.46%) 

344/352 

(97.73%) 

191/352 

(54.26%) 

202/352 

(57.39%) 

352/352 

(100%) 

Sensitivity/Recall 93.46% 97.73% 54.26% 57.39% 100% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 96.62% 98.85% 70.35% 72.93% 100% 

43 JS.Cassandra 

Non-Malicious (Pu) 

Variants 

Detection Ratio 

(Accuracy) 
1/43 (2.32%) 29/43 

(67.44%) 

9/43 

(20.93%) 

14/43 

(32.56%) 

43/43 

(100%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 97.67% 32.56% 79.07% 67.44% 0.00% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Files Scanned Metrics 
Malicious 

MS27 (3) 

Non-

Malicious 

MS7 (1) 

and 

MS11 (2) 

Non-

Malicious 

MS8 (1) 

Non-

Malicious 

MS12 (2) 

Non-

Malicious 

MS35 (3) 

352 known (Pk) 

JS.Cassandra 

Malicious Variants 

Detection Ratio 

(Accuracy) 

140/352 

(39.77%) 

339/352 

(96.31%) 

140/352 

(39.77%) 

325/352 

(92.33%) 

352/352 

(100%) 

Sensitivity/Recall 39.77% 96.31% 39.77% 92.33% 100% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100% 100% 100% 100% 100% 

F1 Score 56.91% 98.12% 56.91% 96.01% 100% 

43 JS.Cassandra 

Non-Malicious (Pu) 

Variants 

Detection Ratio 

(Accuracy) 
3/43 (6.98%) 37/43 

(86.04%) 

16/43 

(37.21%) 

20/43 

(46.51%) 

43/43 

(100%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 93.02% 13.95% 62.79% 53.49% 0.00% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

352 Random 

JavaScript Files 

Detection Ratio 

(Accuracy) 
0/352 (0.00%) 0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

0/352 

(0.00%) 

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00% 

Specificity 100% 100% 100% 100% 100% 

Precision 0.00% 0.00% 0.00% 0.00% 0.00% 

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00% 

Non-malicious MS7 (1) and non-malicious MS11 (2) identified 339 out of the 352 (with 

96.31% accuracy) JS.Cassandra polymorphic malware files, whereas, non-malicious 

MS41 (3) and non-malicious MS43 (3) identified 340 out of the 352 (with 96.59% 

accuracy/detection rate) JS.Cassandra polymorphic malware (Pk) files, respectively. 

Malicious MS1 (1) and malicious MS3 (2) identified 340 out of the 352 (with 96.59% 

accuracy/detection rate) JS.Cassandra polymorphic malware (Pk) files, whereas, 

malicious MS15 (3) identified 344 out of the 352 (with 97.73% accuracy/detection rate) 

JS.Cassandra polymorphic malware (Pk) files, respectively. 
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Malicious MS4 (1), malicious MS9 (2), malicious MS26 (3), non-malicious MS35 (3) 

and non-malicious MS37 (3) were the only five meta-signatures that fully identified all 

43 non-malicious JS.Cassandra polymorphic (Pu) files. These meta-signatures not only 

identified 352 malicious files successfully but also identified 43 non-malicious (Pu) files. 

As noted earlier, non-malicious (Pu) files still had some polymorphic functions intact 

inside. All the 43 non-malicious (Pu) files were still executable, but a few gave JavaScript 

runtime and compilation errors. These executable non-malicious (Pu) files might cause 

some serious potential threats, as the polymorphic functions inside these files might still 

make them polymorphic, in some cases. The results presented in Tables 6.1 and 6.6 shows 

that none of the existing AVSs fully identified these executable so-called non-malicious 

files (Pu) as malicious. 

Malicious MS2 (1), non-malicious MS5 (1), non-malicious MS6 (1) and non-malicious 

MS9 (1) from Experiments 1 and malicious MS1 (2), malicious MS2 (2), malicious MS4 

(2), malicious MS5 (2), malicious MS8 (2), non-malicious MS10 (2), non-malicious 

MS13 (2) and non-malicious MS14 (2) from Experiment II could not identify any of the 

352 known (Pk) JS.Cassandra malicious variants, the 43 non-malicious (Pu) polymorphic 

variant files or the 352 randomly generated JavaScript files. Furthermore, malicious MS1 

(3), malicious MS2 (3), malicious MS6 (3), malicious MS7 (3), malicious MS8 (3), 

malicious MS10 (3), malicious MS12 (3), malicious MS13 (3), malicious MS14 (3), 

malicious MS16 (3), malicious MS18 (3), malicious MS21 (3), malicious MS22 (3), 

malicious MS28 (3), malicious MS29 (3), malicious MS31 (3), non-malicious MS32 (3) 

and non-malicious MS36 (3) from Experiment III could not identify any of the 

JS.Cassandra 352 (known – Pk) malicious, the 43 non-malicious (Pu) polymorphic variant 

files or the 352 randomly generated JavaScript files. In total, 30 out of the 71 meta-

signatures i.e. around 42.25% [30.98% malicious (22/71) and 11.27% non-malicious 

(8/71) meta-signatures] detected no variants from the three types of groups (i.e. malicious 

(Pk), non-malicious (Pu) and random). Specifically, four out of the nine meta-signatures 

i.e. 44.44% [11.11% malicious (1/9) and 33.33% non-malicious (3/9) meta-signatures] 

from first set of experiments and eight out of the 14 meta-signatures i.e. 57.14% [36% 

malicious (5/14) and 21.43% non-malicious (3/14) meta-signatures] from second set of 

experiments detected no variants from the three different types of groups. Moreover, 18 

out of the 48 meta-signatures i.e. 37.50% [33.33% malicious (16/48) and 4.16% non-

malicious (2/48) meta-signatures] from the third set of experiments detected no variants 

from the three different types of groups. 
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Figure 6.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

352 known (Pk) JS.Cassandra polymorphic malicious (Pk) variant files using the 71 meta-

signatures. 

 

Figure 6.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

43 JS.Cassandra polymorphic non-malicious (Pu) variant files using the 71 meta-

signatures. 



 

146 
 

 

Figure 6.6: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

352 random JavaScript files using the 71 meta-signatures. 

All the 71 meta-signatures (nine meta-signatures from the first set of experiments, 14 

meta-signatures from the second set of experiments and 48 meta-signatures from the third 

set of experiments) were tested at once against the 352 known (Pk) JS.Cassandra 

polymorphic malicious files, 43 JS.Cassandra polymorphic non-malicious (Pu) variants 

and 352 random JavaScript files individually using ‘clamscan’ antivirus scanner. 

Figures 6.4 to 6.6 are the screenshots of the scan results indicating that 352 out of the 352 

malicious (Pk) files, 43 out of the 43 non-malicious (Pu) files and 0 out of the 352 

randomly generated JavaScript files were successfully detected as infected by the 

‘clamscan’ antivirus scanner using the 71 meta-signatures in 0.716 second, 0.029 second 

and 0.410 second, respectively. 

The 71 meta-signatures were tested at once against the 100 unknown (Px) JS.Cassandra 

malicious variants using Clamscan antivirus scanner by using the own generated (.ndb) 

database (see Appendix D – page no. 228 for more details). The uniqueness of these 100 

new (Px) malware variants was cross-checked by generating a CRC32b hash value for 

each variant, and no duplicates were found (see Appendix H – page no. 251 for more 

details). Table 6.7 gives the detection ratio obtained by testing the 71 meta-signatures 

generated in Experiments I to III and two current state of the art AVSs (ClamAV and 
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Bitdefender Total Security 2018) against the 100 new (Px) JS.Cassandra variants. The 

state of the art ClamAV and Bitdefender Total Security 2018 AVSs had overall accuracies 

of 85% and 0%, respectively, and meta-signatures from Experiments I-III using Clamscan 

had overall accuracies of 100%, across all three experiments (see Table 6.7). Table 6.7 

shows that all 100 (accuracy of 100%) JS.Cassandra unknown (Px) variants were 

successfully detected by the Clamscan using the .ndb database. 

Table 6.7: Detection ratio using two state of the art AVSs and the 71 meta-signatures 

obtained from Experiments I to III with Clamscan antivirus scanner. 

Files Scanned Metrics 

Virus Identification Method 

ClamAV 

Bitdefender 

Total 

Security 

2018 

Nine 

Meta-

Signatures 

(Experiment I) 

14 

Meta-Signatures 

(Experiment II) 

48 

Meta-Signatures 

(Experiment III) 

100 unknown 

(Px) 

JS.Cassandra 

Malicious 

Variants 

Detection Ratio 

(Accuracy) 

85/100 
(85.00%) 

0/100 
(0.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

Sensitivity/Recall 85.00% 0.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 100.00% 

F1 Score 91.89% 0.00% 100.00% 100.00% 100.00% 

45 out of the 71 meta-signatures were tested for false positives. Any duplicate meta-

signatures along with meta-signatures that were six characters or below were removed. 

In total, 26 meta-signatures (i.e. 16 malicious and 10 non-malicious) were removed from 

the own generated (.ndb) database (see Appendix D – page no. 228 for more details). 

These meta-signatures were tested against the 352 known (Pk) variants, 43 non-malicious 

(Pu) variants, 100 new (Px) variants and 18,127 clean files. The clean files contained a 

combination of 9000 PDF files, 500 Microsoft document files, 96 Linux files, 100 JAR 

files, 108 PDF files with embedded 3D videos, 200 RTF files and 8,123 Microsoft 

Windows files. These files were obtained from a BlogSpot called “contagio malware 

dump” (Parkour, 2013). Figure 6.7 shows the bar graphs of the detection scan results 

(accuracies) indicating that 352 of the 352 known (Pk) malicious variants, 43 of the 43 

non-malicious (Pu) variants and 100 of the 100 unknown (Px) malicious variants were 

successfully identified as infected by the Clamscan antivirus scanner using the 45 meta-

signatures. Figure 6.7 shows that only 29 of the 18,127 clean files were detected as false 

positives (0.159% false positive rate) using the 45 meta-signatures, additionally, 

satisfying the false positive rate requisite of 0.1%. 
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Figure 6.7: Bar graphs demonstrating the detection scan results (accuracies) of 

JS.Cassandra virus family and clean files using the 45 meta-signatures. 

6.10. Summary 

In this chapter, some of the limitations (discussed in Section 1.5.5 – see page no. 17) of 

previous work reported in this thesis (see Chapters 4 and 5) were addressed. A proposed 

syntactic structure approach was investigated and three sets of experiments conducted 

which involved various approaches to automatic signature extraction using the NNge 

classifier to generate rules that distinguish between malicious (Pk) and non-malicious (Pu) 

files. 

Table 6.8 summarises the key features and steps involved in these three experiments. 

Experimental results from this testing process are provided in Table 6.6, Table 6.7, 

Figures 6.4 to 6.6 and Figure 6.7. The results show that this proposed string-based 

syntactic approach using an NNge rule generation and subsequent extraction and 

sequence alignment using SWA can successfully generate signatures which are capable 

of identifying the known (Pk) and unknown (Px) polymorphic variants of the JS.Cassandra 

virus. 

It was found from the experiments conducted in this chapter that Experiment III gave the 

highest number of successful meta-signatures than Experiments I and II. Experiment II 

gave the lowest number of successful meta-signatures. Not only did Experiment III gave 

the highest number of meta-signatures, but it also gave the highest number of effective 

meta-signatures. Moreover, Experiment III generated unseen meta-signatures that were 

not generated in Experiments I and II. The importance of multiple sequence alignment 
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prior to data mining significantly improved both the quality and quantity of meta-

signatures in comparison to Experiments I and II. In comparison to previous work 

reported in this thesis (Chapters 4 and 5), the proposed syntactic structure approach to 

automatic signature extraction using NNge successfully addressed the limitations of 

previous work by generating signatures in the quickest, simplest and most accurate 

manner. 

The next chapter investigates whether biosequence analysis techniques, such as the 

sequence alignment and phylogenetics, can lead to syntactic approach for the automatic 

extraction of syntactic viral signatures for a metamorphic virus family. Experiments are 

reported that are designed to address the final research question (Q4).  
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Table 6.8: The key features and steps involved in experiments conducted in this chapter. 

Features/Steps Experiment I Experiment II Experiment III 

Hex to DNA 

conversion 

For pairwise sequence 

alignment only. 

For data mining and 

pairwise sequence 

alignment. 

For multiple sequence 

alignment, data mining, 

and pairwise sequence 

alignment. 

Multiple sequence 

alignment for data 

mining 

No No Yes 

Conversion of 

variable length 

sequences into fixed 

length sequences 

By adding the letter ‘x’ 

towards the end of each 

sequence until all the 

variable length 

sequences were of 

equal lengths. 

By adding the letter ‘X’ 

towards the end of each 

sequence until all the 

variable length 

sequences were of 

equal lengths. 

By the process of 

multiple sequence 

alignment. All the gaps 

introduced by the 

process of alignment 

were substituted by ‘X’. 

Total attributes for 

data mining 
24,565 49,129 93,438 

Total number of 

labels for data mining 

17 (hex labels: a-f, 0-9 

and x) 

Five (DNA labels: 

A,T,G,C and X) 

Five (DNA labels: 

A,T,G,C and X) 

File size of ARFF file 2.49 MB 3.87 MB 7.38 MB 

Total time taken to 

generate NNge results 

by Weka 

2 minutes and 32 

seconds 

6 minutes and 13 

seconds 

32 minutes and 28 

seconds 

Time taken to build 

model 
0.62 second 0.73 second 1.23 seconds 

Correctly classified 

instances (%) - 

Accuracy 

22/22 (100.00%) 0/22 (0.00%) 22/22 (100.00%) 

Incorrectly classified 

instances (%) - 

Inaccuracy 

0/22 (0.00%) 22/22 (100.00%) 0/22 (0.00%) 

Kappa statistic 1 -1 1 

Mean absolute error 0 1 0 

Root mean squared 

error 
0 1 0 

Relative absolute 

error (%) 
0.00% 200.00% 0.00% 

Root relative squared 

error (%) 
0.00% 200.00% 0.00% 

Total number of 

instances 
22 22 22 

Total number of rules 

generated 

Two (one for malicious 

class and one for non-

malicious class) 

Two (one for malicious 

class and one for non-

malicious class) 

Three (one for 

malicious class and two 

for non-malicious class) 

Sequence lengths of 

extracted hex/DNA 

data from generated 

rules 

Malicious (hex): 

246,676 

Non-Malicious (hex): 

74,498 

Malicious (DNA): 

132,103 

Non-Malicious (DNA): 

41,670 

Malicious (DNA): 

161,495 

Non-Malicious 1 

(DNA): 59,740 

Non-Malicious 2 

(DNA): 11,860 

Total number of 

pairwise alignments 

performed 

Six (three each for 

malicious and non-

malicious classes) 

Six (three each for 

malicious and non-

malicious classes) 

Nine (three each for 

malicious, non-

malicious 1 and non-

malicious 2 classes) 

Total number of 

meta-signatures 

generated 

Nine (Four for 

malicious class and five 

for non-malicious class) 

14 (Nine for malicious 

class and five for non-

malicious class) 

48 (31 for malicious 

class, nine for non-

malicious class 1 and 

eight for non-malicious 

class 2) 
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Chapter 7 Detection of Metamorphic Virus Variants and 

Classification of their Signatures adopting 

Biosequence Analysis Techniques 

This chapter focuses on the detection of metamorphic virus and its variants using the 

biosequence analysis techniques. Sequence alignment and phylogenetic tree analysis are 

adopted in this chapter to extract syntactic viral signatures for the detection of 

metamorphic virus family and their classification. 

7.1. Introduction 

In previous work (Chapter 4 to 6), a JavaScript-based polymorphic virus known as 

JS.Cassandra was investigated syntactically through biosequence techniques for 

experimental and testing purposes. In this chapter, a JavaScript-based metamorphic virus 

known as Transcriptase (see page no. 225 for more details) is investigated, again for 

experimental and testing purposes. An established variant of Transcriptase is analysed, 

where dead code is applied into compromised files. This technique of dead code insertion 

modifies the statistical aspects of the code, and the resulting virus variants are harder to 

identify using statistical and structural methods. The same variant of Transcriptase 

(Transcriptase, 2013) along with two different datasets belonging to the Transcriptase 

family are considered in this research. 

In this chapter, the aim is to extend a syntactic study of the likelihood of generating 

signatures automatically from malware code without the requirement for semantic 

analysis. Whereas previous syntactic work (Chapter 4 to 6) employed sequence 

alignments to obtain consensuses from malware code variants with the intent of 

generating the minimum attainable number of signatures for identifying those variants 

and for previously unseen (Pu) variants, no effort was made to make the most of a by-

product of the alignment, which is the output of equal length malware code of variants. 

Additionally, previous work mainly focused on detecting the known (Pk) and unknown 

(Px) variants of several polymorphic malware families. There was no attempt made to test 

the capability of signature-based syntactic detection method on detecting metamorphic 

malware. 

Another aim of this chapter is to distinguish the parent variants from the child variants 

belonging to a Transcriptase metamorphic virus family using phylogenetic tree analysis. 

If both the parent and child variants have originated from an original Transcriptase root 
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and the parent variants are the first set of variants to have been generated, then the child 

variants are the second set of variants to have been generated after the generation of parent 

variants. Phylogenetic tree analysis is used in this research to infer the evolutionary 

relationships between possible parent and child variants belonging to the Transcriptase 

metamorphic virus family. 

7.2. String-Based Syntactic Detection of Metamorphic Virus Variants 

Method: Systems and Methods 

Step-4: Pairwise Sequence Alignment

Step-5: Signature Generation

Step-7: Phylogenetic Tree Analyzing and Interpretation

Preliminary Step-I: Obtaining Transcriptase Malware Datasets

Step-3: Multiple Sequence Alignment (MSA) and Consensus Extraction

Step-8: Conversion of Signatures from Amino Acid into Hexadecimal

Preliminary Step-II: Separation of Training Set from Test Set

Step-1: Hex Dump Extraction

Step-6: Phylogenetic Tree Construction

Step-2: Converting Hex Dumps into Amino Acid Sequences for Biosequence 

Analyses

Step-9: Signature Testing and Classification
 

Figure 7.1: The nine steps in the String-Based Syntactic Detection of Metamorphic 

Malware Variants method. 

The method adopted here consists of nine steps (see Figure 7.1). Downloading all the 

metamorphic malware and its variants, as well as hex (hexadecimal) dump extraction and 

testing were undertaken on a stand-alone system to prevent possible unintended infection 

of other systems. Network connectivity was used only at the testing stage as previous 
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experiments. More information with regards to the nine steps are detailed in Section 7.2.3 

(see page no. 154). 

