

IDENTIFYING POLYMORPHIC MALWARE

VARIANTS USING BIOSEQUENCE ANALYSIS

TECHNIQUES

By

Vijay Naidu

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

AUCKLAND UNIVERSITY OF TECHNOLOGY

AUCKLAND, NEW ZEALAND

June 2018

© Copyright by Vijay Naidu, 2018

i

Abstract

Modern antivirus systems (AVSs) are not able to detect new polymorphic malware

variants until they emerge, even when signatures of one or more variants belonging to a

specific polymorphic malware family are known. Polymorphic malware can transform

into functionally identical variants of themselves. Polymorphism changes the order of the

viral code but not typically the code itself to avoid signature-based detection. Current

AVSs detect malware by adopting signatures based on the most essential parts of a known

virus, such as execution traces, instruction sequences, etc. Virus writers exploit the

weaknesses of malware signature databases by creating new variants using the same

engine employed by an already existing polymorphic malware family. In this thesis, virus

detection and signature extraction techniques are presented. These techniques were

developed by exploring string matching techniques traditionally employed in

biosequence analysis. The main contribution of these matching techniques is to extract

syntactic patterns (i.e. conserved regions/sequences) from semantically rich polymorphic

hex code. These extracted syntactic patterns act as signatures and are used in the

identification of polymorphic malware variants belonging to the same family. Moreover,

these extracted syntactic patterns can help in identifying new variants that make simple

alterations to their newly generated variants. The string matching approaches presented

in this thesis may revolutionise our knowledge of polymorphic variant generation and

give rise to a new era of string-based syntactic AVSs.

ii

Table of Contents

Abstract ... i

Table of Contents .. ii

List of Figures ... viii

List of Tables ... xii

Attestation of Authorship ... xv

Acknowledgements ... xvi

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Background and Related Work .. 6

1.3 Syntactic and Semantic Approaches .. 7

1.4 Problem Statements, Research Objectives and Questions 10

1.4.1 Problem Statements .. 10

1.4.2 Research Objectives .. 11

1.4.3 Research Questions ... 11

1.5 Hypothesis and Proposed Approach ... 12

1.5.1 Drawbacks of Previous Approaches ... 12

1.5.2 Hypothesis .. 13

1.5.3 Smith-Waterman Algorithm (SWA) ... 13

1.5.4 NNge ... 14

1.5.5 Limitations of Proposed Approach and Possible Solutions 17

1.6 Thesis Description .. 19

1.6.1 Thesis Contribution... 21

1.6.2 Thesis Structure .. 22

1.6.3 Publications ... 25

Chapter 2 Malware, Polymorphic Malware, and their Detection Approaches....... 27

2.1 Classification of Malware and Recent Research into Malware Detection 27

2.1.1 Virus.. 28

2.1.2 Previous Research into Malware Detection .. 28

2.1.3 Classification of Viruses by Masking Strategies .. 33

2.1.4 Polymorphism ... 33

2.1.5 Classification of Polymorphism.. 34

2.1.6 Levels of Polymorphism ... 35

2.1.7 Mutation Engine ... 37

2.1.8 Polymorphic Decryptor (The decryption routine) .. 38

iii

2.1.9 Metamorphism .. 39

2.2 Malware Detection Techniques .. 40

2.2.1 Machine Learning/Data Mining Approach ... 42

2.2.2 Normalisation Approach ... 43

2.2.3 Scan Engine (Signature based Approach) .. 43

2.2.4 Cryptanalysis .. 44

2.2.5 Heuristic Approach ... 45

2.3 History of Malware – Timeline .. 47

2.4 Tool Validation ... 48

2.4.1 Predictive Validation .. 48

2.4.2 Triangulation Approach .. 51

2.5 Summary .. 53

Chapter 3 Research Design .. 54

3.1 Research Design ... 55

3.2 Identifying and analysing the problem ... 57

3.3 Defining research objectives and questions ... 57

3.4 Designing the proposed approach and conducting experiments 57

3.5 Discussion of Results and Evidence ... 59

3.6 Analysis and Evaluation ... 59

3.7 Overview of thesis .. 60

3.8 Summary .. 62

Chapter 4 A String-Based Method for Syntactically Identifying Polymorphic Virus

Variants .. 64

4.1. Introduction .. 65

4.2. String-Based Syntactic Detection of Polymorphic Malware Variants Method:

An Overview ... 65

4.3. String-Based Syntactic Detection of Polymorphic Malware Variants Method:

Systems and Methods .. 66

4.3.1 Hex Dump Extraction ... 67

4.3.2 Hex to DNA Code Conversion ... 67

4.3.3 Process of Pairwise Local Sequence Alignment... 69

4.3.4 Meta-Signature Virus Testing ... 70

4.4. Experimental Results .. 70

4.5. Summary .. 74

Chapter 5 Exploring Advanced Sequence Alignment Techniques in a String-Based

Syntactic Method for Identifying Malicious Variants of Polymorphic Virus

Families .. 76

iv

Part-I: Comparing Needleman-Wunsch and Smith-Waterman Algorithms for

Identifying Viral Polymorphic Malware Variants ... 77

5.1. Introduction .. 77

5.2. Comparing NWA and SWA for the Detection of Polymorphic Malware

Variants Method: An Overview .. 79

5.3. Comparing NWA and SWA for the Identification of Polymorphic Malware

Variants Method: Systems and Methods ... 80

5.3.1 Hex Dump Extraction ... 81

5.3.2 Hex to DNA Code Conversion ... 83

5.3.3 First Pairwise (Global and Local) Sequence Alignment and Meta-Signature

Extraction ... 83

5.3.4 Multiple Sequence Alignment and Consensus Extraction 84

5.3.5 Second Pairwise Local Sequence Alignment and Super-Signature Extraction

 85

5.3.6 DNA to Hex Conversion as well as Meta-Signature and Super-Signature

Testing ... 86

5.4. Experimental Results .. 86

5.5. Summary .. 90

Part-II: The Effects of Gap Open and Gap Extend Penalties in a String-Based

Approach for Detecting Polymorphic Malware Variants 93

5.6. Effects of Gap Penalties in a String-Based Approach for Detecting

Polymorphic Malware Variants Method: An Overview ... 94

5.7. Effects of Gap Penalties in a String-Based Approach for Detecting

Polymorphic Malware Variants Method: Systems and Methods 94

5.7.1 Hex Dump Extraction ... 94

5.7.2 Hex to DNA and Amino Acid Conversion ... 95

5.7.3 First Pairwise Local Sequence Alignment and Meta-Signature Extraction . 96

5.7.4 Multiple Sequence Alignment and Consensus Extraction 97

5.7.5 Second Pairwise Local Sequence Alignment and Super-Signature Extraction

 98

5.7.6 DNA and Amino Acid to Hex Conversion as well as Meta-Signature and

Super-Signature Testing .. 98

5.8. Experimental Results .. 98

5.9. Summary .. 107

Part-III: Using Different Substitution Matrices in a String-based Syntactic

Approach for Identifying Viral Polymorphic Malware Variants 109

5.10. Introduction ... 109

5.11. Using Different Substitution Matrices in a String-Based Syntactic Approach

for Detecting Polymorphic Malware Variants Method: Systems and Methods 110

v

5.11.1 Hex Dump Extraction ... 112

5.11.2 Hex to DNA conversion ... 113

5.11.3 First Pairwise Local Alignment and Meta-Signature Extraction 113

5.11.4 Multiple Sequence Alignment and Data Mining .. 114

5.11.5 Extraction of Consensuses and PRISM Rules .. 115

5.11.6 Second Pairwise Local Alignment and Super-Signature Extraction 115

5.11.7 DNA to Hex Conversion as well as Meta-Signature and Super-Signature

Testing ... 115

5.12. Experimental Results .. 115

5.13. Summary ... 121

Chapter 6 Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm .. 122

6.1. Introduction .. 122

6.2. Objectives of this chapter ... 123

A - First Set of Experiments .. 125

6.3. Experiment I - Identification of viral variants using NNge rule extraction from

variants in hexadecimal format: Systems and Methods .. 125

6.3.1 Hex Dump Extraction ... 125

6.3.2 Data Mining .. 126

6.3.3 Rule Extraction ... 127

6.3.4 Hex to DNA Conversion... 128

6.3.5 Pairwise Local Sequence Alignment .. 128

6.3.6 DNA to Hex Conversion and Meta-Signature Testing 129

6.4. Summary – First Set of Experiments ... 129

B - Second Set of Experiments .. 131

6.5. Experiment II - Identification of viral variants using NNge rule extraction from

variants in DNA format: Systems and Methods .. 131

6.6. Summary – Second Set of Experiments ... 133

C - Third Set of Experiments .. 135

6.7. Experiment III - Identification of viral variants using NNge rule extraction

from multiply aligned variants in DNA format: Systems and Methods 135

6.8. Summary – Third Set of Experiments .. 139

6.9. Experimental Results .. 140

6.9.1 Comparison of the data mining results obtained from three sets of

experiments as well as from other related and selected previous work 140

6.9.2 An evaluation of the state of the art AVSs and the meta-signatures on the

detection of JS.Cassandra polymorphic malware and its variants 141

6.10. Summary ... 148

vi

Chapter 7 Detection of Metamorphic Virus Variants and Classification of their

Signatures adopting Biosequence Analysis Techniques .. 151

7.1. Introduction .. 151

7.2. String-Based Syntactic Detection of Metamorphic Virus Variants Method:

Systems and Methods .. 152

7.2.1 Datasets ... 153

7.2.2 Sequence alignments and Phylogenetics .. 154

7.2.3 Proposed method comprising of nine steps .. 155

7.3. Experimental Results .. 159

7.3.1 Training set results .. 159

7.3.2 Test set results ... 161

7.4. Summary .. 164

Chapter 8 Conclusion and Future Work .. 165

8.1. Overview .. 165

8.2. Contribution of this Thesis ... 171

8.3. Limitations of the Study ... 176

8.4. Future Work ... 176

8.5. Further Work .. 178

References .. 182

Appendix A .. 209

A.1 No Masking... 209

A.2 Stealth ... 209

A.3 Encryption ... 210

A.4 Strong Encryption ... 211

A.5 Oligomorphism ... 213

Appendix B .. 214

B.1 Polymorphic Obfuscation based on Self-Identification 214

B.2 Polymorphic Obfuscation based on Syntactic Reconstruction 216

B.3 Polymorphic Obfuscation based on Semantic Reconstruction 224

Appendix C .. 225

C.1 Materials and Tools .. 225

C.1.1 W32.CTX/W32.Cholera Virus ... 225

C.1.2 JS.Cassandra Virus ... 225

C.1.3 W32.Kitti Virus .. 226

C.1.4 Transcriptase Virus ... 226

C.1.5 JAligner ... 227

C.1.6 Weka ... 227

vii

C.1.7 ClamAV and ‘sigtool’ ... 227

C.1.8 VirusTotal ... 227

C.1.9 MAFFT ... 228

C.1.10 Random Data File Creator (RDFC) .. 228

Appendix D .. 229

D.1 Clamscan Database File ... 229

D.2 Clamscan Scan Results for 43 Malicious (Pk), 43 Non-Malicious (Pu) and 43

Random Files ... 230

D.3 Further experiments .. 234

Appendix E .. 237

Appendix F ... 239

Appendix G .. 248

Appendix H .. 251

viii

List of Figures

Figure 1.1: The process of polymorphic malware infection (Chaumette, Ly, & Tabary,

2011, p. 41). .. 6

Figure 2.1: Distribution of Polymorphic Malware Variants. ... 29

Figure 2.2: The structure of a polymorphic malware (SANS Institute, 2003, p. 5). 33

Figure 2.3: An example of a polymorphic malware using a generic Mutation Engine

(Ferris, 2006). .. 38

Figure 2.4: An example of part of a polymorphic decryptor with a sequence of

instructions (Ferris, 2006). .. 38

Figure 2.5: The structure of a metamorphic malware (SANS Institute, 2003, p. 5; Berg,

2011, p. 10). .. 39

Figure 2.6: The manually generated local alignment matrix table of two DNA sequences.

 ... 49

Figure 3.1: SM cycle. ... 56

Figure 3.2: The four major stages that will drive this research in Chapters 4 to 7. 58

Figure 4.1: The seven steps in the String-Based Syntactic Detection of Polymorphic

Malware Variants method. .. 65

Figure 5.1: Eight-step method for comparing the Identification of Polymorphic Malware

Variants by NWA and SWA. .. 79

Figure 5.2: Bar graph demonstrating the detection results of JS.Cassandra virus family

using the super-signatures of NWA and SWA. .. 87

Figure 5.3: Screenshot of the clamscan result for the first SWA super-signature for the

W32.Kitti virus. ... 90

Figure 5.4: Screenshot of the clamscan result for the second SWA super-signature for

the W32.Kitti virus. ... 90

Figure 5.5: Eight-step method for the Effects of Gap Penalties in a String-Based

Approach for Detecting Polymorphic Malware Variants. .. 93

Figure 5.6: Clamscan screenshot for JS.Cassandra and known (Pk) variants using the best

performing super-signature. .. 106

ix

Figure 5.7: Clamscan screenshot for W32.CTX and unknown (Px) variants using the best

performing super-signature. .. 106

Figure 5.8: Clamscan screenshot for W32.Kitti and unknown (Px) variants using the best

performing super-signature. .. 107

Figure 5.9: Eight-step method for using Different Substitution Matrices in a String-Based

Syntactic Approach for Detecting Polymorphic Malware Variants. 111

Figure 6.1: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment I)’ method comprising of six

steps. .. 125

Figure 6.2: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment II)’ method comprising of six

steps. .. 131

Figure 6.3: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment III)’ method comprising of

seven steps. .. 135

Figure 6.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 known (Pk) JS.Cassandra polymorphic malicious (Pk) variant files using the 71 meta-

signatures. ... 145

Figure 6.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

43 JS.Cassandra polymorphic non-malicious (Pu) variant files using the 71 meta-

signatures. ... 145

Figure 6.6: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 random JavaScript files using the 71 meta-signatures. .. 146

Figure 6.7: Bar graphs demonstrating the detection scan results (accuracies) of

JS.Cassandra virus family and clean files using the 45 meta-signatures. 148

Figure 7.1: The nine steps in the String-Based Syntactic Detection of Metamorphic

Malware Variants method. .. 152

Figure 7.2: Jalview showing the MSA results generated in step-3. 156

Figure 7.3: The phylogenetic tree of 14 Transcriptase sequences generated using

Phylo.io. .. 158

Figure 7.4: The phylogenetic tree of 35 Transcriptase sequences generated using

Phylo.io. .. 163

x

Figure B.1: The concept of NTFS file system based surrogate data streams (Aycock,

2006, p.39). ... 215

Figure B.2: The traditional code packing modification (Cesare, 2010, p.33).............. 219

Figure D.1: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 malicious (Pk) files using the meta-signature. .. 230

Figure D.2: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 non-malicious (Pu) files using the meta-signature. .. 230

Figure D.3: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 random files using the meta-signature. .. 231

Figure D.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

12 variant files (VM1-VM12), original variant file (VO) and modified variant file (VM). 236

Figure D.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 malicious files (Pk) of JS.Cassandra. ... 236

Figure F.1: Screenshot of the preprocess panel obtained from Weka during the generation

of NNge rules in Step-2 (Experiment I). ... 239

Figure F.2: Screenshot of the classifier model and evaluation information inside the

classifier panel obtained from Weka during the generation of NNge rules in Step-2

(Experiment I). .. 240

Figure F.3: Screenshot of the visualize panel showing 275 individual plot matrices

between pos1-pos25 and pos13633-pos13643 obtained from Weka during the generation

of NNge rules in Step-2 (Experiment I). ... 241

Figure F.4: Screenshot of the preprocess panel obtained from Weka during the generation

of NNge rules in Step-3 (Experiment II)... 242

Figure F.5: Screenshot of the classifier model and evaluation information inside the

classifier panel obtained from Weka during the generation of NNge rules in Step-3

(Experiment II). ... 243

Figure F.6: Screenshot of the visualize panel showing 275 individual plot matrices

between pos1-pos25 and pos36663-pos36673 obtained from Weka during the generation

of NNge rules in Step-3 (Experiment II)... 244

Figure F.7: Screenshot of the preprocess panel obtained from Weka during the generation

of NNge rules in Step-4 (Experiment III). .. 245

xi

Figure F.8: Screenshot of the classifier model and evaluation information inside the

classifier panel obtained from Weka during the generation of NNge rules in Step-4

(Experiment III). ... 246

Figure F.9: Screenshot of the visualize panel showing 275 individual plot matrices

between pos1-pos25 and pos47087-pos47097 obtained from Weka during the generation

of NNge rules in Step-4 (Experiment III). .. 247

xii

List of Tables

Table 1.1: Simple sequence of searches indicating the related shortage of research using

Google Advanced Patent Search and Google Scholar (as of April 5th, 2018). 2

Table 2.1: Related research to the automatic signature generation in malware detection.

 ... 30

Table 2.2: Some related and selected previous work in the detection of malware using

data mining and bioinformatics approaches. ... 32

Table 2.3: Virus Classification by their masking strategies collated from Aycock (2006,

pp. 34-48). ... 34

Table 2.4: Classification of polymorphic viruses based on obfuscation method details

sourced from Aycock (2006, pp. 38-46) and Cesare (2010, pp. 26-31). 35

Table 2.5: Levels of Polymorphism (Ferris, 2006; Belcebu, n.d.). 36

Table 4.1: Test statistics and time interval to the identification of three individual

polymorphic viruses as well as their known (Pk) and unknown (Px) malicious variants

adopting ‘clamscan’ scanner tool, ESET, Windows Microsoft Defender and the Syntactic

Meta-Signature (extracted from the proposed seven-step approach). 73

Table 5.1: File Identification Information for JS.Cassandra and its “v_000.js” variant.

 ... 81

Table 5.2: Analysis and Detection Ratio based on the 55 AVSs acquired from the

‘VirusTotal’ for the Two Malicious Files of JS.Cassandra Polymorphic Virus. 82

Table 5.3: Sequence Lengths for Meta-signatures extracted from DNA representations

from JS.Cassandra and its v_000 variant, where, MS is the meta-signature. 85

Table 5.4: Test Statistics for the Detection of JS.Cassandra Polymorphic Malware and

its known (352) variants (Pk) employing ‘clamscan’ by testing the 37 Meta-Signatures

acquired in Step-4 from NWA and SWA. .. 86

Table 5.5: Identification of W32.Kitti and its 1,105 unknown (Px) variants using the 54

meta-signatures extracted using the SWA, where, MS is the meta-signature. 88

Table 5.6: Generated CRC32b hash values and file sizes for the 18 malicious files. 94

Table 5.7: Detection Ratio Based on the 55 State-of-the-Art AVS Products obtained from

the ‘VirusTotal’ Website for the 18 Malicious Variants. .. 95

Table 5.8: Rules for converting hexadecimal into amino acid characters. 96

xiii

Table 5.9: Results of the pairwise local alignments that were performed in Step-3. 99

Table 5.10: Detection rates for detection of three polymorphic malware using the best

performing meta-signatures. ... 102

Table 5.11: Analysis and detection ratio using the 56 AVSs retrieved from the

‘VirusTotal’ website for the two JS.Cassandra variants in hexadecimal format. 112

Table 5.12: Selected results of the six pairwise local alignments performed in Step-3.

 ... 114

Table 5.13: Detection rates for the detection of JS.Cassandra polymorphic malware and

its known (351) variants (Pk) employing ‘clamscan’ by testing the 161 meta-signatures

acquired in Step-4. .. 116

Table 5.14: Detection rates for the detection of JS.Cassandra polymorphic malware and

its known (351) variants (Pk) employing ‘clamscan’ by testing the 47 super-signatures

acquired in Step-7. .. 120

Table 6.1: Detection Ratio for each JS.Cassandra variant based on the 56 AVSs in

‘VirusTotal’. .. 126

Table 6.2: Sequence lengths of all the nine extracted meta-signatures (i.e. common

substrings) in its DNA representation obtained in Step-5. .. 129

Table 6.3: Sequence lengths of the extracted meta-signatures in DNA representation.

 ... 133

Table 6.4: Sequence lengths of all 48 extracted meta-signatures in DNA representation.

 ... 138

Table 6.5: Comparison of the results of Experiments I-III with those reported previously

for data mining approaches to malware detection reported in the literature. 141

Table 6.6: Detection ratio using five state of the art AVSs and the 14 most effective

malicious and 8 non-malicious meta-signatures from Experiments I to III with

‘clamscan’. .. 142

Table 6.7: Detection ratio using two state of the art AVSs and the 71 meta-signatures

obtained from Experiments I to III with Clamscan antivirus scanner. 147

Table 6.8: The key features and steps involved in experiments conducted in this chapter.

 ... 150

Table 7.1: Four different datasets used in this research along with their sources. 153

Table 7.2: Test results of seven commercial antivirus products together with parent and

child signatures against training set (dataset 1). ... 160

xiv

Table 7.3: Test results of seven commercial antivirus products together with parent and

child signatures against test set 1 (dataset 2). ... 161

Table 7.4: Test results of seven commercial antivirus products together with parent and

child signatures against test set 2 (dataset 3). ... 162

Table 7.5: Test results of seven commercial antivirus products together with parent and

child signatures against test set 3 (dataset 4). ... 162

Table 8.1: Detection ratio using two state of the art AVSs and the 282 meta-signatures

and 54 super-signatures from Chapters 5 to 7 with ‘clamscan’. 180

Table D.1: Generated CRC32b Hash Value and File Size in Bytes for the 43 Malicious

(Pk) Files, 43 Non-Malicious (Pu) Files, and 43 Random Files. 232

Table D.2: Test statistics of some of the AVSs after testing against the 43 malicious (Pk)

and 43 non-malicious (Pu) variants of JS.Cassandra and the 43 random files. 233

Table D.3: Generated CRC32b Hash Value and File Size in Bytes for Original Variant

File (VO), Modified Variant File (VM) and 12 Variants (VM1-VM12). 234

Table D.4: Detection Capabilities of Top Well-Known AVSs for Original Variant File

(VO), Modified Variant File (VM) and 12 New Variants (VM1-VM12). 235

Table E.1: Full results of the 71 pairwise local alignments performed in Step-3. In bold

are the matrices selected in Step-3 in Section 5.11.3 for further analysis in Part-III.... 237

Table G.1: Full results of the pairwise local alignments that were performed in Step-3 in

Chapter 5: Part-II... 248

Table H.1: Generated CRC32b Hash Value and File Size in bytes of the JS.Cassandra

variants. ... 251

Table H.2: Generated CRC32b Hash Values and File Sizes in Bytes for 100 New (Px)

Malware Variants of JS.Cassandra Virus.. 252

xv

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published or

written by another person (expect where explicitly defined in the

acknowledgements), nor material which to a substantial extension has been

submitted for the award of any other degree or diploma of a university or

other institute of higher learning.”

Vijay Naidu

Auckland, New Zealand

June 2018

xvi

Acknowledgements

Firstly, I would like to thank my supervisors, Prof. Ajit Narayanan, Assoc.

Prof. Jacqueline Whalley and Assoc. Prof. Russel Pears without their

encouragement, gratitude, inspiration, and support; I would not have been

able to achieve my doctoral studies.

I would like to thank my parents Lohanathan Parumal (my dad) and Susheela

L. Parumal (my mum) for all their help, support and affection and without

them I would not have dreamed on studying higher.

I would like to thank Saide Lo, the assistant school manager of School of

Engineering, Computer and Mathematical Sciences (SECMS) and Karishma

Bhat, the programme administrator of SECMS for their immense support and

kind-heartedness. Also, many thanks to Terry Brydon, the school manager

of SECMS and Ramon Lewis, the technician of SECMS.

Last but not least, I would like to thank my wife Shari-May Naidu and her

wonderful family, my PhD colleagues and best friends: Ahmad Wedyan,

Abhimanyu Garhwal Singh, Sreenivas Sremath Tirumala, Nishantha

Medagoda, Ahmed Al-Sa'di and Seyedjamal Zolhavarieh for all their kind

help, suggestions, support, love, and understanding.

Vijay Naidu

Auckland, New Zealand

June 2018

1

Chapter 1 Introduction

This chapter introduces the motivation of this research, followed by a brief introduction

to the background of this research and related work including syntactic and semantic virus

detection approaches. This chapter concludes by providing the thesis contribution,

structure, and related publications.

1.1 Motivation

Malware development and spread have reached epidemic proportions, with millions of

new variants released every year infecting computer systems. Traditional antivirus

systems (AVSs) have difficulty in coping with this growth. The traditional method for

dealing with viruses and worms (two of the most common types of malware) is to use

AVSs to look for ‘signatures’ which represent critical parts of executable code in the

numerical or alphanumerical form. Whereas a virus requires some action to be

propagated, such as being attached to a program by the user, a worm can propagate by

itself. The aim of virus and worm writers is usually to damage computer systems, hence

the term ‘malware’. Signatures can be calculated from a pattern of operations in the

malware code or can represent the encryption algorithm used to hide the virus or worm.

Signatures were originally and continue to be identified and calculated by human experts,

and are typically a sequence of hexadecimal (hex) numbers intended to identify viruses

and worms uniquely. There are currently no known methods for automatic generation of

syntactic signatures for new malware.

The automatic extraction of malware signatures for use in AVSs remains a relatively

unexplored area of cyber security, despite the urgent need to find effective solutions to

the increasing number and severity of attacks (Symantec, 2014; Naidu, Whalley, &

Narayanan, 2017) that now pose a global risk (WEF, 2012).

Evidence for this related shortage of research in polymorphic malware (together with its

variants) detection as well as in automatic signature generation using bioinformatics

techniques (mainly sequence alignment) comes from a simple sequence of searches using

Google Advanced Patent Search and Google Scholar (as of April 5th, 2018) and is shown

in Table 1.1. Table 1.1 shows that there is a lack of research on automatic signature

generation to polymorphic malware/virus and its variants detection/identification using

sequence alignment techniques.

2

Table 1.1: Simple sequence of searches indicating the related shortage of research using

Google Advanced Patent Search and Google Scholar (as of April 5th, 2018).

Search Terms Google Advanced

Patent Search

Google

Scholar

“malware” 55,000 hits 157,000 hits

“malware detection” 19,000 hits 27,100 hits

“malware identification” 478 hits 922 hits

“polymorphic malware” 1,210 hits 1,890 hits

“polymorphic virus” 951 hits 1,360 hits

“automatic signature generation” 1,580 hits 1,620 hits

“automatic generation of signatures” 3 hits 66 hits

“automatic signature extraction” 269 hits 115 hits

“automatic extraction of signatures” 328 hits 97 hits

“polymorphic malware detection” 1,050 hits 257 hits

“polymorphic malware identification” 0 hit 3 hits

“polymorphic virus detection” 874 hits 492 hits

“polymorphic virus identification” 0 hit 0 hit

“sequence alignment” 76,500 hits 917,000 hits

“polymorphic malware detection” + “automatic signature

generation”

6 hits 28 hits

“polymorphic malware identification” + “automatic signature

generation”

0 hit 0 hit

“polymorphic virus detection” + “automatic signature

generation”

108 hits 55 hits

“polymorphic virus identification” + “automatic signature

generation”

0 hit 0 hit

“polymorphic malware detection” + “automatic signature

generation” + “variants”

2 hits 10 hits

“polymorphic malware identification” + “automatic signature

generation” + “variants”

0 hit 0 hit

“polymorphic virus detection” + “automatic signature

generation” + “variants”

51 hits 28 hits

“polymorphic virus identification” + “automatic signature

generation” + “variants”

0 hit 0 hit

“polymorphic malware detection” + “automatic signature

generation” + “variants” + “sequence alignment”

0 hit 5 hits

“polymorphic malware identification” + “automatic signature

generation” + “variants” + “sequence alignment”

0 hit 0 hit

“polymorphic virus detection” + “automatic signature

generation” + “variants” + “sequence alignment”

0 hit 1 hit

“polymorphic virus identification” + “automatic signature

generation” + “variants” + “sequence alignment”

0 hit 0 hit

Early automatic extraction attempts focused on simulating the way that human experts

analyse malware to generate signatures for use in AVSs (Kephart & Arnold, 1994; Huda,

et al., 2017). Typically, an anomalous behaviour of a computer system leads to the

identification of suspicious code that is then analysed to identify invariant code portions

(syntax) or code portions that are regularly executed (semantics). Semantics are required

for the process of code execution behaviour because they can capture the self-modifying

feature of malware code (Debray, Coogan, & Townsend, 2008; Korczynski & Yin, 2017).

3

Such analysis leads to the generation of malware ‘signatures’ for use by AVSs when

scanning network packets, user files or memory. Before such signatures can be released,

they must be checked against non-malware to ensure that the number of false positives is

kept acceptably low. For instance, signatures based on a malware encryption/decryption

engine are likely to lead to unacceptably high false positives due to the large proportion

of normal Internet traffic that also carries encryption/decryption information for integrity

(e.g. hash algorithms) and authentication (e.g. certified public keys).

Relying on human expertise alone to provide manually extracted signatures is no longer

feasible with the growing volume of malware. As a result, automatic signature extraction

approaches have become increasingly sophisticated. Semantic approaches

(Christodorescu, Jha, Seshia, Song, & Bryant, 2005; United States Patent No.

US11523199, 2006; Sathyanarayan, Kohli, & Bruhadeshwar, 2008; Feng, Bastani,

Martins, Dillig, & Anand, 2017), in addition to standard dynamic and execution

behaviour analysis (Ellis, Aiken, Attwood, & Tenaglia, 2004; Gao, Reiter, & Song, 2005;

United States Patent No. US9609015B2, 2017) now include control flow analysis (Cesare

& Xiang, 2010; United States Patent No. US9817974B1, 2017), behaviour model

checking (Kinder, Katzenbeisser, Schallhart, & Veith, 2005; Bailey, et al., 2007; United

States Patent No. US9832211B2, 2017) and executable graph mining (Eskandari &

Hashemi, 2012; Chen, Jeng, Huang, Chen, & Chou, 2017) as well as formal semantic

models of analysis (Chaumette, Ly, & Tabary, 2011; Wüchner, Ochoa, & Pretschner,

2015; Shen, Hsu, & Shieh, 2017). Syntactic, or static approaches (Zhang & Reeves, 2007;

Leder, Steinbock, & Martini, 2009; Griffin, Schneider, Hu, & Chiueh, 2009; Jidigam,

Austin, & Stamp, 2015; Zhu, et al., 2018) on the other hand, while initially promising

because of their ability to extract signatures that may apply to different minor variants of

the same malware code. And to generate signatures irrespective of differences in

execution paths, have not managed to keep pace with the latest polymorphic and

metamorphic techniques used by hackers to obfuscate their malware (Moser, Kruegel, &

Kirda, 2007; Bearden, 2017; Nguyen, 2018). Static methods typically disassemble or

reverse engineer the malware executable code so that data mining of the source code is

possible; techniques such as statistical analysis of parameter values, repeating strings and

comparative entropy (Schultz, Eskin, Zadoc, & Stolfo, 2001; Baldangombo, Jambaljav,

& Horng, 2013; United States Patent No. US20170061125A1, 2017), code feature

selection (Komashinskiy & Kotenko, 2010; Huda, 2017) and feature extraction (Tabish,

Shafiq, & Farooq, 2009; Sun B. L., 2017; Wang, 2017), and n-grams analysis (Abou-

4

Assaleh, Cercone, & Sweidan, 2004; Kolter & Maloof, 2006; Shafiq, Tabish, & Farooq,

2008; Hassen, 2017) have been used.

For polymorphic viruses:

• Where the virus decryption routine may transform, but the virus body carries the same

code (Zhang, Reeves, Ning, & Iyer, 2007), static analysis can still work (Gurnani,

2017).

• This is for the reason that the various executable instances possess a common and

invariant source body code whether this code is re-ordered or ‘junk’ instructions

introduced (Kaur & Singh, 2014).

And for metamorphic viruses:

• Where each variant of the virus is structurally and syntactically distinct from the last

version but semantically identical (Borello & Me, 2008), create immense challenges

for static checkers (Vu, et al., 2017).

• As a result of which common metamorphic instances of the same virus may not be

detected as such (Leder, Steinbock, & Martini, 2009).

• Common metamorphic processes include modifying numerical expressions to

different but equivalent instructions and modifying constants into computed variables

(United States Patent No. US7937764B2, 2011).

• If the morphing part is itself encoded (Sridhara & Stamp, 2013) the critical

information relevant to structural change may not be obtainable.

While malware identification is not decidable from a hypothetical viewpoint (Cohen,

1987; Cohen, 1989; Adleman, 1988; Naidu & Narayanan, 2016), it is still not known

whether algorithms exist that will consider a random file or script and decide accurately

if it possesses particular aspects of a malicious file (Zuo & Zhou, 2004; Narayanan, Chen,

Pang, & Ban, 2013). Due to rising intricacy of obscuration and advancement of unseen

kinds of transformed malicious program (for instance, ransomware, spyware, adware and

botnets), malware specialists are still needed to apply the latest variety of polymorphic

and metamorphic malware identification methods currently known to exist (Idika &

Mathur, 2007; Robiah, et al., 2009; Fukushima, Sakai, Hori, & Sakurai, 2010; Elhadi,

Maarof, & Osman, 2012; Khan, Siddiqui, & Ferens, 2017).

5

In this thesis, the focus is mainly about polymorphic virus developed via alterations

within the encoder and decoder. In the first instance the virus body of a typical

polymorphic malware consists of encrypted and decrypted virus body which are mutated

by its mutation engine (Chaumette, Ly, & Tabary, 2011; Ali & Soomro, 2018). Although

the static components of polymorphic malware like the malware body can be employed

to identify polymorphic instances of the same malware in spite of the fact that

transformations in the encoder and decoder, there might be zero static components in a

metamorphic malware. In comparison to identification of polymorphism via memory-

dependent signature identification, metamorphic malware files are semantically

examined (for instance, simulated in a virtual sandbox) such that individual instances are

detected via normal functionality and behaviour (United States Patent No.

US20120072988A1, 2012; Nhuong, 2014). It is hard to state whether metamorphic virus

or polymorphic virus is diffcult to identify. However, viruses with functionalties of both

metamorphism and polymorphism are the most difficult virus to identify and defend

against (Skoudis & Zeltser, 2004; Naidu & Narayanan, 2016). In this research, the focus

is mainly with regards to polymorphic virus identification so as to detect virus instances

solely via syntactic approach, although, one of the chapters in this thesis focuses on the

detection of a metamorphic malware family via syntactic approach. Polymorphic virus

consists of three components: the malware structure, the mutation engine and the

decryptor (see Figure 1.1 below). Where, LM means the language of decryptor instead of

the complete language of malware (Chaumette, Ly, & Tabary, 2011; Naidu & Narayanan,

2016). Throughout the infection procedure, a polymorphic malicious file M will replicate

on its own to a new malicious file M' ∈ LM by choosing a randomly encoded key k,

encoding the virus structure and consequently the mutation engine by means of the key k

and eventually creating a new decryptor, embedding k. Because the virus structure and

mutation engine are encoded through a different randomly generated key, detecting

polymorphic virus generally means detecting its clear-code decryptor. While both

metamorphic and polymorphic malware are encrypted to try evade AVSs, polymorphic

malware (as stated earlier) usually preserves its functionality (body containing payload

or instructions for infection) with static code and its encryption engine changes with each

infection to avoid detection. Signatures based on the static parts of polymorphic body can

then be generated for use in AVSs. Metamorphic malware, however, can generate

different but functionally equivalent bodies as well as make changes in its encryption

engine, making signature generation difficult (Borello J.-M. F., 2010; Mohamed & Ithnin,

2017).

6

Figure 1.1: The process of polymorphic malware infection (Chaumette, Ly, & Tabary,

2011, p. 41).

1.2 Background and Related Work

Some researchers have continued to search for static malware structure analysis

algorithms (Zhang & Reeves, 2007; Leder, Steinbock, & Martini, 2009; Griffin,

Schneider, Hu, & Chiueh, 2009; Ye Y. , Li, Jiang, & Wang, 2010; United States Patent

No. US20170193229A1, 2017) for use in automatic signature generation despite current

emphasis on semantic-based approaches. Static structure analysis can reveal all possible

execution paths in a scalable manner, not just those actually followed. Static checkers

have, however, faced problems in disassembling the executable code and identifying

complex obfuscation (Moser, Kruegel, & Kirda, 2007; Chua & Balachandran, 2018)

when attempting to reconstruct the original malware code.

A potential breakthrough in static structural analysis was demonstrated (Narayanan, et

al., 2012; Chen, et al., 2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan,

et al., 2013b) by adopting a nature-inspired and natural computation approach. These

works explored the effects of giving amino acid representation to problematic machine

learning data and to evaluate the benefits of supplementing traditional machine learning

with bioinformatics tools and techniques. The signatures of 60 computer viruses and 60

computer worms were converted into amino acid representations and first multiply

aligned separately to identify conserved regions across different families within each

class (virus and worm). This was followed by a second alignment of all 120 aligned

signatures together so that non-conserved regions were identified prior to input to a

number of machine learning techniques. Differences in length between virus and worm

7

signatures after the first alignment were resolved by the second alignment. Their first set

of experiments indicated that representing computer malware signatures as amino acid

sequences followed by alignment leads to greater classification and prediction accuracy.

Although their experiments led to greater classification and prediction accuracy there was

no comparison made with the other state of the art techniques. Their second set of

experiments indicated that checking the classification results of data mining algorithms,

such as Naïve Bayes, J48, LAD Tree, OneR and Perceptron from artificial virus and worm

data against known proteins can lead to generalisations being made from the domain of

naturally occurring proteins to malware signatures. However, they stated that further

work was needed to determine the advantages and disadvantages of different

representations and sequence alignment methods for handling problematic machine

learning data.

Narayanan and Chen (Narayanan, et al., 2012; Chen, et al., 2012a; Chen, et al., 2012b;

Narayanan, et al., 2013a; Narayanan, et al., 2013b) have shown that malware forms may

share deep functional connections with naturally existing counterparts in virology, and

biological knowledge could be utilised to detect malware. Some AVSs use signature

detection to identify and eliminate viruses. However, by using biological knowledge from

bioinformatics and by generating malware variants from scratch using knowledge of

polymorphic viruses, it may be feasible to detect syntactic forms that promote to establish

if a part of script possesses a malware form along with its instances adopting the

techniques introduced by Narayanan and Chen (Narayanan, et al., 2012; Chen, et al.,

2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan, et al., 2013b). A

complicating aspect is that most malware are variants of already existing known types

with known code. These variations are in the symbolic code of viruses and worms. There

are currently no known techniques for mining symbolic viral and worm (and their

variants) code directly. By representing such code in biological form (DNA, amino acids),

it may be possible to identify the critical regions of malware code that contribute to

malware function through traditional bioinformatics techniques that also attempt to

identify sequences through the commonality of biological subsequences.

1.3 Syntactic and Semantic Approaches

The syntactic or static approach can be described formally as follows. Given a grammar

Gm for generating malware code, defined as follows: Gm=(N,T,S,R) where N is the set of

non-terminal symbols, T is the set of terminal symbols, S is the start symbol and R the set

8

of rewriting rules, the formal language L(Gm) (the set of possible malware programs

generated by this grammar) = {𝑥 ∈ 𝑇|𝑆 → 𝑥}, i.e. all those strings of terminal symbols x

reachable from S through the rewriting rules. The signature extraction task can then be

defined to be - find one or more patterns σ of length l for one or more 𝑥 ∈ 𝑇 of length n,

where l ≤ n, such that σ is a ‘signature’ of x and therefore of L(Gm). The definition of σ

will in turn need to take into account partial matches against source code x of T. The

advantage of static methods is that, given Gm, different σ can be derived for actual and

possible (i.e. future) x. However, the problem for static methods is that, if 𝐿(𝐺1
𝑚) ≫

𝐿(𝐺2
𝑚) ≫ ⋯ ≫ 𝐿(𝐺𝑘

𝑚), where ‘≫’ means ‘evolves through polymorphism and/or

metamorphism’, there will need to be a different σ for each Li, i=1..k, despite the ancestry

relationships in Gm.

The semantic approach can be described as follows (Preda, Christodorescu, Jha, &

Debray, 2007): program P is infected by malware M if the semantics of M is part of the

semantics of P, i.e. 𝑆⟦𝑀⟧ ⊆ 𝑆⟦𝑃⟧, where S signifies ‘semantics’ or execution. If Obf is a

program transformer that introduces obfuscation into a set of programs P such that Obf:

P → P, a semantic malware detector can then be defined as D: P x P → {0,1}: D(P,M) =

1. However, if there are many different semantic interpretations (executions) possible due

to obfuscation, each will need to be identified separately to determine semantic inclusion

of M in P.

The fundamental difficulty for a signature extraction approach based on semantics is that

a malicious infection must take place in advance before manual signature extraction.

Anticipating new (unknown) polymorphic (as well as metamorphic) malware instances

to make commercial AVSs prepare for undiscovered instances has continued to be a

faraway aim concerning syntactic as well as semantic techniques. In this research, the

research goal is about emphasising a string-based automatic signature extraction approach

for use in identifying polymorphic malware.

As stated earlier (in the abstract section), syntactic techniques toward signature extraction

relying on the syntactic detection of viruses are comparatively unexamined in contrast

with semantic techniques. The historical rationale for this is that the same malware

behaviour can be exhibited in various physical malware code forms, and therefore the

rationale goes that semantic study alone will unveil commonalities amid variants of the

same virus for an effective signature generation. There is some previous research on

representing viral code as sentences of a viral language and identifying the ‘rules’ of the

9

language so that new sentences/viral instances can be created or new instances parsed

back to the appropriate viral language. The research hypothesis in this thesis is that, it is

feasible to detect syntactic forms for an existent malware that support to establish if a part

of malware script possesses a kind of malware along with its malicious variants and, of

so, to which family of virus (language) the code belongs. A signature, according to this

approach, represents the fragments of code that exist in some or all variants of a virus

family. For some simple virus families such as Cascade virus, etc., one signature may be

sufficient to identify all variants (Beaucamps, 2007). For other viral/worm families such

as Trident Polymorphic Engine (TPE), Code Red worm, Chameleon virus, Whale virus,

etc., more than one signature may be required to capture all variants (Kim & Karp, 2004;

Beaucamps, 2007). As an instance of a polymorphic string-based method, consider the

structurally-related set of sentences:

The boy saw the girl

The girl was seen by the boy

We see that the boy saw the girl

We see that the girl was seen by the boy

Signature extraction is similar to looking for the two patterns ‘boy saw girl’ and ‘girl seen

boy’ that will help to detect all four sentences as belonging to the same structural set. If

options and alternatives are permitted, ‘{we see} [boy|girl] [saw|seen] [boy|girl]’ is an

approximate regular expression (signature) for all four sentences that will also permit

derivations of new structurally related sentences not so far encountered (e.g. ‘the girl saw

the boy’). Nevertheless, viral signatures will need to take into account dependencies

amidst non-adjacent code to deal with specific polymorphic attributes as well as possible

rearrangements of code that modify the left-to-right order of signatures. Note that

functionality (semantics) is excluded in these instances. For real viruses, functionality is

important, but the hex code of viruses already encompasses semantic attributes because

they exist in machine language. Although some polymorphic code goes deeper than

mixing of word sequence patterns (as shown above) for malware such as Bistro virus,

Dark Paranoid virus, etc. (Beaucamps, 2007). Based on the literature review presented in

this thesis, there has been no such previous syntactic approach used in virus detection and

signature generation, especially given the immense growth in the understanding of string-

dependent searching techniques in the field of bioinformatics during the last 20 years.

10

1.4 Problem Statements, Research Objectives and Questions

This section provides the problem statement for the identification of polymorphic viruses

along with their variants and the research objectives and questions.

1.4.1 Problem Statements

Commercial identification methods are presently not effective in identifying polymorphic

viruses due to two major rationales. Primarily, the group of all instances belonging to a

polymorphic virus might determine a formal language in non-finite state (Filiol E. , 2007;

Naidu & Narayanan, 2016) and thus cannot be detected adopting regular expressions

(Chaumette, Ly, & Tabary, 2011; Wagner, Rind, Thür, & Aigner, 2017). Secondarily,

semantic-dependent signature extraction methods can be inadequate in dealing with

unknown polymorphic instances due to alterations in their behaviours using suitable code

rearrangement independent of their unaltered functionalities. The existent signature

extraction process is either by a human expert or learning procedure that is, so far,

unexplored. The learning procedure is based on rules that are defined beforehand for the

kind of signature to be extracted (United States Patent No. US11523199, 2006). Learning

sophisticated language categories, such as context-free or regular grammars, are not

beneficial through positive inputs alone (Gold, 1967). Nevertheless, it is unknown what

an optimal negative category of malware it shall be (for instance, malware files with their

payload eliminated, random files, non-malware files, etc.). So far, commercial AVS

products have practically maintained pace with new instances regardless of the attempts

needed to manually develop signatures presumably for the reason that polymorphic

instances to date have demonstrated low levels of complexity (Naidu & Narayanan,

2016). But the growing use of complex techniques by virus writers might rapidly make

this technique uncontrollable (Chaumette, Ly, & Tabary, 2011; Naidu & Narayanan,

2016).

Also, as stated earlier in page no. 1, the automatic extraction of malware signatures for

use in AVSs remains a relatively unexplored area of cyber security, despite the urgent

need to find effective solutions to the increasing number and severity of attacks

(Symantec, 2014; Naidu, Whalley, & Narayanan, 2017) that now pose a global risk

(WEF, 2012). In this thesis, the nature of this research is to examine if string-searching

algorithms, such as the SWA, be able to give rise to string-based syntactic techniques for

the automatic extraction of syntactic virus signatures, not only for known

(polymorphic/metamorphic) virus instances (Pk – see page no. 28 for more details) but

11

also for unknown future (polymorphic/metamorphic) virus instances (Px – see page no.

28 for more details).

1.4.2 Research Objectives

The research objectives of this thesis are constructed as follows:

• To review literature on malware detection techniques employed by modern

commercial AVSs and previous research into malware detection.

• Develop techniques that can extract syntactic viral signatures from malware variants

and measure their performance by testing them against malware datasets.

• To integrate biosequence analysis techniques into existing approaches of automatic

signature extraction for malware detection.

• To assess the performances of modern commercial AVSs by testing them against

malware datasets and comparing them with proposed approaches.

1.4.3 Research Questions

The research questions related to this thesis are formulated as follows:

Q1: Can the syntactic viral signatures extracted from the process of alignment techniques

detect the known (Pk) and unknown (Px) variants of polymorphic malware families? Can

such syntactic viral signatures outperform the detection capabilities of the current

commercial AVSs in the detection of polymorphic malware families? (Chapter 4)

Q2a: Which process of alignment techniques (i.e. local – SWA or global alignment -

NWA) would perform better in the detection of polymorphic known (Pk) variants? Can

these alignment techniques generate new syntactic viral signatures for viruses that were

not previously encountered? (Chapter 5 – Part-I)

Q2b: Can the process of alignment techniques with different combinations of gap

penalties identify new syntactic viral signatures for both known (Pk) and unknown (Px)

variants of polymorphic malware families? (Chapter 5 – Part-II)

Q2c: Which substitution matrices, such as BLOSUM (BLOck SUbstitution Matrix), PAM

(Point Accepted Mutation), can lead to new syntactic viral signatures with higher

accuracies in the detection of polymorphic known (Pk) variants? (Chapter 5 – Part-III)

Q3: Which string representations (i.e. hex, DNA, aligned-DNA) produce syntactic viral

signatures with higher accuracies in comparison to each other? Can these syntactic viral

12

signatures extracted from the process of data mining, such as NNge (Non-Nested

generalised exemplars) algorithm supplementing the alignment techniques, detect the

known (Pk) and unknown (Px) variants of a polymorphic malware family? (Chapter 6)

Q4: Can the process of phylogenetics classify the syntactic viral signatures extracted from

the process of biosequence analysis techniques, and can these classified syntactic viral

signatures detect the known (Pk) and unknown (Px) variants of a metamorphic malware

family? (Chapter 7)

Although Chapter 5 – Part-I and III primarily focuses on identifying new syntactic viral

signatures, the main aim of Chapter 5 – Part-1 is to determine whether local or global

alignment performs better and that of Chapter 5 – Part-III is to determine which

substitution matrices perform best with higher accuracies in the detection of malware

variants. Additionally, the alignment tool adopted in this thesis to extract syntactic viral

signatures puts sequence length restrictions on longer sequences (more details on page

nos. 18, 78, 109 and 123). Therefore, these sub-chapters will only use known (Pk) variants

of JS.Cassandra (Chapter 5 – Part-I and III) and W32.Kitti virus (Chapter 5 – Part-I) to

test the efficiency, accuracy and effectiveness of the newly generated viral syntactic

signatures. Efficiency, accuracy and effectiveness are measured with the help of test

statistics such as sensitivity/recall, specificity, precision and F1 score (see page no. 59 for

a more detailed description).

In this thesis, the terms signature, meta-signature, and super-signature indicate different

kinds of syntactic viral signatures and are defined as follows. A signature is a single string

that can identify a single or (in some cases) a few known (Pk) malware variants, whereas

a meta-signature is a string (or a common substring/pattern) that can identify most or all

known (Pk) malware variants (Naidu, Whalley, & Narayanan, 2017). A super-signature

is a string (or a common substring/pattern) that can identify not only all the known (Pk)

malware variants but also some or all unknown (Px) (or new) malware variants.

1.5 Hypothesis and Proposed Approach

1.5.1 Drawbacks of Previous Approaches

It is argued that the limitations of most previous approaches are that a similar malware

activity can be exhibited in various physical code structures such that only semantic

analysis will unveil commonalities amid instances of a similar malware. This rationale

13

might be suitable for future, intricate malware types with complicated transmutation

methods. The understanding amidst former and existent malware types, nevertheless, is

that existing transmutation methods do easy and uncomplicated modifications to produce

unseen instances and these might be sufficient to evade identification adopting semantic-

dependent signatures. This thesis claims that by employing string-based syntactic

approaches such as the string matching SWA and rule-based NNge classifier algorithm,

these limitations can be overcome.

1.5.2 Hypothesis

The research hypothesis (as stated earlier on page no. 9) in this thesis is that, it is feasible

to detect syntactic forms for an existent malware that support to establish if a part of

malware script possesses a kind of malware along with its malicious variants. Similar

research hypothesis can be applied on other malware types such as worms, etc. and will

be analysed later as a future work. If this hypothesis fails to address uncomplicated

polymorphic instances of a virus type, it is implausible that syntactic forms/patterns are

identified for further complicated polymorphic instances. To test this research hypothesis,

the proposed approach is applied to a more complex polymorphic malware, such as

metamorphic malware in Chapter 7. Generally, metamorphic malware variants are the

more evolved versions of polymorphic malware (Beaucamps, 2007).

1.5.3 Smith-Waterman Algorithm (SWA)

The string matching SWA will be used in Chapters 4 to 7 to perform the pairwise local

alignment. Pairwise alignment is a process of either locally or globally aligning two

sequences in order to determine the regions of similarities (or conserved regions) that

may indicate structural, functional and/or evolutionary relationships between the

sequences (Koyutürk, 2005). Techniques such as string matching are used to detect one

or several locations inside a string/sequence where other strings/sequences know as

patterns/substrings are identified. Let ‘∑’ be a letter/code (a character) that is a finite set.

Traditionally, the patterns/substrings and searched string both are vectors of elements of

‘∑’. Further, the ‘∑’ might be a general alphabet, that is, for example, the alphabets A to

Z in the known Latin format. Many other techniques might adopt binary codes/numbers

(that is, ∑ = {0,1}) and in the field of bioinformatics/computational biology, DNA codes

(that is, ∑ = {A,T,G,C}) (Charras & Lecroq, 1997).

In this thesis, to extract the most commonly occurring pattern/substring from the

polymorphic virus variants belonging to the same family, SWA was adopted. The

14

algorithm of SWA performs sequence alignment locally amidst the two sequences/strings

to search identical segments/sections amidst the two sequences/strings. Those two

strings/sequences can be an amino acid (protein) or a DNA (nucleotide) sequence/string.

The algorithm of SWA searches the most paired/matched sub-sequences/substrings amid

the pattern and search string. Despite scrutinising the entire string/sequence, the algorithm

of SWA extracts segments of every possible lengths, subsequently differentiates as well

as improves the rate of similarity. The algorithm of SWA can search for exact matches or

replaced matches (that is, a code/character within the sequence/string can be replaced by

a new code/character, together with no code/character (that is gap), inside the

substring/pattern, and conversely). The algorithm of SWA is an adaptation of the NWA

(that is Needleman-Wunch algorithm) (Smith & Waterman, 1981). They both are

considered as dynamic programming algorithms. Typically, the algorithm of SWA is

guaranteed to search the best/exact alignment locally with reference to the

substitution/scoring technique that is being adopted (specifically, the substitution and gap

scoring scheme). Surely there are several substitution/scoring matrices feasible and

adopted by the algorithm of SWA like PAM, BLOSUM and IDENTITY (ID) substitution

matrix. Nevertheless, the ID substitution matrix is adopted in most of the research

experiments in this thesis to conduct exact/identical matching as it provides the most

parsimonious method in that no assumptions are made as to how symbols may be related

to each other. The outcomes from the process of SWA are known as ‘alignments’ because

one or the other or both sequences/strings could be altered by the process of gap insertions

to generate the best/exact pattern/substring matches. SWA is compared to NWA in

Chapter 5 – Part-I to determine which dynamic programming performs well. Moreover,

a traditional version of SWA (Smith & Waterman, 1981) is used in this thesis and it is

guaranteed to identify the best optimal local alignment (i.e. common

substrings/signatures) results (Pham, 2011).

Pairwise local alignment will be carried out using a tool called ‘JAligner’ (Moustafa,

2010). As stated earlier, ‘JAligner’ is a freely available open-source Java-based tool that

adopts the algorithm of SWA.

1.5.4 NNge

A data mining rule-based classification algorithm known as NNge will be employed in

Chapter 7 to generate rules, and the rules will later be adopted to extract common

substring/pattern using the SWA from the polymorphic virus variants belonging to the

15

same family. NNge is a new algorithm that generalises exemplars without overlap or

nesting. NNge is an expansion of Nge (Salzberg, 1991), which conducts generalisation

by combining exemplars (Panda & Patra, 2009). A learning method based on generalised

exemplars begins with a collection of A instances (i.e. training instances), {I1, I2, ….., IA},

each one being distinguished by the values of m attributes (the attributes can be nominal,

numerical or a combination of both) and a class label. The goal of the learning method is

to create a collection of generalised exemplars (i.e. hyperrectangles), {G1, G2, ….., GB}.

A hyperrectangle covers a collection of instances, and each of its dimensions is defined

either by a set of categorical values (i.e. nominal values) or by a set of quantitative values

(i.e. numerical values).

In a specific example when a hyperrectangle covers just one instance it is regarded to be

non-generalised exemplar (Zaharie, Perian, & Negru, 2011). An instance of a

hyperrectangle is shown below (Martin, 1995):

class B if p1 = (2 or 4 or 6) AND

 p2 = (22) AND

 (p3 >= 9 AND p3 <= 32) AND

 p4 = (b or c)

Within the NNge algorithm (Martin, 1995) (see below), creating the collection of

hyperrectangles starting from the training collection is an accumulative procedure, where,

for every instance In the subsequent three stages are consecutively enforced, i.e.

classification, model adjustment and generalisation. The classification stage locates the

hyperrectangle Gb which is nearest to In. The model adjustment stage divides the

hyperrectangle Gb if it covers an inconsistent instance. The generalisation stage extends

Gb in sequence to cover In, at most if the generalised instance does not overlap/cover an

inconsistent instance/hyperrectangle (Zaharie, Perian, & Negru, 2011).

NNge Algorithm:

For each instance In in the training collection do:

Locate the hyperrectangle Gb which is nearest to In /*Classification Stage*/

IF D(Gb,In) = 0 THEN

16

IF class(In)≠class(Gb) THEN Divide/Split(Gb,In) /*Adjustment Stage*/

ELSE G’:=Extend(Gb,In) /*Generalisation Stage*/

 IF G’ overlaps with inconsistent hyperrectangles

 THEN add In as a non-generalised exemplar

 ELSE Gb:=G’

The classification stage is formulated based on the distance D(I,G) between an instance

I=(I1, I2, ….., In) and a hyperrectangle G as shown in Eq. (3.1).

𝐷(𝐼, 𝐺) = √∑ (𝑤𝑘

𝑑(𝐼𝑘, 𝐺𝑘)

𝐼𝑘
𝑚𝑎𝑥 − 𝐼𝑘

𝑚𝑖𝑛
)

2𝑛

𝑘=1

 𝐸𝑞. (3.1)

In Eq. (3.1), I
min

k
 and I

max

k
 indicates the set of numerical values across the training

collection which corresponds to attribute k. For categorical (i.e. nominal) attributes, the

length of this set is a constant value of 1. Gk is the interval [G
min

k
 , G

max

k
] if Ik is a

quantitative attribute, and is a list of values if Ik is a categorical attribute. The distance

between the corresponding hyperrectangle i.e. the ‘side’ and the attribute values is

formulated based on the type of the attribute as illustrated in Eq. (3.2).

𝑑𝑛𝑜𝑚(𝐼𝑘 , 𝐺𝑘) = {
0,
1,

𝐼𝑘 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑑𝑛𝑢𝑚(𝐼𝑘 , 𝐺𝑘) = {

0,

𝐺𝑘
𝑚𝑖𝑛 − 𝐼𝑘 ,

𝐼𝑘 − 𝐺𝑘
𝑚𝑎𝑥 ,

𝐺𝑘
𝑚𝑖𝑛 ≤ 𝐼𝑘 ≤ 𝐺𝑘

𝑚𝑎𝑥

𝐼𝑘 < 𝐺𝑘
𝑚𝑖𝑛

𝐼𝑘 > 𝐺𝑘
𝑚𝑎𝑥

𝐸𝑞. (3.2)

The constant wk signifies weights corresponding to attributes and can be regulated

throughout the training procedure (Salzberg, 1991) or can be assigned to the mutual

information (Zaharie, Perian, & Negru, 2011; Wettschereck & Dietterich, 1995).

The adjustment stage is implemented when a previously created hyperrectangle covers an

instance associated with a different class. To circumvent the creation of nested

hyperrectangles NNge regulates the current hyperrectangle so that the inconsistent

instance is eliminated. This is accomplished by splitting the hyperrectangle into two or

more hyperrectangles and potentially into a few isolated variants/instances. The

generalisation stage comprises of modifying the ‘border’ of the nearest hyperrectangle

17

possessing the same class as the training case in order to cover it. The extension is

obtained only when the newly split hyperrectangle does not overlap with hyperrectangles

possessing a separate class. If the overlap is detected the training case is included in the

model as a non-generalised exemplar (Zaharie, Perian, & Negru, 2011).

Rule extraction adopting the NNge classifier will be conducted with the use of an open

source software product known as Weka (Waikato Environment for Knowledge Analysis)

Weka is a tool that provides a collection of machine learning algorithms for performing

data mining tasks (Frank, Hall, & Witten, 2016).

1.5.5 Limitations of Proposed Approach and Possible Solutions

There are three limitations related to the approaches proposed in this thesis. One is that

the string matching search using the SWA finds only the most conserved regions, from

left to right, between two variants in DNA representations resulting in meta-signatures

(syntactic viral signatures) based solely on syntactic structural commonalities. Such meta-

signatures are not likely to successfully identify all unknown (Px) variants. While meta-

signatures obtained using this approach have been shown to successfully identify

unknown (Px) variants of the Win32.Kitti and Win32.Cholera polymorphic viruses with

high precision and recall (see Table 5.10 – page no. 101), it is unlikely that such an

approach would completely identify all the unknown (Px) variants of a particular family.

However, it was discovered in this research that in the case of JS.Cassandra signatures

generated using this approach gave high precision for the randomly generated file but a

low precision for non-malicious (Pu) files (see Figures E.1-E.3 – page no. 229). The

reason for these results is that all of the JS.Cassandra non-malicious files (Pu) were still

executable and as a result, still contain a potential threat. A rule-based approach can be

used to overcome the limitation of signatures generated in left to right order. Such an

approach tends to use either a divide and conquer (top-to-bottom) approach or

alternatively, separate and conquer (bottom-to-top) approach. These methods have the

potential to find common substrings with deep syntactic structural commonalities and

ensures that every instance (i.e. every polymorphic variant) of the original training set

(the variants in DNA representation) is covered by at least one (single) rule, thereby

reducing/nullifying the false positive and false negative rates (Witten, 2014; Koklu,

Kahramanli, & Allahverdi, 2015).

The primary objective of data mining is to search and extract meaningful and valuable

information, sometimes as rules that represent the patterns and clusters in data, from a

18

vast selection of data (Koklu, Kahramanli, & Allahverdi, 2015; Heikki, 1997).

Classification is one of the most common tasks in data mining that uses machine learning

techniques, where, considering two or more different classes of sample data, a classifier

needs to be constructed by the learner to distinguish between the different classes. Once

a classifier has been trained it provides a model that can be used to anticipate the

class/group of unseen data. For large datasets, a common approach involves merging

association rule mining and classification to produce more efficient and accurate

classification systems. Association rule mining helps to identify important relationships

and association in data. The benefits of this combined rule-based classification method

are the rules that are derived from decision trees, and both the trees and the rules are

simple to interpret. Furthermore, new occurrences can be classified quickly (Koklu,

Kahramanli, & Allahverdi, 2015; Datta & Saha, 2011). Rule-based common substrings

(meta-signatures) obtained in this way might potentially capture knowledge which makes

the identification of new variants possible. Thus, the rule-based NNge approach is

explored in this research and detailed in Chapter 6 (see page no. 121).

The second limitation worth noting is that a string matching search using the SWA is

‘pairwise’ and only allows alignment of two sequences at a time. Only the regions of

similarity in these sequences are considered in extracting the signatures rather than using

knowledge of all the known (Pk) variants. A rule-based data mining approach allows three

or more sequences at a time to be used to extract signatures through (single) rules. This

means a rule-based approach is capable of identifying variation (and commonality) in

patterns of residue i.e. ‘conserved regions’ for all the variants employed in the training

phase.

Third (limitation), using the SWA gives ‘out of memory’ error and eventually crashing

or freezing the software product when aligning larger (DNA/protein) sequences. This

means that the time and potential for error are increased because to avoid these memory

issues - meta-signatures must be extracted by performing several separate alignments.

Larger sequences (greater than 300,000 sequence length) had to be broken down into

several smaller sub-sequences and then pairwise alignments run on those sub-sequences.

There are currently no openly available online tools or software products that can perform

pairwise alignment of larger sequences using the ID substitution matrix (and/or are based

on the SWA) except for JAligner, and even JAligner cannot cope with all the sequences

which represent malware variants used in this research. The proposed rule-based method

19

allows several DNA sequences to be input at once and overcomes the issues associated

with alignment and long sequences. By generating (single) rules that identify deep

structural commonalities from the input DNA strings effective signatures can be extracted

(using alignment techniques) which are shorter and require fewer runs of pairwise

alignment in subsequent steps.

