
An Integrated Tool Set to Support Software Engineering Learning 
 
 

Anne Philpott, Jim Buchan and Andy Connor 
Software Engineering Research Laboratory, Auckland University of Technology 

{aphilpot, jbuchan, aconnor} @aut.ac.nz 
 

 
Abstract 

 
This paper considers the possible benefits of an 

integrated Software Engineering tool set specifically 
tailored for novice developers, and reflects on the 
experience of having software engineering students 
produce various components of this tool set. 
Experiences with a single semester pilot are discussed 
and future directions for refining the model are 
presented.  
 
1. Introduction 
 

A software curriculum should involve five 
complementary elements, namely principles, practices, 
application, tools and mathematics [1]. The Software 
Development major at AUT addresses these elements 
throughout a number of interlinked papers, each of 
which has a different focus in preparing undergraduate 
students to be software engineering practitioners, as 
illustrated in Figure 1. 

 

 
 

Figure 1. Software Development Skill Acquisition 
 
The Software Engineering paper is taught in the 

fourth semester of an undergraduate degree in 
computer and information sciences. Students entering 
the course have previously completed courses in 
programming, software design and implementation, 
data and process modelling, and database design. They 
therefore have experience with java programming, the 
use of UML in modelling, SQL and the design and 

construction of databases.  The Software Engineering 
paper has a focus of reinforcing and applying the 
principles and practices introduced in preceding papers 
in a simulated project environment using a 
constructivist learning approach.  

The intention is to draw in the tools element 
identified by Meyer [1] by investigating both the role a 
purpose designed tool could play in this approach and 
the implications of using the tool development as a 
learning activity. The aim is to promote learning 
through this activity, without the students being 
explicitly informed that they should be learning certain 
principles and best practice. This approach has been 
applied in introducing concepts of requirements 
engineering into software engineering curricula [2]. 
 
2. Integrating Tools and Learning 
 

In the constructivist view, new learning is actively 
constructed by the learner through interaction with the 
environment. It incrementally develops from previous 
experience and knowledge. As their current concepts 
and knowledge are challenged by new experiences, 
new cognitive structures emerge. Knowledge creation 
occurs as these new mental models, attitudes and 
schema are internalised by the learner when they make 
and evaluate decisions, make and test hypotheses, and 
take and reflect on actions. [3, 4, 5] 

Such a view of learning raises the question of how 
to best foster a learning environment that supports such 
an approach to constructing software engineering 
learning. There are a number of pedagogical 
principles, strategies and practices suggested in 
literature which have guided our design of the learning 
experiences in this programme [3, 4, 5]. 

Table 1 illustrates how these principles have been 
specifically implemented in the Software Engineering 
paper and identifies the implications for a tool set that 
would support these principles. 

 



Constructivist Principle Software Engineering Paper Implementation Implication for Tool Set 
Authentic tasks. The process 
of constructing strongly-
linked knowledge requires a 
certain type of problem-
solving. The problem should 
be interesting, and realistic 
with elements of uncertainty, 
ambiguity and complexity. 

A problem-based learning approach is adopted 
[6]. Understanding of the problem evolves 
through learner interaction with a client with a 
software development need. Solving the 
problem (developing the software and managing 
the process and quality) is the motivation for 
new learning. Students undertake activities 
rather than listen to lectures. Lecturers are 
referred to as “mentors” and are collaborators 
and facilitators of learning. Resources (by way 
of reference material and access to experts) are 
provided as activities demand. 

Tools should be useful in 
supporting/guiding students in 
the diversity of activities related 
to solving realistic problems in 
software engineering, but 
should not overwhelm the 
activities. For example, easy to 
update working artefacts, 
provides readily accessible 
information that informs real 
decisions, allows monitoring of 
progress and quality. 

Build on learners’ prior 
knowledge. Students’ current 
knowledge of developing a 
software solution should be 
evaluated and the learning 
activities should make use of 
skills, concepts and language 
that have some familiarity to 
the students. 

Based on previous knowledge of development 
activities and tools and extends activities to 
include a more extensive part of the 
development life cycle, for example: more 
complexity in domain understanding, client 
management, and planning and project 
management.  

The tool should be flexible in 
the language used and 
adaptable to a number of 
practices from different 
development methodologies. 
For example, previous 
knowledge may include 
multiple practices for the same 
activity (eg. User stories / use 
cases) 

Problem solving activities 
should reinforce useful 
knowledge such as best 
practice and challenge 
misconceptions and poor 
practices. 