7.2.1 Datasets 

Two individual datasets of Transcriptase are used in this research for experimental and 

testing purposes. Dataset 1 was generated during this research by adopting the 

information contained in documents supplied by the malware writer and dataset 2 was 

generated by the original writer of the Transcriptase malware. Further information 

regarding dataset 2 can be found in (Second Part To Hell, 2018). Dataset 1 was generated 

from the original Transcriptase files provided in (Transcriptase, 2013). Overall, dataset 1 

contains 353 unique variants along with the original Transcriptase malware (making a 

total of 354 malicious files) and dataset 2 contains 1,397 unique variants. Both these 

datasets were scanned using 59 different commercial antivirus scanners for their 

maliciousness. All these scanners are widely used and the datasets were scanned using 

VirusTotal (VirusTotal, 2018). Only Microsoft Security Essentials could detect some of 

the variants successfully. In this research, dataset 1 is used as a training set and dataset 2 

as a test set. 

Table 7.1: Four different datasets used in this research along with their sources. 

Datasets Type of Dataset Source 
Total Number of 

Files 

Dataset 1 

(Training Set) 

Malicious 

JavaScript Files 
JS.Transcriptase (Transcriptase, 2013) 354 

Dataset 2 

(Test Set) 

Malicious 

JavaScript Files 
JS.Transcriptase (Second Part To Hell, 2018) 1,397 

Dataset 3 

(Test Set) 

Benign JavaScript 

Files 

Cassandra Project JavaScript Repository 

(Cassandra, 2018) 
34 

DataTables JavaScript Repository (MIT license, 

2017) 
18 

jQuery JavaScript Repository (The jQuery 

Foundation, 2018) 
134 

threejs JavaScript 3D Library (Mr.doob, 2018) 952 

AngularJS JavaScript HTML Enhanced Library 

(MIT License, 2018) 
1,061 

HTML5 Charts JavaScript Library (MIT license, 

2018) 
93 

impress.js JavaScript Library (Szopka & Ingo, 

2018) 
26 

usejsdoc JavaScript Library (Mathews, 2017) 299 

Total files 2,617 

Dataset 4 

(Test Set) 

Benign 

Miscellaneous Files 

PDF files (Parkour, 2013) 9,110 

Microsoft files (Parkour, 2013) 500 

Linux files (Parkour, 2013) 96 

JAR files (Parkour, 2013) 50 

RTF files (Parkour, 2013) 200 

Windows system files (Naidu V. , 2018) 8,172 

Total files 18,128 
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In addition to datasets 1 and 2, two other datasets (i.e. datasets 3 and 4) are used in this 

research for verifying the efficacy of the classified signatures. These datasets will be used 

as the test sets. Dataset 3 will contain several benign JavaScript files obtained from 

different sources. These JavaScript files will help to check for false positives and will be 

an ideal dataset as the malware datasets considered in this research are simply JavaScript 

files. Dataset 4 comprises a combination of miscellaneous files. It contains several PDF, 

Word, Excel, PowerPoint, JAR, RTF, Linux and Windows system files. More detailed 

information about these datasets can be found in Table 7.1. 

7.2.2 Sequence alignments and Phylogenetics 

In this research work, multiple sequence alignment (MSA) is used to align the hex dump 

sequences (after converting them into amino acid sequences) of Transcriptase family. 

MSA is performed with the help of the online web application MAFFT (version 7) 

(Katoh, Misawa, Kuma, & Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) and 

BLOSUM62 (Henikoff & Henikoff, 1992; Eddy, 2004) is used as a substitution/scoring 

matrix with a gap opening penalty of 1.53. An automated strategy of either the progressive 

approach (FFT-NS-2) or the iterative refinement approach (FFT-NS-i) implemented by 

MAFFT is adopted here. The resulting alignment file is used to generate a consensus 

which is extracted using Jalview (Waterhouse, Procter, Martin, Clamp, & Barton, 2009; 

Jalview, 2018). The extracted consensus is pairwise-aligned with hex dump sequence of 

the original Transcriptase malware. Pairwise alignment is performed using EMBOSS 

Matcher (Huang & Miller, 1991; EMBOSS Matcher, 2018) and BLOSUM62 is used as 

a substitution matrix with gap open and gap extend penalties of 10 and 1. EMBOSS 

Matcher adopts a local alignment technique described by Waterman-Eggert (Waterman, 

Smith, & Beyer, 1976; Smith & Waterman, 1981; Waterman & Eggert, 1987). The 

resulting alignment file is used to extract signature/malware patterns (syntactic virus 

signatures). 

The final stage in this research is to generate a phylogenetic tree. Phylogenetic tree is 

generated by employing the same set of hex dump sequences that is used for the process 

of MSA. Due to the large size of hex dump sequences, an online web application known 

as Phylo.io (Robinson, Dylus, & Dessimoz, 2016; Phylo.io, 2018) is adopted. Phylio.io 

is used to analyse and visualise the phylogenetic tree. Phylo.io is available within MAFFT 

web application. A rough tree option is selected to generate the tree using automatic 

distance measure and average linkage (UPGMA) clustering method. As stated earlier (in 
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page no. 25), the resulting phylogenetic tree is used to classify variants of the 

Transcriptase family with the help of which the extracted signature patterns are classified 

into two different groups and later used for testing against the malicious and benign 

datasets. 

7.2.3 Proposed method comprising of nine steps 

Preliminary Steps I and II: 14 training variants out of 354 instances were selected from 

dataset 1 (training set) for experimental purposes. The percentage of training to test ratio 

is 3.95% (14:354). A small percentage of training to test samples was adopted to 

approximate the real-world problem of detecting effective signatures from a small, 

formerly encountered batch of known variants for dealing with a possibly infinite batch 

of unknown variants. A CRC32b hash value was created for each of the 14 training 

variants and no duplicates were discovered, signifying that they were different. The 

proposed method comprises of nine steps (see Figure 7.1). 

Step-1 (Hex dump extraction): Hex dumps were extracted from each of the 14 training 

variants using sigtool, which is freely available on the ClamAV (ClamAV, 2018) web 

page. 

Step-2 (Hex dump to amino acid conversion): Hex dumps of the 14 training variants 

were converted into amino acid (protein) sequences adopting the encoding method 

proposed in previous chapters. Conversion of hexadecimal characters (i.e. 0-16, a-f) into 

amino acid sequences were accomplished adopting the following rules (hex → amino 

acid): ‘0’ → ‘G’; ‘1’ → ‘H’; ‘2’ → ‘I’; ‘3’ → ‘R’; ‘4’ → ‘K’; ‘5’ → ‘L’; ‘6’ → ‘M’; ‘7’ 

→ ‘N’; ‘8’ → ‘Q’; ‘9’ → ‘P’; ‘a’ → ‘A’; ‘b’ → ‘B’; ‘c’ → ‘C’; ‘d’ → ‘D’; ‘e’ → ‘E’; 

and ‘f” → ‘F’. For instance, the hex string ‘0123456789abcdef’ becomes 

‘GHIRKLMNQPABCDEF’ (amino acid sequence). 

Step-3 (MSA and consensus generation): In this step, MSA is applied on only six of 

the 14 converted amino acid sequences using MAFFT. Only six training sequences were 

selected due to sequence size constraints placed by MAFFT. MSA is a process of 

matching three or more related amino acid or nucleotide (DNA) sequences. In 

bioinformatics, the main purpose of MSA is to infer the presence of 

ancestral/evolutionary relationships among the sequences. In this proposed method, the 

primary purpose of MSA was to extract annotations i.e. consensus sequence data from 

the resulting alignment using Jalview. Consensus sequence is a representation of most 
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common amino acids in a multiple protein alignment. Figure 7.2 shows the resulting MSA 

in Jalview. The sequence length of the extracted consensus was 909,393 amino acids long. 

 

Figure 7.2: Jalview showing the MSA results generated in step-3. 

Step-4 (Pairwise sequence alignment): In this step, the consensus sequence is pairwise-

aligned with each of the 14 amino acid sequences from step-2 using EMBOSS Matcher. 

In bioinformatics, the purpose of pairwise alignment is to determine the regions of 

similarities (or conserved regions) that may signify structural, functional and/or 

evolutionary relationships among two amino acid or nucleotide sequences. In this 

proposed method, the main aim of pairwise alignment was to extract the regions of 

similarities from the resulting alignment (in the next step), which later becomes the 

signatures used to detect the variants of Transcriptase family. The resulting alignment 

from EMBOSS Matcher generated an alignment score of 695,878, identity percentage of 

42.3%, similarity percentage of 48.4% and gaps percentage of 37.9%. Parts of the 

resulting alignment are shown below, where CS and TO signify the amino acid sequences 

of consensus and the original transcriptase malware. The numbers indicate the alignment 

positions/locations of the given sequences (i.e. CS and TO). ‘.’ means low level of amino 
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acid similarity and ‘:’ means high level of amino acid similarity. ‘|’ means identical 

amino acid residues. ‘-’ represents gaps. 

CS            138024 INIBINMPMEMNIEINIBINMLNIMEIGNAIKMRKNQIGMDBI------- 138066 

                     |.|...:.:|:...::::..|.|||..||  ||....:|...|        

TO               173 IGIGKALRIELKNIMHMENRMRNIMPNGN--KMHNRMLGDGAIFIFIGIG    220 

CS            138067 -MNPMDHNIMIKRMFMKMLIGQBNRKRNRKPIMPIBINIBMMKNMLPRNM 138115 

                      :||:... |:.||||:|.||......|:     |.:.:.:.|.||     

TO               221 MINPIGLR-MLMRMFMEMKIGLGMHNINK-----IGLKMFIGKQML----    260 

CS            138116 MLMCDIMACLM--RINKPINEIMPMEM---NILNRQRKR----------- 138149 

                     |.||...|..:  .|.|.:...|.|:|   ||:.|.|.|            

TO               261 MCMCGDGAIFIFIGIGKKMLMRMLMDMIMLNIIGRIRGRHRIGDGAIFIF    310 

Step-5 (Signature generation/extraction): In this step, signatures were extracted in the 

form of regions of similarities from the resulting pairwise alignment conducted in step-4. 

Only the regions of similarities that were sequentially longer than 10 amino acids were 

retained. In total, 373 signatures were extracted. 

Step-6 (Phylogenetic tree construction): In this step, 14 amino acid sequences from 

step-2 were used to generate a phylogenetic tree. A rectangular lined up cladogram tree 

was generated in this step. A file in FASTA format was created which incorporated all 

the 14 sequences. The file was uploaded to Phylo.io website and the tree was generated.  

Figure 7.3 shows the phylogenetic tree that was generated using Phylo.io. 

Step-7 (Phylogenetic tree analysing and interpretation): In this step, the phylogenetic 

tree generated from the previous step was analysed and interpreted. The tree demonstrated 

two major clads/groups. First clad comprised of three sequences/variants (1_vic1, 2_vic2 

and 3_vic3) and categorised them as parent sequences/variants. Second clad comprised 

of two sub-clads. First sub-clad consisted of only one sequence (4_o), which belonged to 

the sequence of the original Transcriptase malware. Second sub-clad consisted of 10 

sequences/variants (5_var1, 6_var2, 7_var3, 8_var4, 9_var5, 10_var6, 11_var7, 12_var8, 

13_var9 and 14_var10) and categorised them as child sequences/variants. 
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Step-8 (Conversion of signatures from amino acid into hexadecimal): In this step, the 

signatures generated in step-5 were converted back to hexadecimal strings using the 

encoding method demonstrated in step-2. The conversion was needed as the signatures 

were tested in the following step against the Transcriptase malware variants using 

clamscan, which is a part of ClamAV (ClamAV, 2018) and only accepts signatures in 

hexadecimal format. 

 

Figure 7.3: The phylogenetic tree of 14 Transcriptase sequences generated using 

Phylo.io. 

Step-9 (Signature testing and classification): In this final step, individual signature 

testing and signature classification were accomplished. The signatures were classified 

after the first signature testing against dataset 1 (training set). The signatures were 

classified into two different categories, namely, parent and child signatures. A set of 

signatures that successfully identified all the variants of dataset 1 was labelled as parent 

signatures and a set of signatures that successfully identified all the variants except for 

parent variants was labelled as child signatures. There were only three parent variants in 

dataset 1 and they were all considered in the phylogenetic tree analysis. The original 

filenames of those three parent variants were victim1, victim2 and victim3 and were the 

files through which all the other child variants originated. This information was not fed 

into the phylogenetic tree analysis. Instead, the phylogenetics algorithm determined their 

relationship simply on the strength of their file ancestry/history (see  

Figure 7.3). All the remaining signatures including duplicates were discarded. 
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Second signature testing was conducted against datasets 2-4 (test sets) to verify the 

effectiveness of the signatures and their test statistics, such as true positive, true negative, 

false positive and false negative (as discussed in page no. 59). Additional test statistics, 

such as sensitivity/recall/true positive rate (TPR), specificity/true negative rate (TNR) and 

precision/positive predictive value (PPV) were also assessed. More details related to this 

can be found in the experimental results section. 

7.3. Experimental Results 

Out of 373 signatures generated in step-5, only 23 signatures were retained in step-9. 

After testing these signatures against the training and test sets, 22 signatures were labelled 

as child signatures and 1 signature was labelled as parent signature. Further information 

is supplied in Tables 7.2 to 7.5. This section is divided into two subsections, namely, 

training set and test set results. Seven individual test statistics were assessed in this section 

to validate the signatures generated in this research and they are described in Section 3.6 

(see page no. 59). 

7.3.1 Training set results 

In this section, seven different commercial antivirus products were tested along with the 

parent and child signatures against the training set. Some of the antivirus products claim 

to adopt machine learning, deep learning and artificial intelligence techniques to detect 

the malicious files, which makes them the ideal state-of-the-art malware detection 

techniques with which to compare the signatures. The antivirus products were 

downloaded from their official websites and the databases of these products were all up-

to-date. Table 7.2 shows the test results of seven antivirus products along with the parent 

and child signatures against the training set (dataset 1). The parent and child signatures 

were tested by placing these signatures inside our own created (.ndb) database (see 

Appendix D – page no. 228 for more details), which is adopted by Clamscan as a standard 

database file format for the purposes of signature testing. 

The results in Table 7.2 show that the classified signatures can successfully identify the 

variants belonging to Transcriptase family in the training set (dataset 1). Parent signature 

identified 100% variants and child signatures identified 99.15% variants in the training 

set. Three variants were not identified by the child signatures as they were parent variants 

(see Figure 7.4 and step-7). This shows that the classified signatures can easily distinguish 

parent from child variants.
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Table 7.2: Test results of seven commercial antivirus products together with parent and child signatures against training set (dataset 1). 

Detection Product Detection Techniques Adopted 
Database 

Last Updated 

Files 

Detected 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity/

Recall/TPR 

Specificity

/TNR 

Precision/

PPV 

Parent Signature – own 

Clamscan database 
Biosequence Analysis Techniques Feb 2018 

354/354 

(100%) 
100% 0.00% 0.00% 0.00% 1 0 1 

Child Signatures – own 

Clamscan database 
Biosequence Analysis Techniques Feb 2018 

351/354 

(99.15%) 
99.15% 0.00% 0.00% 0.85% 0.9915 0 1 

McAfee | Total Protection 

2018 

Machine Learning, Deep 

Learning, and Artificial 

Intelligence (Veeramachaneni & 

Arnaldo, 2016) 

Feb 2018 
0/354 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

Kaspersky Anti-Virus 

2018 

Heuristic Analysis, Machine 

Learning (AO Kaspersky Lab, 

2017; AO Kaspersky Lab, 

Machine Learning and Human 

Expertise, 2017; AO Kaspersky 

Lab, 2018) 

Feb 2018 
9/354 

(2.54%) 
2.54% 0.00% 0.00% 97.46% 0.0254 0 1 

Norton Security Premium 

2018 

Advanced Machine Learning 

(Symantec Corporation, 2017) 
Feb 2018 

0/354 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

Webroot SecureAnywhere 

AntiVirus 2018 

Security Intelligence and 

Analytics Engine (Webroot Inc., 

2013) 

Feb 2018 
0/354 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

Microsoft Windows 

Defender Security 

Windows Defender Advanced 

Threat Protection (jcaparas & 

Hall, 2018) 

Feb 2018 
104/354 

(29.38%) 
29.38% 0.00% 0.00% 70.62% 0.2938 0 1 

Bitdefender Total Security 

2018 

Advanced Threat Defense, 

Machine-Learning (Bitdefender, 

2016; Bitdefender, 2017) 

Feb 2018 
0/354 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

ClamAV 2018 
Open Source (GPL) Anti-Virus 

Engine (ClamAV, 2018) 
Feb 2018 

0/354 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 
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None of the antivirus products could identify the transcriptase variants except for 

Kaspersky and Microsoft Windows Defender, which could only detect 2.54% and 29.38% 

of the variants, respectively. 

7.3.2 Test set results 

In this section, similar strategy as demonstrated in Section 7.3.1 of comparing the 

classified signatures with the seven antivirus products was applied. In this case, the 

comparison was carried out against the three different test sets. Tables 7.3 to 7.5 show the 

test results of seven antivirus products along with the parent and child signatures against 

the three individual test sets (datasets 2-4). 

Table 7.3: Test results of seven commercial antivirus products together with parent and 

child signatures against test set 1 (dataset 2). 

Detection Product 
Files 

Detected 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity/ 

Recall/TPR 

Specificity/

TNR 

Precision

/PPV 

Parent Signature – 

own Clamscan 

database 

1,376/1,397

(98.5%) 
98.5% 0.00% 0.00% 1.5% 0.985 0 1 

Child Signatures – 

own Clamscan 

database 

0/1,397 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

McAfee | Total 

Protection 2018 

0/1,397 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

Kaspersky Anti-

Virus 2018 

467/1,397 

(33.43%) 
33.43% 0.00% 0.00% 66.57% 0.3343 0 1 

Norton Security 

Premium 2018 

2/1,397 

(0.14%) 
0.14% 0.00% 0.00% 99.86% 0.0014 0 1 

Webroot 

SecureAnywhere 

AntiVirus 2018 

0/1,397 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

Microsoft Windows 

Defender Security 

968/1,397 

(69.29%) 
69.29% 0.00% 0.00% 30.71% 0.6929 0 1 

Bitdefender Total 

Security 2018 

0/1,397 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

ClamAV 2018 
0/1,397 

(0.00%) 
0.00% 0.00% 0.00% 100% 0 0 0 

The results in Section 7.3.2 show that the parent signature can identify the variants 

belonging to Transcriptase family in the test set 1 (dataset 2). Parent signature identified 

98.5% variants in the test set 1 (dataset 2) (see Table 7.3). Child signatures couldn’t 

identify any variants in that test set. This shows that the variants considered in test set 1 

(dataset 2) were all parent variants. To validate this, a phylogenetic tree was constructed 

and the same strategy as followed in step-6 was applied. In total, 34 variants of 

Transcriptase family along with the original malware (making a total of 35 malicious 

files) were considered for the process of phylogenetics. 14 variants belonged to dataset 1 



 

162 
 

(as considered in step-6) and the remaining 21 variants belonged to dataset 2. A 

rectangular lined up cladogram was constructed. Figure 7.4 shows the phylogenetic tree 

that was generated using Phylo.io. 