1.6 Thesis Description

Coming forward to the four research objectives and questions (discussed in Section 1.4),

the essential motivation underlying those research objectives and questions have been

discussed. The main objective of this thesis is to examine if string searching algorithms,

like the SWA, be able to give rise to syntactic techniques for the automatic extraction of

syntactic virus signatures/substrings/patterns – not only for known (Pk) malicious variants

but also for unknown future (Px) malicious variants. In the concluding section (i.e. Section

8.5) of this thesis, whether string searching algorithms of greater sophistication has given

any advantage is evaluated. The following subsections (i.e. Subsections 1.6.1-1.6.3) will

explain the contribution of this thesis, summarise the organisation of the rest of the thesis

as well as the list of related publications.

The work in this thesis uses malware datasets that are originally 5-11 years old but their

variants were generated during the course of this research and were generated on a

Windows 10 environment. These datasets were used in Chapters 4-7. These chapters

focused on these old datasets because of the following reasons:

• The experiments from Chapters 4, 5, 6 (Part-II) and 7 show that modern AVSs still

cannot completely detect the variants belonging to these virus datasets (Naidu &

Narayanan, 2016; Naidu, Whalley, & Narayanan, 2017).

• There is a lack of malware samples (Dumitraş & Neamtiu, 2011) with the capability

of generating new variants.

• Furthermore, the aim of this study is to detect the known (Pk) and unknown (Px)

variants of a polymorphic malware family. Finding a new polymorphic (or any other)

malware family with proper documentation on its implementation process (Preda &

Maggi, 2017), variant generation and original source code (Upchurch & Zhou, 2013)

is difficult.

However, a more recent malware dataset is used in Chapter 8. This dataset belongs to a

metamorphic malware family. Its variants were also generated on a Windows 10

20

environment. Two of the four virus families employed in this thesis are a proof of concept

malware, namely, Transcriptase metamorphic virus (Musale, Austin, & Stamp, 2015;

Troia, Visaggio, Austin, & Stamp, 2016) and JS.Cassandra polymorphic virus (SPTH,

2004; SPTH, 2015).

Some of the malware nowadays are hybrid and may not be purely viruses or worms

(Fosnock, 2005). The work in this thesis purely focuses on polymorphic (Chapters 5-7)

and metamorphic (Chapter 8) viruses and doesn’t deal with hybrid or mixed types of

malware. The main aim of this thesis is to detect the known (Pk) and unknown (Px)

variants of polymorphic and metamorphic malware through syntactic signatures. Analysis

of hybrid malware will be considered as a future work.

The key differences between the previous work (Narayanan, et al., 2012; Chen, et al.,

2012a; Chen, et al., 2012b; Narayanan, et al., 2013a; Narayanan, et al., 2013b) and the

work that is conducted in this thesis are as follows:

• Previous work used pre-existing malware signatures for their experiments and current

work used the entire hexadecimal (hex) dumps from malware variants.

• Previous work applied biosequence analysis techniques on the malware signatures

and current work applied biosequence analysis techniques on the hex dumps of the

malware variants.

• Previous work generated JavaNNS/PRISM rules which distinguished viruses from

worms. Current work generated viral syntactic signatures that were used to detect

known (Pk) and unknown (Px) variants of a malware family.

• Previous work adopted a different representation approach for converting hex data

into amino acid in comparison to current work.

• Previous work used global alignment (i.e. adopting Needleman-Wunsch algorithm)

to align their sequences. Current work used both local (i.e. Smith-Waterman

algorithm) and global (i.e. Needleman-Wunsch algorithm) alignment but mainly used

local alignment to align its sequences.

• Previous work used sequence alignment techniques with fixed substitution matrices

(i.e. GONNET and BLOSUM or None) and default gap penalties to align the malware

signatures and did not extract the substrings for signature testing purposes, in the same

way as is done by the work conducted in this thesis. Current work used sequence

alignment techniques with different substitution matrices (but mainly used ID

21

substitution matrix) and explored the effects of using different gap open and gap

extend penalties.

• Previous work did not use the consensus (a by-product of sequence alignment) to

extract signatures (i.e. common substrings) for signature testing purposes but the

current work did. Previous work used the consensus for data mining and classification

purposes.

• Previous work did not compare their results with the other state of the art techniques.

But current work compared its results with the other state of the art AVSs.

• Previous work did not measure its efficiency and effectiveness of their techniques but

current work did by calculating the test statistics, such as precision, sensitivity,

specificity, etc.

1.6.1 Thesis Contribution

The contribution of this thesis to add to the existing knowledge can be outlined as follows:

1. A comprehensive literature review of previous work and malware detection

techniques adopted by the state of the art AVSs are highlighted in Chapter 2.

2. Chapter 3 contributes to this thesis by discussing the research method adopted in this

study.

3. A detailed analysis of the syntactic process of a string-based method for identifying

several polymorphic virus variants is described in Chapter 4. The proposed string-

based syntactic approach to the extraction of syntactic virus meta-signatures (common

substrings) automatically is shown to identify each and every known (existing)

polymorphic virus variants (Pk) belonging to JS.Cassandra virus family.

4. In Chapter 5, further detailed analyses of the syntactic process of a string-based

method for identifying several polymorphic virus variants supplemented by the

following three sub-chapters (parts) are described:

a. By adopting the two different dynamic programming approaches (Part-I)

b. By studying the effects of gap open and gap extend penalties using SWA (Part-

II), and

c. By adopting SWA with several different substitution matrices (Part-III).

22

This chapter demonstrates that through the proposed string-based syntactic

approaches, it is possible to extract meta-signatures/super-signatures after applying

data mining classification techniques such as PRISM to the extracted signatures. Such

meta-signatures/super-signatures can, in turn, be employed as rule-based string

templates for creating more specific, variant-oriented polymorphic malware

signatures for detecting polymorphic malware (and its known (Pk) variants) belonging

to the same family. In other words, the work presented in this chapter has shown how

to progress from viral code consensus identification for a set of executables for the

same virus (training set) to the generation of signatures in either regular expression or

rule format for identification of other known (Pk) variants of the same virus (test set).

5. Chapter 6 addresses some of the limitations of previous work demonstrated in

Chapters 4 and 5 (Naidu & Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu &

Narayanan, 2016c). This chapter demonstrates how representing polymorphic

malware as sequences of DNA allows traditional data mining and sequence alignment

approach to extract rule-based meta-signatures that help to identify known/unknown

(Pk/Px) variants of that particular polymorphic malware family.

6. Chapter 7 focuses on applying string-based syntactic detection method on detecting

metamorphic malware. Previous work mainly focused on detecting the known (Pk)

and unknown (Px) variants of several polymorphic malware families. There was no

attempt made to test the capability of string-based syntactic detection method on

detecting metamorphic malware and this chapter makes an attempt to do so. This

chapter demonstrates the detection of known (Pk) and unknown (Px) variants of a

metamorphic malware family using syntactic viral signatures extracted adopting the

techniques proposed in previous chapters. This chapter also distinguishes the

syntactic viral signatures.

The intention of this thesis is to aid the global fight against cybercrime through

understanding the mechanisms leading to new polymorphic variants so that appropriate

automatic signature extraction techniques can be developed to help reduce their impact.

1.6.2 Thesis Structure

The remainder of this thesis is structured into the following six chapters:

Chapter 2: A detailed introduction to classification of malware, such as virus is supplied

in this chapter. A review of previous research into malware malware detection is dicussed.

23

The classification of viruses by their masking strategies is discussed. Subsequently, the

discussion in depth about polymorphism, classification of polymorphism, levels of

polymorphism, mutation engines, and the polymorphic decryptors. Also, discussion about

malware detection techniques adopted by the state of the art AVSs and also, emphasises

on the limitations of those detection techniques. The chapter concludes by discussing the

history of malware and validation of tool that is adopted in this thesis.

Chapter 3: This chapter covers sections such as the research design and method that are

adopted in this thesis, the design of the proposed approach, discussion of results and

evidence, and analysis and evaluation of approaches.

Chapter 4: The aim of the research described in this chapter will be to explore effective

and efficient syntactic (string-based) approaches (without reverse engineering) of

sequence matching algorithm for the detection of all new (unknown) or some (known)

polymorphic virus variants automatically adopting the SWA with ID substitution matrix.

SWA is used extensively in bioinformatics for sequence alignment (finding common

subsequences or consensuses among a set of variable length sequences).

Chapter 5: The aim of the research described in this chapter is to explore in depth, the

efficient and effective (string-based syntactic) bioinformatics approaches (without

reverse engineering) of sequence matching algorithm for the detection of all new

(unknown) or some (known) polymorphic virus variants automatically using the SWA,

in three parts.

• In Part-I, two different dynamic programming approaches, that is, the Needleman-

Wunsch algorithm (NWA) and the SWA are adopted. The aim here is to compare the

two different dynamic programming approaches and to determine which one performs

better. Only two commonly used traditional alignment techniques (Lal & Verma,

2017; Prasad & Jaganathan, 2018) are considered in this part for the purpose of global

and local alignments as other existing alignment techniques are basically

implementations of these techniques (Dohi, Benkrid, Ling, Hamada, & Shibata, 2010;

Geers, Çağlayan, & Heij, 2013; Tucci, O’Brien, Blott, & Santambrogio, 2017; Patel,

Gandhi, & Bhatti, 2017) that produce similar results (as shown in Section 2.4 – see

page no. 48) and are not considered in this part.

• In Part-II, the approach from Chapter 4 is further examined to see whether string

searching algorithms of greater sophistication, that is, the SWA with different

24

combinations of gap open and gap extend penalties, be able to give rise to syntactic

techniques for the extraction of syntactic virus signatures automatically ˗ not only for

known polymorphic virus variants (Pk) but also for unknown future (Px) virus

variants.

• In Part-III, the approach from Chapter 4 is further refined by adopting the SWA with

several different substitution matrices and to determine which one performs better

with higher accuracies and generates new syntactic viral signatures.

Chapter 6: Automatic signature generation has concentrated mainly on semantics rather

than syntax because of the structural variety shown by viruses in general and polymorphic

viruses in particular. Initial work (demonstrated in Chapters 5 and 6) (Naidu &

Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu & Narayanan, 2016c) on string-

based syntactic approach using the SWA of representing the hexadecimal dumps of a

polymorphic malware and its known (Pk) variants into DNA sequences was promising in

a number of ways. The aim of the research described in this chapter is to address some of

the limitations of that work and to investigate a syntactic structure approach to automatic

signature extraction using data mining algorithm (and sequence alignment approaches).

Non-nested generalised exemplars (NNge) are used (as a data mining algorithm) to

extract rule-based meta-signatures for the detection of all new (unknown) or some

(known) polymorphic virus variants belonging to the same family automatically. Three

different sets of experiments are conducted in this chapter.

Chapter 7: A phylogenetic-inspired signature-based syntactic detection method is

proposed in this chapter. The proposed method follows the concept of automatic signature

extraction from previous work (Chapters 4-6) of generating malware patterns (syntactic

viral signatures) in the form of “regions of similarities” (i.e. conserved regions) using

sequence alignment techniques. Syntactic viral signatures are extracted from the results

of sequence alignments by applying alignments on a small group of metamorphic

malware variants belonging to the Transcriptase family. The same group of metamorphic

malware variants are again used to generate a phylogenetic tree to determine its

metamorphic relationships. The result of phylogenetic tree analysis is later used in the

classification of syntactic viral signatures in order to detect the variants of Transcriptase

family both systematically and thoroughly.

Chapter 8: The conclusion is described in this chapter, followed by the overview of the

work performed in this thesis. Lastly, the objectives for future work are described.

25

1.6.3 Publications

The five research papers below have been composed and published throughout the

doctoral study of this research thesis (Naidu & Narayanan, 2016a; Naidu & Narayanan,

2016b; Naidu & Narayanan, 2016c; Naidu, Whalley, & Narayanan, 2017; Naidu,

Whalley, & Narayanan, 2018).

1. Naidu, V., and Narayanan, A., A syntactic approach for detecting viral polymorphic

malware variants, Intelligence and Security Informatics (Springer – LNCS 9650),

Eleventh Pacific Asia Workshop (PAISI 2016), Auckland, New Zealand, pp. 146-

165, April 19, 2016 (Naidu & Narayanan, 2016a). No CORE ranking is available for

PAISI workshop. Although the H-Index of Lecture Notes in Computer Science

(LNCS) is 251, which was obtained from the Scientific Journal Rankings (SJR) –

SCImago. The work reported in chapter four contributes to this paper.

2. Naidu, V., and Narayanan, A., Using Different Substitution Matrices in a String-

Matching Technique for Identifying Viral Polymorphic Malware Variants, in the

Proceedings of IEEE World Congress on Computational Intelligence (WCCI – CEC

2016), Vancouver, Canada, July 24-29, 2016 (Naidu & Narayanan, 2016b). The

CORE2018 conference ranking of IEEE CEC conference is rank B. The work

reported in chapter five – part three contributes to this paper.

3. Naidu, V., Whalley, J., and Narayanan, A. (2017). Exploring the Effects of Gap-

Penalties in Sequence-Alignment Approach to Polymorphic Virus Detection. Journal

of Information Security (JIS), 296-327. The Google-based Impact Factor of JIS

journal is 2.43. The work reported in chapter five – part two contributes to this paper.

4. Naidu, V., and Narayanan, A., Needleman-Wunsch and Smith-Waterman Algorithms

for Identifying Viral Polymorphic Malware Variants, in the Proceedings of the

Fourteenth IEEE International Conference on Dependable, Autonomic and Secure

Computing (DASC 2016), Auckland, New Zealand, August 8-12, 2016 (Naidu &

Narayanan, 2016c). The CORE2018 conference ranking of IEEE DASC conference

is rank C. The work reported in chapter five – part one contributes to this paper.

5. Naidu, V., Whalley, J., and Narayanan, A. (2018). Generating Rule-Based Signatures

for Detecting Polymorphic Variants Using Data Mining and Sequence Alignment

Approaches. Journal of Information Security (JIS), 265-298. The Google-based

26

Impact Factor of JIS journal is 2.43. The work reported in chapter six contributes to

this paper.

There is now a clear statement about my contribution to these publications in 1.6.3:

“For all five papers, I extracted and prepared all the data, ran all the relevant software,

recorded all the output and analysed all the results with supervision from my two PhD

supervisors. In all cases, I provided the first full draft, responded to all supervisor

comments, submitted the articles as first named author, corresponded with the editor on

responses to referees and helped to prepare the final version for submission. For the three

conference papers, I made the oral presentations. My contribution to each of these

publications is 80% or over.”

27

Chapter 2 Malware, Polymorphic Malware, and their

Detection Approaches

This chapter provides literature review of classification of malware together with their

masking strategies and previous research into malware detection. This chapter also

discusses in depth about polymorphism, classification of polymorphism (based on both

syntactic and semantic reconstruction), levels of polymorphism, mutation engines,

polymorphic decryptors and metamorphism. Lastly, the state of the art malware detection

approaches along with their limitations are discussed. Additionally, information

regarding the materials and tools, such as malware datasets, alignment tool, etc. used in

thesis can be found in Appendix C (see page no. 224) and are not discussed in this section.

2.1 Classification of Malware and Recent Research into Malware

Detection

Based on a malware’s mode of operation, it can be divided into several classes. There are

three features of malware, and they are as follows (Aycock, 2006):

1. Self-reproducing malware: Malware with this kind of feature when active tries to

generate by making new instances, or duplicates of itself (Aycock, 2006).

2. Population expansion of malware: This feature of a malware reports the overall

variation in the number of new occurrences due to self-reproduction. Malware without

this self-reproducing feature will on all occasions have zero population expansion,

but malware with a zero population expansion may self-reproduce.

3. Parasitic malware: For an existing malware with this kind of feature, it needs some

additional executable code. ‘Executable’ in this instance can be whatever that can be

executed, like applications with binary code, decoded code, a disk with a boot block

code, etc.

‘Virlock’, has been identified the first polymorphic ransomware that self-replicates but

also reacts as a parasitic malware. Thus, ‘Virlock’ has all three of the features defined by

Aycock (2006). There are only six variants of ‘Virlock’ known to have been detected by

security experts (Paganini, 2014).

In this section, the focus is primarily on viruses as this malware type is employed for

experimental purposes in this thesis in order to evaluate a proposed syntactic approach to

malware detection.

28

2.1.1 Virus

A virus is a self-reproducing malware and has the capability of population expansion and

is also a parasitic malware. A virus, when executed, attempts to reproduce itself into

additional executable code; when it advances, the code is reported to be infected. A virus

is a malware. The infected code, when in the process, can infect fresh code one after the

other. The key determining a feature of a virus is this self-reproduction into executable

code that already exists (Aycock, 2006). The virus called ‘1260’ is the first notorious

polymorphic virus, which came into existence, in 1989. The virus scanners at that time

could not cope with the ‘1260’ virus because this virus could not be detected using a

simple string searching approach (Szőr, 2005). ‘Tequila’ is the first universal

polymorphic virus that came into existence in 1991 (Sharman, Krishna, Rao, &

Upadhyaya, 2006). ‘ACG’ is the first DOS-based metamorphic virus that came into

existence in 1998 (Rad, Masrom, & Ibrahim, 2012).

Three types of polymorphic virus families and a metamorphic virus family are used in

this thesis and are discussed in depth in Section 2.5, respectively.

2.1.2 Previous Research into Malware Detection

The aim of this thesis is to apply a purely syntactic exploration of the possibility of

generating signatures automatically from malware source code without the need for

semantic analysis or information.

The task of a syntactic learning system for signature generation of polymorphic malware

using hex code only (i.e. no execution traces) is specified below (see Figure 2.1):

(a) From the code of a set of seen variants Ps, automatically generate signatures to identify

unseen variants Pu, where Ps and Pu form currently known variants Pk.

(b) From the code of a set of known variants Pk, automatically generate signatures to

identify unknown variants Px for cross-validation. In this case, Px are code variants

that have not been seen before for either training or testing purposes.

The learning task is to maximise true positive rates and minimise false positive and false

negative rates in both cases above. It is currently not known whether matching techniques

that work well for (a) will continue to work well for (b), or whether bioinformatics and

data mining techniques that look for patterns in underlying structure are required to allow

generalisation to unknown (Px) variants.

29

Figure 2.1: Distribution of Polymorphic Malware Variants.

The main body of research over the last fifteen years has concentrated on malware

detection adopting semantic-based approaches and only a few adopting syntactic-based

approaches. A list of approaches to automatic signature generation is presented in Table

2.1. Most of the previous approaches deal with only a restricted set of variants (i.e. small

datasets) (Devesa, Santos, Cantero, Penya, & Bringas, 2010; Lindorfer, Kolbitsch, &

Comparetti, 2011; McLaughlin, et al., 2017) either belonging to the same malware family

or multiple malware families and it is currently not known how generalisable these

approaches are for trapping other variants of the same family, either unseen Pu or

unknown Px (Naidu, Whalley, & Narayanan, 2017).

30

Table 2.1: Related research to the automatic signature generation in malware detection.

Researchers/Application
Type of

Malware

Type of

Approach
Description

Wespi, et al. (1999) Intrusions Semantic

Variable length patterns from training data consisting of system call

traces of commands under normal execution were analyzed by a

sequence-based algorithm called Teiresias for intrusion detection.

Honeycomb (Kreibich &

Crowcroft, 2004),

Autograph (Kim & Karp,

2004) and EarlyBird

(Singh, Estan, Varghese, &

Savage, 2004)

Worms Syntactic
Generate signatures that constitute individual adjoining byte strings

(tokens).

Polygraph (Newsome,

Karp, & Song, 2005)

Polymorphic

worms
Syntactic

Identifies an array of tokens, a subsequence of tokens and Bayes

signatures based on probabilistic methods to detect polymorphic

worms.

Nemean (Yegneswaran,

Giffin, Barford, & Jha,

2005)

Worms Semantic Focus on identifying signatures that defend against worms.

PAYL (Wang, Cretu, &

Stolfo, 2005)
Worms Semantic

Produces subsequence signature tokens that associate ingress/egress

payload notifications to detect the initial replication of worms.

Hamsa (Li, Sanghi, Chen,

Kao, & Chavez, 2006)

Polymorphic

worms
Semantic

Produces a set of signature tokens that can deal with polymorphic

worms by investigating their invariant activity.

ShieldGen (Cui, Peinado,

Wang, & Locasto, 2007)
Worms Semantic

Generates network signatures for unseen vulnerabilities (worms)

that are based on protocol-aware for instance.

AutoRE (Xie, et al., 2008) Botnets Semantic
Produces a spam signature creation architecture from spam emails

that use botnets to detect them.

Coull and Szymanski

(2008)
Masquerade Semantic

Sequence alignment was used to identify masquerade detection by

comparing ‘audit data’ with legitimate user signatures extracted

from their actual command line entries.

Scheirer, et al. (2008)
Polymorphic

worms

Syntactic

and

Semantic

Identification of many polymorphic worms and uses intrusion

detection techniques such as sliding window schemes and

instruction semantics.

Wurzinger, et al. (2009) Botnets Semantic

Identifies botnets that are under the influence of botmaster

(malicious body) using network signatures by examining the

response from a compromised host to a received command and by

generating detection models.

Botzilla (Rieck, Schwenk,

Limmer, Holz, & Laskov,

2010)

Malware

binaries
Semantic

Produces signatures for the malicious activities (traffic) created by

a malware binary executed several times within a controlled

domain.

Zhao, et al. (2013)

General

malware

datasets

Semantic

Generates signatures through an inverse transcoding method by

converting the malware sequential information, such as system call

sequences, propagation dataflow, etc. into amino acid sequences

and then aligning them using multiple sequence alignment tool.

ProVex (Rossow &

Dietrich, 2013)
Botnets Semantic

Generates signatures to identify botnets that use encrypted

command and control (C&C) systems after being given the keys

and decryption routine employed by the malware be derived using

binary code reuse strategy.

FIRMA (Rafique &

Caballero, 2013)
Botnets Semantic Detects C&C systems but does not produce signatures for those.

Ki, et al. (2015)
Worms,

Trojans, etc.
Semantic

Generates sequences that are typical API call sequence motifs of

malicious activities belonging to several malware samples and

employed multiple sequence alignment tool to align those malware

samples to extract signatures.

MalGene (Kirat & Vigna,

2015)

Evasive

malware

samples

Semantic

Uses sequence alignment techniques on two sequences of system

call events belonging to two different analysis environments:

One environment in which the malware evades the AVS, and the

other in which it exhibits the malicious activities.

These events are used to construct an ‘evasion signature’ using

sequence alignment.

Fazlali & Khodamoradi

(2018)

Metamorphic

malware
Semantic

Extracts set of opcode features from disassembled malware code

and applies data mining algorithms, such as J48, Random Forest,

NB-Tree, LAD Tree, etc. to classify and generate decision trees.

Decision trees are created based on statistics of every opcode

feature that act as signatures and are used to detect malware.

They claim that their proposed approach can lead to an extension of

a detection system for generating an automatic signature for a

specific malware class.

31

Some other related and selected previous work that primarily focuses on malware

detection using data mining and bioinformatics approaches are shown in Table 2.2. Some

research has been undertaken using data mining and bioinformatics approaches for the

identification of polymorphic virus and its unseen Pu variants, let alone its unknown Px

variants. Nonetheless, data mining with a novel approach to rule extraction for malware

detection was first demonstrated by Chen, et al. (2012a; 2012b).

In contrast to much of the work shown in Tables 2.1 and 2.2, a purely syntactic approach

is independent of any prior semantic knowledge. Previous use of sequence alignment and

data mining has for the most part been semantic in nature, depending on system behavior

patterns (Kirat & Vigna, 2015) or using n-grams of bytes (Shim, Kim, & Im, 2015) instead

of code or structural patterns for the detection of malware. Also, because of their semantic

nature, the generalizability of the results to new Pu variants generated through

polymorphism is unknown. A purely syntactic-oriented approach, on the other hand, is

based on the intuition that most new Pu (polymorphic) variants are simple syntactic

variations of existing malware. The complicating aspect is variable length variations. The

‘expressive power’ of signatures can be estimated by detecting how well these signatures

generalize to unseen Pu and unknown Px variants of the same family, all obtained through

polymorphic (structural) alterations to the code. The benefit of a syntactic approach is

that no semantics is needed. More importantly, as will be shown in this thesis, the number

of malware training instances required to extract signatures for use against unseen Pu test

instances is exceptionally small given the sequence alignment and data mining

approaches adopted in the experiments.

32

Table 2.2: Some related and selected previous work in the detection of malware using data mining and bioinformatics approaches.

Researchers Data Mining Data Set Type of Malware Type of Approach

Chen, et al. (2012)

Data Mining Classifiers Algorithms

i.e. ANNs (Artificial Neural

Networks) i.e. JavaNNS and Symbolic

Rule Extraction i.e. J48 classifier

60 malicious files, 30 belonging to

virus group and 30 belonging to worm

group.

One family, with a total of 60

malicious samples, 30 each for

virus and worm categories.

Extraction of hexadecimal (hex) sequences

from viral and worm malicious files.

Multiple sequence alignment using T-

Coffee was applied on the extracted hex

sequences for data mining process.

Prabha & Kavitha (2012)

Data Mining Classifier Algorithms i.e.

J48, KNN (K-Nearest Neighbours),

Naïve Bayes.

100 binaries out of which 90 were

benign and 10 were malware binaries.

15 subfamilies, with a total of

1,056 malicious viral samples.

Extraction of hexadecimal

dumps/Extraction of byte sequences in

terms of n-grams of different sizes

Kumar & Mishra (2013)
Data Mining Classifier Algorithms i.e.

IBK (k-nearest neighbours classifier)

Existing dataset: 323 malicious files

with a combination of viruses and

worms.

New upcoming dataset: 323 malicious

files with a combination of viruses and

worms.

Virus and Worm.

Extraction of hexadecimal (hex) sequences

from viral files and conversion of hex

sequences into ASCII sequences.

Applies multiple sequence alignment on

the converted ASCII sequences for data

mining process.

Srakaew, Piyanuntcharatsr, &

Adulkasem (2015)

Data Mining Classifier Algorithm i.e.

J48 by generating decision trees.

Reference Data Set: 1,200 files in total

out of which 900 are malicious, and

300 are non-malicious.

Application Data Set: 3,251 files in

total out of which 2,951 are malicious,

and 300 are non-malicious.

Reference Data Set: Allapple,

Podhuha and Virut viral families

each containing 300 malicious

samples.

Application Data Set: Allapple,

Podhuha and Virut viral families

with 890, 8 and 2,053 malicious

samples, respectively.

Statistical Features Approach: Conversion

of malicious and non-malicious files into

hexadecimal sequences for extracting

statistical aspects using n-grams of bytes.

Abstract Assembly Approach: Conversion

of malicious and non-malicious files into

assembly instructions for extracting

selected instructions using n-grams of

interesting opcodes.

Vu, et al. (2017)

Data Mining Classifier Algorithms

like Multilayer Perceptron (MLP),

Gaussian Naïve Bayes (NB) and

Support Vector Machine (SVM).

Dataset: 9,690 samples in total out of

which 9,390 were malware samples of

Locker, Mediyes, Winwebsec, Zbot

and Zeroaccess.

Metamorphic malware samples.

Detects metamorphic malware by analysis

of Portable Executable (PE) with the

“Longest Common Sequence” (LCS).

Extracts four different features such as API

calls, PE header, code sequences and DLLs

import from malware executables.

Applies data mining techniques to classify

and separate the extracted features.

33

2.1.3 Classification of Viruses by Masking Strategies

One other way of classifying viruses from both an AVS and a computer user’s perspective

is in the ways viruses mask (or hide) their presence (Aycock, 2006). This type of strategy

commonly adopted by viruses is simply known as masking. From this section onwards,

the focus is primarily on simple polymorphism and complex polymorphism (i.e.

metamorphism) strategies as the malware types that are employed in the experiments in

this thesis use polymorphism (and metamorphism) as their masking strategy. More

information on other types of masking strategies are discussed in Appendix A (see page

no. 208).

2.1.4 Polymorphism

Many computer viruses use the approach of polymorphism to hide or obfuscate their

existence (Hosmer, 2008). Polymorphism is an obfuscating technique that modifies the

virus code and forms new mutations or variants of the virus. The mutation aims to hide

the fact that the code contains a virus while still keeping its malicious functions intact.

The viral code mutates using a polymorphic engine that changes the viral decryption

routine using an obfuscation method such as inserting garbage code (see Figure 2.2). Each

time the polymorphic engine is executed, it maintains its original algorithm but changes

its code.

Figure 2.2: The structure of a polymorphic malware (SANS Institute, 2003, p. 5).

Hiding the existence of a computer virus is accomplished by encryption. When the

polymorphic code gets executed, a decryption function inside the computer virus code

decrypts the code thereby allowing its tasks to be executed. As soon as the tasks are

successfully executed, the encryption function encrypts the decrypted code back to its

original form to avoid AVS detection. Polymorphism does not work just because of the

encryption. It works largely due to the modification of both the encryption and the

decryption code, thereby creating a different form of a computer virus each time it

replicates (Hosmer, 2008; Gragido & Elisan, 2012; Ye Y. , Li, Adjeroh, & Iyengar, 2017).

34

The first widespread computer virus that used a polymorphic engine was called ‘Tequila’

and was first discovered in 1991 (Sikora & Zelinka, 2017). The second-most commonly

known polymorphic computer virus was written in 1992 by the hacker ‘Dark Avenger’

whose main intention was to avoid the technique of pattern recognition utilised by most

of the antivirus programs (Sikora & Zelinka, 2017). ‘Virut’, another polymorphic

computer virus, is a file infector that has been operating since 2006 and recently in 2013

a Polish organisation stopped its malicious activities (Hosmer, 2008; Gragido & Elisan,

2012; Nataraj, et al., 2011; Schwartz, 2013).

Aycock’s 2006 classification of viruses by their masking strategies is presented in Table

2.3.

Table 2.3: Virus Classification by their masking strategies collated from Aycock (2006,

pp. 34-48).

Virus Masking Strategy Description Examples

No Masking

No concealment at any moment is a camouflage

strategy which is exceptionally easy to apply in a

computer generated virus.

Ply

Stealth
Conceals the virus body and also effectively takes

actions to hide the infection itself.
Regin

Encryption

The virus body structure, which largely contains a

payload, infection, and trigger, is encrypted making it

difficult to detect.

CryptoLocker

Strong Encryption

Uses two different approaches by either retrieving the

decryption key from external or internal source of an

infected machine for the process of encryption.

RMNS,

Dichotomy,

CryptoLocker

Metamorphism

When executed produces a logically identical variant

of its original source code. It constantly produces

machine code and never its original source code.

Simile, Zmist

Oligomorphism

(semi-polymorphic)

An encoded virus which has a tiny, fixed amount of

several decryptor routines at its disposal.
Whale, Memorial

Polymorphic

Employs an obfuscating technique that modifies the

viral code by mutation. Each time the polymorphic

engine is executed, it maintains the function of the

original infectious algorithm but changes its code.

1260, Virut,

JS.Cassandra

2.1.5 Classification of Polymorphism

Polymorphic viruses can be further classified into three different classes based on their

obfuscation techniques, namely: self-identification, syntactic reconstruction, and

semantic reconstruction. These obfuscation techniques are discussed in depth in

Appendix C. A summary outlining the classification of polymorphic viruses based on

obfuscation approach is given in Table 2.4. Of these approaches, the syntactic obfuscation

approach is a method commonly used by polymorphic viruses to bypass byte level

identification and classification – an approach used by many AVSs. The syntactic

35

obfuscation approach is explored in this thesis, and the viruses that use this approach and

are employed in this thesis are JS.Cassandra, W32.CTX and W32.Kitti viruses.

Table 2.4: Classification of polymorphic viruses based on obfuscation method details

sourced from Aycock (2006, pp. 38-46) and Cesare (2010, pp. 26-31).

Obfuscation Method Description Examples

Self-Identification

• When a malware mutates to infect a new file, it

can also modify any form of itself that it

encounters.

• Malware that is able to identify itself or any of its

variants and not infect itself uses self-

identification obfuscation.

Zperm

Syntactic Reconstruction

Syntactic reconstruction involves modifying the

virus’s syntactic structure without altering its

semantics.

Tequila,

Pathogen, Dark

Avenger Mutation

Engine (DAME),

Virus Creation

Laboratory

(VCL),

JS.Cassandra

virus, W32.CTX

virus, W32.Kitti

virus

Semantic Reconstruction

• Semantic reconstruction is an extension to the

syntactic reconstruction where the new instance is

a procured creation of the primary malware.

• Semantic modification of a malware happens due

to the malware writers changing the primary

source code or the malware functionality.

TridenT

Polymorphic

Engine (TPE),

Blaster worm

variants

2.1.6 Levels of Polymorphism

Based on the complication of code in the malware decryption technique, antivirus

software writers place the polymorphic malware into ordered levels. These levels were

first defined by Dr. Alan Solomon and then later refined by Vesselin Bontchey. These

levels of polymorphism as reported by Ferris (2006) are detailed in Table 2.5.

36

Table 2.5: Levels of Polymorphism (Ferris, 2006; Belcebu, n.d.).

Polymorphism

level
Attributes Examples

Level 1 Virus

semi-polymorphic

or oligomorphic

Level 1 virus have a set of decryptors

involving interchangeable virus code,

choosing one during infection process.

Slovakia

Cheeba

Whale

Level 2

Polymorphic Virus

The decryptor of a level 2 virus

includes one or several interchangeable

instructions, simultaneously keeping

the rest of its virus code changeable.

JS.Cassandra

Level 3

Polymorphic Virus

The decryptor of a level 3 virus

constitutes of ‘junk’ or non-operating

functions like CLI, NOP, STI or XOR.

JS.Cassandra

Level 4

Polymorphic Virus

• Level 4 virus adopts the process of

instruction mixing which involves

code modification and transposable

instructions.

• Decryptor algorithm of a level 4

virus stays unchangeable.

W32.Kitti

Level 5

Polymorphic Virus

• Level 5 virus have every aspect

described in level 1 to level 4.

• The decryptor algorithm of level 5

virus can be changeable.

• Possibility of semi-encoding of the

decryptor script and constant

encoding of the virus script.

TridenT Polymorphic

Engine (TPE)

Level 6

Polymorphic Virus

• Level 6 viruses are also called as

permuting viruses. And their codes

can be decrypted.

• While infecting, they are separated

into chunks that are placed in

irregular order.

• Regardless of that, the malware

survives to be able to deploy. Such

malware may be decoded but

generally are not.

JS.Cassandra,

AOD.385.B,

O97M.Cybernet.Gen,

W32.Finaldo.B@mm,

TridenT Polymorphic

Engine (TPE)

Level 7

Polymorphic Virus

Level 7 virus have every aspect

described in level 1 to level 6 along

with Heuristic, Entry Point Obfuscation

(EPO) as well as Goat and Emulator

counter-measure methods (Hamm &

Johnson, 2002; Schiffman, 2010).

W32.CTX/W32.Chole

ra (in this case uses

EPO method only)

This thesis deals with levels 2-4 and 6-7, respectively. Three different polymorphic

malware families are used in this thesis, namely, JS.Cassandra, W32.Kitti and W32.CTX

virus and adopts the levels of polymorphism as shown in Table 2.5. JS.Cassandra virus

37

adopts levels 2, 3 and 6. W32.Kitti virus adopts level 4 and W32.CTX virus adopts level

7, respectively.

2.1.7 Mutation Engine

A mutation engine is a malicious code; that can be connected or combined with a normal

program or malware that will perform the following actions (Ferris, 2006; Li, Loh, &

Tan, 2011):

1. Encode itself and also the program that is connected to it.

2. Generate a decryptor that will execute first before the execution of the main program.

3. All the decryptors generated have a unique malware signature.

In a polymorphic malware, the malware body and the mutation engine are both encoded.

When a user executes a program compromised by a polymorphic malware, first the

decryption routine takes charge of the system, then decodes both the mutation engine and

the malware body. Later, the decryption routine transports the control of the system to the

malware, which finds a fresh program to compromise (Ferris, 2006; Li, Loh, & Tan,

2011).

At this moment, the malware creates a clone of both the mutation engine and of itself.

The clones are created in the Random Access Memory (RAM). The malware then

employs the mutation engine, which arbitrarily creates the decryption routine that decodes

the malware, yet holds slight or no similarity to any previous versions of the decryption

routine. Later, the malware encodes this new clone of the mutation engine and the

malware body. Eventually, the malware attaches this fresh decryptor routine together with

the mutation engine and the newly encoded virus, to a fresh program. Therefore, not only

is the malware body encoded but also the malware decryption routine is different from

one infection to the other (Carlin, O’Kane, & Sezer, 2017). This confuses the antivirus

software scanner systems looking for the set of bytes i.e. the malware mask (malware

signature is sometimes called the malware mask), which detects a particular decryption

routine. With no constant decryption routine and no constant malware signature to scan

for, no two file infections appear the same (United States Patent No. US5826013A, 1998;

Ferris, 2006).

An instance of a polymorphic malware employing a generic mutation engine is shown in

Figure 2.3 (Ferris, 2006):

38

Figure 2.3: An example of a polymorphic malware using a generic Mutation Engine

(Ferris, 2006).

The above code suggests that it is purely a set of insignificant instructions to confound

antivirus researchers and malware analysts (Ferris, 2006).

2.1.8 Polymorphic Decryptor (The decryption routine)

An instance of a partly polymorphic decryptor with a sequence of instructions is shown

in Figure 2.4 below. The purpose of this set of instructions is such that no individual byte

of the malware or its decryptor remains consistent while compromising various files

(Ferris, 2006; Li, Loh, & Tan, 2011).

Figure 2.4: An example of part of a polymorphic decryptor with a sequence of

instructions (Ferris, 2006).

Many of the polymorphic malware employ far more intricate algorithms for their

decryption technique than the example provided in Figure 2.4. The instructions or their

equivalents are diluted by not modifying any instructions such as STC, NOP, DEC, STI,

CLC, and the unused instructions like XCHG, etc. (Ferris, 2006).

Polymorphic malware of full strength employs more complex algorithms which lead to

any number of various arbitrary instructions such as XOR, SUB, ROL, ADD, ROR, in

any arbitrary sequence and in the malware decryptor. All the encryption combinations

can also be achieved by an arbitrary construction package that may possess essentially

every instruction available in the Intel or AMD processors (Ferris, 2006) with every

potential addressing function.

39

There is a set of obviously useless instructions and compositions that are not dismantled

by debugging software products of some commercial companies. For instance, the

CS:NOP and CS:CS compositions. So in reality, if the malware writers input some

untouched instructions and junk together with these useless instruction compositions such

as CS:CS and CS:NOP, antivirus researchers and malware analyst will have a difficult

job attempting to crack open the decryption system of that particular malware (Ferris,

2006; Kolesnikov & Lee, 2004).

2.1.9 Metamorphism

Viruses based on metamorphism technique, when executed produces a logically identical

variant of its original source code (see Figure 2.5 below), where, G1-Gn are the current

generations, V1-Vn are the virus bodies and File1-Filen are the infected files (Berg, 2011).

It constantly produces machine code and never its original source code. The aim of

metamorphism is to avoid getting detected by AVSs (Irshad, al-Khateeb, Mansour,

Ashawa, & Hamisu, 2018). Computer viruses based on metamorphism converts their

binary code into an interim representation, modifying by themselves the interim

representation and then converting the modified pattern back over to machine code

(Musale, Austin, & Stamp, 2015). Basically, by following that procedure, no area of the

virus remains the same, as the process of metamorphism alters itself, unlike

polymorphism that cannot change its original source (Choudhary & Vidyarthi, 2015;

Troia, Visaggio, Austin, & Stamp, 2016).

Figure 2.5: The structure of a metamorphic malware (SANS Institute, 2003, p. 5; Berg,

2011, p. 10).

The code-changing approaches utilised by polymorphic viruses all relate to metamorphic

viruses. Both use a mutation engine, except on every infection a polymorphic virus does

not need to alter its engine because it can reside in the encoded section of the virus. On

the other hand, a metamorphic virus needs to self-modify its mutation engine after every

infection (Attaluri, McGhee, & Stamp, 2009; Irshad, al-Khateeb, Mansour, Ashawa, &

Hamisu, 2018). The mutation engines inside metamorphic viruses whose output and input

are machine code must be in the position to restructure and destructure machine code.

40

Metamorphism is comparatively easy to execute in viruses that transmit in the form of

source code, like macro viruses. A virus may depend on the tools available in the infected

machine for the process of metamorphism. For example, ‘Apparition’, is programmed in

Pascal and manages its private source code; if a compiler is located on an infected

machine, the virus introduces junk material into its source code and recompiles on its own

(Aycock, 2006).

Metamorphic malware is a complex version of polymorphic malware, where the complete

inner content is altered (Musale, Austin, & Stamp, 2015). Metamorphic malware is

occasionally referred as “body polymorphism”. For well-structured metamorphic

malware, the technique of encoding is not essential, or even beneficial (Musale, Austin,

& Stamp, 2015; Naidu & Narayanan, 2016). The virus so-called ‘Win95/Regswap’,

which emerged in 1998, is commonly considered as being the original instance of

metamorphic malware (Szőr, 2005).

‘Simile’ discovered in 2002, is a computer virus that uses the approach of metamorphism

that targets Microsoft based Windows machines. The ‘Simile’ computer virus is written

in assembly code (Marinescu, 2003; Konstantinou & Wolthusen, 2008). ‘Zmist’, also

known as ‘Zombie.Mistfall’ discovered in 2002, is a computer virus that uses the method

of metamorphism and was written by a Russian virus programmer called ‘Zombie’

(Konstantinou & Wolthusen, 2008).

2.2 Malware Detection Techniques

The first attempt to detect and prevent computer malware were undertaken by malware

analysts and antivirus engineers who developed specific decryption routines aimed at

capturing individual polymorphic malware. Manually, they computed specific programs

designed to identify numerous series of computer code understood to be employed by a

mutation engine to decode a malware’s body (Szőr, Advanced Code Evolution

Techniques and Computer Virus Generator Kits, 2005). This virus detection technique

was time-consuming, lengthy, expensive, and unrealistic because a mutation engine can

generate supposedly arbitrary programs which can systematically execute decryption and

thus potentially produce trillions and trillions of variants (Ferris, 2006; United States

Patent No. US7337471B2, 2008). Virus detection using this technique also tends to

wrongly detect one polymorphic malware as another.

41

Many polymorphic malware employ the same available mutation engine; credit goes to

malware authors like ‘Dark Avenger’ and others, who distribute these programs freely,

sometimes with the source code, to the public. This assists antivirus researchers and

malware analysts considerably as they have the mutation engine’s decryption program

beforehand. However, distinct engines employed by specific polymorphic malware in

many cases produce identical decryption algorithms, which makes any detection based

solely on decryption algorithms totally untrustworthy. These loopholes helped antivirus

engineers and malware analysts to create generic decryption methods that deceive a

polymorphic malware into decoding and disclosing itself (Ferris, 2006; Kaushal, Swadas,

& Prajapati, 2012).

When an antivirus group obtains a fresh malware, they extract the binary pattern of the

malicious file and place it in a database known as the VPF (Virus Pattern File).

Maintaining the VPF library is a standard practice for all the antivirus software

companies. During the scanning process, the binary pattern within the VPF database is

checked with the patterns of the files on the system, and if it is true, then the file is said

to be compromised with a malware (Ferris, 2006; United States Patent No.

US8935788B1, 2015).

Antivirus researchers employ four measures, to identify a fresh malware strain (Ferris,

2006; Vinod, Laxmi, & Gaur, 2009):

1. Measure 1: If feasible identify the malware signature (malware mask).

2. Measure 2: Malware detection with the aid of malware mask after eliminating the

‘junk’ unused instructions.

3. Measure 3: Initiate to decrypt the algorithmic virus.

4. Measure 4: If it is not feasible to locate the malware signature, the antivirus

researcher would then deploy the ‘Striker’ (Heller, 1996) (also known as the emulator)

to force the malware decode itself and disclose the malware binary pattern to the

antivirus engineer (Nachenberg, 1996; Gualtieri, 2002).

Because of the varied algorithm in the decryption routine and the quantity of ‘junk’, the

decryptor employs antivirus engineers sometimes are unable to locate the malware mask.

Level 6 category malware such as ‘AOD.385.B’, ‘O97M.Cybernet.Gen’, and

42

‘W32.Finaldo.B@mm’ are extremely polymorphic and without a doubt would require

Measure 4 identification (Ferris, 2006; Szőr, 2005).

Some of the different kinds of existing state of the art AVS approaches for polymorphic

malware (and general malware) detection are discussed below:

2.2.1 Machine Learning/Data Mining Approach

Malware identification with machine learning approaches has now gained acceptance.

Mitchell (1997) describes machine learning as the analysis of computer-based algorithms

that enhances via evaluation. Moskovitch, Elovici, & Rokach (2008) suggested

identification of malicious files based on observing computer activity. They reported that

employing classification algorithms using only 20 attributes the mean identification

precision surpassed 90%. The benefit of employing machine learning approaches is that

it will not only identify known (Pk) malware but may also play a major role in the

identification of unknown (Px) malware. Well-known machine learning approaches used

by the researchers for the identification of the second generation based malicious

programs are Hidden Markov Models (HMMs), Naïve Bayes, Neural Networks, and

Decision Trees (Sharma & Sahay, 2014). This thesis compares the syntactic signatures

obtained from the process of biosequence analysis techniques to the state of the art AVSs

adopting these machine learning approaches for the purpose of malware detection. The

state of the art AVSs such as McAfee, Symantec, Bitdefender and ESET adopt several

machine learning approaches to detect the malicious files. For instance, McAfee uses

“machine infection characteristics for behavior-based detection” (United States Patent

No. US8266698B1, 2012), “cloud-based” machine learning technique (United States

Patent No. US15283238, 2016), “Hidden Markov process for outbreak pathology

inference” (United States Patent No. US9679140B2, 2017), etc. to detect malicious files.

Symantec uses “sequencing and timing information of behavior events in machine

learning” (United States Patent No. US8401982B1, 2013), artificial neural network

(ANN) (United States Patent No. US8775333B1, 2014) as a threat classifier, etc. to

detect/determine malicious files/process. Bitdefender uses “cascading classifiers”

(United States Patent No. US20160335432A1, 2016) technique adopting machine

learning algorithms to detect malicious files and ESET uses “Augur Machine Learning

engine” (Kubovič, 2017) to detect malicious files.

43

2.2.2 Normalisation Approach

The malware created by high-level construction sets (toolkits) like UPX (Raphel &

Vinod, 2015) are very hard to identify. For the identification of such malicious files,

normalisation approaches can be employed to enhance the identification rate of known

(Pk) malware. In this approach, the normaliser receives an obscure variant of a malware

and deletes the malicious activity function performed on the program and then generates

the normalised executable form. After the process of normalisation, the malware

(normalised form) signature is excavated and checked against the signature of a non-

malware file. Christodorescu, et al. (2005) developed a normaliser for malware that

manages three general malware concealment activities which are, junk insertion, code

reordering, and code packing. Subsequently, Armoun, et al. (2013) implemented a

universal normaliser for malware which can stock malware concealment algorithms in

the form of automata compositions and employ them for normalising the metamorphic

viruses. Currently, a standard normaliser for malware has been implemented in the form

of automata compositions for normalizing metamorphic viruses, which has an

identification rate of nearly 81% (Sharma & Sahay, 2014).

2.2.3 Scan Engine (Signature based Approach)

The scan engine is a major part of any antivirus software product, and the true measure

of its calibre. It is the part of an antivirus software program that scans all the files and

identifies malware (Ferris, 2006; United States Patent No. US8813222B1, 2014).

It does not matter how good the user interface of an antivirus software program is because

it is the scan engine that ultimately decides how good the program is at detecting malware.

When an antivirus software scans a local directory or volume drives, it transmits the files

one after the other to the scan engine which compares each file with the VPF (Virus

Pattern File) (United States Patent No. US8935788B1, 2015). An exceptional scan engine

takes some time, hardly utilising the system resources (United States Patent No.

US6851058B1, 2005; Ferris, 2006).

Scanners inbuilt in antivirus programs performs by employing scan strings. They search

for a series of bytes in a constant position and a constant string. This constant position

and constant string are known as the malware mask or malware signature. Antivirus

scanners also utilise ‘Variable Scan Sequences’ technique. During the process of

searching for malicious files, the antivirus file scanners search for sequence/string bytes

in a separate position but within a definite sequence/string. All of which is performed

44

inside a virtual machine or an emulator known as “State-based cache for antivirus

software” (United States Patent No. US5854916A, 1998), and is one of many approaches

adopted by virus scanners. When an antivirus program is deployed it begins to search/scan

for malicious files, as each file is included to the scanner, the scanner executes the file

inside a Random-access memory (RAM) created emulator. The files included inside this

emulator perform in a similar manner as it does on an actual machine. Antivirus scanner

verifies as well as handles the executed file in a similar way as it performs within the

emulator/virtual machine. A malware executing within the virtual machine can cause no

threat for the reason that it is secluded from the real machine. When a scanner places a

file compromised by a polymorphic malware into this virtual machine, the malware

decryption routine runs and decodes the encoded malware body. This reveals the malware

body to the scanner, which can then look for signatures within the malware body that

exactly detects the malware strain. If the scanner places a file that is not compromised,

there is no malware activity to reveal and quarantine. With regards to the non-malware

activity, the scanner immediately halts the process of executing the file within the virtual

machine, gets rid of the file from the virtual machine, and continues to scan the following

file. This process is called generic decryption as it makes the encrypted file to forcefully

decrypt on its own terms. The major drawback with the procedure of generic decryption

is the slow process. It has no practical purpose if the procedure of generic decryption

takes hours awaiting for a polymorphic virus file to decrypt inside an emulator. In

contrast, provided the procedure of generic decryption stops beforehand, it may dodge a

polymorphic malware before it is possible to disclose much of itself for the scanner to

find a substring/signature. Hence, to defeat the problem, the procedure of generic

decryption adopts the process of heuristics (which will be discussed in detail below) - a

set of generic instructions that help to differentiate malicious files from non-malicious

files. Most antivirus scanners have inbuilt heuristic programs (Ferris, 2006; United States

Patent No. US20090013405A1, 2009).

In this thesis, the syntactic signatures are compared with the state of the art AVSs such as

Symantec (United States Patent No. US7130981B1, 2006), Bitdefender (United States

Patent No. US8813222B1, 2014), etc. that adopts scan engine technology.

2.2.4 Cryptanalysis

Cryptanalysis is the process of decoding coded messages and exploration of ciphers,

codes and encoded text, such as a malware mutation engine (Uto, 2013). The main aim

45

of cryptanalysis is to identify loopholes in a specific program and to decipher the code

employed to encode the contents unaware of the key to the code (Filiol E. , 2002). It is

(basically) cracking, but in this case, the antivirus engineers are cracking open a malware

which employs a particular key (which only the malware writers knows) to decode the

malware. There are four fundamental measures (Ferris, 2006) in a classic cryptanalysis

process (Uto, 2013) which are as follows:

1. Measure 1: To discover the programming language employed to write that specific

malware.

2. Measure 2: To discover the type of computer system used by that specific malware.

This can be a time-devouring phase in the method and comprises of calculating

character frequency, implementing statistical tests, and looking for recurrent patterns.

3. Measure 3: To modify particular keys of the system (Singh, Troia, Corrado, Austin,

& Stamp, 2016).

4. Measure 4: Modification of the plain text, this measure occurs at the same time as

the process of measure 3.

In this thesis, the syntactic signatures are compared with the state of the art AVSs such as

Symantec (United States Patent No. US5826013A, 1998; United States Patent No.

US6357008B1, 2002), Bitdefender (United States Patent No. US8813222B1, 2014),

McAfee (United States Patent No. US7234167B2, 2007; United States Patent No.

US7346781B2, 2008), etc. that adopts the concept of cryptanalysis.

2.2.5 Heuristic Approach

The method aims to detect viruses based on a signature generic to the family of the virus

or by an inexact match to an existing signature. This approach permits the AVS author to

modify the antivirus scanner by modifying a malware probability. For instance, a genuine

non-malware program will, by all means, employ the outcomes from math calculations it

performs as it executes within an emulator. Similarly, a polymorphic malware may

conduct similar math calculations; yet eliminates the outcomes as those outcomes are

inapplicable to the malware. In reality, a polymorphic malware may carry out such

calculations simply to make it look like a genuine program in an attempt to evade the

malware scanner. In such cases, a heuristic based approach plays a major role. Heuristic

based generic decryption searches for such odd activity (United States Patent No.

46

US20090013405A1, 2009; United States Patent No. US20120266244A1, 2011). An odd

behaviour raises the chances of infection and alerts the scanner that depends on the

process of heuristic based instructions to increase the time duration a suspicious file runs

within the virtual machine, granting a possibly compromised file sufficient time to decode

itself and reveal a hidden malware (Ferris, 2006; United States Patent No.

US20090013405A1, 2009).

Generic decryption is dependent on a group of antivirus engineers being able to examine

billions of possible malware variants, find common areas that all viruses in a family share

and contain. While AVS vendors do not make it public knowledge exactly how their

systems operate it is believed that these generic signatures contain fragments of unique

code from a number of areas in the infected file. These areas are unique to the virus

family, and it is from these areas a single generic signature can be created (United States

Patent No. US9858414B2, 2018).

Below is an instance of how a heuristic-based scanner performs (Ferris, 2006):

1. Promoter Instructions: If a NOP instruction is detected, then increment the malware

probability by 0.5%. If the contents of a register are destroyed before scanning, then

increment the malware probability by 10%.

2. Inhibitor Instructions: If the program generates DOS interrupts, then decrement the

malware probability by 15%. If the program does no memory writes among 100

instruction runs, then decrement the malware probability by 5%.

The scan engine assumes that each file has a 10% chance of malicious behaviour. If the

malware probability is greater than zero, the process of emulation proceeds. The malware

probability is changed throughout the scan each time a file is scanned as the heuristic

rules monitor malware-like or non-malware-like activity (Ferris, 2006).

The pitfall of a heuristic-based approach is that it needs progressive evaluation and

modification. Heuristic-based rules may have adjusted to detect 300 malware, but for

instance, may ignore 15 of that malware when changed to detect ten new malware.

Heuristic based rules can also be modified to target any program file, which possesses

features of being a possible malware, which in return, increases the time duration it

acquires to scan that specific program (Ferris, 2006).

47

In this thesis, the concept of heuristic approach adopted by the state of the art AVSs such

as Symantec (United States Patent No. US6357008B1, 2002; United States Patent No.

US7418729B2, 2008), Bitdefender (United States Patent No. US9460284B1, 2016;

United States Patent No. US9531735B1, 2016), McAfee (United States Patent No.

US7917955B1, 2011), etc. are compared with the approaches proposed here, that is, using

the syntactic viral signatures.

2.3 History of Malware – Timeline

1971: Creeper virus – first virus to ever infect computers that were connected to

ARPANET network (LAVASOFT, 2013).

1986: Brain virus – first IBM PC based compatible virus and also the first MS-DOS based

computer virus.

1987: Vienna virus – first “direct-action” virus to infect Macintosh computers through

floppy disk. Stoned virus – first boot sector based computer virus (LAVASOFT, 2013).

1989: 1260 virus – first virus to adopt polymorphism technique to evade AVS detection.

1990: Chameleon virus – first polymorphic virus.

1991: Tequila virus – first widespread polymorphic virus (HubPages, 2014; Johnston,

2014). Dark Avenger Mutation Engine – first well-known virus construction kit and also

the first polymorphic generator.

1995: Concept virus – first macro virus that infected Microsoft word documents.

1999: Melissa worm – first widespread worm to combine the techniques of macro viruses

with mass-email bombs.

2001: Nimda worm – first widespread worm to employ mass-emailing techniques, attack

network drives and exploit web servers based on Internet Information Services (IIS).

2003: JS.Cassandra virus – first open source JavaScript polymorphic virus (VX Heavens,

2006).

2010: Stuxnet worm – first powerful worm to infect Supervisory Control, and Data

Acquisition (SCADA) systems (Norton, 2010; Whigham, 2016).

48

2013: CryptoLocker ransomware – first widespread ransomware to use Trojan to attack

Microsoft Windows-based computer systems, which spreads via a compromised email

attachment or via a botnet that already exists. This ransomware adopts the approach of

public-key cryptography based on the RSA (Rivest-Shamir-Adleman) algorithm (Rivest,

Shamir, & Adleman, 1978). Transcriptase virus – first proof of concept and open source

JavaScript metamorphic virus (Musale, Austin, & Stamp, 2015; Troia, Visaggio, Austin,

& Stamp, 2016).

In this thesis, JS.Cassandra polymorphic virus family first discovered in 2003,

W32.CTX/W32.Cholera polymorphic virus family first discovered in 2000, and

W32.Kitti polymorphic virus family first discovered in 2011 are employed in Chapters 4

to 6 for experimental purposes. And Transcriptase metamorphic virus family first

discovered in 2013 is utilised in Chapter 7. The above-mentioned virus families are

discussed in depth in the Appendix C section.

2.4 Tool Validation

This thesis adopts the concept of biosequence analysis techniques. One of the techniques

that is majorly used in this thesis is an alignment tool. This alignment tool is used to align

two sequences in order to extract the longest common substrings (i.e. syntactic viral

signatures) between two malware variants and this process is known as pairwise

alignment. The tool that is commonly used to achieve this sort of alignment in this thesis

is known as ‘JAligner’ (Moustafa, 2010). ‘JAligner’ implements the SWA algorithm (as

discussed in page no. 14) and is employed in this thesis to conduct the process of pairwise

local alignment. More information about this tool is discussed in Appendix C (see page

no. 226). In this section, the tool is validated using the standard predictive validation and

by conducting the triangulation approach. For all the alignment processes that are

conducted in this section using alignment tools, such as ‘JAligner’ (Moustafa, 2010),

‘Geneious’ (Kearse, et al., 2012) and ‘EMBOSS Water’ (Rice, Longden, & Bleasby,

2000) as demonstrated below, an ID substitution matrix with a gap open penalty of 10.0

and gap extension penalty of 1.0 is adopted.

2.4.1 Predictive Validation

In this section, predictive validation is conducted using two DNA sequences (as shown

below) for validation purposes. Predictive validation is a measure developed to reliably

predict the future results. This can be accomplished by building a strong relationship

amidst scores on the criterion measure and new measure (Salkind, 2010). Two different

49

processes are conducted in this section in order to achieve a higher degree of predictive

validity for the ‘JAligner’ tool. Process1 (criterion measure) manually conducts pairwise

local alignment adopting the technique demonstrated in the literature (Smith &

Waterman, 1981a; Smith & Waterman, 1981b; CLC bio, 2007) and process2 (new

measure) conducts pairwise local alignment using ‘JAligner’ tool. Firstly, the sequences

are aligned manually and the outcome of the alignment is presented. Secondly, the longest

common substring is extracted. The same process is applied using the ‘JAligner’ tool and

the results from the two processes are then compared in order to determine if they

produced similar results which in turn will help to validate the ‘JAligner’ tool.

DNA Sequence 1: ACTCTG

DNA Sequence 2: AGTTCTG

Process1 - Result of alignment process conducted manually: An alignment matrix

table is created through which an optimal alignment score is calculated and the longest

common substring is extracted. A match score of 1 and mismatch score of -1 is adopted

in this process. Figure 2.6 shows the local alignment matrix table of two DNA sequences

generated manually, where, diagonal arrow indicates either match or mismatch, left arrow

indicates deletion and up arrow indicates insertion.

Figure 2.6: The manually generated local alignment matrix table of two DNA sequences.

Given, Sequence 1 = ACTCTG and Sequence 2 = AGTTCTG. Match (a, a) = +1 and

mismatch (a, b) = -1 are the scoring functions, therefore, the optimal local alignment is

as follows:

 (AC)TCTG

 ||||

(AGT)TCTG

Giving an optimal alignment score of 4.

50

Figure 2.6 also gives the following optimal local alignment adopting the trace back

analysis, which is achieved by tracing back from the maximum alignment score in the

matrix:

DNA Sequence 1: 3 TCTG 6

DNA Sequence 2: 4 TCTG 7

From Figure 2.6, it can be seen that the optimal alignment score of process1 is 4 (the cell

highlighted in orange with the highest score). The longest common substring extracted

from this process is TCTG (the cells highlighted in orange). The length of the longest

common substring is 4 (TCTG). The identity and similarity percentages are 100%,

respectively, as the length of the longest common substring is 4 for both the sequences.

The gap score is 0 as no gaps were introduced in this experiment.

Process2 - Result of alignment process conducted using JAligner: The alignment

result of two DNA sequences generated using ‘JAligner’ tool is presented below:

Sequence #1: DNA Sequence 1

Sequence #2: DNA Sequence 2

Length #1: 4

Length #2: 4

Matrix: IDENTITY

Gap open: 10.0

Gap extend: 1.0

Length: 4

Identity: 4/4 (100.00%)

Similarity: 4/4 (100.00%)

Gaps: 0/4 (0.00%)

Score: 4.00

DNA Sequence 1 3 TCTG 6

 ||||

DNA Sequence 2 4 TCTG 7

From the above result, it can be seen that the optimal alignment score of process2 is 4.

The longest common substring extracted from this process is TCTG. The length of the

longest common substring is 4. The identity and similarity percentages are 100%,

respectively. The gap score percentage is 0% as no gaps were introduced in this

experiment.

51

The experiments conducted in this section show that both the alignment processes

produced similar results/scores, indicating a strong correlation between process 1 and

process 2 therefore providing a higher degree of predictive validity for the ‘JAligner’ tool.

2.4.2 Triangulation Approach

In this section, triangulation approach is achieved by conducting three different

experiments from three different sources. Triangulation approach is a powerful cross-

verification process where similar experiments from two or more sources are conducted

in order to validate the tool (Rothbauer, 2008) used in this thesis (in this case, ‘JAligner’).

Source1 conducts pairwise local alignment using ‘JAligner’ tool. Source2 conducts

pairwise local alignment using ‘Geneious’ (Kearse, et al., 2012) tool. Source3 conducts

pairwise local alignment using ‘EMBOSS Water’ (Rice, Longden, & Bleasby, 2000) tool.

All of the above experiments are conducted using the same DNA sequences as the

experiments conducted in the predictive validation section. The results from the three

different sources are then compared for the experimental study of the same condition, in

this case, the pairwise local alignment.

