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Abstract

Many networked systems involve multiple modes of transport. Such

systems are called multimodal, and examples include logistic and

telecommunication networks, biomedical phenomena, conflict resolu-

tion models and manufacturing processes. Existing techniques for de-

termining minimal paths in multimodal networks have required either

heuristics or else application-specific constraints to obtain tractable

problems, removing the multimodal traits of the network during anal-

ysis. In this thesis weighted coloured–edge graphs are introduced to

model multimodal networks, where colours represent the modes of

transportation. Optimal paths are selected using a partial order that

compares the total weights in each colour, resulting in a Pareto opti-

mal set of shortest paths. The cardinality of this set is at the core of

the model’s tractability.

Tractability and applicability of the coloured–edge graph are addressed

in this work. The tractability is firstly studied experimentally by using

random as well as pathological instances of the colored–edge graph.

Next, upper bounds on the cardinality of the Pareto set are estab-

lished. An upper bound which is exponential in k (number of colours)

is first presented. Subsequently, a probabilistic bound is developed for

bicoloured–edge graphs whose weights are randomly drawn according

to a bounded probability density function. An O(n3) bound on the

expected number of minimal paths (where n is the number vertices)

is established.

The applicability of the approach is studied by means of data obtained

from real multimodal transportation networks. Three cases are stud-

ied. Case (1) is a comparative analysis based on the multimodal



transportation systems of New Zealand and Europe. The data used

in the construction of the networks consist of digitized maps obtained

from official GIS libraries. Case (2) is a large multimodal network

that reproduces transport options in France. This instance is mainly

focused on assessing the performance of the coloured–edge graph for

very large networks. Finally, Case (3) utilizes air traffic information

to build a multimodal network with a large number of modes. Modes

in this case correspond to different international airlines. An impor-

tant aspect of this practical study is that the multimodal networks

are larger than most of those previously analyzed in the literature.

The coloured–edge graph is shown in this research to be typically

tractable without the need to apply any application–specific heuristic

or constraints. This provides a new perspective in the analysis and

optimization of systems that can be modelled as multimodal networks.



Chapter 1

Introduction

1.1 Context and Background

1.1.1 Multimodal networks

Networks play an important role in our lives. Power networks provide electric-

ity to homes. Telephone and computer networks allow us to communicate and

interchange information at local and global levels. Motorway systems, rail and

airline networks make it possible to transport products. Manufacturing systems

turn raw materials into products by different sequences or machines. One com-

mon features in all these domains is the determination of an optimal pathway

linking at least two points in a network. The determination of a shortest path

is a problem that has been addressed by several fields of inquiry, including ap-

plied mathematics, computer science, engineering, management, and operations

research. An abundant and long tradition characterizes this problem, tracing its

origins to the 19th century, and reaching an important peak in 1959 thanks to

Dijkstra’s algorithm.

During the last three decades, one particular case has drawn considerable

attention in network optimization research; this is the optimization of multimodal

transportation systems which are networked systems involving multiple modes of

transport. Figures 1.1 and 1.2 portray two different applications of multimodal

networks: a biological system presented by Heath & Sioson [1] in which the role

1
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Figure 1.1: A multimodal network from Biology. Source [1].

of heat shock proteins in apoptosis is modelled as as a network with three modes,

and a multimodal network in the context of the conflict resolution problem from

Kilgour et al. [2] where each arc is labeled with a different decision maker (UR,

MoE and LG).

Attention towards multimodal networks has mainly arisen as a consequence

of the logistic boom phenomenon which can be accounted by two main factors:

globalization, and the quest for new competitive advantages inside companies.

Two proofs of these factors stem from reports [3] and [4] elaborated in The Euro-

pean Union and USA, respectively. Both documents establish the importance of

multimodalism as a competitive element and the need to address this issue from

a scientific outlook.

In essence, a multimodal network is a generalization of single mode network;

and so relevant to several research fields such as operations research, computer

science, applied mathematics, management and logistics. Ahuja et al. [5] as-

sert that many applications in these fields not only happen “naturally” in some

physical networks, but also in situations that apparently are quite unrelated to

networks. Furthermore, because networked systems arise in so many problem

contexts, applications are scattered throughout different literature fields. Areas

such as computer networks, biomedicine and manufacturing have begun to utilize

2
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Figure 1.2: A multimodal representation of a Conflict Resolution Problem.
Source Kilgour et al. [2].

multimodal network models. For instance, Abrach et al. [6] design a computer

application for the development of sensor wireless networks. The architecture

of the system is based on a multimodal network that uses several threads as

modes. In biomedicine, Chen et al. [7] introduce modelling techniques for some

biological processes based on multimodal networks. Heath & Sioson in papers

[8] and [9] provide a mathematical context for modelling biological systems by

multimodal networks. Madeiros et al. [10] and Kiesmüller [11] are two authors

dealing with manufacturing processes and their multimodal representation. In

the paper by Nigay & Coutaz [12] an analysis of a multimodal communication

system is presented.