Table 7.4: Test results of seven commercial antivirus products together with parent and 

child signatures against test set 2 (dataset 3). 

Detection Product 
Files 

Detected 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity/

Recall/TPR 

Specificity/

TNR 

Precision/

PPV 

Parent Signature – 

own Clamscan 

database 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Child Signatures – 

own Clamscan 

database 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

McAfee | Total 

Protection 2018 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Kaspersky Anti-

Virus 2018 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Norton Security 

Premium 2018 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Webroot 

SecureAnywhere 

AntiVirus 2018 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Microsoft Windows 

Defender Security 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Bitdefender Total 

Security 2018 

0/2,617 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

ClamAV 2018 
0/1,397 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Table 7.5: Test results of seven commercial antivirus products together with parent and 

child signatures against test set 3 (dataset 4). 

Detection Product 
Files 

Detected 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Sensitivity/

Recall/TPR 

Specificity/

TNR 

Precision/

PPV 

Parent Signature – 

own Clamscan 

database 

0/18,128 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Child Signatures – 

own Clamscan 

database 

2/18,128 

(0.011%) 
0.00% 99.989% 0.011% 0.00% 0 0.99989 0 

McAfee | Total 

Protection 2018 

6/18,128 

(0.033%) 
0.00% 99.967% 0.033% 0.00% 0 0.99967 0 

Kaspersky Anti-

Virus 2018 

18/18,128 

(0.099%) 
0.00% 99.901% 0.099% 0.00% 0 0.99901 0 

Norton Security 

Premium 2018 

1/18,128 

(0.005%) 
0.00% 99.995% 0.005% 0.00% 0 0.99995 0 

Webroot 

SecureAnywhere 

AntiVirus 2018 

0/18,128 

(0.00%) 
0.00% 100% 0.00% 0.00% 0 1 0 

Microsoft Windows 

Defender Security 

1/18,128 

(0.005%) 
0.00% 99.995% 0.005% 0.00% 0 0.99995 0 

Bitdefender Total 

Security 2018 

4/18,128 

(0.022%) 
0.00% 99.978% 0.022% 0.00% 0 0.99978 0 

ClamAV 2018 
3/18,128 

(0.016%) 
0.00% 99.984% 0.016% 0.00% 0 0.99984 0 
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Figure 7.4 shows that all the variants from dataset 2 belonged to the same clad (i.e. 

third/last clad) distinguishing the parent variants from the child variants. Therefore, 

1_TS_var_32 to 3_TS_var_24 (first clad) and 15_TS_var_11 to 35_TS_var_31 (third/last 

clad) were all classified as the parent variants and 5_TS_var_1 to 14_TS_var_10 (second 

sub-clad of second clad) were all classified as the child variants (see Figure 7.4). And 

4_TS_O (first sub-clad of second clad) was the original Transcriptase malware (see 

Figure 7.4). 

None of the antivirus products could identify the transcriptase variants from dataset 2 

except for Kaspersky, Norton Security and Microsoft Windows Defender. And they could 

only detect 33.43%, 0.14% and 69.29% of the variants (see Table 7.3). 

There were no false positives discovered against dataset 4 using the parent signature and 

0.011% false positives using the child signatures (see Table 7.5), therefore satisfying the 

false positive rate requisite of 0.1%. 

 

Figure 7.4: The phylogenetic tree of 35 Transcriptase sequences generated using 

Phylo.io.  
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7.4. Summary 

In this chapter, a metamorphic JavaScript malware family of Transcriptase was examined. 

Two individual datasets belonging to Transcriptase family were analysed. Biosequence 

analysis techniques of sequence alignment and phylogenetics were adopted in this 

chapter. Signatures were generated and classified using these techniques. Two sets of 

signatures were classified for the detection of Transcriptase family, namely, parent and 

child signatures. Parent signature was able to identify 100% and 98.5% variants of 

datasets 1 and 2. Child signatures, on the other hand, could identify 99.15% variants of 

dataset 1. 

Seven individual commercial antivirus products were compared with the parent and child 

signatures against the four different datasets. It was discovered that none of the antivirus 

products could identify at least 75% variants of the metamorphic malware. On the other 

hand, the classified signatures (i.e. both parent and child signatures) satisfied the false 

positive threshold of 0.1%. 

Phylogenetic tree construction proved successful in distinguishing parent from child 

variants. Furthermore, this work demonstrates that it is possible to generate variable-

length syntactic signatures and also classify them adopting biosequence analysis 

techniques. 

The following chapter will discuss the conclusion and future work. More information will 

follow in the succeeding chapter.
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Chapter 8 Conclusion and Future Work 

8.1. Overview 

In order to set up the foundation and fundamental range of this thesis, which presents a 

proposed string-based syntactic approach for detecting polymorphic malware (known – 

Pk and unknown – Px) variants, background information concerning the syntactic 

approach in comparison to the semantic approach was discussed in Chapter 1. A 

comprehensive literature review on the different types of malware as well as the 

classification of viruses along with their masking strategies were discussed in Chapter 2. 

Classification of polymorphism together with the different levels of polymorphism were 

also discussed in Chapter 2. Also discussed were the mutation engine and the decryption 

routine used by any typical polymorphic malware. Lastly, Chapter 2 discussed different 

types of the state of the art detection approaches used by the current and modern AVS 

products together with their drawbacks. Chapter 3 presented the research methodology 

adopted in this thesis. 

Chapter 4 examined the proposed efficient and effective syntactic approach of string 

matching algorithm such as the SWA for the automatic generation of signatures for the 

detection of some or all new polymorphic malware variants by extracting syntactic 

patterns from semantically rich (polymorphic) hex code. This proposed syntactic 

approach (with the aid of string matching dynamic programming SWA) to the automatic 

generation of viral meta-signatures (i.e. viral syntactic patterns) detected all the known 

(Pk) viral variants of JS.Cassandra polymorphic virus (see Table 4.1) and successfully 

addressed the first research question (Q1). The ESET antivirus cannot successfully detect 

all the known (Pk) variants of JS.Cassandra viral family. Moreover, ClamAV antivirus 

could hardly detect the unknown (Px) variants of Win32.Kitti viral family but detected 

around 33% of unknown (Px) variants belonging to the Win32.Cholera viral family. As 

stated earlier (i.e. in Subsection 1.6.1), the selected three polymorphic viral families were 

at least 5-11 years old. But as the experiments show (see Table 4.1), modern AVS 

products cannot successfully detect all the known (existing) (Pk) variants of the 

polymorphic malware family mentioned here, let alone the unknown (new) (Px) variants. 

Chapter 5 explored the advanced sequence alignment techniques in a string-based 

syntactic approach for detecting polymorphic malware variants by conducting further 

experiments on the previous chapter (i.e. Chapter 4). Chapter 5 was divided into three 
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parts. Part-I adopted two different dynamic programming algorithms i.e. the NWA and 

the SWA. Part-I (as well as Part-II and Part-III) conducted the process of multiple 

sequence alignment on meta-signatures to extract super-signatures. Previous chapter (i.e. 

Chapter 4) did not explore any of these advanced sequence alignment techniques. Part-II 

examined the effects of different combinations of gap open and gap extend penalties using 

the SWA. Previous chapter (i.e. Chapter 4) only explored one combination of gap open 

penalty (i.e. 10) and gap extend penalty (i.e. 1). Part-III examined the effects of using 71 

different substitution matrices by conducting 71 different pairwise sequence alignments. 

Previous chapter (i.e. Chapter 4) conducted the processes of pairwise sequence 

alignments by employing one substitution matrix i.e. the ID matrix. 

Part-I – The syntactic approach (with the help of string matching dynamic programming 

NWA and SWA) to the automatic generation of viral meta-signatures/super-signatures 

identified all the known (Pk) viral variants of JS.Cassandra polymorphic virus (see Table 

5.4 and Figure 5.2) and successfully addressed the first part of the second research 

question (Q2a). Although, the three super-signatures obtained from the NWA and SWA 

detected only 96.59% of known (Pk) JS.Cassandra malware variants, the three meta-

signatures obtained from the NWA and SWA detected 100% of known (Pk) JS.Cassandra 

malware variants. Furthermore, the proposed syntactic technique (with the help of string 

matching dynamic programming SWA) to the automatic generation of viral meta-

signatures/super-signatures identified all the unknown (Px) viral variants of W32.Kitti 

polymorphic virus (see Table 5.5 and Figure 5.3). In total, 29 out of the 37 overall meta-

signatures (generated from both the NWA and SWA) i.e. around 78.38% were effective 

i.e. detected all/some known (Pk) variants of the JS.Cassandra polymorphic virus. 

Particularly, 12 (generated from the NWA) out of the 37 overall meta-signatures i.e. 

32.43%, and 17 (generated from the SWA) out of the 37 overall meta-signatures i.e. 

45.94% detected all/some known variants (Pk) of the JS.Cassandra polymorphic virus (see 

Table 5.4). To be more precise, eight (generated from the NWA) out of the 37 overall 

meta-signatures i.e. 21.62%, and 12 (generated from the SWA) out of the 37 overall meta-

signatures i.e. 32.43% detected the known (Pk) variants of the JS.Cassandra virus with an 

accuracy of 96% and above (see Table 5.4). The implication of the findings is that 

syntactic approaches to automatic signature generation can complement current manual 

and semantic approaches, with the added advantage that polymorphic variants of a virus 

can also be identified once a sufficient number of variants are incorporated for string-

based comparison. The ultimate goal for any syntactic approach will be to identify a 
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potential ‘grammar’ of a virus from a relatively small number of variants so that unknown 

(Px) but reachable variants can be generated for robust automatic signature extraction. It 

is possible that hybrid variants (the combination of behaviours from more than one virus 

family) will need signatures based on structural aspects of the virus families as described 

by a grammar rather than string matching. AVSs currently are reactive rather than pro-

active. Syntactic and string-based approaches represent the best chance of designing and 

developing proactive AVSs in the future to deal with the increasingly complex malware 

being confronted. 

Part-II – The syntactic approach (with the aid of string matching dynamic programming 

SWA and different combinations of gap open and gap extend penalties) to the automatic 

generation of viral super-signatures detected all known (Pk) and unknown (Px) viral 

variants of JS.Cassandra, W32.CTX and W32.Kitti polymorphic virus (see Figures 5.6 to 

5.8) and successfully addressed the second part of the second research question (Q2b). 

The findings show that increasing the gap open and gap extend penalties decreases the 

number of gaps (in some cases to the point where no gaps exist) in the final alignment 

(see Columns ‘Gap Open Penalty’, ‘Gap Extend Penalty’ and ‘Gaps Percentage’ in Table 

5.9). Moreover, the meta-signatures obtained from the alignment with few or no gaps 

have proven to be more effective and successful in detecting known (Pk) and unknown 

(Px) polymorphic variants than alignment with many gaps. From the experiment results 

provided in Table 5.10 (i.e. for polymorphic viruses JS.Cassandra and 

W32.CTX/W32.Cholera), it can be concluded that some of the final alignments, those 

with gap percentages of 0.5 or higher, have moderately effective meta-signatures (an 

accuracy of less than 100%). From the results presented in Table 5.10 (i.e. for W32.Kitti 

polymorphic virus), it can be concluded that the final alignments with no gap percentages 

(i.e. 0.00%) have effective meta-signatures (i.e. with an accuracy of 100%). Most 

importantly, the results from Table 5.9 indicate that the conversion of malware code into 

biological representations has served the task of identifying common code subsequences. 

Part-III – The syntactic approach (with the aid of string matching dynamic programming 

SWA and using different substitution matrices) to the automatic generation of viral meta-

signatures detected all the known (Pk) virus variants of JS.Cassandra polymorphic virus 

using the meta-signatures and super-signatures obtained in Step-4 (i.e. in Section 5.11.3) 

and Step-7 (i.e. in Section 5.11.6), respectively (see Tables 5.13 and 5.14) and 

successfully addressed the third part of the second research question (Q2c). Meta-
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signatures: In total, 123 out of the 161 overall meta-signatures (generated from the six 

different substitution matrices) i.e. around 76.40% were effective i.e. detected all/some 

known (Pk) variants of the JS.Cassandra polymorphic virus. Particularly, 23 (generated 

from the BLOSUM40 substitution matrix) out of the 161 overall meta-signatures i.e. 

14.28%, and 16 (generated from the DAYHOFF substitution matrix) out of the 161 

overall meta-signatures i.e. 9.94% detected all/some known (Pk) variants of the 

JS.Cassandra polymorphic virus (see Table 5.13). ID substitution matrix was not 

considered here as only one meta-signature was extracted during the process and it was 

effective (see Table 5.13). Additionally, 21 (generated from the MATCH substitution 

matrix) out of the 161 overall meta-signatures i.e. 13.04%, 24 (generated from the 

PAM100 substitution matrix) out of the 161 overall meta-signatures i.e. 14.91%, and 38 

(generated from the PAM350 substitution matrix) out of the 161 overall meta-signatures 

i.e. 23.60% detected all/some known (Pk) variants of the JS.Cassandra polymorphic virus 

(see Table 5.13). To be more precise, 22 (generated from the BLOSUM40 matrix) out of 

the 161 overall meta-signatures i.e. 13.66%, and 16 (generated from the DAYHOFF 

matrix) out of the 161 overall meta-signatures i.e. 9.94% detected the known (Pk) variants 

of the JS.Cassandra virus with an accuracy of 92% and above (see Table 5.13). Moreover, 

14 (generated from the MATCH substitution matrix) out of the 161 overall meta-

signatures i.e. 8.69%, 22 (generated from the PAM100 substitution matrix) out of the 161 

overall meta-signatures i.e. 13.66%, and 38 (generated from the PAM350 substitution 

matrix) out of the 161 overall meta-signatures i.e. 23.60% detected the known (Pk) 

variants of the JS.Cassandra virus with an accuracy of 92% and above (see Table 5.13). 

Super-signatures: In total, 34 out of the 47 overall super-signatures (generated from the 

six different substitution matrices) i.e. around 72.34% were effective i.e. detected 

all/some known (Pk) variants of the JS.Cassandra polymorphic virus. Particularly, three 

(generated from the BLOSUM40 substitution matrix) out of the 47 overall super-

signatures i.e. 6.38%, five (generated from the DAYHOFF substitution matrix) out of the 

47 overall super-signatures i.e. 10.64%, and 11 (generated from the ID substitution 

matrix) out of the 47 overall super-signatures i.e. 23.40% detected all/some known (Pk) 

variants of the JS.Cassandra polymorphic virus (see Table 5.14). Additionally, nine 

(generated from the MATCH substitution matrix) out of the 47 overall super-signatures 

i.e. 19.15%, three (generated from the PAM100 substitution matrix) out of the 47 overall 

super-signatures i.e. 6.38%, and three (generated from the PAM350 substitution matrix) 

out of the 47 overall super-signatures i.e. 6.38% detected all/some known (Pk) variants of 

the JS.Cassandra polymorphic virus (see Table 5.14). To be more precise, three 
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(generated from the BLOSUM40 matrix) out of the 47 overall super-signatures i.e. 

6.38%, five (generated from the DAYHOFF matrix) out of the 47 overall super-signatures 

i.e. 10.64%, and seven (generated from the ID substitution matrix) out of the 47 overall 

super-signatures i.e. 14.89% detected the known (Pk) variants of the JS.Cassandra virus 

with an accuracy of 96% and above (see Table 5.14). Moreover, seven (generated from 

the MATCH substitution matrix) out of the 47 overall super-signatures i.e. 14.89%, three 

(generated from the PAM100 substitution matrix) out of the 47 overall super-signatures 

i.e. 6.38%, and three (generated from the PAM350 substitution matrix) out of the 47 

overall super-signatures i.e. 6.38% detected the known (Pk) variants of the JS.Cassandra 

virus with an accuracy of 96% and above (see Table 5.14). 

Chapter 6 examined the rule-based approach (obtained and inspired from the NNge 

classifier data mining algorithm supplementing the string matching dynamic 

programming SWA) to the automatic generation of viral meta-signatures with the help of 

three different sets of experiments, which identified all the 352 known (Pk) malware 

variants of JS.Cassandra polymorphic virus as well as the 43 non-malware (Pu) variants 

of JS.Cassandra polymorphic virus (see Table 6.6 and Figures 6.4 to 6.6 – page nos. 141, 

144-145). And this lead to addressing the third research question (Q3) in this thesis 

successfully. In total, 41 out of the 71 overall meta-signatures i.e. around 57.75% [30.98% 

malicious (22/71) and 26.76% non-malicious (19/71) meta-signatures] were effective i.e. 

detected all/some variants from the two different types of groups (i.e. malicious (Pk) and 

non-malicious (Pu)). Particularly, five out of the nine meta-signatures i.e. 55.55% 

[33.33% malicious (3/9) and 22.22% non-malicious (2/9) meta-signatures] from first set 

of experiments and six out of the 14 meta-signatures i.e. 43% [28.6% malicious (4/14) 

and 14.3% non-malicious (2/14) meta-signatures] from second set of experiments 

detected all/some variants from the two different types of groups (see Table 6.6). 

Additionally, 30 out of the 48 meta-signatures i.e. 62.50% [31.25% malicious (15/48) and 

31.25% non-malicious (15/48) meta-signatures] from the third set of experiments 

detected all/some variants from the two different types of groups. Only 11 out of the 30 

effective meta-signatures obtained from the third set of experiments are shown in Table 

6.6. As first and second sets of experiments were performed using two different 

representational approaches (i.e. hex/DNA) along with the third set of experiments 

containing aligned DNA sequences, all with the same (unchanged) instances each time, 

some of the meta-signatures obtained from the three sets were identical to each other (see 

Tables 6.2 to 6.4 – page nos. 128, 132 and 137). Malicious MS1 (1), malicious MS3 (2), 
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non-malicious MS41 (3) and non-malicious MS43 (3) share identical meta-signature (see 

Tables 6.2 to 6.4, 6.6). On the other hand, malicious MS4 (1), malicious MS9 (2) and 

non-malicious MS37 (3) share identical meta-signature (see Tables 6.2 to 6.4, 6.6). 