Source1 - Result of alignment process conducted using JAligner: The alignment result

of two DNA sequences generated using ‘JAligner’ tool is presented below:

Sequence #1: DNA Sequence 1

Sequence #2: DNA Sequence 2

Length #1: 4

Length #2: 4

Matrix: IDENTITY

Gap open: 10.0

Gap extend: 1.0

Length: 4

Identity: 4/4 (100.00%)

Similarity: 4/4 (100.00%)

Gaps: 0/4 (0.00%)

Score: 4.00

DNA Sequence 1 3 TCTG 6

 ||||

DNA Sequence 2 4 TCTG 7

Source2 - Result of alignment process conducted using Geneious: The alignment

result of two DNA sequences generated using ‘Geneious’ tool is presented below:

52

>pairwise alignment - Alignment of 2 sequences: DNA Sequence 1, DNA

Sequence 2

Score = 4.0, Identities = 4/4 (100%),

Positives = 4/4 (100%), Gaps = 0/4 (0%)

DNA Sequence 1 3 TCTG 6

 TCTG

DNA Sequence 2 4 TCTG 7

Source3 - Result of alignment process conducted using EMBOSS Water: The

alignment result of two DNA sequences generated using ‘EMBOSS Water’ tool is

presented below:

Program: water

Commandline: water

-auto

-stdout

-asequence emboss_water-p1m.asequence

-bsequence emboss_water-p1m.bsequence

-datafile IDENTITY

-gapopen 10.0

-gapextend 1.0

-aformat3 pair

-snucleotide1

-snucleotide2

Align_format: pair

Report_file: stdout

#=======================================

Aligned_sequences: 2

1: DNA Sequence 1

2: DNA Sequence 2

Matrix: IDENTITY

Gap_penalty: 10.0

Extend_penalty: 1.0

Length: 4

Identity: 4/4 (100.0%)

Similarity: 4/4 (100.0%)

Gaps: 0/4 (0.0%)

Score: 4.0

#=======================================

DNA Sequence 1 3 TCTG 6

 ||||

DNA Sequence 2 4 TCTG 7

#---------------------------------------

#---------------------------------------

From the above results, it can be seen that the optimal alignment score of sources1-3 is 4.

The longest common substring extracted from all the three sources is TCTG. The length

53

of the longest common substring from all the three sources is 4. The identity and similarity

percentages are 100%, respectively, for all the three sources. The gap score percentage is

0% as no gaps were introduced in these experiments.

The experiments conducted in this section show that all the alignment sources produced

similar results/scores, indicating the successful validation of the ‘JAligner’ tool adopting

triangulation approach.

2.5 Summary

The classes of malware were discussed. In particular, virus was outlined which have two

potential capabilities and are diagnostic of polymorphic malware. That is, they both have

self-replicating and population expansion (variant generation) capabilities. Three kinds

(or families) of viruses that are polymorphic are employed in the experiments detailed in

Chapters 4 to 6. As stated earlier, the polymorphic viruses used are JS.Cassandra virus,

W32.CTX/W32.Cholera virus and W32.Kitti virus. Furthermore, in Chapter 7, a

metamorphic virus family known as Transcriptase virus is employed.

Classification of viruses based on the type of masking strategy they employ was

discussed. Different masking approaches, such as stealth masking, oligomorphism,

metamorphism, and encryption, were explored and are detailed in the appendix section

(see page no. 208).

Classification of polymorphism was discussed. This chapter also outlined seven different

levels of polymorphism. Then the process of generation of polymorphic variants was

discussed focusing on the mutation engine and decryption routines employed by

polymorphic malware. Malware detection techniques and the history of malware

timelines were discussed in this section.

This chapter also presented a discussion on previous research into malware detection.

The existing state of the art malware detection approaches, including signature-based,

cryptanalysis and heuristic approaches adopted by commercial AVSs were presented

along with a discussion of their limitations in page nos. 43-45. These limitations along

with a lack of research in syntactic-based approaches for malware detection as indicated

in page nos. 29-32, provide the rationale for the research undertaken in this thesis.

54

Chapter 3 Research Design

Chapters 1 and 2 identified a gap in the literature that of a lack of automatic syntactic

signature generation methods and the inability of commercial AVSs to identify malware

not previously encountered. The use of string searching algorithms, such as the SWA for

the automatic extraction of viral syntactic signatures was proposed. Moreover, Chapter 2

focused on the state of the art malware detection approaches and highlighted that these

methods are not currently adequate for identifying polymorphic (as well as metamorphic)

malware and its variants. Hence, the first research question (as stated earlier in page no.

11) is introduced:

Can string searching algorithms, such as the SWA lead to string-based syntactic

techniques for the extraction of syntactic virus signatures automatically - not only for

known (polymorphic and metamorphic) virus variants (Pk) but also for unknown

(polymorphic and metamorphic) virus variants (Px)?

Epistemology in a scientific research is a part of philosophy that deals with the origin of

knowledge (Crotty, 1998). The origin of knowledge (Audi, 2002) can be classified into

four categories as follows:

• Intuitive knowledge (when determining the initial concept for research)

• Authoritarian knowledge (when reviewing the literature)

• Logical knowledge (when interpreting findings)

• Empirical knowledge (when conducting experiments that induces these findings)

This thesis combines all of these origins of knowledge stated above. There are five

classes/paradigms of epistemology (Scotland, 2012) and they are as follows:

• Positivism (discover truth that’s out there)

• Constructivist/Interpretivism (develop truth on the basis of social interaction)

• Pragmatism (ideal method that resolves problems)

• Subjectivism (where every knowledge is simply an element of perspective)

• Critical (where social reality is initiated)

In this thesis, the author adopts a pragmatic epistemology (Armitage, 2007) as it is an

ideal method that clarifies problems by combining different perspectives to help

understand the data.

55

The analytical feature of any research method, given the primary research question (as

stated above) and lack of preliminary work in the space covered by the research question,

it was deemed a requirement to construct a hypothesis, design the experiment, collect the

results, and analyse the results, report the outcomes and then if necessary reconstruct the

hypothesis, and so on (Garhwal, 2018). This set of procedures is reiterated until,

preferably, the ideal solution is established for the ideal test requirements or, as is true of

in this thesis, not much time is left. When not much time is left, the benefits of what has

been attained requires being assessed both on its importance and innovation as well as the

likelihood of extension (Liu, 2014). This thesis will come back to reviewing the benefits

of what has been attained in Chapter 8.

This chapter discusses the research design and method adopted in this thesis.

3.1 Research Design

The type of research that is conducted in this thesis is quantitative research. There are two

types of quantitative research widely used by researchers, namely, experimental and non-

experimental (Marczyk, DeMatteo, & Festing, 2005). This thesis adopts an experimental

approach. Furthermore, the experimental approach is divided into three different

categories, namely, true experimental, quasi-experimental and pre-

experimental/nonexperimental (Marczyk, DeMatteo, & Festing, 2005; Creswell, 2014).

In this thesis, the type of research design that is adopted is a quasi-experimental design

(Marczyk, DeMatteo, & Festing, 2005; Johanson & Williamson, 2013) as this study

conducts a series of individual experiments. The type of quasi-experimental design that

is adopted in this thesis is a “non-equivalent comparison-group – post-test only” design

(Marczyk, DeMatteo, & Festing, 2005; Privitera & Ahlgrim-Delzell, 2018). This design

is selected in this study as it is the most widely adopted quasi-experimental design

(Marczyk, DeMatteo, & Festing, 2005). Furthermore, this design can produce valid

conclusions with careful evaluation and interpretation (Marczyk, DeMatteo, & Festing,

2005). The main significance of this sub-design (“non-equivalent comparison-group”) is

that it compares the dependent variables obtained from the treatment group to the non-

equivalent control group (Privitera & Ahlgrim-Delzell, 2018). In this thesis, the syntactic

viral signatures (dependent variables) from the proposed approach (treatment group) are

compared with the modern AVSs (non-equivalent control group) after the

experiments/treatments (i.e. a post-test study).

56

This thesis follows the concept of “Scientific Method” (SM) (Kothari, 2004; Marczyk,

DeMatteo, & Festing, 2005; Creswell, 2014) as its research method to address each

research objective and question. The scientific method relies on the empirical method

(Yanow & Schwartz-Shea, 2015). The empirical method is an evidence-based method

that depends on the information obtained from experimentation and thorough observation

(Marczyk, DeMatteo, & Festing, 2005). Scientific decisions are made based on the

information obtained from experimentation and thorough observation (Kothari, 2004).

The empirical method is the perfect guiding principle responsible for all research

performed in correspondence with the SM (Marczyk, DeMatteo, & Festing, 2005;

Creswell, 2014). Standard steps of the scientific method (Marczyk, DeMatteo, & Festing,

2005) are as follows:

1. Define questions

2. Construct hypothesis

3. Perform experiments

4. Analyses

5. Draw conclusions

6. Replication

Figure 3.1: SM cycle.

57

An overview of the SM cycle adopted in this thesis is demonstrated in Figure 3.1. It

demonstrates that the research method of this thesis can be divided into following four

steps:

1. Identifying and analysing the problem

2. Defining research objectives and questions

3. Designing the proposed approach and conducting experiments

4. Analysis and evaluation

3.2 Identifying and analysing the problem

In this step, the addressed problems determined from a literature review are explained.

The gap in research has been identified and defined to frame the problem statement as

indicated in Chapter 1 (see page no. 10) of this thesis.

3.3 Defining research objectives and questions

In this step, the research objectives and questions of this study were framed from the

current problem addressed from previous related research. These research objectives and

questions help to define the hypothesis of this research. The aim is to propose a desirable

solution to address the issues indicated through the research questions. The research

objectives and questions are discussed in Chapter 1 (see page no. 11).

3.4 Designing the proposed approach and conducting experiments

This step is one of the most crucial segments of this research. The proposed approach

along with the limitations of previous approaches are discussed in Chapter 1 (see page

no. 12).

In Chapters 4 to 7, for the string-based syntactic approaches adopting the SWA and the

NNge, a four-stage experimental method is designed (see Figure 3.2). These major stages

will be common for all the experiments that will be conducted in Chapters 4 to 7.

Depending on the experiments extra steps may be required and added where appropriate

– these will be detailed in the respective chapters.

58

Stage I: Hex dump extraction

Stage II: Hex to DNA/Amino Acid conversion

Stage III: Alignment

Stage IV: DNA/Amino Acid to Hex conversion & signature testing

Evaluate results and revisit research questions

Figure 3.2: The four major stages that will drive this research in Chapters 4 to 7.

Stage I – Hex Dump Extraction: Hex (i.e. hexadecimal) dumps of the polymorphic

malware along with its malicious variants of a particular family will be extracted using

‘sigtool’ which is available from the ClamAV website (ClamAV, 2018).

Stage II – Hex to DNA/Amino Acid Conversion: In this stage, the hex dumps obtained

in Stage I will be converted into DNA/amino acid sequences.

Stage III – Alignment: DNA/amino acid sequences from Stage II will be pairwisely

aligned using ‘JAligner’ (Moustafa, 2010). Common substrings (i.e. meta-signatures) will

be extracted at this stage. This stage also includes identification and extraction of

consensuses and longest common substrings. Also, in this stage, the experiments from

Chapters 5-7 perform both multiple and pairwise sequence alignments in some of their

steps to extract syntactic viral signatures. Furthermore, Chapter 7 performs the process of

phylogenetics for the classification of syntactic viral signatures.

Stage IV – DNA/Amino Acid to Hex Conversion and Signature Testing: In this stage,

common substrings extracted in Stage III will be converted into hexadecimal format.

After the conversion, the common substrings in their hexadecimal format will be tested

against that particular polymorphic family for malicious detection using ClamAV (the

‘clamscan’ antivirus scanner) (ClamAV, 2018).

59

3.5 Discussion of Results and Evidence

In this research, the analysis and validation will be conducted by comparing the string-

based syntactic approaches with the commercial state of the art AVSs. The comparison

will be conducted using one or more polymorphic malware family along with their known

(Pk) and unknown (Px) variants. The results will be presented in a tabular format which

will contain the detection performance (test statistics) measures as discussed in the next

section.

3.6 Analysis and Evaluation

The effectiveness of the string-based syntactic approaches for each of the polymorphic

(and metamorphic) malware families is measured based on test statistics using the

following metrics: true positive rate (sensitivity/recall), true negative rate (specificity),

positive predictive value (precision), detection ratio (along with accuracy) and F1 score

(the harmonic mean of the positive predictive value and true positive rate). F1 score is

needed in this thesis as it seeks a balance between precision and recall.

The following formulae will be used to calculate these performance measures (Baratloo,

Hosseini, Negida, & El Ashal, 2015; Naidu, Whalley, & Narayanan, 2017):

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 ÷ (𝑇𝑁 + 𝐹𝑃)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) ÷ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

Where, 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of true negatives, 𝐹𝑃 is the

number of false positives, and, lastly, 𝐹𝑁 signifies the total number of false negatives.

The Detection Ratio is computed using the following formula:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑓𝑖𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠 𝑠𝑐𝑎𝑛𝑛𝑒𝑑

And the F1 score (Sebastián, Rivera, Kotzias, & Caballero, 2016) is calculated by the

following formulae:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) ÷ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

60

More specifically, in this thesis,

• true positives are the total number of malicious files (i.e. malware) correctly detected

as malicious (i.e. malware),

• true negatives are the total number of non-malicious files (i.e. non-malware) correctly

detected as non-malicious (i.e. non-malware),

• false positives are the total number of non-malicious files (i.e. non-malware)

incorrectly detected as malicious (i.e. malware) and

• false negatives are the total number of malicious files (i.e. malware) incorrectly

detected as non-malicious (i.e. non-malware)

Furthermore, recall signifies “how many malware were spotted (True Positives) among

the files found in the test set (True Positives + False Negatives)?”. Specificity signifies

“how much non-malware were spotted (True Negatives) among the files found in the test

set (True Negatives + False Positives)?”. Precision signifies “how many files are actual

malware (True Positives) among the files that are considered as malware (i.e. True

Positives + False Positives)?”. High recall (i.e. fewer false negatives) signifies that the

detected (malicious) files are correctly spotted as malware. High specificity (i.e. fewer

false positives) signifies that the detected (non-malicious) files are inauthentic non-

malware. High precision (i.e. fewer false positives) signifies that the detected (malicious)

files are authentic malware (Aniello, 2016; Narudin, Feizollah, Anuar, & Gani, 2016).

3.7 Overview of thesis

Chapters 4-7 are the experimental chapters in this thesis. Chapter 4 determines whether it

is possible to extract syntactic virus signatures adopting sequence alignment techniques.

The main contribution of this chapter is to detect all the known and unknown variants of

polymorphic malware families using the newly extracted syntactic virus signatures.

Additionally, other contribution is to compare the proposed approach with the other

commercial antiviruses to determine their detection capabilities against these

polymorphic malware families.

Chapter 5 is divided into three sub-parts. Chapter 5 – Part I compares the two standard

sequence alignment techniques, namely, global and local alignment in order to determine

which one perform better. The main contribution of this part of the chapter is to extract

never seen before syntactic virus signatures adopting global and local alignments and

simultaneously determining which ones perform better by testing the newly extracted

61

signatures against the polymorphic malware family. Chapter 5 – Part II explores different

combinations of gap open and gap extend penalties to determine how generalisable the

newly extracted signatures are in the detection of known and unknown variants of the

polymorphic malware families. This experiment is necessary as the previous chapter (i.e.

Chapter 4) only extracts signatures adopting a fixed combination of gap open and gap

extend penalties. The main contribution of this part of the chapter is to find the optimal

combination of gap open and gap extend penalties that are successful in detecting the

known and unknown variants completely and extract new syntactic virus signatures that

are not extracted in the previous chapters. Additionally, a comparison is made amidst the

newly extracted virus signatures and state of the art antivirus products in order to

determine their detection capabilities. Chapter 5 – Part III compares different substitution

matrices to determine which one perform better as previous chapters only adopt ID

substitution matrix. The other aim is to determine which substitution matrix produce new

and more effective syntactic virus signatures in the detection of variants belonging to

polymorphic malware families. The main contribution of this chapter is to determine the

better performing substitution matrix with better accuracies in the detection of

polymorphic malware families and extract new effective signatures.

Chapter 6 addresses some of the limitations of previous chapters adopting sequence

alignments (see page nos. 17-19). This chapter extracts further new syntactic virus

signatures by combining a data mining algorithm with sequence alignment techniques.

This chapter generates malware rules which are then used in the extraction of new

signatures for the detection of known and unknown variants of a polymorphic virus

family. The contributions of this chapter are as follows:

• Adopting a data mining algorithm, to generate rule-based signatures automatically

from real malware data.

• Comparing variable length data mining algorithm to equal length data mining

algorithm using NNge on malware source code by conducting three different

experiments (Experiments I-III).

• Distinguishing malicious variants from non-malicious with the help of rules generated

using the data mining algorithm, NNge.

• Testing the derived rule-based signatures against real malware data and comparing

the results to other commercial AVSs.

62

• Comparing the overall performance metrics such as true positive rate, false positive

rate, precision, recall, etc. with other related work on malware detection using data

mining algorithms.

Chapter 7 aims to extract syntactic virus signatures adopting biosequence analysis

techniques in the detection of metamorphic virus family. This chapter focuses on the

detection of variants belonging to a metamorphic virus family. Previous chapters focus

on detecting the variants belonging to polymorphic virus families. This chapter mainly

focuses on a metamorphic virus family which is a complex version of polymorphic virus

(Musale, Austin, & Stamp, 2015). Another aim is to classify the extracted syntactic virus

signatures adopting phylogenetics. The contributions of this chapter are as follows:

• Classifying viral signatures acquired from the metamorphic Transcriptase malware

family adopting biosequence analysis techniques.

• Distinguishing Transcriptase malware variants adopting phylogenetics.

• Generating syntactic variable-length viral signatures from Transcriptase malware

family adopting sequence alignment techniques.

• Testing the classified viral signatures against two different Transcriptase malware

datasets and comparing the test results against seven individual commercial antivirus

products.

• Testing the classified viral signatures against benign datasets for false positives.

3.8 Summary

This chapter presents a research design in the context of sequence analysis, which adds

knowledge to the existing techniques of automatic signature generation for malware

detection. It is an ideal strategy to concentrate on the research procedure and systematise

the research by constructing and stating the research problem and extracting conclusions

that contemplate the real world.

The research design forms a critical inference, which is that our contribution of inspiration

from biology will be commenced not from the very beginning of the research but at a

point in the research where it is most preferable to do so. Chapter 2 shows that there is a

wealth of available literature concerning malware detection methods. Although, these

traditional detection methods are well accepted and, in most instances commercially

established, they represent a compromise and cannot in all cases completely and

successfully detect the known (existing) polymorphic malware variants (Pk), let alone

63

future (new/unknown) variants (Px). This does not mean that this study have to begin with

a clean slate as such an approach would be throwing away useful and valuable existing

foundations which this research may be built on. The objective of this thesis is to explore

those features of signature extraction that are well accepted and relevant to this research,

and structural detection of polymorphic malware using previously unexplored syntactic

approaches rather than semantic approaches.

Along with the research objectives and questions presented in Section 1.4.2 (see page no.

11), a recommended approach is suggested. This approach is devised in order to see how

much further this study can reach with modern approaches, extending them where

appropriate to make them more desirable and useful for polymorphic malware detection.

Once it is determined that this research study have advanced as far as feasible with these

conventional approaches, further research investigates how syntactic approaches to

signature extraction methods (Chapters 4 to 7) can contribute to malware detection. This

work is motivated, as discussed in Section 1.1 (see page no. 1), by the need for automatic

signature generation methods and effective approaches for the identification of

polymorphic malware variants belonging to that particular family.

The main objective of the next chapter is to see whether it is possible to extract syntactic

patterns from semantically rich (polymorphic) hex code using string searching

algorithms. An investigation into whether current string searching algorithms, such as the

SWA, be able to give rise to string-based syntactic techniques to the extraction of

polymorphic syntactic virus signatures automatically is presented in an attempt to answer

research question 1.

64

Chapter 4 A String-Based Method for Syntactically

Identifying Polymorphic Virus Variants

This chapter focuses on the identification of polymorphic malware and its variants

adopting the Smith-Waterman algorithm (SWA). SWA is adopted in this chapter for the

following reasons:

• It is commonly adopted in the field of bioinformatics for performing local

sequence alignment (Zahid, Hasan, Khan, & Ullah, 2015). Local alignments are

more advantageous for dissimilar sequences that are expected to contain areas of

similarities (Moreland, 2006). This chapter conducts local sequence pairwise

alignments adopting SWA on dissimilar variable length sequences belonging to

polymorphic malware families.

• It finds areas of high similarities between two or more variable length sequences

(Xu, et al., 2017). In this chapter, the aim is to find areas of high similarities

between polymorphic malware variants.

• It is the most accurate algorithm for conducting local sequence alignment (Xu, et

al., 2017) and optimal in identifying local sequence alignments (Zahid, Hasan,

Khan, & Ullah, 2015).

• It is a well-known algorithm that finds the longest common substring between two

or more variable length sequences (Chen, Wan, & Liu, 2006). This chapter

focuses on identifying the longest common substrings (i.e. syntactic patterns)

which are employed as syntactic virus signatures in the detection of polymorphic

malware variants.

The main purpose of the research presented in this chapter is to see whether it is possible

to extract syntactic patterns from semantically rich (polymorphic) hex code and whether

the extracted syntactic patterns can be employed for the complete identification of

polymorphic malware variants including some or all new variants. Further, the results of

the detection capabilities of the proposed approach are compared with that of the

commercial AVSs for the detection of known (Pk) and unknown (Px) variants belonging

to the corresponding polymorphic virus families. The results are compared by generating

their test statistics, such as accuracy, precision, recall, specificity, etc. as discussed in the

previous chapter (see page no. 59).

65

4.1. Introduction

The goal of this chapter will be to investigate if existent string-based algorithms supported

over its growing ability on how to heuristically implement the string-based algorithm for

maximal effects, (like the SWA), be able to give rise to syntactic methods to the extraction

of polymorphic syntactic virus signatures automatically not only for the variants already

seen (Ps) but also for the unseen (Pu) and unknown (Px) variants. JS.Cassandra virus along

with its known (Pk) virus variants belonging to Cassandra polymorphic virus family are

used for the experiments conducted in this chapter. Once the method was established for

signature testing using the JS.Cassandra family, the method was later tested using the

W32.CTX and the W32.Kitti families.

4.2. String-Based Syntactic Detection of Polymorphic Malware

Variants Method: An Overview

Hex Dump Extraction

Hex to DNA Conversion

Extraction of Longest Substrings

Extraction of Longest Common

Substrings

Local Pairwise Alignment and Common Substring (Meta-Signature) Extraction

DNA to Hex Conversion

Virus Identification
Virus &

Variants

Local Pairwise Alignment

Figure 4.1: The seven steps in the String-Based Syntactic Detection of Polymorphic

Malware Variants method.

66

The method adopted here consists of seven steps (see Figure 4.1). Obtaining the original

virus (Ps) and its known (Pk) variants, together with extraction of their hex (hexadecimal)

dump and the testing process were carried out on an isolated system in order to avoid any

other unexpected system infections. Services of network connectivity is only adopted

during the testing process but is carried out adopting ‘Oracle VM VirtualBox’ together

with a previously installed Linux operating system (VirtualBox, 2018).

4.3. String-Based Syntactic Detection of Polymorphic Malware

Variants Method: Systems and Methods

An overview of the experimental method, in four stages, was presented in Figure 3.2 and

briefly discussed in Section 3.4 (see page no. 57). In this experiment, these stages where

appropriate are further divided into clear experimental steps in order to provide a

reproducible method (Figure 4.1). The first three stages of the general method presented

in Section 3.4 (see page no. 57) are used in this experiment. Firstly in Stage I, ‘sigtool’ is

used to extract hexadecimal dumps of the virus and its variants. In Stage II these

hexadecimal sequences are converted to binary format and then into DNA representation

using the rules detailed in the next section. In Stage III common substrings are extracted

– this stage is divided here into four steps. First, a local pairwise alignment between all

of the DNA sequences using the SWA implemented in the JAligner tool was undertaken

(Moustafa, 2010). Next, the longest substring from very pairwise (local) alignment was

identified and extracted, and from those longest substrings, the longest common substring

that captures all the variants in the family of malware tested is identified in Step-5.

Finally, in Step-6, a second process of pairwise alignment using the SWA is performed

this time between the DNA sequences of the virus and its variants and the longest

common substring to extract a meta-signature obtained in Step-5.

In Stage IV signature testing is undertaken. This stage consists of two distinct steps

namely DNA to hexadecimal conversion and finally in Step-7, the effectiveness of the

signature, using ‘clamscan’, for identifying the virus and its known (Pk) variants is

evaluated.

The next section describes the seven steps in detail. JS.Cassandra and its sources, as well

as the software tools used in this experiment, are detailed in the materials and tools section

(i.e. Appendix C section – see page no. 224).

67

4.3.1 Hex Dump Extraction

Step-1: Forty-two variants of the 351 JS.Cassandra known (Pk) variants and the original

JS.Cassandra virus (Ps) were selected for this experiment. This gives a sum of 43

malicious files (Pk) and is considered in this chapter as the training set. A new set of 43

non-malicious (Pu) JS.Cassandra files (training set) with no payload were generated by

taking out their fundamental polymorphic engines manually. However, most of these

newly created non-malicious (Pu) JS.Cassandra files possessed active polymorphic

functions. An additional new set of 43 files (test set) were randomly created using RDFC

which creates binary files of random size up to a limit of 150 KB. The output RDFC

executable files (*.exe) were converted into JavaScript files (*.js). These files are now in

the correct format for inclusion in the set of test files and are used to check for correct

false positive and false negative rates.

The uniqueness of the 43 malicious (Pk) virus variants together with 43 non-malicious

(Pu) variants and 43 randomly generated files was double-checked by generating a

“CRC32b hash” value for each of the variants (see Appendix D section – page no. 231).

The hash values proved that each variant was indeed unique as no two files had the same

hash value, and none of them had the same file size. These files (43 non-malicious – Pu

and 43 malicious – Pk variants) were further checked using ‘VirusTotal’ (VirusTotal,

2018) to determine whether their viral payloads were taken out in the 43 non-malicious

(Pu) variants and maintained in the 43 malicious (Pk) variants of JS.Cassandra virus.

Furthermore, the randomly created 43 Java files were verified adopting ‘VirusTotal’ in

order to confirm that these files did not already exist in the VirusTotal database. None of

the randomly generated files were recognised suggesting that these generated variants are

unique.

Also, in this step, the processes of hex dump extraction were carried out on the 43 non-

malicious (Pu) variants and 43 malicious (Pk) variants adopting ‘sigtool’.

4.3.2 Hex to DNA Code Conversion

Step-2: In this step, after the hex dump extraction, the hex dumps were

converted/translated into binary code and subsequently into DNA strings/sequences. This

step is necessary because in the field of bioinformatics the string matching algorithms do

not merely look for the absence or presence of codes/bases in specific locations but at the

same time also manage the strings in such a manner that deletion and insertion of

codes/bases are allowed in order to increase the count of matching codes/bases.

68

Scoring/substitution matrices during the sequence alignment process are also utilised in

order to enable a match amidst unmatched codes/bases provided there is a possibility of

mutation/transformation to another code/base. Similar substitution matrices could be

produced experimentally through former string matches/alignments or a priori based on

a fixed substitution rules (Narayanan, et al., 2012; Chen, et al., 2012a; Chen, et al., 2012b;

Narayanan, et al., 2013a; Narayanan, et al., 2013b). In this research, a different approach

is taken. That is translation of malicious virus code into a suitable biological

representation/encoding is adopted prior to the process of sequence matching/alignment,

with translation back to hexadecimal code for the process of signature testing.

Translation of hexadecimal sequence into binary code sequence was conducted adopting

the subsequent rules:

0 → 0000 4 → 0100 8 → 1000 c → 1100

1 → 0001 5 → 0101 9 → 1001 d → 1101

2 → 0010 6 → 0110 a → 1010 e → 1110

3 → 0011 7 → 0111 b → 1011 f → 1111

Subsequent conversion of the bits into nucleotide bases and thus binary code into DNA

sequences for input to JAligner was conducted adopting the following rules:

00 → A; 01 → C; 11 → T and 10 → G

An in-house generated macro was developed in order to carry out the conversion from

hexadecimal representation to DNA representation, via binary representation, using

EmEditor (Professional edition, 64-bit version) (EmEditor, 2018). All of the 43 extracted

hexadecimal dumps of the malicious (Pk) files and 43 hexadecimal dumps of the non-

malicious (Pu) JS.Cassandra files were translated into DNA codes adopting this in-house

macro. These sequences were then retained for their use in step-3 to step-7.

Demonstration of the translation of a 32-bit binary sequence into a 16-bit nucleotide

(DNA) sequence is presented as follows:

01010010100100101010010111101101 (32-bit binary code)

CCAGGCAGGGCCTGTC (16-bit nucleotide bases)

69

4.3.3 Process of Pairwise Local Sequence Alignment

String matching algorithm of SWA is adopted in order to extract the most commonly

occurring pattern/substring from the 43 polymorphic malicious variants.

Step-3: In this sequence alignment step, a process of pairwise sequence alignment

between two of the generated DNA sequences was conducted locally adopting the SWA

with the Identity matrix and ‘JAligner’. For example, in this process imagine that there

are four variants represented in DNA sequences, namely, D1, D2, D3, and D4, then a

process of pairwise sequence alignment will be conducted locally amidst D1 and D2, then

D2 and D3 and finally amidst D3 and D4. This procedure was adopted to perform local

pairwise sequence alignment on the 43 translated malicious DNA codes.

Step-4: Following the procedure of sequence alignment, extraction of longest substrings

from the resulting pairwise sequence alignments were carried out, emanating in 42 longest

malicious substrings resulting from the 43 malicious DNA sequences.

Step-5: In this extraction step, amid the 42 longest malicious substrings, the longest

common malicious substring is extracted. The extraction of such longest common

malicious substring signifies the longest common pattern/substring (encoded in DNA)

within the ‘polymorphic family’ consisting of 43 malicious JS.Cassandra variants.

Remainder of the 41 longest malicious substrings were retained for their usage in the

process of Step-6.

Step-6: In this second sequence alignment step, a process of pairwise sequence alignment

was carried out locally amidst the 43 malicious sequences encoded in DNA (acquired

from the process of Step-2) and longest common malicious substring encoded in DNA

(acquired from the process of Step-5 above) one after the other. It shows that there is a

common syntactic pattern/substring that is same for every polymorphic virus variants

belonging to the same family. Such syntactic common substring is the syntactic meta-

signature that is employed in order to identify the known (Pk) polymorphic malicious

variants of the JS.Cassandra family. In any case, if the first acquired longest common

syntactic substring does not provide the optimal common syntactic substring, in that case,

the procedure of Step-6 is repeated employing the second retained longest common

syntactic substring, otherwise, in that case, the procedure of Step-6 is repeated again

employing the third retained longest common syntactic substring, and so on. In total, one

70

meta-signature (syntactic virus signature) was extracted in this step for the JS.Cassandra

virus family.

4.3.4 Meta-Signature Virus Testing

Step-7: In the last step of signature translation and testing, the optimal common syntactic

substring encoded in DNA codes is translated back into hexadecimal code. The translated

syntactic hex (malicious) meta-signature was verified on the 42 known (Pk) polymorphic

malicious variants and JS.Cassandra original (Ps) virus adopting ‘clamscan’ (ClamAV,

2018) for the sole purpose of their identification. The translated syntactic hex (malicious)

meta-signature of 40 characters long that was acquired in this step, is presented as follows:

537472696e672e66726f6d43686172436f646528

Steps 3 to 7 processes were conducted on the 43 JS.Cassandra non-malicious (Pu)

sequences encoded in their DNA representation. The syntactic common non-malicious

substring (that is, the syntactic meta-signature) is acquired during the process of Step-7.

This syntactic non-malicious meta-signature is exactly similar to the one acquired in

previous steps from the 43 JS.Cassandra malicious variants. Steps 1 to 7 were also applied

on the other two polymorphic virus families and two meta-signatures were extracted, one

for each polymorphic virus family. Except in this case only two variants were selected

randomly as the training set (Pk) from the individual polymorphic virus family and no

non-malicious (Pu) files were generated. Steps 1 to 7 were applied on the corresponding

two variants and the meta-signatures were extracted in a similar way as JS.Cassandra

virus.

4.4. Experimental Results

In this section, the 43 files belonging to three groups, namely, malicious (Pk), non-

malicious (Pu) and random, respectively, were scanned using the 12 commonly used

AVSs and meta-signatures obtained in this chapter. These experiments were performed

in order to determine the detection capabilities of AVSs and the meta-signatures against

the polymorphic virus families. The scan results of those experiments are detailed below.

The 43 files from the three separate groups were scanned individually employing the 12

commercial AVSs. This experiment was conducted to determine the detection capability

of these AVSs against these files. Appendix D (see page no. 232) provides the scan results

and test statistics of some of the AVSs tested against these files.

71

The syntactic meta-signature acquired from the process of Step-7 was scanned against the

three individual groups. A signature database file is developed in .ndb signature file

format (that is, ClamAV Extended Signature File) for validating the syntactic meta-

signature adopting the scanner tool called ‘clamscan’ antivirus scanner belonging to

ClamAV (ClamAV, 2018). The format of signature database for scanner tool ‘clamscan’

is specified using the standardised structure, that is, “MalwareName: TargetType: Offset:

HexSignature” (Naidu & Narayanan, 2016). More information regarding the clamscan

database file can be found in Appendix D (see page no. 228). The screenshots of the

clamscan scan results for the three individual groups utilising the syntactic meta-signature

acquired through the proposed seven-step method are presented in Appendix D (see page

no. 229).

The scan results show that 43 of the 43 JS.Cassandra malicious (Pk) variants, 43 of the 43

JS.Cassandra non-malicious (Pu) variants along with 0 of the 43 randomly created Java

programs were fully identified as infected/malicious with the help of ‘clamscan’ scanner

tool involving the syntactic meta-signature in under 0.3 seconds, respectively. The

detection accuracy of the ‘clamscan’ scanner tool utilising the syntactic meta-signature

with regards to the original polymorphic (Ps) JS.Cassandra virus file together with its set

of 43 known (Pk) malicious as well as 43 non-malicious (Pu) variants, was altogether

100%. Further experiments were conducted in this section and the results of those

experiments are presented in Appendix D (see page no. 233). These experiments were

conducted to determine whether it was possible to generate variants from the

JS.Cassandra non-malicious (Pu) files. The same meta-signature obtained from the above

experiments was tested against these newly generated variants. The results are presented

in Appendix D (see page no. 235).

Finally, the original polymorphic (Ps) JS.Cassandra virus together with its set of 351

known (Pk) malicious variants (test set) were all-around tested for the process of malicious

identification employing commercial AVSs such as ‘Microsoft’, ‘clamscan’ and ‘ESET’.

Both the Microsoft and the ESET scanners were installed on a Microsoft Windows

operating system (Windows 10 Professional edition). Installation of the ‘clamscan’

scanner tool was done on a Linux-based operating system employing ClamAVs built-in

database and adopting the database created in this research incorporating the syntactic

meta-signature encoded in hex code. The signature databases of the three AVSs were

comprehensively up to date together with the most recent updates, at the time of the

72

experiments, installed. The scan results show that the original polymorphic (Ps)

JS.Cassandra file together with its set of 351 known (Pk) malicious variants were fully

identified as malicious/infected in well under 0.995 sec by the ‘clamscan’ utilising the

meta-signature (see Appendix D for scan result – page no. 235). Only the ‘Microsoft’

antivirus tool and identification utilising the syntactic meta-signature could fully detect

each and every malicious variants with an identification ratio of 352 out of the 352

malicious files and a detection accuracy of exactly 100% (Table 4.1).

Identification of the other two polymorphic viruses together with their unknown (new)

malicious variant files (Px) were also tested employing the newly generated syntactic

meta-signature: the scan results were altogether 100% (see Table 4.1). Even though some

commercial AVS products could fully detect each and every malware variants they were

uncongenial in fully detecting the polymorphic viruses as well as their known (Pk) and

unknown (Px) variants (Table 4.1). For instance, ‘Microsoft’ scanner be able to merely

detect 80 of the 1106 unknown (Px) malicious ‘Win32.Kitti’ variants with an

identification accuracy of 7% (overall) but at the same time be able to fully detect each

and every malicious variants belonging to other two polymorphic virus types

demonstrating the inconsistency of its detection algorithm.

The syntactic meta-signature acquired through the proposed seven-step syntactic method

for the same polymorphic family of JS.Cassandra virus (Ps) together with its known (Pk)

malicious variants was decrypted into a text and signifies a JavaScript function –

‘String.fromCharCode(’. Such function is usually a Java code function within the

original source code belonging to the polymorphic JS.Cassandra virus (Ps) along with its

known (Pk) malicious variants. While such viruses do not have a readily available source

code due to which malware analysts require to reverse engineer the malware files in order

to retrieve the source code adopting a very sophisticated procedure (Naidu & Narayanan,

2016). Provided, in this thesis, the source code of JS.Cassandra (Ps) virus along with its

known (Pk) malicious variants was readily available, although commonly, viruses created

using JavaScript scripts are either password protected or enciphered. As noted earlier, the

scan engines of AVS products adopt the technique of traditional “Variable Scan

Sequences”. The crucial problem with this approach is that it is too tedious (Ferris, 2006).

73

Table 4.1: Test statistics and time interval to the identification of three individual polymorphic viruses as well as their known (Pk) and unknown (Px)

malicious variants adopting ‘clamscan’ scanner tool, ESET, Windows Microsoft Defender and the Syntactic Meta-Signature (extracted from the proposed

seven-step approach).

Virus JS.Cassandra together with its 351 known (Pk) malicious variants (Test set) Win32.Kitti Virus together with its 1105 unknown (Px) malicious variants (Test set)

AVS Microsoft Defender ESET clamscan Meta-Signature Microsoft Defender ESET clamscan Meta-Signature

Detection rate 352/352 (100%) 296/352 (84%) 340/352 (97%) 352/352 (100%) 80/1106 (7%) 1106/1106 (100%) 1/1106 (0.09%) 1106/1106 (100%)

Sensitivity/Recall 100% 84% 97% 100% 7% 100% 0.09% 100%

Specificity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Precision 100% 100% 100% 100% 100% 100% 100% 100%

F1 Score 100% 91% 98% 100% 13% 100% 0.18% 100%

Detection time unknown 4 seconds 30.613 seconds 0.995 seconds unknown 43 minutes and 23 seconds 39.378 seconds 14.003 seconds

Virus 2 x Win32.Cholera together with its 198 unknown (Px) malicious variants (Test set)

AVS Microsoft Defender ESET clamscan Meta-Signature

Detection rate 200/200 (100%) 200/200 (100%) 67/200 (33%) 200/200 (100%)

Sensitivity/Recall 100% 100% 33% 100%

Specificity 0.0% 0.0% 0.0% 0.0%

Precision 100% 100% 100% 100%

F1 Score 100% 100% 50% 100%

Detection time unknown 23 seconds 34.009 seconds 1.008 seconds

74

4.5. Summary

In this chapter, the efficient and effective syntactic approach of using string matching

algorithms such as the SWA for the automatic extraction of signatures for the detection

of some or all new polymorphic variants was examined. The experiments reported in this

chapter demonstrate to some extent that current and modern state of the art AVS products

cannot completely and successfully detect the known (existing – Pk) and future

(new/unknown – Px) polymorphic malware variants. By downloading the original

polymorphic JS.Cassandra virus together with its known (Pk) malicious variants in its

original JavaScript code as well as generating new (unknown – Px) variants of the other

two polymorphic malware using information contained in documents concerning

polymorphic versions, the authenticity of the polymorphic variants was assured. By

removing the payload from each of the JS.Cassandra malicious variants and checking all

86 variants (43 malicious – Pk and 43 non-malicious – Pu variants) against a number of

AVS systems (using the ‘VirusTotal’ online tool), it has been verified that these variant

files (and the code they represent) represent malicious (Pk) and non-malicious (Pu)

variants. All the (pairwise) alignments were conducted with the ID matrix rather than

biologically plausible mutation matrices (such as BLOSUM and PAM), addressing the

concern that biological bias was being introduced into the alignment results. All the

(pairwise) alignments were conducted using a fixed combination of gap open penalty (i.e.

10) and gap extend penalty (i.e. 1). By using an in-house macro tool, this chapter has

shown that a natural computation approach of projecting polymorphic malware

(hexadecimal) code onto biological representational space (i.e. DNA) and vice-versa and

then using bioinformatics algorithms (i.e. pairwise alignment and SWA) can successfully

automate signature extraction using the proposed (seven-step) string-based syntactic

approach developed in this research.

In this chapter, all the syntactic meta-signature (common substring) testing against the

malicious variants of polymorphic virus families was conducted adopting the ‘clamscan’

scanner tool, which belongs to a module in the ClamAV AVS product (ClamAV, 2018).

Experimental results from this testing process are shown in Table 4.1. Based on Table

4.1, this chapter demonstrates how the proposed string-based syntactic method adopting

the traditional algorithm of string matching SWA can fully detect the previously known

(existing) malicious variants (Pk) belonging to the same family of original JS.Cassandra

polymorphic virus (Ps) and outperform the detection capabilities of commercial AVSs.

In-depth, it was demonstrated that it is possible to extract syntactic patterns from

75

semantically rich (polymorphic) hex code and that the extracted syntactic patterns (i.e.

common substrings/meta-signatures) can be used for the complete identification of

polymorphic malware variants. This proposed string matching approach adds knowledge

to the automatic signature generation contributing to understanding the polymorphic

variant and signature extraction and be able to give rise to a modern era of string-

dependent syntactic AVSs.

The next chapter investigates whether further refined string searching algorithms, such as

the SWA and NWA, can lead to syntactic techniques for the automatic extraction of new

polymorphic viral signatures. Experiments are reported that are designed to address the

second research question and its sub-questions (Q2a to Q2c).

76

Chapter 5 Exploring Advanced Sequence Alignment

Techniques in a String-Based Syntactic

Method for Identifying Malicious Variants of

Polymorphic Virus Families

In the previous chapter, the efficient and effective syntactic based technique employing

the algorithms of string matching for the detection of all new or some malicious variants

of polymorphic virus families using the automatically extracted syntactic signatures was

investigated. In this chapter, this work is extended. The chapter is presented in three parts.

Part-I (addressing research sub-question – Q2a) introduces two different dynamic

programming methods i.e. Needleman-Wunsch algorithm (NWA) and Smith-Waterman

algorithm (SWA) as methods for improving the detection of viral polymorphic malware

variants. Both approaches are evaluated for two different polymorphic malware and their

known (existing – Pk) and unknown (new – Px) variants. More detailed information on

why this part focuses only on NWA and SWA is outlined on the next page. Part-II

(research sub-question – Q2b) examines the effects of different combinations of gap open

and gap extend penalties using the SWA. In Chapter 5 the approach employed a fixed

combination of gap open penalty (i.e. 10) and gap extend penalty (i.e. 1). The approaches

developed in this section will be demonstrated using three different polymorphic malware

and their known (Pk) and unknown (Px) variants. Part-III (research sub-question – Q2c)

will adopt SWA with six different substitution matrices. In this part, the process of the

first pairwise sequence alignment will be conducted for 71 different pairwise alignments

with 71 different substitution matrices. The research in this thesis reported in Chapter 4

conducted pairwise alignment using the ID substitution matrix solely. The work in this

part will be demonstrated using one polymorphic malware and its known (Pk) variants.

77

Part-I: Comparing Needleman-Wunsch and Smith-Waterman

Algorithms for Identifying Viral Polymorphic Malware Variants

In this set of experiments the focus is on the string matching algorithm and the NWA and

SWA will be compared to see which performs best for the extraction of signatures for

identifying polymorphic variants of viral malware. This part mainly focuses on

conducting experiments using two different sequence alignment techniques, namely,

global and local alignments, and are also the two commonly-used standard techniques of

sequence alignment (Troy, et al., 2003). Global alignment aligns the entire sequence from

beginning to end in order to find the best potential alignment between two or more

sequences (Kumar & Filipski, 2007), whereas, local alignment finds the “local regions

with highest level of similarities” between two or more sequences (Vijan & Mehra, 2011).

The standard algorithm to perform a global alignment is NWA and local alignment is

SWA (Zarka, Cordier, Egyed-Zsigmond, Lamontagne, & Mille, 2013; Ghayyur, Aleem,

& Islam, 2018). Further, NWA and SWA are the only two standard dynamic

programming algorithms of sequence alignment (Xia, 2007). Therefore, for these exact

reasons, the current part only focuses on comparing NWA and SWA in the extraction of

new syntactic viral signatures for their use in the detection of polymorphic virus variants.

5.1. Introduction

Initial work (Chapter 4) exploring string-based approaches for the automatic extraction

of signatures for the detection of some or all new polymorphic variants was promising.

However, that initial work was limited by a number of experimental features. One such

aspect was that only one sequence alignment method was considered – SWA. The

research question (in detail) investigated is “Do dynamic programming approaches (i.e.

the NWA and SWA) in bioinformatics for conducting task such as sequence alignment

produce consensuses that not only ‘fit’ the known (Pk) variants (training set) but also

generalise well to unknown (Px) variants (test set)” (Q2a). The goal of the research

addressed in this part of the chapter is to explore the effects of using NWA and SWA

(both refined by dynamic programming) in string-based algorithms for the automatic

extraction of syntactic signatures in order to detect all new or some malicious variants of

polymorphic virus families.

The aim of this thread of research is to analyse if modern string matching methods, such

as the NWA and SWA, can lead to innovative syntactic techniques for the automatic

extraction of syntactic virus signatures not only for known (Pk) malicious variants

78

belonging to polymorphic virus families but also for unknown (new/future) viral variants

(Px). As stated earlier, the initial research (Chapter 4, also published in Naidu and

Narayanan (2016)) was largely focused on the detection of polymorphic malware variants

using the SWA (i.e. by performing local pairwise sequence alignment), but the current

aim is to compare the two different dynamic programming approaches i.e. the NWA and

SWA for the identification of polymorphic malware variants, by adopting both pairwise

and multiple sequence alignments. The JS.Cassandra and the W32.Kitti viruses are

employed along with their known (Pk) and unknown (Px) polymorphic viral variants for

experimental purposes. This part of the current chapter only focuses on these two

polymorphic virus families due to sequence length restrictions (Kim & Pramanik, 1994;

Yu, Bundschuh, & Hwa, 2002; Chakraborty & Bandyopadhyay, 2013) placed by the

alignment tool (more details on page no. 18) adopting NWA (global alignment). The third

polymorphic virus family was not considered in this part of the chapter due to its overly

long sequences.

79

5.2. Comparing NWA and SWA for the Detection of Polymorphic

Malware Variants Method: An Overview

Hex Dump Extraction

Hex to DNA Conversion

Pairwise alignment

method?

Local Global

Extract Common Substrings

Meta-Signatures

Multiple Sequence Alignment

Consensus Extraction

Local Pairwise Alignment and Super-Signature Extraction

DNA to Hex Conversion

Virus Identification
Virus &

Variants

Figure 5.1: Eight-step method for comparing the Identification of Polymorphic Malware

Variants by NWA and SWA.

The method in this part consists of eight steps (see Figure 5.1). As for the earlier research

reported in this thesis, obtaining families of polymorphic viruses along with its known

(Pk) malicious variants, generation of unknown (Px) malware variants together with

extraction of hex (hexadecimal) dump as well as the process of testing, was carried out

on an isolated system in order to avoid any other unexpected system infections. Services

of network connectivity is only adopted during the testing process as indicated in the

previous chapter.

The method in this part employs two polymorphic malware – JS.Cassandra virus and

W32.Kitti virus.

80

5.3. Comparing NWA and SWA for the Identification of

Polymorphic Malware Variants Method: Systems and Methods

A detailed outline of the method is supplied below; a complete description follows the

method.

1. Step-1: Extract hexadecimal dumps from polymorphic malware and its variants of

the same family using ‘sigtool’ (ClamAV, 2018) – this step belongs to Stage I as

presented in Figure 3.2.

2. Step-2: Convert the extracted hexadecimal dump sequences into a binary form and

subsequently into DNA bases – this step belongs to Stage II as presented in Figure

3.2.

3. Step-3: Perform pairwise sequence alignments (global – NWA and local - SWA)

using ‘JAligner’ (Moustafa, 2010) between the two converted polymorphic DNA

sequences obtained in Step-2 – this step belongs to Stage III as presented in Figure

3.2.

4. Step-4: Extract common substrings (meta-signatures) after the process of first

pairwise (global and local) sequence alignment conducted in Step-3 – this step

belongs to Stage III as presented in Figure 3.2.

5. Step-5: Perform multiple sequence alignment using T-Coffee (Notredame, Higgins,

& Heringa, 2000) on the extracted meta-signatures obtained in Step-4 – this step

belongs to Stage III as presented in Figure 3.2.

6. Step-6: Extract consensuses after the process of multiple sequence alignment

conducted in Step-5 – this step belongs to Stage III as presented in Figure 3.2.

7. Step-7: Perform pairwise (local - SWA) sequence alignments using ‘JAligner’

(Moustafa, 2010) between the extracted consensuses (retrieved in Step-6) and the

polymorphic DNA sequences (retrieved in Step-2) belonging to the polymorphic

malware (and its variants) of the same family one by one. This step will give us the

common substrings (super-signatures) which will be employed to detect the

polymorphic malware and all its known (Pk) and unknown (Px) variants of that

particular family – this step belongs to Stage III as presented in Figure 3.2.

8. Step-8: Convert the meta-signatures and super-signatures from their current

representations in DNA format into the hexadecimal sequence format and then test

the converted hex meta-signatures and hex super-signatures against the groups of

polymorphic viruses along with its known (Pk) and unknown (Px) malicious variants

81

belonging to the same family using ClamAV (ClamAV, 2018) – this step belongs to

Stage IV as presented in Figure 3.2.

5.3.1 Hex Dump Extraction

Step-1: In this experiment, one variant v_000.js was selected from the 351 known (Pk)

variants of JS.Cassandra virus along with the original (Ps) JS.Cassandra virus. Variant

v_000.js and original (Ps) JS.Cassandra virus were selected as previous work reported in

Chapter 4 showed that the same common substring (meta-signature) being found in all

the alignments between the first 43 variants.

Table 5.1: File Identification Information for JS.Cassandra and its “v_000.js” variant.

Filename File Identification Information

JS.Cassandra.js

(Original (Ps) Virus)

MD5 dc5f0d63fee16e7897aa47cce9b098f4

SHA1 e2d9e58a81cbe19d0ccc2ae6961f5c6053fd0a9c

SHA256
256b7d22a3475e70e9ca443f9c7357b496bac38db54

244b1af0b6a2dc3e1a962

ssdeep

192:s1c9NzNywp1N/zUQzVFsUlE4BcFEOsNpQS

4oL/P08/8HnjOfRN+tMBG5k:McDNEEIE3NYoH

8Hj+CeBGe

File Size 7.6 KB (7767 bytes)

File Type Text

Magic Literal
ASCII text, with very long lines, with CRLF line

terminators

TrID Unknown!

v_000.js

(Variant 1 – Pk)

MD5 994ee689fcc1c13fe100d909a4a17b3c

SHA1 29d232725a388962d40d1a9cf5172fd733171cc9

SHA256
3176a9e5b01ef9b3109d43bf93c090e2d1c28df4bd0

9cdec0be3fd61966d4e14

ssdeep

96:ZrIhhqY/QQ2p0yazCBU93sW5StZ6luh7aZxgf1

N33fSUJxPMyVwjp60PhVpYcfKu:Zr4Ypu7rvAh7

qW1FrC6KhVCuKJs

File Size 8.1 KB (8324 bytes)

File Type C++

Magic Literal
ASCII C++ program text, with very long lines, with

CRLF line terminators

TrID Unknown!

The aim of this chapter is also to find more than one meta-signature (syntactic viral

signatures) using only the two files with the help of global and local alignments. As for

previous experiments, the uniqueness of these two malicious programs was cross-verified

by creating their file identification information using VirusTotal. File identification

information was obtained from ‘VirusTotal’ (VirusTotal, 2018) and the results are given

in Table 5.1.

82

Table 5.2: Analysis and Detection Ratio based on the 55 AVSs acquired from the

‘VirusTotal’ for the Two Malicious Files of JS.Cassandra Polymorphic Virus.

Table 5.2 provides the results of attempting to detect these two variants using 55

commonly used AVSs. The original (Ps) JS.Cassandra virus was successfully detected by

39 of the AVSs while the v_000 variant was correctly identified by only 19 of the 35

AVSs.

83

Hex dumps are subsequently extracted followed by the AVS scan tests from the two

malicious programs adopting the ClamAV (ClamAV, 2016) software tools openly

accessible on their webpage, which utilises an application known as ‘sigtool’, in order to

create hexadecimal dumps.

5.3.2 Hex to DNA Code Conversion

Step-2: In this step of code conversion, following the extraction process, the two

extracted malicious hex dumps belonging to JS.Cassandra virus files were translated into

DNA (nucleotide/nucleic acid) sequences adopting the DNA encoding method as shown

in Section 4.3.2 (see page no. 66).

5.3.3 First Pairwise (Global and Local) Sequence Alignment and Meta-

Signature Extraction

The string matching NWA and SWA were employed to extract the most common

substrings/patterns from the two JS.Cassandra files. The NWA conducts sequence

alignment globally amidst the two biologically represented strings in order to obtain the

optimal matching segments, whereas, the process of SWA performs sequence alignment

locally. For use in the NWA and the SWA, the two strings are normally represented either

as proteins (chains of amino acids) or nucleotide sequences (DNA/RNA). Both the NWA

and SWA identify the most matched substrings between the search string and pattern.

Rather than identifying the complete sequence, the NWA and SWA extract the sections

of all possible length, then compares and enhances the similarity rate. The NWA and

SWA can verify for identical matches or substituted matches (i.e. a character in the string

can be replaced by a different character, together with no character (gap), in the pattern,

and vice versa). The SWA is assured to identify the optimal local alignment and the NWA

to identify the optimal global alignment with reference to the scoring scheme being

adopted (i.e. the gap scoring and the substitution strategy). There are several substitution

matrices available and utilised by the NWA and SWA like BLOSUM, ID, and PAM

matrix. However, fixed match/mismatch scoring strategy was adopted in these

experiments to carry out exact matching. Match score was given a value of 2, whereas,

mismatch score was given a value of -1, respectively. The outcomes of the NWA and

SWA are known as ‘alignments’ since either or both strings can be altered with gap

insertions to produce optimal pattern matches.

Step-3: In this step, pairwise (global and local) alignment was performed adopting the

NWA and the SWA with a fixed match/mismatch scoring strategy between the DNA

84

sequence representations of JS.Cassandra and its v_000 variant using ‘JAligner’. In total,

two pairwise local alignments were performed in this step, one for NWA and one for

SWA, respectively.

Step-4: After the phase of global and local alignment, all the feasible common substrings

from the two pairwise alignments (NWA and SWA) were extracted, resulting in 37

substrings (meta-signatures), 16 from NWA and 21 from SWA. Table 5.3 presents the

sequence lengths of all the 37 extracted meta-signatures in their DNA representation

obtained in this step. The minimum and maximum sequence lengths of NWA meta-

signatures extracted for JS.Cassandra virus were 30 and 104, respectively, with a mean

(sum, median and standard deviation of 830, 36 and 28.25, respectively) of 51.875 for 16

meta-signatures in their DNA representation. The minimum and maximum sequence

lengths of SWA meta-signatures obtained for JS.Cassandra virus were 29 and 104,

respectively, with a mean (sum, median and standard deviation of 1139, 46 and 27.65,

respectively) of 54.2381 for 21 meta-signatures in their DNA representation. The

minimum and maximum sequence lengths of SWA meta-signatures obtained for

W32.Kitti virus were 28 and 3736, respectively, with a mean (sum, median and standard

deviation of 7331, 36.5 and 543.07, respectively) of 135.7593 for 54 meta-signatures in

their DNA representation.

5.3.4 Multiple Sequence Alignment and Consensus Extraction

Step-5 (Multiple sequence alignment): In this step, a multiple sequence alignment was

performed on the meta-signatures obtained in Step-4 using T-Coffee (Notredame,

Higgins, & Heringa, 2000) with alignment again confined to the ID substitution matrix.

This means that alignment is carried out through matching of nucleic acids in particular

positions rather than the usual bioinformatics approach of using biologically informed

mutation rates. Two separate multiple alignments were performed, one for the 16 meta-

signatures obtained using the NWA and one for the 21 meta-signatures obtained from the

SWA.

85

Table 5.3: Sequence Lengths for Meta-signatures extracted from DNA representations

from JS.Cassandra and its v_000 variant, where, MS is the meta-signature.

NWA SWA

Meta-Signature Sequence Length Meta-Signature Sequence Length

MS1 104 MS1 46

MS2 100 MS2 100

MS3 30 MS3 104

MS4 44 MS4 48

MS5 60 MS5 29

MS6 32 MS6 61

MS7 30 MS7 49

MS8 56 MS8 33

MS9 30 MS9 56

MS10 32 MS10 29

MS11 100 MS11 56

MS12 36 MS12 32

MS13 36 MS13 30

MS14 30 MS14 101

MS15 80 MS15 101

MS16 30 MS16 37

- - MS17 37

- - MS18 39

- - MS19 30

- - MS20 91

- - MS21 30

Step-6 (Consensus generation and extraction): In this step, the consensus was

generated after the procedure of multiple sequence alignment, and the procedure was

repeated two times, one for each dynamic programming algorithm (NWA and SWA). No

threshold of common occurrence of a DNA character (nucleic acid) in a specific position

was chosen in this step. Overall, two consensuses were extracted in this step.

5.3.5 Second Pairwise Local Sequence Alignment and Super-Signature

Extraction

Step-7: In this step, a pairwise (local) sequence alignment was performed adopting the

SWA with ID matrix amidst the consensus and the converted DNA sequence of the

original virus employing ‘JAligner’. SWA with the ID matrix was used as previous

experiments reported in Chapter 4 gave a 100% accuracy for known (Pk) polymorphic

malware variants. Altogether, two individual pairwise local alignments were conducted,

one for each dynamic programming algorithm (NWA and SWA). A suitable gap open

penalty of 10 and a gap extend penalty of 1 was adopted as previous experiments

demonstrated in Chapter 4 gave a 100% detection rate for existing polymorphic variants

adopting these penalties. Four super-signatures for JS.Cassandra were extracted in this

step, two arising from the NWA and two from the SWA approach.

86

5.3.6 DNA to Hex Conversion as well as Meta-Signature and Super-

Signature Testing

Step-8: In this last step, the 37 meta-signatures (retrieved in Step-4) and four super-

signatures (obtained in Step-7) in their DNA format were converted into hexadecimal

format. The converted hex meta-signatures and hex super-signatures were scanned

against JS.Cassandra and all known (Pk) variants using clamscan.

5.4. Experimental Results

Table 5.4 gives the detection rates (with accuracy) for the detection of JS.Cassandra

polymorphic malware and its known (Pk) variants employing ‘clamscan’ by testing the

37 meta-signatures extracted in Step-4.

Table 5.4: Test Statistics for the Detection of JS.Cassandra Polymorphic Malware and

its known (352) variants (Pk) employing ‘clamscan’ by testing the 37 Meta-Signatures

acquired in Step-4 from NWA and SWA.

* Where MS is the meta-signature.

87

Most of the meta-signatures extracted using the NWA identified the variants as well as

the original (Ps) JS.Cassandra virus (Table 5.4). Of the NWA meta-signatures six had an

accuracy of 96.57% and two signatures resulted in 100% accuracy. Four of the NWA

generated meta-signatures failed to detect the virus and its variants. Among the meta-

signatures extracted using SWA four failed to detect any of the variants, including the

original (Ps) virus, and only one meta-signature detected 100% viral files tested. Eleven

SWA meta-signatures gave a detection rate of 96.57%.

The four super-signatures acquired from Step-7 were tested in the same way that the meta-

signatures were tested. The results (see Figure 5.2) indicate that using either of the NWA

super-signatures, the JS.Cassandra variants along with the original (Ps) virus, were

successfully identified as infected by clamscan with an accuracy of 96.59% in 0.285

seconds and 0.313 seconds. The first SWA super-signature gave the same detection

accuracy in 0.297 seconds. None of the viral variants were detected as infected using the

second SWA super-signature.

Figure 5.2: Bar graph demonstrating the detection results of JS.Cassandra virus family

using the super-signatures of NWA and SWA.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

NWA SWA

Accuracy using Super-
signature 1

96.59% 96.59%

Accuracy using Super-
signature 2

96.59% 0.00%

A
cc

u
ra

cy

Detection of JS.Cassandra virus family using

NWA and SWA Super-signatures

88

Table 5.5: Identification of W32.Kitti and its 1,105 unknown (Px) variants using the 54

meta-signatures extracted using the SWA, where, MS is the meta-signature.

Meta-Signature
Detection Rate

(Accuracy)

Sensitivity

/Recall

Specificity Precision F1 Score

MS1 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS2 438/1106 (39.6%) 39.6% 0.0% 100% 56.73%

MS3 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS4 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS5 572/1106 (51.72%) 51.72% 0.0% 100% 68.2%

MS6 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS7 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS8 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS9 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS10 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS11 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS12 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS13 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS14 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS15 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS16 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS17 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS18 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS19 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS20 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS21 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS22 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS23 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS24 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS25 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS26 972/1106 (87.88%) 87.88% 0.0% 100% 93.55%

MS27 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS28 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS29 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS30 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS31 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS32 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS33 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS34 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS35 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS36 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS37 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS38 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS39 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS40 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS41 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS42 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS43 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS44 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS45 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS46 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS47 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS48 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS49 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS50 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS51 0/1106 (0.00%) 0.0% 0.0% 100% 0.0%

MS52 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS53 1106/1106 (100.00%) 100% 0.0% 100% 100%

MS54 1106/1106 (100.00%) 100% 0.0% 100% 100%

89

Step-1 to Step-8 were repeated for the W32.Kitti virus. Fifty-four meta-signatures were

extracted in DNA format using SWA. One multiple alignment was performed in Step-5,

and a consensus of sequence length 5321 was extracted in Step-6. Two super-

signatures/common substrings of sequence lengths 137 and 3472 were obtained in Step-

7 from SWA in their DNA format. In the last step (i.e. Step-8), the 54 meta-signatures

and two super-signatures were converted to the hexadecimal format and tested using

‘clamscan’.

Table 5.5 provides the results of the detection rates (with accuracy and sequence lengths

of the DNA and Hex representations) for the identification of W32.Kitti and its unknown

(Px) variants using ‘clamscan’ by testing the 54 SWA generated meta-signatures. Most of

the meta-signatures identified the unknown (Px) variants, and the original (Ps)

polymorphic malware, with the exception of eight meta-signatures that failed to identify

any of the files as infected. These meta-signatures are called “unknown signatures” in this

research and the exact reason for its failure to detect the virus variants remains unknown.

Further work is required to determine the cause of this and is not considered in this

research. Although it may be the fact that those meta-signatures capture variants that

either belong to a small set of special variants that were generated using a different

obfuscation method or are the ones that have not yet encountered (unknown – Px).

Figures 5.3 – 5.4 displays the clamscan results for the two SWA super-signatures. Figure

5.3 shows that 100% of the W32.Kitti viral variants together with the original (Ps) virus,

were successfully identified as infected by ‘clamscan’ using the first SWA super-

signature, in 17.249 secs. None of 1106 W32.Kitti viral variants (along with the original

(Ps) virus) were successfully identified as infected using the second SWA super-signature

(Figure 5.4).

90

Figure 5.3: Screenshot of the clamscan result for the first SWA super-signature for the

W32.Kitti virus.