Examples include such things as having the 
client change requirements to reinforce 
designing for change. 

The tools could guide and/or 
restrict users to good practice 
and trigger questioning of poor 
practice. 
For example the requirements 
management tool could assume 
an acceptance test is associated 
with every user requirement. 

Construction of learning 
should include social 
interactions and collaboration  

Team-based development, though this is 
continually a challenge as students have 
conflicting commitments. 
Team-building exercise.  
Multi-team sharing of learning. 

Tool should support and 
promote collaboration both 
when team members are co-
located and when separated or 
non-synchronous. 

Support higher order thinking 
such as analysis, critical 
thinking, reflection, self-
evaluation, and 
conceptualisation. 

Mentor role to ask probing questions. 
Peer reviews. 
Opportunities for reflection provided by a 
reflective team presentation, and individual 
reflective report. 

The tool should be simple to 
learn and use and not interfere 
with thinking about the 
software development 
activities. The tool should 
support analysis, reflection and 
abstraction. 

 
Table 1. Application of Constructivist Principles to Software Engineering Course and Tools 

 
Some studies have shown that students have to 

learn and manage new tools when learning Software 
Engineering. Whilst not perceived as a challenge [7], 
this has in reality been observed to detract from 
learning principles. Students are often confounded by 
the complexity of commercially available tools which 
offer considerably more functionality than is required. 

There is clearly a need for a suite of lightweight tools 
that are fit for purpose, with a common interface that 
could reduce the burden of learning complex tools. 

Much of the focus to date on developing 
appropriate tools to facilitate learning in Software 
Engineering teaching has been on integrated 
development environments [8]. In addition, some tools 



have been introduced to Software Engineering course 
that are intended to reinforce good practice in group 
work [9] though these have been found to be treated as 
an isolated section of the course and have not been 
adopted by the students in their formal group activities.  
Other tool use includes the use of standard groupware 
products to support distributed projects [10] but there 
has been little work done in the area of tools focused 
on the Software Engineering Process, particularly 
those aspects which are known to be hard. 

 
3. Scenario Description 

 
A key element of the Software Engineering paper is 

a simulated group exercise, where a member of staff 
presents a need for a software solution and plays the 
role of the client with whom the students must interact. 
The purpose of this exercise is to assist development of 
an understanding of the spectrum of software 
development methodologies. There is a particular 
emphasis on communication and client interaction 
approaches, requirements elicitation practices, project 
management and risk management activities. The 
outcome of the exercise is the delivery of an agreed 
software product to an agreed deadline. Students work 
in teams of 3-5 members and have face-to-face 
interaction with the client for their project.   

The aim is to make the scenario realistic, fun, 
critical and accessible. These characteristics are 
amongst those identified by Stiller and LeBlanc [11] as 
being necessary to ensure that Software Engineering is 
taught effectively. Previous semesters have utilised a 
wide range of application domains. 

In the current semester, a member of staff presented 
a need for lightweight tools to support learning of 
software engineering principles in an academic 
programme. Rather than playing a role, the staff 
member was providing a realistic situation. The 
intention was to utilise students enrolled in the paper to 
develop an initial set of tools for project and 
requirements management that would be appropriate 
for use in the teaching of principles in a software 
development programme.  

 
4. Discussion 

 
The realistic scenario has provided a useful 

experience from which to further enhance the delivery 
of the paper. In the first instance, despite having 
briefed the student teams that the need for developing 
the tools was to promote learning on Software 
Engineering papers, none of the student teams actually 
adopted process tools that supported their development 

activities. This supports the belief that commercial 
tools are overly complex for use in the exercise. It was 
also observed that students’ analysis of the problem 
domain tended to be superficial, with little evidence of 
critical thinking and abstraction. In particular, none of 
the student teams really delved into, for example, 
trying to understand what software requirements are 
and how they need to be managed. Students tended to 
adopt a requirements representation that had been 
presented in preceding papers without questioning 
whether an alternative representation was appropriate.  

In general, the temptation for students was to jump 
to familiar approaches no attempt to identify and 
evaluate alternative solutions. As a result, students 
found it difficult to manage changing and refinement 
of user requirements despite accepting this was 
inevitable. Similarly, managing the client and dealing 
with ambiguity and uncertainty was a big challenge for 
the students. There is a possibility that the demands for 
developing complete tools was too high, forcing the 
students to cut back on activities that distinguish 
Software Engineering from writing code.  