Although, the second set of experiments generated rules with 100% inaccuracy, the 

overall combined percentage of effective meta-signatures generated from all the three sets 

of experiments is 57.75% (see Tables 6.2 to 6.4, 6.6). On the other hand, the overall 

combined percentage of non-effective meta-signatures generated from all the three sets 

of experiments is 42.25% (see Tables 6.2 to 6.4, 6.6). 

In Chapter 6, the successful identical meta-signature with 100% accuracy [i.e. MS4 (1), 

MS9 (2) and MS37 (3) – see Table 6.6] obtained from the three sets of experiments for 

JS.Cassandra polymorphic malware and its known (Pk) variants was decoded into 

‘String.fromCharCode(’ which is a JavaScript function. Second best meta-

signature with 97.73% accuracy [i.e. MS15 (3) – see Table 6.6] obtained from the third 

set of experiments for JS.Cassandra polymorphic malware and its known (Pk) variants 

was decoded into ‘19-’ which is a part of JavaScript function. Third best identical meta-

signature with 96.59% accuracy [i.e. MS1 (1), MS3 (2), MS41 (3) and MS43 (3) – see 

Table 6.6] obtained from the three sets of experiments for JS.Cassandra polymorphic 

malware and its known (Pk) variants was decoded into 

‘+'='+Math.round(Math.random()*’ which is a JavaScript function. These 

functions will be a common function inside the source code for the original (Ps) 

JS.Cassandra polymorphic virus and its known (Pk) variants. The main aim in Chapter 6 

was not only to achieve identification of polymorphic malware (and its known (Pk) 

variants) with (NNge) rule-based meta-signatures automatically, but also enable them 

with syntactic meaning that is understandable by malware analysts, and which could help 

us in detecting the future unknown (Px) polymorphic malware variants of the same family. 

The initial approaches (i.e. Chapters 4 and 5) (Naidu & Narayanan, 2016a; Naidu & 

Narayanan, 2016b; Naidu & Narayanan, 2016c) are a long and slow process of extracting 

the effective common substrings/meta-signatures by performing several pairwise 

alignments. The current rule-based approach reduces these tasks and generates lengthy 

rules by assembling the deeply conserved regions from all the input (big data) 

polymorphic malware (and non-malware) instances at once. 

Chapter 7 examined a metamorphic JavaScript malware family of Transcriptase. Two 

individual datasets belonging to Transcriptase family were analysed. Biosequence 
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analysis techniques of sequence alignment and phylogenetics were adopted in this 

chapter. Signatures were generated and classified using these techniques. Results are 

presented in Tables 7.2 to 7.5 and Figures 7.3 and 7.4 (see page nos. 159-161, 157 and 

162). Two sets of signatures were classified for the detection of Transcriptase family, 

namely, parent and child signatures. Parent signature was able to identify 100% and 

98.5% variants of datasets 1 and 2. Child signatures, on the other hand, could identify 

99.15% variants of dataset 1. Seven individual commercial antivirus products were 

compared with the parent and child signatures against the four different datasets. It was 

discovered that none of the antivirus products could identify at least 75% variants of the 

metamorphic malware. On the other hand, the classified signatures (i.e. both parent and 

child signatures) satisfied the false positive threshold of 0.1%. 

At present, serious concerns exist as to whether modern AVS technologies will identify 

new (future/unknown) variants of polymorphic malware. The ultimate goal would be to 

detect all new (future (Px)) polymorphic variants (see Figure 2.1 – page no. 29) using a 

syntactic approach to identify variants both within a virus family as well as across virus 

families. The research demonstrates that there is a need for a good identification software 

system that can effectively and efficiently identify potentially old (pre-existing), current 

(known/existing) and future (new/unknown) malware variants (see Tables 6.1 and 6.6 – 

page nos. 125 and 141). String-based syntactic and rule-based approaches together look 

very promising in designing and developing proactive AVSs in the future to deal with the 

increasingly complex malware being encountered. 

8.2. Contribution of this Thesis 

In this thesis, the proposed string-based syntactic techniques were developed based on 

sequence alignments techniques. Moreover, advanced sequence alignment techniques 

were applied and combined the data mining algorithm with sequence alignment 

techniques in a novel way to refine the algorithm. 

Bearing in mind the above statement, the major difference between the string-based 

syntactic technique and other AVSs (e.g. Bitdefender, ESET and Symantec) is that string-

based syntactic technique attempts to identify future variants by taking into account 

already existing malware belonging to the same family using conserved syntactic patterns 

(i.e. conserved signatures), whereas in other AVSs the existing signatures does not 

capture the future variants and instead creates new signatures for those variants each and 
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every time when encountered. The major contribution will be to add the above stated to 

the existing knowledge for the future string-based syntactic AVSs. 

Figure 2.1 presents the distribution of polymorphic malware variants. The research 

demonstrated in this thesis shows that current manual driven techniques deal only with 

PS (see Figure 2.1 – page no. 29). The summarised and integrated research question 

investigated was ‘Do advanced sequence alignment techniques and data mining algorithm 

(e.g. NNge) produce consensuses (and rules) that not only ‘fit’ the known (Pk) variants 

(training set) but also generalise well to unknown (Px) variants (test set)?’ As stated 

earlier, the study in this research used three families of polymorphic malware and their 

variants as input. JS.Cassandra virus was chosen along with its existing or known (Pk) 

malware variants to check whether exploring advanced sequence alignment techniques 

and data mining algorithm, such as by introducing relatively sophisticated gap open and 

extend facilities, etc. still capture known (Pk) variants that are known to be captured 

without such facilities. W32.CTX/W32.Cholera and W32.Kitti viruses were used on the 

other hand to generate new or unknown (Px) malware variants for exploring advanced 

sequence alignment techniques and data mining algorithm, such as by testing the effects 

of gap open and gap extend facilities, by using different substitution matrices, by 

generating rules, etc. Well-established viruses were chosen because their structure and 

behaviour are sufficiently well understood by commercial AVS developers and therefore 

any new variants reported here will not pose a serious threat to the latest AVS versions. 

An outlined contribution of this thesis chapter wise (i.e. starting from Chapter 4) is 

discussed below: 

1. Chapter 4: This chapter (Naidu & Narayanan, 2016a) investigated efficient and 

effective approach of string matching algorithm such as the SWA for the automatic 

generation of signatures for the detection of all the known (existing) (Pk) variants of 

JS.Cassandra polymorphic virus (see Table 4.1). That is, this chapter successfully 

extracted syntactic patterns (i.e. meta-signatures) and these patterns were in turn 

employed for the complete identification of all known (351) malware variants (Pk) 

belonging to the JS.Cassandra virus. Also, the syntactic patterns of JS.Cassandra virus 

successfully and completely detected some unknown/new (12) malware variants (Px) 

of JS.Cassandra virus (see Appendix D – page no. 235). Further, the syntactic patterns 

belonging to the W32.Kitti and W32.CTX/Cholera polymorphic viruses successfully 

and completely detected some unknown (1105 and 198) malware variants (Px) of 
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W32.Kitti and W32.CTX viruses, respectively (see Table 4.1). The experiments from 

this chapter also demonstrated to some extent that current and modern state-of-the-art 

AVS products cannot completely and successfully detect the known (existing) (Pk) 

polymorphic malware variants, let alone future (new/unknown) variants (Px) 

developed in the laboratory (see Table 4.1). Hence, the main contribution of this 

chapter was to add to the existing knowledge that it was possible to identify syntactic 

structures that helped to determine whether a piece of code contains a virus type and 

its variants. 

2. Chapter 5 (Part-I): This chapter (Naidu & Narayanan, 2016c) explored the advanced 

sequence alignment techniques by examining the effects of two different dynamic 

programming (string-based) approaches (i.e. the NWA and SWA) for the automatic 

generation of signatures for the detection of all the known (Pk) variants of 

JS.Cassandra polymorphic virus and some unknown (future/new) variants (Px) of 

W32.Kitti polymorphic virus, respectively (see Tables 5.4 and 5.5 and Figures 5.2 to 

5.4). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) both globally and locally by conducting the processes of pairwise 

alignments using the NWA and SWA and these patterns were in turn employed for 

the complete identification of all known (351) malware variants (Pk) belonging to the 

JS.Cassandra virus as well as for the complete identification of some unknown (1105) 

malware variants (Px) belonging to the W32.Kitti virus (see Tables 5.4 and 5.5). Also, 

this chapter successfully extracted super syntactic patterns (i.e. super-signatures) by 

conducting the processes of multiple and pairwise sequence alignments on meta-

signatures obtained from the NWA and SWA based pairwise alignments and these 

super patterns were in turn employed for the complete identification of all known (Pk) 

and some unknown (Px) malware variants belonging to the JS.Cassandra and 

W32.Kitti polymorphic viruses, respectively (see Figures 5.2 to 5.4). Thus, the main 

contribution of this chapter was to add to the existing knowledge that signatures can 

be identified both globally (i.e. by using the NWA) and locally (i.e. by using the 

SWA) for known (Pk) as well as unknown (Px) polymorphic variants. 

3. Chapter 5 (Part-II): This chapter explored the advanced sequence alignment 

techniques by examining the effects of using ten different combinations of gap open 

and gap extend penalties in a string-based approach for the automatic generation of 

signatures for the detection of all the known (Pk) variants of JS.Cassandra 

polymorphic virus and some unknown (Px) variants of W32.CTX/Cholera 

polymorphic virus and W32.Kitti virus, respectively (see Table 5.10 and Figures 5.6 
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to 5.8). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) using the ten different combinations of gap penalties and these patterns 

were in turn employed for the complete identification of all known (351) malware 

variants (Pk) belonging to the JS.Cassandra virus as well as for the complete 

identification of some unknown (198 and 1105) malware variants (Px) belonging to 

the W32.CTX virus and W32.Kitti virus, respectively (see Table 5.10). Also, this 

chapter successfully extracted super syntactic patterns (i.e. super-signatures) by 

conducting the processes of multiple and pairwise sequence alignments on meta-

signatures obtained from the processes of first pairwise alignments (using ten 

different combinations of gap penalties) and these super patterns were in turn 

employed for the complete identification of all known (Pk) and some unknown (Px) 

malware variants belonging to the JS.Cassandra, W32.CTX, and W32.Kitti 

polymorphic viruses, respectively (see Figures 5.6 to 5.8). Therefore, the main 

contribution of this chapter was to add to the existing knowledge that introducing 

different combinations of gap penalties helped to identify signatures for known (Pk) 

as well as unknown (Px) polymorphic variants. 

4. Chapter 5 (Part-III): This chapter (Naidu & Narayanan, 2016b) explored the 

advanced sequence alignment techniques by examining the effects of using different 

substitution matrices in a string-based approach for the automatic generation of 

signatures for the detection of all the known (Pk) variants of JS.Cassandra 

polymorphic virus (see Tables 5.13 and 5.14). That is, this chapter successfully 

extracted syntactic patterns (i.e. meta-signatures) using different substitution matrices 

and these patterns were in turn employed for the complete identification of all known 

(351) malware variants (Pk) belonging to the JS.Cassandra virus (see Table 5.13). 

Also, this chapter successfully extracted super syntactic patterns (i.e. super-

signatures) by conducting the processes of multiple and pairwise sequence alignments 

as well as data mining on meta-signatures obtained from the processes of first pairwise 

alignments (using different substitution matrices) and these super patterns were in 

turn employed for the complete identification of all known (Pk) malware variants 

belonging to the JS.Cassandra polymorphic virus (see Table 5.14). So, the main 

contribution of this chapter was to add to the existing knowledge that using different 

substitution matrices (e.g. BLOSUM, PAM) helped to capture new (never seen 

before) signatures for known (Pk) polymorphic variants. 

5. Chapter 6: This chapter addressed some of the limitations of the initial work (i.e. 

Chapters 4 and 5) (Naidu & Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu & 
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Narayanan, 2016c) and investigated a syntactic structural approach using data mining 

algorithm NNge to the automatic generation of signatures for the detection of all the 

known (Pk) variants of JS.Cassandra polymorphic virus (see Table 6.6 and Figures 

6.4 to 6.6). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) by conducting three different sets of experiments using NNge and these 

patterns were in turn employed for the complete identification of all known (351) 

malware variants (Pk) belonging to the JS.Cassandra virus (see Figure 6.4). Therefore, 

the main contribution of this chapter was to add to the existing knowledge that using 

a combination of data mining and sequence alignment techniques helped to identify 

one or more master syntactic rules each containing several different syntactic patterns 

(i.e. signatures) within for known (Pk) polymorphic variants. The contributions of this 

chapter are as follows: 

• Adopting a data mining algorithm, NNge, to generate rule-based signatures 

automatically from real malware data. 

• Comparing variable length data mining algorithm to equal length data mining 

algorithm using NNge on malware source code by conducting three different 

experiments (Experiments I-III). 

• Distinguishing malicious variants from non-malicious with the help of rules 

generated using the data mining algorithm, NNge. 

• Testing the derived rule-based signatures against real malware data and comparing 

the results to other commercial AVSs. 

• Comparing the overall performance metrics such as true positive rate, false positive 

rate, precision, recall, etc. with other related work on malware detection using data 

mining algorithms. 

6. Chapter 7: The contributions of this chapter are as follows: 

• Classifying viral signatures acquired from the metamorphic Transcriptase 

malware family adopting biosequence analysis techniques. 

• Distinguishing Transcriptase malware variants adopting phylogenetics. 

• Generating syntactic variable-length viral signatures from Transcriptase malware 

family adopting sequence alignment techniques. 

• Testing the classified viral signatures against two different Transcriptase malware 

datasets and comparing the test results against seven individual commercial 

antivirus products. 

• Testing the classified viral signatures against benign datasets for false positives. 
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8.3. Limitations of the Study 

The major limitations of the proposed approach demonstrated in this thesis are as follows: 

1. The study did not examine a multiple sequence alignment as opposed to pairwise 

sequence alignment for semantic signature generation employing the bioinformatics 

MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh, Misawa, Kuma, 

& Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) algorithm, which will help in 

detecting complex polymorphic malware as well as metamorphic malware (and their 

variants). In this thesis, the focus was on syntactic signature extraction. 

2. The study did not employ the proposed approaches in extracting syntactic patterns 

from complex polymorphic malware, such as the TPE i.e. Trident Polymorphic 

Engine, as well as from a combination or hybrid of two or more polymorphic 

malware. 

3. The study did not generate a single consensus (i.e. a super-signature) that could 

completely identify all the possible (known – Pk and unknown – Px) variants of a 

particular polymorphic family. 

4. The current string matching techniques do not work well with non-biological 

representations, such as hexadecimal, etc. 

Some additional limitations of the study presented in this thesis are discussed in this 

section. The focus on well-known and old viruses does not take into account the rapid 

evolution of other forms of malware, such as ransomware and DoS attacks that involve 

external manipulation. Furthermore, the study does not take into account the unknown 

(new) variants (Px) generated from the polymorphic virus construction kits. Building such 

a library of unknown (Px) polymorphic variants will allow us to investigate the impact of 

a new polymorphic malware detection system in relation to old and existing malware 

variants. However, nearly all malware has a self-replicating component irrespective of its 

function. On the assumption that the meta-signatures and super-signatures are capturing 

essential aspects of malware replication, the results described here may be applicable to 

other malware types (not just viruses or worms) that also involve a replication step. 

8.4. Future Work 

Future Work on Chapters 4 to 6: As stated earlier, polymorphic malware remains 

difficult to identify since such malware is able to reform into functionally similar but 

syntactically different variants to bypass signature detection by conventional AVSs. 
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Investigations as part of this thesis have identified a proposed approach to polymorphic 

virus variant detection through the use of pairwise/multiple sequence alignment 

techniques as well as data mining algorithm to identify consensuses (subsequences 

conserved across different and variable length virus code) that lead to signatures for virus 

detection in next-generation antivirus systems. The question arises as to how this 

proposed approach to automatic virus detection can cope with the most complex viruses 

yet discovered: metamorphic malware. Whereas polymorphism changes the order of the 

viral code but not typically the code itself to avoid signature detection, metamorphic 

malware changes the code so that a functionally identical but syntactically non-identical 

variant is generated. To date, it is not known how to generate signatures for metamorphic 

viruses. 

The aim of the future proposal will be to examine a multiple sequence as opposed to 

pairwise sequence alignment for semantic signature generation employing the 

bioinformatics MAFFT (Multiple Alignment using Fast Fourier Transform) algorithm. 

Changes in code across a set of different metamorphic variants of the same virus will be 

identified through a substitution matrix that identifies the probabilities of changes in hex 

code between variants (all variants must be aligned together, hence multiple as opposed 

to pairwise alignment). Also, the degree of such changes will be used to generate a 

phylogenetic tree tracing the predicted evolution of metamorphic variants from the 

original to all descendant variants using standard phylogeny distance techniques. FFT 

will identify unique frequency signatures from the substitution matrix and evolutionary 

tree to distinguish one family of metamorphic variants from another. The approach is 

speculative and, if successful, will transform our understanding of signature generation. 

Future Work on Chapter 7: Future work could include more work on implementing the 

biosequence analysis techniques on other types of malware, such as Ransomware, Trojan 

horse and Rootkit. On the inference that the signatures are trapping essential attributes of 

malware morphing, the results illustrated here may be suitable to other types of malware 

that also involve a morphing stage. Further work can also include the implementation of 

phylogenetics for the purpose of malware classification on a larger scale. 

Overall: The proposed topic of this thesis will be of great interest to the malware analysts 

and security experts because of the increasingly growing threats of malware to the normal 

computing activities. The approach adopted in this thesis is unique and, as far as, the only 

active research in the world currently analysing complex polymorphic viral code using 
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state of the art bioinformatics tools and techniques for the automatic extraction of 

signatures for future anti-viral software development. 

Malware detection adopting deep learning techniques will be considered as a future work 

for classification and labelling of malware data as well as feature extraction (Kolosnjaji, 

Zarras, Webster, & Eckert, 2016; Kalash, et al., 2018). These techniques are well-known 

for their accurate detection, better performance in comparison to conventional machine 

learning techniques, real-time malware detection and prevention, low false positives, 

minimal/no manual/reverse engineering, etc. (Saxe, Harang, Wild, & Sanders, 2018; Yan, 

Qi, & Rao, 2018). 

A database of all the generated meta-signatures obtained from this thesis will be 

incorporated in the future automatic software systems (as a future work) thereby 

successfully detecting some or all new (unknown) polymorphic malware variants. The 

major contribution will be to add to the existing knowledge on how to detect some or all 

new (unseen) polymorphic malware variants with the help of this proposed approach. 