Figure 5.4: Screenshot of the clamscan result for the second SWA super-signature for

the W32.Kitti virus.

5.5. Summary

In this chapter, the use of advanced sequence alignment techniques was explored. A

syntactic structure approach was taken – conducting sequence alignments with the help

of a fixed match/mismatch scoring scheme to automate signature extraction using both

the NWA and the SWA. Interestingly, both the NWA and the SWA identified the same

meta-signature, MS3 (NWA) and MS13 (SWA) that captured all the known (Pk) variants

of JS.Cassandra virus.

91

It was anticipated that shorter signatures would identify more variants than the longer

signatures as the chances of finding a short sequence repeated is likely to be higher than

for longer sequences. But in this case, for JS.Cassandra virus, the MS3 NWA meta-

signature with a sequence length of 30 and the MS15 NWA meta-signature with a

sequence length of 80 both gave 100% accuracies. Furthermore, MS1, MS2 NWA meta-

signatures and MS2, MS3, and MS14 SWA meta-signatures with lengths of under 105

resulted in malware detection accuracies of over 96%. The shortest variant file has a

length of 15,534 hexadecimal characters, and the longest of the most effective signatures

is 105 hexadecimal characters long or 0.7% of the shortest variant file. Thus, the

signatures are remarkably small relative to the variant files in general and support the

theory that shorter files are more likely to detect the variants. However, if the signatures

are too short, it is likely that all files might contain the pattern or sequence defined by the

signature. It was for this reason that random files were tested in the experiments in

Chapter 4 to ensure that the signatures were specific enough only to detect the malware

variants. Similar observations were also seen for W32.Kitti virus. Because there is not a

significant variation in the lengths of the meta-signatures when compared to the lengths

of the variant files, it is unlikely that the length of the meta-signatures generated using

this method is an important factor in detection.

Meta-signatures: In total, 37 new syntactic viral signatures (i.e. meta-signatures) were

extracted from this research, 16 from NWA and 21 from SWA. Based on the detection

rates for JS.Cassandra variants, 25% NWA meta-signatures, and 19% SWA meta-

signatures identified none of the known (Pk) variants, respectively. Although, 50% NWA

meta-signatures and 57.14% SWA meta-signatures identified over 96% of the known (Pk)

variants, respectively. This shows that the SWA meta-signatures are more effective than

the NWA meta-signatures indicating that the SWA-based local syntactic viral signatures

perform better than the NWA-based global syntactic viral signatures. Super-signatures:

Based on the detection rates of JS.Cassandra variants, two of the two NWA super-

signatures and one of the two SWA super-signatures identified over 96% of the known

(Pk) variants, respectively. Also, one of the two super-signatures identified 100% of the

unknown (Px) variants of W32.Kitti virus. It is difficult to say whether the NWA or the

SWA super-signatures are better as SWA super-signature identified all the unknown (Px)

variants (test set) of W32.Kitti virus. Moreover, it cannot be said whether meta-signatures

or super-signatures are better, as meta-signatures tend to work on some or all the known

(Pk) set but would not be completely effective against the unknown (never seen before)

92

(Px) set. Super-signatures, on the other hand, would be completely (or in some cases,

comparatively) effective against the unknown (Px) set (see Figure 5.3).

The next part of this chapters investigates whether further refined string searching

algorithms, such as the SWA with different combinations of gap open and gap extend

penalties, can lead to syntactic techniques to the automatic extraction of polymorphic

syntactic viral signatures. Experiments are reported that are designed to address the

second part of the second research question (Q2b). More information will follow in the

succeeding part.

93

Part-II: The Effects of Gap Open and Gap Extend Penalties in a

String-Based Approach for Detecting Polymorphic Malware Variants

The experiments reported so far have used a fixed gap open and a fixed gap extend

penalty. The next set of experiments was designed to assess how different gap open and

gap extend penalty combinations affect the outcome of the virus identification process:

whether or not optimal penalties can be established, whether or not these optimal penalties

can be applied in general to different polymorphic viruses; and if the same penalties can

be used for detecting unknown (Px) variants. These experiments were designed to answer

research question Q2b in more detail: “Do gap open and extend facilities produce

consensuses that not only ‘fit’ the known (Pk) variants (training set) but also generalise

well to unknown (Px) variants (test set)”.

Hex Dump Extraction

Hex to DNA Conversion

Extract Common Substrings (Meta-Signatures)

Multiple Sequence Alignment

Consensus Extraction

Local Pairwise Alignment and Super-Signature Extraction

DNA to Hex Conversion

Virus Identification
Virus &

Variants

Local Pairwise Alignment

Gap Open

Penalties

Gap

Extend

Penalties

Figure 5.5: Eight-step method for the Effects of Gap Penalties in a String-Based

Approach for Detecting Polymorphic Malware Variants.

94

5.6. Effects of Gap Penalties in a String-Based Approach for

Detecting Polymorphic Malware Variants Method: An Overview

This method is comprised of eight steps (see Figure 5.5). The effects of gap open and gap

extend penalties adopting SWA will be explored in relation to the detection of three

different polymorphic viruses (JS.Cassandra, W32.Kitti, and W32.CTX/W32.Cholera)

and their known (Pk) and unknown (potential future – Px) variants. All the three

polymorphic virus families are used in this part of the research as there is no sequence

length restrictions (Kim & Pramanik, 1994; Yu, Bundschuh, & Hwa, 2002; Chakraborty

& Bandyopadhyay, 2013) placed by the alignment tool (more details on page no. 18)

adopting SWA with different combinations of gap penalties.

5.7. Effects of Gap Penalties in a String-Based Approach for

Detecting Polymorphic Malware Variants Method: Systems and

Methods

Steps 1-8 are the same as those used previously in this research except for Step-3 in which

the different combinations of gap penalties are introduced (See Section 5.3 – page no.

79).

5.7.1 Hex Dump Extraction

Step-1: As for previous experiments (Chapter 4 and Chapter 5 – Part-I): six variants (the

original (Ps) plus five known (Pk) variants for each of the viruses tested) were chosen for

testing.

Table 5.6: Generated CRC32b hash values and file sizes for the 18 malicious files.

Polymorphic

Malware
Filename

CRC32b

Hash Value

File Size

(bytes)

JS.Cassandra

JS.Cassandra.js (original – Ps) 26489347 7,767

v_000.js (Pk) 848562f1 8,324

v_002.js (Pk) 7c4ea313 9,938

v_003.js (Pk) bd3b9fdc 8,759

v_004.js (Pk) 9904ef9c 8,392

v_005js (Pk) 511621c7 9,400

W32.CTX/W3

2.Cholera

W32.CTX.Cholera.Virus.10853.exe (original – Ps) c99df9b3 45,147

actmovie.exe (Px) 26a6ed27 13,837

cisvc.exe (Px) c6f2560a 15,453

dcomcnfg.exe (Px) 2387735d 16,968

forcedos.exe (Px) 1231e17d 17,473

MRT.exe (Px) 6f66d56d 17,473

W32.Kitti

OC.exe (original – Ps) a6d1f306 124,416

absdmfcj.exe (Px) 33867b60 124,416

adehsjud.exe (Px) 3106fb13 124,416

crilunah.exe (Px) 8d9b920b 124,416

nafybgho.exe (Px) dedbcdce 124,416

nalgjahg.exe (Px) 19e70a50 124,416

95

As for the previous experiments in this thesis the 18 files were checked for uniqueness by

generating CRC32b hash value for each variant (Table 5.6). The 18 files were also

checked using ‘VirusTotal’ to confirm that malicious functionality was preserved (Table

5.7).

Table 5.7 provides the detection rate for each of the 18 variants (Table 5.6) of 55 common

AVS products. Only 53.69% of the AVSs successfully detected the 15 malicious variants

and 73.3% of the three original polymorphic viruses.

Table 5.7: Detection Ratio Based on the 55 State-of-the-Art AVS Products obtained from

the ‘VirusTotal’ Website for the 18 Malicious Variants.

Polymorphic Malware 1 Filename Detection Ratio

JS.Cassandra Virus

JS.Cassandra.js (Original Virus

– Ps)
39/55

v_000.js (Variant 1 – Pk) 19/55

v_002.js (Variant 2 – Pk) 21/55

v_003.js (Variant 3 – Pk) 15/55

v_004.js (Variant 4 – Pk) 17/55

v_005.js (Variant 5 – Pk) 17/55

Polymorphic Malware 2 Filename Detection Ratio

W32.CTX/W32.Cholera Virus

W32.CTX.Cholera.Virus.10853

(Original Virus – Ps)
38/55

actmovie.exe (Variant 1 – Px) 41/55

cisvc.exe (Variant 2 – Px) 42/55

dcomcnfg.exe (Variant 3 – Px) 37/55

forcedos.exe (Variant 4 – Px) 39/55

MRT.exe (Variant 5 – Px) 39/55

Polymorphic Malware 3 Filename Detection Ratio

W32.Kitti Virus

OC.exe (Original Virus – Ps) 44/55

absdmfcj.exe (Variant 1 – Px) 41/55

adehsjud.exe (Variant 2 – Px) 41/55

crilunah.exe (Variant 3 – Px) 44/55

nafybgho.exe (Variant 4 – Px) 12/55

nalgjahg.exe (Variant 5 – Px) 18/55

Hex dumps were then extracted from the 18 malicious variants using ‘sigtool’ ready for

conversion to DNA (nucleotide) and protein (amino acid) representation.

5.7.2 Hex to DNA and Amino Acid Conversion

Step-2: In this step, the extracted hex dump sequences were converted into DNA and

amino acid sequences. Two different representational methods (i.e. DNA and amino acid)

were used to investigate the effectiveness of the string-based approach. In the case of

DNA, the files were converted using the DNA representational method shown in Section

5.3.2 (see page no. 82).

96

Conversion of hexadecimal into amino acid sequences for input to JAligner was carried

out adopting the rules shown in Table 5.8. A short example of the conversion of 16-bit

hexadecimal code into 16 amino acid characters is shown below:

4d5a800001000000 (16-bit hexadecimal code)

KDLAQGGGGHGGGGGGG (16 amino acid characters)

Table 5.8: Rules for converting hexadecimal into amino acid characters.

Hexadecimal Amino Acid Hexadecimal Amino Acid

0 G 8 Q

1 H 9 P

2 I a A

3 R b B

4 K c C

5 L d D

6 M e E

7 N f F

The six extracted hex dumps for the JS.Cassandra malicious variants were converted into

DNA sequences. The remaining 12 extracted hex dumps for the W32.CTX and W32.Kitti

malicious variants were converted into amino acid sequences.

5.7.3 First Pairwise Local Sequence Alignment and Meta-Signature

Extraction

Step-3: In this step, a pairwise (local) alignment was performed adopting the SWA with

an ID substitution matrix using JAligner.

Ten different combinations of gap open and gap extend penalties were used to conduct

the pairwise local alignments. The gap open penalty is the penalty for opening a gap in

the alignment, whereas gap extend penalty is the penalty for extending a gap by one

residue (Clustal, 2012). In this case, six variants, i.e. V1, V2, V3, V4, V5 and V6 (where

V1 is the original (Ps) virus and V2-V6 are its polymorphic variants). So between V1 and

V2, ten different combinations of gap open and gap extend penalties were applied, which

then led to ten different pairwise local alignments. The same procedure was applied to

the remaining four pairs i.e. on V2 and V3, V3 and V4, V4 and V5, and V5 and V6,

respectively. In total, 150 pairwise local alignments were carried out in this step, 50 for

each of the three polymorphic malware. Other combinations such as V1 and V3, V1 and

V4, etc. were not considered in this step as the purpose of this research is to examine the

feasibility of adding more sophisticated search facilities. In the case of the W32.Kitti

97

virus, only the first 46,000 amino acid characters were aligned due to longer lengths of

the amino acid sequences belonging to its six variants. In the case of amino acid

sequences, JAligner allows pairwise alignment of two sequences to a maximum combined

sequence length of 92,000 amino acids. To cope with such long sequences JAligner

requires an initial memory allocation of 13,312 MB and a maximum heap memory

allocation of 15,360 MB to be assigned to JAligner. And in the case of nucleotide

sequences (DNA), JAligner (Moustafa, 2010) allows pairwise alignment of two larger

sequences to a maximum combined sequence length of 225,500.

Step-4: Common substrings, or meta-signatures, from the pairwise local alignments

which had the highest percentage of identities and similarities, were extracted. A

threshold of greater than or equal to 85% was applied to extract twelve common

substrings from the 23 pairwise local alignments for JS.Cassandra virus, 17 from the ten

pairwise local alignments for the W32.CTX/W32.Cholera virus and 30 from the 25

pairwise local alignments for the W32.Kitti virus. These common substrings are the meta-

signatures (i.e. syntactic viral signatures) that were used to identify all the known (Pk)

polymorphic variants of each virus family. Detection was carried out using the same

process as detailed in Part-I.

The longest JS.Cassandra DNA meta-signature contained 397 bases and the shortest 14

amino acids. The mean sequence length for the twelve JS.Cassandra meta-signatures was

152, the median 131.5 and they have a standard deviation of 108.9. For W32.CTX virus

the longest and shortest amino acid meta-signatures were 1069 and 30 amino acids long,

respectively. These 17 meta-signatures in amino acid representation have a median of

276, a mean of 436 and a standard deviation of 397.7. The minimum and maximum

sequence lengths of the W32.Kitti amino acid meta-signatures were 790 and 1868,

respectively. These meta-signatures have a mean length of 1689 amino acids, a median

of 1868 and a standard deviation of 407.706.

5.7.4 Multiple Sequence Alignment and Consensus Extraction

Step-5 (Multiple sequence alignment): Once again, multiple alignment was performed

using T-Coffee with alignment constrained to the ID matrix.

Step-6 (Consensus generation and extraction): As per previous experiments, see Step-

6 in Section 5.3.4 (page no. 83), three consensuses were extracted using T-Coffee. One

for each of the three virus families tested.

98

5.7.5 Second Pairwise Local Sequence Alignment and Super-Signature

Extraction

Step-7: Pairwise (local) alignment amidst the consensus and the sequence of the original

(Ps) virus was performed adopting the SWA with an ID matrix using JAligner and the

optimal penalty gaps (of gap open 10 and gap extend one) were chosen. As stated earlier,

these optimal penalty gaps were chosen as previous experiments demonstrated in Chapter

4 gave a 100% accuracy for existing polymorphic variants adopting these penalties. There

should be a single common substring, a super-signature, for each virus and its variants. If

the first common substring is not a super-signature, this step is repeated with the sequence

of a variant of the same family. If this does not result in a super-signature, then this step

is repeated using another variant, and so on. A JS.Cassandra super-signature was obtained

in two iterations from variant 1. For W32.CTX/W32.Cholera and W32.Kitti viruses the

super-signature was extracted from the original (Ps) virus in a single iteration.

In total, three JS.Cassandra super-signatures, three W32.CTX/Cholera super-signatures

and five W32.Kitti super-signatures were extracted.

5.7.6 DNA and Amino Acid to Hex Conversion as well as Meta-Signature

and Super-Signature Testing

Step-8: In this last step, the extracted meta-signatures and super-signatures were

converted back to hexadecimal format. Each of these signatures was tested against the

relevant viruses and their known (Pk) and unknown (Px) variants using clamscan.

5.8. Experimental Results

Table 5.9 provides the results of the pairwise local alignments that were performed in

Step-3. Only the desired pairwise local alignment results with the highest percentage of

identities and similarities, and that produced effective meta-signatures are shown in Table

5.9. Full results are presented in Appendix G (see Table G.1 – page no. 247).

The percentages of identities and similarities for JS.Cassandra were higher than 85%,

indicating that there were higher percentages of the amino acid or DNA (malicious)

residues conserved in the biologically represented sequences.

99

Table 5.9: Results of the pairwise local alignments that were performed in Step-3.

Polymorphic Malware Pairwise Alignment
Gap Open

Penalty

Gap Extend

Penalty

Identity

Percentage

Similarity

Percentage

Gaps

Percentage

Alignment

Length

Alignment

Score

JS.Cassandra Virus

Original and Variant 1

20 1 98.51% 98.51% 1.49% 269 242.00

25 0.5 98.51% 98.51% 1.49% 269 238.50

25 1 98.51% 98.51% 1.49% 269 237.00

Variant 1 and Variant 2

15 1 89.30% 89.30% 10.70% 430 310.00

20 1 89.30% 89.30% 10.70% 430 300.00

25 0.5 89.30% 89.30% 10.70% 430 312.00

25 1 89.30% 89.30% 10.70% 430 290.00

Variant 2 and Variant 3

15 1 85.33% 85.33% 14.67% 450 262.00

20 1 85.33% 85.33% 14.67% 450 242.00

25 0.5 85.33% 85.33% 14.67% 450 253.00

25 1 85.33% 85.33% 14.67% 450 222.00

Variant 3 and Variant 4

10 1 95.22% 95.22% 4.78% 418 360.00

15 0.5 95.22% 95.22% 4.78% 418 359.00

15 1 95.22% 95.22% 4.78% 418 350.00

20 0.5 95.22% 95.22% 4.78% 418 349.00

20 1 95.22% 95.22% 4.78% 418 340.00

25 0.5 95.22% 95.22% 4.78% 418 339.00

25 1 95.22% 95.22% 4.78% 418 330.00

Variant 4 and Variant 5

10 1 100.00% 100.00% 0.00% 397 397.00

15 1 100.00% 100.00% 0.00% 397 397.00

20 1 100.00% 100.00% 0.00% 397 397.00

25 0.5 100.00% 100.00% 0.00% 397 397.00

25 1 100.00% 100.00% 0.00% 397 397.00

W32.CTX/W32.Cholera Virus

Original and Variant 1 25 1 99.29% 99.29% 0.71% 1553 1507.00

Variant 1 and Variant 2 5 1 96.15% 96.15% 3.85% 2309 2015.00

Variant 2 and Variant 3 10 1 96.41% 96.41% 3.59% 2060 1804.00

Variant 3 and Variant 4 5 1 94.40% 94.40% 5.60% 2017 1707.00

Variant 4 and Variant 5

10 1 100.00% 100.00% 0.00% 736 736.00

15 1 100.00% 100.00% 0.00% 736 736.00

20 0.5 100.00% 100.00% 0.00% 736 736.00

20 1 100.00% 100.00% 0.00% 736 736.00

25 0.5 100.00% 100.00% 0.00% 736 736.00

25 1 100.00% 100.00% 0.00% 736 736.00

100

Polymorphic Malware Pairwise Alignment
Gap Open

Penalty

Gap Extend

Penalty

Identity

Percentage

Similarity

Percentage

Gaps

Percentage

Alignment

Length

Alignment

Score

W32.Kitti Virus

Original and Variant 1

5 1 86.35% 86.35% 13.65% 3297 2061.00
10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 1 and Variant 2

10 1 100.00% 100.00% 0.00% 1868 1868.00
15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 2 and Variant 3

5 1 88.12% 88.12% 11.88% 3266 2130.00
10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 3 and Variant 4

5 1 88.18% 88.18% 11.82% 3265 2129.00
10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 4 and Variant 5

5 0.5 87.03% 87.03% 12.97% 3285 2349.00
5 1 90.51% 90.51% 9.49% 3225 2217.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

101

In the case of W32.Kitti, the percentage of identities and similarities was 100%. For the

W32.CTX virus, the percentages of identities and similarities was over 94% and in some

cases 100%. Not unsurprisingly, the gap percentage increases with lower gap open

penalties (see Columns ‘Gap Open Penalty’ and ‘Gaps Percentage’ in Table 5.9),

indicating that the number of insertions or deletions required to maximise the number of

matches was also lower. In previously adopted methods a fixed combination of a gap

open of 10 and gap extend of 0.5 penalties was used and considered optimal. It can be

seen from the results in Table 5.9 that the percentages of identities and similarities were

higher when both the gap open and gap extend penalties were higher than employed

previously, indicating that the (pairwise local) alignments were compact, thereby

restricting the amount of gaps (with lower gap percentages) and increasing their

importance (see Columns ‘Gap Open Penalty’, ‘Gap Extend Penalty’ and ‘Gaps

Percentage’ in Table 5.9).

The best gap open and gap extend penalties are 10 and 1, and 20 and 1, respectively, as

both gap penalty combinations consistently have identities and similarities of over 85%.

In most cases of W32.Kitti virus and some cases of W32.CTX virus, these gap penalty

combinations have identities and similarities of 100%. In one or two overall cases, the

best gap open and gap extend penalties are 5 and 1, and 25 and 1, respectively, with

identities and similarities of over 88%.

Table 5.10 provides the detection performance results for the identification of the three

polymorphic malware along with their known (Pk) and unknown (Px) polymorphic

variants. In total, 59 meta-signatures were tested, but only the results using the most

effective meta-signatures are provided in Table 5.10. The detection was carried out using

‘clamscan’ and the most effective meta-signatures – those that detected over 90% of the

polymorphic variants.

As for all virus detection methods developed in this research, the performance of this

proposed method was compared with that of the top five commercial products available

at the time of this research in 2016. The results are presented in Table 5.10.

102

Table 5.10: Detection rates for detection of three polymorphic malware using the best

performing meta-signatures.

Polymorphic

Malware 1

AVS

Product/Pairwise

Alignment

Detection

Method

Detection Ratio (with Accuracy) and Statistical

Measures

JS.Cassandra

Virus

AntiVirus

Ranked No. 1

Bitdefender

Antivirus

Detection Ratio (Accuracy) 1/352 (0.2841%)
Sensitivity/Recall 0.2841%

Specificity 0.00%
Precision 100.00%
F1 Score 0.5666%

AntiVirus

Ranked No. 2

Kaspersky

Anti-Virus

Detection Ratio (Accuracy) 1/352 (0.2841%)
Sensitivity/Recall 0.2841%

Specificity 0.00%
Precision 100.00%
F1 Score 0.5666%

AntiVirus

Ranked No. 3

McAfee

AntiVirus

Detection Ratio (Accuracy) 152/352 (43.18%)
Sensitivity/Recall 43.18%

Specificity 0.00%
Precision 100.00%
F1 Score 60.31%

AntiVirus

Ranked No. 4

Norton

Security

Detection Ratio (Accuracy) 5/352 (1.42%)
Sensitivity/Recall 1.42%

Specificity 0.00%
Precision 100.00%
F1 Score 2.80%

AntiVirus

Ranked No. 5

F-Secure

Anti-Virus

Detection Ratio (Accuracy) 1/352 (0.2841%)
Sensitivity/Recall 0.2841%)

Specificity 0.00%
Precision 100.00%
F1 Score 0.5666%

Original and

Variant 1
MS1

Detection Ratio (Accuracy) 340/352 (96.59%)
Sensitivity/Recall 96.59%

Specificity 0.00%
Precision 100%
F1 Score 98.26%

Variant 1 and

Variant 2
MS4

Detection Ratio (Accuracy) 339/352 (96.31%)
Sensitivity/Recall 96.31%

Specificity 0.00%
Precision 100%
F1 Score 98.12%

Variant 2 and

Variant 3

MS5

Detection Ratio (Accuracy) 339/352 (96.31%)
Sensitivity/Recall 96.31%

Specificity 0.00%
Precision 100%
F1 Score 98.12%

MS6

Detection Ratio (Accuracy) 325/352 (92.33%)
Sensitivity/Recall 92.33%

Specificity 0.00%
Precision 100%
F1 Score 96.01%

MS7

Detection Ratio (Accuracy) 340/352 (96.59%)
Sensitivity/Recall 96.59%

Specificity 0.00%
Precision 100%
F1 Score 98.26%

MS8

Detection Ratio (Accuracy) 339/352 (96.31%)
Sensitivity/Recall 96.31%

Specificity 0.00%
Precision 100%
F1 Score 98.12%

Variant 3 and

Variant 4
MS10

Detection Ratio (Accuracy) 325/352 (92.33%)
Sensitivity/Recall 92.33%

Specificity 0.00%
Precision 100%
F1 Score 96.01%

103

Polymorphic

Malware 2

AVS

Product/Pairwise

Alignment

Detection

Method

Detection Ratio (with Accuracy) and Statistical

Measures

W32.CTX/W32

.Cholera Virus

AntiVirus

Ranked No. 1

Bitdefender

Antivirus

Detection Ratio (Accuracy) 176/200 (88.00%)
Sensitivity/Recall 88.00%

Specificity 0.00%
Precision 100.00%
F1 Score 93.62%

AntiVirus

Ranked No. 2

Kaspersky

Anti-Virus

Detection Ratio (Accuracy) 86/200 (43.00%)
Sensitivity/Recall 43.00%

Specificity 0.00%
Precision 100.00%
F1 Score 60.14%

AntiVirus

Ranked No. 3

McAfee

AntiVirus

Detection Ratio (Accuracy) 27/200 (13.50%)

Sensitivity/Recall 13.50%

Specificity 0.00%

Precision 100.00%

F1 Score 23.79%

AntiVirus

Ranked No. 4

Norton

Security

Detection Ratio (Accuracy) 177/200 (88.50%)
Sensitivity/Recall 88.50%

Specificity 0.00%
Precision 100.00%
F1 Score 93.89%

AntiVirus

Ranked No. 5

F-Secure

Anti-Virus

Detection Ratio (Accuracy) 191/200 (95.50%)
Sensitivity/Recall 95.50%

Specificity 0.00%
Precision 100.00%
F1 Score 97.69%

Variant 1 and

Variant 2
MS4

Detection Ratio (Accuracy) 183/200 (91.50%)
Sensitivity/Recall 91.50%

Specificity 0.00%
Precision 100%
F1 Score 95.56%

Variant 2 and

Variant 3
MS7

Detection Ratio (Accuracy) 189/200 (94.50%)
Sensitivity/Recall 94.50%

Specificity 0.00%
Precision 100%
F1 Score 97.17%

Variant 3 and

Variant 4

MS12

Detection Ratio (Accuracy) 189/200 (94.50%)
Sensitivity/Recall 94.50%

Specificity 0.00%
Precision 100%
F1 Score 97.17%

MS13

Detection Ratio (Accuracy) 200/200 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%
Precision 100.00%
F1 Score 100.00%

MS14

Detection Ratio (Accuracy) 192/200 (96.00%)
Sensitivity/Recall 96.00%

Specificity 0.00%
Precision 100%
F1 Score 97.96%

MS15

Detection Ratio (Accuracy) 200/200 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%
Precision 100.00%
F1 Score 100.00%

MS16

Detection Ratio (Accuracy) 200/200 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%
Precision 100.00%
F1 Score 100.00%

Variant 4 and

Variant 5
MS17

Detection Ratio (Accuracy) 200/200 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%
Precision 100.00%
F1 Score 100.00%

104

Polymorphic

Malware 3

AVS

Product/Pairwise

Alignment

Detection

Method

Detection Ratio (with Accuracy) and Statistical

Measures

W32.Kitti

Virus

AntiVirus

Ranked No. 1

Bitdefender

Antivirus

Detection Ratio (Accuracy) 324/1106 (29.29%)

Sensitivity/Recall 29.29%

Specificity 0.00%

Precision 100.00%

F1 Score 45.31%

AntiVirus

Ranked No. 2

Kaspersky

Anti-Virus

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

AntiVirus

Ranked No. 3

McAfee

AntiVirus

Detection Ratio (Accuracy) 293/1106 (26.49%)

Sensitivity/Recall 26.49%

Specificity 0.00%

Precision 100.00%

F1 Score 41.88%

AntiVirus

Ranked No. 4

Norton

Security

Detection Ratio (Accuracy) 450/1106 (40.69%)

Sensitivity/Recall 40.69%

Specificity 0.00%

Precision 100.00%

F1 Score 57.84%

AntiVirus

Ranked No. 5

F-Secure

Anti-Virus

Detection Ratio (Accuracy) 333/1106 (30.11%)

Sensitivity/Recall 30.11%

Specificity 0.00%

Precision 100.00%

F1 Score 46.28%

Original and

Variant 1
MS1-MS6

Detection Ratio (Accuracy) 1106/1106 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

Variant 1 and

Variant 2
MS7-MS10

Detection Ratio (Accuracy) 1106/1106 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

Variant 2 and

Variant 3

MS11,

MS13-M16

Detection Ratio (Accuracy) 1106/1106 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

MS12

Detection Ratio (Accuracy) 1105/1106 (99.91%)
Sensitivity/Recall 99.91%

Specificity 0.00%

Precision 100.00%

F1 Score 99.95%

Variant 3 and

Variant 4

MS17,

MS19-

MS22

Detection Ratio (Accuracy) 1106/1106 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

MS18

Detection Ratio (Accuracy) 1105/1106 (99.91%)
Sensitivity/Recall 99.91%

Specificity 0.00%

Precision 100.00%

F1 Score 99.95%

Variant 4 and

Variant 5

MS23, M25,

MS27-

MS30

Detection Ratio (Accuracy) 1106/1106 (100.00%)
Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

* Where MS is the meta-signature generated using the proposed two-phase alignment with the two viral

variants detailed in Column ‘AVS Product/Pairwise Alignment’ and signature extraction method detailed

in this section. The detection was carried out using ‘clamscan’.

105

Fifty-seven of the 59 meta-signatures tested detected some or all of the polymorphic

variants (Table 5.10). Two meta-signatures failed to detect any of the variants (the results

for these two signatures are not shown in Table 5.10). The results of these virus detection

tests also show that in the majority of cases the top five commercially available AVSs

evaluated could not detect all of the variants. Moreover, in the case of JS.Cassandra three

of the commercial AVSs, Bitdefender, Kaspersky, and F-Secure, were only able to detect

the original (Ps) virus. The one exception was the Kaspersky anti-virus tool which was

found to successfully detect all of the unknown (Px) polymorphic variants of the

W32.Kitti virus.

For JS.Cassandra virus, detection rates of over 92% were observed when detection using

seven of the 12 novel automatically generated syntactic meta-signatures developed in this

research were employed. In the case of W32.Kitti virus, for 26 of the 28 most effective

meta-signatures the detection rates were 100% and for the remaining two, the detection

rates were over 99% (Table 5.10). A similar performance was noted for the W32.CTX

virus, where four of the eight most effective meta-signatures achieved detection rates of

100% and for the remaining four, the detection rates were over 91% (Table 5.10).

The eleven super-signatures were also tested on the three polymorphic malware variants

employing ‘clamscan’. All 352 JS.Cassandra viral variants (together with the original (Ps)

virus) were successfully identified as infected by ‘clamscan’ using one of the new

automatically generated super-signatures (Figure 5.6). Of the two remaining

JS.Cassandra super-signatures one performed well detecting 96.58% of the variants

(including the original (Ps) virus) but the other performed poorly detecting 15 of the 352

variants (4.26%). All 200 of the W32.CTX viral variants (including the two original (Ps)

viruses) were successfully identified by the ‘clamscan’ using one of its super-signatures

(Figure 5.7). The remaining two W32.CTX super-signatures resulted in a reasonable

accuracy of 94.5% and a very poor accuracy of 9.5%. Figure 5.8 shows that all 1106 of

the W32.Kitti variants (together with the original (Ps) virus) were successfully identified

by three of the five super-signatures. The remaining two super-signatures failed to detect

any of the 1106 variants. As stated earlier (see page no. 88), these signatures are

considered in this research as “unknown signatures” and the exact reason for its failure to

detect any virus variants remains unknown. Although it may be that some of the super-

signatures performed poorly or failed to detect any was due to the fact that those super-

signatures capture variants that either belong to a small set of special variants that were

106

generated using a different obfuscation method or are the ones that have not yet

encountered. None of the scans took longer than 15 seconds, with most the majority of

the scans taking under three seconds.

Figure 5.6: Clamscan screenshot for JS.Cassandra and known (Pk) variants using the best

performing super-signature.

Figure 5.7: Clamscan screenshot for W32.CTX and unknown (Px) variants using the best

performing super-signature.

107

Figure 5.8: Clamscan screenshot for W32.Kitti and unknown (Px) variants using the best

performing super-signature.

5.9. Summary

In this chapter, advanced sequence alignment techniques were explored by investigating

the effects of different combinations of gap open and gap extend penalties not only for

the identification of known (Pk) polymorphic variants (training set) but also for the

identification of unknown (Px) polymorphic variants (test set). For the process of all the

first (pairwise) sequence alignments, ten different combinations of gap open and gap

extend penalties were used. Experimental results from the first alignment process are

shown in Table 5.9. The process of all the second (pairwise) sequence alignments were

conducted using a fixed optimal combination of gap open penalty (i.e. 10) and gap extend

penalty (i.e. 1). Using an in-house macro tool and the proposed eight step string based

approach, that takes a natural computation approach of projecting polymorphic malware

(hexadecimal) code onto biological representational space (i.e. DNA and amino acid) and

using bioinformatics algorithms (i.e. pairwise/multiple sequence alignments and SWA)

has been demonstrated to be a successful method for automating malware signature

extraction. The effectiveness of these extracted meta-signatures and super-signatures in

the detection of polymorphic viruses was then evaluated. The vast majority of these

signatures used in conjunction with ‘clamscan’ were shown to outperform the popular

AVSs used to benchmark the proposed malware detection method developed in this

research.

108

Experimental results from Table 5.9 show that optimal gap penalty combinations of a gap

open of 10 and gap extend of 1 as well as gap open of 20 and gap extend of 1, in some

cases have identities and similarities of over 85%, and, in most cases have 100%. Meta-

signatures generated from these gap penalty combinations not only detected known (Pk)

variants with accuracies of over 92% but also detected unknown (Px) variants with

accuracies of over 94% (Table 5.10). Selected super-signatures generated from the

optimal combinations of a gap open of 10 and gap extend of 1 detected all the known (Pk)

as well as unknown (Px) variants (Figures 5.6-5.8).

The next section investigates further refinement of the string searching algorithms using

a different type of substitution matrix. Experiments are reported that are designed to

address the third part of the second research question (Q2c). More information will follow

in the succeeding part.

109

Part-III: Using Different Substitution Matrices in a String-based

Syntactic Approach for Identifying Viral Polymorphic Malware

Variants

In this work JS.Cassandra virus and its variants are used. Only one polymorphic virus

family is used in this research due to sequence length restrictions (Kim & Pramanik, 1994;

Yu, Bundschuh, & Hwa, 2002; Chakraborty & Bandyopadhyay, 2013) placed by the

alignment tool (more details on page no. 18) adopting many different types of substitution

matrices. The same experimental steps will be employed as previous research, but each

experiment will employ a different substitution matrix for the SWA. In previous work the

ID matrix was used and this approach is the benchmark for these experiments. This work

aims to answer research question Q2c in more detail: “Does using frequency-based

substitution matrices produce new and more-effective signatures for detecting new

polymorphic malware variants?”. ID matrix is a simple non-biological substitution square

matrix in which all the components of the primary diagonal are ones, and all other

components are zeros. The other well-known matrices, such as BLOSUM (Block

Substitution Matrix) and PAM (Point Accepted Mutation) are complex biological

substitution/mutation matrices, all of which are used in this part as frequency-based

approaches for experimental purposes.

5.10. Introduction

The SWA which is used in this research as a step in a proposed approach to automatic

signature extraction from polymorphic viruses depends on gap parameters and on a

substitution matrix or score matrix. Previous work reported in this chapter investigated

the critical gap parameters. This work investigate frequency scoring matrices (e.g.

BLOSUM (Henikoff & Henikoff, 1992)), explicit evolutionary model-based scoring

matrices (e.g. PAM (Dayhoff, Schwartz, & Orcutt, 1978)), simple scoring matrix (e.g.

MATCH), scoring matrix for DNA (e.g. EDNAFULL (Lowe, 1992)), scoring matrix

inspired from PAM250 (e.g. GONNET (Prlić, Domingues, & Sippl, 2000)), and a newly

transformed mutation matrix in correspondence to PAM250 (e.g. DAYHOFF (Dayhoff,

Schwartz, & Orcutt, 1978; Gonnet, 1998)). The 71 frequency scoring matrices used in

this part are as follows: BLOSUM30, BLOSUM35, BLOSUM40, BLOSUM45,

BLOSUM50, BLOSUM55, BLOSUM60, BLOSUM62, BLOSUM65, BLOSUM70,

BLOSUM75, BLOSUM80, BLOSUM85, BLOSUM90, BLOSUM100, BLOSUMN,

PAM10, PAM20, PAM30, PAM40, PAM50, PAM60, PAM70, PAM80, PAM90,

PAM100, PAM110, PAM120, PAM130, PAM140, PAM150, PAM160, PAM170,

110

PAM180, PAM190, PAM200, PAM210, PAM220, PAM230, PAM240, PAM250,

PAM260, PAM270, PAM280, PAM290, PAM300, PAM310, PAM320, PAM330,

PAM340, PAM350, PAM360, PAM370, PAM380, PAM390, PAM400, PAM410,

PAM420, PAM430, PAM440, PAM450, PAM460, PAM470, PAM480, PAM490,

PAM500, DAYHOFF, GONNET, IDENTITY, EDNAFULL, and MATCH.

The substitution matrix assigns a score for aligning any possible pair of residues in the

pairwise sequence alignment. Typically, for bioinformatics sequence alignment and

pattern recognition using the SWA a frequency based matrix is used not an ID matrix.

Examples of such substitution matrix generation algorithms include BLAST (Altschul,

1991), BLOSUM.

In BLOSUM the score is calculated as the log-ratio of the observed probability of

substitution of one amino acid by another divided by the probability of the substitution

occurring due to chance (Pearson, 2013). BLOSUM is based on the conservation of

domains in proteins. PAM, on the other hand, is based on the rate of divergence between

sequences or evolutionary distances. DAYHOFF matrix is a frequency based mutation

matrix like the PAM matrix and has a close resemblance to the PAM250 matrix. As stated

earlier, GONNET is also inspired from the PAM250 matrix. MATCH matrix is a simple

scoring matrix like the ID matrix and is used in this part as it provides the most

parsimonious frequency based method in that no assumptions are made as to how symbols

may be related to each other. EDNAFULL matrix is used in this part for nucleotides as

this frequency based scoring matrix is purely made for scoring alignments of DNA

sequences.

This experiment also evaluates an approach using PRISM (Cendrowska, 1987) a rule

induction algorithm which converts a decision tree based on Quinlan’s ID3 algorithm

(Quinlan, 1979) into a rule set. PRISM is used in this part to generate rules. These rules

are then employed to generate super-signatures by performing alignments.

5.11. Using Different Substitution Matrices in a String-Based Syntactic

Approach for Detecting Polymorphic Malware Variants Method:

Systems and Methods

This method is comprised of eight steps (see Figure 5.9). The effects of using different

substitution matrices will be explored in relation to the detection of JS.Cassandra

polymorphic virus and its known (Pk) variants.

111

Hex Dump Extraction

Hex to DNA Conversion

Extract Common Substrings (Meta-Signatures)

Multiple Sequence Alignment

and Data Mining

Consensus and PRISM Rule

Extraction

Local Pairwise Alignment and Super-Signature Extraction

DNA to Hex Conversion

Virus Identification
Virus &

Variants

Local Pairwise Alignment

BLOSUM

Matrices

PAM

Matrices

Other

Matrices

Figure 5.9: Eight-step method for using Different Substitution Matrices in a String-Based

Syntactic Approach for Detecting Polymorphic Malware Variants.

Steps 1-8 are the same as those used previously (Part-I) in this research except for Step-

3 in which the different substitution matrices are introduced (see Section 5.3 – page no.

79). Also, in Step-6 consensuses have been extracted after performing multiple sequence

alignment (Step-5) on the newly generated meta-signatures. Next, rule induction (data

mining) on the meta-signatures is performed (Step-5) to extract a set of (single) rules

(Step-6). The next step involves several pairwise local sequence alignments using SWA

and ‘JAligner’ (Step-7). Thus, Step-7 results in two sets of super-signatures (more details

in Section 5.11.6). As for the previous experiments, the meta-signatures and super-

112

signatures are converted back to hexadecimal format and then tested using ‘clamscan’

(Step-8).

5.11.1 Hex Dump Extraction

Step-1: Two variants of JS.Cassandra, v_004.js and v_005.js, were used in this

experiment. Hex dumps of each were extracted using ‘sigtool’ and the files tested with

56 AVSs retrieved from ‘VirusTotal’ (Table 5.11). Only 20 of the AVSs could detect

variant 1 and 21 could detect variant 2.

Table 5.11: Analysis and detection ratio using the 56 AVSs retrieved from the

‘VirusTotal’ website for the two JS.Cassandra variants in hexadecimal format.

Antivirus Variant 1 (v_004.js) Variant 2 (v_005.js)

Ad-Aware No No

AegisLab Js.Cassa.B!c Script.Troj.Agent!c

AhnLab-V3 No No

Alibaba No No

ALYac No No

Antiy-AVL No No

Arcabit No No

Avast JS:Cassa-A [Wrm] JS:Cassa-A [Wrm]

AVG JS/Cassa JS/Cassa

Avira (no cloud) JS/Cassa.B.8392 No

AVware Trojan.JS.Cassan.a (v) Trojan.JS.Cassan.a (v)

Baidu JS.Virus.Cassa.b JS.Virus.Cassa.b

Baidu-International No No

Bitdefender No No

Bkav No No

CAT-QuickHeal No No

ClamAV Win.Trojan.Cassa-1 Win.Trojan.Cassa-1

CMC No No

Comodo UnclassifiedMalware UnclassifiedMalware

Cyren JS/Cassa.A!Eldorado JS/Cassa.A!Eldorado

DrWeb No No

Emsisoft No No

eScan No No

ESET-NOD32 JS/Cassa.B JS/Cassa.B

Fortinet No No

F-Prot JS/Cassa.A!Eldorado JS/Cassa.A!Eldorado

F-Secure No No

GData No Script.Trojan.Agent.U7IEZA

Ikarus Trojan.JS.Cassa Trojan.JS.Cassa

Jiangmin No No

K7AntiVirus Exploit (04c555e01) Exploit (04c555e01)

K7GW Exploit (04c555e01) Exploit (04c555e01)

Kaspersky No No

Kingsoft No No

Malwarebytes No No

McAfee JS/Cassan JS/Cassan

113

Antivirus Variant 1 (v_004.js) Variant 2 (v_005.js)

McAfee-GW-Edition BehavesLike.JS.Downloader.x

m

BehavesLike.JS.Downloader.zm

Microsoft Trojan:JS/Cassa.B.gen Trojan:JS/Cassa.B.gen

NANO-Antivirus No No

nProtect No No

Panda No No

Qihoo-360 Script/Virus.8c8 Script/Trojan.617

Rising No No

Sophos JS/Cassan-A JS/Cassan-A

SUPERAntiSpyware No No

Symantec No No

Tencent No Js.Virus.Cassa.Ajle

TheHacker No No

TrendMicro No No

TrendMicro-HouseCall No No

VBA32 No No

VIPRE Trojan.JS.Cassan.a (v) Trojan.JS.Cassan.a (v)

ViRobot No No

Yandex No No

Zillya No No

Zoner No No

Detection Ratio 20/56 21/56

5.11.2 Hex to DNA conversion

Step-2: In this step, extracted hex dump sequences were converted into binary and then

into DNA format adopting the DNA encoding method shown in Section 4.3.2 (see page

no. 66).

5.11.3 First Pairwise Local Alignment and Meta-Signature Extraction

Step-3: In this step, several pairwise (local) alignments were performed using the SWA

with the usual gap open and gap extend penalties of 10 and 1 respectively. In total, 71

pairwise local alignments were performed in this step. Only the alignment results with

the highest combinations of identity and similarity percentages were retained in this step.

Based on this criterion, alignment results of BLOSUM40, DAYHOFF, IDENTITY,

MATCH, PAM100, and PAM350 were selected, that is, in total six alignment results

were chosen in this step. Table 5.12 shows selected results from the six pairwise local

alignments that were performed in Step-3. Full results obtained in this step are presented

in Appendix E (Table E.1 – see page no. 236).

Step-4: After the procedure of local alignment, the common substrings (meta-signatures)

were extracted. In total, 161 common substrings were extracted: 34 using BLOSUM40,

24 using DAYHOFF, one using IDENTITY, 24 using MATCH, 31 using PAM100 and

47 using the PAM350 matrix.

114

Table 5.12: Selected results of the six pairwise local alignments performed in Step-3.

S
u

b
st

it
u

ti
o

n

M
a

tr
ix

G
a

p
 O

p
en

P
en

a
lt

y

G
a

p
 E

x
te

n
d

P
en

a
lt

y

Id
en

ti
ty

P
er

ce
n

ta
g

e

S
im

il
a

ri
ty

P
er

ce
n

ta
g

e

G
a

p
s

P
er

ce
n

ta
g

e

A
li

g
n

m
en

t

L
en

g
th

A
li

g
n

m
en

t

S
co

re

BLOSUM40 10 1 52.83% 57.81% 27.22% 41181 177285.00

DAYHOFF 10 1 49.41% 62.32% 21.70% 39868 112237.00
IDENTITY 10 1 100.00% 100.00% 0.00% 397 397.00

MATCH 10 1 63.57% 63.57% 18.81% 6083 1192.00
PAM100 10 1 51.60% 62.28% 25.74% 40656 91799.00

PAM350 10 1 47.05% 69.15% 24.62% 40532 165839.00

5.11.4 Multiple Sequence Alignment and Data Mining

Step-5: In this step, a multiple alignment was performed on all the meta-signatures

retrieved in Step-4 adopting T-Coffee with alignment being restricted to the ID

substitution matrix. Overall, five independent multiple alignments were performed (i.e.

on 34, 24, 24, 31 and 47 meta-signatures, respectively), one for each of the five

substitution matrices. IDENTITY matrix was not considered in this step as multiple

sequence alignment requires two or more sequences for its process – ID matrix generated

only one substring in Step-4. But the ID matrix meta-signature will be considered in this

sub-step of data mining (more details below). As stated earlier, the main aim of multiple

alignment here is to produce consensuses (more details in Step-6).

Also, in this step, a data mining classification algorithm known as PRISM (Cendrowska,

1987) was applied on all the 161 extracted meta-signatures (obtained in Step-4, including

the meta-signature obtained from the ID matrix) to extract rules. The purpose of data

mining in this step was important as multiple alignment did not take into account all the

161 meta-signatures. Rule extraction using the supervised PRISM learning (with the

training set option) was performed with the help of an open source software product called

Weka (Waikato Environment for Knowledge Analysis). As stated earlier, Weka is a tool

that provides a collection of machine learning algorithms for performing data mining

tasks (Frank, Hall, & Witten, 2016). Some of the PRISM rules for BLOSUM40 (with

62% accuracy) obtained in this step are as follows (observe that ‘pos’ and ‘B40’ are

acronyms for position and BLOSUM40 in the rules shown below):

If pos30 = A then B40

If pos3 = C and pos18 = G then B40

If pos22 = A and pos7 = T then B40

If pos66 = A and pos2 = T then B40

115

5.11.5 Extraction of Consensuses and PRISM Rules

Step-6: As stated earlier, T-Coffee, similar to other alignment tools, produces a consensus

sequence that signifies the most common residues (nucleotide) in each position of the

sequences after alignment. In this step, the consensus was stored, and the procedure was

followed five times, one for each of the five substitution matrices. No threshold of

common occurrence of a nucleotide in a certain position was adopted/set in this step.

Overall, five consensuses were extracted in this step.

Also, in this step (after the process of data mining using PRISM in Step-5), a total of five

single PRISM rules (one for each of the five selected substitution matrices) were extracted

with an accuracy of 62%. Single PRISM rule was obtained by merging all the nucleotide

characters from all the positions for that specific substitution matrix. For instance, from

the few PRISM rules given above for BLOSUM40, the following single rule is obtained:

ACGATAT.

5.11.6 Second Pairwise Local Alignment and Super-Signature Extraction

Step-7: In this step, two sets of pairwise (local) alignments, using the usual gap open and

gap extend penalties of 10 and 1 respectively, were performed adopting the SWA with

ID matrix (see Chapters 4 and 5 – Part-II). One set between the consensuses and the

original (Ps) JS.Cassandra virus and variant 1. The other set between the single PRISM

rules and the original (Ps) JS.Cassandra virus and variant 1, both using ‘JAligner’.

Overall, 20 individual pairwise local alignments were performed in this step, 10 for each

consensus and 10 for each single PRISM rule. Forty-seven super-signatures were

extracted from the two sets, 21 from the consensuses-based pairwise alignments and 26

from the single PRISM rules-based pairwise alignments.

5.11.7 DNA to Hex Conversion as well as Meta-Signature and Super-

Signature Testing

Step-8: Again all the 161 meta-signatures and 47 super-signatures were converted back

into a hexadecimal format before testing their effectiveness using ‘clamscan’.

5.12. Experimental Results

Table 5.13 supplies the results of the detection rates (with accuracy) for the detection of

JS.Cassandra polymorphic malware and its known (Pk) variants adopting ‘clamscan’

using the meta-signatures. In total, 161 meta-signatures were tested.

116

Table 5.13: Detection rates for the detection of JS.Cassandra polymorphic malware and its known (351) variants (Pk) employing ‘clamscan’ by testing

the 161 meta-signatures acquired in Step-4.

BLOSUM40 DAYHOFF

Meta-Signatures

with their Sequence

Lengths in Hex (x25)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Meta-Signatures

with their Sequence

Lengths in Hex (x24)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS1 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS35 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS2 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS36 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS3 – 11 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS37 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS4 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS38 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00%

MS5 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS39 – 23 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS6 – 14 333/352 (94.60%) 94.60% 0.0% 100.00% 97.22% MS40 – 50 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS7 – 23 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS41 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS8 – 13 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS42 – 10 322/352 (91.50%) 91.50% 0.0% 100.00% 95.56%

MS9 – 40 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS43 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS10 – 52 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS44 – 44 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS11 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS45 – 29 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS12 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS46 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00%

MS13 – 12 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS47 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS14 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS48 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS15 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS49 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS16 – 24 326/352 (92.61%) 92.61% 0.0% 100.00% 96.16% MS50 – 45 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS17 – 22 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS51 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS18 – 28 314/352 (89.20%) 89.20% 0.0% 100.00% 94.29% MS52 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS19 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS53 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS20 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS54 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS21 – 96 328/352 (93.20%) 93.20% 0.0% 100.00% 96.5% MS55 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS22 – 18 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS56 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92%

MS23 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS57 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS24 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS58 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS25 – 44 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% - - - - - -

117

BLOSUM40 IDENTITY

Meta-Signatures

with their Sequence

Lengths in Hex (x9)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Meta-Signatures

with their Sequence

Lengths in Hex (x1)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS26 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS59 – 198 14/352 (4.0%) 4.0% 0.0% 100.00% 7.69%

MS27 – 15 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% PAM100

MS28 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%
Meta-Signatures

with their Sequence

Lengths in Hex (x21)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS29 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS84 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS30 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS85 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS31 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92% MS86 – 10 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS32 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS87 – 10 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS33 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS88 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS34 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS89 – 18 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MATCH MS90 – 16 337/352 (95.74%) 95.74% 0.0% 100.00% 97.82%

Meta-Signatures

with their Sequence

Lengths in Hex (x13)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score MS91 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00%

MS60 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS92 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS61 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS93 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS62 – 82 309/352 (87.80%) 87.80% 0.0% 100.00% 93.5% MS94 – 10 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS63 – 34 255/352 (72.44%) 72.44% 0.0% 100.00% 84.02% MS95 – 12 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS64 – 22 293/352 (83.24%) 83.24% 0.0% 100.00% 90.85% MS96 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS65 – 32 132/352 (37.5%) 37.5% 0.0% 100.00% 54.54% MS97 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS66 – 24 336/352 (95.45%) 95.45% 0.0% 100.00% 97.67% MS98 – 24 326/352 (92.61%) 92.61% 0.0% 100.00% 96.16%

MS67 – 18 280/352 (79.54%) 79.54% 0.0% 100.00% 88.6% MS99 – 22 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS68 – 18 288/352 (81.82%) 81.82% 0.0% 100.00% 90.001% MS100 – 28 314/352 (89.20%) 89.20% 0.0% 100.00% 94.3%

MS69 – 22 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS101 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS70 – 16 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS102 – 14 352/352 (100%) 100.00% 0.0% 100.00% 100.00%

MS71 – 28 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS103 – 96 328/352 (93.20%) 93.20% 0.0% 100.00% 96.5%

MS72 – 18 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS104 – 26 311/352 (88.35%) 88.35% 0.0% 100.00% 93.81%

118

MATCH PAM100

Meta-Signatures

with their Sequence

Lengths in Hex (x11)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Meta-Signatures

with their Sequence

Lengths in Hex (x10)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS73 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS105 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS74 – 198 14/352 (4.0%) 4.0% 0.0% 100.00% 7.69% MS106 – 44 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS75 – 50 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS107 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS76 – 16 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS108 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS77 – 65 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS109 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS78 – 60 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS110 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS79 – 52 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS111 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92%

MS80 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS112 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS81 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS113 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS82 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS114 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS83 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% - - - - - -

PAM350

Meta-Signatures

with their Sequence

Lengths in Hex (x13)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Meta-Signatures

with their Sequence

Lengths in Hex (x13)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS115 – 22 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS139 – 8 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS116 – 9 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS140 – 26 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS117 – 10 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS141 – 32 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS118 – 7 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS142 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS119 – 7 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS143 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS120 – 6 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS144 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS121 – 50 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS145 – 45 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS122 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS146 – 42 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS123 – 23 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS147 – 25 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS124 – 13 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS148 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS125 – 40 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS149 – 6 343/352 (97.44%) 97.44% 0.0% 100.00% 98.7%

MS126 – 53 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS150 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS127 – 52 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26% MS151 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

119

PAM350

Meta-Signatures

with their Sequence

Lengths in Hex (x11)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Meta-Signatures

with their Sequence

Lengths in Hex (x10)

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

MS128 – 52 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS152 – 7 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS129 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS153 – 30 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS130 – 28 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS154 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS131 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS155 – 14 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS132 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS156 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12%

MS133 – 6 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS157 – 26 331/352 (94.03%) 94.03% 0.0% 100.00% 96.92%

MS134 – 8 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS158 – 6 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS135 – 38 352/352 (100%) 100.00% 0.0% 100.00% 100.00% MS159 – 28 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS136 – 24 339/352 (96.31%) 96.31% 0.0% 100.00% 98.12% MS160 – 16 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

MS137 – 7 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0% MS161 – 6 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

MS138 – 8 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

* Where MS is the meta-signature.

From Table 5.13, it can be seen that 123 out of the 161 meta-signatures identified JS.Cassandra and its known (Pk) variants. 112 of the meta-signatures

(~70%) gave a detection accuracy of over 96%. Seven meta-signatures accurately detected all the variants (100%) and 38 (~ 24%) of the signatures

identified none of the known (Pk) variants of JS.Cassandra. The PAM350 substitution matrix resulted in the highest number of successful meta-signatures

with 38 out of the 47 meta-signatures (about 80.85%) identifying at least 96% known (Pk) variants of the JS.Cassandra virus. That is, on an average, the

meta-signatures (or the cells) that are highlighted in bold and within the PAM350 category (see Table 5.13) identified 96% known (Pk) variants of the

JS.Cassandra virus. Moreover, PAM350 substitution matrix gave the highest number of new meta-signatures in comparison to other substitution matrices.

Table 5.14 supplies the results of the identification of JS.Cassandra and its known (Pk) variants employing ‘clamscan’ using the 47 extracted super-

signatures. More details on page no. 119.

120

Table 5.14: Detection rates for the detection of JS.Cassandra polymorphic malware and

its known (351) variants (Pk) employing ‘clamscan’ by testing the 47 super-signatures

acquired in Step-7.

Super-Signatures

with their

corresponding

Substitution

Matrices

Detection Rate

(Accuracy)

Sensitivity/

Recall
Specificity Precision F1 Score

Super-

Signatures

(x21)

obtained

from

Consensuses-

based

Pairwise

Alignments

From

Original

Virus (x12)

SS1 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS2 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS3 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS4 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS5 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS6 - IDENTITY 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2%

SS7 - IDENTITY 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76%

SS8 - MATCH 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS9 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS10 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS11 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS12 - PAM350 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

From

Variant 1

(x9)

SS13 - BLOSUM40 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS14 - BLOSUM40 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS15 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS16 - IDENTITY 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS17 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS18 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS19 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS20 - PAM100 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS21 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

Super-

Signatures

(x26)

obtained

from single

PRISM

Rules-based

Pairwise

Alignments

From

Original

Virus (x19)

SS22 - BLOSUM40 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS23 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS24 - DAYHOFF 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS25 - DAYHOFF 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS26 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS27 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS28 - IDENTITY 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS29 - IDENTITY 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2%

SS30 - IDENTITY 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76%

SS31 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS32 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS33 - MATCH 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS34 - MATCH 53/352 (15.06%) 15.06% 0.0% 100.00% 26.2%

SS35 - MATCH 43/352 (12.21%) 12.21% 0.0% 100.00% 21.76%

SS36 - PAM100 340/352 (96.59%) 96.59% 0.0% 100.00% 98.26%

SS37 - PAM100 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS38 - PAM350 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS39 - PAM350 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS40 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

From

Variant 1

(x7)

SS41 - BLOSUM40 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

SS42 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS43 - DAYHOFF 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS44 - IDENTITY 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS45 - MATCH 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS46 - PAM100 352/352 (100.00%) 100.00% 0.0% 100.00% 100.00%

SS47 - PAM350 0/352 (0.00%) 0.0% 0.0% 100.00% 0.0%

* Where SS is the super-signature.

121

From Table 5.14, it can be seen that 34 of 47 super-signatures (~ 72%) correctly identified

the JS.Cassandra variants. Sixteen of the 47 super-signatures had an accuracy of 100%,

and 12 had an accuracy of 96.59%. Thirteen out of the 47 super-signatures (~28%) did

not identify any of the variants. Super-signatures obtained from the pairwise alignments

between consensuses and variant 1 as well as between single PRISM rules and variant 1

had the highest number of successful super-signatures with 12 out of the 47 super-

signatures (~ 26%) identifying 100% of the known (Pk) variants. On the other hand, super-

signatures obtained from the pairwise alignments between consensuses and the original

(Ps) virus and between single PRISM rules and the original (Ps) virus had the lowest

number of successful super-signatures (~ 8.51%) identifying all known (Pk) variants but

had the highest number of successful super-signatures (~26%) identifying 96.59% known

(Pk) variants of the JS.Cassandra virus.

5.13. Summary

In this chapter, sequence alignment techniques for automatically extracting polymorphic

malware synatctic signatures were explored in more depth. The effects of using different

substitution matrices (Part-III) were evaluated as well as the effects of gap penalties (Part-

II). It was found that better super-signatures for JS.Cassandra could be generated from

variant 1 using the PRISM single rule-based method (see Table 5.14) while the PAM350

substitution matrix gave the highest number of new and successful meta-signatures (see

Table 5.13).

Because the PRISM approach to extracting super-signatures seems promising the set of

experiments detailed in the next chapter further investigate a syntactic structure approach

to the automatic generation of polymorphic viral signatures using a data mining (NNge)

approach for extracting rules. Experiments are reported that are designed to address the

third research question (Q3). More information will follow in the succeeding chapter.

122

Chapter 6 Identifying Viral Polymorphic Malware Variants

using Data Mining Rule-Based NNge

Classification Algorithm

Initial work (presented in Chapters 4 and 5) employed an approach which involved the

conversion of hexadecimal dumps of polymorphic malware (and variants) into biological

sequences before employing a sequence alignment algorithm to extract signatures was

promising but also had some limitations. In an attempt to address these limitations,

discussed in Section 1.5.5 (see page no. 17), non-nested generalised exemplars (NNge)

are used in an attempt to further improve this proposed approach to the automatic

identification of polymorphic malware. By representing polymorphic malware as DNA

(or base sequences), it enables not only sequence alignment approaches but also data

mining methods to be used. It is likely that rule induction techniques, well established in

data mining, can be used to extract rule-based virus meta-signatures. The key differences

between the previous proposed approaches (Chapters 4 and 5) and current chapter are as

follows:

• Previous work adopted left-to-right string matching techniques to find the most

optimally-conserved meta-signatures. The work presented in this chapter adopts a

rule-based or top-down approach that attempts to find underlying patterns.

• Previous work generated equal length consensuses using sequence alignment

techniques, whereas the current chapter generates variable length consensuses

adopting a variable length data mining technique (NNge).

• Previous work adopted pairwise alignment techniques for extracting signatures which

only allowed alignment of two viral sequences at a time taking into account only the

information available in the sequence pair. This work allows all sequences to be used

to extract signatures and so takes into account all the information in all the sequences

at the same time, including both family generic and variant specific information.

6.1. Introduction

In this chapter, the focus is on polymorphic malware generated through modification in

the encryptor and decryptor. Whereas the previously explored syntactic approaches

(Chapters 4 and 5) had the aim of generating string templates for signatures, the aim of

this work is to investigate whether such string templates are themselves rule-based and

could, therefore, be derived directly using data mining algorithms in conjunction with

123

sequence alignment algorithms. If it is possible to generate a rule-based signature

automatically then it should be possible to automatically create a signature that can detect

entirely new variants that have not previously been encountered. In other words, it is

possible to construct ‘pre-emptive’ AVSs that already know, to some extent, what future

variants of a virus may look like based on encountering known (Pk) variants of that virus.

Only JS.Cassandra virus family – known (Pk) and unknown (Px) variants are used in this

chapter due to sequence length restrictions put by the alignment tool (see page no. 18 for

more details) as some of the experiments in this chapter adopt sequence alignment to

extract the meta-signatures. Other two polymorphic virus families are not considered in

this chapter due to its overly long sequences.

6.2. Objectives of this chapter

Three sets of experiments were performed for two main reasons. Firstly, to examine the

effectiveness of the rule-based classifier (NNge) employed here, all the three sets of

experiments were solely performed by using the rule-based classifier (NNge) as the

primary approach to obtain more divergent, meaningful and valuable (single) rules each

time. Secondly, to test the capability of this rule-based classifier (NNge) to handle larger

sequences, the length of sequences in each set of experiments was increased either by

using a different more verbose representational approach (i.e. DNA) or by multiple

sequence alignment.

In the first set of experiments, hexadecimal (hex) dumps of JS.Cassandra and its known

variants – Pk (training set) were loaded into Weka, whereas, in the second set of

experiments, hex dumps of JS.Cassandra virus and its known variants – Pk (training set)

were represented as DNA sequences, thereby increasing the length of (DNA) sequences

by two times (from its original hex length) and then loaded into Weka (Frank, Hall, &

Witten, 2016), exclusively to obtain (NNge) rule-based meta-signatures in both sets of

experiments. In the third set of experiments, hex dumps of JS.Cassandra virus and its

known variants – Pk (training set) were represented as DNA sequences and then multiply-

aligned using MAFFT - a multiple sequence alignment online tool (Katoh, Misawa,

Kuma, & Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) thereby increasing the

length of the sequences by six-fold. Multiple sequence alignment was used for two main

reasons. Firstly, because most data mining rule-based approaches assume fixed length

sequences (Xinguang, et al., 2009) and all of the generated hex dumps of JS.Cassandra

virus were of variable sequence lengths. Pairwise sequence alignment was not used in

124

this stage because pairwise alignment does not produce fixed length sequences, each run

of pairwise alignment produces a variable length sequence. Secondly, as the first set of

experiments (using hex dumps) generated NNge rules with 100% accuracy, and the

second set of experiments (using DNA representation) generated NNge rules with 100%

inaccuracy, DNA represented sequences from the second set of experiments were

multiply-aligned, primarily to obtain NNge rules with 100% accuracy (third set of

experiments). The three sets of experiments discussed here were performed with a

matching number of unchanged instances (i.e. 22 instances) in every set of experiments.