In the future, a tool set with rudimentary 
functionality will be introduced at the beginning of the 
paper. Each successive group of students will refine 
and extend the tool set. This approach has been used in 
other Software Engineering courses with some degree 
of success [12]. The approach introduces the ability to 
emphasise the principles of reuse and refactoring. It 
will also expose students to having to work with code 
developed outside of their peer group. The challenge 
and benefits of running consecutive projects on the 
same topic and as a result working with other people’s 
code has been identified as having distinct benefits [1]. 

 
5. Conclusions 

 
Whilst Meyer’s [1] contention that software 

engineering students should be exposed to tools that 
are currently used in industry is not disputed, it is 
important to ensure that such exposure is not to the 
detriment of a focus on developing understanding and 
awareness of principles and practices. An initial novice 
tool set that enhanced this focus might assist in 
developing enough understanding that the complexity 
of any selected current industry tools later introduced 
would not overwhelm their purpose. 

In addition such a tool set could also support the 
‘inverted curriculum’ approach suggested by Meyer. 
Use of relevant parts of the tool could be introduced to 
support earlier papers with ‘progressive opening of the 
black boxes’ resulting in the software engineering 
students enhancing the tool suite as their project. 



6. References 
 
[1]  B. Meyer “Software engineering in the academy”, 

Computer, 34(5), IEEE, 2001, 28-35. 
 
[2] D. Callele. and D. Makaroff 2006. “Teaching 

requirements engineering to an unsuspecting 
audience”, Proceedings of the 37th SIGCSE Technical 
Symposium on Computer Science Education, March 3-
5, 2006, (Houston, Texas, USA), 433-437 

 
[3] S. Hadjerrouit “A constructivist approach to object-

oriented design and programming”, Proceedings of the 
4th Annual SIGCSE/SIGCUE ITiCSE Conference on 
innovation and Technology in Computer Science 
Education, June 27- 30, 1999, (Cracow, Poland), 1999 
171-174 

 
[4] M. Ben-Ari “Constructivism in computer science 

education”, SIGCSE Bulletin, 30(1), 1998, 257-261 
 
[5] S. Hadjerrouit “Toward a Constructivist Approach to 

E-Learning in Software Engineering”, Proceedings of 
World Conference on E-Learning in Corporate, 
Government, Healthcare, and Higher Education, 
November 7-11 2003, (Pheonix, Arizona, USA), 507-
514 

 
[6] J. Armarego “Advanced software design: a case in 

problem-based learning”, Proceedings of the 15th 
Conference on Software Engineering Education and 
Training, February 25-27 2002 (Ottawa, Canada), 44-
54 

 
[7] M. Gnatz, L. Kof, F. Prilmeier and T. Seifert “A 

practical approach of teaching Software Engineering”, 
Proceedings of the 16th Conference on Software 
Engineering Education and Training, March 20-22 
2003, (Madrid, Spain) 120-128 

 
[8] C. Kelleher and R. Pausch “Lowering the Barriers to 

Programming: A Taxonomy of Programming 
Environments and Languages for Novice 
Programmers”. ACM Computing Surveys, 37(2), 
2005, 83-137. 

 
[9] C. Liu, “Using Issue Tracking Tools to Facilitate 

Student Learning of Communication Skills in Software 
Engineering Courses”, Proceedings of the 18th 
Conference on Software Engineering Education & 
Training, April 18-20 2005, (Ottawa, Canada), 61-68 

 
[10] O.P. Brereton, S. Lees, R. Bedson, C. Boldyreff, S. 

Drummond, P. Layzell, L. Macaulay, and R. Young 
“Student collaboration across universities: a case study 
in software engineering”,  Proceedings of the 13th 
Conference on Software Engineering Education and 
Training, March 6-8 2000, (Austin, Texas, USA), 76-
86 

[11] E. Stiller and C. LeBlanc “Effective software 
engineering pedagogy”, Journal of Computing in 
Small Colleges, 17(6), 2002, 124-134 

 
[12] C. Mingins, J. Miller, M. Dick and M. Postema. “How 

We Teach Software Engineering”, Journal of Object 
Orientated Programming, 11(9), 1999, 64-69 

 
 


	 
	 
	 
	 
	 
	 