Future prospects of this research are to implement an anti-viral software product that will 

successfully detect and predict the unseen new variants not only belonging to a 

polymorphic malware family but also belonging to a metamorphic malware family. There 

is a likelihood of attracting funding and possibly a collaboration with well-established 

companies like Microsoft, Bitdefender, Symantec and Malware Research Labs. 

8.5. Further Work 

Further work has been done on the 100 new (never seen before) variants (Px) of 

JS.Cassandra virus as an extension of the work presented in this thesis. This new dataset 

was obtained from the original virus writer (SPTH, 2015; Second Part To Hell, 2018) of 

JS.Cassandra virus. The uniqueness of these 100 new malware variants was cross-

checked by generating a CRC32b hash value for each variant, and no duplicates were 

found (see Appendix H – page no. 251). The results of that further work are demonstrated 

in Table 8.1. In total, 282 meta-signatures and 54 super-signatures were tested against the 

100 new variants of JS.Cassandra virus. All the meta-signatures and super-signatures 

tested here were obtained from Chapters 4 to 6 to detect the JS.Cassandra virus and its 

variants. One meta-signature from Chapter 4. 37 meta-signatures and four super-

signatures from Chapter 5 (Part-I). Twelve meta-signatures and three super-signatures 
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from Chapter 5 (Part-II). 161 meta-signatures and 47 super-signatures from Chapter 5 

(Part-III). And 71 meta-signatures from Chapter 6. 

From Table 8.1, it could be said that almost all of the meta-signatures and super-

signatures were completely effective in detecting the new variants of the JS.Cassandra 

virus with an overall accuracy of 100%. Except for some, such as the two super-signatures 

obtained from the NWA (Chapter 5 – Part-I) had an overall accuracy of 85%, the two 

super-signatures obtained from the SWA (Chapter 5 – Part-I) had an overall accuracy of 

85%, the twelve meta-signatures obtained from Chapter 5 – Part-II had an overall 

accuracy of 97%, the one meta-signature obtained from the ID substitution matrix 

(Chapter 5 – Part-III) had an overall accuracy of 12%, and the 24 meta-signatures 

obtained from the MATCH substitution matrix (Chapter 5 – Part-III) had an overall 

accuracy of 85%. The state of the art ClamAV and Bitdefender Total Security 2018 AVSs 

had overall accuracies of 85% and 0%, respectively. So, the essential contribution of this 

section was to add to the existing knowledge that syntactic virus signatures captured from 

the string-based syntactic techniques helped to identify a dataset of unknown (Px) 

variants.  
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Table 8.1: Detection ratio using two state of the art AVSs and the 282 meta-signatures 

and 54 super-signatures from Chapters 5 to 7 with ‘clamscan’. 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

ClamAV 

One Meta-

Signature 

(Chapter 5) 

16 Meta-

Signatures - 

NWA (Chapter 

6 – Part-I) 

21 Meta-

Signatures - 

SWA (Chapter 

6 – Part-I) 

100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

85/100 

(85.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

Sensitivity/Recall 85.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 91.89% 100.00% 100.00% 100.00% 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

Bitdefender 

Total 

Security 2018 

Two Super-

Signatures - 

NWA (Chapter 

6 – Part-I) 

Two Super-

Signatures - 

SWA (Chapter 

6 – Part-I) 

Twelve Meta-

Signatures 

(Chapter 6 – 

Part-II) 

100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

0/100  

(0.00%) 

85/100 

(85.00%) 

85/100 

(85.00%) 

97/100 

(97.00%) 

Sensitivity/Recall 0.00% 85.00% 85.00% 97.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 0.00% 91.89% 91.89% 98.48% 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

Three Super-

Signatures 

(Chapter 6 – 

Part-II) 

34 Meta-

Signatures – 

BLOSUM40 

(Chapter 6 – 

Part-III) 

24 Meta-

Signatures – 

DAYHOFF 

(Chapter 6 – 

Part-III) 

One Meta-

Signature – 

IDENTITY 

(Chapter 6 – 

Part-III) 
100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

12/100 

(12.00%) 

Sensitivity/Recall 100.00% 100.00% 100.00% 12.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 100.00% 100.00% 100.00% 21.43% 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

24 Meta-

Signatures – 

MATCH 

(Chapter 6 – 

Part-III) 

31 Meta-

Signatures – 

PAM100 

(Chapter 6 – 

Part-III) 

47 Meta-

Signatures – 

PAM350 

(Chapter 6 – 

Part-III) 

Seven Super-

Signatures – 

BLOSUM40 

(Chapter 6 – 

Part-III) 

100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

85/100 

(85.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

Sensitivity/Recall 85.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 91.89% 100.00% 100.00% 100.00% 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

Six Super-

Signatures – 

DAYHOFF 

(Chapter 6 – 

Part-III) 

Eleven Super-

Signatures – 

IDENTITY 

(Chapter 6 – 

Part-III) 

Ten Super-

Signatures – 

MATCH 

(Chapter 6 – 

Part-III) 

Seven Super-

Signatures – 

PAM100 

(Chapter 6 – 

Part-III) 
100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

Sensitivity/Recall 100.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 100.00% 100.00% 100.00% 100.00% 



 

181 
 

Type of Files 

Scanned 

Detection Ratio 

(with Accuracy) 

and Statistical 

Measures 

Six Super-

Signatures – 

PAM350 

(Chapter 6 – 

Part-III) 

Nine Meta-

Signatures – 

Experiment I 

(Chapter 7) 

14 Meta-

Signatures – 

Experiment II 

(Chapter 7) 

48 Meta-

Signatures – 

Experiment III 

(Chapter 7) 

100 New 

JS.Cassandra 

Polymorphic 

Malicious 

Malware 

Variants 

Detection Ratio 

(Accuracy) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

100/100 

(100.00%) 

Sensitivity/Recall 100.00% 100.00% 100.00% 100.00% 

Specificity 0.00% 0.00% 0.00% 0.00% 

Precision 100.00% 100.00% 100.00% 100.00% 

F1 Score 100.00% 100.00% 100.00% 100.00% 
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Appendix A 

A brief review of the other masking strategies employed by viruses is discussed in this 

section. 

A.1 No Masking 

No masking at all is one masking strategy which is exceptionally easy to apply in a 

computer virus. Although it is obvious, however, that it is inadequate – once the existence 

of a virus is established, it is meaningless to identify and inspect (Aycock, 2006). 

A.2 Stealth 

A stealth virus is a virus that not only conceals the virus body but also effectively takes 

actions to hide the infection itself. Moreover, the stealth virus attempts to mask from 

everything, not just from the AVSs. Some instances of stealth procedures are given below 

(Aycock, 2006): 

1. A file has been modified and to make it look like it was not modified recently, an 

infected file’s authentic time logs can be renewed after infection (Aycock, 2006). 

2. The virus can store all pre-compromised information about a file, such as the time 

log, size of a file, and the contents of a file. Then, calls from I/O system can be 

interrupted, and the virus reverts the authentic information in return to any I/O 

procedures on the compromised file, assembling it as the file is uninfected. This 

approach can be applied to boot block I/O operations as well (Aycock, 2006). 

3. Some machines store the secondary boot loader as continuous disk blocks, to be easier 

on primary boot loader’s function. On these machines, there are two viewpoints of the 

secondary boot loader, one as a string of blocks, and second as a file in the file 

directory. A virus can penetrate itself into the blocks of the secondary boot loader, 

thereby transferring the primary blocks somewhere else in the file directory. The 

outcome is that of a normal routine, the file directory view shows no evident 

modification, thus the virus is masked. The virus is executed because of the original 

boot loader (Aycock, 2006). 

One alternative is a reverse stealth virus, which shows that everything is infected – the 

destruction is conducted by the AVS uncontrollably (and mistakenly) attempting to 
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disinfect (Aycock, 2006). The best example of a stealth virus is the ‘Regin’ malware 

which is not only complex but also hard to detect and secure against (Musil, 2014). 

A.3 Encryption 

In an encrypted virus, the virus body structure is encrypted making it difficult to detect. 

The virus body usually contains a payload, infection, and a trigger. When the virus body 

is in the stage of encryption, it is not executable unless decrypted. First, something is 

executed in the virus then a decryptor loop decodes the virus body and transmits authority 

to the virus body. The basic goal of this kind of virus is to have a decryptor loop that is 

smaller than the virus body and therefore has a lower profile making it harder for an AVS 

to identify. This method of ‘encryption’ is not the same approach as what cryptographers 

consider to be encryption; virus encoding is better understood as an obfuscation. A 

decoding loop can decrypt the virus structure in one location, or decrypt to a different 

location; this decision may be determined by an external factor, such as the ability of virus 

writer in the compromised file’s source code. This kind of approach is called in-place 

decryption (Aycock, 2006). Pseudocode for an encoded virus is shown below (Aycock, 

2006). 

Before Decryption         After Decryption 
 

for i in 0 

length(body) : 

decrypt code; 

goto decrypted_body 

??? 

 

for i in 0 length(body) : 

decrypt code; 

goto decrypted_body 

decrypted_body : 

infect () 

if trigger () is true : 

payload () 

 

Virus encryption can be performed in five different ways: 

1. Simple encryption: No kind of key is utilised for the process of simple encryption, 

just general no parameter operations, such as decrementing and incrementing, logical 

NOT, bitwise operators, and negation based on arithmetic operators (Aycock, 2006). 

2. Static encryption key: A static, fixed key is utilised for the process of encryption and 

which remains the same from one infection to another. Arithmetic operators, such as 
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logical operators, that are, XOR and addition operators are used for the process of 

generating a static encryption key (Aycock, 2006). 

3. Variable encryption key: In this process of encryption technique, the key during the 

beginning of the process remains fixed, but modifies as the decryption takes place 

(Aycock, 2006). 

4. Substitution cipher: A more basic encryption process could use lookup tables which 

plot byte value among the encoded and decoded code. The substitution cipher can 

utilise 1:1 plotting or 1:n plotting depending on the complexity of the virus body. A 

homophonic substitution cipher permits 1:n plotting, thereby increasing the level of 

complexity by allowing several encoded values to relate to one decoded value 

(Aycock, 2006). 

5. Strong encryption: There is no excuse why any viruses cannot utilise the process of 

strong encryption. Earlier, the size of the source code was a major issue, as the virus 

had to store several decryption codes in it, but this is not an issue anymore: most set-

ups now include libraries of strong encryption keys which can be utilised by several 

viruses (Aycock, 2006). 

The major drawback with the above-discussed encryption processes is that the encoded 

virus body remains unchanged from one infection to another. That is the encrypted virus 

body remains constant, and this constancy can easily be used by the AVSs to detect the 

virus, as there is no hidden strategy whatsoever. But with the help of randomly generated 

keys, this issue can be avoided. Every time a virus code is decrypted, a random key is 

generated by the decryption routine to encrypt the virus code again, after the infection. 

This method of randomly generating keys can be implemented to any one of the 

encryption techniques explained above (Aycock, 2006).  

‘CryptoLocker’ is malware, specifically a ransomware Trojan that mainly attacks 

Microsoft Windows-based computer systems. 

A.4 Strong Encryption 

Usually, a virus stores their decryption keys in them, and this might be a weakness, which 

can be easily detected and analysed by the AVSs. This is one way of storing the 

decryption keys for the process of encryption. But there are two other approaches that can 

be used for the process of encryption (Aycock, 2006): 
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1. The decryption key comes from the external source of an infected machine:  

a. A virus can obtain the decryption key from a website, but that implies that the virus 

would have to transport the address of that website at all times, which could be 

blacklisted as a precautionary measure. This issue can be avoided if the virus can 

obtain the decryption key utilising a website search engine. Normally, any electronic 

information torrent that a virus can control would be employable for the generation 

of the decryption key, particularly the one with large amounts of traffic that are 

unexpected to be blacklisted: such as instant chat messaging, file-distributing 

networks, email messages, IRC, etc. (Aycock, 2006). 

b. A binary virus is a virus that comes in two components and does not get destructive 

unless both the components are located on the same machine. Very few known binary 

viruses came into existence such as ‘RMNS’ (spreads via p2p – peer to peer services, 

IRC, file distributing networks, internet file downloads, etc.) and ‘Dichotomy’. One 

demonstration of binary viruses would be where V1 and V2 are two components of a 

binary virus. V1 virus would have a strongly encoded source code, and V2 virus 

would have the decryption key. Both V1 and V2 viruses need to work together and 

should be in the same location (at the time of decryption) for the binary virus process 

to execute successfully. If they transmit together, then both will exhibit the same 

chance of getting detected and inspected, overcoming the main goal of detaching the 

decryption key. And if V1 and V2 viruses transmit separately then their propagation 

would be independent (Aycock, 2006). 

2. The decryption key comes from internal source of an infected machine: With the 

help of environmental key creation, the decrypted key is developed based on the 

factors situated in the target’s surrounding, such as, domain computer name; system 

date or time; some information in the machine (example, important document file 

name, file contents, etc.); the recent computer user name; operating system’s language 

setting; IP address. 

This makes it very simple to target viruses to specific groups or individuals. A target has 

no idea that they hold the decryption key (Aycock, 2006). ‘CryptoLocker’, a ransomware 

Trojan malware is the best example that uses the techniques of strong encryption (Scaife, 

et al., 2016). 
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A.5 Oligomorphism 

Suspecting the key of an encoded virus is randomly modified with every new infection, 

the only untouched area of the virus is the code inside the decrypted routine. AVS will 

utilise this aspect for identification, so the next ideal improvement is to modify the code 

inside the decryptor routine with every infection (Aycock, 2006). 

An oligomorphic virus is an encoded virus which has a tiny, fixed amount of several 

decryptor routines at its disposition. This virus can also be known as, semi-polymorphic 

virus. For every new infection, the virus chooses a new decryptor routine from this small 

finite amount. For instance, ‘Whale’ had 30 variants each with dissimilar decryptor 

routines, and ‘Memorial’ had 96 variants each with different decryptor routines (Aycock, 

2006). 

With regards to identification, viruses based on oligomorphism are marginally difficult 

to detect. AVS will not simply look for just one decryptor routine but instead will look 

for all routines, by simply having all the possible decryptor routines of a virus listed in 

their database (Aycock, 2006).
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Appendix B 

A brief review of the obfuscation techniques employed by polymorphic viruses is 

discussed in this section. This review of the polymorphic obfuscation techniques is 

divided into three sections. Section B.1 covers ‘Polymorphic obfuscation based on self-

identification’; Section B.2 details ‘Polymorphic obfuscation based on Syntactic 

reconstruction’, and Section B.3 discusses ‘Polymorphic obfuscation based on Semantic 

reconstruction’. 

B.1 Polymorphic Obfuscation based on Self-Identification 

There are two challenging questions that emerge with regards to polymorphic malware. 

Firstly, how can a malware identify that it has formerly compromised a file if its existence 

is concealed adequately well? Secondly, how does a malware modify its decryptor routine 

from one infection to other (Aycock, 2006)? The first challenging question will be 

covered in this section and the second challenging question will be covered in Section 

B.2. 

1. Self-Identification: At an initial glimpse, it might seem simple for a polymorphic 

malware to identify if it has formerly compromised some code – when the malware 

mutates for a new file infection, it can also modify any form of itself that it encounters. 

This will not work, nonetheless, since a malware must be able to identify infection by 

either of its virtually unlimited aspects. This shows that the infection identification 

approach must be self-reliant of the correct code utilised by the malware (Aycock, 

2006). 

2. File Time Logs: A malware could modify the time logs of a compromised file, as 

long as for every infection, the combination of its date and time is a certain value K 

which is constant. Many applications only display the last two units of the year, so 

the year of a compromised file could be incremented by 50 without seeking attention 

(Aycock, 2006). 

3. File Size: The size of a compromised file could be modified out to a certain significant 

size, like a multiple of 4848 (Aycock, 2006). 

4. Data Concealment: In file formats, such as ELF, which is a complicated executable, 

not all sections of the file’s contents may be utilised by a computer system. Malware 

can conceal a flag in new sections, or look for an unused association of features that 
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it has placed in the file. For instance, on Windows in a file header which is executable, 

the malware ‘Zperm’ observes for the alphabet ‘Z’ as the small linker variant 

(Aycock, 2006). 

5. File System Attributes: Some file systems permit files to be labelled with random 

features, whose presence is not in every instance made recognisable. Malware can 

utilise these to stock source code, flags, or information which suggests that a file has 

been compromised. Figure B.1 (shown below) displays the ‘surrogate data streams’ 

being utilised in a file system based on NTFS to append a flag to a program file; the 

existence of this flag will not come up in directory index, in the file system browser, 

or in the file size (Aycock, 2006). 

 

Figure B.1: The concept of NTFS file system based surrogate data streams (Aycock, 

2006, p.39). 

6. External Storage: The evidence that a file is compromised need not be exactly 

related to the file itself. For instance, malware could employ a hash function to plot 

the name of a compromised file into a hidden string, and under the Windows registry 

employ that string to generate a key. Malware can then utilise the presence of that key 

as an infection signal. However, if the registry key was determined it will not be 

sufficient to successfully disclose the name of the compromised file (Aycock, 2006). 

As all these infection-identification approaches function for polymorphic malware, they 

also function for the specific types of non-polymorphic malware as well, such as worm, 

rabbit. It was once indicated that computer systems could be protected against particular 

malware by bypassing the self-identification signal for malicious activity on an 
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uncompromised system. Sadly, there are lots of malware now to make this possible 

(Aycock, 2006; Zhang, 2009; Kumar, 2016). 

B.2 Polymorphic Obfuscation based on Syntactic Reconstruction 

This is the technique used by many polymorphic viruses to modify its syntactic structure. 

Although, the polymorphic changes its syntactic structure, the semantics of those 

polymorphic viruses remains unchanged. This approach is used by the polymorphic 

viruses to bypass identification and classification based on byte level. Byte-level 

identification is employed by many AVSs (Zeltser, 2011). Many of this approaches used 

by polymorphic viruses are adopted from the area of file obfuscation (Cesare, 2010). 

Polymorphism is explained as having a similar definition to that of metamorphism, in 

cases where it is used to illustrate the automated syntactic modification of viral 

instructions and viral code. Under such phraseology, polymorphism is used to explain 

syntactic changes of fixed sections of the viral instruction data. The remaining viral code 

sections are encrypted at the byte stage without modifying the semantics or the syntax of 

the instructions. In this section, polymorphism and metamorphism are considered to be 

similar to one another (Cesare, 2010). 