For every set of experiments discussed here, the process of pairwise sequence alignment

was employed at a later stage. Pairwise sequence alignment was employed primarily to

extract common substrings/meta-signatures from the (NNge) single rules.

125

A - First Set of Experiments

6.3. Experiment I - Identification of viral variants using NNge rule

extraction from variants in hexadecimal format: Systems and

Methods

The method for Experiment I consists of six steps (see Figure 6.1). As usual, the steps

involving download of JS.Cassandra polymorphic virus and variants and hexadecimal

dump extraction were performed on a stand-alone system. Network connectivity was used

at the testing stage as the previous approaches.

Rule Extraction

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

NNge classification

Meta-signature testing

Figure 6.1: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment I)’ method comprising of six

steps.

A complete description of the method is supplied below.

6.3.1 Hex Dump Extraction

Step-1: As for previous experiments, 11 variants of JS.Cassandra were extracted

including the original virus (Ps). In this case, since most data mining approaches assume

126

two or more classes, an additional 11 non-malicious/non-payload (Pu) files were

generated by eliminating their main polymorphic engines. As for earlier experiments, the

uniqueness of all variants was verified by generating their CRC32b hash value (see

Appendix H – page no. 250). ‘VirusTotal’ was used to ensure that malicious activity was

maintained in the 11 malicious (Pk) variants and eliminated in the 11 non-malicious (Pu)

variants.

Table 6.1 gives the detection ratio, based on the 56 AVSs using ‘VirusTotal’. Only four

of the 56 AVSs detected one or more of the non-malicious (Pu) variant files (Table 6.1).

It is likely that variants 1, 3, 4 and 9 were detected as malicious as they still had their

polymorphic functions in place but no payload.

Table 6.1: Detection Ratio for each JS.Cassandra variant based on the 56 AVSs in

‘VirusTotal’.

Malicious (Pk) Filename

D
et

ec
ti

o
n

R
a

ti
o

Non-Malicious (Pu) Filename

D
et

ec
ti

o
n

R
a

ti
o

JS.Cassandra.js (Original Malicious

Virus – Ps)
40/56 JS.Cassandra_NP.js (Non-Malicious Virus –

Pu)
0/56

v_000.js (Malicious Variant 1 – Pk) 19/56 v_000_NP.js (Non-Malicious Variant 1 – Pu) 1/56

v_001.js (Malicious Variant 2 – Pk) –

for use in Step-4 and Step-5
12/56 v_002_NP.js (Non-Malicious Variant 2 – Pu) 0/56

v_002.js (Malicious Variant 3 – Pk) 22/56 v_003_NP.js (Non-Malicious Variant 3 – Pu) 1/56

v_003.js (Malicious Variant 4 – Pk) 19/56 v_004_NP.js (Non-Malicious Variant 4 – Pu) 1/56

v_004.js (Malicious Variant 5 – Pk) 22/56 v_005_NP.js (Non-Malicious Variant 5 – Pu) 0/56

v_005.js (Malicious Variant 6 – Pk) 21/56 v_006_NP.js (Non-Malicious Variant 6 – Pu) 0/56

v_006.js (Malicious Variant 7 – Pk) 21/56 v_007_NP.js (Non-Malicious Variant 7 – Pu) 0/56

v_007.js (Malicious Variant 8 – Pk) 20/56 v_008_NP.js (Non-Malicious Variant 8 – Pu) 0/56

v_008.js (Malicious Variant 9 – Pk) 20/56 v_009_NP.js (Non-Malicious Variant 9 – Pu) 1/56

v_009.js (Malicious Variant 10 – Pk) 20/56 v_010_NP.js (Non-Malicious Variant 10 –

Pu)
0/56

v_010.js (Malicious Variant 11 – Pk) 20/56 – –

Hex dumps were then extracted using ‘sigtool’.

6.3.2 Data Mining

Step-2: A rule-based classification algorithm known as NNge was employed in this step

to extract rules from the variants in hexadecimal format. As stated earlier, NNge first

introduced by Martin (1995) is a nearest neighbour algorithm which generalises by

merging exemplars and forming hyperrectangles in feature space that represent

conjunction rules (if-then rules) with internal disjunction. The learning is incremental;

127

each example is first classified and then generalised by joining the example to its nearest

neighbour, either a single instance or a hyperrectangle, in the same class. Each

hyperrectangle is converted into a production rule. NNge was chosen for this research

because the exclusive generalised exemplars produced result in a useful set of rules and

has been proven to reduce classification time without sacrificing accuracy.

Rule generation using the NNge classifier was conducted using its implementation in

Weka.

An ARFF (Attribute-Relation File Format) file was created which contained the hex

dump sequences for the 22 JS.Cassandra variants. Since most data mining approaches

assume fixed length sequences (Xinguang, et al., 2009), the variable length 22 hex dump

sequences were converted into fixed length sequences by adding the letter ‘x’ at the end

of short sequences. In total, the ARFF file consisted of 24,565 attributes and two classes

(malicious and non-malicious). The file size of the ARFF file was 2.49 MB. The NNge

classifier was trained on the full dataset. No cross-validation was performed in this step

as the sole purpose of this chapter is to extract (single) consequential rules and hence,

only the training on the full dataset was conducted. Figures F.1 and F.2 (see Appendix F

– page no. 238) are screenshots of the pre-process panel, the classifier model and

evaluation information (with/on full training set) within the classifier panel obtained from

Weka during the generation of NNge rules in this step. Figure F.3 (see Appendix F – page

no. 240) is a screenshot of the visualize panel showing 275 individual plot matrices

between pos1-pos25 and pos13633-pos13643, where, blue circles are malicious (‘m’) and

red circles are non-malicious (‘nm’). Two NNge rules (one for each class) were generated

with an accuracy of 100%. A partial segment of two NNge (hex) rules obtained in this

step for the malicious (m), and 11 non-malicious (nm) hex sequences are shown below:

Malicious (m) - class m IF : pos1 in {2,6} ^ pos2 in {0,3} ^ pos3 in {6,7} ^ pos4 in

{a,b,1,2,3,7,9} ^ pos5 in {6,7} ^ pos6 in {a,e,1,2,3,5,6,7,9} ^ pos7 in {6,7}...and so on.

Non-Malicious (nm) - class nm IF : pos1 in {2,6,7} ^ pos2 in {f,6} ^ pos3 in {2,6,7} ^

pos4 in {f,1,5} ^ pos5 in {2,6,7} ^ pos6 in {e,0,2} ^ pos7 in {2,6,7}...and so on.

6.3.3 Rule Extraction

Step-3: In this step, two strings in hex format (one each for malicious and non-malicious)

were extracted from the two NNge rules. For example, for (m) the first substring at pos 1

becomes the first substring in the new NNge rule extracted string resulting as follows:

128

‘260367ab1237967ae123567967...’. The length of the malicious string was 246,676 hex

characters, whereas, the length of the non-malicious string was 74,498 hex characters.

Since the two generated NNge rules were in the form of associations with position

numbers, only hex data (by excluding the letter ‘x’) from the two NNge rules were

extracted. The extracted NNge hex data were then converted into DNA sequences for the

process of pairwise (local) sequence alignment.

6.3.4 Hex to DNA Conversion

Step-4: The extracted hex dump sequences were converted into binary. Conversion of

hexadecimal into binary code was accomplished as per previous experiments (see Section

4.3.2 for the conversion rules – page no. 66). Three of the variants JS.Cassandra.js ,

v_000.js and v_001.js, were then converted into DNA sequences using the previously

established conversion rules (see Section 4.3.2 – page no. 66). A short instance of the

conversion of 16-bit binary code into 8 DNA characters is presented below:

1001110100101010 (16-bit binary code)

GCTCAGGG (8 DNA characters)

6.3.5 Pairwise Local Sequence Alignment

Step-5: The two converted NNge DNA sequences were pairwisely-aligned with

polymorphic (converted) DNA sequences of original (Ps) JS.Cassandra virus

(JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and malicious variant 2

(v_001.js), successively, using SWA and ID substitution matrix. The processes of

pairwise alignments were primarily performed to extract the common substrings/meta-

signatures, which will be used to detect the original (Ps) malware and all its available

variants (Pk and Px) of the JS.Cassandra polymorphic family. In total, nine meta-

signatures in DNA representation were extracted in this set of experiments (see Table 6.2

for more details).

Four meta-signatures from the alignment with the DNA sequence extracted using the

NNge rule for malicious (Pk) variants and five meta-signatures from the DNA sequence

extracted from the NNge rule for the non-malicious (Pu) variants. Table 6.2 gives the

sequence lengths of these meta-signatures. where, (1) denotes that the meta-signatures

were obtained from the first set of experiments. The minimum and maximum sequence

lengths of meta-signatures obtained from the first set of alignments involving malicious

129

NNge sequence were 12 and 125, respectively, with a mean (sum, median and standard

deviation of 339, 101 and 52.411, respectively) of 84.75 for four signatures in their DNA

representation. The minimum and maximum sequence lengths of signatures obtained

from the second set of alignments involving non-malicious NNge sequence were 12 and

59, respectively, with a mean (sum, median and standard deviation of 151, 18 and 22.543,

respectively) of 30.2 for five signatures in their DNA representation (Table 6.2).

Table 6.2: Sequence lengths of all the nine extracted meta-signatures (i.e. common

substrings) in its DNA representation obtained in Step-5.

Class Pairwise Alignment
Meta-Signature

(1)

S
eq

u
en

ce

L
en

g
th

Malicious

(m)

Malicious DNA NNge Rule and Original Malicious

JS.Cassandra (JS.Cassandra.js) DNA Sequence
MS1 (1) 121

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 1 (v_000.js) DNA Sequence

MS2 (1) 12

MS3 (1) 125

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 2 (v_001.js) DNA Sequence
MS4 (1) 81

Non-

Malicious

(nm)

Non-Malicious DNA NNge Rule and Original Malicious

JS.Cassandra (JS.Cassandra.js) DNA Sequence
MS5 (1) 50

Non-Malicious DNA NNge Rule and JS.Cassandra

Malicious Variant 1 (v_000.js) DNA Sequence

MS6 (1) 12

MS7 (1) 59

Non-Malicious DNA NNge Rule and JS.Cassandra

Malicious Variant 2 (v_001.js) DNA Sequence

MS8 (1) 12

MS9 (1) 18

6.3.6 DNA to Hex Conversion and Meta-Signature Testing

Step-6: In this final step, the nine meta-signatures (obtained in Step-5) in DNA sequence

representation were converted back into hexadecimal format.

6.4. Summary – First Set of Experiments

To summarise the first set of experiments, 351 polymorphic malicious (Pk) variants of

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352

polymorphic malicious files) were downloaded from the official virus author’s web page

(SPTH, 2004; SPTH, 2015). 11 out of the 352 polymorphic malicious (Pk) files (including

the original (Ps) JS.Cassandra virus) were selected for the experiments (see Table 6.1 for

the list of selected malicious variants). One of the additional polymorphic malicious (Pk)

file (i.e. v_001.js) out of the 352 malicious (Pk) files was selected for use in Step-4 and

Step-5. An additional 11 non-malicious/non-payload (Pu) files (ignoring the additional

polymorphic malicious file) were produced by eliminating their main polymorphic

engines, making a total number of 22 files. Hex dumps were extracted from all the 22

130

files (including the additional polymorphic malicious – Pk file for use in Step-4 and Step-

5), and they were all of the variable sequence lengths. All the 22 variable length hex

sequences (ignoring the additional polymorphic malicious – Pk file) were converted into

fixed length sequences by adding the letter ‘x’ towards the end of each sequence until all

the 22 sequences were of equal length. As stated earlier, this conversion was necessary

as most of the rule-based data mining classifiers accept fixed length sequences (Xinguang,

et al., 2009). All the converted fixed length hex sequences were used to create an ARFF

file (with two classes – one for malicious and the other one for non-malicious) and then

later fed into Weka (see Figure F.1) (Frank, Hall, & Witten, 2016). Using the fed ARFF

file as the training set, NNge rule-based classifier was conducted, which generated two

long NNge rules with 100% accuracy (see Figure F.2). One NNge rule was generated for

the malicious class, whereas, the other NNge rule was generated for the non-malicious

class (see Figure F.2). Since the two generated NNge rules were in the form of

associations with position numbers, only hex data (by excluding the letter ‘x’) from the

two NNge rules were extracted. The extracted NNge hex data were then converted into

DNA sequences for the process of pairwise (local) sequence alignment. Furthermore, 11

of the polymorphic malicious hex sequences, most importantly, JS.Cassandra original

(Ps) virus and its malicious variant 1 (plus the additional polymorphic malicious variant

2) were converted into DNA sequences, also for the process of pairwise sequence

alignment. As stated earlier, this conversion was essential as the pairwise alignment of

hex data cause issues to string matching algorithms due to algorithmic complications in

managing numeric data and code. The two converted NNge DNA sequences were

pairwisely-aligned with polymorphic (converted) DNA sequences of original (Ps)

JS.Cassandra virus (JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and

malicious variant 2 (v_001.js), successively, using SWA and ID substitution matrix. The

processes of pairwise alignments were primarily performed to extract the common

substrings/meta-signatures, which will be used to detect the original (Ps) malware and all

its available (Pk and Px) variants of the JS.Cassandra polymorphic family. In total, nine

meta-signatures in its DNA representations were extracted in this set of experiments (see

Table 6.2 for more details). These meta-signatures (in its DNA representations) were

converted back into a hexadecimal format for testing against the JS.Cassandra

polymorphic malware family (see Table 6.6 and Figures 6.4 to 6.6 in Section 6.9 for more

details – page nos. 141, 144-145). This conversion of DNA into hex was necessary as all

the malware (and non-malware) files can be represented in hex, as it is the traditional

human-decipherable representation of each byte’s value.

131

B - Second Set of Experiments

6.5. Experiment II - Identification of viral variants using NNge rule

extraction from variants in DNA format: Systems and Methods

The method for Experiment II consists of six steps (see Figure 6.2).

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

Meta-signature testing

Rule Extraction

NNge classification

Figure 6.2: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment II)’ method comprising of six

steps.

The same procedure as Experiment I was used along with the same JS.Cassandra variants

were used the only difference is that the variants were converted into DNA format prior

to NNge rule generation. The conversion to DNA format was undertaken as normal using

the DNA representational method as detailed in Section 4.3.2 (see page no. 66).

As for Experiment I, fixed length sequences were here created by adding the letter ‘X’ at

the end of each sequence to the length of the longest variant. In total, the resultant 3.87

MB ARFF file contained 49,129 attributes and two class labels (malicious and non-

132

malicious). The final and error-free version of ARFF file was loaded into Weka, and

NNge classification undertaken using all the data as the training set. After the first

iteration, two NNge rules (one for each class) was generated in under seven minutes.

Figures F.4 and F.5 (see Appendix F – page no. 241) are screenshots of the preprocess

panel and the classifier model and evaluation information (with/on full training set) within

the classifier panel obtained from Weka during the generation of NNge rules in this step

(Step-3). Figure F.6 (see Appendix F – page no. 243) is a screenshot of the visualize panel

showing 275 individual plot matrices between pos1-pos25 and pos36663-pos36673,

where, blue circles are malicious (‘M’), and red circles are non-malicious (‘NM’). A

partial segment of the two NNge (DNA) rules are shown below:

Malicious (M) - class M IF : pos1 in {A,C} ^ pos2 in {G} ^ pos3 in {A} ^ pos4 in {A,T} ^

pos5 in {C} ^ pos6 in {T,G} ^ pos7 in {A,G,C} ^ pos8 in {T,G,C}...and so on.

Non-Malicious (NM) - class NM IF : pos1 in {A,C} ^ pos2 in {T,G} ^ pos3 in {T,C} ^

pos4 in {T,G} ^ pos5 in {A,C} ^ pos6 in {T,G} ^ pos7 in {A,T,C}...and so on.

Rules were extracted in the same way as for Experiment I from these two NNge rules as

in Experiment I the sub-sequences in each position were concatenated as illustrated here

for the Malicious class: ‘ACGAATCTGAGCTGC...’.

The sequence length of the malicious NNge DNA string was 132,103 bases, whereas, the

sequence length of non-malicious NNge DNA string was 41,670 bases. Pairwise local

alignment was then performed using SWA and the ID matrix in a process similar to that

described for Experiment I. In this case alignment was conducted between the NNge

DNA string for the malicious class rule and the malicious JS.Cassandra variants in DNA

format one by one. And this was again repeated for the NNge DNA string created based

on the NNge rule for non-malicious files.

Overall, 14 common substrings (i.e. meta-signatures) were obtained in this step (Step-5).

Nine meta-signatures were obtained from the alignment between the sequence extracted

from the malicious DNA NNge rule and the three malicious DNA sequences (i.e. original

(Ps) JS.Cassandra, variant 1 (Pk) and variant 2 (Pk) sequences as for Experiment I),

whereas, five meta-signatures were obtained from the alignment between non-malicious

extracted DNA NNge rule and the three malicious DNA sequences. Table 6.3 shows the

sequence lengths of all the 14 extracted meta-signatures obtained in this step (Step-5),

where, (2) denotes that the meta-signatures were obtained from the second set of

133

experiments. The minimum and maximum sequence lengths of meta-signatures obtained

from the first set of alignments involving malicious NNge sequence were 12 and 125,

respectively, with a mean (sum, median and standard deviation of 404, 14 and 49.604,

respectively) of 44.89 for nine signatures in their DNA representation. The minimum and

maximum sequence lengths of signatures obtained from the second set of alignments

involving non-malicious NNge sequence were 12 and 59, respectively, with a mean (sum,

median and standard deviation of 152, 18 and 22.345, respectively) of 30.4 for five

signatures in their DNA representation (Table 6.3).

Table 6.3: Sequence lengths of the extracted meta-signatures in DNA representation.

Class Pairwise Alignment
Meta-Signature

(2)

S
eq

u
en

ce

L
en

g
th

Malicious

(M)

Malicious DNA NNge Rule and Original Malicious

JS.Cassandra (JS.Cassandra.js) DNA Sequence

MS1 (2) 14

MS2 (2) 12

MS3 (2) 121

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 1 (v_000.js) DNA Sequence

MS4 (2) 14

MS5 (2) 12

MS6 (2) 125

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 2 (v_001.js) DNA Sequence

MS7 (2) 13

MS8 (2) 12

MS9 (2) 81

Non-

Malicious

(NM)

Non-Malicious DNA NNge Rule and Original Malicious

JS.Cassandra (JS.Cassandra.js) DNA Sequence
MS10 (2) 50

Non-Malicious DNA NNge Rule and JS.Cassandra

Malicious Variant 1 (v_000.js) DNA Sequence
MS11 (2) 59

Non-Malicious DNA NNge Rule and JS.Cassandra

Malicious Variant 2 (v_001.js) DNA Sequence

MS12 (2) 13

MS13 (2) 12

MS14 (2) 18

In the final step (Step-6), the 14 meta-signatures (Table 6.3) in DNA sequence

representation were converted back into hexadecimal format. The converted nine hex

meta-signatures were tested against the JS.Cassandra original (Ps) virus and all its 351

known (Pk) polymorphic malware variants using ‘clamscan’.

6.6. Summary – Second Set of Experiments

To summarise the second set of experiments, 351 polymorphic malicious variants of

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352

polymorphic malicious files) were retained from the first set of experiments. All the 22

extracted hex dumps and the subsequent 22 converted DNA sequences of JS.Cassandra

virus (including DNA sequence of the additional polymorphic malicious file i.e. v_001.js

for use in Step-5) were also retained from the first set of experiments, for the process of

134

data mining and pairwise sequence alignment. As stated earlier, this conversion to DNA

was essential as the pairwise alignment of hex data cause issues to string matching

algorithms due to algorithmic complications in managing numeric data and code. All the

22 converted variable length DNA sequences (ignoring the additional polymorphic

malicious file) were converted into fixed length DNA sequences by adding the letter ‘X’

towards the end of each sequence until all the 22 DNA sequences were of equal length.

As stated earlier, this conversion was necessary as most of the rule-based data mining

classifiers accept fixed length sequences (Xinguang, et al., 2009). All the converted fixed

length DNA sequences were used to create an ARFF file (with two classes – one for

malicious and the other one for non-malicious) and then later fed into Weka (see Figure

F.4) (Frank, Hall, & Witten, 2016). Using the fed ARFF file as the training set, NNge

rule-based classifier was started, which generated two long NNge rules (see Figure F.5).

One NNge rule was generated for the malicious class, whereas, the other NNge rule was

generated for the non-malicious class (see Figure F.5). Since the two generated NNge

rules were in the form of associations with position numbers, only DNA data (by

excluding the letter ‘X’) from the two NNge rules were extracted for the process of

pairwise (local) sequence alignment. The two extracted NNge DNA (data) sequences

were pairwisely-aligned with polymorphic (converted) DNA sequences of original (Ps)

JS.Cassandra virus (JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and

malicious variant 2 (v_001.js), successively, using SWA and ID substitution matrix. The

processes of pairwise alignments were primarily performed to extract the common

substrings/meta-signatures. In total, 14 meta-signatures in its DNA representations were

extracted in this set of experiments (see Table 6.3 for more details). These meta-signatures

(in its DNA representations) were converted back into a hexadecimal format for testing

against the JS.Cassandra polymorphic malware family (see Table 6.6 and Figures 6.4 to

6.6 in Section 6.9 for more details – page nos. 141, 144-145). This conversion of DNA

into hex was necessary as all the malware (and non-malware) files can be represented in

hex, as it is the traditional human-decipherable representation of each byte’s value.

135

C - Third Set of Experiments

6.7. Experiment III - Identification of viral variants using NNge rule

extraction from multiply aligned variants in DNA format:

Systems and Methods

The method for Experiment III consists of seven steps (see Figure 6.3).

Hex to DNA Conversion

Pairwise local alignment

DNA to Hex Conversion

Hex Dump Extraction

Meta-signature testing

Rule Extraction

NNge classification

Multiple Sequence

Alignment

Figure 6.3: The ‘Identifying Viral Polymorphic Malware Variants using Data Mining

Rule-Based NNge Classification Algorithm (Experiment III)’ method comprising of

seven steps.

The same 22 hexadecimal dumps, 11 malicious (Pk) variants and 11 non-malicious (Pu)

variants of JS.Cassandra were employed in this experiment as were used in Experiments

I and II (see Section 6.3.1 – page no. 124). As for Experiment II, these 22 hexadecimal

dumps were converted into DNA sequences (Step-2) (see Section 6.3.4 – page no. 127).

136

This experiment takes a different approach than Experiments I and II, to dealing with the

need for fixed length sequences in order to generate rules using a data mining approach.

Multiple sequence alignment is undertaken prior to NNge rule generation to convert the

variable length sequences into fixed length sequences by inserting gaps. In Step-3, a

multiple sequence alignment using MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002;

Katoh & Standley, 2013; Katoh, 2018) was conducted on the 22 DNA sequences. All the

gaps introduced at this stage were substituted by the letter ‘X’. Figures F.7 and F.8 (see

Appendix F – page no. 244) are screenshots of the preprocess panel and the classifier

model and evaluation information (with/on full training set) within the classifier panel

obtained from Weka during the generation of NNge rules in this step (Step-4). Figure F.9

(see Appendix F – page no. 246) is a screenshot of the visualize panel showing 275

individual plot matrices between pos1-pos25 and pos47087-pos47097, where, blue

circles are malicious (‘M’), and red circles are non-malicious (‘NM’).

In Step-4, the same NNge classification was undertaken using Weka. The data was

converted into Weka’s ARFF file format. The 7.38MB file consisted of 93,438 attributes

and two classes malicious and non-malicious in this ARFF file. Three NNge rules (one

for the malicious class and two for the non-malicious class) were generated with an

accuracy of 100% in under 33 minutes. A partial segment of each of these NNge rules are

shown below:

Malicious (M) - class M IF : pos1 in {A,X} ^ pos2 in {G,X} ^ pos3 in {A,X} ^ pos4 in

{A,X} ^ pos5 in {C,X} ^ pos6 in {T,G,X} ^ pos7 in {A,G,X} ^ pos8 in {T,G,C,X} ^ pos9 in

{C,X} ^ pos10 in {T,G,X}...and so on.

Non-Malicious 1 (NM1) - class NM IF : pos1 in {X} ^ pos2 in {X}… ^ pos96 in {T,X} ^

pos97 in {A,X} ^ pos98 in {G,X} ^ pos99 in {A,X} ^ pos100 in {A,X} ^ pos101 in {C,X} ^

pos102 in {T,G,X} ^ pos103 in {G,C,X}...and so on.

Non-Malicious 2 (NM2) - class NM IF : pos1 in {X} ^ pos2 in {X}… ^ pos1294 in {X} ^

pos1295 in {C} ^ pos1296 in {A} ^ pos1297 in {G} ^ pos1298 in {T} ^ pos1299 in {C} ^

pos1300 in {A} ^ pos1301 in {T}...and so on.

In Step-5, three strings in DNA format were constructed based on each of these NNge

rules. The process of extraction of strings from the rules is the same as detailed in

Experiments I and II and any ‘X’ string extension characters were ignored. An example

of this string extract process from the rules for NM1 is: ‘TAGAACTGGC...’. The sequence

137

length of the resultant malicious DNA string was 161,495, whereas, the sequence lengths

of the non-malicious DNA strings were 59,740 (NM1) and 11,860 (NM2). Next, local

pairwise sequence alignment between these DNA sequences extracted from each of the

NNge rules and the polymorphic DNA sequences (obtained in Step-2) was performed

using SWA and the ID matrix, as per Experiments I and II. In this step (Step-6), common

substrings that are the meta-signatures for JS.Cassandra were extracted. In total 48 meta-

signatures were obtained: 31 from the alignment between the DNA sequence extracted

from the malicious NNge rule and the malicious DNA sequences, nine from the alignment

of the NM1 NNge rule and eight from the NM2 NNge rule (see Table 6.4).

The minimum and maximum sequence lengths of meta-signatures obtained from the first

set of alignments involving malicious NNge sequence were 12 and 117, respectively, with

a mean (sum, median and standard deviation of 1315, 32 and 27.201, respectively) of

42.42 for 31 signatures in their DNA representation. The minimum and maximum

sequence lengths of signatures obtained from the second set of alignments involving the

first non-malicious NNge sequence (NM1) were 35 and 162, respectively, with a mean

(sum, median and standard deviation of 566, 41 and 42.165, respectively) of 62.89 for

nine signatures in their DNA representation. The minimum and maximum sequence

lengths of signatures obtained from the third set of alignments involving the second non-

malicious NNge sequence (NM2) were 29 and 120, respectively, with a mean (sum,

median and standard deviation of 475, 45 and 38.127, respectively) of 59.37 for eight

signatures in their DNA representation (Table 6.4).

In the final step (Step-7), the meta-signatures were converted from DNA sequence format

into the hexadecimal format and then tested against JS.Cassandra and its known (Pk)

variants using five AVSs.

Scan results for AVG, AntiVir, and F-Prot were obtained from an open source online tool

known as ‘Gary’s Hood’ (Hood, 2016). ‘Gary’s Hood’ was used as it allows multiple files

to be scanned at once using these AVSs. As previously discussed in earlier chapters,

ESET AVS was installed on a private machine with a Windows operating system while

‘clamscan’ was installed on a private machine with a Linux Mint operating system. The

tests were run using the ClamAV database and using the own generated (.ndb) databases

containing the meta-signatures (see Appendix D – page no. 228 for more details). As

usual, the databases of all the AVSs had the latest updates installed at the time of the

experiments.

138

Table 6.4: Sequence lengths of all 48 extracted meta-signatures in DNA representation.

Class Pairwise Alignment
Meta-Signature

(3)

S
eq

u
en

ce

L
en

g
th

Malicious

(M)

Malicious DNA NNge Rule and Original Malicious

JS.Cassandra (JS.Cassandra.js) DNA Sequence

MS1 (3) 21

MS2 (3) 50

MS3 (3) 102

MS4 (3) 20

MS5 (3) 79

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 1 (v_000.js) DNA Sequence

MS6 (3) 21

MS7 (3) 59

MS8 (3) 110

MS9 (3) 117

Malicious DNA NNge Rule and JS.Cassandra Malicious

Variant 2 (v_001.js) DNA Sequence

MS10 (3) 50

MS11 (3) 29

MS12 (3) 33

MS13 (3) 32

MS14 (3) 32

MS15 (3) 15

MS16 (3) 22

MS17 (3) 32

MS18 (3) 66

MS19 (3) 33

MS20 (3) 35

MS21 (3) 28

MS22 (3) 33

MS23 (3) 12

MS24 (3) 31

MS25 (3) 35

MS26 (3) 68

MS27 (3) 26

MS28 (3) 32

MS29 (3) 32

MS30 (3) 35

MS31 (3) 25

Non-

Malicious1

(NM1)

Non-Malicious (NM1) DNA NNge Rule and Original

Malicious JS.Cassandra (JS.Cassandra.js) DNA Sequence
MS32 (3) 88

Non-Malicious (NM1) DNA NNge Rule and JS.Cassandra

Malicious Variant 1 (v_000.js) DNA Sequence MS33 (3) 162

Non-Malicious (NM1) DNA NNge Rule and JS.Cassandra

Malicious Variant 2 (v_001.js) DNA Sequence

MS34 (3) 45

MS35 (3) 35

MS36 (3) 36

MS37 (3) 81

MS38 (3) 39

MS39 (3) 41

MS40 (3) 39

Non-

Malicious2

(NM2)

Non-Malicious (NM2) DNA NNge Rule and Original

Malicious JS.Cassandra (JS.Cassandra.js) DNA Sequence

MS41 (3) 120

MS42 (3) 29

Non-Malicious (NM2) DNA NNge Rule and JS.Cassandra

Malicious Variant 1 (v_000.js) DNA Sequence

MS43 (3) 120

MS44 (3) 29

Non-Malicious (NM2) DNA NNge Rule and JS.Cassandra

Malicious Variant 2 (v_001.js) DNA Sequence

MS45 (3) 38

MS46 (3) 46

MS47 (3) 44

MS48 (3) 49

139

6.8. Summary – Third Set of Experiments

To summarise the third set of experiments, 351 polymorphic malicious variants of

JS.Cassandra virus along with the original (Ps) JS.Cassandra virus (a total of 352

polymorphic malicious files) were retained from the first set of experiments. All the 22

extracted hex dumps and the subsequent 22 converted DNA sequences of JS.Cassandra

virus (including DNA sequence of the additional polymorphic malicious file i.e. v_001.js

for use in Step-5) were also retained from the first set of experiments, for the process of

data mining and pairwise sequence alignment. As stated earlier, this conversion to DNA

was essential as the pairwise alignment of hex data cause issues to string matching

algorithms due to algorithmic complications in managing numeric data and code. All the

22 converted variable length DNA sequences (ignoring the additional polymorphic

malicious file) were converted into fixed length DNA sequences by the process of

multiple sequence alignment using MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002;

Katoh & Standley, 2013; Katoh, 2018). As stated earlier, this conversion was necessary

as most of the rule-based data mining classifiers accept fixed length sequences (Xinguang,

et al., 2009). All the converted fixed length DNA sequences were used to create an ARFF

file (with two classes – one for malicious and the other one for non-malicious) and then

later fed into Weka (see Figure F.7) (Frank, Hall, & Witten, 2016). Using the fed ARFF

file as the training set, NNge rule-based classifier was started, which generated three long

NNge rules with 100% accuracy (see Figure F.8). One NNge rule was generated for the

malicious class, whereas, the other two NNge rules were generated for the non-malicious

class (see Figure F.8). Since the three generated NNge rules were in the form of

associations with position numbers, only DNA data (by excluding the letter ‘X’) from the

two NNge rules were extracted for the process of pairwise (local) sequence alignment.

The three extracted NNge DNA (data) sequences were pairwisely-aligned with

polymorphic (converted) DNA sequences of original (Ps) JS.Cassandra virus

(JS.Cassandra.js) as well as its malicious variant 1 (v_000.js) and malicious variant 2

(v_001.js), successively, using SWA and ID substitution matrix. The processes of

pairwise alignments were primarily performed to extract the common sub-strings/meta-

signatures, which will be used to detect the original (Ps) malware and all its available

variants (Pk and Px) of the JS.Cassandra polymorphic family. In total, 48 meta-signatures

in its DNA representations were extracted in this set of experiments (see Table 6.4 for

more details). These meta-signatures (in its DNA representations) were converted back

into a hexadecimal format for testing against the JS.Cassandra polymorphic malware

140

family (see Table 6.6 and Figures 6.4 to 6.6 in Section 6.9 for more details – page nos.

141, 144-145). This conversion of DNA into hex was necessary as all the malware (and

non-malware) files can be represented in hex, as it is the traditional human-decipherable

representation of each byte’s value.

6.9. Experimental Results

6.9.1 Comparison of the data mining results obtained from three sets of

experiments as well as from other related and selected previous work

Table 6.5 presents the results of Experiments I, II and III and compares those results with

the virus detection results presented in previously published works. In the case of the

work by Chen et al., 2012b only the percentage of correctly detected and incorrectly

detected instances were reported (as for J48 method) and in the case of Prabha and

Kavitha (2012) no performance metrics were reported. In the case of Srakaew,

Piyanuntcharatsr, and Adulkasem (2015) other overall performance metrics such as true

positive rate, false positive rate, precision, recall and F1 score were not reported but

instead reported metrics for the four individual datasets. These results are not presented

here.

Experiments I and III gave results which outperformed those previously reported

achieving 100% correctly classified instances and thus 0% incorrectly classified

instances. Although Experiment II reported achieving 100% incorrectly classified

instances and thus 0% correctly classified instances, the meta-signatures extracted in this

experiment successfully identified the JS.Cassandra variants. Meta-signatures extracted

in Experiment III were the most effective (~62%) of all followed by the meta-signatures

extracted in Experiments I (~55%) and II (43%). The fact that the meta-signatures in DNA

format performed better if the DNA sequences were aligned prior to rule mining

(Experiment III vs. Experiment II) and extraction is reflected somewhat in the results of

the work reported by Chen et al., 2012b where improved classification was observed if

J48 classification was performed after a double alignment process.

141

Table 6.5: Comparison of the results of Experiments I-III with those reported previously

for data mining approaches to malware detection reported in the literature.

Data Mining based

Techniques

C
o

rr
ec

tl
y

C
la

ss
if

ie
d

In
st

a
n

ce
s

(%
)

In
co

rr
ec

tl
y

C
la

ss
if

ie
d

In
st

a
n

ce
s

(%
)

T
P

 (
T

ru
e

P
o

si
ti

v
e)

R
a

te

F
P

 (
F

a
ls

e

P
o

si
ti

v
e)

R
a

te

P
re

ci
si

o
n

R
ec

a
ll

F
1

 S
co

re

Experiment I 100.00% 0.00% 1 0 1 1 1

Experiment II 0.00% 100.00% 0 1 0 0 0

Experiment III 100.00% 0.00% 1 0 1 1 1

Chen, et al.,

2012b – J48

before

alignment

Training 85.00% 15.00% - - - - -

5-fold cross

validation
60.00% 40.00% - - - - -

10-fold cross

validation
63.33% 36.67% - - - - -

15-fold cross

validation
68.33% 31.67% - - - - -

20-fold cross

validation
60.00% 40.00% - - - - -

Chen, et al.,

2012b – J48 after

double

alignment

Training 96.67% 3.33% - - - - -

5-fold cross

validation
78.33% 21.67% - - - - -

10-fold cross

validation
66.67% 33.33% - - - - -

15-fold cross

validation
70.00% 30.00% - - - - -

20-fold cross

validation
63.33% 36.67% - - - - -

(Kumar &

Mishra, 2013)

Existing

(known) dataset
95.9752% 4.0248% 0.96 0.094 0.962 0.96 0.959

New (unknown)

Dataset
86.6873% 13.3127% 0.867 0.275 0.872 0.87 0.858

(Prabha &

Kavitha, 2012)
- - - - - - - -

Statistical

methods

(Srakaew,

Piyanuntcharatsr,

& Adulkasem,

2015)

Reference Set 98.9167% 1.0833% - - - - -

Application Set 95.0477% 4.9523% - - - - -

10-fold cross

validation
95.333% 4.667% - - - - -

Abstract assembly

method (Srakaew,

Piyanuntcharatsr,

& Adulkasem,

2015)

Reference Set 99.75% 0.25% - - - - -

Application Set 98.39% 1.661% - - - - -

10-fold cross

validation
99.5% 0.5% - - - - -

6.9.2 An evaluation of the state of the art AVSs and the meta-signatures on

the detection of JS.Cassandra polymorphic malware and its variants

Table 6.6 presents the detection ratio obtained using the meta-signatures generated in

Experiments I to II and five current state of the art AVSs. The malicious meta-signatures

MS4 (1), MS9 (2), and MS26 (3) and the non-malicious meta-signatures MS35 (3) and

MS37 (3) all successfully identified all 352 known (Pk) malicious polymorphic variants

of the JS.Cassandra virus. None of the five state of the art AVSs fully identified all of

these known (Pk) JS.Cassandra variants.

142

Table 6.6: Detection ratio using five state of the art AVSs and the 14 most effective

malicious and 8 non-malicious meta-signatures from Experiments I to III with

‘clamscan’.

Files Scanned Metrics

Virus Identification Method

AVG AntiVir ClamAV ESET F-Prot

352 known (Pk)

JS.Cassandra

Malicious Variants

Detection Ratio

(Accuracy)

312/352

(88.64%)

25/352

(7.10%)

340/352

(96.59%)

296/352

(84.09%)

4/352

(1.14%)

Sensitivity/Recall 88.64% 7.10% 96.59% 84.09% 1.14%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 93.97% 13.26% 98.26% 91.36% 2.25%

43 JS.Cassandra

Non-Malicious (Pu)

Variants

Detection Ratio

(Accuracy)
0/43 (0.00%) 1/43

(2.32%)

0/43

(0.00%)

0/43

(0.00%)

0/43

(0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 97.67% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random

JavaScript Files

Detection Ratio

(Accuracy)
0/352 (0.00%) 0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Files Scanned Metrics

Malicious

MS1 (1) and

MS3 (2) Non-

Malicious

MS41 (3) and

MS43 (3)

Malicious

MS3 (1)

and MS6

(2)

Malicious

MS7 (2)

Malicious

MS4 (1)

MS9 (2)

Non-

Malicious

MS37 (3)

Malicious

MS5 (3)

352 known (Pk)

JS.Cassandra

Malicious Variants

Detection Ratio

(Accuracy)

340/352

(96.59%)

85/352

(24.15%)

325/352

(92.33%)

352/352

(100%)

340/352

(96.59%)

Sensitivity/Recall 96.59% 24.15% 92.33% 100% 96.59%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 98.26% 38.90% 96.01% 100% 98.26%

43 JS.Cassandra

Non-Malicious (Pu)

Variants

Detection Ratio

(Accuracy)
6/43 (13.95%) 1/43

(2.32%)

20/43

(46.51%)

43/43

(100%)

8/43

(18.60%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 86.05% 97.67% 53.49% 0.00% 81.39%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random

JavaScript Files

Detection Ratio

(Accuracy)
0/352 (0.00%) 0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

143

Files Scanned Metrics
Malicious

MS9 (3)

Malicious

MS15 (3)

Malicious

MS20 (3)

Malicious

MS24 (3)

Malicious

MS26 (3)

352 known (Pk)

JS.Cassandra

Malicious Variants

Detection Ratio

(Accuracy)

329/352

(93.46%)

344/352

(97.73%)

191/352

(54.26%)

202/352

(57.39%)

352/352

(100%)

Sensitivity/Recall 93.46% 97.73% 54.26% 57.39% 100%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 96.62% 98.85% 70.35% 72.93% 100%

43 JS.Cassandra

Non-Malicious (Pu)

Variants

Detection Ratio

(Accuracy)
1/43 (2.32%) 29/43

(67.44%)

9/43

(20.93%)

14/43

(32.56%)

43/43

(100%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 97.67% 32.56% 79.07% 67.44% 0.00%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random

JavaScript Files

Detection Ratio

(Accuracy)
0/352 (0.00%) 0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Files Scanned Metrics
Malicious

MS27 (3)

Non-

Malicious

MS7 (1)

and

MS11 (2)

Non-

Malicious

MS8 (1)

Non-

Malicious

MS12 (2)

Non-

Malicious

MS35 (3)

352 known (Pk)

JS.Cassandra

Malicious Variants

Detection Ratio

(Accuracy)

140/352

(39.77%)

339/352

(96.31%)

140/352

(39.77%)

325/352

(92.33%)

352/352

(100%)

Sensitivity/Recall 39.77% 96.31% 39.77% 92.33% 100%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 56.91% 98.12% 56.91% 96.01% 100%

43 JS.Cassandra

Non-Malicious (Pu)

Variants

Detection Ratio

(Accuracy)
3/43 (6.98%) 37/43

(86.04%)

16/43

(37.21%)

20/43

(46.51%)

43/43

(100%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 93.02% 13.95% 62.79% 53.49% 0.00%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random

JavaScript Files

Detection Ratio

(Accuracy)
0/352 (0.00%) 0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

0/352

(0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Non-malicious MS7 (1) and non-malicious MS11 (2) identified 339 out of the 352 (with

96.31% accuracy) JS.Cassandra polymorphic malware files, whereas, non-malicious

MS41 (3) and non-malicious MS43 (3) identified 340 out of the 352 (with 96.59%

accuracy/detection rate) JS.Cassandra polymorphic malware (Pk) files, respectively.

Malicious MS1 (1) and malicious MS3 (2) identified 340 out of the 352 (with 96.59%

accuracy/detection rate) JS.Cassandra polymorphic malware (Pk) files, whereas,

malicious MS15 (3) identified 344 out of the 352 (with 97.73% accuracy/detection rate)

JS.Cassandra polymorphic malware (Pk) files, respectively.

144

Malicious MS4 (1), malicious MS9 (2), malicious MS26 (3), non-malicious MS35 (3)

and non-malicious MS37 (3) were the only five meta-signatures that fully identified all

43 non-malicious JS.Cassandra polymorphic (Pu) files. These meta-signatures not only

identified 352 malicious files successfully but also identified 43 non-malicious (Pu) files.

As noted earlier, non-malicious (Pu) files still had some polymorphic functions intact

inside. All the 43 non-malicious (Pu) files were still executable, but a few gave JavaScript

runtime and compilation errors. These executable non-malicious (Pu) files might cause

some serious potential threats, as the polymorphic functions inside these files might still

make them polymorphic, in some cases. The results presented in Tables 6.1 and 6.6 shows

that none of the existing AVSs fully identified these executable so-called non-malicious

files (Pu) as malicious.

Malicious MS2 (1), non-malicious MS5 (1), non-malicious MS6 (1) and non-malicious

MS9 (1) from Experiments 1 and malicious MS1 (2), malicious MS2 (2), malicious MS4

(2), malicious MS5 (2), malicious MS8 (2), non-malicious MS10 (2), non-malicious

MS13 (2) and non-malicious MS14 (2) from Experiment II could not identify any of the

352 known (Pk) JS.Cassandra malicious variants, the 43 non-malicious (Pu) polymorphic

variant files or the 352 randomly generated JavaScript files. Furthermore, malicious MS1

(3), malicious MS2 (3), malicious MS6 (3), malicious MS7 (3), malicious MS8 (3),

malicious MS10 (3), malicious MS12 (3), malicious MS13 (3), malicious MS14 (3),

malicious MS16 (3), malicious MS18 (3), malicious MS21 (3), malicious MS22 (3),

malicious MS28 (3), malicious MS29 (3), malicious MS31 (3), non-malicious MS32 (3)

and non-malicious MS36 (3) from Experiment III could not identify any of the

JS.Cassandra 352 (known – Pk) malicious, the 43 non-malicious (Pu) polymorphic variant

files or the 352 randomly generated JavaScript files. In total, 30 out of the 71 meta-

signatures i.e. around 42.25% [30.98% malicious (22/71) and 11.27% non-malicious

(8/71) meta-signatures] detected no variants from the three types of groups (i.e. malicious

(Pk), non-malicious (Pu) and random). Specifically, four out of the nine meta-signatures

i.e. 44.44% [11.11% malicious (1/9) and 33.33% non-malicious (3/9) meta-signatures]

from first set of experiments and eight out of the 14 meta-signatures i.e. 57.14% [36%

malicious (5/14) and 21.43% non-malicious (3/14) meta-signatures] from second set of

experiments detected no variants from the three different types of groups. Moreover, 18

out of the 48 meta-signatures i.e. 37.50% [33.33% malicious (16/48) and 4.16% non-

malicious (2/48) meta-signatures] from the third set of experiments detected no variants

from the three different types of groups.

145

Figure 6.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 known (Pk) JS.Cassandra polymorphic malicious (Pk) variant files using the 71 meta-

signatures.

Figure 6.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

43 JS.Cassandra polymorphic non-malicious (Pu) variant files using the 71 meta-

signatures.

146

Figure 6.6: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 random JavaScript files using the 71 meta-signatures.

All the 71 meta-signatures (nine meta-signatures from the first set of experiments, 14

meta-signatures from the second set of experiments and 48 meta-signatures from the third

set of experiments) were tested at once against the 352 known (Pk) JS.Cassandra

polymorphic malicious files, 43 JS.Cassandra polymorphic non-malicious (Pu) variants

and 352 random JavaScript files individually using ‘clamscan’ antivirus scanner.

Figures 6.4 to 6.6 are the screenshots of the scan results indicating that 352 out of the 352

malicious (Pk) files, 43 out of the 43 non-malicious (Pu) files and 0 out of the 352

randomly generated JavaScript files were successfully detected as infected by the

‘clamscan’ antivirus scanner using the 71 meta-signatures in 0.716 second, 0.029 second

and 0.410 second, respectively.

The 71 meta-signatures were tested at once against the 100 unknown (Px) JS.Cassandra

malicious variants using Clamscan antivirus scanner by using the own generated (.ndb)

database (see Appendix D – page no. 228 for more details). The uniqueness of these 100

new (Px) malware variants was cross-checked by generating a CRC32b hash value for

each variant, and no duplicates were found (see Appendix H – page no. 251 for more

details). Table 6.7 gives the detection ratio obtained by testing the 71 meta-signatures

generated in Experiments I to III and two current state of the art AVSs (ClamAV and

147

Bitdefender Total Security 2018) against the 100 new (Px) JS.Cassandra variants. The

state of the art ClamAV and Bitdefender Total Security 2018 AVSs had overall accuracies

of 85% and 0%, respectively, and meta-signatures from Experiments I-III using Clamscan

had overall accuracies of 100%, across all three experiments (see Table 6.7). Table 6.7

shows that all 100 (accuracy of 100%) JS.Cassandra unknown (Px) variants were

successfully detected by the Clamscan using the .ndb database.

Table 6.7: Detection ratio using two state of the art AVSs and the 71 meta-signatures

obtained from Experiments I to III with Clamscan antivirus scanner.

Files Scanned Metrics

Virus Identification Method

ClamAV

Bitdefender

Total

Security

2018

Nine

Meta-

Signatures

(Experiment I)

14

Meta-Signatures

(Experiment II)

48

Meta-Signatures

(Experiment III)

100 unknown

(Px)

JS.Cassandra

Malicious

Variants

Detection Ratio

(Accuracy)

85/100
(85.00%)

0/100
(0.00%)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

Sensitivity/Recall 85.00% 0.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00% 100.00%

F1 Score 91.89% 0.00% 100.00% 100.00% 100.00%

45 out of the 71 meta-signatures were tested for false positives. Any duplicate meta-

signatures along with meta-signatures that were six characters or below were removed.

In total, 26 meta-signatures (i.e. 16 malicious and 10 non-malicious) were removed from

the own generated (.ndb) database (see Appendix D – page no. 228 for more details).

These meta-signatures were tested against the 352 known (Pk) variants, 43 non-malicious

(Pu) variants, 100 new (Px) variants and 18,127 clean files. The clean files contained a

combination of 9000 PDF files, 500 Microsoft document files, 96 Linux files, 100 JAR

files, 108 PDF files with embedded 3D videos, 200 RTF files and 8,123 Microsoft

Windows files. These files were obtained from a BlogSpot called “contagio malware

dump” (Parkour, 2013). Figure 6.7 shows the bar graphs of the detection scan results

(accuracies) indicating that 352 of the 352 known (Pk) malicious variants, 43 of the 43

non-malicious (Pu) variants and 100 of the 100 unknown (Px) malicious variants were

successfully identified as infected by the Clamscan antivirus scanner using the 45 meta-

signatures. Figure 6.7 shows that only 29 of the 18,127 clean files were detected as false

positives (0.159% false positive rate) using the 45 meta-signatures, additionally,

satisfying the false positive rate requisite of 0.1%.

148

Figure 6.7: Bar graphs demonstrating the detection scan results (accuracies) of

JS.Cassandra virus family and clean files using the 45 meta-signatures.

6.10. Summary

In this chapter, some of the limitations (discussed in Section 1.5.5 – see page no. 17) of

previous work reported in this thesis (see Chapters 4 and 5) were addressed. A proposed

syntactic structure approach was investigated and three sets of experiments conducted

which involved various approaches to automatic signature extraction using the NNge

classifier to generate rules that distinguish between malicious (Pk) and non-malicious (Pu)

files.

Table 6.8 summarises the key features and steps involved in these three experiments.

Experimental results from this testing process are provided in Table 6.6, Table 6.7,

Figures 6.4 to 6.6 and Figure 6.7. The results show that this proposed string-based

syntactic approach using an NNge rule generation and subsequent extraction and

sequence alignment using SWA can successfully generate signatures which are capable

of identifying the known (Pk) and unknown (Px) polymorphic variants of the JS.Cassandra

virus.

It was found from the experiments conducted in this chapter that Experiment III gave the

highest number of successful meta-signatures than Experiments I and II. Experiment II

gave the lowest number of successful meta-signatures. Not only did Experiment III gave

the highest number of meta-signatures, but it also gave the highest number of effective

meta-signatures. Moreover, Experiment III generated unseen meta-signatures that were

not generated in Experiments I and II. The importance of multiple sequence alignment

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

JS.Cassandra
Malicious known

(Pk) variants

JS.Cassandra
Non-malicious
(Pu) variants

JS.Cassandra
Unknown (Px)

variants

Clean (benign)
files

100% 100% 100%

0.159%

Accuracy

149

prior to data mining significantly improved both the quality and quantity of meta-

signatures in comparison to Experiments I and II. In comparison to previous work

reported in this thesis (Chapters 4 and 5), the proposed syntactic structure approach to

automatic signature extraction using NNge successfully addressed the limitations of

previous work by generating signatures in the quickest, simplest and most accurate

manner.

The next chapter investigates whether biosequence analysis techniques, such as the

sequence alignment and phylogenetics, can lead to syntactic approach for the automatic

extraction of syntactic viral signatures for a metamorphic virus family. Experiments are

reported that are designed to address the final research question (Q4).

150

Table 6.8: The key features and steps involved in experiments conducted in this chapter.

Features/Steps Experiment I Experiment II Experiment III

Hex to DNA

conversion

For pairwise sequence

alignment only.

For data mining and

pairwise sequence

alignment.

For multiple sequence

alignment, data mining,

and pairwise sequence

alignment.

Multiple sequence

alignment for data

mining

No No Yes

Conversion of

variable length

sequences into fixed

length sequences

By adding the letter ‘x’

towards the end of each

sequence until all the

variable length

sequences were of

equal lengths.

By adding the letter ‘X’

towards the end of each

sequence until all the

variable length

sequences were of

equal lengths.

By the process of

multiple sequence

alignment. All the gaps

introduced by the

process of alignment

were substituted by ‘X’.

Total attributes for

data mining
24,565 49,129 93,438

Total number of

labels for data mining

17 (hex labels: a-f, 0-9

and x)

Five (DNA labels:

A,T,G,C and X)

Five (DNA labels:

A,T,G,C and X)

File size of ARFF file 2.49 MB 3.87 MB 7.38 MB

Total time taken to

generate NNge results

by Weka

2 minutes and 32

seconds

6 minutes and 13

seconds

32 minutes and 28

seconds

Time taken to build

model
0.62 second 0.73 second 1.23 seconds

Correctly classified

instances (%) -

Accuracy

22/22 (100.00%) 0/22 (0.00%) 22/22 (100.00%)

Incorrectly classified

instances (%) -

Inaccuracy

0/22 (0.00%) 22/22 (100.00%) 0/22 (0.00%)

Kappa statistic 1 -1 1

Mean absolute error 0 1 0

Root mean squared

error
0 1 0

Relative absolute

error (%)
0.00% 200.00% 0.00%

Root relative squared

error (%)
0.00% 200.00% 0.00%

Total number of

instances
22 22 22

Total number of rules

generated

Two (one for malicious

class and one for non-

malicious class)

Two (one for malicious

class and one for non-

malicious class)

Three (one for

malicious class and two

for non-malicious class)

Sequence lengths of

extracted hex/DNA

data from generated

rules

Malicious (hex):

246,676

Non-Malicious (hex):

74,498

Malicious (DNA):

132,103

Non-Malicious (DNA):

41,670

Malicious (DNA):

161,495

Non-Malicious 1

(DNA): 59,740

Non-Malicious 2

(DNA): 11,860

Total number of

pairwise alignments

performed

Six (three each for

malicious and non-

malicious classes)

Six (three each for

malicious and non-

malicious classes)

Nine (three each for

malicious, non-

malicious 1 and non-

malicious 2 classes)

Total number of

meta-signatures

generated

Nine (Four for

malicious class and five

for non-malicious class)

14 (Nine for malicious

class and five for non-

malicious class)

48 (31 for malicious

class, nine for non-

malicious class 1 and

eight for non-malicious

class 2)

151

Chapter 7 Detection of Metamorphic Virus Variants and

Classification of their Signatures adopting

Biosequence Analysis Techniques

This chapter focuses on the detection of metamorphic virus and its variants using the

biosequence analysis techniques. Sequence alignment and phylogenetic tree analysis are

adopted in this chapter to extract syntactic viral signatures for the detection of

metamorphic virus family and their classification.

7.1. Introduction

In previous work (Chapter 4 to 6), a JavaScript-based polymorphic virus known as

JS.Cassandra was investigated syntactically through biosequence techniques for

experimental and testing purposes. In this chapter, a JavaScript-based metamorphic virus

known as Transcriptase (see page no. 225 for more details) is investigated, again for

experimental and testing purposes. An established variant of Transcriptase is analysed,

where dead code is applied into compromised files. This technique of dead code insertion

modifies the statistical aspects of the code, and the resulting virus variants are harder to

identify using statistical and structural methods. The same variant of Transcriptase

(Transcriptase, 2013) along with two different datasets belonging to the Transcriptase

family are considered in this research.

In this chapter, the aim is to extend a syntactic study of the likelihood of generating

signatures automatically from malware code without the requirement for semantic

analysis. Whereas previous syntactic work (Chapter 4 to 6) employed sequence

alignments to obtain consensuses from malware code variants with the intent of

generating the minimum attainable number of signatures for identifying those variants

and for previously unseen (Pu) variants, no effort was made to make the most of a by-

product of the alignment, which is the output of equal length malware code of variants.

Additionally, previous work mainly focused on detecting the known (Pk) and unknown

(Px) variants of several polymorphic malware families. There was no attempt made to test

the capability of signature-based syntactic detection method on detecting metamorphic

malware.

Another aim of this chapter is to distinguish the parent variants from the child variants

belonging to a Transcriptase metamorphic virus family using phylogenetic tree analysis.

If both the parent and child variants have originated from an original Transcriptase root

152

and the parent variants are the first set of variants to have been generated, then the child

variants are the second set of variants to have been generated after the generation of parent

variants. Phylogenetic tree analysis is used in this research to infer the evolutionary

relationships between possible parent and child variants belonging to the Transcriptase

metamorphic virus family.

7.2. String-Based Syntactic Detection of Metamorphic Virus Variants

Method: Systems and Methods

Step-4: Pairwise Sequence Alignment

Step-5: Signature Generation

Step-7: Phylogenetic Tree Analyzing and Interpretation

Preliminary Step-I: Obtaining Transcriptase Malware Datasets

Step-3: Multiple Sequence Alignment (MSA) and Consensus Extraction

Step-8: Conversion of Signatures from Amino Acid into Hexadecimal

Preliminary Step-II: Separation of Training Set from Test Set

Step-1: Hex Dump Extraction

Step-6: Phylogenetic Tree Construction

Step-2: Converting Hex Dumps into Amino Acid Sequences for Biosequence

Analyses

Step-9: Signature Testing and Classification

Figure 7.1: The nine steps in the String-Based Syntactic Detection of Metamorphic

Malware Variants method.

The method adopted here consists of nine steps (see Figure 7.1). Downloading all the

metamorphic malware and its variants, as well as hex (hexadecimal) dump extraction and

testing were undertaken on a stand-alone system to prevent possible unintended infection

of other systems. Network connectivity was used only at the testing stage as previous

153

experiments. More information with regards to the nine steps are detailed in Section 7.2.3

(see page no. 154).

7.2.1 Datasets

Two individual datasets of Transcriptase are used in this research for experimental and

testing purposes. Dataset 1 was generated during this research by adopting the

information contained in documents supplied by the malware writer and dataset 2 was

generated by the original writer of the Transcriptase malware. Further information

regarding dataset 2 can be found in (Second Part To Hell, 2018). Dataset 1 was generated

from the original Transcriptase files provided in (Transcriptase, 2013). Overall, dataset 1

contains 353 unique variants along with the original Transcriptase malware (making a

total of 354 malicious files) and dataset 2 contains 1,397 unique variants. Both these

datasets were scanned using 59 different commercial antivirus scanners for their

maliciousness. All these scanners are widely used and the datasets were scanned using

VirusTotal (VirusTotal, 2018). Only Microsoft Security Essentials could detect some of

the variants successfully. In this research, dataset 1 is used as a training set and dataset 2

as a test set.

Table 7.1: Four different datasets used in this research along with their sources.

Datasets Type of Dataset Source
Total Number of

Files

Dataset 1

(Training Set)

Malicious

JavaScript Files
JS.Transcriptase (Transcriptase, 2013) 354

Dataset 2

(Test Set)

Malicious

JavaScript Files
JS.Transcriptase (Second Part To Hell, 2018) 1,397

Dataset 3

(Test Set)

Benign JavaScript

Files

Cassandra Project JavaScript Repository

(Cassandra, 2018)
34

DataTables JavaScript Repository (MIT license,

2017)
18

jQuery JavaScript Repository (The jQuery

Foundation, 2018)
134

threejs JavaScript 3D Library (Mr.doob, 2018) 952

AngularJS JavaScript HTML Enhanced Library

(MIT License, 2018)
1,061

HTML5 Charts JavaScript Library (MIT license,

2018)
93

impress.js JavaScript Library (Szopka & Ingo,

2018)
26

usejsdoc JavaScript Library (Mathews, 2017) 299

Total files 2,617

Dataset 4

(Test Set)

Benign

Miscellaneous Files

PDF files (Parkour, 2013) 9,110

Microsoft files (Parkour, 2013) 500

Linux files (Parkour, 2013) 96

JAR files (Parkour, 2013) 50

RTF files (Parkour, 2013) 200

Windows system files (Naidu V. , 2018) 8,172

Total files 18,128

154

In addition to datasets 1 and 2, two other datasets (i.e. datasets 3 and 4) are used in this

research for verifying the efficacy of the classified signatures. These datasets will be used

as the test sets. Dataset 3 will contain several benign JavaScript files obtained from

different sources. These JavaScript files will help to check for false positives and will be

an ideal dataset as the malware datasets considered in this research are simply JavaScript

files. Dataset 4 comprises a combination of miscellaneous files. It contains several PDF,

Word, Excel, PowerPoint, JAR, RTF, Linux and Windows system files. More detailed

information about these datasets can be found in Table 7.1.

7.2.2 Sequence alignments and Phylogenetics

In this research work, multiple sequence alignment (MSA) is used to align the hex dump

sequences (after converting them into amino acid sequences) of Transcriptase family.

MSA is performed with the help of the online web application MAFFT (version 7)

(Katoh, Misawa, Kuma, & Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) and

BLOSUM62 (Henikoff & Henikoff, 1992; Eddy, 2004) is used as a substitution/scoring

matrix with a gap opening penalty of 1.53. An automated strategy of either the progressive

approach (FFT-NS-2) or the iterative refinement approach (FFT-NS-i) implemented by

MAFFT is adopted here. The resulting alignment file is used to generate a consensus

which is extracted using Jalview (Waterhouse, Procter, Martin, Clamp, & Barton, 2009;

Jalview, 2018). The extracted consensus is pairwise-aligned with hex dump sequence of

the original Transcriptase malware. Pairwise alignment is performed using EMBOSS

Matcher (Huang & Miller, 1991; EMBOSS Matcher, 2018) and BLOSUM62 is used as

a substitution matrix with gap open and gap extend penalties of 10 and 1. EMBOSS

Matcher adopts a local alignment technique described by Waterman-Eggert (Waterman,

Smith, & Beyer, 1976; Smith & Waterman, 1981; Waterman & Eggert, 1987). The

resulting alignment file is used to extract signature/malware patterns (syntactic virus

signatures).

The final stage in this research is to generate a phylogenetic tree. Phylogenetic tree is

generated by employing the same set of hex dump sequences that is used for the process

of MSA. Due to the large size of hex dump sequences, an online web application known

as Phylo.io (Robinson, Dylus, & Dessimoz, 2016; Phylo.io, 2018) is adopted. Phylio.io

is used to analyse and visualise the phylogenetic tree. Phylo.io is available within MAFFT

web application. A rough tree option is selected to generate the tree using automatic

distance measure and average linkage (UPGMA) clustering method. As stated earlier (in

155

page no. 25), the resulting phylogenetic tree is used to classify variants of the

Transcriptase family with the help of which the extracted signature patterns are classified

into two different groups and later used for testing against the malicious and benign

datasets.

7.2.3 Proposed method comprising of nine steps

Preliminary Steps I and II: 14 training variants out of 354 instances were selected from

dataset 1 (training set) for experimental purposes. The percentage of training to test ratio

is 3.95% (14:354). A small percentage of training to test samples was adopted to

approximate the real-world problem of detecting effective signatures from a small,

formerly encountered batch of known variants for dealing with a possibly infinite batch

of unknown variants. A CRC32b hash value was created for each of the 14 training

variants and no duplicates were discovered, signifying that they were different. The

proposed method comprises of nine steps (see Figure 7.1).

Step-1 (Hex dump extraction): Hex dumps were extracted from each of the 14 training

variants using sigtool, which is freely available on the ClamAV (ClamAV, 2018) web

page.