1. Dead Code Insertion: Semantically, dead code insertion is similar to a null operation. 

Dead code is also called a semantic NOP (i.e. No OPeration) or as junk code. Insertion 

of this kind of junk code has no semantic effect on the malware. However, the size of 

the malware increases when dead junk code is inserted. Also, dead code insertion 

changes the instructions and byte level data of the malware. For instance, ‘push 

%ebx’ and ‘pop %ebx’, best represent the idea behind dead code insertion (Cesare, 

2010). 

2. Instruction Replacement: The process of instruction replacement exchanges a 

particular set of instructions or an individual instruction with semantically identical, 

but altering instruction sets or instructions. The size of the malware using this kind of 

approach may increase or decrease, based on some instructions substituted. For 

example, ‘mov $0, %eax’ is substituted to ‘xor %eax, %eax’ (Cesare, 2010). 

3. Variable Renaming: The process of variable renaming and the corresponding 

approach of register displacement modifies the purpose of registers and variables in a 

piece of code. It is done in such a way that the process of variable renaming uses 
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distinctive registers and variables keeping the instructions semantically identical 

when compared with the original piece of code. For instance, ‘mov $0, %eax’ gets 

renamed to ‘mov $0, %ebx’; ‘mov $1, %ebx’ gets renamed to ‘mov $1, 

%ecx’; ‘add %eax, %ebx’ gets renamed to ‘add % ebx, %ecx’; ‘push 

%ebx’ gets renamed to ‘push %ecx’ (Cesare, 2010). 

4. Code Rearranging: The process of code rearranging modifies the syntactic 

rearrangement of a malware code. This process does not modify the genuine or 

semantic implementation location of the file. Nevertheless, the syntactic arrangement 

as seen in the original malware code is modified. The process of code rearranging 

comprises the approaches of branch inverting, branch obfuscation, the use of opaque 

base insertion, and branch transposition (Cesare, 2010). 

5. Branch Obfuscation: The process of branch obfuscation tries to conceal the object 

of a branch instruction. For instance, the employment of SEH i.e. Structured 

Exception Handling on the Microsoft Windows based operating system, best explains 

the process of branch obscure. In a malware, the employment of SEH to hide control 

flow is very common. This exact technique of SEH incorporates an indirect branch. 

The process in indirect branching utilises the content of data as the object of a branch. 

This decodes the detection of control flow into a complicated data flow inspection 

issue. The employment of a branch function expands this technique and executes 

many branches via an individual routine. The main idea behind the process of branch 

obfuscation is to make a static inspection of the malware by a malware analyst as well 

as the procedure of automation more complicated. For instance, ‘mov 

$0x8048200, %eax’ then ‘jmp *%eax’, involves an indirect branch function 

(Cesare, 2010). 

6. Branch Transposition: The process of branch transposition in conditional branches, 

transposes the condition of the branch. Considering primarily when the condition is 

true the branch may move the control, the process of branch transposition modifies 

the branch condition when false. To keep the primary semantics of the malware file, 

the process of branch transposition inverts the branch instruction as well. For instance, 

the statement of a branch condition true would be modified to a false statement. 

Moreover, the condition in the process would also be transposed. Branch transposition 

is a kind of instruction replacement based on control flow statements. For example, 
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the code ‘jc $0x80482000’ can be transposed to ‘cmc # complement carry 

flag jnc $0x80482000’ via branch transposition (Cesare, 2010). 

7. Branch Inverting: Branch inverting is a homogenous approach to branch 

transposition in which the branch instruction is redrafted by replacing it with 

semantically similar code with distinct control flow features. For instance, if the 

primary code has a statement with a branch condition of true then the modified code 

has a statement with a branch condition of false to the primary failed instruction. The 

modified failed instruction then thoroughly branches to the primary conditional 

branch object. For example, the code ‘jz $0x80482000’ inverts to ‘jnz L jmp 

$0x80482000 L:’ (Cesare, 2010). 

8. Opaque Base Insertion: The process of opaque base insertion always calculates to 

the same outcome. It is challenging for a malware analyst or automated system 

analysis to recognise the base insertion result because of the complex construction of 

opaque base insertion. The process of opaque base insertion can be utilised to embed 

expendable branching in the control flow of malware. They can also be utilised to 

allocate variable values which are challenging to diagnose statically. The main 

purpose of opaque base insertion is for code concealment, and also to avoid getting 

detected by a malware analyst or automated static system evaluation. For instance, 

‘mov $1, %eax jz $0x80482000’, is a rationalised opaque base insertion 

(Cesare, 2010). 

9. Code Packing: Code packing is a powerful approach utilised to conceal malware and 

obstruct the understanding of a malware analyst towards malware’s objective. In a 

particular month in 2007, around 79% of detected malware from a well-known AVS 

was known to be packed. Moreover, in 2006, nearly 50% of new malware were found 

to be repacked variants of existing malware (Cesare, 2010). 

Code packing is not only utilised to obstruct the understanding of malware by a 

malware analyst but also utilised by malware to avoid getting identified by the AVSs. 

Polypack (Oberheide, Bailey, & Jahanian, 2009) – an automated online packing utility 

for bypassing excellent antivirus systems, examined the usefulness of code packing 

towards antivirus identification by supplying a utility to pack malware, utilising a 

bunch of tools based on code packing. AVSs often have the potential of revealing 

tools with known packing code, but also had a commercial concern revealing tools 
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with unknown packing code. Nonetheless, polypack showed that packing could be a 

powerful tool to bypass an AVS with several commercial malware identification 

packages, but lacking to detect the packed variants of existing malware (Cesare, 

2010). 

Figure B.2: The traditional code packing modification (Cesare, 2010, p.33). 

It is a known fact that code packing is utilised in many malware, but code packing 

can also assist in supplying software security and restrictions for the intellectual 

property incorporated in a program. It is not certainly preferable to blacklist all 

instances of code packing as being indicators of malicious activity. Code packing 

software products are an open source which is available freely and commercially sold 

to everyone as a genuine tool. In consequence, revealing packed programs supplies 

an advantage. It is preferable to confirm if the packed data are malicious, instead of 

detecting only the case where unknown data are packed (Cesare, 2010). Figure B.2 

shows the traditional code packing modification. 

10. Instruction Correspondence: Particularly on CISC (Complex Instruction Set 

Computing) CPU design such as the Intelx86, there are often several individual 

instructions which have the similar outcome. For all these instruction the register 

would be set from r1 to zero (Aycock, 2006): 

clear r1 

xor r1,r1 

and 0, r1 

move 0, r1 
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11. Instruction Series Correspondence: Instruction correspondence can be postulated 

to series of instructions. While individual instruction correspondence is at the leniency 

of the CPU’s instruction sequence, instruction series correspondence is more 

convenient, and can be implemented in both low-level and high-level languages 

(Aycock, 2006): 

x = 1   y = 22 

  x = y – 15 

12. Register Renaming: A slight, but considerable, the modification can be initiated just 

by modifying the registers that instructions utilise. While this creates no deviation 

from a high-level aspect, like a human interpreting the register code, renaming 

modifies the bit formats that encrypts the instructions; this makes the job harder for 

the AVSs focusing on the malware instructions. For instance (Aycock, 2006): 

r1 = 18    r3 = 18 

r2 = 54           r1 = 54 

r3 = r1 + r2   r2 = r3 + r1 

The idea of register renaming normally broadens to variable renaming (discussed 

above) in complex-level languages like a macro malware might implement (Aycock, 

2006). 

13. Runtime Code Formation: One method to change the code is to conceal some code 

until execution. Either new code can be created, or existing code can be altered 

(Aycock, 2006). 

r1 = 18   r1 = 18 

r2 = 54  => r2 = 54 

r3 = r1 + r2  create r3 = r1 + r2 

    call created_code  
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14. Consistency: The primary code can be divided into numerous strings of execution, 

which not only modifies the code, but also can considerably obscure automatic 

inspection. For example (Aycock, 2006): 

r1 = 18   begin string S 

r2 = 54  => r1 = 18 

r3 = r1 + r2  wait for signal 

    r3 = r1 + r2 

        ... 

    S: 

     r2 = 54 

     send signal 

     exit string S 

15. Inlining and Outlining: Code inlining is an approach generally used to evade 

subroutine call overhead, that substitutes a subroutine call with the code of the 

subroutine. For instance (Aycock, 2006): 

   ...          ... 

call S1    r1 = 18 

call S2    r2 = r3 + r2 

   ...     =>  r4 = r1 + r2 

S1: 

r1 = 18   r1 = 18 

 r2 = r3 + r2  r2 = 54 

 r4 = r1 + r2  r3 = r1 + r2 

 return     ... 

S2: 

 r1 = 18 

 r2 = 54 

 r3 = r1 + r2 

 return  
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Code outlining is the inverse approach, it does not need to maintain any logical code 

arrangement, nevertheless (Aycock, 2006): 

  ...      ... 

r1 = 18   r1 = 18 

 r2 = r3 + r2  r2 = r3 + r2 

 r4 = r1 + r2  call S12 

=>  r3 = r1 + r2 

 r1 = 18     ... 

 r2 = 54   S12: 

 r3 = r1 + r2   r4 = r1 + r2  

   ...     r1 = 18  

        r2 = 54 

        return 

Another way is to transform the code in question into the threaded code, which has 

no relation to threads utilised for the concept of consistent programming, regardless 

of the term. Threaded code is utilised as a replacement approach to executing 

interpreters based on programming language. Subroutines involved in the threaded 

code do not restore to their location from which they were implemented, but rather 

instantly jump to the following subroutine; the threaded code by itself is just a range 

of code addresses. For instance (Aycock, 2006): 

  ...      ... 

r1 = 18   next = &code 

 r2 = r3 + r2  goto [next] 

 r4 = r1 + r2  CODE: 

=>   &I1 

 r1 = 18    &I2 

 r2 = 54    &X 

 r3 = r1 + r2  X:  

   ...     r1 = 18  

        r2 = 54 

        r3 = r1 + r2 
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        ... 

       I1: 

        R1 = 18 

        inc next 

        goto [next] 

       I2: 

        r2 = r3 + r2 

        r4 = r1 + r2 

        inc next 

        goto [next] 

16. Subroutine Interposing: Inlining and outlining variations preserve the primary code, 

but rebundle it in several methods. Code can also be modified by merging self-

determining subroutines together, as shown in the instance below (Aycock, 2006): 

  ...       ... 

call S1    call S12 

call S2      ... 

  ...    => S12:  

S1:        r5 = 18 

r1 = 18    r1 = 18 

  r2 = r3 + r2  r6 = r3 + r2 

  r4 = r1 + r2  r2 = 54 

return   r4 = r5 + r6 

    S2:    r3 = r1 + r2 

  r1 = 18   return 

  r2 = 54    

  r3 = r1 + r2    

  return     

To ignore variance with registers utilised by S2, some registers had to be renamed 

from the code of S1. The total execution in the interposed subroutine is similar to the 

primary code with regards to the values calculated (Aycock, 2006). 
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Several of these code modification techniques discussed here are also utilised in the area 

of code obfuscation; investigation in the area of code obfuscation is utilised to attempt 

and obstruct reverse engineering. There are also numerous amount of complex code 

obfuscations carried out by advanced compilers. Not all compiler approaches and code 

transformation approaches have yet been utilised by malware writers (Aycock, 2006). 

B.3 Polymorphic Obfuscation based on Semantic Reconstruction 

Semantic transformation based polymorphic malware are the extended version of the 

syntactic transformation based polymorphic malware, where the new variation is an 

obtained creation of the primary malware. Semantic modification of a malware happens 

due to the malware writers changing the primary source code or the malware 

functionality. This can happen to a genuine progress of the malware through its life cycle 

of the program development. Moreover, it can happen when a malware writer recycles 

the existing malware code to write a new malware variant (Cesare, 2010). 

1. Code Insertion: The process of code insertion happens when fresh functionality is 

implemented in the existing malware code (Cesare, 2010). 

2. Code Deletion: The process of code deletion happens when an existing functionality 

is eliminated from the malware code (Cesare, 2010). 

3. Code Replacement: The process of code replacement happens when an existing 

functionality in the malware code is substituted by a different code or algorithm 

(Cesare, 2010). 

4. Code Transposition: The process of code transposition happens when in an existing 

malware a particular functionality and code is eliminated from its original location 

and semantically placed into a separate location in the malware code (Cesare, 2010).
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Appendix C 

C.1 Materials and Tools 

This section presents the materials and tools used in this thesis for experimental purposes. 

C.1.1 W32.CTX/W32.Cholera Virus 

The Win32.Cholera/W32.Cholera/W32.CTX is a polymorphic virus which attacks 

executable files of the format PE (Portable Executable). This virus is programmed in 

assembly language, and it employs an EPO (Entry Point Obfuscation) approach, which 

makes its identification difficult (NOD21, 2004; SOPHOS, 2015; WayBackMachine, 

2010). EPO is a method employed by virus writers to prevent AVS scanners from 

examining the (malicious) files that have been captured (Schiffman, 2010). 

Win32.Cholera/W32.Cholera/W32.CTX was therefore chosen to fully evaluate and 

challenge the signatures generated via proposed methods in this research. The original 

source files were downloaded from ‘VX Heavens’ (VX Heavens, 2009) website. All the 

198 unknown (new) polymorphic variants (Px) of W32.Cholera virus were generated 

manually by executing one of the original (Ps) virus files (in this case, a file named 

‘Virus.Win32.CTX.10853’). 

C.1.2 JS.Cassandra Virus 

Unlike any other JavaScript virus, JS.Cassandra is comprised of four distinct polymorphic 

engines: polymorphic engine I, which includes Garbage or Junk codes; polymorphic 

engine II, which modifies its Body (Body Changing); polymorphic engine III, which 

modifies its Variables (Variable Changing); and polymorphic engine IV, which modifies 

its Numbers (Number Changing). The likelihood of the virus to decode using the 

polymorphic engine I is either 1:3 or every 1:4th line (inside its viral code) and engine I 

has a polymorphism level of 3 (see page no. 35). The likelihood of the virus to decode 

using polymorphic engine II and III are 1:3 and engine II has a polymorphism level of 6, 

whereas, engine III has a polymorphism level of 2. The likelihood of the virus decoding 

using polymorphic engine IV is either 1:1 or every 1:10th number (found inside its viral 

code). Engine IV has a polymorphism level of 2 (SPTH, 2015; Belcebu, n.d.). 

JS.Cassandra virus is selected for this research because unlike the majority of similar 

malware its source code and the source code of its known (Pk) variants are readily 

available. The original (Ps) JS.Cassandra virus with its original source code was 

downloaded from its author’s (Second Part to Hell) website (SPTH, 2015). All the 351 
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known (Pk) polymorphic variants of JS.Cassandra virus were also retrieved from the virus 

author’s website (SPTH, 2004). 

C.1.3 W32.Kitti Virus 

The W32.Kitti virus (SPTH, 2013) was fully written in assembly language. The mutation 

engine in W32.Kitti virus alters instruction to overlapped code. This virus worms/sneaks 

over shared network disks and portable disks. In total, 1105 unknown (Px) polymorphic 

malware variants were generated manually and were obtained by executing the original 

virus (Ps) file (in this case, a filename ‘oc.exe’). 

C.1.4 Transcriptase Virus 

In biological sciences, a transcriptase is defined as an enzyme that initiates the creation 

of ribonucleic acid (RNA) from a template of deoxyribonucleic acid (DNA) during the 

process of transcription (The American Heritage Dictionary, 2018). The term 

Transcriptase was adopted by the creator of the metamorphic JavaScript malware in 

(Transcriptase, 2013) and is a proof-of-concept malware (Ferrie, 2013), which is used in 

this thesis. The parallelism amidst the biological procedure of transcriptase and such a 

metamorphic JavaScript generator is somewhat flimsy (Musale, Austin, & Stamp, 2015; 

Troia, Visaggio, Austin, & Stamp, 2016; Ferrie, 2013). 

Once executed inside a folder, Transcriptase infects every JavaScript files within that 

folder. Every infection emanates in a mutated instance of the malware that is attached to 

the victim code. The aim of the mutation is to avoid detection through signature-based 

techniques (Musale, Austin, & Stamp, 2015; Troia, Visaggio, Austin, & Stamp, 2016; 

Ferrie, 2013). 

The generator of Transcriptase adopts a customized meta-language to implement its 

metamorphosis. The meta-language data is executed adopting an executable program that 

is executed in JavaScript, and the executable program per se is a component of the 

malware program. The benefit of acquiring a customized meta-language is to in fact add 

information, needed to generate extremely mutated instances by the malware writer, 

simultaneously avoiding the code to expand uncontrollably over time (Musale, Austin, & 

Stamp, 2015; Troia, Visaggio, Austin, & Stamp, 2016; Ferrie, 2013). 
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C.1.5 JAligner 

‘JAligner’ (Moustafa, 2010) is an open source Java application that implements the SWA 

and is used in this thesis for the process of pairwise alignment of biological sequences. 

‘JAligner’ provides the options of gap open and gap extend penalties along with the wide 

selection of the 71 different substitution matrices. Chapters 5 to 7 will use ‘JAligner’ and 

the results of the alignments will be processed for the identification and extraction of 

common substrings (meta-signatures). The open source master version of ‘JAligner’ can 

perform pairwise sequence alignment using the NWA and is employed in Chapter 6 – 

Part-I. This tool can be retrieved from the following website: 

http://jaligner.sourceforge.net/. 

C.1.6 Weka 

Weka (Frank, Hall, & Witten, 2016) is an open source machine learning tool for 

conducting data mining jobs and consists of tools for clustering, association rules, data 

preprocessing, visualisation, classification, and regression. Weka is employed in Chapters 

4, 6 and 7 for rule extraction and classification. PRISM and NNge classifiers are used in 

this thesis, which are inbuilt Weka classifiers. 

C.1.7 ClamAV and ‘sigtool’ 

ClamAV (ClamAV, 2018; ClamAV, 2016) is an open source antivirus tool that is used in 

Chapters 4 to 7 for the purpose of testing any signatures or generic signatures generated 

during this research study against variants in the signature’s malware family. The testing 

is performed with the help of ‘clamscan’ virus scanner by creating a .ndb database, which 

is a part of the ClamAV tool. One other part of ClamAV is the ‘sigtool’ which is used in 

this thesis for the purpose of extracting hexadecimal dumps of the malicious files. The 

tools and source code of ClamAV can be retrieved through the following website: 

https://www.clamav.net/downloads. 

C.1.8 VirusTotal 

‘VirusTotal’ (VirusTotal, 2018) is an online tool that scans and examines files for 

malicious activities. This tool constitutes of 56 well-known AVSs with their up-to-date 

databases. In this thesis, ‘VirusTotal’ provides confidence that the manual code 

alterations for non-malicious (Pu) files are effective and also confirms their uniqueness. 