Step-2 (Hex dump to amino acid conversion): Hex dumps of the 14 training variants

were converted into amino acid (protein) sequences adopting the encoding method

proposed in previous chapters. Conversion of hexadecimal characters (i.e. 0-16, a-f) into

amino acid sequences were accomplished adopting the following rules (hex → amino

acid): ‘0’ → ‘G’; ‘1’ → ‘H’; ‘2’ → ‘I’; ‘3’ → ‘R’; ‘4’ → ‘K’; ‘5’ → ‘L’; ‘6’ → ‘M’; ‘7’

→ ‘N’; ‘8’ → ‘Q’; ‘9’ → ‘P’; ‘a’ → ‘A’; ‘b’ → ‘B’; ‘c’ → ‘C’; ‘d’ → ‘D’; ‘e’ → ‘E’;

and ‘f” → ‘F’. For instance, the hex string ‘0123456789abcdef’ becomes

‘GHIRKLMNQPABCDEF’ (amino acid sequence).

Step-3 (MSA and consensus generation): In this step, MSA is applied on only six of

the 14 converted amino acid sequences using MAFFT. Only six training sequences were

selected due to sequence size constraints placed by MAFFT. MSA is a process of

matching three or more related amino acid or nucleotide (DNA) sequences. In

bioinformatics, the main purpose of MSA is to infer the presence of

ancestral/evolutionary relationships among the sequences. In this proposed method, the

primary purpose of MSA was to extract annotations i.e. consensus sequence data from

the resulting alignment using Jalview. Consensus sequence is a representation of most

156

common amino acids in a multiple protein alignment. Figure 7.2 shows the resulting MSA

in Jalview. The sequence length of the extracted consensus was 909,393 amino acids long.

Figure 7.2: Jalview showing the MSA results generated in step-3.

Step-4 (Pairwise sequence alignment): In this step, the consensus sequence is pairwise-

aligned with each of the 14 amino acid sequences from step-2 using EMBOSS Matcher.

In bioinformatics, the purpose of pairwise alignment is to determine the regions of

similarities (or conserved regions) that may signify structural, functional and/or

evolutionary relationships among two amino acid or nucleotide sequences. In this

proposed method, the main aim of pairwise alignment was to extract the regions of

similarities from the resulting alignment (in the next step), which later becomes the

signatures used to detect the variants of Transcriptase family. The resulting alignment

from EMBOSS Matcher generated an alignment score of 695,878, identity percentage of

42.3%, similarity percentage of 48.4% and gaps percentage of 37.9%. Parts of the

resulting alignment are shown below, where CS and TO signify the amino acid sequences

of consensus and the original transcriptase malware. The numbers indicate the alignment

positions/locations of the given sequences (i.e. CS and TO). ‘.’ means low level of amino

157

acid similarity and ‘:’ means high level of amino acid similarity. ‘|’ means identical

amino acid residues. ‘-’ represents gaps.

CS 138024 INIBINMPMEMNIEINIBINMLNIMEIGNAIKMRKNQIGMDBI------- 138066

 |.|...:.:|:...::::..|.|||..|| ||....:|...|

TO 173 IGIGKALRIELKNIMHMENRMRNIMPNGN--KMHNRMLGDGAIFIFIGIG 220

CS 138067 -MNPMDHNIMIKRMFMKMLIGQBNRKRNRKPIMPIBINIBMMKNMLPRNM 138115

 :||:... |:.||||:|.||......|: |.:.:.:.|.||

TO 221 MINPIGLR-MLMRMFMEMKIGLGMHNINK-----IGLKMFIGKQML---- 260

CS 138116 MLMCDIMACLM--RINKPINEIMPMEM---NILNRQRKR----------- 138149

 |.||...|..: .|.|.:...|.|:| ||:.|.|.|

TO 261 MCMCGDGAIFIFIGIGKKMLMRMLMDMIMLNIIGRIRGRHRIGDGAIFIF 310

Step-5 (Signature generation/extraction): In this step, signatures were extracted in the

form of regions of similarities from the resulting pairwise alignment conducted in step-4.

Only the regions of similarities that were sequentially longer than 10 amino acids were

retained. In total, 373 signatures were extracted.

Step-6 (Phylogenetic tree construction): In this step, 14 amino acid sequences from

step-2 were used to generate a phylogenetic tree. A rectangular lined up cladogram tree

was generated in this step. A file in FASTA format was created which incorporated all

the 14 sequences. The file was uploaded to Phylo.io website and the tree was generated.

Figure 7.3 shows the phylogenetic tree that was generated using Phylo.io.

Step-7 (Phylogenetic tree analysing and interpretation): In this step, the phylogenetic

tree generated from the previous step was analysed and interpreted. The tree demonstrated

two major clads/groups. First clad comprised of three sequences/variants (1_vic1, 2_vic2

and 3_vic3) and categorised them as parent sequences/variants. Second clad comprised

of two sub-clads. First sub-clad consisted of only one sequence (4_o), which belonged to

the sequence of the original Transcriptase malware. Second sub-clad consisted of 10

sequences/variants (5_var1, 6_var2, 7_var3, 8_var4, 9_var5, 10_var6, 11_var7, 12_var8,

13_var9 and 14_var10) and categorised them as child sequences/variants.

158

Step-8 (Conversion of signatures from amino acid into hexadecimal): In this step, the

signatures generated in step-5 were converted back to hexadecimal strings using the

encoding method demonstrated in step-2. The conversion was needed as the signatures

were tested in the following step against the Transcriptase malware variants using

clamscan, which is a part of ClamAV (ClamAV, 2018) and only accepts signatures in

hexadecimal format.

Figure 7.3: The phylogenetic tree of 14 Transcriptase sequences generated using

Phylo.io.

Step-9 (Signature testing and classification): In this final step, individual signature

testing and signature classification were accomplished. The signatures were classified

after the first signature testing against dataset 1 (training set). The signatures were

classified into two different categories, namely, parent and child signatures. A set of

signatures that successfully identified all the variants of dataset 1 was labelled as parent

signatures and a set of signatures that successfully identified all the variants except for

parent variants was labelled as child signatures. There were only three parent variants in

dataset 1 and they were all considered in the phylogenetic tree analysis. The original

filenames of those three parent variants were victim1, victim2 and victim3 and were the

files through which all the other child variants originated. This information was not fed

into the phylogenetic tree analysis. Instead, the phylogenetics algorithm determined their

relationship simply on the strength of their file ancestry/history (see

Figure 7.3). All the remaining signatures including duplicates were discarded.

159

Second signature testing was conducted against datasets 2-4 (test sets) to verify the

effectiveness of the signatures and their test statistics, such as true positive, true negative,

false positive and false negative (as discussed in page no. 59). Additional test statistics,

such as sensitivity/recall/true positive rate (TPR), specificity/true negative rate (TNR) and

precision/positive predictive value (PPV) were also assessed. More details related to this

can be found in the experimental results section.

7.3. Experimental Results

Out of 373 signatures generated in step-5, only 23 signatures were retained in step-9.

After testing these signatures against the training and test sets, 22 signatures were labelled

as child signatures and 1 signature was labelled as parent signature. Further information

is supplied in Tables 7.2 to 7.5. This section is divided into two subsections, namely,

training set and test set results. Seven individual test statistics were assessed in this section

to validate the signatures generated in this research and they are described in Section 3.6

(see page no. 59).

7.3.1 Training set results

In this section, seven different commercial antivirus products were tested along with the

parent and child signatures against the training set. Some of the antivirus products claim

to adopt machine learning, deep learning and artificial intelligence techniques to detect

the malicious files, which makes them the ideal state-of-the-art malware detection

techniques with which to compare the signatures. The antivirus products were

downloaded from their official websites and the databases of these products were all up-

to-date. Table 7.2 shows the test results of seven antivirus products along with the parent

and child signatures against the training set (dataset 1). The parent and child signatures

were tested by placing these signatures inside our own created (.ndb) database (see

Appendix D – page no. 228 for more details), which is adopted by Clamscan as a standard

database file format for the purposes of signature testing.

The results in Table 7.2 show that the classified signatures can successfully identify the

variants belonging to Transcriptase family in the training set (dataset 1). Parent signature

identified 100% variants and child signatures identified 99.15% variants in the training

set. Three variants were not identified by the child signatures as they were parent variants

(see Figure 7.4 and step-7). This shows that the classified signatures can easily distinguish

parent from child variants.

160

Table 7.2: Test results of seven commercial antivirus products together with parent and child signatures against training set (dataset 1).

Detection Product Detection Techniques Adopted
Database

Last Updated

Files

Detected

True

Positive

True

Negative

False

Positive

False

Negative

Sensitivity/

Recall/TPR

Specificity

/TNR

Precision/

PPV

Parent Signature – own

Clamscan database
Biosequence Analysis Techniques Feb 2018

354/354

(100%)
100% 0.00% 0.00% 0.00% 1 0 1

Child Signatures – own

Clamscan database
Biosequence Analysis Techniques Feb 2018

351/354

(99.15%)
99.15% 0.00% 0.00% 0.85% 0.9915 0 1

McAfee | Total Protection

2018

Machine Learning, Deep

Learning, and Artificial

Intelligence (Veeramachaneni &

Arnaldo, 2016)

Feb 2018
0/354

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

Kaspersky Anti-Virus

2018

Heuristic Analysis, Machine

Learning (AO Kaspersky Lab,

2017; AO Kaspersky Lab,

Machine Learning and Human

Expertise, 2017; AO Kaspersky

Lab, 2018)

Feb 2018
9/354

(2.54%)
2.54% 0.00% 0.00% 97.46% 0.0254 0 1

Norton Security Premium

2018

Advanced Machine Learning

(Symantec Corporation, 2017)
Feb 2018

0/354

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

Webroot SecureAnywhere

AntiVirus 2018

Security Intelligence and

Analytics Engine (Webroot Inc.,

2013)

Feb 2018
0/354

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

Microsoft Windows

Defender Security

Windows Defender Advanced

Threat Protection (jcaparas &

Hall, 2018)

Feb 2018
104/354

(29.38%)
29.38% 0.00% 0.00% 70.62% 0.2938 0 1

Bitdefender Total Security

2018

Advanced Threat Defense,

Machine-Learning (Bitdefender,

2016; Bitdefender, 2017)

Feb 2018
0/354

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

ClamAV 2018
Open Source (GPL) Anti-Virus

Engine (ClamAV, 2018)
Feb 2018

0/354

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

161

None of the antivirus products could identify the transcriptase variants except for

Kaspersky and Microsoft Windows Defender, which could only detect 2.54% and 29.38%

of the variants, respectively.

7.3.2 Test set results

In this section, similar strategy as demonstrated in Section 7.3.1 of comparing the

classified signatures with the seven antivirus products was applied. In this case, the

comparison was carried out against the three different test sets. Tables 7.3 to 7.5 show the

test results of seven antivirus products along with the parent and child signatures against

the three individual test sets (datasets 2-4).

Table 7.3: Test results of seven commercial antivirus products together with parent and

child signatures against test set 1 (dataset 2).

Detection Product
Files

Detected

True

Positive

True

Negative

False

Positive

False

Negative

Sensitivity/

Recall/TPR

Specificity/

TNR

Precision

/PPV

Parent Signature –

own Clamscan

database

1,376/1,397

(98.5%)
98.5% 0.00% 0.00% 1.5% 0.985 0 1

Child Signatures –

own Clamscan

database

0/1,397

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

McAfee | Total

Protection 2018

0/1,397

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

Kaspersky Anti-

Virus 2018

467/1,397

(33.43%)
33.43% 0.00% 0.00% 66.57% 0.3343 0 1

Norton Security

Premium 2018

2/1,397

(0.14%)
0.14% 0.00% 0.00% 99.86% 0.0014 0 1

Webroot

SecureAnywhere

AntiVirus 2018

0/1,397

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

Microsoft Windows

Defender Security

968/1,397

(69.29%)
69.29% 0.00% 0.00% 30.71% 0.6929 0 1

Bitdefender Total

Security 2018

0/1,397

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

ClamAV 2018
0/1,397

(0.00%)
0.00% 0.00% 0.00% 100% 0 0 0

The results in Section 7.3.2 show that the parent signature can identify the variants

belonging to Transcriptase family in the test set 1 (dataset 2). Parent signature identified

98.5% variants in the test set 1 (dataset 2) (see Table 7.3). Child signatures couldn’t

identify any variants in that test set. This shows that the variants considered in test set 1

(dataset 2) were all parent variants. To validate this, a phylogenetic tree was constructed

and the same strategy as followed in step-6 was applied. In total, 34 variants of

Transcriptase family along with the original malware (making a total of 35 malicious

files) were considered for the process of phylogenetics. 14 variants belonged to dataset 1

162

(as considered in step-6) and the remaining 21 variants belonged to dataset 2. A

rectangular lined up cladogram was constructed. Figure 7.4 shows the phylogenetic tree

that was generated using Phylo.io.

Table 7.4: Test results of seven commercial antivirus products together with parent and

child signatures against test set 2 (dataset 3).

Detection Product
Files

Detected

True

Positive

True

Negative

False

Positive

False

Negative

Sensitivity/

Recall/TPR

Specificity/

TNR

Precision/

PPV

Parent Signature –

own Clamscan

database

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Child Signatures –

own Clamscan

database

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

McAfee | Total

Protection 2018

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Kaspersky Anti-

Virus 2018

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Norton Security

Premium 2018

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Webroot

SecureAnywhere

AntiVirus 2018

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Microsoft Windows

Defender Security

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Bitdefender Total

Security 2018

0/2,617

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

ClamAV 2018
0/1,397

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Table 7.5: Test results of seven commercial antivirus products together with parent and

child signatures against test set 3 (dataset 4).

Detection Product
Files

Detected

True

Positive

True

Negative

False

Positive

False

Negative

Sensitivity/

Recall/TPR

Specificity/

TNR

Precision/

PPV

Parent Signature –

own Clamscan

database

0/18,128

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Child Signatures –

own Clamscan

database

2/18,128

(0.011%)
0.00% 99.989% 0.011% 0.00% 0 0.99989 0

McAfee | Total

Protection 2018

6/18,128

(0.033%)
0.00% 99.967% 0.033% 0.00% 0 0.99967 0

Kaspersky Anti-

Virus 2018

18/18,128

(0.099%)
0.00% 99.901% 0.099% 0.00% 0 0.99901 0

Norton Security

Premium 2018

1/18,128

(0.005%)
0.00% 99.995% 0.005% 0.00% 0 0.99995 0

Webroot

SecureAnywhere

AntiVirus 2018

0/18,128

(0.00%)
0.00% 100% 0.00% 0.00% 0 1 0

Microsoft Windows

Defender Security

1/18,128

(0.005%)
0.00% 99.995% 0.005% 0.00% 0 0.99995 0

Bitdefender Total

Security 2018

4/18,128

(0.022%)
0.00% 99.978% 0.022% 0.00% 0 0.99978 0

ClamAV 2018
3/18,128

(0.016%)
0.00% 99.984% 0.016% 0.00% 0 0.99984 0

163

Figure 7.4 shows that all the variants from dataset 2 belonged to the same clad (i.e.

third/last clad) distinguishing the parent variants from the child variants. Therefore,

1_TS_var_32 to 3_TS_var_24 (first clad) and 15_TS_var_11 to 35_TS_var_31 (third/last

clad) were all classified as the parent variants and 5_TS_var_1 to 14_TS_var_10 (second

sub-clad of second clad) were all classified as the child variants (see Figure 7.4). And

4_TS_O (first sub-clad of second clad) was the original Transcriptase malware (see

Figure 7.4).

None of the antivirus products could identify the transcriptase variants from dataset 2

except for Kaspersky, Norton Security and Microsoft Windows Defender. And they could

only detect 33.43%, 0.14% and 69.29% of the variants (see Table 7.3).

There were no false positives discovered against dataset 4 using the parent signature and

0.011% false positives using the child signatures (see Table 7.5), therefore satisfying the

false positive rate requisite of 0.1%.

Figure 7.4: The phylogenetic tree of 35 Transcriptase sequences generated using

Phylo.io.

164

7.4. Summary

In this chapter, a metamorphic JavaScript malware family of Transcriptase was examined.

Two individual datasets belonging to Transcriptase family were analysed. Biosequence

analysis techniques of sequence alignment and phylogenetics were adopted in this

chapter. Signatures were generated and classified using these techniques. Two sets of

signatures were classified for the detection of Transcriptase family, namely, parent and

child signatures. Parent signature was able to identify 100% and 98.5% variants of

datasets 1 and 2. Child signatures, on the other hand, could identify 99.15% variants of

dataset 1.

Seven individual commercial antivirus products were compared with the parent and child

signatures against the four different datasets. It was discovered that none of the antivirus

products could identify at least 75% variants of the metamorphic malware. On the other

hand, the classified signatures (i.e. both parent and child signatures) satisfied the false

positive threshold of 0.1%.

Phylogenetic tree construction proved successful in distinguishing parent from child

variants. Furthermore, this work demonstrates that it is possible to generate variable-

length syntactic signatures and also classify them adopting biosequence analysis

techniques.

The following chapter will discuss the conclusion and future work. More information will

follow in the succeeding chapter.

165

Chapter 8 Conclusion and Future Work

8.1. Overview

In order to set up the foundation and fundamental range of this thesis, which presents a

proposed string-based syntactic approach for detecting polymorphic malware (known –

Pk and unknown – Px) variants, background information concerning the syntactic

approach in comparison to the semantic approach was discussed in Chapter 1. A

comprehensive literature review on the different types of malware as well as the

classification of viruses along with their masking strategies were discussed in Chapter 2.

Classification of polymorphism together with the different levels of polymorphism were

also discussed in Chapter 2. Also discussed were the mutation engine and the decryption

routine used by any typical polymorphic malware. Lastly, Chapter 2 discussed different

types of the state of the art detection approaches used by the current and modern AVS

products together with their drawbacks. Chapter 3 presented the research methodology

adopted in this thesis.

Chapter 4 examined the proposed efficient and effective syntactic approach of string

matching algorithm such as the SWA for the automatic generation of signatures for the

detection of some or all new polymorphic malware variants by extracting syntactic

patterns from semantically rich (polymorphic) hex code. This proposed syntactic

approach (with the aid of string matching dynamic programming SWA) to the automatic

generation of viral meta-signatures (i.e. viral syntactic patterns) detected all the known

(Pk) viral variants of JS.Cassandra polymorphic virus (see Table 4.1) and successfully

addressed the first research question (Q1). The ESET antivirus cannot successfully detect

all the known (Pk) variants of JS.Cassandra viral family. Moreover, ClamAV antivirus

could hardly detect the unknown (Px) variants of Win32.Kitti viral family but detected

around 33% of unknown (Px) variants belonging to the Win32.Cholera viral family. As

stated earlier (i.e. in Subsection 1.6.1), the selected three polymorphic viral families were

at least 5-11 years old. But as the experiments show (see Table 4.1), modern AVS

products cannot successfully detect all the known (existing) (Pk) variants of the

polymorphic malware family mentioned here, let alone the unknown (new) (Px) variants.

Chapter 5 explored the advanced sequence alignment techniques in a string-based

syntactic approach for detecting polymorphic malware variants by conducting further

experiments on the previous chapter (i.e. Chapter 4). Chapter 5 was divided into three

166

parts. Part-I adopted two different dynamic programming algorithms i.e. the NWA and

the SWA. Part-I (as well as Part-II and Part-III) conducted the process of multiple

sequence alignment on meta-signatures to extract super-signatures. Previous chapter (i.e.

Chapter 4) did not explore any of these advanced sequence alignment techniques. Part-II

examined the effects of different combinations of gap open and gap extend penalties using

the SWA. Previous chapter (i.e. Chapter 4) only explored one combination of gap open

penalty (i.e. 10) and gap extend penalty (i.e. 1). Part-III examined the effects of using 71

different substitution matrices by conducting 71 different pairwise sequence alignments.

Previous chapter (i.e. Chapter 4) conducted the processes of pairwise sequence

alignments by employing one substitution matrix i.e. the ID matrix.

Part-I – The syntactic approach (with the help of string matching dynamic programming

NWA and SWA) to the automatic generation of viral meta-signatures/super-signatures

identified all the known (Pk) viral variants of JS.Cassandra polymorphic virus (see Table

5.4 and Figure 5.2) and successfully addressed the first part of the second research

question (Q2a). Although, the three super-signatures obtained from the NWA and SWA

detected only 96.59% of known (Pk) JS.Cassandra malware variants, the three meta-

signatures obtained from the NWA and SWA detected 100% of known (Pk) JS.Cassandra

malware variants. Furthermore, the proposed syntactic technique (with the help of string

matching dynamic programming SWA) to the automatic generation of viral meta-

signatures/super-signatures identified all the unknown (Px) viral variants of W32.Kitti

polymorphic virus (see Table 5.5 and Figure 5.3). In total, 29 out of the 37 overall meta-

signatures (generated from both the NWA and SWA) i.e. around 78.38% were effective

i.e. detected all/some known (Pk) variants of the JS.Cassandra polymorphic virus.

Particularly, 12 (generated from the NWA) out of the 37 overall meta-signatures i.e.

32.43%, and 17 (generated from the SWA) out of the 37 overall meta-signatures i.e.

45.94% detected all/some known variants (Pk) of the JS.Cassandra polymorphic virus (see

Table 5.4). To be more precise, eight (generated from the NWA) out of the 37 overall

meta-signatures i.e. 21.62%, and 12 (generated from the SWA) out of the 37 overall meta-

signatures i.e. 32.43% detected the known (Pk) variants of the JS.Cassandra virus with an

accuracy of 96% and above (see Table 5.4). The implication of the findings is that

syntactic approaches to automatic signature generation can complement current manual

and semantic approaches, with the added advantage that polymorphic variants of a virus

can also be identified once a sufficient number of variants are incorporated for string-

based comparison. The ultimate goal for any syntactic approach will be to identify a

167

potential ‘grammar’ of a virus from a relatively small number of variants so that unknown

(Px) but reachable variants can be generated for robust automatic signature extraction. It

is possible that hybrid variants (the combination of behaviours from more than one virus

family) will need signatures based on structural aspects of the virus families as described

by a grammar rather than string matching. AVSs currently are reactive rather than pro-

active. Syntactic and string-based approaches represent the best chance of designing and

developing proactive AVSs in the future to deal with the increasingly complex malware

being confronted.

Part-II – The syntactic approach (with the aid of string matching dynamic programming

SWA and different combinations of gap open and gap extend penalties) to the automatic

generation of viral super-signatures detected all known (Pk) and unknown (Px) viral

variants of JS.Cassandra, W32.CTX and W32.Kitti polymorphic virus (see Figures 5.6 to

5.8) and successfully addressed the second part of the second research question (Q2b).

The findings show that increasing the gap open and gap extend penalties decreases the

number of gaps (in some cases to the point where no gaps exist) in the final alignment

(see Columns ‘Gap Open Penalty’, ‘Gap Extend Penalty’ and ‘Gaps Percentage’ in Table

5.9). Moreover, the meta-signatures obtained from the alignment with few or no gaps

have proven to be more effective and successful in detecting known (Pk) and unknown

(Px) polymorphic variants than alignment with many gaps. From the experiment results

provided in Table 5.10 (i.e. for polymorphic viruses JS.Cassandra and

W32.CTX/W32.Cholera), it can be concluded that some of the final alignments, those

with gap percentages of 0.5 or higher, have moderately effective meta-signatures (an

accuracy of less than 100%). From the results presented in Table 5.10 (i.e. for W32.Kitti

polymorphic virus), it can be concluded that the final alignments with no gap percentages

(i.e. 0.00%) have effective meta-signatures (i.e. with an accuracy of 100%). Most

importantly, the results from Table 5.9 indicate that the conversion of malware code into

biological representations has served the task of identifying common code subsequences.

Part-III – The syntactic approach (with the aid of string matching dynamic programming

SWA and using different substitution matrices) to the automatic generation of viral meta-

signatures detected all the known (Pk) virus variants of JS.Cassandra polymorphic virus

using the meta-signatures and super-signatures obtained in Step-4 (i.e. in Section 5.11.3)

and Step-7 (i.e. in Section 5.11.6), respectively (see Tables 5.13 and 5.14) and

successfully addressed the third part of the second research question (Q2c). Meta-

168

signatures: In total, 123 out of the 161 overall meta-signatures (generated from the six

different substitution matrices) i.e. around 76.40% were effective i.e. detected all/some

known (Pk) variants of the JS.Cassandra polymorphic virus. Particularly, 23 (generated

from the BLOSUM40 substitution matrix) out of the 161 overall meta-signatures i.e.

14.28%, and 16 (generated from the DAYHOFF substitution matrix) out of the 161

overall meta-signatures i.e. 9.94% detected all/some known (Pk) variants of the

JS.Cassandra polymorphic virus (see Table 5.13). ID substitution matrix was not

considered here as only one meta-signature was extracted during the process and it was

effective (see Table 5.13). Additionally, 21 (generated from the MATCH substitution

matrix) out of the 161 overall meta-signatures i.e. 13.04%, 24 (generated from the

PAM100 substitution matrix) out of the 161 overall meta-signatures i.e. 14.91%, and 38

(generated from the PAM350 substitution matrix) out of the 161 overall meta-signatures

i.e. 23.60% detected all/some known (Pk) variants of the JS.Cassandra polymorphic virus

(see Table 5.13). To be more precise, 22 (generated from the BLOSUM40 matrix) out of

the 161 overall meta-signatures i.e. 13.66%, and 16 (generated from the DAYHOFF

matrix) out of the 161 overall meta-signatures i.e. 9.94% detected the known (Pk) variants

of the JS.Cassandra virus with an accuracy of 92% and above (see Table 5.13). Moreover,

14 (generated from the MATCH substitution matrix) out of the 161 overall meta-

signatures i.e. 8.69%, 22 (generated from the PAM100 substitution matrix) out of the 161

overall meta-signatures i.e. 13.66%, and 38 (generated from the PAM350 substitution

matrix) out of the 161 overall meta-signatures i.e. 23.60% detected the known (Pk)

variants of the JS.Cassandra virus with an accuracy of 92% and above (see Table 5.13).

Super-signatures: In total, 34 out of the 47 overall super-signatures (generated from the

six different substitution matrices) i.e. around 72.34% were effective i.e. detected

all/some known (Pk) variants of the JS.Cassandra polymorphic virus. Particularly, three

(generated from the BLOSUM40 substitution matrix) out of the 47 overall super-

signatures i.e. 6.38%, five (generated from the DAYHOFF substitution matrix) out of the

47 overall super-signatures i.e. 10.64%, and 11 (generated from the ID substitution

matrix) out of the 47 overall super-signatures i.e. 23.40% detected all/some known (Pk)

variants of the JS.Cassandra polymorphic virus (see Table 5.14). Additionally, nine

(generated from the MATCH substitution matrix) out of the 47 overall super-signatures

i.e. 19.15%, three (generated from the PAM100 substitution matrix) out of the 47 overall

super-signatures i.e. 6.38%, and three (generated from the PAM350 substitution matrix)

out of the 47 overall super-signatures i.e. 6.38% detected all/some known (Pk) variants of

the JS.Cassandra polymorphic virus (see Table 5.14). To be more precise, three

169

(generated from the BLOSUM40 matrix) out of the 47 overall super-signatures i.e.

6.38%, five (generated from the DAYHOFF matrix) out of the 47 overall super-signatures

i.e. 10.64%, and seven (generated from the ID substitution matrix) out of the 47 overall

super-signatures i.e. 14.89% detected the known (Pk) variants of the JS.Cassandra virus

with an accuracy of 96% and above (see Table 5.14). Moreover, seven (generated from

the MATCH substitution matrix) out of the 47 overall super-signatures i.e. 14.89%, three

(generated from the PAM100 substitution matrix) out of the 47 overall super-signatures

i.e. 6.38%, and three (generated from the PAM350 substitution matrix) out of the 47

overall super-signatures i.e. 6.38% detected the known (Pk) variants of the JS.Cassandra

virus with an accuracy of 96% and above (see Table 5.14).

Chapter 6 examined the rule-based approach (obtained and inspired from the NNge

classifier data mining algorithm supplementing the string matching dynamic

programming SWA) to the automatic generation of viral meta-signatures with the help of

three different sets of experiments, which identified all the 352 known (Pk) malware

variants of JS.Cassandra polymorphic virus as well as the 43 non-malware (Pu) variants

of JS.Cassandra polymorphic virus (see Table 6.6 and Figures 6.4 to 6.6 – page nos. 141,

144-145). And this lead to addressing the third research question (Q3) in this thesis

successfully. In total, 41 out of the 71 overall meta-signatures i.e. around 57.75% [30.98%

malicious (22/71) and 26.76% non-malicious (19/71) meta-signatures] were effective i.e.

detected all/some variants from the two different types of groups (i.e. malicious (Pk) and

non-malicious (Pu)). Particularly, five out of the nine meta-signatures i.e. 55.55%

[33.33% malicious (3/9) and 22.22% non-malicious (2/9) meta-signatures] from first set

of experiments and six out of the 14 meta-signatures i.e. 43% [28.6% malicious (4/14)

and 14.3% non-malicious (2/14) meta-signatures] from second set of experiments

detected all/some variants from the two different types of groups (see Table 6.6).

Additionally, 30 out of the 48 meta-signatures i.e. 62.50% [31.25% malicious (15/48) and

31.25% non-malicious (15/48) meta-signatures] from the third set of experiments

detected all/some variants from the two different types of groups. Only 11 out of the 30

effective meta-signatures obtained from the third set of experiments are shown in Table

6.6. As first and second sets of experiments were performed using two different

representational approaches (i.e. hex/DNA) along with the third set of experiments

containing aligned DNA sequences, all with the same (unchanged) instances each time,

some of the meta-signatures obtained from the three sets were identical to each other (see

Tables 6.2 to 6.4 – page nos. 128, 132 and 137). Malicious MS1 (1), malicious MS3 (2),

170

non-malicious MS41 (3) and non-malicious MS43 (3) share identical meta-signature (see

Tables 6.2 to 6.4, 6.6). On the other hand, malicious MS4 (1), malicious MS9 (2) and

non-malicious MS37 (3) share identical meta-signature (see Tables 6.2 to 6.4, 6.6).

Although, the second set of experiments generated rules with 100% inaccuracy, the

overall combined percentage of effective meta-signatures generated from all the three sets

of experiments is 57.75% (see Tables 6.2 to 6.4, 6.6). On the other hand, the overall

combined percentage of non-effective meta-signatures generated from all the three sets

of experiments is 42.25% (see Tables 6.2 to 6.4, 6.6).

In Chapter 6, the successful identical meta-signature with 100% accuracy [i.e. MS4 (1),

MS9 (2) and MS37 (3) – see Table 6.6] obtained from the three sets of experiments for

JS.Cassandra polymorphic malware and its known (Pk) variants was decoded into

‘String.fromCharCode(’ which is a JavaScript function. Second best meta-

signature with 97.73% accuracy [i.e. MS15 (3) – see Table 6.6] obtained from the third

set of experiments for JS.Cassandra polymorphic malware and its known (Pk) variants

was decoded into ‘19-’ which is a part of JavaScript function. Third best identical meta-

signature with 96.59% accuracy [i.e. MS1 (1), MS3 (2), MS41 (3) and MS43 (3) – see

Table 6.6] obtained from the three sets of experiments for JS.Cassandra polymorphic

malware and its known (Pk) variants was decoded into

‘+'='+Math.round(Math.random()*’ which is a JavaScript function. These

functions will be a common function inside the source code for the original (Ps)

JS.Cassandra polymorphic virus and its known (Pk) variants. The main aim in Chapter 6

was not only to achieve identification of polymorphic malware (and its known (Pk)

variants) with (NNge) rule-based meta-signatures automatically, but also enable them

with syntactic meaning that is understandable by malware analysts, and which could help

us in detecting the future unknown (Px) polymorphic malware variants of the same family.

The initial approaches (i.e. Chapters 4 and 5) (Naidu & Narayanan, 2016a; Naidu &

Narayanan, 2016b; Naidu & Narayanan, 2016c) are a long and slow process of extracting

the effective common substrings/meta-signatures by performing several pairwise

alignments. The current rule-based approach reduces these tasks and generates lengthy

rules by assembling the deeply conserved regions from all the input (big data)

polymorphic malware (and non-malware) instances at once.

Chapter 7 examined a metamorphic JavaScript malware family of Transcriptase. Two

individual datasets belonging to Transcriptase family were analysed. Biosequence

171

analysis techniques of sequence alignment and phylogenetics were adopted in this

chapter. Signatures were generated and classified using these techniques. Results are

presented in Tables 7.2 to 7.5 and Figures 7.3 and 7.4 (see page nos. 159-161, 157 and

162). Two sets of signatures were classified for the detection of Transcriptase family,

namely, parent and child signatures. Parent signature was able to identify 100% and

98.5% variants of datasets 1 and 2. Child signatures, on the other hand, could identify

99.15% variants of dataset 1. Seven individual commercial antivirus products were

compared with the parent and child signatures against the four different datasets. It was

discovered that none of the antivirus products could identify at least 75% variants of the

metamorphic malware. On the other hand, the classified signatures (i.e. both parent and

child signatures) satisfied the false positive threshold of 0.1%.

At present, serious concerns exist as to whether modern AVS technologies will identify

new (future/unknown) variants of polymorphic malware. The ultimate goal would be to

detect all new (future (Px)) polymorphic variants (see Figure 2.1 – page no. 29) using a

syntactic approach to identify variants both within a virus family as well as across virus

families. The research demonstrates that there is a need for a good identification software

system that can effectively and efficiently identify potentially old (pre-existing), current

(known/existing) and future (new/unknown) malware variants (see Tables 6.1 and 6.6 –

page nos. 125 and 141). String-based syntactic and rule-based approaches together look

very promising in designing and developing proactive AVSs in the future to deal with the

increasingly complex malware being encountered.

8.2. Contribution of this Thesis

In this thesis, the proposed string-based syntactic techniques were developed based on

sequence alignments techniques. Moreover, advanced sequence alignment techniques

were applied and combined the data mining algorithm with sequence alignment

techniques in a novel way to refine the algorithm.

Bearing in mind the above statement, the major difference between the string-based

syntactic technique and other AVSs (e.g. Bitdefender, ESET and Symantec) is that string-

based syntactic technique attempts to identify future variants by taking into account

already existing malware belonging to the same family using conserved syntactic patterns

(i.e. conserved signatures), whereas in other AVSs the existing signatures does not

capture the future variants and instead creates new signatures for those variants each and

172

every time when encountered. The major contribution will be to add the above stated to

the existing knowledge for the future string-based syntactic AVSs.

Figure 2.1 presents the distribution of polymorphic malware variants. The research

demonstrated in this thesis shows that current manual driven techniques deal only with

PS (see Figure 2.1 – page no. 29). The summarised and integrated research question

investigated was ‘Do advanced sequence alignment techniques and data mining algorithm

(e.g. NNge) produce consensuses (and rules) that not only ‘fit’ the known (Pk) variants

(training set) but also generalise well to unknown (Px) variants (test set)?’ As stated

earlier, the study in this research used three families of polymorphic malware and their

variants as input. JS.Cassandra virus was chosen along with its existing or known (Pk)

malware variants to check whether exploring advanced sequence alignment techniques

and data mining algorithm, such as by introducing relatively sophisticated gap open and

extend facilities, etc. still capture known (Pk) variants that are known to be captured

without such facilities. W32.CTX/W32.Cholera and W32.Kitti viruses were used on the

other hand to generate new or unknown (Px) malware variants for exploring advanced

sequence alignment techniques and data mining algorithm, such as by testing the effects

of gap open and gap extend facilities, by using different substitution matrices, by

generating rules, etc. Well-established viruses were chosen because their structure and

behaviour are sufficiently well understood by commercial AVS developers and therefore

any new variants reported here will not pose a serious threat to the latest AVS versions.

An outlined contribution of this thesis chapter wise (i.e. starting from Chapter 4) is

discussed below:

1. Chapter 4: This chapter (Naidu & Narayanan, 2016a) investigated efficient and

effective approach of string matching algorithm such as the SWA for the automatic

generation of signatures for the detection of all the known (existing) (Pk) variants of

JS.Cassandra polymorphic virus (see Table 4.1). That is, this chapter successfully

extracted syntactic patterns (i.e. meta-signatures) and these patterns were in turn

employed for the complete identification of all known (351) malware variants (Pk)

belonging to the JS.Cassandra virus. Also, the syntactic patterns of JS.Cassandra virus

successfully and completely detected some unknown/new (12) malware variants (Px)

of JS.Cassandra virus (see Appendix D – page no. 235). Further, the syntactic patterns

belonging to the W32.Kitti and W32.CTX/Cholera polymorphic viruses successfully

and completely detected some unknown (1105 and 198) malware variants (Px) of

173

W32.Kitti and W32.CTX viruses, respectively (see Table 4.1). The experiments from

this chapter also demonstrated to some extent that current and modern state-of-the-art

AVS products cannot completely and successfully detect the known (existing) (Pk)

polymorphic malware variants, let alone future (new/unknown) variants (Px)

developed in the laboratory (see Table 4.1). Hence, the main contribution of this

chapter was to add to the existing knowledge that it was possible to identify syntactic

structures that helped to determine whether a piece of code contains a virus type and

its variants.

2. Chapter 5 (Part-I): This chapter (Naidu & Narayanan, 2016c) explored the advanced

sequence alignment techniques by examining the effects of two different dynamic

programming (string-based) approaches (i.e. the NWA and SWA) for the automatic

generation of signatures for the detection of all the known (Pk) variants of

JS.Cassandra polymorphic virus and some unknown (future/new) variants (Px) of

W32.Kitti polymorphic virus, respectively (see Tables 5.4 and 5.5 and Figures 5.2 to

5.4). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) both globally and locally by conducting the processes of pairwise

alignments using the NWA and SWA and these patterns were in turn employed for

the complete identification of all known (351) malware variants (Pk) belonging to the

JS.Cassandra virus as well as for the complete identification of some unknown (1105)

malware variants (Px) belonging to the W32.Kitti virus (see Tables 5.4 and 5.5). Also,

this chapter successfully extracted super syntactic patterns (i.e. super-signatures) by

conducting the processes of multiple and pairwise sequence alignments on meta-

signatures obtained from the NWA and SWA based pairwise alignments and these

super patterns were in turn employed for the complete identification of all known (Pk)

and some unknown (Px) malware variants belonging to the JS.Cassandra and

W32.Kitti polymorphic viruses, respectively (see Figures 5.2 to 5.4). Thus, the main

contribution of this chapter was to add to the existing knowledge that signatures can

be identified both globally (i.e. by using the NWA) and locally (i.e. by using the

SWA) for known (Pk) as well as unknown (Px) polymorphic variants.

3. Chapter 5 (Part-II): This chapter explored the advanced sequence alignment

techniques by examining the effects of using ten different combinations of gap open

and gap extend penalties in a string-based approach for the automatic generation of

signatures for the detection of all the known (Pk) variants of JS.Cassandra

polymorphic virus and some unknown (Px) variants of W32.CTX/Cholera

polymorphic virus and W32.Kitti virus, respectively (see Table 5.10 and Figures 5.6

174

to 5.8). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) using the ten different combinations of gap penalties and these patterns

were in turn employed for the complete identification of all known (351) malware

variants (Pk) belonging to the JS.Cassandra virus as well as for the complete

identification of some unknown (198 and 1105) malware variants (Px) belonging to

the W32.CTX virus and W32.Kitti virus, respectively (see Table 5.10). Also, this

chapter successfully extracted super syntactic patterns (i.e. super-signatures) by

conducting the processes of multiple and pairwise sequence alignments on meta-

signatures obtained from the processes of first pairwise alignments (using ten

different combinations of gap penalties) and these super patterns were in turn

employed for the complete identification of all known (Pk) and some unknown (Px)

malware variants belonging to the JS.Cassandra, W32.CTX, and W32.Kitti

polymorphic viruses, respectively (see Figures 5.6 to 5.8). Therefore, the main

contribution of this chapter was to add to the existing knowledge that introducing

different combinations of gap penalties helped to identify signatures for known (Pk)

as well as unknown (Px) polymorphic variants.

4. Chapter 5 (Part-III): This chapter (Naidu & Narayanan, 2016b) explored the

advanced sequence alignment techniques by examining the effects of using different

substitution matrices in a string-based approach for the automatic generation of

signatures for the detection of all the known (Pk) variants of JS.Cassandra

polymorphic virus (see Tables 5.13 and 5.14). That is, this chapter successfully

extracted syntactic patterns (i.e. meta-signatures) using different substitution matrices

and these patterns were in turn employed for the complete identification of all known

(351) malware variants (Pk) belonging to the JS.Cassandra virus (see Table 5.13).

Also, this chapter successfully extracted super syntactic patterns (i.e. super-

signatures) by conducting the processes of multiple and pairwise sequence alignments

as well as data mining on meta-signatures obtained from the processes of first pairwise

alignments (using different substitution matrices) and these super patterns were in

turn employed for the complete identification of all known (Pk) malware variants

belonging to the JS.Cassandra polymorphic virus (see Table 5.14). So, the main

contribution of this chapter was to add to the existing knowledge that using different

substitution matrices (e.g. BLOSUM, PAM) helped to capture new (never seen

before) signatures for known (Pk) polymorphic variants.

5. Chapter 6: This chapter addressed some of the limitations of the initial work (i.e.

Chapters 4 and 5) (Naidu & Narayanan, 2016a; Naidu & Narayanan, 2016b; Naidu &

175

Narayanan, 2016c) and investigated a syntactic structural approach using data mining

algorithm NNge to the automatic generation of signatures for the detection of all the

known (Pk) variants of JS.Cassandra polymorphic virus (see Table 6.6 and Figures

6.4 to 6.6). That is, this chapter successfully extracted syntactic patterns (i.e. meta-

signatures) by conducting three different sets of experiments using NNge and these

patterns were in turn employed for the complete identification of all known (351)

malware variants (Pk) belonging to the JS.Cassandra virus (see Figure 6.4). Therefore,

the main contribution of this chapter was to add to the existing knowledge that using

a combination of data mining and sequence alignment techniques helped to identify

one or more master syntactic rules each containing several different syntactic patterns

(i.e. signatures) within for known (Pk) polymorphic variants. The contributions of this

chapter are as follows:

• Adopting a data mining algorithm, NNge, to generate rule-based signatures

automatically from real malware data.

• Comparing variable length data mining algorithm to equal length data mining

algorithm using NNge on malware source code by conducting three different

experiments (Experiments I-III).

• Distinguishing malicious variants from non-malicious with the help of rules

generated using the data mining algorithm, NNge.

• Testing the derived rule-based signatures against real malware data and comparing

the results to other commercial AVSs.

• Comparing the overall performance metrics such as true positive rate, false positive

rate, precision, recall, etc. with other related work on malware detection using data

mining algorithms.

6. Chapter 7: The contributions of this chapter are as follows:

• Classifying viral signatures acquired from the metamorphic Transcriptase

malware family adopting biosequence analysis techniques.

• Distinguishing Transcriptase malware variants adopting phylogenetics.

• Generating syntactic variable-length viral signatures from Transcriptase malware

family adopting sequence alignment techniques.

• Testing the classified viral signatures against two different Transcriptase malware

datasets and comparing the test results against seven individual commercial

antivirus products.

• Testing the classified viral signatures against benign datasets for false positives.

176

8.3. Limitations of the Study

The major limitations of the proposed approach demonstrated in this thesis are as follows:

1. The study did not examine a multiple sequence alignment as opposed to pairwise

sequence alignment for semantic signature generation employing the bioinformatics

MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh, Misawa, Kuma,

& Miyata, 2002; Katoh & Standley, 2013; Katoh, 2018) algorithm, which will help in

detecting complex polymorphic malware as well as metamorphic malware (and their

variants). In this thesis, the focus was on syntactic signature extraction.

2. The study did not employ the proposed approaches in extracting syntactic patterns

from complex polymorphic malware, such as the TPE i.e. Trident Polymorphic

Engine, as well as from a combination or hybrid of two or more polymorphic

malware.

3. The study did not generate a single consensus (i.e. a super-signature) that could

completely identify all the possible (known – Pk and unknown – Px) variants of a

particular polymorphic family.

4. The current string matching techniques do not work well with non-biological

representations, such as hexadecimal, etc.

Some additional limitations of the study presented in this thesis are discussed in this

section. The focus on well-known and old viruses does not take into account the rapid

evolution of other forms of malware, such as ransomware and DoS attacks that involve

external manipulation. Furthermore, the study does not take into account the unknown

(new) variants (Px) generated from the polymorphic virus construction kits. Building such

a library of unknown (Px) polymorphic variants will allow us to investigate the impact of

a new polymorphic malware detection system in relation to old and existing malware

variants. However, nearly all malware has a self-replicating component irrespective of its

function. On the assumption that the meta-signatures and super-signatures are capturing

essential aspects of malware replication, the results described here may be applicable to

other malware types (not just viruses or worms) that also involve a replication step.

8.4. Future Work

Future Work on Chapters 4 to 6: As stated earlier, polymorphic malware remains

difficult to identify since such malware is able to reform into functionally similar but

syntactically different variants to bypass signature detection by conventional AVSs.

177

Investigations as part of this thesis have identified a proposed approach to polymorphic

virus variant detection through the use of pairwise/multiple sequence alignment

techniques as well as data mining algorithm to identify consensuses (subsequences

conserved across different and variable length virus code) that lead to signatures for virus

detection in next-generation antivirus systems. The question arises as to how this

proposed approach to automatic virus detection can cope with the most complex viruses

yet discovered: metamorphic malware. Whereas polymorphism changes the order of the

viral code but not typically the code itself to avoid signature detection, metamorphic

malware changes the code so that a functionally identical but syntactically non-identical

variant is generated. To date, it is not known how to generate signatures for metamorphic

viruses.

The aim of the future proposal will be to examine a multiple sequence as opposed to

pairwise sequence alignment for semantic signature generation employing the

bioinformatics MAFFT (Multiple Alignment using Fast Fourier Transform) algorithm.

Changes in code across a set of different metamorphic variants of the same virus will be

identified through a substitution matrix that identifies the probabilities of changes in hex

code between variants (all variants must be aligned together, hence multiple as opposed

to pairwise alignment). Also, the degree of such changes will be used to generate a

phylogenetic tree tracing the predicted evolution of metamorphic variants from the

original to all descendant variants using standard phylogeny distance techniques. FFT

will identify unique frequency signatures from the substitution matrix and evolutionary

tree to distinguish one family of metamorphic variants from another. The approach is

speculative and, if successful, will transform our understanding of signature generation.

Future Work on Chapter 7: Future work could include more work on implementing the

biosequence analysis techniques on other types of malware, such as Ransomware, Trojan

horse and Rootkit. On the inference that the signatures are trapping essential attributes of

malware morphing, the results illustrated here may be suitable to other types of malware

that also involve a morphing stage. Further work can also include the implementation of

phylogenetics for the purpose of malware classification on a larger scale.

Overall: The proposed topic of this thesis will be of great interest to the malware analysts

and security experts because of the increasingly growing threats of malware to the normal

computing activities. The approach adopted in this thesis is unique and, as far as, the only

active research in the world currently analysing complex polymorphic viral code using

178

state of the art bioinformatics tools and techniques for the automatic extraction of

signatures for future anti-viral software development.

Malware detection adopting deep learning techniques will be considered as a future work

for classification and labelling of malware data as well as feature extraction (Kolosnjaji,

Zarras, Webster, & Eckert, 2016; Kalash, et al., 2018). These techniques are well-known

for their accurate detection, better performance in comparison to conventional machine

learning techniques, real-time malware detection and prevention, low false positives,

minimal/no manual/reverse engineering, etc. (Saxe, Harang, Wild, & Sanders, 2018; Yan,

Qi, & Rao, 2018).

A database of all the generated meta-signatures obtained from this thesis will be

incorporated in the future automatic software systems (as a future work) thereby

successfully detecting some or all new (unknown) polymorphic malware variants. The

major contribution will be to add to the existing knowledge on how to detect some or all

new (unseen) polymorphic malware variants with the help of this proposed approach.

Future prospects of this research are to implement an anti-viral software product that will

successfully detect and predict the unseen new variants not only belonging to a

polymorphic malware family but also belonging to a metamorphic malware family. There

is a likelihood of attracting funding and possibly a collaboration with well-established

companies like Microsoft, Bitdefender, Symantec and Malware Research Labs.

8.5. Further Work

Further work has been done on the 100 new (never seen before) variants (Px) of

JS.Cassandra virus as an extension of the work presented in this thesis. This new dataset

was obtained from the original virus writer (SPTH, 2015; Second Part To Hell, 2018) of

JS.Cassandra virus. The uniqueness of these 100 new malware variants was cross-

checked by generating a CRC32b hash value for each variant, and no duplicates were

found (see Appendix H – page no. 251). The results of that further work are demonstrated

in Table 8.1. In total, 282 meta-signatures and 54 super-signatures were tested against the

100 new variants of JS.Cassandra virus. All the meta-signatures and super-signatures

tested here were obtained from Chapters 4 to 6 to detect the JS.Cassandra virus and its

variants. One meta-signature from Chapter 4. 37 meta-signatures and four super-

signatures from Chapter 5 (Part-I). Twelve meta-signatures and three super-signatures

179

from Chapter 5 (Part-II). 161 meta-signatures and 47 super-signatures from Chapter 5

(Part-III). And 71 meta-signatures from Chapter 6.

From Table 8.1, it could be said that almost all of the meta-signatures and super-

signatures were completely effective in detecting the new variants of the JS.Cassandra

virus with an overall accuracy of 100%. Except for some, such as the two super-signatures

obtained from the NWA (Chapter 5 – Part-I) had an overall accuracy of 85%, the two

super-signatures obtained from the SWA (Chapter 5 – Part-I) had an overall accuracy of

85%, the twelve meta-signatures obtained from Chapter 5 – Part-II had an overall

accuracy of 97%, the one meta-signature obtained from the ID substitution matrix

(Chapter 5 – Part-III) had an overall accuracy of 12%, and the 24 meta-signatures

obtained from the MATCH substitution matrix (Chapter 5 – Part-III) had an overall

accuracy of 85%. The state of the art ClamAV and Bitdefender Total Security 2018 AVSs

had overall accuracies of 85% and 0%, respectively. So, the essential contribution of this

section was to add to the existing knowledge that syntactic virus signatures captured from

the string-based syntactic techniques helped to identify a dataset of unknown (Px)

variants.

180

Table 8.1: Detection ratio using two state of the art AVSs and the 282 meta-signatures

and 54 super-signatures from Chapters 5 to 7 with ‘clamscan’.

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

ClamAV

One Meta-

Signature

(Chapter 5)

16 Meta-

Signatures -

NWA (Chapter

6 – Part-I)

21 Meta-

Signatures -

SWA (Chapter

6 – Part-I)

100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

85/100

(85.00%)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

Sensitivity/Recall 85.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 91.89% 100.00% 100.00% 100.00%

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

Bitdefender

Total

Security 2018

Two Super-

Signatures -

NWA (Chapter

6 – Part-I)

Two Super-

Signatures -

SWA (Chapter

6 – Part-I)

Twelve Meta-

Signatures

(Chapter 6 –

Part-II)

100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

0/100

(0.00%)

85/100

(85.00%)

85/100

(85.00%)

97/100

(97.00%)

Sensitivity/Recall 0.00% 85.00% 85.00% 97.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 0.00% 91.89% 91.89% 98.48%

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

Three Super-

Signatures

(Chapter 6 –

Part-II)

34 Meta-

Signatures –

BLOSUM40

(Chapter 6 –

Part-III)

24 Meta-

Signatures –

DAYHOFF

(Chapter 6 –

Part-III)

One Meta-

Signature –

IDENTITY

(Chapter 6 –

Part-III)
100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

12/100

(12.00%)

Sensitivity/Recall 100.00% 100.00% 100.00% 12.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 100.00% 100.00% 100.00% 21.43%

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

24 Meta-

Signatures –

MATCH

(Chapter 6 –

Part-III)

31 Meta-

Signatures –

PAM100

(Chapter 6 –

Part-III)

47 Meta-

Signatures –

PAM350

(Chapter 6 –

Part-III)

Seven Super-

Signatures –

BLOSUM40

(Chapter 6 –

Part-III)

100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

85/100

(85.00%)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

Sensitivity/Recall 85.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 91.89% 100.00% 100.00% 100.00%

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

Six Super-

Signatures –

DAYHOFF

(Chapter 6 –

Part-III)

Eleven Super-

Signatures –

IDENTITY

(Chapter 6 –

Part-III)

Ten Super-

Signatures –

MATCH

(Chapter 6 –

Part-III)

Seven Super-

Signatures –

PAM100

(Chapter 6 –

Part-III)
100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

Sensitivity/Recall 100.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 100.00% 100.00% 100.00% 100.00%

181

Type of Files

Scanned

Detection Ratio

(with Accuracy)

and Statistical

Measures

Six Super-

Signatures –

PAM350

(Chapter 6 –

Part-III)

Nine Meta-

Signatures –

Experiment I

(Chapter 7)

14 Meta-

Signatures –

Experiment II

(Chapter 7)

48 Meta-

Signatures –

Experiment III

(Chapter 7)

100 New

JS.Cassandra

Polymorphic

Malicious

Malware

Variants

Detection Ratio

(Accuracy)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

100/100

(100.00%)

Sensitivity/Recall 100.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00%

F1 Score 100.00% 100.00% 100.00% 100.00%

182

References

Abou-Assaleh, T., Cercone, N., & Sweidan, R. (2004). Detection of new malicious code

using N-grams signatures. Proceedings Second Annual Conference on Privacy,

Security and Trust PST (pp. 193-196). New Brunswick: University of New

Brunswick UNB Libraries.

Abuzaid, A. M., Saudi, M. M., Taib, B. M., & Abdullah, Z. H. (2013). An Efficient

Trojan Horse Classification (ETC). International Journal of Computer Science

Issues (IJCSI), 96-104: IJCSI.

Adleman, L. M. (1988). An abstract theory of computer viruses. Advances in

Cryptology - CRYPTO '88, Proceedings Eighth Annual International Cryptology

Conference (pp. 354–374). Santa Barbara, California: Springer International

Publishing.

Agrawal, H. (2012). United States Patent No. US20120072988A1.

Ali, Z., & Soomro, T. (2018). An Efficient Mining Based Approach using PSO

Selection Technique for Analysis and Detection of Obfuscated Malware.

Journal of Information Assurance & Cyber security, 1-13: IBIMA Publishing.

Altschul, S. (1991). Amino acid substitution matrices from an information theoretic

perspective. Journal of Molecular Biology, 555-565: Elsevier.

Aniello, L. (2016, March 4). Research Center for Cyber Intelligence and Information

Security. Retrieved from Sapienza - University of Rome - CIS:

http://www.dis.uniroma1.it/~aniello/ssd2016/machine_learning_for_malware_d

etection.pdf: CIS SAPIENZA, Access Date: October, 2016.

AO Kaspersky Lab. (2017). Machine Learning and Human Expertise. Retrieved from

Kaspersky Lab: https://media.kaspersky.com/en/business-security/machine-

learning-human-expertise.pdf: Kaspersky Lab, Access Date: March 2018.

AO Kaspersky Lab. (2017, March 30). Machine learning in Kaspersky Endpoint

Security 10 for Windows. Retrieved from Kaspersky Lab:

https://support.kaspersky.com/13263: Kaspersky Lab, Access Date: March

2018.

AO Kaspersky Lab. (2018, February 5). Heuristic analysis in Kaspersky Endpoint

Security 10 for Windows. Retrieved from Kaspersky Lab:

https://support.kaspersky.com/12370: Kaspersky Lab, Access Date: March

2018.

Armitage, A. (2007). Mutual Research Designs: Redefining Mixed Methods Research

Design. British Educational Research Association Annual Conference (pp. 1-

10). London: Institute of Education, University of London.

Armoun, S. E., & Hashemi, S. (2013). A General Paradigm for Normalizing

Metamorphic Malwares. Frontiers of Information Technology (FIT), 2012 10th

International Conference on Frontiers of Information Technology. Islamabad:

IEEE.

183

Attaluri, S., McGhee, S., & Stamp, M. (2009). Profile hidden Markov models and

metamorphic virus detection. Journal in Computer Virology, 151–169: Springer.

Audi, R. (2002). The sources of knowledge. In P. Moser, The Oxford Handbook of

Epistemology (pp. 71-94). Oxford, United Kingdom: Oxford University Press.

Aycock, J. (2006). Computer Viruses and Malware. New York City: Springer US.

Baichoo, S., & Ouzounis, C. (2017). Computational complexity of algorithms for

sequence comparison, short-read assembly and genome alignment. Biosystems,

72-85: Elsevier.

Bailey, M., Oberheide, J., Andersen, J., Mao, Z., Jahanian, F., & Nazario, J. (2007).

Automated classification and analysis of internet malware. RAID'07

Proceedings Tenth International Conference on Recent Advances in Intrusion

Detection (pp. 178-197). Gold Goast: Springer Berlin Heidelberg.

Baldangombo, U., Jambaljav, N., & Horng, S.-J. (2013, August 13). [1308.2831] A

static malware detection system using data mining methods. Retrieved from

arXiv: https://arxiv.org/abs/1308.2831: Cornell University Library, Access Date:

March 2016.

Ball, J. R. (2014, March). Detection and Prevention of Android Malware Attempting to

Root the Device. Retrieved from Defense Technical Information Center:

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA600990: Defense Technical

Information Center, Access Date: September 2016.

Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple Definition

and Calculation of Accuracy, Sensitivity and Specificity. Emergency, 48-49:

BMJ Publishing Group Ltd and the College of Emergency Medicine.

Bearden, R. L.-T. (2017). Automated Microsoft Office Macro Malware Detection Using

Machine Learning. International Conference on Big Data (BIGDATA) (pp.

4448-4452). Boston, MA: IEEE.

Beaucamps, P. (2007). Advanced Polymorphic Techniques. International Journal of

Computer Science, 194-205: IAENG.

Belcebu, B. (2014). Tutorials – Win32 Polymorphism. Retrieved from VX Heavens:

http://vxheaven.org/lib/static/vdat/tuwin32p.htm: VX Heaven, Access Date:

September 2015.

Belcebu, B. (n.d.). VX Heaven. Retrieved from VX Heaven: VX Heaven, Access Date:

September 2015.

Berg, P. E. (2011). Behavior-based Classification of Botnet Malware. Gjøvik, Norway:

Department of Computer Science and Media Technology, Gjøvik University

College, Access Date: September 2016.

Berthold, M. (2004, 12 20). Random Data File Creator (RDFC). Retrieved from Bertel:

http://www.bertel.de/software/rdfc/index-en.html: Bertel, Access Date:

September 2015.

184

Beveridge, D., Karnik, A., Beets, K., Heppner, T., & Raman, K. (2017). United States

Patent No. US20170061125A1.

Bitdefender. (2016, December 12). Machine-learning powers Bitdefender’s intellectual

property program. Retrieved from Bitdefender:

https://www.bitdefender.com/news/machine-learning-powers-bitdefenders-

intellectual-property-program-3226.html: Bitdefender, Access Date: April 2018.

Bitdefender. (2017). What is Bitdefender Advanced Threat Defense. Retrieved from

Bitdefender: https://www.bitdefender.com/consumer/support/answer/2024/:

Bitdefender, Access Date: April 2018.

Borello, J.-M. F. (2010). From the design of a generic metamorphic engine to a black-

box classification of antivirus detection techniques. Journal in Computer

Virology, 277–287: Springer.

Borello, J.-M., & Me, L. (2008). Code obfuscation techniques for metamorphic viruses.

Journal of Computer Virology, 211-220: Springer.

Brown University. (2010, October 21). Malicious Software - Ch04-Malware. Retrieved

from Brown University - Department of Computer Science:

http://cs.brown.edu/cgc/net.secbook/se01/handouts/Ch04-Malware.pdf: Brown

University, Access Date: October 2016.

Carlin, D., O’Kane, P., & Sezer, S. (2017). Dynamic Analysis of Malware Using Run-

Time Opcodes. In I. P. Carrascosa, H. K. Kalutarage, & Y. Huang, Data

Analytics and Decision Support for Cybersecurity (pp. 99-125). Berlin,

Germany: Springer.

Cassandra. (2018, February 10). Index of /cassandra. Retrieved from Apache Software

Foundation Distribution Directory:

http://apache.mirror.serversaustralia.com.au/cassandra/: Apache Software

Foundation Distribution Directory, Access Date: April 2018.

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. International

Journal of Man-Machine Studies, 349-370: Elsevier.

Cesare, S. (2010, May). Fast Automated Unpacking and Classification of Malware.

Retrieved from covert.io: http://www.covert.io/research-

papers/security/Fast%20Automated%20Unpacking%20and%20Classification%

20of%20Malware.pdf: covert.io, Access Date: March 2016.

Cesare, S., & Xiang, Y. (2010). Classification of malware using structured control flow.

Proceedings Eight Australasian Symposium on Parallel and Distributed

Computing AusPDC (pp. 61-70). Brisbane: Australian Computer Society, Inc.

Chakraborty, A., & Bandyopadhyay, S. (2013). FOGSAA: Fast Optimal Global

Sequence Alignment Algorithm. Nature Scientific Reports, 1-9: Nature.

Charras, C., & Lecroq, T. (1997, January 14). Exact String Matching Algorithms.

Retrieved from Rouen Computing Laboratory, University of Rouen:

http://www-igm.univ-mlv.fr/~lecroq/string/index.html: University of Rouen,

Access Date: March 2016.

185

Chaumette, S., Ly, O., & Tabary, R. (2011). Automated extraction of polymorphic

signatures using abstract interpretation. Proceedings Fifth International

Conference on Network and Systems Security NSS (pp. 41-48). Milan: IEEE.

Chen, S.-Y., Jeng, T.-H., Huang, C.-C., Chen, C.-C., & Chou, K.-S. (2017). Doctrina:

Annotated Bipartite Graph Mining for Malware-Control Domain Detection.

International Conference on Communication and Network Security (pp. 67-75).

Tokyo, Japan: ACM.

Chen, Y., Narayanan, A., Pang, S., & Ban, T. (2012). Malicious Software Detection

Using Multiple Sequence Alignment and Data Mining. The Twenty-Sixth IEEE

International Conference on Advanced Information Networking and

Applications AINA (pp. 8–14). Fukuoka: IEEE.

Chen, Y., Narayanan, A., Pang, S., & Ban, T. (2012). Multiple sequence alignment and

artificial neural networks for malicious software detection. Proceedings of 2012

Eighth International Conference on Natural Computation ICNC (pp. 261-265).

Chongqing, Sichuan: IEEE.

Chen, Y., Wan, A., & Liu, W. (2006). A fast parallel algorithm for finding the longest

common sequence of multiple biosequences. BMC Bioinformatics, 1-12:

Springer Nature.

Choo, K.-K. R. (2007, March). Zombies and botnets. Retrieved from Australian

Government - Australian Institute of Criminology:

http://aic.gov.au/media_library/publications/tandi_pdf/tandi333.pdf: Australian

Institute of Criminology, Access Date: September 2015.

Choudhary, S. P., & Vidyarthi, D. (2015). A Simple Method for Detection of

Metamorphic Malware using Dynamic Analysis and Text Mining. International

Conference on Communication Networks (pp. 265-270). Bangalore: Elsevier.