This tool creates a unique SHA256 signature for every suspicious file that is uploaded to 

its online web tool and can be accessed through the following website: 

http://jaligner.sourceforge.net/
https://www.clamav.net/downloads
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https://www.virustotal.com/en/. In this thesis, ‘VirusTotal’ (VirusTotal, 2018) is used to 

check malware authenticity. Furthermore, there are several other freely available online 

virus scanners, such as ‘Metascan Online’, ‘VirSCAN’, ‘CA Online Malware Scanner’, 

and ‘Gary’s Hood’ (Hood, 2016). In this thesis, ‘Gary’s Hood’ (Hood, 2016) is used to 

scan multiple malicious files for experimental detection purposes (Chapter 6). 

C.1.9 MAFFT 

MAFFT (Katoh & Standley, 2013; Katoh, et al., 2002) is an online tool that performs 

multiple sequence alignment of larger sequences (big data) and is employed in Chapter 7 

for converting variable-length sequence into fixed length sequences for the process of 

data mining. This tool can be accessed via the following website: 

http://mafft.cbrc.jp/alignment/software/. 

C.1.10 Random Data File Creator (RDFC) 

RDFC (Berthold, 2004) is a console application which is used to generate random binary 

files of any sizes by filling with random binary numbers and is a Microsoft Windows 

application. This tool is employed in this thesis to generate random files for signature 

testing purposes for its effectiveness and to check for the false positive and false negative 

rates. This tool can be downloaded from the following website: 

http://www.bertel.de/software/rdfc/index-en.html. 

https://www.virustotal.com/en/
http://mafft.cbrc.jp/alignment/software/
http://www.bertel.de/software/rdfc/index-en.html
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Appendix D 

D.1 Clamscan Database File 

The content inside a typical .ndb clamscan database file for a virus family and its use in 

the experiments conducted in Chapters 4 to 7 is shown below, for instance: 

Virus:0:*:537472696e672e66726f6d43686172436f646528 

Where, ‘Virus’ is the virus filename. 

‘0’ is the ‘TargetType’ (i.e. the type of target file, in this case, it is a JavaScript file) and 

several options are available within which are, ‘0’ is for any file, ‘1’ is for portable 

executable file, ‘2’ is OLE2 component i.e. a vb script file, ‘3’ is for normalised HTML, 

‘4’ is for mail type files, and ‘5’ is for graphics files. Option ‘0’ was chosen in this case  

(Naidu & Narayanan, 2016). 

‘*’ is the ‘Offset’ type to tell the scanner about where the signature applies inside the file 

(similar to {n} wildcard) & three options are available within, which are, ‘*’ is for 

anywhere inside the file, ‘n’ is for n bytes from beginning of file, & ‘EOF – n’ is for End 

Of File minus the n bytes. Option ‘*’ was chosen in this case  (Naidu & Narayanan, 2016). 

‘537472696e672e66726f6d43686172436f646528’ is the meta-signature (in hexadecimal 

format) for JS.Cassandra polymorphic viral family obtained from the seven step 

approach in Chapter 4. 
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D.2 Clamscan Scan Results for 43 Malicious (Pk), 43 Non-Malicious 

(Pu) and 43 Random Files 

 

Figure D.1: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

the 43 malicious (Pk) files using the meta-signature. 

 

Figure D.2: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

the 43 non-malicious (Pu) files using the meta-signature. 



 

231 
 

 

Figure D.3: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

the 43 random files using the meta-signature.  
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Table D.1: Generated CRC32b Hash Value and File Size in Bytes for the 43 Malicious 

(Pk) Files, 43 Non-Malicious (Pu) Files, and 43 Random Files. 

Malicious (Pk) variants Non-malicious (Pu) variants Random variants 

CRC32b Hash 

Value  

File Size 

(bytes) 

CRC32b 

Hash Value  

File Size 

(bytes) 

CRC32b 

Hash Value  

File Size 

(bytes)  

26489347 7,767 ab657f45 1,823 bfa1e3d9 9,216 

848562f1 8,324 3d94f85f 2,662 8956b4ef 4,096 

fab48c8c 54,183 634041fe 28 07baad1b 5,120 

7c4ea313 9,938 90dd470d 3,697 0ca68128 7,168 

bd3b9fdc 8,759 0631e490 2,981 819ec3a5 10,240 

9904ef9c 8,392 5273cd32 2,137 048d638c 11,264 

511621c7 9,400 32b7909a 3,748 f6425fdb 13,312 

a7bc9795 10,059 d1f95eae 2,125 9fda09d6 15,360 

a878abc3 10,763 cd486121 2,868 8b2ff426 17,408 

ec3797e7 12,282 e2220b79 3,874 e3702e86 20,480 

a2e5c540 10,799 d4cffb98 2,965 ae57c29a 19,456 

9c8432d2 10,873 91f3e71f 1,688 dbfae5e5 133,120 

2b40aa76 8,639 03fe3ba9 1,439 0d4cd9da 52,224 

92c87b26 11,334 a6308749 3,021 8a8d3664 35,840 

52653b1d 9,507 6eaa1574 1,885 fd11933b 24,576 

851c41b7 9,740 e7cb7513 2,872 df99e215 27,648 

f006361e 14,900 0b52da18 3,876 fe998b7c 22,528 

8ead30b2 9,945 31838f54 2,887 c39cd570 33,792 

1ea87480 46,691 505c6653 27 8b461802 45,056 

ecd82d26 10,677 db5a61cc 1,840 79b2dfb3 26,624 

59e9feb3 139,909 634041fe 28 d3951707 37,888 

70763a3b 14,767 c7b5d591 6,461 68cdd062 103,424 

f4289eb6 52,595 26fae117 35,637 12307f18 59,392 

c4290e04 29,603 687ff9af 15,230 c0cd6499 52,224 

3797337e 25,828 8be6dc4c 9,394 6ec3f157 74,752 

4736f8b5 45,659 bb0289a8 22,372 3d5fa9ad 54,272 

c2b04d58 45,551 2bcc0d72 21,713 e2f21971 44,032 

a181f255 92,807 afcab12f 69,603 384a6e54 49,152 

f09e878a 52,166 91a706d4 29,312 210033d2 34,816 

1508c8c9 92,418 c08fd2bc 63,980 edecfc3f 13,312 

516fb310 45,161 4beeda26 20,518 bad13ac3 32,768 

1fb5398a 48,795 fab8097c 22,407 df86781e 43,008 

1ce21c33 63,703 1f89ec68 37,841 7f6a41dc 41,984 

477f3b8b 73,644 a55be2cf 44,847 4e4e73b6 21,504 

e13deddd 101,869 6090639e 69,861 2969861d 23,552 

652475dc 108,964 394b9964 76,520 5e26f76b 25,600 

6c2eb137 104,588 b9c78d0d 74,971 cafef1e2 28,672 

8efd2988 72,866 abc0e54d 41,369 1da5bf28 29,696 

0c380868 52,306 7ef94488 25,542 0c200f97 30,720 

2fb372eb 88,438 f041406f 55,714 91ea7ac7 31,744 

bf934d5b 60,612 2c940492 29,215 2ac33710 36,864 

200270d4 79,344 00b715f9 44,847 afc9301b 38,912 

70266dfb 103,509 d2d13cbc 70,014 cb672fef 39,936 

Total File Size 

→ 
1,878,074 

Total File 

Size → 
935,839 

Total File 

Size → 
1,482,752 
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Table D.2: Test statistics of some of the AVSs after testing against the 43 malicious (Pk) and 43 non-malicious (Pu) variants of JS.Cassandra and the 43 

random files. 

Top AVSs AVG Avast Avira Bitdefender ClamAV ESET-NOD32 Kaspersky McAfee Microsoft Panda Symantec 
Trend 

Micro 

43 Malicious (Pk) 

Files 

Detection Rate 

(Accuracy) 

17/43 

(39%) 

35/43 

(81%) 

12/43 

(28%) 
1/43 (2.3%) 

40/43 

(93%) 
22/43 (51%) 1/43 (2.3%) 

22/43 

(51%) 

43/43 

(100%) 

1/43 

(2.3%) 

1/43 

(2.3%) 

1/43 

(2.3%) 

Sensitivity/Recall 39% 81% 28% 2.3% 93% 51% 2.3% 51% 100% 2.3% 2.3% 2.3% 

Specificity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Precision 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

F1 Score 57% 90% 44% 4.5% 96% 68% 4.5% 68% 100% 4.5% 4.5% 4.5% 

43 Non-Malicious 

(Pu) Files 

Detection Rate 

(Accuracy) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 
0/43 (0.0%) 

0/43 

(0.0%) 
0/43 (0.0%) 0/43 (0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

Sensitivity/Recall 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Specificity 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Precision 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

F1 Score 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

43 Random Files 

Detection Rate 

(Accuracy) 

0/43 

(0.0%) 

0/43 

(0.0%) 

1/43 

(2.3%) 
0/43 (0.0%) 

0/43 

(0.0%) 
0/43 (0.0%) 0/43 (0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

0/43 

(0.0%) 

Sensitivity/Recall 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Specificity 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Precision 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

F1 Score 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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D.3 Further experiments 

The meta-signature of JS.Cassandra virus family not only detected 43 malicious files 

successfully but also detected 43 non-malicious (Pu) files. These non-malicious (Pu) files 

still had some polymorphic functions intact within them. All of the 43 non-malicious (Pu) 

files were still executable, but a few gave JavaScript runtime and compilation errors. 

These executable non-malicious (Pu) files might cause some serious potential threats, as 

the polymorphic functions inside these files in some cases might still make them 

polymorphic. Table D.2 shows that none of the 12 AVSs detected these executable non-

malicious (Pu) files as malicious. One instance of such a file is explained here. 

Table D.3: Generated CRC32b Hash Value and File Size in Bytes for Original Variant 

File (VO), Modified Variant File (VM) and 12 Variants (VM1-VM12). 

Malicious File CRC32b Hash Value File Size in bytes 

Original Variant File VO 848562f1 8,324 

Modified Variant File VM fc79adfe 5,695 

Variant 1 VM1 557562ad 6,289 

Variant 2 VM2 150e0d7a 6,855 

Variant 3 VM3 5645b651 7,457 

Variant 4 VM4 42f590e7 7,465 

Variant 5 VM5 fcb28864 8,049 

Variant 6 VM6 dd679959 8,055 

Variant 7 VM7 204f3304 9,019 

Variant 8 VM8 3e2ef86f 9,649 

Variant 9 VM9 3d987ac4 10,713 

Variant 10 VM10 0ecba96f 11,255 

Variant 11VM11 bbe2b767 12,825 

Variant 12 VM12 55a47fbf 14,031 

- Total File Size → 125,681 

 

A variant of JS.Cassandra was chosen and around four polymorphic functions were 

removed from it. Still, more than ten functions were intact inside that variant file. The 

modified variant file was executed, and 12 new unique polymorphic variants were 

generated from it for the purpose of distinguishing between malicious (Pk) and non-

malicious (Pu) files experimentally. An infinite number of new unique polymorphic 

variants could be generated from the same file. Table D.3 provides the CRC32b hash 

value and file size in bytes for the original variant file (VO), modified variant file (VM) 
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and 12 new variants (VM1-VM12). No two files have the same CRC32b hash value and file 

size. 

All 12 new variant files (VM1-VM12), the original variant file (VO) and the modified 

original file (VM) were scanned against the 12 AVSs. Scan results of the 12 AVSs are 

shown in Table D.4. Only ‘Microsoft’ antivirus was able to detect all the 14 malicious 

files successfully. ‘Bitdefender’ and ‘Kaspersky’, could not detect any of the 14 malicious 

files. ‘McAfee’, could only detect one of the 14 malicious files – the original variant file 

VO. Original variant file VO before modification could be detected by five AVSs, but after 

the modification, VM could only be detected by the ‘Microsoft’ antivirus tool. 

Table D.4: Detection Capabilities of Top Well-Known AVSs for Original Variant File 

(VO), Modified Variant File (VM) and 12 New Variants (VM1-VM12). 

Top AVs AVG Avast Avira Bitdefender ClamAV ESET-

NOD32 

Original Variant 

File (VO) 
Yes No No No Yes Yes 

Modified 

Variant File 

(VM) 

No No No No No No 

12 Variant Files 

(VM1-VM12) 
No No No No No No 

Top AVs Kaspersky McAfee Microsoft Panda Symantec Trend 

Micro 

Original Variant 

File (VO) 
No Yes Yes No No No 

Modified 

Variant File 

(VM) 

No No Yes No No No 

12 Variant Files 

(VM1-VM12) 
No No Yes No No No 

 

The meta-signature of JS.Cassandra virus family was tested to detect the same 14 

malicious files (VO, VM, and V1-V12). All 14 files were successfully detected as infected 

by the ‘clamscan’ antivirus scanner using the meta-signature in 0.008 sec (Figure D.4). 
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Figure D.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

12 variant files (VM1-VM12), original variant file (VO) and modified variant file (VM). 

 

Figure D.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for 

352 malicious files (Pk) of JS.Cassandra.  
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Appendix E 

Table E.1: Full results of the 71 pairwise local alignments performed in Step-3. In bold 

are the matrices selected in Step-3 in Section 5.11.3 for further analysis in Part-III. 

Substitution Matrix Identity 

(%) 

Similarity 

(%) 

Gaps 

(%) 

Length Score 

BLOSUM30 51.72% 56.47% 29.43% 41714 176113.00 

BLOSUM35 52.43% 52.43% 27.48% 41242 157336.00 

BLOSUM40 52.83% 57.81% 27.22% 41181 177285.00 

BLOSUM45 53.46% 53.46% 23.75% 40371 135108.00 

BLOSUM50 53.60% 53.60% 24.32% 40502 149366.00 

BLOSUM55 53.90% 53.90% 23.58% 40330 155055.00 

BLOSUM60 52.48% 52.48% 20.74% 39667 102094.00 

BLOSUM62 52.76% 52.76% 21.32% 39796 104663.00 

BLOSUM65 52.76% 52.76% 21.32% 39796 104663.00 

BLOSUM70 52.84% 52.84% 21.93% 39931 102124.00 

BLOSUM75 52.84% 52.84% 21.93% 39931 102124.00 

BLOSUM80 54.79% 54.79% 26.63% 41041 170844.00 

BLOSUM85 53.26% 53.26% 23.29% 40239 104206.00 

BLOSUM90 53.58% 53.58% 24.22% 40478 105990.00 

BLOSUM100 54.71% 54.71% 31.69% 42094 178888.00 

BLOSUMN 53.85% 53.85% 26.60% 41034 104333.00 

DAYHOFF 49.41% 62.32% 21.70% 39868 112237.00 

EDNAFULL 52.07% 52.07% 36.22% 38989 51413.00 

GONNET 50.68% 56.88% 19.48% 39377 123052.00 

IDENTITY 100.00% 100.00% 0.00% 397 397.00 

MATCH 63.57% 63.57% 18.81% 6083 1192.00 

PAM10 51.19% 51.19% 44.41% 43576 108131.00 

PAM20 52.48% 52.48% 39.63% 42275 104507.00 

PAM30 52.74% 52.74% 37.26% 41660 101659.00 

PAM40 52.94% 52.94% 35.49% 41213 97752.00 

PAM50 53.25% 53.25% 32.89% 40571 92401.00 

PAM60 52.09% 56.14% 31.09% 41943 97310.00 

PAM70 52.18% 56.22% 30.26% 41740 98984.00 

PAM80 51.72% 56.21% 28.56% 41325 93804.00 

PAM90 51.70% 56.25% 27.18% 40996 89616.00 

PAM100 51.60% 62.28% 25.74% 40656 91799.00 

PAM110 51.10% 62.45% 25.35% 40565 88963.00 

PAM120 50.71% 62.69% 22.81% 40117 88503.00 

PAM130 50.71% 62.69% 22.81% 40117 88503.00 

PAM140 50.85% 62.60% 21.92% 39917 90323.00 

PAM150 50.30% 62.45% 21.77% 39884 84555.00 

PAM160 49.12% 62.65% 20.66% 39636 80017.00 

PAM170 50.47% 62.38% 25.71% 40818 131637.00 

PAM180 49.94% 62.28% 25.68% 40812 128560.00 

PAM190 50.04% 62.42% 25.32% 40694 129164.00 

PAM200 50.39% 61.52% 24.92% 40634 120995.00 

PAM210 49.16% 61.84% 22.65% 40081 110664.00 
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PAM220 49.16% 61.84% 22.65% 40081 110664.00 

PAM230 49.19% 61.96% 22.37% 40019 111471.00 

PAM240 49.19% 61.96% 22.37% 40019 111471.00 

PAM250 49.41% 62.32% 21.70% 39868 112237.00 

PAM260 48.74% 62.27% 21.37% 39794 109500.00 

PAM270 48.54% 62.33% 24.39% 40479 152705.00 

PAM280 48.73% 62.49% 23.52% 40278 144159.00 

PAM290 48.05% 62.37% 23.34% 40238 139598.00 

PAM300 47.75% 62.38% 23.22% 40211 136884.00 

PAM310 48.59% 62.05% 23.01% 40162 134398.00 

PAM320 47.56% 61.93% 23.47% 40267 131468.00 

PAM330 47.56% 61.93% 23.47% 40267 131468.00 

PAM340 46.85% 61.74% 23.19% 40203 126252.00 

PAM350 47.05% 69.15% 24.62% 40532 165839.00 

PAM360 45.98% 69.21% 24.63% 40534 163200.00 

PAM370 46.06% 69.45% 24.11% 40413 163778.00 

PAM380 46.13% 69.65% 23.72% 40325 155074.00 

PAM390 45.89% 69.04% 24.22% 40440 149355.00 

PAM400 45.31% 69.07% 24.36% 40472 144366.00 

PAM410 45.40% 67.78% 26.84% 41081 180922.00 

PAM420 44.59% 68.30% 26.06% 40866 179081.00 

PAM430 44.59% 68.30% 26.06% 40866 179081.00 

PAM440 43.67% 68.01% 26.56% 40985 174344.00 

PAM450 44.69% 67.43% 27.20% 41165 170906.00 

PAM460 45.04% 67.98% 26.21% 40903 161955.00 

PAM470 44.17% 67.24% 27.70% 41256 197122.00 

PAM480 43.56% 67.29% 27.76% 41270 192432.00 

PAM490 43.56% 67.29% 27.76% 41270 192432.00 

PAM500 44.43% 66.82% 28.19% 41402 188980.00 
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Appendix F 

  

Figure F.1: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-2 (Experiment I). 
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Figure F.2: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge 

rules in Step-2 (Experiment I). 
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Figure F.3: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos13633-pos13643 obtained from Weka 

during the generation of NNge rules in Step-2 (Experiment I).
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Figure F.4: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-3 (Experiment II). 
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Figure F.5: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge 

rules in Step-3 (Experiment II). 
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Figure F.6: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos36663-pos36673 obtained from Weka 

during the generation of NNge rules in Step-3 (Experiment II).
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Figure F.7: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-4 (Experiment III). 
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Figure F.8: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge 

rules in Step-4 (Experiment III). 
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Figure F.9: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos47087-pos47097 obtained from Weka 

during the generation of NNge rules in Step-4 (Experiment III).
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Appendix G 

Table G.1: Full results of the pairwise local alignments that were performed in Step-3 in 

Chapter 5: Part-II. 

Polymorphic 

malware 1 
Pairwise Alignment 

Gap 

Open 

Penalty 

Gap 

Extend 

Penalty 

Identity 

Percentage 

Similarity 

Percentage 

Gaps 

Percentage 

Alignment 

Length 

Alignment 

Score 

JS.Cassandra 
Virus 

Original JS.Cassandra 

virus and Variant 1 

5 0.5 74.71% 74.71% 25.29% 767 368.00 

5 1 79.64% 79.64% 20.36% 658 306.00 

10 0.5 69.34% 69.34% 30.66% 698 301.00 

10 1 96.18% 96.18% 3.82% 314 263.00 

15 0.5 65.55% 65.55% 34.45% 714 272.50 

15 1 97.27% 97.27% 2.73% 293 249.00 

20 0.5 65.08% 65.08% 34.92% 693 252.00 

20 1 98.51% 98.51% 1.49% 269 242.00 

25 0.5 98.51% 98.51% 1.49% 269 238.50 

25 1 98.51% 98.51% 1.49% 269 237.00 

Variant 1 and Variant 2 

5 0.5 67.06% 67.06% 32.94% 2714 887.00 

5 1 70.97% 70.97% 29.03% 2652 540.00 

10 0.5 58.42% 58.42% 41.58% 2862 507.00 

10 1 80.16% 80.16% 19.84% 766 345.00 

15 0.5 66.45% 66.45% 33.55% 1079 391.00 

15 1 89.30% 89.30% 10.70% 430 310.00 

20 0.5 66.45% 66.45% 33.55% 1079 341.00 

20 1 89.30% 89.30% 10.70% 430 300.00 

25 0.5 89.30% 89.30% 10.70% 430 312.00 

25 1 89.30% 89.30% 10.70% 430 290.00 

Variant 2 and Variant 3 

5 0.5 57.07% 57.07% 42.93% 3634 574.00 

5 1 77.85% 77.85% 22.15% 957 385.00 

10 0.5 64.53% 64.53% 35.47% 1139 352.50 

10 1 85.02% 85.02% 14.98% 601 295.00 

15 0.5 68.69% 68.69% 31.31% 741 306.00 

15 1 85.33% 85.33% 14.67% 450 262.00 

20 0.5 68.69% 68.69% 31.31% 741 276.00 

20 1 85.33% 85.33% 14.67% 450 242.00 

25 0.5 85.33% 85.33% 14.67% 450 253.00 

25 1 85.33% 85.33% 14.67% 450 222.00 

Variant 3 and Variant 4 

5 0.5 65.42% 65.42% 34.58% 2325 642.00 

5 1 83.56% 83.56% 16.44% 669 373.00 

10 0.5 77.58% 77.58% 22.42% 678 374.00 

10 1 95.22% 95.22% 4.78% 418 360.00 

15 0.5 95.22% 95.22% 4.78% 418 359.00 

15 1 95.22% 95.22% 4.78% 418 350.00 

20 0.5 95.22% 95.22% 4.78% 418 349.00 

20 1 95.22% 95.22% 4.78% 418 340.00 

25 0.5 95.22% 95.22% 4.78% 418 339.00 

25 1 95.22% 95.22% 4.78% 418 330.00 

Variant 4 and Variant 5 

5 0.5 65.18% 65.18% 34.82% 2533 715.00 

5 1 71.79% 71.79% 28.21% 1843 467.00 

10 0.5 85.64% 85.64% 14.36% 613 433.50 

10 1 100.00% 100.00% 0.00% 397 397.00 

15 0.5 85.64% 85.64% 14.36% 613 408.50 

15 1 100.00% 100.00% 0.00% 397 397.00 

20 0.5 79.21% 79.21% 20.79% 635 398.00 

20 1 100.00% 100.00% 0.00% 397 397.00 

25 0.5 100.00% 100.00% 0.00% 397 397.00 

25 1 100.00% 100.00% 0.00% 397 397.00 



 

249 
 

Polymorphic 

malware 2 
Pairwise Alignment 

Gap 

Open 

Penalty 

Gap 

Extend 

Penalty 

Identity 

Percentage 

Similarity 

Percentage 

Gaps 

Percentage 

Alignment 

Length 

Alignment 

Score 

W32.CTX 
Virus 

Original W32.CTX virus 
and Variant 1 

5 0.5 63.57% 63.57% 36.43% 8222 2595.5 

5 1 94.57% 94.57% 5.43% 2304 1922 

10 0.5 73.72% 73.72% 26.28% 4083 1903.5 

10 1 93.48% 93.48% 6.52% 2317 1772 

15 0.5 91.73% 91.73% 8.27% 2335 1726.5 

15 1 92.72% 92.72% 7.28% 2323 1649 

20 0.5 90.51% 90.51% 9.49% 2350 1625.5 

20 1 91.73% 91.73% 8.27% 2335 1531 

25 0.5 90.51% 90.51% 9.49% 2350 1525.5 

25 1 99.29% 99.29% 0.71% 1553 1507 

Variant 1 and Variant 2 

5 0.5 55.62% 55.62% 44.38% 12492 2785.50 

5 1 96.15% 96.15% 3.85% 2309 2015.00 

10 0.5 66.14% 66.14% 33.86% 5333 2073.00 

10 1 94.99% 94.99% 5.01% 2334 1893.00 

15 0.5 74.98% 74.98% 25.02% 3565 1893.50 

15 1 94.12% 94.12% 5.88% 2346 1790.00 

20 0.5 73.62% 73.62% 26.38% 3593 1781.00 

20 1 93.13% 93.13% 6.87% 2358 1692.00 

25 0.5 89.92% 89.92% 10.08% 2411 1703.50 

25 1 93.13% 93.13% 6.87% 2358 1602.00 

Variant 2 and Variant 3 

5 0.5 71.99% 71.99% 28.01% 4349 2238.50 

5 1 89.59% 89.59% 10.41% 2614 1930.00 

10 0.5 76.46% 76.46% 23.54% 3645 2054.00 

10 1 96.41% 96.41% 3.59% 2060 1804.00 

15 0.5 74.50% 74.50% 25.50% 3686 1913.50 

15 1 94.74% 94.74% 5.26% 2090 1758.00 

20 0.5 73.37% 73.37% 26.63% 3710 1799.00 

20 1 94.74% 94.74% 5.26% 2090 1718.00 

25 0.5 93.62% 93.62% 6.38% 2115 1741.00 

25 1 94.74% 94.74% 5.26% 2090 1678.00 

Variant 3 and Variant 4 

5 0.5 64.57% 64.57% 35.43% 4849 1988.50 

5 1 94.40% 94.40% 5.60% 2017 1707.00 

10 0.5 77.16% 77.16% 22.84% 3008 1863.50 

10 1 94.22% 94.22% 5.78% 1956 1613.00 

15 0.5 76.93% 76.93% 23.07% 3008 1807.50 

15 1 93.07% 93.07% 6.93% 1891 1573.00 

20 0.5 75.99% 75.99% 24.01% 3024 1759.50 

20 1 94.15% 94.15% 5.85% 1829 1558.00 

25 0.5 76.97% 76.97% 23.03% 2861 1725.50 

25 1 94.15% 94.15% 5.85% 1829 1543.00 

Variant 4 and Variant 5 

5 0.5 70.24% 70.24% 29.76% 2860 1174 

5 1 74.76% 74.76% 25.24% 2639 859 

10 0.5 60.45% 60.45% 39.55% 3009 863 

10 1 100.00% 100.00% 0.00% 736 736 

15 0.5 73.83% 73.83% 26.17% 1479 753.5 

15 1 100.00% 100.00% 0.00% 736 736 

20 0.5 100.00% 100.00% 0.00% 736 736 

20 1 100.00% 100.00% 0.00% 736 736 

25 0.5 100.00% 100.00% 0.00% 736 736 

25 1 100.00% 100.00% 0.00% 736 736 
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Polymorphic 

malware 3 
Pairwise Alignment 

Gap 

Open 

Penalty 

Gap 

Extend 

Penalty 

Identity 

Percentage 

Similarity 

Percentage 

Gaps 

Percentage 

Alignment 

Length 

Alignment 

Score 

W32.Kitti 
Virus 

Original W32.Kitti virus 
and Variant 1 

5 0.5 81.20% 81.20% 18.80% 3490 2290.00 

5 1 86.35% 86.35% 13.65% 3297 2061.00 

10 0.5 76.25% 76.25% 23.75% 3486 2225.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 0.5 76.25% 76.25% 23.75% 3486 2215.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 0.5 76.25% 76.25% 23.75% 3486 2205.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 0.5 76.25% 76.25% 23.75% 3486 2195.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 1 and Variant 2 

5 0.5 73.04% 73.04% 26.96% 53027 13149.50 

5 1 79.07% 79.07% 20.93% 34109 9585.00 

10 0.5 76.45% 76.45% 23.55% 3482 2233.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 0.5 76.45% 76.45% 23.55% 3482 2223.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 0.5 76.45% 76.45% 23.55% 3482 2213.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 0.5 76.45% 76.45% 23.55% 3482 2203.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 2 and Variant 3 

5 0.5 83.79% 83.79% 16.21% 3343 2309.50 

5 1 88.12% 88.12% 11.88% 3266 2130.00 

10 0.5 76.35% 76.35% 23.65% 3484 2229.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 0.5 76.35% 76.35% 23.65% 3484 2219.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 0.5 76.35% 76.35% 23.65% 3484 2209.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 0.5 76.35% 76.35% 23.65% 3484 2199.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 3 and Variant 4 

5 0.5 84.84% 84.84% 15.16% 3324 2316.00 

5 1 88.18% 88.18% 11.82% 3265 2129.00 

10 0.5 76.35% 76.35% 23.65% 3484 2229.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 0.5 76.35% 76.35% 23.65% 3484 2219.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 0.5 76.35% 76.35% 23.65% 3484 2209.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 0.5 76.35% 76.35% 23.65% 3484 2199.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 4 and Variant 5 

5 0.5 87.03% 87.03% 12.97% 3285 2349.00 

5 1 90.51% 90.51% 9.49% 3225 2217.00 

10 0.5 76.45% 76.45% 23.55% 3482 2233.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 0.5 76.45% 76.45% 23.55% 3482 2223.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 0.5 76.45% 76.45% 23.55% 3482 2213.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 0.5 76.45% 76.45% 23.55% 3482 2203.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 
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Appendix H 

Table H.1: Generated CRC32b Hash Value and File Size in bytes of the JS.Cassandra 

variants. 

Malicious (Pk) Filename 

CRC32b 

Hash 

Value 

File 

Size in 

bytes 

Non-Malicious (Pu) 

Filename 

CRC32b 

Hash 

Value 

File 

Size 

in 

bytes 

JS.Cassandra.js (Original 

Malicious Virus – Ps) 
26489347 7,767 

JS.Cassandra_NP.js 

(Non-Malicious 

Virus – Pu) 

ab657f45 1,823 

v_000.js (Malicious Variant 1 – 

Pk) 848562f1 8,324 

v_000_NP.js (Non-

Malicious Variant 1 – 

Pu) 
3d94f85f 2,662 

v_001.js (Malicious Variant 2 – 

Pk) – for use in Step-4 and 

Step-5 
fab48c8c 54,183 

v_002_NP.js (Non-

Malicious Variant 2 – 

Pu) 
90dd470d 3,697 

v_002.js (Malicious Variant 3 – 

Pk) 7c4ea313 9,938 

v_003_NP.js (Non-

Malicious Variant 3 – 

Pu) 
0631e490 2,981 

v_003.js (Malicious Variant 4 – 

Pk) bd3b9fdc 8,759 

v_004_NP.js (Non-

Malicious Variant 4 – 

Pu) 
5273cd32 2,137 

v_004.js (Malicious Variant 5 – 

Pk) 9904ef9c 8,392 

v_005_NP.js (Non-

Malicious Variant 5 – 

Pu) 
32b7909a 3,748 

v_005.js (Malicious Variant 6 – 

Pk) 511621c7 9,400 

v_006_NP.js (Non-

Malicious Variant 6 – 

Pu) 
d1f95eae 2,125 

v_006.js (Malicious Variant 7 – 

Pk) a7bc9795 10,059 

v_007_NP.js (Non-

Malicious Variant 7 – 

Pu) 
cd486121 2,868 

v_007.js (Malicious Variant 8 – 

Pk) a878abc3 10,763 

v_008_NP.js (Non-

Malicious Variant 8 – 

Pu) 
e2220b79 3,874 

v_008.js (Malicious Variant 9 – 

Pk) ec3797e7 12,282 

v_009_NP.js (Non-

Malicious Variant 9 – 

Pu) 
d4cffb98 2,965 

v_009.js (Malicious Variant 10 

– Pk) a2e5c540 10,799 

v_010_NP.js (Non-

Malicious Variant 10 

– Pu) 
91f3e71f 1,688 

v_010.js (Malicious Variant 11 

– Pk) 
9c8432d2 10,873 

– 
Total File 

Size → 
30,568 

– 
Total 

File Size 

→ 

161,539 
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Table H.2: Generated CRC32b Hash Values and File Sizes in Bytes for 100 New (Px) 

Malware Variants of JS.Cassandra Virus. 

First 50 Malicious (Px) Variants Second 50 Malicious (Px) Variants 

Filename CRC32b 

Hash Value 

File Size 

(bytes) 
Filename CRC32b 

Hash Value 

File Size 

(bytes) 

victim_001.js fb8fccaf 33,050 victim_051.js 93301735 64,390 

victim_002.js 7457878a 37,732 victim_052.js 2def8c3f 15,489 

victim_003.js 7af43c5d 9,186 victim_053.js e02076b6 16,660 
victim_004.js 687ee66f 23,256 victim_054.js dffb0823 10,720 

victim_005.js 52745426 10,838 victim_055.js 3bae0183 10,379 
victim_006.js 972aa98b 10,167 victim_056.js 92acbdc3 11,121 

victim_007.js 5390b420 12,531 victim_057.js 87ae11d3 134,038 
victim_008.js 5ae0f541 14,130 victim_058.js 6aff7b5d 10,096 

victim_009.js 0fa3a55b 29,349 victim_059.js 01523ceb 192,495 

victim_010.js 0d102b71 293,347 victim_060.js fdd45783 11,104 
victim_011.js 51036d4a 11,232 victim_061.js 63e98a11 21,071 

victim_012.js 445a3eae 101,860 victim_062.js fc0b761d 12,719 
victim_013.js 98fd097d 24,124 victim_063.js 4adf09fd 14,198 

victim_014.js 361a20de 13,150 victim_064.js 7876bb84 30,715 

victim_015.js 75b47971 96,449 victim_065.js fa7aed76 20,160 
victim_016.js c9b01595 10,696 victim_066.js 4b65271b 23,247 

victim_017.js 0fba7f20 15,711 victim_067.js acea45f5 13,058 
victim_018.js f55fa526 53,456 victim_068.js eda7e7f2 9,987 

victim_019.js 7d181fee 29,323 victim_069.js dc5c64c5 36,977 
victim_020.js 1ebe0331 21,787 victim_070.js 3495e532 9,377 

victim_021.js 4e47fbdc 14,305 victim_071.js fbc0e685 38,944 

victim_022.js 0c72ac9f 10,904 victim_072.js 83c410a0 12,479 
victim_023.js 4305732f 14,509 victim_073.js 7860fe50 21,141 

victim_024.js 56937158 91,550 victim_074.js f79001d5 75,464 
victim_025.js 78eb8e39 57,497 victim_075.js 1dd75579 35,219 

victim_026.js 9a404150 19,345 victim_076.js 3305b4ac 7,417 

victim_027.js ea2de1e7 15,904 victim_077.js 8582f3ba 10,143 
victim_028.js 5fa264f6 13,193 victim_078.js addf3ab8 20,599 

victim_029.js 39821c49 16,600 victim_079.js 5506de3c 21,378 
victim_030.js 594b7bc0 9,885 victim_080.js 4e3b05d0 15,560 

victim_031.js f13dec5b 10,287 victim_081.js b577bf12 7,139 

victim_032.js db92f605 8,805 victim_082.js f90c0024 22,550 
victim_033.js c6731067 11,921 victim_083.js 88d49884 22,391 

victim_034.js cc7aa8b6 7,438 victim_084.js b0eb1828 16,933 
victim_035.js a5beb6d4 11,570 victim_085.js c02f9cff 24,380 

victim_036.js 7401ef34 22,952 victim_086.js 657863c6 14,102 
victim_037.js 1d3d8f93 20,730 victim_087.js f7d5a081 21,132 

victim_038.js 22fe4afb 15,469 victim_088.js 8154da61 14,085 

victim_039.js f27b1448 36,242 victim_089.js 9ec6e8b7 64,953 
victim_040.js 116c03d6 12,482 victim_090.js 252a9b16 9,646 

victim_041.js 2729c948 12,797 victim_091.js 8606d169 10,771 
victim_042.js ba7cd8d2 17,026 victim_092.js 10f3faa2 8,000 

victim_043.js eae5d235 16,058 victim_093.js 78a2a83e 13,504 

victim_044.js 22595278 22,864 victim_094.js 2b7e56aa 17,997 
victim_045.js 9783eb42 11,231 victim_095.js be0a93c7 20,269 

victim_046.js 83160322 11,997 victim_096.js fafae3ec 9,712 
victim_047.js ffdf36b7 12,274 victim_097.js 9444733d 11,403 

victim_048.js fadac221 83,147 victim_098.js e01c5570 9,636 
victim_049.js cb2fa95b 57,495 victim_099.js ad2f1653 11,832 

victim_050.js 3150d643 17,753 victim_100.js 943a4a77 83,787 

Total File Size → 1,535,604 

 

Total File Size → 1,340,567 

  