Chowdhury, A., Kumar, A., Dubey, H., & Shekokar, N. (2017). United States Patent

No. US20170193229A1.

Christodorescu, M., Jha, S., Seshia, S., Song, D., & Bryant, R. (2005). Semantics-

Aware Malware Detection. IEEE Symposium on Security and Privacy (pp. 32-

46). Oakland, California: IEEE Computer Society.

Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., & Veith, H. (2005, November

22). Malware Normalization. Retrieved from Department of Computer Sciences,

University of Wisconsin:

http://pages.cs.wisc.edu/~mihai/publications/Malware%20Normalization/:

University of Wisconsin, Access Date: September 2016.

Chua, M., & Balachandran, V. (2018). Effectiveness of Android Obfuscation on

Evading Anti-malware. ACM Conference on Data and Application Security and

Privacy (pp. 143-145). Tempe, AZ: ACM.

ClamAV. (2016, May 3). ClamavNet. Retrieved from ClamAV:

http://www.clamav.net/download.html: ClamAV, Access Date: September 2016.

186

ClamAV. (2018). ClamavNet. Retrieved from ClamAV: https://www.clamav.net/:

ClamAV, Access Date: April 2018.

CLC bio. (2007). Bioinformatics explained: Smith-Waterman. Aarhus, Denmark: CLC

bio.

Clustal. (2012, August 31). Clustal: Multiple Sequence Alignment. Retrieved from

Clustal: http://www.clustal.org/download/clustalw_help.txt: Clustal, Access

Date: September 2015.

Codreanu, D., Neagu, M., & Chiriac, M. (2014). United States Patent No.

US8813222B1.

Cohen, F. B. (1987). Computer viruses: Theory and experiments. Computers &

Security, 22–35.

Cohen, F. B. (1989). Computational aspects of computer viruses. Computers &

Security, 325–344: Elsevier.

Copy, M. (. (2016). The Ten Most Common Spyware Threats. Retrieved from Street

Directory:

http://www.streetdirectory.com/travel_guide/158768/security/the_ten_most_co

mmon_spyware_threats.html: Streetdirectory Pte Ltd, Access Date: September

2016.

Coull, S., & Szymanski, B. (2008). Sequence alignment for masquerade detection.

Computational Statistics & Data Analysis, 4116-4131.

Cowie, N. A., Muttik, I. G., & Wolff, D. J. (2008). United States Patent No.

US7346781B2.

Creswell, J. (2014). Research Design: Qualitative, Quantitative and Mixed Methods

Approaches. California, United States: SAGE Publications.

Crotty, M. (1998). The foundations of social research: Meaning and Perspective in the

Research. California, United States: SAGE Publications Ltd.

Cui, W., Peinado, M., Wang, H., & Locasto, M. (2007). Shieldgen: Automatic data

patch generation for unknown vulnerabilities with informed probing. Symposium

on Security and Privacy (pp. 252-266). Oakland, CA: IEEE.

Datta, R., & Saha, S. (2011, August). An Empirical comparison of rule based

classification techniques in medical databases. Retrieved from IDEAS:

https://ideas.repec.org/p/ift/wpaper/1107.html: IDEAS, Access Date: September

2016.

Dayhoff, M. O., Schwartz, R. M., & Orcutt, B. C. (1978). A model of evolutionary

change in proteins (1978). Atlas of Protein Sequence and Structure, 345-351:

National Biomedical Research Foundation.

Debray, S. K., Coogan, K., & Townsend, G. M. (2008). On the Semantics of Self-

Unpacking. Malware Code. Tucson: Dept of Computer Science, University of

Arizona.

187

Devesa, J., Santos, I., Cantero, X., Penya, Y., & Bringas, P. G. (2010). Automatic

Behaviour-based Analysis and Classification System for Malware Detection.

International Conference on Enterprise Information Systems (pp. 395–399).

Funchal, Madeira - Portugal: SciTePress.

Diao, L., Chan, V., & Lu, P. (2015). United States Patent No. US8935788B1.

Dohi, K., Benkrid, K., Ling, C., Hamada, T., & Shibata, Y. (2010). Highly efficient

mapping of the Smith-Waterman algorithm on CUDA-compatible GPUs.

International Conference on Application-specific Systems Architectures and

Processors (pp. 29-36). Rennes, France: IEEE.

Dumitraş, T., & Neamtiu, I. (2011). Experimental Challenges in Cyber Security: A

Story of Provenance and Lineage for Malware. Conference on Cyber security

experimentation and test (pp. 1-9). San Francisco, CA: USENIX Association

Berkeley.

Eddy, S. (2004). Where did the BLOSUM62 alignment score matrix come from?

Nature Biotechnology, 1035–1036: Nature.

Elhadi, A. A., Maarof, M. A., & Osman, A. H. (2012). Malware detection based on

hybrid signature behaviour application programming interface call graph.

American Journal of Applied Sciences, 283-288: Science Publications.

Ellis, D., Aiken, J., Attwood, K., & Tenaglia, S. (2004). A Behavioral Approach to

Worm Detection. WORM '04 Proceedings of the ACM Workshop on Rapid

Malcode (pp. 43-53). Washington, DC: ACM.

EMBL-EBI. (2016). EMBL European Bioinformatics Institute. Retrieved from The

European Bioinformatics Institute: http://www.ebi.ac.uk/: The European

Bioinformatics Institute, Access Date: March 2016.

EMBOSS Matcher. (2018). EMBOSS Matcher. Retrieved from EMBL-EBI:

https://www.ebi.ac.uk/Tools/psa/emboss_matcher/: The European

Bioinformatics Institute, Access Date: March 2016.

EmEditor. (2018). EmEditor (Text Editor) – Text Editor for Windows supporting large

files and Unicode!:. Retrieved from EmEditor: https://www.emeditor.com/:

EmEditor, Access Date: March 2018.

Eskandari, M., & Hashemi, S. (2012). A graph mining approach for detecting unknown

malware. Journal of Visual Languages and Computing, 154-162: Elsevier.

Fazlali, M., & Khodamoradi, P. (2018). Metamorphic Malware Detection Using

Minimal Opcode Statistical Patterns. In Y. Maleh, Security and Privacy

Management, Techniques, and Protocols (pp. 337-359). Hershey, Pennsylvania:

IGI Global.

Feng, Y., Bastani, O., Martins, R., Dillig, I., & Anand, S. (2017). Automated Synthesis

of Semantic Malware Signatures using Maximum Satisfiability. NDSS

Symposium 2017 (pp. 1-15). San Diego, California: Internet Society.

188

Ferrie, P. (2013, May 3). Virus Bulletin :: Read the Transcript. Retrieved from Virus

Bulletin: https://www.virusbulletin.com/virusbulletin/2013/05/read-transcript:

Virus Bulletin, Access Date: March 2015.

Ferris, T. (2006, August 2). The Art of Stealthy Viruses.txt. Retrieved from The

Hackademy:

http://repo.thehackademy.net/depot_madchat/vxdevl/library/The%20Art%20of

%20Stealthy%20Viruses.txt: Hackademy, Access Date: March 2015.

Filiol, E. (2002). Applied Cryptanalysis of Cryptosystems and Computer Attacks

Through Hidden Ciphertexts Computer Viruses. France: INRIA.

Filiol, E. (2007). Metamorphism, formal grammars and undecidable code mutation.

International Journal of Computer Science, 70-75: IAENG.

Fisher, S. (2016, November 21). Free Online Virus Scanners. Retrieved from the

balance: https://www.thebalance.com/free-online-virus-scanners-1356651: The

Balance, Access Date: March 2016.

Flake, H. (2004). Structural Comparison of Executable Objects. Proceedings of IEEE

Conference on Detection of Intrusions and Malware and Vulnerability

Assessment (pp. 161–173). Dortmund: IEEE.

Fosnock, C. (2005). Computer Worms: Past, Present, and Future. East Carolina: East

Carolina University.

Frank, E., Hall, M. A., & Witten, I. H. (2016). Online Appendix for “Data Mining:

Practical Machine Learning Tools and Techniques” (Fourth Edition).

Burlington: Morgan Kaufmann. Retrieved from Department of Computer

Science, The University of Waikato - WEKA:

http://www.cs.waikato.ac.nz/ml/weka/: Morgan Kaufmann, Access Date:

January 2017.

Fukushima, Y., Sakai, A., Hori, Y., & Sakurai, K. (2010). A behaviour based malware

detection scheme for avoiding false positive. Proceedings Sixth IEEE Workshop

on Secure Network Protocols NPSec (pp. 79-84). Kyoto: IEEE.

Gao, D., Reiter, M. K., & Song, D. (2005). Behavioral distance for intrusion detection.

8th International Symposium, RAID (pp. 63–81). Seattle, WA: Springer Berlin

Heidelberg.

Garhwal, A. S. (2018). Bioinformatics-inspired analysis for watermarked images with

multiple print and scan. Auckland: Auckland University of Technology, Access

Date: April 2018.

Gartside, P. (2005). United States Patent No. US6851058B1.

Geers, M., Çağlayan, F., & Heij, R. (2013). Low-Cost Smith-Waterman Acceleration.

Delft, Netherlands: Delft University of Technology.

Ghayyur, O., Aleem, M., & Islam, M. (2018). Time Efficient Novel Parallel Technique

for Needleman Wunsch and Smith Waterman Algorithms. International

Conference on Computing, Mathematics and Engineering Technologies (pp. 1-

6). Sukkur, Pakistan: IEEE.

189

Gold, E. M. (1967). Language identification in the limit. Information and Control, 447-

474: Elsevier.

Goldhaber, A. S., & Nieto, M. M. (2010). Photon and Graviton Mass Limits. Reviews of

Modern Physics, 939-979: American Physical Society.

Gonnet, G. (1998, September 15). Dayhoff Matrices. Retrieved from Department of

Computer Science, ETH Zurich:

https://www.inf.ethz.ch/personal/gonnet/DarwinManual/node149.html: ETH

Zurich, Access Date: April 2016.

Gragido, W., & Elisan, C. (2012). Polymorphic and Metaphoric Threats and Your

Cyber Future. Retrieved from Black Hat:

https://www.blackhat.com/docs/webcast/polymorphis-and-metaphoric-threats-

and-your-cyber-future.pdf: Black Hat, Access Date: April 2015.

Green, J. P., Chandnani, A. D., & Christensen, S. D. (2011). United States Patent No.

US20120266244A1.

Green, J. P., Chandnani, A. D., & Christensen, S. D. (2018). United States Patent No.

US9858414B2.

Griffin, K., Schneider, S., Hu, X., & Chiueh, T.-c. . (2009). Automatic generation of

string signatures for malware detection. International Workshop on Recent

Advances in Intrusion Detection (pp. 101-120). Saint-Malo: Springer Berlin

Heidelberg.

Gualtieri, M. (2002). Securing Software: The Methods, the Problems, the Solutions?

Pittsburgh: Department of Computer Science, University of Pittsburgh, Access

Date: April 2017.

Gurnani, B. (2017). Malware Detection using the Index of Coincidence. San Jose,

California: San Jose State University, Access Date: April 2017.

Hajmasan, G. F., Lukacs, S., & Fulop, B. (2016). United States Patent No.

US9460284B1.

Hamm, J., & Johnson, S. (2002, September 11). Polymorphic Viruses A brief survey.

Retrieved from University of Verona:

http://profs.sci.univr.it/~giaco/download/Watermarking-

Obfuscation/Polymorph_final.ppt: University of Verona, Access Date: April

2016.

Hassen, M. C. (2017). Malware classification using static analysis based features.

Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). Honolulu,

HI: IEEE.

Heikki, M. (1997). Methods and Problems in Data Mining. In M. Heikki, Database

Theory — ICDT '97 (pp. 41-55). Heidelberg: Springer Berlin Heidelberg.

Heller, S. (1996). Symantec Norton Antivirus 2.0 for Windows 95. Journal of Chemical

Information and Modeling, 1229–1229: American Chemical Society.

190

Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Sciences (PNAS), 10915–

10919: United States National Academy of Sciences.

Hexacorn Limited. (2012, September 2). PESectionExtractor – Extracting PE sections

and their strings. Retrieved from Hexacorn Limited:

http://www.hexacorn.com/blog/2012/09/02/pesectionextractor-extracting-pe-

sections-and-their-strings/: Hexacorn Limited, Access Date: April 2016.

Hood, G. (2016). Online Virus Scanner. Retrieved from Gary’s Hood:

http://www.garyshood.com/virus/: Gary's Hood, Access Date: October 2016.

Hosmer, C. (2008). Polymorphic & Metamorphic Malware. Retrieved from Black Hat:

https://www.blackhat.com/presentations/bh-usa-

08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf: Black Hat, Access

Date: April 2016.

HSIAO, H.-C., DENG, S., Salamat, B., Gupta, R., & Das, S. M. (2017). United States

Patent No. US9832211B2.

Huang, Q., CAO, H., & Yu, K. (2017). United States Patent No. US9817974B1.

Huang, X., & Miller, W. (1991). A time-efficient, linear-space local similarity

algorithm. Advances in Applied Mathematics, 337–357: Elsevier.

HubPages. (2014, October 19). The History of the Computer Viruses. Retrieved from

HubPages: http://hubpages.com/technology/The-History-of-the-Computer-

Viruses: HubPages, Access Date: August 2016.

Huda, S. A. (2017). A fast malware feature selection approach using a hybrid of multi‐
linear and stepwise binary logistic regression. Concurrency and Computation:

Practice and Experience, 1-18: John Wiley & Sons Ltd.

Huda, S., Miah, S., Hassan, M. M., Islam, R., Yearwooda, J., Alrubaiand, M., &

Almogren, A. (2017). Defending unknown attacks on cyber-physical systems by

semi-supervised approach and available unlabeled data. Information Sciences,

211-228: Elsevier.

Idika, N., & Mathur, A. P. (2007). A survey of malware detection techniques, Technical

Report 286. Retrieved from SERC Security and Software Engineering Research

Center: http://www.serc.net/system/files/SERC-TR-286.pdf: SERC Security and

Software Engineering Research Center, Access Date: September 2016.

Infoplease. (2014, August). Computer Virus Timeline. Retrieved from Infoplease:

http://www.infoplease.com/ipa/A0872842.html: Infoplease, Access Date:

September 2016.

Irshad, M., al-Khateeb, H., Mansour, A., Ashawa, M., & Hamisu, M. (2018). Effective

methods to detect metamorphic malware: a systematic review. International

Journal of Electronic Security and Digital Forensics, 138-154: Inderscience

Publishers.

Jalview. (2018). Jalview. Retrieved from Jalview: http://www.jalview.org/: Jalview,

Access Date: September 2017.

191

jcaparas, & Hall, J. (2018, April 24). Windows Defender Advanced Threat Protection.

Retrieved from Microsoft: https://docs.microsoft.com/en-

us/windows/security/threat-protection/windows-defender-atp/windows-

defender-advanced-threat-protection: Microsoft, Access Date: March 2018.

Jidigam, R., Austin, T., & Stamp, M. (2015). Singular value decomposition and

metamorphic detection. Journal of Computer Virology and Hacking Techniques,

203–216: Springer.

Johanson, G., & Williamson, K. (2013). Research Methods: Information, Systems and

Contexts. Prahran, Victoria: Tilde Publishing and Distribution.

Johnston, A. (2014, May 23). Computer Virus Timeline. Retrieved from Prezi:

https://prezi.com/e-go-dl_ynji/computer-virus-timeline/: Prezi Inc., Access Date:

March 2016.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N., Wang, Y., & Iqbal, F. (2018).

Malware Classification with Deep Convolutional Neural Networks.

International Conference on New Technologies, Mobility and Security (pp. 1-5).

Paris, France: IEEE.

Kaspersky. (2016). About Us | Kaspersky Lab. Retrieved from Kaspersky Lab:

http://www.kaspersky.com/about: Kaspersky Lab, Access Date: April 2016.

Katoh, K. (2018, July). MAFFT alignment and NJ / UPGMA phylogeny. Retrieved from

MAFFT Computational Biology Research Consortium:

http://mafft.cbrc.jp/alignment/server/index.html: Computational Biology

Research Consortium, Access Date: April 2016.

Katoh, K., & Standley, D. (2013). MAFFT Multiple Sequence Alignment Software

Version 7: Improvements in Performance and Usability. Molecular Biology and

Evolution, 772–780.

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform. Nucleic

Acids Research, 3059–3066: Oxford Academic.

Kaur, R., & Singh, M. (2014). Efficient hybrid technique for detecting zero-day

polymorphic worms. IEEE International Advance Computing Conference (pp.

95-100). Gurgaon, India: IEEE.

Kaushal, K., Swadas, P., & Prajapati, N. (2012). Metamorphic Malware Detection

Using Statistical Analysis. International Journal of Soft Computing and

Engineering, 49-53: Blue Eyes Intelligence Engineering & Sciences Publication

Pvt. Ltd.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., . . .

Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop

software platform for the organization and analysis of sequence data.

Bioinformatics, 1647–1649: Oxford Academic.

192

Kephart, J., & Arnold, W. (1994). Automatic Extraction of Computer Virus Signatures.

Fourth Virus Bulletin International Conference (pp. 178–184). England: Virus

Bulletin Ltd.

Khan, M., Siddiqui, S., & Ferens, K. (2017). Cognitive modeling of polymorphic

malware using fractal based semantic characterization. International Symposium

on Technologies for Homeland Security (pp. 1-7). Waltham, MA: IEEE.

Ki, Y., Kim, E., & Kim, H. (2015). A Novel Approach to Detect Malware Based on API

Call Sequence Analysis. International Journal of Distributed Sensor Networks,

1-9: SAGE Publications.

Kim, H.-A., & Karp, B. (2004). Autograph: Toward automated, distributed worm

signature detection. USENIX Security Symposium (pp. 19-19). San Diego, CA:

USENIX Association Berkeley.

Kim, J., & Pramanik, S. (1994). An efficient method for multiple sequence alignment.

International Conference on Intelligent Systems for Molecular Biology (pp. 212-

218). Stanford, California: AAAI Press.

Kinder, J., Katzenbeisser, S., Schallhart, C., & Veith, H. (2005). Detecting malicious

code by model checking. Second International Conference, DIMVA (pp. 174-

187). Vienna: Springer Berlin Heidelberg.

Kirat, D., & Vigna, G. (2015). MalGene: Automatic Extraction of Malware Analysis

Evasion Signature. ACM SIGSAC Conference on Computer and

Communications Security (pp. 769-780). Denver, Colorado: ACM.

Koklu, M., Kahramanli, H., & Allahverdi, N. (2015). Applications of Rule Based

Classification Techniques for Thoracic Surgery. Management, Knowledge and

Learning - Joint International Conference 2015 - Technology, Innovation and

Industrial Management TIIM (pp. 1991–1998). Bari: ToKnowPress, Access

Date: April 2016.

Kolesnikov, O., & Lee, W. (2004). Advanced Polymorphic Worms: Evading IDS by

Blending in with Normal Traffic. Usenix Security Symposium (pp. 1-22). San

Diego, CA: Georgia Tech Library, Access Date: August 2017.

Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016). Deep Learning for

Classification of Malware System Call Sequences. Australasian Joint

Conference on Artificial Intelligence (pp. 137-149). Hobart, Australia: Springer.

Kolter, J., & Maloof, M. (2006). Learning to detect and classify malicious executables

in the wild. Journal of Machine Learning Research, 2721-2744: JMLR, Inc. and

Microtome Publishing.

Komashinskiy, D., & Kotenko, I. (2010). Malware detection by data mining techniques

based on positionally dependent features. Proceedings Eighteenth Euromicro

Conferences on Parallel, Distributed and Network-based Processing PDP (pp.

617-623). Pisa: IEEE Computer Society.

Konstantinou, E., & Wolthusen, S. (2008). Metamorphic Virus: Analysis and Detection.

Egham: Royal Holloway, University of London.

193

Korczynski, D., & Yin, H. (2017). Capturing Malware Propagations with Code

Injections and Code-Reuse Attacks. Conference on Computer and

Communications Security (pp. 1691-1708). Dallas, Texas: ACM.

Kothari, C. (2004). Research Methodology: Methods and Techniques. New Delhi,

Delhi: New Age International.

Koyutürk, M. G. (2005). Pairwise Local Alignment of Protein Interaction Networks

Guided by Models of Evolution. Annual International Conference on Research

in Computational Molecular Biology (pp. 48-65). Cambridge, Massachusetts:

Springer.

Kreibich, C., & Crowcroft, J. (2004). Honeycomb: creating intrusion detection

signatures using honeypots. ACM SIGCOMM computer communication review,

51-56: ACM.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., & Vigna, G. (2005). Polymorphic

worm detection using structural information of executables. RAID'05

Proceedings of the 8th international conference on Recent Advances in Intrusion

Detection (pp. 207-226). Heidelberg: Springer-Verlag Berlin.

Kubovič, O. (2017, June 20). Machine learning by ESET: The road to Augur. Retrieved

from welivesecurity by ESET:

https://www.welivesecurity.com/2017/06/20/machine-learning-eset-road-augur/:

WeLiveSecurity, Access Date: October 2017.

Kumar, A. (2016, June 10). What is a Polymorphic Virus and how do you deal with it.

Retrieved from The Windows Club:

http://www.thewindowsclub.com/polymorphic-virus: The Windows Club,

Access Date: April 2016.

Kumar, S., & Filipski, A. (2007). Multiple sequence alignment: In pursuit of

homologous DNA positions. Genome Research, 127-135: Cold Spring Harbor

Laboratory Press.

Kumar, V., & Mishra, S. K. (2013). Detection of Malware by using Sequence

Alignment Strategy and Data Mining Techniques. International Journal of

Computer Applications, 16-19: Foundation of Computer Science.

Lal, D., & Verma, M. (2017). Large-Scale Sequence Comparison. In J. Keith,

Bioinformatics. Methods in Molecular Biology (pp. 191-224). New York, NY:

Humana Press.

LAVASOFT. (2013, November 5). History of Malware. Retrieved from LAVASOFT:

http://www.lavasoft.com/mylavasoft/company/blog/history-of-malware:

LAVASOFT, Access Date: June 2016.

Leder, F., Steinbock, B., & Martini, P. (2009). Classification and detection of

metamorphic malware using value set analysis. International Conference on

Malicious and Unwanted Software (pp. 39-46). Montreal: IEEE.

194

Leder, F., Steinbock, B., & Martini, P. (2009). Classification and Detection of

Metamorphic Malware using Value Set Analysis. International Conference on

Malicious and Unwanted Software (pp. 39-46). Montreal, QC: IEEE.

Li, X., Loh, P., & Tan, F. (2011). Mechanisms of Polymorphic and Metamorphic

Viruses. European Intelligence and Security Informatics Conference (pp. 149-

154). Athens, Greece: IEEE.

Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y., & Chavez, B. (2006). Hamsa: fast signature

generation for zero-day polymorphic worms with provable attack resilience.

Symposium on Security and Privacy (pp. 32-47). Berkeley/Oakland, CA: IEEE.

Lindorfer, M., Kolbitsch, C., & Comparetti, P. M. (2011). Detecting Environment-

Sensitive Malware. International Workshop on Recent Advances in Intrusion

Detection (pp. 338-357). Menlo Park, CA: Springer.

Linux Mint. (2016, October 28). Linux Mint – from freedom came elegance. Retrieved

from Linux Mint: https://www.linuxmint.com/: Linux Mint, Access Date:

November 2016.

Liu, F. (2014). Intelligent collision detection and avoidance techniques for autonomous

agents. Auckland: Auckland University of Technology, Access Date: April

2018.

Lowe, T. (1992, December 10). gapmis/EDNAFULL.h . Retrieved from Github:

https://github.com/xflouris/gapmis/blob/master/EDNAFULL.h: Github, Access

Date: September 2016.

Lukacs, S., & LUTAS, A. V. (2016). United States Patent No. US9531735B1.

Marczyk, G., DeMatteo, D., & Festing, D. (2005). Essentials of Research Design and

Methodology. Hoboken, New Jersey: John Wiley & Sons.

Marinescu, A. (2003, March 4). An Analysis of Simile. Retrieved from Symantec:

https://www.symantec.com/connect/articles/analysis-simile: Symantec, Access

Date: April 2015.

Martin, B. (1995, May). Instance-based learning: nearest neighbour with

generalisation. Retrieved from Research Commons, University of Waikato

Research: http://researchcommons.waikato.ac.nz/handle/10289/1095: University

of Waikato, Department of Computer Science, Access Date: May 2016.

Mathews, M. (2017, September 14). jsdoc. Retrieved from GitHub Inc.:

https://github.com/jsdoc3/jsdoc: Github Inc., Access Date: October 2017.

McAfee. (1999, December 30). Virus Profile: Brain. Retrieved from McAfee Inc.:

https://home.mcafee.com/virusinfo/virusprofile.aspx?key=221: McAfee Inc.,

Access Date: September 2016.

McLaughlin, N., Rincon, J. M., Kang, B., Yerima, S., Miller, P., Sezer, S., . . . Ahn, G.

J. (2017). Deep Android Malware Detection. Conference on Data and

Application Security and Privacy (pp. 301-308). Scottsdale, Arizona: ACM.

195

MIT license. (2017, December 19). DataTables. Retrieved from GitHub Inc.:

https://github.com/DataTables/DataTables: Github Inc., Access Date: October

2017.

MIT License. (2018, February 10). angular.js. Retrieved from GitHub Inc.:

https://github.com/angular/angular.js: Github Inc., Access Date: October 2017.

MIT license. (2018, February 10). Chart.js. Retrieved from GitHub Inc.:

https://github.com/chartjs/Chart.js: Github Inc., Access Date: October 2017.

Mitchell, T. M. (1997). Machine learning. Maidenhead: McGraw-Hill.

Mohamed, G., & Ithnin, N. (2017). SBRT: API Signature Behaviour Based

Representation Technique for Improving Metamorphic Malware Detection.

International Conference of Reliable Information and Communication

Technology (pp. 767-777). Johor Bahru, Malaysia: Springer.

Moreland, K. (2006). Basic Local Alignment Search Tool (BLAST). Dallas: University

of Texas, Access Date: October 2017.

Moser, A., Kruegel, C., & Kirda, E. (2007). Limits of static analysis for malware

detection. Proceedings IEEE Twenty-Third Annual Computer Security

Applications Conference ACSAC (pp. 421-430). Florida: IEEE.

Moskovitch, R., Elovici, Y., & Rokach, L. (2008). Detection of unknown computer

worms based on behavioral classification of the host. Journal of Computational

Statistics & Data Analysis, 4544-4566: Elsevier.

Moustafa, A. (2010, March 31). JAligner: Java Implementation of the Smith-Waterman

algorithm for biological sequence alignment. Retrieved from SourceForge:

http://jaligner.sourceforge.net/: DHI Group, Inc., Access Date: October 2015.

Mr.doob. (2018, February 10). three.js. Retrieved from GitHub Inc.:

https://github.com/mrdoob/three.js: Github Inc., Access Date: October 2017.

Musale, M., Austin, T., & Stamp, M. (2015). Hunting for metamorphic JavaScript

malware. Journal of Computer Virology and Hacking Techniques, 89–102:

Springer.

Musil, S. (2014, November 23). Stealthy Regin malware is a 'top-tier espionage tool'.

Retrieved from CNET: https://www.cnet.com/news/stealth-malware-found-

spying-on-telecoms-energy-sectors/: CNET, Access Date: October 2016.

Nachenberg, C. (1996). Understanding and Managing Polymorphic Viruses. California:

The Symantec Enterprise Papers, Access Date: October 2017.

Nachenberg, C. (1998). United States Patent No. US5854916A.

Nachenberg, C. (2006). United States Patent No. US7130981B1.

Nachenberg, C. S. (1998). United States Patent No. US5826013A.

Nachenberg, C. S. (2002). United States Patent No. US6357008B1.

Nachenberg, C., & Szor, P. (2008). United States Patent No. US7337471B2.

196

Naidu, V. (2018, February 23). Windows_Systems_Files_2018. Retrieved from

MediaFire:

http://www.mediafire.com/file/024064jz6ce3jge/Windows_Systems_Files_2018

.rar: MediaFire, Access Date: March 2018.

Naidu, V., & Narayanan, A. (2014). Further experiments in biocomputational structural

analysis of malware. Proceedings of the Tenth IEEE International Conference

on Natural Computation ICNC 2014 (pp. 605-610). Xiamen: IEEE.

Naidu, V., & Narayanan, A. (2016). A syntactic approach for detecting viral

polymorphic malware variants. In Intelligence and Security Informatics (pp.

146-165). Switzerland: Springer International Publishing.

Naidu, V., & Narayanan, A. (2016). Needleman-Wunsch and Smith-Waterman

Algorithms for Identifying Viral Polymorphic Malware Variants. Proceedings of

the Fourteenth IEEE International Conference on Dependable, Autonomic and

Secure Computing DASC 2016 (pp. 326-333). Auckland: IEEE.

Naidu, V., & Narayanan, A. (2016). Using different substitution matrices in a string-

matching technique for identifying viral polymorphic malware variants. IEEE

Congress on Evolutionary Computation (CEC) (pp. 2903 - 2910). Vancouver:

IEEE.

Naidu, V., Whalley, J., & Narayanan, A. (2017). Exploring the Effects of Gap-Penalties

in Sequence-Alignment Approach to Polymorphic Virus Detection. Journal of

Information Security (JIS), 296-327: Scientific Research Publishing Inc.

Naidu, V., Whalley, J., & Narayanan, A. (2018). Generating Rule-Based Signatures for

Detecting Polymorphic Variants Using Data Mining and Sequence Alignment

Approaches. Journal of Information Security (JIS), 265-298: Scientific Research

Publishing Inc.

Narayanan, A. (2013). Society under threat… but not from AI. AI & SOCIETY, 87–94:

Springer.

Narayanan, A. C. (2013). Bio-inspired data mining: Treating malware signatures as

biosequences. Computing Research Repository (CoRR), 1-33: Cornell

University Library, Access Date: February 2016.

Narayanan, A., Chen, Y., Pang, S., & Ban, T. (2012). The Effects of Different

Representations on Malware Motif Identification. Proceedings of Eighth

International Conference on Computational Intelligence and Security CIS (pp.

86-90). Guangzhou: IEEE.

Narayanan, A., Chen, Y., Pang, S., & Ban, T. (2013). The Effects of Different

Representations on Static Structure Analysis of Computer Malware Signatures.

The Scientific World Journal, 8: Hindawi Publishing Corporation.

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 343–357:

Springer.

197

Nataraj, L., Yegneswaran, V., Porras, P., & Zhang, J. (2011). A comparative assessment

of malware classification using binary texture analysis and dynamic analysis.

Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence

(pp. 21-30). Chicago: ACM.

Natarajan, S., Paul, N., Sobrier, J., THAMILARASU, K., BAYAR, B., & Sutton, M. A.

(2017). United States Patent No. US9609015B2.

Newsome, J., Karp, B., & Song, D. (2005). Polygraph: automatically generating

signatures for polymorphic worms. Symposium on Security and Privacy (pp.

226-241). Oakland, CA: IEEE.

Newsome, J., Karp, B., & Song, D. (2005). Polygraph: Automatically Generating

Signatures for Polymorphic Worms. Proceedings of IEEE Symposium on

Security and Privacy (pp. 226–241). Oakland, California: IEEE.

Nguyen, M. N. (2018). Auto-detection of sophisticated malware using lazy-binding

control flow graph and deep learning. Computers & Security, 128-155: Elsevier.

Nhuong, N. Y. (2014). Semantic Set Analysis for Malware Detection. International

Conference on Computer Information Systems and Industrial Management (pp.

688-700). Ho Chi Minh City, Vietnam: Springer.

NOD21. (2004). NOD21. Retrieved from NOD21: http://www.nod21.com: NOD21,

Access Date: May 2016.

Norton. (2010). The Stuxnet Worm. Retrieved from Norton by Symantec:

https://us.norton.com/stuxnet: Symantec, Access Date: August 2016.

Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast

and accurate multiple sequence alignment. Journal of Molecular Biology, 205-

217, 302(1): ScienceDirect, Access Date: May 2016.

Oberheide, J., Bailey, M., & Jahanian, F. (2009). PolyPack: An Automated Online

Packing Service for Optimal Antivirus Evasion. Proceeding WOOT'09

Proceedings of the 3rd USENIX conference on Offensive technologies (pp. 9-9).

Montreal: USENIX Association.

OpNux. (2015, April 9). Top 5 Free Open Source Antivirus List. Retrieved from OpNux

– Open Source and Linux: http://opnux.com/top-5-free-open-source-antivirus-

list: OpNux, Access Date: March 2016.

Laxmi, V., P, V., & Gaur, M. (2009). Survey on malware detection methods. Hackers’

Workshop on Computer and Internet Security (pp. 74-79). Kanpur, India: Prabhu

Goel Research Centre for Computer & Internet Security.

Paganini, P. (2014, December 24). Virlock, the first self-reproducing polymorphic

Ransomware. Retrieved from Security Affairs:

http://securityaffairs.co/wordpress/31442/malware/virlock-polymorphic-

ransomware.html: Security Affairs, Access Date: November 2016.

Panda, M., & Patra, M. R. (2009). Semi-Naïve Bayesian Method for Network Intrusion

Detection System. In M. Panda, & M. R. Patra, Neural Information Processing

(pp. 614-621). Heidelberg: Springer Berlin Heidelberg.

198

Parkour, M. (2013, March 24). 16,800 clean and 11,960 malicious files for signature

testing and research. Retrieved from Contagio Malware Dump:

http://contagiodump.blogspot.co.nz/2013/03/16800-clean-and-11960-malicious-

files.html: Contagio Malware Dump, Access Date: November 2017.

Patel, V., Gandhi, K., & Bhatti, D. (2017). A Shared Memory Based Implementation of

Needleman-wunsch Algorithm using Skewing Transformation. International

Journal of Advanced Research in Computer Science, 202-208: Institute of

Advanced Scientific Research.

Pearson, W. R. (2013). Selecting the Right Similarity-Scoring Matrix. Current

Protocols in Bioinformatics, 3.5.1–3.5.9: Wiley Online Library.

Pham, P. D. (2011). Applying GPUs for Smith-Waterman Sequence Alignment

Acceleration. International Journal on Computing, 174-179: Computing Online.

Phylo.io. (2018). Phylo.io. Retrieved from Phylo.io: http://phylo.io/: Phylo.io, Access

Date: November 2017.

Prabha, A. P., & Kavitha, P. (2012). Malware Classification through HEX.

International Journal of Computer Applications, 6-12: Foundation of Computer

Science.

Prasad, D., & Jaganathan, S. (2018). Improving the performance of Smith–Waterman

sequence algorithm on GPU using shared memory for biological protein

sequences. Cluster Computing, 1–10: Springer.

Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. (2007). A semantics-based

approach to malware detection. POPL '07 Proceedings of the Thirty-Fourth

annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (pp. 377-388). Nice: ACM.

Preda, M., & Maggi, F. (2017). Testing android malware detectors against code

obfuscation: a systematization of knowledge and unified methodology. Journal

of Computer Virology and Hacking Techniques, 209–232: Springer.

Privitera, G., & Ahlgrim-Delzell, L. (2018). Research Methods for Education.

Thousand Oaks, Ventura County, California: SAGE Publications.

Prlić, A., Domingues, F. S., & Sippl, M. J. (2000, June 5). Structure-derived substitution

matrices for alignment of distantly related sequences. Protein Engineering,

Design and Selection, 545-550, 13(8): Oxford Academic.

Quinlan, J. R. (1979). Discovering rules by induction from large collections of

examples. In D. Michie, Expert Systems in the Micro-Electronic Age (pp. 168-

201). Edinburgh: Edinburgh University Press.

Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in Malware: from

Encryption to Metamorphism. International Journal of Computer Science and

Network Security, 74-83: IJCSNS.

Rafique, M., & Caballero, J. (2013). Firma: Malware clustering and network signature

generation with mixed network behaviors. International Symposium on

199

Research in Attacks, Intrusions, and Defenses (pp. 144-163). Rodney Bay, St.

Lucia: Springer.

Raphel, J., & P., V. (2015). Pruned Feature Space for Metamorphic Malware Detection

using Markov Blanket. International Conference on Contemporary Computing

(pp. 377-382). Noida, India: IEEE.

Rastogi, V., Chen, Y., & Jiang, X. (2014). Catch Me If You Can: Evaluating Android

Anti-Malware Against Transformation Attacks. IEEE Transactions on

Information Forensics and Security, 99-108: IEEE.

Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular

Biology Open Software Suite. Trends in Genetics, 276-277: Cell Press.

Rieck, K., Schwenk, G., Limmer, T., Holz, T., & Laskov, P. (2010). Botzilla: Detecting

the “Phoning Home” of Malicious Software. ACM Symposium on Applied

Computing (pp. 1978-1984). Sierre, Switzerland: ACM.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public key cryptosystems. Communications of the ACM, 120–126

: ACM.

Robiah, Y., Rahayu, S., Zaki, M., Shahrin, S., Faizal, M., & Marliza, R. (2009). A new

generic taxonomy on hybrid malware detection technique. International Journal

of Computer Science and Information Security, 56-60: IJCSIS.

Robinson, O., Dylus, D., & Dessimoz, C. (2016). Phylo.io: Interactive Viewing and

Comparison of Large Phylogenetic Trees on the Web. Molecular Biology and

Evolution, 2163–2166: Oxford Academic.

Rossow, C., & Dietrich, C. (2013). ProVeX: Detecting Botnets with Encrypted

Command and Control Channels. International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment (pp. 21-40). Berlin,

Germany: Springer.

Rothbauer, P. M. (2008). Triangulation. In L. M. Given, The SAGE Encyclopedia of

Qualitative Research Methods (pp. 892-894). Melbourne, Victoria: Sage

Publications.

Rouse, M. (2005, September). What is blended threat? - Definition from WhatIs.com.

Retrieved from TechTarget:

http://searchsecurity.techtarget.com/definition/blended-threat: TechTarget,

Access Date: November 2016.

Sabin, T. (2004, April 7). Comparing Binaries with Graph Isomorphisms. Retrieved

from SecuriTeam:

http://www.securiteam.com/securityreviews/5EP0320CKC.html: SecuriTeam,

Access Date: October 2016.

Salkind, N. (2010). Encyclopedia of Research Design. Thousand Oaks, Ventura County,

California: SAGE Publications, Inc.

Salzberg, S. (1991). A Nearest Hyperrectangle Learning Method. Machine Learning,

277–309: Springer.

200

Sandro, A. (2016, June). Backdoor | Malware Wiki | Fandom powered by Wikia.

Retrieved from The Malware Wiki: http://malware.wikia.com/wiki/Backdoor:

The Malware Wiki, Access Date: October 2016.

SANS Institute. (2003). Viral Polymorphism - viral-polymorphism-105483. Retrieved

from SANS Cyber Defense: https://cyber-

defense.sans.org/resources/papers/gsec/viral-polymorphism-105483: SANS

Cyber Defense, Access Date: May 2016.

Sathyanarayan, V., Kohli, P., & Bruhadeshwar, B. (2008). Signature generation and

detection of malware families. ACISP '08 Proceedings of the 13th Australasian

conference on Information Security and Privacy (pp. 336–349). Wollongong:

Springer Berlin Heidelberg.

Satish, S., & Ramzan, Z. (2013). United States Patent No. US8401982B1.

Saxe, J., Harang, R., Wild, C., & Sanders, H. (2018). A Deep Learning Approach to

Fast, Format-Agnostic Detection of Malicious Web Content. Cryptography and

Security, 1-7: Springer.

Scaife, N., Carter, H., Traynor, P., & Butler, K. R. (2016). CryptoLock (and Drop It):

Stopping Ransomware Attacks on User Data. International Conference on

Distributed Computing Systems (pp. 303-312). Nara: IEEE.

Scheirer, W., & Chuah, M. C. (2008). Syntax vs. semantics: competing approaches to

dynamic network intrusion detection. International Journal of Security and

Networks, 24-35: Inderscience Enterprises Ltd.

Schiffman, M. (2010, February 22). A Brief History of Malware Obfuscation: Part 2 of

2. Retrieved from Cisco Blogs:

https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_

2_of_2: Cisco Blogs, Access Date: March 2016.

Schipka, M. (2009). United States Patent No. US20090013405A1.

Schultz, M., Eskin, E., Zadoc, E., & Stolfo, S. (2001). Data mining methods for

detection of new malicious executables. Proceedings IEEE Symposium on

Security & Privacy (pp. 38-49). Oakland, California: IEEE.

Schwartz, M. J. (2013, January 22). Virut Malware Botnet Torpedoed By Security

Researchers. Retrieved from Dark Reading:

http://www.darkreading.com/attacks-and-breaches/virut-malware-botnet-

torpedoed-by-security-researchers/d/d-id/1108302?: Dark Reading, Access Date:

June 2016.

Scotland, J. (2012). Exploring the philosophical underpinnings of research: Relating

ontology and epistemology to the methodology and methods of the scientific,

interpretive, and critical research paradigms. English Language Teaching, 9–16:

Oxford Academic.

Sebastián, M., Rivera, R., Kotzias, P., & Caballero, J. (2016). AVclass: A Tool for

Massive Malware Labeling. International Symposium on Research in Attacks,

Intrusions, and Defenses (pp. 230-253). Berlin, Germany: Springer.

201

Second Part To Hell. (2018, February 14). Second Part To Hell. Retrieved from Twitter:

https://twitter.com/SPTHvx/status/963923106262904833: Twitter, Access Date:

February 2018.

Seshardi, V., Ramzan, Z., Satish, S., & Kalle, C. (2012). United States Patent No.

US8266698B1.

Shafiq, M., Tabish, S., & Farooq, M. (2008). Embedded malware detection using

Markov n-grams. Proceedings Fifth International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment DIMVA (pp. 88-107).

Paris: Springer Berlin Heidelberg.

Sharma, A., & Sahay, S. K. (2014). Evolution and Detection of Polymorphic and

Metamorphic Malwares: A Survey. International Journal of Computer

Applications, 7-11: Foundation of Computer Science.

Sharman, R., Krishna, K., Rao, H., & Upadhyaya, S. (2006). Malware and Antivirus

Deployment for Enterprise Security. In M. Warkentin, & R. Vaughn, Enterprise

Information Systems Assurance and Systems Security: Managerial and

Technical Issues (pp. 42-61). Hershey, Pennsylvania: Idea Group Publishing.

Shen, Z.-X., Hsu, C.-W., & Shieh, S. W. (2017). Security Semantics Modeling with

Progressive Distillation. IEEE Transactions on Mobile Computing, 3196 - 3208:

IEEE.

Shim, Y., Kim, T., & Im, E. (2015). A Study on Similarity Calculation Method for API

Invocation Sequences. International Conference on Rough Sets and Knowledge

Technology (pp. 492-501). Tianjin, China: Springer.

Sikora, L., & Zelinka, I. (2017). Swarm Virus, Evolution, Behavior and Networking. In

I. Zelinka, & G. Chen, Evolutionary Algorithms, Swarm Dynamics and Complex

Networks (pp. 213-239). Springer, Berlin: Springer.

Singh, S., Estan, C., Varghese, G., & Savage, S. (2004). Automated worm

fingerprinting. Symposium on Opearting Systems Design & Implementation (pp.

4-4). San Francisco, CA: USENIX Association Berkeley.

Singh, T., Troia, F., Corrado, V. A., Austin, T., & Stamp, M. (2016). Support vector

machines and malware detection. Journal of Computer Virology and Hacking

Techniques, 203–212: Springer.

Skoudis, E., & Zeltser, L. (2004). Malware: Fighting Malicious Code. Upper Saddle

River, New Jersey: Prentice Hall Professional.

Smith, C., & Matrawy, A. (2009). Computer Worms: Architectures, Evasion Strategies,

and Detection Mechanisms. Journal of Information Assurance and Security, 69-

83: MIR Labs.

Smith, N., Gutierrez, E., Woodruff, A., & Kapoor, A. (2017). United States Patent No.

US9679140B2.

Smith, T. F., & Waterman, M. S. (1981). Comparison of biosequences. Advances in

Applied Mathematics, 482-489: Elsevier.

202

Smith, T. F., & Waterman, M. S. (1981). Identification of Common Molecular

Subsequences. Journal of Molecular Biology, 195–197: Elsevier.

SOPHOS. (2015). SOPHOS. Retrieved from SOPHOS: https://www.sophos.com/en-

us/threat-center/threat-analyses/viruses-and-spyware/W32~CTX-A/detailed-

analysis.aspx: SOPHOS, Access Date: February 2016.

Šošić, M., & Šikić, M. (2017). Edlib: a C/C ++ library for fast, exact sequence

alignment using edit distance. Bioinformatics, 1394–1395: Oxford Academic.

SPTH. (2004). Second Part To Hell's Artworks – VIRUSES. Retrieved from Second Part

To Hell (SPTH): http://spth.virii.lu/Cassandra-testset.rar: SPTH, Access Date:

February 2015.

SPTH. (2013). Second Part To Hell's Artworks. Retrieved from Second Part To Hell

SPTH: http://spth.virii.lu/w32.kitti.rar: SPTH, Access Date: February 2015.

SPTH. (2015). JS.Cassandra by Second Part To Hell. Retrieved from Second Part To

Hell (SPTH): http://spth.virii.lu/rrlf4/rRlf.13.html: SPTH, Access Date: March

2015.

Spurlock, J. R., Schmugar, C. D., & Howard, F. P. (2011). United States Patent No.

US7917955B1.

Srakaew, S., Piyanuntcharatsr, W., & Adulkasem, S. (2015). On the Comparison of

Malware Detection Methods Using Data Mining . International Journal of

Security and Its Applications, 293-318: SERSC.

Sridhara, S., & Stamp, M. (2013). Metamorphic worm that carries its own morphing

engine. Journal of Computer Virology and Hacking Techniques, 49-58:

Springer.

Stoesser, G., Baker, W., van den Broek, A., Camon, E., Garcia-Pastor, M., Kanz, C., . . .

Vaughan, R. (2002). The EMBL Nucleotide Sequence Database. Nucleic Acids

Research, 21–26, 28(1): Oxford Academic. Retrieved from EMBL-EBI:

http://www.ebi.ac.uk/Tools/sss/ncbiblast/

Storlie, C. A. (2014). Stochastic Identification of Malware with Dynamic Traces. The

Annals of Applied Statistics, 1-18: Project Euclid.

Sun, B. L. (2017). Malware family classification method based on static feature

extraction. International Conference on Computer and Communications (ICCC)

(pp. 507-513). Chengdu, China: IEEE.

Sun, N., Winkler, P., Chu, C., Jia, H., Geffner, J., Lee, T., . . . Swiderski, F. (2006).

United States Patent No. US11523199.

Symantec. (1997, September). Understanding Heuristics: Symantec’s Bloodhound

Technology. Retrieved from Symantec:

https://www.symantec.com/avcenter/reference/heuristc.pdf: Symantec, Access

Date: February 2016.

Symantec. (2006, July 21). W32.Blaster.Worm Removal Tool. Retrieved from

Symantec:

203

https://www.symantec.com/security_response/writeup.jsp?docid=2003-081119-

5051-99: Symantec, Access Date: May 2015.

Symantec. (2014, April). Symantec Internet Security Threat Report. Retrieved from

Symantec:

http://www.symantec.com/content/en/us/enterprise/other_resources/b-

istr_main_report_v19_21291018.en-us.pdf: Symantec, Access Date: February

2015.

Symantec Corporation. (2017, December 18). About Advanced Machine Learning in

Endpoint Protection 14. Retrieved from Symantec:

https://support.symantec.com/en_US/article.TECH236704.html: Symantec,

Access Date: February 2018.

Szopka, B., & Ingo, H. (2018, February 10). impress.js. Retrieved from GitHub Inc.:

https://github.com/impress/impress.js: GitHub Inc., Access Date: February 2018.

Szor, P. (2005). Advanced Code Evolution Techniques and Computer Virus Generator

Kits. In P. Szor, The Art of Computer Virus Research and Defense (pp. 251-

294). Boston, Massachusetts: Addison-Wesley Professional.

Szor, P. (2005). The Art of Computer Virus Research and Defense. Utah: Addison-

Wesley Professional.

Szor, P. (2008). United States Patent No. US7418729B2.

Szor, P. (2011). United States Patent No. US7937764B2.

Tabish, S., Shafiq, M., & Farooq, M. (2009). Malware detection using statistical

analysis of byte-level file content. Proceedings ACM SIGKDD Workshop on

CyberSecurity and Intelligence Informatics CSI-KDD (pp. 23-31). Paris: ACM.

Tang, H., Zhu, B., & Ren, K. (2009). A new approach to malware detection. In H. Tang,

B. Zhu, & K. Ren, Advances in Information Security and Assurance (pp. 229-

238). Berlin: Springer Berlin Heidelberg.

Teblyashkin, I. A., Peternev, V. N., & Gryaznov, D. O. (2007). United States Patent No.

US7234167B2.

The American Heritage Dictionary. (2018). American Heritage Dictionary Entry:

transcription. Retrieved from The American Heritage® Dictionary of the

English Language: https://ahdictionary.com/word/search.html?q=transcription:

The American Heritage® Dictionary of the English Language, Access Date:

March 2018.

The jQuery Foundation. (2018, February 10). jquery. Retrieved from GitHub Inc.:

https://github.com/jquery/jquery: GitHub Inc., Access Date: February 2018.

Thompson, G. R., & Flynn, L. A. (2007). Polymorphic malware detection and

identification via con-text-free grammar homomorphism. Bell Labs Technical

Journal - Information Technology/Network Security, 139-147: Nokia Bell Labs.

Transcriptase. (2013, June 8). Second Part To Hell's Artworks. Retrieved from SPTH:

http://spth.virii.lu/Transcriptase.rar: SPTH, Access Date: February 2017.

204

Troia, F., Visaggio, C. A., Austin, T., & Stamp, M. (2016). Advanced transcriptase for

JavaScript malware. International Conference on Malicious and Unwanted

Software (MALWARE) (pp. 121-128). Fajardo, Puerto Rico: IEEE.

Troy, C., MacHugh, D., Bailey, J., Magee, D., Loftus, R., Cunningham, P., . . . Bradley,

D. (2003). Principles and Methods of Sequence Analysis. In E. Koonin, & M.

Galperin, Sequence - Evolution - Function: Computational Approaches in

Comparative Genomics (pp. 111-192). Boston: Kluwer Academic.

Tucci, L., O’Brien, K., Blott, M., & Santambrogio, M. (2017). Architectural

optimizations for high performance and energy efficient Smith-Waterman

implementation on FPGAs using OpenCL. Design, Automation & Test in

Europe Conference & Exhibition (pp. 716-721). Lausanne, Switzerland: IEEE.

Upchurch, J., & Zhou, X. (2013). First Byte: Force-Based Clustering of Filtered Block

N-Grams to Detect Code Reuse in Malicious Software. Conference on Malicious

and Unwanted Software: “The Americas” (pp. 68-76). Fajardo, PR: IEEE.

Uto, N. (2013). A Methodology for Retrieving Information from Malware Encrypted

Output Files: Brazilian Case Studies. Future Internet, 140-167: MDPI.

VATAMANU, C., COSOVAN, D., Gavrilut, D., & LUCHIAN, H. (2016). United

States Patent No. US20160335432A1.

Veeramachaneni, K., & Arnaldo, I. (2016). From Machine Learning to Artificial

Intelligence. Retrieved from McAfee:

https://www.mcafee.com/us/solutions/machine-learning.aspx: McAfee, Access

Date: November 2016.

Vijan, S., & Mehra, R. (2011). Biological Sequence Alignment for Bioinformatics

Applications Using MATLAB. International Journal of Computer Science and

Emerging Technologies, 310-315: IJCSET.

VirtualBox. (2018). Oracle VM VirtualBox. Retrieved from VirtualBox:

https://www.virtualbox.org/: VirtualBox, Access Date: August 2017.

VirusTotal. (2018). VirusTotal - Free Online Virus, Malware and URL Scanner.

Retrieved from VirusTotal: https://www.virustotal.com/: VirusTotal, Access

Date: October 2017.

Vu, T. N., Nguyen, T. T., Trung, H. P., Duy, T. D., Van, K. H., & Le, T. D. (2017).

Metamorphic Malware Detection by PE Analysis with the Longest Common

Sequence. International Conference on Future Data and Security Engineering

(pp. 262-272). Ho Chi Minh City, Vietnam: Springer.

VX Heavens. (2006, July). Ready Rangers Liberation Front. Retrieved from VX

Heaven: http://vxheaven.org/vx.php?id=zr06&lang=en&fid=1225: VX Heaven,

Access Date: February 2016.

VX Heavens. (2009). Virus collection (VX heaven). Retrieved from VX Heaven:

http://vxheaven.org/vl.php?dir=Virus.Win32.CTX: VX Heaven, Access Date:

March 2015.

205

VX Heavens. (2016). VX Heavens Library. Retrieved from VX Heaven:

http://vxheaven.org/: VX Heaven, Access Date: April 2015.

Wagner, M., Rind, A., Thür, N., & Aigner, W. (2017). A knowledge-assisted visual

malware analysis system: Design, validation, and reflection of KAMAS.

Computers & Security, 1-15: Elsevier.

Wang, C. D. (2017). A Malware Detection Method Based on Sandbox, Binary

Instrumentation and Multidimensional Feature Extraction. International

Conference on Broadband and Wireless Computing, Communication and

Applications (pp. 427-438). Palau Macaya, Barcelona: Springer.

Wang, K., Cretu, G., & Stolfo, S. (2005). Anomalous Payload-Based Worm Detection

and Signature Generation. International Workshop on Recent Advances in

Intrusion Detection (pp. 227-246). Seattle, WA: Springer.

Waterhouse, A., Procter, J., Martin, D., Clamp, M., & Barton, G. (2009). Jalview

Version 2--a multiple sequence alignment editor and analysis workbench.

Bioinformatics, 1189-1191: Oxford Academic.

Waterman, M., & Eggert, M. (1987). A new algorithm for best subsequence alignments

with application to tRNA-rRNA comparisons. Journal of Molecular Biology,

723-728: Elsevier.

Waterman, M., Smith, T., & Beyer, W. (1976). Some biological sequence metrics.

Advances in Mathematics, 367-387: Elsevier.

WayBackMachine. (2010). Virus.Win32.CTX.10853. Retrieved from WayBackMachine

(Internet Archive):

https://web.archive.org/web/20100519150727/http://www.securelist.com/en/des

criptions/old20455: Kaspersky Lab ZAO, Access Date: June 2015.

Webroot Inc. (2013). Webroot Security Intelligence. Retrieved from Webroot:

https://www.webroot.com/shared/pdf/Network_Security_Services_FINAL.pdf:

Webroot, Access Date: December 2017.

WEF. (2012). Global Risks 2012: Insight Report. Retrieved from World Economic

Forum: http://reports.weforum.org/global-risks-2012/: World Economic Forum,

Access Date: June 2016.

Wespi, A., Dacier, M., & Debar, H. (1999). An Intrusion-Detection System Based on

the Teiresias Pattern-Discovery Algorithm. EICAR Proceedings (pp. 1-15).

Aalborg, Denmark: EICAR.

Wettschereck, D., & Dietterich, T. G. (1995). An Experimental Comparison of the

Nearest-Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning,

5–27: Springer.

Whigham, N. (2016, July 11). Stuxnet virus: 'First atomic bomb of cyber warfare'

already dropped. Retrieved from news.com.au:

http://www.news.com.au/technology/online/security/alex-gibney-film-gives-

chilling-insight-into-the-world-of-state-sponsored-cyber-warfare-unleashed-by-

206

stuxnet/news-story/a7063ae03dcb5cd6ed2a576d6a8ea9dc: News Limited

Copyright, Access Date: October 2016.

Witten, I. (2014, May 12). More Data Mining with Weka. Class 3 – Lesson 1, Decision

trees and rules. Retrieved from Department of Computer Science, University of

Waikato:

http://www.cs.waikato.ac.nz/ml/weka/mooc/moredataminingwithweka/slides/Cl

ass3-MoreDataMiningWithWeka-2014.pdf: University of Waikato, Access

Date: September 2016.

Wüchner, T., Ochoa, M., & Pretschner, A. (2015). Robust and Effective Malware

Detection Through Quantitative Data Flow Graph Metrics. International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 98-118). Milano, Italy: Springer.

Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., & Kirda, E. (2009).

Automatically Generating Models for Botnet Detection. European Symposium

on Research in Computer Security (pp. 232-249). Saint-Malo, France: Springer.

Xia, X. (2007). Bioinformatics and the Cell: Modern Computational Approaches in

Genomics, Proteomics and Transcriptomics. Berlin, Germany: Springer.

Xie, Y., Yu, F., Achan, K., Panigrah, R., Hulten, G., & Osipkov, I. (2008). Spamming

botnets: signatures and characteristics. ACM SIGCOMM Computer

Communication Review, 171-182: ACM.

Xinguang, T., Miyi, D., Chunlai, S., & Xin, L. (2009). Detecting network intrusions by

data mining and variable-length sequence pattern matching. Journal of Systems

Engineering and Electronics, 405–411: Beijing Institute of Aerospace

Information (BIAI).

Xu, B., Li, C., Zhuang, H., Wang, J., Wang, Q., & Zhou, X. (2017). Efficient

Distributed Smith-Waterman Algorithm Based on Apache Spark. International

Conference on Cloud Computing (pp. 608-615). Honolulu, CA: IEEE.

Xu, D., & Zhang, Y. (2012). Ab initio protein structure assembly using continuous

structure fragments and optimized knowledge-based force field. Proteins, 1715-

1735: John Wiley & Sons.

Yan, J., Qi, Y., & Rao, Q. (2018). Detecting Malware with an Ensemble Method Based

on Deep Neural Network. Security and Communication Networks, 1-17:

Hindawi Publishing Corporation.

Yanow, D., & Schwartz-Shea, P. (2015). Interpretation and Method: Empirical

Research Methods and the Interpretive Turn. Abingdon, United Kingdom:

Routledge.

Ye, Y., Li, T., Adjeroh, D., & Iyengar, S. (2017). A Survey on Malware Detection

Using Data Mining Techniques. ACM Computing Surveys, 1-40: ACM.

Ye, Y., Li, T., Jiang, Q., & Wang, Y. (2010). CIMDS: Adapting postprocessing

techniques of associative classification for malware detection. IEEE

207

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 298-307: IEEE.

Yegneswaran, V., Giffin, J., Barford, P., & Jha, S. (2005). An architecture for

generating semantic aware signatures. USENIX Security Symposium (pp. 34-43).

Baltimore, MD: USENIX Association Berkeley.

Yu, Y.-K., Bundschuh, R., & Hwa, T. (2002). Statistical significance and extremal

ensemble of gapped local hybrid alignment. In M. Lässig, & A. Valleriani,

Biological Evolution and Statistical Physics (pp. 3-21). Berlin, Germany:

Springer-Verlag Berlin Heidelberg.

Zaharie, D., Perian, L., & Negru, V. (2011). A View Inside The Classification With

Non-nested Generalized Exemplars. IADIS European Conference Data Mining

2011 (pp. 19-26). Rome: IADIS.

Zahid, S., Hasan, L., Khan, A., & Ullah, S. (2015). A Novel Structure of the Smith-

Waterman Algorithm for Efficient Sequence Alignment. International

Conference on Digital Information, Networking, and Wireless Communications

(pp. 6-9). Moscow, Russia: IEEE.

Zahn, D. (2014). United States Patent No. US8775333B1.

Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., & Mille, A. (2013).

Similarity Measures to Compare Episodes in Modeled Traces. International

Conference on Case-Based Reasoning (pp. 358-372). Saratoga Springs, NY:

Springer.

Zeltser, L. (2011, October). How antivirus software works: Virus detection techniques.

Retrieved from TechTarget: http://searchsecurity.techtarget.com/tip/How-

antivirus-software-works-Virus-detection-techniques: TechTarget, Access Date:

August 2016.

Zhang, Q. (2009, May 16). Polymorphic and Metamorphic Malware Detection.

Retrieved from NCSU LIBRARIES:

https://repository.lib.ncsu.edu/handle/1840.16/5484: NCSU LIBRARIES,

Access Date: September 2016.

Zhang, Q., & Reeves, D. (2007). MetaAware: Identifying metamorphic malware.

Computer Security Applications Conference (pp. 411-420). Florida: IEEE.

Zhang, Q., Reeves, D., Ning, P., & Iyer, S. (2007). Analyzing network traffic to detect

self-decrypting exploit code. ACM symposium on Information, computer and

communications security (pp. 4-12). Singapore: ACM.

Zhao, Y., Tang, Y., Wang, Y., & Chen, S. (2013). Generating malware signature using

transcoding from sequential data to amino acid sequence. International

Conference on High Performance Computing and Simulation (pp. 266-272).

Helsinki, Finland: IEEE.

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., & Cheng, L. (2018).

DroidDet: Effective and robust detection of android malware using static

analysis along with rotation forest model. Neurocomputing, 638-646: Elsevier.

208

Zimmer, V., Spurlock, J., Venugopal, R., Smith, N., Muttik, I., & Poornachandran, R.

(2016). United States Patent No. US15283238.

Zuo, Z., & Zhou, M. (2004). Some further theoretical results about computer viruses.

The Computer Journal, 627–633: Oxford Academic.

209

Appendix A

A brief review of the other masking strategies employed by viruses is discussed in this

section.

A.1 No Masking

No masking at all is one masking strategy which is exceptionally easy to apply in a

computer virus. Although it is obvious, however, that it is inadequate – once the existence

of a virus is established, it is meaningless to identify and inspect (Aycock, 2006).

A.2 Stealth

A stealth virus is a virus that not only conceals the virus body but also effectively takes

actions to hide the infection itself. Moreover, the stealth virus attempts to mask from

everything, not just from the AVSs. Some instances of stealth procedures are given below

(Aycock, 2006):

1. A file has been modified and to make it look like it was not modified recently, an

infected file’s authentic time logs can be renewed after infection (Aycock, 2006).

2. The virus can store all pre-compromised information about a file, such as the time

log, size of a file, and the contents of a file. Then, calls from I/O system can be

interrupted, and the virus reverts the authentic information in return to any I/O

procedures on the compromised file, assembling it as the file is uninfected. This

approach can be applied to boot block I/O operations as well (Aycock, 2006).

3. Some machines store the secondary boot loader as continuous disk blocks, to be easier

on primary boot loader’s function. On these machines, there are two viewpoints of the

secondary boot loader, one as a string of blocks, and second as a file in the file

directory. A virus can penetrate itself into the blocks of the secondary boot loader,

thereby transferring the primary blocks somewhere else in the file directory. The

outcome is that of a normal routine, the file directory view shows no evident

modification, thus the virus is masked. The virus is executed because of the original

boot loader (Aycock, 2006).

One alternative is a reverse stealth virus, which shows that everything is infected – the

destruction is conducted by the AVS uncontrollably (and mistakenly) attempting to

210

disinfect (Aycock, 2006). The best example of a stealth virus is the ‘Regin’ malware

which is not only complex but also hard to detect and secure against (Musil, 2014).

A.3 Encryption

In an encrypted virus, the virus body structure is encrypted making it difficult to detect.

The virus body usually contains a payload, infection, and a trigger. When the virus body

is in the stage of encryption, it is not executable unless decrypted. First, something is

executed in the virus then a decryptor loop decodes the virus body and transmits authority

to the virus body. The basic goal of this kind of virus is to have a decryptor loop that is

smaller than the virus body and therefore has a lower profile making it harder for an AVS

to identify. This method of ‘encryption’ is not the same approach as what cryptographers

consider to be encryption; virus encoding is better understood as an obfuscation. A

decoding loop can decrypt the virus structure in one location, or decrypt to a different

location; this decision may be determined by an external factor, such as the ability of virus

writer in the compromised file’s source code. This kind of approach is called in-place

decryption (Aycock, 2006). Pseudocode for an encoded virus is shown below (Aycock,

2006).

Before Decryption After Decryption

for i in 0

length(body) :

decrypt code;

goto decrypted_body

???

for i in 0 length(body) :

decrypt code;

goto decrypted_body

decrypted_body :

infect ()

if trigger () is true :

payload ()

Virus encryption can be performed in five different ways:

1. Simple encryption: No kind of key is utilised for the process of simple encryption,

just general no parameter operations, such as decrementing and incrementing, logical

NOT, bitwise operators, and negation based on arithmetic operators (Aycock, 2006).

2. Static encryption key: A static, fixed key is utilised for the process of encryption and

which remains the same from one infection to another. Arithmetic operators, such as

211

logical operators, that are, XOR and addition operators are used for the process of

generating a static encryption key (Aycock, 2006).

3. Variable encryption key: In this process of encryption technique, the key during the

beginning of the process remains fixed, but modifies as the decryption takes place

(Aycock, 2006).

4. Substitution cipher: A more basic encryption process could use lookup tables which

plot byte value among the encoded and decoded code. The substitution cipher can

utilise 1:1 plotting or 1:n plotting depending on the complexity of the virus body. A

homophonic substitution cipher permits 1:n plotting, thereby increasing the level of

complexity by allowing several encoded values to relate to one decoded value

(Aycock, 2006).

5. Strong encryption: There is no excuse why any viruses cannot utilise the process of

strong encryption. Earlier, the size of the source code was a major issue, as the virus

had to store several decryption codes in it, but this is not an issue anymore: most set-

ups now include libraries of strong encryption keys which can be utilised by several

viruses (Aycock, 2006).

The major drawback with the above-discussed encryption processes is that the encoded

virus body remains unchanged from one infection to another. That is the encrypted virus

body remains constant, and this constancy can easily be used by the AVSs to detect the

virus, as there is no hidden strategy whatsoever. But with the help of randomly generated

keys, this issue can be avoided. Every time a virus code is decrypted, a random key is

generated by the decryption routine to encrypt the virus code again, after the infection.

This method of randomly generating keys can be implemented to any one of the

encryption techniques explained above (Aycock, 2006).

‘CryptoLocker’ is malware, specifically a ransomware Trojan that mainly attacks

Microsoft Windows-based computer systems.

A.4 Strong Encryption

Usually, a virus stores their decryption keys in them, and this might be a weakness, which

can be easily detected and analysed by the AVSs. This is one way of storing the

decryption keys for the process of encryption. But there are two other approaches that can

be used for the process of encryption (Aycock, 2006):

212

1. The decryption key comes from the external source of an infected machine:

a. A virus can obtain the decryption key from a website, but that implies that the virus

would have to transport the address of that website at all times, which could be

blacklisted as a precautionary measure. This issue can be avoided if the virus can

obtain the decryption key utilising a website search engine. Normally, any electronic

information torrent that a virus can control would be employable for the generation

of the decryption key, particularly the one with large amounts of traffic that are

unexpected to be blacklisted: such as instant chat messaging, file-distributing

networks, email messages, IRC, etc. (Aycock, 2006).

b. A binary virus is a virus that comes in two components and does not get destructive

unless both the components are located on the same machine. Very few known binary

viruses came into existence such as ‘RMNS’ (spreads via p2p – peer to peer services,

IRC, file distributing networks, internet file downloads, etc.) and ‘Dichotomy’. One

demonstration of binary viruses would be where V1 and V2 are two components of a

binary virus. V1 virus would have a strongly encoded source code, and V2 virus

would have the decryption key. Both V1 and V2 viruses need to work together and

should be in the same location (at the time of decryption) for the binary virus process

to execute successfully. If they transmit together, then both will exhibit the same

chance of getting detected and inspected, overcoming the main goal of detaching the

decryption key. And if V1 and V2 viruses transmit separately then their propagation

would be independent (Aycock, 2006).

2. The decryption key comes from internal source of an infected machine: With the

help of environmental key creation, the decrypted key is developed based on the

factors situated in the target’s surrounding, such as, domain computer name; system

date or time; some information in the machine (example, important document file

name, file contents, etc.); the recent computer user name; operating system’s language

setting; IP address.

This makes it very simple to target viruses to specific groups or individuals. A target has

no idea that they hold the decryption key (Aycock, 2006). ‘CryptoLocker’, a ransomware

Trojan malware is the best example that uses the techniques of strong encryption (Scaife,

et al., 2016).

213

A.5 Oligomorphism

Suspecting the key of an encoded virus is randomly modified with every new infection,

the only untouched area of the virus is the code inside the decrypted routine. AVS will

utilise this aspect for identification, so the next ideal improvement is to modify the code

inside the decryptor routine with every infection (Aycock, 2006).

An oligomorphic virus is an encoded virus which has a tiny, fixed amount of several

decryptor routines at its disposition. This virus can also be known as, semi-polymorphic

virus. For every new infection, the virus chooses a new decryptor routine from this small

finite amount. For instance, ‘Whale’ had 30 variants each with dissimilar decryptor

routines, and ‘Memorial’ had 96 variants each with different decryptor routines (Aycock,

2006).

With regards to identification, viruses based on oligomorphism are marginally difficult

to detect. AVS will not simply look for just one decryptor routine but instead will look

for all routines, by simply having all the possible decryptor routines of a virus listed in

their database (Aycock, 2006).

214

Appendix B

A brief review of the obfuscation techniques employed by polymorphic viruses is

discussed in this section. This review of the polymorphic obfuscation techniques is

divided into three sections. Section B.1 covers ‘Polymorphic obfuscation based on self-

identification’; Section B.2 details ‘Polymorphic obfuscation based on Syntactic

reconstruction’, and Section B.3 discusses ‘Polymorphic obfuscation based on Semantic

reconstruction’.

B.1 Polymorphic Obfuscation based on Self-Identification

There are two challenging questions that emerge with regards to polymorphic malware.

Firstly, how can a malware identify that it has formerly compromised a file if its existence

is concealed adequately well? Secondly, how does a malware modify its decryptor routine

from one infection to other (Aycock, 2006)? The first challenging question will be

covered in this section and the second challenging question will be covered in Section

B.2.

1. Self-Identification: At an initial glimpse, it might seem simple for a polymorphic

malware to identify if it has formerly compromised some code – when the malware

mutates for a new file infection, it can also modify any form of itself that it encounters.

This will not work, nonetheless, since a malware must be able to identify infection by

either of its virtually unlimited aspects. This shows that the infection identification

approach must be self-reliant of the correct code utilised by the malware (Aycock,

2006).

2. File Time Logs: A malware could modify the time logs of a compromised file, as

long as for every infection, the combination of its date and time is a certain value K

which is constant. Many applications only display the last two units of the year, so

the year of a compromised file could be incremented by 50 without seeking attention

(Aycock, 2006).

3. File Size: The size of a compromised file could be modified out to a certain significant

size, like a multiple of 4848 (Aycock, 2006).

4. Data Concealment: In file formats, such as ELF, which is a complicated executable,

not all sections of the file’s contents may be utilised by a computer system. Malware

can conceal a flag in new sections, or look for an unused association of features that

215

it has placed in the file. For instance, on Windows in a file header which is executable,

the malware ‘Zperm’ observes for the alphabet ‘Z’ as the small linker variant

(Aycock, 2006).

5. File System Attributes: Some file systems permit files to be labelled with random

features, whose presence is not in every instance made recognisable. Malware can

utilise these to stock source code, flags, or information which suggests that a file has

been compromised. Figure B.1 (shown below) displays the ‘surrogate data streams’

being utilised in a file system based on NTFS to append a flag to a program file; the

existence of this flag will not come up in directory index, in the file system browser,

or in the file size (Aycock, 2006).

Figure B.1: The concept of NTFS file system based surrogate data streams (Aycock,

2006, p.39).

6. External Storage: The evidence that a file is compromised need not be exactly

related to the file itself. For instance, malware could employ a hash function to plot

the name of a compromised file into a hidden string, and under the Windows registry

employ that string to generate a key. Malware can then utilise the presence of that key

as an infection signal. However, if the registry key was determined it will not be

sufficient to successfully disclose the name of the compromised file (Aycock, 2006).

As all these infection-identification approaches function for polymorphic malware, they

also function for the specific types of non-polymorphic malware as well, such as worm,

rabbit. It was once indicated that computer systems could be protected against particular

malware by bypassing the self-identification signal for malicious activity on an

216

uncompromised system. Sadly, there are lots of malware now to make this possible

(Aycock, 2006; Zhang, 2009; Kumar, 2016).

B.2 Polymorphic Obfuscation based on Syntactic Reconstruction

This is the technique used by many polymorphic viruses to modify its syntactic structure.

Although, the polymorphic changes its syntactic structure, the semantics of those

polymorphic viruses remains unchanged. This approach is used by the polymorphic

viruses to bypass identification and classification based on byte level. Byte-level

identification is employed by many AVSs (Zeltser, 2011). Many of this approaches used

by polymorphic viruses are adopted from the area of file obfuscation (Cesare, 2010).

Polymorphism is explained as having a similar definition to that of metamorphism, in

cases where it is used to illustrate the automated syntactic modification of viral

instructions and viral code. Under such phraseology, polymorphism is used to explain

syntactic changes of fixed sections of the viral instruction data. The remaining viral code

sections are encrypted at the byte stage without modifying the semantics or the syntax of

the instructions. In this section, polymorphism and metamorphism are considered to be

similar to one another (Cesare, 2010).

1. Dead Code Insertion: Semantically, dead code insertion is similar to a null operation.

Dead code is also called a semantic NOP (i.e. No OPeration) or as junk code. Insertion

of this kind of junk code has no semantic effect on the malware. However, the size of

the malware increases when dead junk code is inserted. Also, dead code insertion

changes the instructions and byte level data of the malware. For instance, ‘push

%ebx’ and ‘pop %ebx’, best represent the idea behind dead code insertion (Cesare,

2010).

2. Instruction Replacement: The process of instruction replacement exchanges a

particular set of instructions or an individual instruction with semantically identical,

but altering instruction sets or instructions. The size of the malware using this kind of

approach may increase or decrease, based on some instructions substituted. For

example, ‘mov $0, %eax’ is substituted to ‘xor %eax, %eax’ (Cesare, 2010).

3. Variable Renaming: The process of variable renaming and the corresponding

approach of register displacement modifies the purpose of registers and variables in a

piece of code. It is done in such a way that the process of variable renaming uses

217

distinctive registers and variables keeping the instructions semantically identical

when compared with the original piece of code. For instance, ‘mov $0, %eax’ gets

renamed to ‘mov $0, %ebx’; ‘mov $1, %ebx’ gets renamed to ‘mov $1,

%ecx’; ‘add %eax, %ebx’ gets renamed to ‘add % ebx, %ecx’; ‘push

%ebx’ gets renamed to ‘push %ecx’ (Cesare, 2010).

4. Code Rearranging: The process of code rearranging modifies the syntactic

rearrangement of a malware code. This process does not modify the genuine or

semantic implementation location of the file. Nevertheless, the syntactic arrangement

as seen in the original malware code is modified. The process of code rearranging

comprises the approaches of branch inverting, branch obfuscation, the use of opaque

base insertion, and branch transposition (Cesare, 2010).

5. Branch Obfuscation: The process of branch obfuscation tries to conceal the object

of a branch instruction. For instance, the employment of SEH i.e. Structured

Exception Handling on the Microsoft Windows based operating system, best explains

the process of branch obscure. In a malware, the employment of SEH to hide control

flow is very common. This exact technique of SEH incorporates an indirect branch.

The process in indirect branching utilises the content of data as the object of a branch.

This decodes the detection of control flow into a complicated data flow inspection

issue. The employment of a branch function expands this technique and executes

many branches via an individual routine. The main idea behind the process of branch

obfuscation is to make a static inspection of the malware by a malware analyst as well

as the procedure of automation more complicated. For instance, ‘mov

$0x8048200, %eax’ then ‘jmp *%eax’, involves an indirect branch function

(Cesare, 2010).

6. Branch Transposition: The process of branch transposition in conditional branches,

transposes the condition of the branch. Considering primarily when the condition is

true the branch may move the control, the process of branch transposition modifies

the branch condition when false. To keep the primary semantics of the malware file,

the process of branch transposition inverts the branch instruction as well. For instance,

the statement of a branch condition true would be modified to a false statement.

Moreover, the condition in the process would also be transposed. Branch transposition

is a kind of instruction replacement based on control flow statements. For example,

218

the code ‘jc $0x80482000’ can be transposed to ‘cmc # complement carry

flag jnc $0x80482000’ via branch transposition (Cesare, 2010).

7. Branch Inverting: Branch inverting is a homogenous approach to branch

transposition in which the branch instruction is redrafted by replacing it with

semantically similar code with distinct control flow features. For instance, if the

primary code has a statement with a branch condition of true then the modified code

has a statement with a branch condition of false to the primary failed instruction. The

modified failed instruction then thoroughly branches to the primary conditional

branch object. For example, the code ‘jz $0x80482000’ inverts to ‘jnz L jmp

$0x80482000 L:’ (Cesare, 2010).

8. Opaque Base Insertion: The process of opaque base insertion always calculates to

the same outcome. It is challenging for a malware analyst or automated system

analysis to recognise the base insertion result because of the complex construction of

opaque base insertion. The process of opaque base insertion can be utilised to embed

expendable branching in the control flow of malware. They can also be utilised to

allocate variable values which are challenging to diagnose statically. The main

purpose of opaque base insertion is for code concealment, and also to avoid getting

detected by a malware analyst or automated static system evaluation. For instance,

‘mov $1, %eax jz $0x80482000’, is a rationalised opaque base insertion

(Cesare, 2010).

9. Code Packing: Code packing is a powerful approach utilised to conceal malware and

obstruct the understanding of a malware analyst towards malware’s objective. In a

particular month in 2007, around 79% of detected malware from a well-known AVS

was known to be packed. Moreover, in 2006, nearly 50% of new malware were found

to be repacked variants of existing malware (Cesare, 2010).

Code packing is not only utilised to obstruct the understanding of malware by a

malware analyst but also utilised by malware to avoid getting identified by the AVSs.

Polypack (Oberheide, Bailey, & Jahanian, 2009) – an automated online packing utility

for bypassing excellent antivirus systems, examined the usefulness of code packing

towards antivirus identification by supplying a utility to pack malware, utilising a

bunch of tools based on code packing. AVSs often have the potential of revealing

tools with known packing code, but also had a commercial concern revealing tools

219

with unknown packing code. Nonetheless, polypack showed that packing could be a

powerful tool to bypass an AVS with several commercial malware identification

packages, but lacking to detect the packed variants of existing malware (Cesare,

2010).

Figure B.2: The traditional code packing modification (Cesare, 2010, p.33).

It is a known fact that code packing is utilised in many malware, but code packing

can also assist in supplying software security and restrictions for the intellectual

property incorporated in a program. It is not certainly preferable to blacklist all

instances of code packing as being indicators of malicious activity. Code packing

software products are an open source which is available freely and commercially sold

to everyone as a genuine tool. In consequence, revealing packed programs supplies

an advantage. It is preferable to confirm if the packed data are malicious, instead of

detecting only the case where unknown data are packed (Cesare, 2010). Figure B.2

shows the traditional code packing modification.

10. Instruction Correspondence: Particularly on CISC (Complex Instruction Set

Computing) CPU design such as the Intelx86, there are often several individual

instructions which have the similar outcome. For all these instruction the register

would be set from r1 to zero (Aycock, 2006):

clear r1

xor r1,r1

and 0, r1

move 0, r1

220

11. Instruction Series Correspondence: Instruction correspondence can be postulated

to series of instructions. While individual instruction correspondence is at the leniency

of the CPU’s instruction sequence, instruction series correspondence is more

convenient, and can be implemented in both low-level and high-level languages

(Aycock, 2006):

x = 1 y = 22

 x = y – 15

12. Register Renaming: A slight, but considerable, the modification can be initiated just

by modifying the registers that instructions utilise. While this creates no deviation

from a high-level aspect, like a human interpreting the register code, renaming

modifies the bit formats that encrypts the instructions; this makes the job harder for

the AVSs focusing on the malware instructions. For instance (Aycock, 2006):

r1 = 18 r3 = 18

r2 = 54 r1 = 54

r3 = r1 + r2 r2 = r3 + r1

The idea of register renaming normally broadens to variable renaming (discussed

above) in complex-level languages like a macro malware might implement (Aycock,

2006).

13. Runtime Code Formation: One method to change the code is to conceal some code

until execution. Either new code can be created, or existing code can be altered

(Aycock, 2006).

r1 = 18 r1 = 18

r2 = 54 => r2 = 54

r3 = r1 + r2 create r3 = r1 + r2

 call created_code

221

14. Consistency: The primary code can be divided into numerous strings of execution,

which not only modifies the code, but also can considerably obscure automatic

inspection. For example (Aycock, 2006):

r1 = 18 begin string S

r2 = 54 => r1 = 18

r3 = r1 + r2 wait for signal

 r3 = r1 + r2

 ...

 S:

 r2 = 54

 send signal

 exit string S

15. Inlining and Outlining: Code inlining is an approach generally used to evade

subroutine call overhead, that substitutes a subroutine call with the code of the

subroutine. For instance (Aycock, 2006):

call S1 r1 = 18

call S2 r2 = r3 + r2

 ... => r4 = r1 + r2

S1:

r1 = 18 r1 = 18

 r2 = r3 + r2 r2 = 54

 r4 = r1 + r2 r3 = r1 + r2

 return ...

S2:

 r1 = 18

 r2 = 54

 r3 = r1 + r2

 return

222

Code outlining is the inverse approach, it does not need to maintain any logical code

arrangement, nevertheless (Aycock, 2006):

r1 = 18 r1 = 18

 r2 = r3 + r2 r2 = r3 + r2

 r4 = r1 + r2 call S12

=> r3 = r1 + r2

 r1 = 18 ...

 r2 = 54 S12:

 r3 = r1 + r2 r4 = r1 + r2

 ... r1 = 18

 r2 = 54

 return

Another way is to transform the code in question into the threaded code, which has

no relation to threads utilised for the concept of consistent programming, regardless

of the term. Threaded code is utilised as a replacement approach to executing

interpreters based on programming language. Subroutines involved in the threaded

code do not restore to their location from which they were implemented, but rather

instantly jump to the following subroutine; the threaded code by itself is just a range

of code addresses. For instance (Aycock, 2006):

r1 = 18 next = &code

 r2 = r3 + r2 goto [next]

 r4 = r1 + r2 CODE:

=> &I1

 r1 = 18 &I2

 r2 = 54 &X

 r3 = r1 + r2 X:

 ... r1 = 18

 r2 = 54

 r3 = r1 + r2

223

 ...

 I1:

 R1 = 18

 inc next

 goto [next]

 I2:

 r2 = r3 + r2

 r4 = r1 + r2

 inc next

 goto [next]

16. Subroutine Interposing: Inlining and outlining variations preserve the primary code,

but rebundle it in several methods. Code can also be modified by merging self-

determining subroutines together, as shown in the instance below (Aycock, 2006):

call S1 call S12

call S2 ...

 ... => S12:

S1: r5 = 18

r1 = 18 r1 = 18

 r2 = r3 + r2 r6 = r3 + r2

 r4 = r1 + r2 r2 = 54

return r4 = r5 + r6

 S2: r3 = r1 + r2

 r1 = 18 return

 r2 = 54

 r3 = r1 + r2

 return

To ignore variance with registers utilised by S2, some registers had to be renamed

from the code of S1. The total execution in the interposed subroutine is similar to the

primary code with regards to the values calculated (Aycock, 2006).

224

Several of these code modification techniques discussed here are also utilised in the area

of code obfuscation; investigation in the area of code obfuscation is utilised to attempt

and obstruct reverse engineering. There are also numerous amount of complex code

obfuscations carried out by advanced compilers. Not all compiler approaches and code

transformation approaches have yet been utilised by malware writers (Aycock, 2006).

B.3 Polymorphic Obfuscation based on Semantic Reconstruction

Semantic transformation based polymorphic malware are the extended version of the

syntactic transformation based polymorphic malware, where the new variation is an

obtained creation of the primary malware. Semantic modification of a malware happens

due to the malware writers changing the primary source code or the malware

functionality. This can happen to a genuine progress of the malware through its life cycle

of the program development. Moreover, it can happen when a malware writer recycles

the existing malware code to write a new malware variant (Cesare, 2010).

1. Code Insertion: The process of code insertion happens when fresh functionality is

implemented in the existing malware code (Cesare, 2010).

2. Code Deletion: The process of code deletion happens when an existing functionality

is eliminated from the malware code (Cesare, 2010).

3. Code Replacement: The process of code replacement happens when an existing

functionality in the malware code is substituted by a different code or algorithm

(Cesare, 2010).

4. Code Transposition: The process of code transposition happens when in an existing

malware a particular functionality and code is eliminated from its original location

and semantically placed into a separate location in the malware code (Cesare, 2010).

225

Appendix C

C.1 Materials and Tools

This section presents the materials and tools used in this thesis for experimental purposes.

C.1.1 W32.CTX/W32.Cholera Virus

The Win32.Cholera/W32.Cholera/W32.CTX is a polymorphic virus which attacks

executable files of the format PE (Portable Executable). This virus is programmed in

assembly language, and it employs an EPO (Entry Point Obfuscation) approach, which

makes its identification difficult (NOD21, 2004; SOPHOS, 2015; WayBackMachine,

2010). EPO is a method employed by virus writers to prevent AVS scanners from

examining the (malicious) files that have been captured (Schiffman, 2010).

Win32.Cholera/W32.Cholera/W32.CTX was therefore chosen to fully evaluate and

challenge the signatures generated via proposed methods in this research. The original

source files were downloaded from ‘VX Heavens’ (VX Heavens, 2009) website. All the

198 unknown (new) polymorphic variants (Px) of W32.Cholera virus were generated

manually by executing one of the original (Ps) virus files (in this case, a file named

‘Virus.Win32.CTX.10853’).

C.1.2 JS.Cassandra Virus

Unlike any other JavaScript virus, JS.Cassandra is comprised of four distinct polymorphic

engines: polymorphic engine I, which includes Garbage or Junk codes; polymorphic

engine II, which modifies its Body (Body Changing); polymorphic engine III, which

modifies its Variables (Variable Changing); and polymorphic engine IV, which modifies

its Numbers (Number Changing). The likelihood of the virus to decode using the

polymorphic engine I is either 1:3 or every 1:4th line (inside its viral code) and engine I

has a polymorphism level of 3 (see page no. 35). The likelihood of the virus to decode

using polymorphic engine II and III are 1:3 and engine II has a polymorphism level of 6,

whereas, engine III has a polymorphism level of 2. The likelihood of the virus decoding

using polymorphic engine IV is either 1:1 or every 1:10th number (found inside its viral

code). Engine IV has a polymorphism level of 2 (SPTH, 2015; Belcebu, n.d.).

JS.Cassandra virus is selected for this research because unlike the majority of similar

malware its source code and the source code of its known (Pk) variants are readily

available. The original (Ps) JS.Cassandra virus with its original source code was

downloaded from its author’s (Second Part to Hell) website (SPTH, 2015). All the 351

226

known (Pk) polymorphic variants of JS.Cassandra virus were also retrieved from the virus

author’s website (SPTH, 2004).

C.1.3 W32.Kitti Virus

The W32.Kitti virus (SPTH, 2013) was fully written in assembly language. The mutation

engine in W32.Kitti virus alters instruction to overlapped code. This virus worms/sneaks

over shared network disks and portable disks. In total, 1105 unknown (Px) polymorphic

malware variants were generated manually and were obtained by executing the original

virus (Ps) file (in this case, a filename ‘oc.exe’).

C.1.4 Transcriptase Virus

In biological sciences, a transcriptase is defined as an enzyme that initiates the creation

of ribonucleic acid (RNA) from a template of deoxyribonucleic acid (DNA) during the

process of transcription (The American Heritage Dictionary, 2018). The term

Transcriptase was adopted by the creator of the metamorphic JavaScript malware in

(Transcriptase, 2013) and is a proof-of-concept malware (Ferrie, 2013), which is used in

this thesis. The parallelism amidst the biological procedure of transcriptase and such a

metamorphic JavaScript generator is somewhat flimsy (Musale, Austin, & Stamp, 2015;

Troia, Visaggio, Austin, & Stamp, 2016; Ferrie, 2013).

Once executed inside a folder, Transcriptase infects every JavaScript files within that

folder. Every infection emanates in a mutated instance of the malware that is attached to

the victim code. The aim of the mutation is to avoid detection through signature-based

techniques (Musale, Austin, & Stamp, 2015; Troia, Visaggio, Austin, & Stamp, 2016;

Ferrie, 2013).

The generator of Transcriptase adopts a customized meta-language to implement its

metamorphosis. The meta-language data is executed adopting an executable program that

is executed in JavaScript, and the executable program per se is a component of the

malware program. The benefit of acquiring a customized meta-language is to in fact add

information, needed to generate extremely mutated instances by the malware writer,

simultaneously avoiding the code to expand uncontrollably over time (Musale, Austin, &

Stamp, 2015; Troia, Visaggio, Austin, & Stamp, 2016; Ferrie, 2013).

227

C.1.5 JAligner

‘JAligner’ (Moustafa, 2010) is an open source Java application that implements the SWA

and is used in this thesis for the process of pairwise alignment of biological sequences.

‘JAligner’ provides the options of gap open and gap extend penalties along with the wide

selection of the 71 different substitution matrices. Chapters 5 to 7 will use ‘JAligner’ and

the results of the alignments will be processed for the identification and extraction of

common substrings (meta-signatures). The open source master version of ‘JAligner’ can

perform pairwise sequence alignment using the NWA and is employed in Chapter 6 –

Part-I. This tool can be retrieved from the following website:

http://jaligner.sourceforge.net/.

C.1.6 Weka

Weka (Frank, Hall, & Witten, 2016) is an open source machine learning tool for

conducting data mining jobs and consists of tools for clustering, association rules, data

preprocessing, visualisation, classification, and regression. Weka is employed in Chapters

4, 6 and 7 for rule extraction and classification. PRISM and NNge classifiers are used in

this thesis, which are inbuilt Weka classifiers.

C.1.7 ClamAV and ‘sigtool’

ClamAV (ClamAV, 2018; ClamAV, 2016) is an open source antivirus tool that is used in

Chapters 4 to 7 for the purpose of testing any signatures or generic signatures generated

during this research study against variants in the signature’s malware family. The testing

is performed with the help of ‘clamscan’ virus scanner by creating a .ndb database, which

is a part of the ClamAV tool. One other part of ClamAV is the ‘sigtool’ which is used in

this thesis for the purpose of extracting hexadecimal dumps of the malicious files. The

tools and source code of ClamAV can be retrieved through the following website:

https://www.clamav.net/downloads.

C.1.8 VirusTotal

‘VirusTotal’ (VirusTotal, 2018) is an online tool that scans and examines files for

malicious activities. This tool constitutes of 56 well-known AVSs with their up-to-date

databases. In this thesis, ‘VirusTotal’ provides confidence that the manual code

alterations for non-malicious (Pu) files are effective and also confirms their uniqueness.

This tool creates a unique SHA256 signature for every suspicious file that is uploaded to

its online web tool and can be accessed through the following website:

http://jaligner.sourceforge.net/
https://www.clamav.net/downloads

228

https://www.virustotal.com/en/. In this thesis, ‘VirusTotal’ (VirusTotal, 2018) is used to

check malware authenticity. Furthermore, there are several other freely available online

virus scanners, such as ‘Metascan Online’, ‘VirSCAN’, ‘CA Online Malware Scanner’,

and ‘Gary’s Hood’ (Hood, 2016). In this thesis, ‘Gary’s Hood’ (Hood, 2016) is used to

scan multiple malicious files for experimental detection purposes (Chapter 6).

C.1.9 MAFFT

MAFFT (Katoh & Standley, 2013; Katoh, et al., 2002) is an online tool that performs

multiple sequence alignment of larger sequences (big data) and is employed in Chapter 7

for converting variable-length sequence into fixed length sequences for the process of

data mining. This tool can be accessed via the following website:

http://mafft.cbrc.jp/alignment/software/.

C.1.10 Random Data File Creator (RDFC)

RDFC (Berthold, 2004) is a console application which is used to generate random binary

files of any sizes by filling with random binary numbers and is a Microsoft Windows

application. This tool is employed in this thesis to generate random files for signature

testing purposes for its effectiveness and to check for the false positive and false negative

rates. This tool can be downloaded from the following website:

http://www.bertel.de/software/rdfc/index-en.html.

https://www.virustotal.com/en/
http://mafft.cbrc.jp/alignment/software/
http://www.bertel.de/software/rdfc/index-en.html

229

Appendix D

D.1 Clamscan Database File

The content inside a typical .ndb clamscan database file for a virus family and its use in

the experiments conducted in Chapters 4 to 7 is shown below, for instance:

Virus:0:*:537472696e672e66726f6d43686172436f646528

Where, ‘Virus’ is the virus filename.

‘0’ is the ‘TargetType’ (i.e. the type of target file, in this case, it is a JavaScript file) and

several options are available within which are, ‘0’ is for any file, ‘1’ is for portable

executable file, ‘2’ is OLE2 component i.e. a vb script file, ‘3’ is for normalised HTML,

‘4’ is for mail type files, and ‘5’ is for graphics files. Option ‘0’ was chosen in this case

(Naidu & Narayanan, 2016).

‘*’ is the ‘Offset’ type to tell the scanner about where the signature applies inside the file

(similar to {n} wildcard) & three options are available within, which are, ‘*’ is for

anywhere inside the file, ‘n’ is for n bytes from beginning of file, & ‘EOF – n’ is for End

Of File minus the n bytes. Option ‘*’ was chosen in this case (Naidu & Narayanan, 2016).

‘537472696e672e66726f6d43686172436f646528’ is the meta-signature (in hexadecimal

format) for JS.Cassandra polymorphic viral family obtained from the seven step

approach in Chapter 4.

230

D.2 Clamscan Scan Results for 43 Malicious (Pk), 43 Non-Malicious

(Pu) and 43 Random Files

Figure D.1: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 malicious (Pk) files using the meta-signature.

Figure D.2: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 non-malicious (Pu) files using the meta-signature.

231

Figure D.3: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

the 43 random files using the meta-signature.

232

Table D.1: Generated CRC32b Hash Value and File Size in Bytes for the 43 Malicious

(Pk) Files, 43 Non-Malicious (Pu) Files, and 43 Random Files.

Malicious (Pk) variants Non-malicious (Pu) variants Random variants

CRC32b Hash

Value

File Size

(bytes)

CRC32b

Hash Value

File Size

(bytes)

CRC32b

Hash Value

File Size

(bytes)

26489347 7,767 ab657f45 1,823 bfa1e3d9 9,216

848562f1 8,324 3d94f85f 2,662 8956b4ef 4,096

fab48c8c 54,183 634041fe 28 07baad1b 5,120

7c4ea313 9,938 90dd470d 3,697 0ca68128 7,168

bd3b9fdc 8,759 0631e490 2,981 819ec3a5 10,240

9904ef9c 8,392 5273cd32 2,137 048d638c 11,264

511621c7 9,400 32b7909a 3,748 f6425fdb 13,312

a7bc9795 10,059 d1f95eae 2,125 9fda09d6 15,360

a878abc3 10,763 cd486121 2,868 8b2ff426 17,408

ec3797e7 12,282 e2220b79 3,874 e3702e86 20,480

a2e5c540 10,799 d4cffb98 2,965 ae57c29a 19,456

9c8432d2 10,873 91f3e71f 1,688 dbfae5e5 133,120

2b40aa76 8,639 03fe3ba9 1,439 0d4cd9da 52,224

92c87b26 11,334 a6308749 3,021 8a8d3664 35,840

52653b1d 9,507 6eaa1574 1,885 fd11933b 24,576

851c41b7 9,740 e7cb7513 2,872 df99e215 27,648

f006361e 14,900 0b52da18 3,876 fe998b7c 22,528

8ead30b2 9,945 31838f54 2,887 c39cd570 33,792

1ea87480 46,691 505c6653 27 8b461802 45,056

ecd82d26 10,677 db5a61cc 1,840 79b2dfb3 26,624

59e9feb3 139,909 634041fe 28 d3951707 37,888

70763a3b 14,767 c7b5d591 6,461 68cdd062 103,424

f4289eb6 52,595 26fae117 35,637 12307f18 59,392

c4290e04 29,603 687ff9af 15,230 c0cd6499 52,224

3797337e 25,828 8be6dc4c 9,394 6ec3f157 74,752

4736f8b5 45,659 bb0289a8 22,372 3d5fa9ad 54,272

c2b04d58 45,551 2bcc0d72 21,713 e2f21971 44,032

a181f255 92,807 afcab12f 69,603 384a6e54 49,152

f09e878a 52,166 91a706d4 29,312 210033d2 34,816

1508c8c9 92,418 c08fd2bc 63,980 edecfc3f 13,312

516fb310 45,161 4beeda26 20,518 bad13ac3 32,768

1fb5398a 48,795 fab8097c 22,407 df86781e 43,008

1ce21c33 63,703 1f89ec68 37,841 7f6a41dc 41,984

477f3b8b 73,644 a55be2cf 44,847 4e4e73b6 21,504

e13deddd 101,869 6090639e 69,861 2969861d 23,552

652475dc 108,964 394b9964 76,520 5e26f76b 25,600

6c2eb137 104,588 b9c78d0d 74,971 cafef1e2 28,672

8efd2988 72,866 abc0e54d 41,369 1da5bf28 29,696

0c380868 52,306 7ef94488 25,542 0c200f97 30,720

2fb372eb 88,438 f041406f 55,714 91ea7ac7 31,744

bf934d5b 60,612 2c940492 29,215 2ac33710 36,864

200270d4 79,344 00b715f9 44,847 afc9301b 38,912

70266dfb 103,509 d2d13cbc 70,014 cb672fef 39,936

Total File Size

→
1,878,074

Total File

Size →
935,839

Total File

Size →
1,482,752

233

Table D.2: Test statistics of some of the AVSs after testing against the 43 malicious (Pk) and 43 non-malicious (Pu) variants of JS.Cassandra and the 43

random files.

Top AVSs AVG Avast Avira Bitdefender ClamAV ESET-NOD32 Kaspersky McAfee Microsoft Panda Symantec
Trend

Micro

43 Malicious (Pk)

Files

Detection Rate

(Accuracy)

17/43

(39%)

35/43

(81%)

12/43

(28%)
1/43 (2.3%)

40/43

(93%)
22/43 (51%) 1/43 (2.3%)

22/43

(51%)

43/43

(100%)

1/43

(2.3%)

1/43

(2.3%)

1/43

(2.3%)

Sensitivity/Recall 39% 81% 28% 2.3% 93% 51% 2.3% 51% 100% 2.3% 2.3% 2.3%

Specificity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Precision 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

F1 Score 57% 90% 44% 4.5% 96% 68% 4.5% 68% 100% 4.5% 4.5% 4.5%

43 Non-Malicious

(Pu) Files

Detection Rate

(Accuracy)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)
0/43 (0.0%)

0/43

(0.0%)
0/43 (0.0%) 0/43 (0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

Sensitivity/Recall 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Specificity 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Precision 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

F1 Score 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

43 Random Files

Detection Rate

(Accuracy)

0/43

(0.0%)

0/43

(0.0%)

1/43

(2.3%)
0/43 (0.0%)

0/43

(0.0%)
0/43 (0.0%) 0/43 (0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

0/43

(0.0%)

Sensitivity/Recall 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Specificity 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Precision 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

F1 Score 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

234

D.3 Further experiments

The meta-signature of JS.Cassandra virus family not only detected 43 malicious files

successfully but also detected 43 non-malicious (Pu) files. These non-malicious (Pu) files

still had some polymorphic functions intact within them. All of the 43 non-malicious (Pu)

files were still executable, but a few gave JavaScript runtime and compilation errors.

These executable non-malicious (Pu) files might cause some serious potential threats, as

the polymorphic functions inside these files in some cases might still make them

polymorphic. Table D.2 shows that none of the 12 AVSs detected these executable non-

malicious (Pu) files as malicious. One instance of such a file is explained here.

Table D.3: Generated CRC32b Hash Value and File Size in Bytes for Original Variant

File (VO), Modified Variant File (VM) and 12 Variants (VM1-VM12).

Malicious File CRC32b Hash Value File Size in bytes

Original Variant File VO 848562f1 8,324

Modified Variant File VM fc79adfe 5,695

Variant 1 VM1 557562ad 6,289

Variant 2 VM2 150e0d7a 6,855

Variant 3 VM3 5645b651 7,457

Variant 4 VM4 42f590e7 7,465

Variant 5 VM5 fcb28864 8,049

Variant 6 VM6 dd679959 8,055

Variant 7 VM7 204f3304 9,019

Variant 8 VM8 3e2ef86f 9,649

Variant 9 VM9 3d987ac4 10,713

Variant 10 VM10 0ecba96f 11,255

Variant 11VM11 bbe2b767 12,825

Variant 12 VM12 55a47fbf 14,031

- Total File Size → 125,681

A variant of JS.Cassandra was chosen and around four polymorphic functions were

removed from it. Still, more than ten functions were intact inside that variant file. The

modified variant file was executed, and 12 new unique polymorphic variants were

generated from it for the purpose of distinguishing between malicious (Pk) and non-

malicious (Pu) files experimentally. An infinite number of new unique polymorphic

variants could be generated from the same file. Table D.3 provides the CRC32b hash

value and file size in bytes for the original variant file (VO), modified variant file (VM)

235

and 12 new variants (VM1-VM12). No two files have the same CRC32b hash value and file

size.

All 12 new variant files (VM1-VM12), the original variant file (VO) and the modified

original file (VM) were scanned against the 12 AVSs. Scan results of the 12 AVSs are

shown in Table D.4. Only ‘Microsoft’ antivirus was able to detect all the 14 malicious

files successfully. ‘Bitdefender’ and ‘Kaspersky’, could not detect any of the 14 malicious

files. ‘McAfee’, could only detect one of the 14 malicious files – the original variant file

VO. Original variant file VO before modification could be detected by five AVSs, but after

the modification, VM could only be detected by the ‘Microsoft’ antivirus tool.

Table D.4: Detection Capabilities of Top Well-Known AVSs for Original Variant File

(VO), Modified Variant File (VM) and 12 New Variants (VM1-VM12).

Top AVs AVG Avast Avira Bitdefender ClamAV ESET-

NOD32

Original Variant

File (VO)
Yes No No No Yes Yes

Modified

Variant File

(VM)

No No No No No No

12 Variant Files

(VM1-VM12)
No No No No No No

Top AVs Kaspersky McAfee Microsoft Panda Symantec Trend

Micro

Original Variant

File (VO)
No Yes Yes No No No

Modified

Variant File

(VM)

No No Yes No No No

12 Variant Files

(VM1-VM12)
No No Yes No No No

The meta-signature of JS.Cassandra virus family was tested to detect the same 14

malicious files (VO, VM, and V1-V12). All 14 files were successfully detected as infected

by the ‘clamscan’ antivirus scanner using the meta-signature in 0.008 sec (Figure D.4).

236

Figure D.4: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

12 variant files (VM1-VM12), original variant file (VO) and modified variant file (VM).

Figure D.5: Screenshot of the scan result obtained from ‘clamscan’ antivirus scanner for

352 malicious files (Pk) of JS.Cassandra.

237

Appendix E

Table E.1: Full results of the 71 pairwise local alignments performed in Step-3. In bold

are the matrices selected in Step-3 in Section 5.11.3 for further analysis in Part-III.

Substitution Matrix Identity

(%)

Similarity

(%)

Gaps

(%)

Length Score

BLOSUM30 51.72% 56.47% 29.43% 41714 176113.00

BLOSUM35 52.43% 52.43% 27.48% 41242 157336.00

BLOSUM40 52.83% 57.81% 27.22% 41181 177285.00

BLOSUM45 53.46% 53.46% 23.75% 40371 135108.00

BLOSUM50 53.60% 53.60% 24.32% 40502 149366.00

BLOSUM55 53.90% 53.90% 23.58% 40330 155055.00

BLOSUM60 52.48% 52.48% 20.74% 39667 102094.00

BLOSUM62 52.76% 52.76% 21.32% 39796 104663.00

BLOSUM65 52.76% 52.76% 21.32% 39796 104663.00

BLOSUM70 52.84% 52.84% 21.93% 39931 102124.00

BLOSUM75 52.84% 52.84% 21.93% 39931 102124.00

BLOSUM80 54.79% 54.79% 26.63% 41041 170844.00

BLOSUM85 53.26% 53.26% 23.29% 40239 104206.00

BLOSUM90 53.58% 53.58% 24.22% 40478 105990.00

BLOSUM100 54.71% 54.71% 31.69% 42094 178888.00

BLOSUMN 53.85% 53.85% 26.60% 41034 104333.00

DAYHOFF 49.41% 62.32% 21.70% 39868 112237.00

EDNAFULL 52.07% 52.07% 36.22% 38989 51413.00

GONNET 50.68% 56.88% 19.48% 39377 123052.00

IDENTITY 100.00% 100.00% 0.00% 397 397.00

MATCH 63.57% 63.57% 18.81% 6083 1192.00

PAM10 51.19% 51.19% 44.41% 43576 108131.00

PAM20 52.48% 52.48% 39.63% 42275 104507.00

PAM30 52.74% 52.74% 37.26% 41660 101659.00

PAM40 52.94% 52.94% 35.49% 41213 97752.00

PAM50 53.25% 53.25% 32.89% 40571 92401.00

PAM60 52.09% 56.14% 31.09% 41943 97310.00

PAM70 52.18% 56.22% 30.26% 41740 98984.00

PAM80 51.72% 56.21% 28.56% 41325 93804.00

PAM90 51.70% 56.25% 27.18% 40996 89616.00

PAM100 51.60% 62.28% 25.74% 40656 91799.00

PAM110 51.10% 62.45% 25.35% 40565 88963.00

PAM120 50.71% 62.69% 22.81% 40117 88503.00

PAM130 50.71% 62.69% 22.81% 40117 88503.00

PAM140 50.85% 62.60% 21.92% 39917 90323.00

PAM150 50.30% 62.45% 21.77% 39884 84555.00

PAM160 49.12% 62.65% 20.66% 39636 80017.00

PAM170 50.47% 62.38% 25.71% 40818 131637.00

PAM180 49.94% 62.28% 25.68% 40812 128560.00

PAM190 50.04% 62.42% 25.32% 40694 129164.00

PAM200 50.39% 61.52% 24.92% 40634 120995.00

PAM210 49.16% 61.84% 22.65% 40081 110664.00

238

PAM220 49.16% 61.84% 22.65% 40081 110664.00

PAM230 49.19% 61.96% 22.37% 40019 111471.00

PAM240 49.19% 61.96% 22.37% 40019 111471.00

PAM250 49.41% 62.32% 21.70% 39868 112237.00

PAM260 48.74% 62.27% 21.37% 39794 109500.00

PAM270 48.54% 62.33% 24.39% 40479 152705.00

PAM280 48.73% 62.49% 23.52% 40278 144159.00

PAM290 48.05% 62.37% 23.34% 40238 139598.00

PAM300 47.75% 62.38% 23.22% 40211 136884.00

PAM310 48.59% 62.05% 23.01% 40162 134398.00

PAM320 47.56% 61.93% 23.47% 40267 131468.00

PAM330 47.56% 61.93% 23.47% 40267 131468.00

PAM340 46.85% 61.74% 23.19% 40203 126252.00

PAM350 47.05% 69.15% 24.62% 40532 165839.00

PAM360 45.98% 69.21% 24.63% 40534 163200.00

PAM370 46.06% 69.45% 24.11% 40413 163778.00

PAM380 46.13% 69.65% 23.72% 40325 155074.00

PAM390 45.89% 69.04% 24.22% 40440 149355.00

PAM400 45.31% 69.07% 24.36% 40472 144366.00

PAM410 45.40% 67.78% 26.84% 41081 180922.00

PAM420 44.59% 68.30% 26.06% 40866 179081.00

PAM430 44.59% 68.30% 26.06% 40866 179081.00

PAM440 43.67% 68.01% 26.56% 40985 174344.00

PAM450 44.69% 67.43% 27.20% 41165 170906.00

PAM460 45.04% 67.98% 26.21% 40903 161955.00

PAM470 44.17% 67.24% 27.70% 41256 197122.00

PAM480 43.56% 67.29% 27.76% 41270 192432.00

PAM490 43.56% 67.29% 27.76% 41270 192432.00

PAM500 44.43% 66.82% 28.19% 41402 188980.00

239

Appendix F

Figure F.1: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-2 (Experiment I).

240

Figure F.2: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge

rules in Step-2 (Experiment I).

241

Figure F.3: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos13633-pos13643 obtained from Weka

during the generation of NNge rules in Step-2 (Experiment I).

242

Figure F.4: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-3 (Experiment II).

243

Figure F.5: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge

rules in Step-3 (Experiment II).

244

Figure F.6: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos36663-pos36673 obtained from Weka

during the generation of NNge rules in Step-3 (Experiment II).

245

Figure F.7: Screenshot of the preprocess panel obtained from Weka during the generation of NNge rules in Step-4 (Experiment III).

246

Figure F.8: Screenshot of the classifier model and evaluation information inside the classifier panel obtained from Weka during the generation of NNge

rules in Step-4 (Experiment III).

247

Figure F.9: Screenshot of the visualize panel showing 275 individual plot matrices between pos1-pos25 and pos47087-pos47097 obtained from Weka

during the generation of NNge rules in Step-4 (Experiment III).

248

Appendix G

Table G.1: Full results of the pairwise local alignments that were performed in Step-3 in

Chapter 5: Part-II.

Polymorphic

malware 1
Pairwise Alignment

Gap

Open

Penalty

Gap

Extend

Penalty

Identity

Percentage

Similarity

Percentage

Gaps

Percentage

Alignment

Length

Alignment

Score

JS.Cassandra
Virus

Original JS.Cassandra

virus and Variant 1

5 0.5 74.71% 74.71% 25.29% 767 368.00

5 1 79.64% 79.64% 20.36% 658 306.00

10 0.5 69.34% 69.34% 30.66% 698 301.00

10 1 96.18% 96.18% 3.82% 314 263.00

15 0.5 65.55% 65.55% 34.45% 714 272.50

15 1 97.27% 97.27% 2.73% 293 249.00

20 0.5 65.08% 65.08% 34.92% 693 252.00

20 1 98.51% 98.51% 1.49% 269 242.00

25 0.5 98.51% 98.51% 1.49% 269 238.50

25 1 98.51% 98.51% 1.49% 269 237.00

Variant 1 and Variant 2

5 0.5 67.06% 67.06% 32.94% 2714 887.00

5 1 70.97% 70.97% 29.03% 2652 540.00

10 0.5 58.42% 58.42% 41.58% 2862 507.00

10 1 80.16% 80.16% 19.84% 766 345.00

15 0.5 66.45% 66.45% 33.55% 1079 391.00

15 1 89.30% 89.30% 10.70% 430 310.00

20 0.5 66.45% 66.45% 33.55% 1079 341.00

20 1 89.30% 89.30% 10.70% 430 300.00

25 0.5 89.30% 89.30% 10.70% 430 312.00

25 1 89.30% 89.30% 10.70% 430 290.00

Variant 2 and Variant 3

5 0.5 57.07% 57.07% 42.93% 3634 574.00

5 1 77.85% 77.85% 22.15% 957 385.00

10 0.5 64.53% 64.53% 35.47% 1139 352.50

10 1 85.02% 85.02% 14.98% 601 295.00

15 0.5 68.69% 68.69% 31.31% 741 306.00

15 1 85.33% 85.33% 14.67% 450 262.00

20 0.5 68.69% 68.69% 31.31% 741 276.00

20 1 85.33% 85.33% 14.67% 450 242.00

25 0.5 85.33% 85.33% 14.67% 450 253.00

25 1 85.33% 85.33% 14.67% 450 222.00

Variant 3 and Variant 4

5 0.5 65.42% 65.42% 34.58% 2325 642.00

5 1 83.56% 83.56% 16.44% 669 373.00

10 0.5 77.58% 77.58% 22.42% 678 374.00

10 1 95.22% 95.22% 4.78% 418 360.00

15 0.5 95.22% 95.22% 4.78% 418 359.00

15 1 95.22% 95.22% 4.78% 418 350.00

20 0.5 95.22% 95.22% 4.78% 418 349.00

20 1 95.22% 95.22% 4.78% 418 340.00

25 0.5 95.22% 95.22% 4.78% 418 339.00

25 1 95.22% 95.22% 4.78% 418 330.00

Variant 4 and Variant 5

5 0.5 65.18% 65.18% 34.82% 2533 715.00

5 1 71.79% 71.79% 28.21% 1843 467.00

10 0.5 85.64% 85.64% 14.36% 613 433.50

10 1 100.00% 100.00% 0.00% 397 397.00

15 0.5 85.64% 85.64% 14.36% 613 408.50

15 1 100.00% 100.00% 0.00% 397 397.00

20 0.5 79.21% 79.21% 20.79% 635 398.00

20 1 100.00% 100.00% 0.00% 397 397.00

25 0.5 100.00% 100.00% 0.00% 397 397.00

25 1 100.00% 100.00% 0.00% 397 397.00

249

Polymorphic

malware 2
Pairwise Alignment

Gap

Open

Penalty

Gap

Extend

Penalty

Identity

Percentage

Similarity

Percentage

Gaps

Percentage

Alignment

Length

Alignment

Score

W32.CTX
Virus

Original W32.CTX virus
and Variant 1

5 0.5 63.57% 63.57% 36.43% 8222 2595.5

5 1 94.57% 94.57% 5.43% 2304 1922

10 0.5 73.72% 73.72% 26.28% 4083 1903.5

10 1 93.48% 93.48% 6.52% 2317 1772

15 0.5 91.73% 91.73% 8.27% 2335 1726.5

15 1 92.72% 92.72% 7.28% 2323 1649

20 0.5 90.51% 90.51% 9.49% 2350 1625.5

20 1 91.73% 91.73% 8.27% 2335 1531

25 0.5 90.51% 90.51% 9.49% 2350 1525.5

25 1 99.29% 99.29% 0.71% 1553 1507

Variant 1 and Variant 2

5 0.5 55.62% 55.62% 44.38% 12492 2785.50

5 1 96.15% 96.15% 3.85% 2309 2015.00

10 0.5 66.14% 66.14% 33.86% 5333 2073.00

10 1 94.99% 94.99% 5.01% 2334 1893.00

15 0.5 74.98% 74.98% 25.02% 3565 1893.50

15 1 94.12% 94.12% 5.88% 2346 1790.00

20 0.5 73.62% 73.62% 26.38% 3593 1781.00

20 1 93.13% 93.13% 6.87% 2358 1692.00

25 0.5 89.92% 89.92% 10.08% 2411 1703.50

25 1 93.13% 93.13% 6.87% 2358 1602.00

Variant 2 and Variant 3

5 0.5 71.99% 71.99% 28.01% 4349 2238.50

5 1 89.59% 89.59% 10.41% 2614 1930.00

10 0.5 76.46% 76.46% 23.54% 3645 2054.00

10 1 96.41% 96.41% 3.59% 2060 1804.00

15 0.5 74.50% 74.50% 25.50% 3686 1913.50

15 1 94.74% 94.74% 5.26% 2090 1758.00

20 0.5 73.37% 73.37% 26.63% 3710 1799.00

20 1 94.74% 94.74% 5.26% 2090 1718.00

25 0.5 93.62% 93.62% 6.38% 2115 1741.00

25 1 94.74% 94.74% 5.26% 2090 1678.00

Variant 3 and Variant 4

5 0.5 64.57% 64.57% 35.43% 4849 1988.50

5 1 94.40% 94.40% 5.60% 2017 1707.00

10 0.5 77.16% 77.16% 22.84% 3008 1863.50

10 1 94.22% 94.22% 5.78% 1956 1613.00

15 0.5 76.93% 76.93% 23.07% 3008 1807.50

15 1 93.07% 93.07% 6.93% 1891 1573.00

20 0.5 75.99% 75.99% 24.01% 3024 1759.50

20 1 94.15% 94.15% 5.85% 1829 1558.00

25 0.5 76.97% 76.97% 23.03% 2861 1725.50

25 1 94.15% 94.15% 5.85% 1829 1543.00

Variant 4 and Variant 5

5 0.5 70.24% 70.24% 29.76% 2860 1174

5 1 74.76% 74.76% 25.24% 2639 859

10 0.5 60.45% 60.45% 39.55% 3009 863

10 1 100.00% 100.00% 0.00% 736 736

15 0.5 73.83% 73.83% 26.17% 1479 753.5

15 1 100.00% 100.00% 0.00% 736 736

20 0.5 100.00% 100.00% 0.00% 736 736

20 1 100.00% 100.00% 0.00% 736 736

25 0.5 100.00% 100.00% 0.00% 736 736

25 1 100.00% 100.00% 0.00% 736 736

250

Polymorphic

malware 3
Pairwise Alignment

Gap

Open

Penalty

Gap

Extend

Penalty

Identity

Percentage

Similarity

Percentage

Gaps

Percentage

Alignment

Length

Alignment

Score

W32.Kitti
Virus

Original W32.Kitti virus
and Variant 1

5 0.5 81.20% 81.20% 18.80% 3490 2290.00

5 1 86.35% 86.35% 13.65% 3297 2061.00

10 0.5 76.25% 76.25% 23.75% 3486 2225.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 0.5 76.25% 76.25% 23.75% 3486 2215.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 0.5 76.25% 76.25% 23.75% 3486 2205.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 0.5 76.25% 76.25% 23.75% 3486 2195.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 1 and Variant 2

5 0.5 73.04% 73.04% 26.96% 53027 13149.50

5 1 79.07% 79.07% 20.93% 34109 9585.00

10 0.5 76.45% 76.45% 23.55% 3482 2233.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 0.5 76.45% 76.45% 23.55% 3482 2223.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 0.5 76.45% 76.45% 23.55% 3482 2213.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 0.5 76.45% 76.45% 23.55% 3482 2203.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 2 and Variant 3

5 0.5 83.79% 83.79% 16.21% 3343 2309.50

5 1 88.12% 88.12% 11.88% 3266 2130.00

10 0.5 76.35% 76.35% 23.65% 3484 2229.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 0.5 76.35% 76.35% 23.65% 3484 2219.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 0.5 76.35% 76.35% 23.65% 3484 2209.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 0.5 76.35% 76.35% 23.65% 3484 2199.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 3 and Variant 4

5 0.5 84.84% 84.84% 15.16% 3324 2316.00

5 1 88.18% 88.18% 11.82% 3265 2129.00

10 0.5 76.35% 76.35% 23.65% 3484 2229.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 0.5 76.35% 76.35% 23.65% 3484 2219.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 0.5 76.35% 76.35% 23.65% 3484 2209.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 0.5 76.35% 76.35% 23.65% 3484 2199.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 4 and Variant 5

5 0.5 87.03% 87.03% 12.97% 3285 2349.00

5 1 90.51% 90.51% 9.49% 3225 2217.00

10 0.5 76.45% 76.45% 23.55% 3482 2233.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 0.5 76.45% 76.45% 23.55% 3482 2223.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 0.5 76.45% 76.45% 23.55% 3482 2213.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 0.5 76.45% 76.45% 23.55% 3482 2203.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

251

Appendix H

Table H.1: Generated CRC32b Hash Value and File Size in bytes of the JS.Cassandra

variants.

Malicious (Pk) Filename

CRC32b

Hash

Value

File

Size in

bytes

Non-Malicious (Pu)

Filename

CRC32b

Hash

Value

File

Size

in

bytes

JS.Cassandra.js (Original

Malicious Virus – Ps)
26489347 7,767

JS.Cassandra_NP.js

(Non-Malicious

Virus – Pu)

ab657f45 1,823

v_000.js (Malicious Variant 1 –

Pk) 848562f1 8,324

v_000_NP.js (Non-

Malicious Variant 1 –

Pu)
3d94f85f 2,662

v_001.js (Malicious Variant 2 –

Pk) – for use in Step-4 and

Step-5
fab48c8c 54,183

v_002_NP.js (Non-

Malicious Variant 2 –

Pu)
90dd470d 3,697

v_002.js (Malicious Variant 3 –

Pk) 7c4ea313 9,938

v_003_NP.js (Non-

Malicious Variant 3 –

Pu)
0631e490 2,981

v_003.js (Malicious Variant 4 –

Pk) bd3b9fdc 8,759

v_004_NP.js (Non-

Malicious Variant 4 –

Pu)
5273cd32 2,137

v_004.js (Malicious Variant 5 –

Pk) 9904ef9c 8,392

v_005_NP.js (Non-

Malicious Variant 5 –

Pu)
32b7909a 3,748

v_005.js (Malicious Variant 6 –

Pk) 511621c7 9,400

v_006_NP.js (Non-

Malicious Variant 6 –

Pu)
d1f95eae 2,125

v_006.js (Malicious Variant 7 –

Pk) a7bc9795 10,059

v_007_NP.js (Non-

Malicious Variant 7 –

Pu)
cd486121 2,868

v_007.js (Malicious Variant 8 –

Pk) a878abc3 10,763

v_008_NP.js (Non-

Malicious Variant 8 –

Pu)
e2220b79 3,874

v_008.js (Malicious Variant 9 –

Pk) ec3797e7 12,282

v_009_NP.js (Non-

Malicious Variant 9 –

Pu)
d4cffb98 2,965

v_009.js (Malicious Variant 10

– Pk) a2e5c540 10,799

v_010_NP.js (Non-

Malicious Variant 10

– Pu)
91f3e71f 1,688

v_010.js (Malicious Variant 11

– Pk)
9c8432d2 10,873

–
Total File

Size →
30,568

–
Total

File Size

→

161,539

252

Table H.2: Generated CRC32b Hash Values and File Sizes in Bytes for 100 New (Px)

Malware Variants of JS.Cassandra Virus.

First 50 Malicious (Px) Variants Second 50 Malicious (Px) Variants

Filename CRC32b

Hash Value

File Size

(bytes)
Filename CRC32b

Hash Value

File Size

(bytes)

victim_001.js fb8fccaf 33,050 victim_051.js 93301735 64,390

victim_002.js 7457878a 37,732 victim_052.js 2def8c3f 15,489

victim_003.js 7af43c5d 9,186 victim_053.js e02076b6 16,660
victim_004.js 687ee66f 23,256 victim_054.js dffb0823 10,720

victim_005.js 52745426 10,838 victim_055.js 3bae0183 10,379
victim_006.js 972aa98b 10,167 victim_056.js 92acbdc3 11,121

victim_007.js 5390b420 12,531 victim_057.js 87ae11d3 134,038
victim_008.js 5ae0f541 14,130 victim_058.js 6aff7b5d 10,096

victim_009.js 0fa3a55b 29,349 victim_059.js 01523ceb 192,495

victim_010.js 0d102b71 293,347 victim_060.js fdd45783 11,104
victim_011.js 51036d4a 11,232 victim_061.js 63e98a11 21,071

victim_012.js 445a3eae 101,860 victim_062.js fc0b761d 12,719
victim_013.js 98fd097d 24,124 victim_063.js 4adf09fd 14,198

victim_014.js 361a20de 13,150 victim_064.js 7876bb84 30,715

victim_015.js 75b47971 96,449 victim_065.js fa7aed76 20,160
victim_016.js c9b01595 10,696 victim_066.js 4b65271b 23,247

victim_017.js 0fba7f20 15,711 victim_067.js acea45f5 13,058
victim_018.js f55fa526 53,456 victim_068.js eda7e7f2 9,987

victim_019.js 7d181fee 29,323 victim_069.js dc5c64c5 36,977
victim_020.js 1ebe0331 21,787 victim_070.js 3495e532 9,377

victim_021.js 4e47fbdc 14,305 victim_071.js fbc0e685 38,944

victim_022.js 0c72ac9f 10,904 victim_072.js 83c410a0 12,479
victim_023.js 4305732f 14,509 victim_073.js 7860fe50 21,141

victim_024.js 56937158 91,550 victim_074.js f79001d5 75,464
victim_025.js 78eb8e39 57,497 victim_075.js 1dd75579 35,219

victim_026.js 9a404150 19,345 victim_076.js 3305b4ac 7,417

victim_027.js ea2de1e7 15,904 victim_077.js 8582f3ba 10,143
victim_028.js 5fa264f6 13,193 victim_078.js addf3ab8 20,599

victim_029.js 39821c49 16,600 victim_079.js 5506de3c 21,378
victim_030.js 594b7bc0 9,885 victim_080.js 4e3b05d0 15,560

victim_031.js f13dec5b 10,287 victim_081.js b577bf12 7,139

victim_032.js db92f605 8,805 victim_082.js f90c0024 22,550
victim_033.js c6731067 11,921 victim_083.js 88d49884 22,391

victim_034.js cc7aa8b6 7,438 victim_084.js b0eb1828 16,933
victim_035.js a5beb6d4 11,570 victim_085.js c02f9cff 24,380

victim_036.js 7401ef34 22,952 victim_086.js 657863c6 14,102
victim_037.js 1d3d8f93 20,730 victim_087.js f7d5a081 21,132

victim_038.js 22fe4afb 15,469 victim_088.js 8154da61 14,085

victim_039.js f27b1448 36,242 victim_089.js 9ec6e8b7 64,953
victim_040.js 116c03d6 12,482 victim_090.js 252a9b16 9,646

victim_041.js 2729c948 12,797 victim_091.js 8606d169 10,771
victim_042.js ba7cd8d2 17,026 victim_092.js 10f3faa2 8,000

victim_043.js eae5d235 16,058 victim_093.js 78a2a83e 13,504

victim_044.js 22595278 22,864 victim_094.js 2b7e56aa 17,997
victim_045.js 9783eb42 11,231 victim_095.js be0a93c7 20,269

victim_046.js 83160322 11,997 victim_096.js fafae3ec 9,712
victim_047.js ffdf36b7 12,274 victim_097.js 9444733d 11,403

victim_048.js fadac221 83,147 victim_098.js e01c5570 9,636
victim_049.js cb2fa95b 57,495 victim_099.js ad2f1653 11,832

victim_050.js 3150d643 17,753 victim_100.js 943a4a77 83,787

Total File Size → 1,535,604

Total File Size → 1,340,567