Scientific literature in multimodal networks has been mainly focused on an-

alyzing practical logistic applications for freight or urban transportation. Ref-

erences that discuss views about these application fields include Boyce [13] and

Macharis & Bontekoning [14]. Consequently, the richness and variety of appli-

cations that multimodal networks deliver is not immediately evident to many

network designer communities. Nonetheless, as a system in which several means

of transport are available, a multimodal network is able to represent a wide spec-

3
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trum of real life phenomena far beyond the field of logistics.

1.1.2 Modelling techniques for multimodal networks

To model multimodal networks, researchers have used a significant range of oper-

ations research techniques.They can be classified into three predominant domains:

mathematical programming, weighted graphs and multi–weighted graphs.

Mathematical programming

Mathematical programming is a technique characterized by making use of linear

or non–linear formulations for representing a multimodal network by a set of

equations.

Hillier & Lieberman [15] stipulate that linear programming techniques are

suitable when each decision variable is a linear combination of the problem pa-

rameters. Integer programming and mixed integer programming stand out as the

most common linear programming techniques used for multimodal modelling.

Sample papers using linear programming as a modelling tool are [16] and [17].

Non-linear programming is another renowned modelling technique for multi-

modal networks. It is mainly used to build intricate cost functions, and principally

deals with second order equations satisfying convex or concave properties. Ex-

amples are found in papers [18], [19] and [20] where non-linear programming is

used as the main modelling approach.

In the mathematical programming approach, mode options are visualized as

decision variable indices, which considerably increases the complexity of the prob-

lem. Relaxation or cutting plane techniques are commonly used to make the

problem tractable. Interesting papers tackling general views of mathematical

programming for intermodal transportation (the transportation of goods) and

urban transportation are [21] and [22] respectively.

The weighted graph approach

In the weighted graph approach, a node typically represents a location, such as a

warehouse, transportation hub or network router, and an edge represents a trans-

4



1.1. CONTEXT AND BACKGROUND

portation link, such as rail line, a bus or a wireless connection. A variety of graphs

have been used to study these transport systems, such as digraphs, multigraphs,

hypergraphs and grid graphs. Ayed et al. [23] provide a general classification for

multimodal network models based on weighted graph approaches. In particular,

their article emphasizes the use of multigraphs, in which there might be multi-

ple edges between two nodes, and the use of grids in which a grid is overlayed

on a planimetric map. Both can result in dense graphs, which require edge re-

duction techniques to make their analysis tractable. In practice such reductions

rely on enforcing constraints on feasible edges in order to build a specific path.

Papers making use of such graphs are [24], [25], [26] and [27]. Hypergraphs are

another type of graph used in some articles. Lawler [28] defines a hypergraph

as a generalization of a graph, where edges can connect any number of vertices.

In the multimodal context, such graphs have found interesting applications in

biology and urban transportation. Sample papers using hypergraphs to represent

multimodal networks are [8], [9] and [29].

In effect, the weighted graph approach only utilizes mode information during

the application of constraints, removing the multimodal traits from the network

during analysis. The analysis in this approach is very application-dependent as

it relies on applying application-specific constraints.

The multi–weighted graph approach

Multi–weighted graphs have been extensively utilized for the multicriteria shortest

path problem which has become a fruitful branch of research since the 1980s.

Tarapata [30] and Soroush [31] provide reviews about this topic. Basically, the

approach assigns multiple weights to each edge. In particular, the bicriteria

shortest path problem assigns two weights to each edge, such as cost and time.

Optimality in the multi–weighted graph approach is commonly established by

the use of a partial order relation which results in a Pareto optimal set of paths

that are candidates for the sought shortest path. There is little literature that

directly applies multi–weighted graphs for modelling multimodal networks, but

the goal of the multicriteria shortest path problem is essentially the same as for

the shortest path problem in multimodal networks. Although some articles devel-

5
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oping formulations for multimodal networks based on the multicriteria shortest

path problem can be identified, they preferentially use partial orders to compute

optimal paths by cost and time, leaving the mode options as an outcome of the

optimal route. Multimodal network models whose mainstay is a multi–weighted

graph can be found in papers [32], [33] and [34]. The multicriteria shortest

path path problem has been proved to be intractable. Its complexity was shown

by Hansen [35] to be exponential in the worst case. However, Loui [36] later

pointed out that Pareto sets for some graphs with multidimensional weights have

polynomial average case cardinalities. Finally, Muller-Hannemann & Weihe [37]

also studied the behavior of this problem experimentally. They stated that the

tractability of the multicriteria shortest path problem is inextricably connected

with the cardinality of the Pareto set.

The multi–weighted graph approach requires the application of constraints

during analysis to make the problem tractable. As a result, the final Pareto set

obtains a manageable cardinality.

1.2 Research Framework

After several years of scientific study, multimodal network optimization is still a

fruitful research area. The potential is tremendous because of its ability to repre-

sent a variety of real life transportation phenomena in which more than one mode

operates. Nevertheless, there has been a lack of research into modelling techniques

and mathematical methods specifically developed for multimodal networks. Prac-

tical applications in the specific fields of freight and urban transportation have

been the main research focus all these years rather than fundamental research.

As a consequence, most of the modelling approaches used in specific applications

cannot be generalized and require the use of application–specific constraints or

heuristics to be efficient.

A modelling approach based on a coloured–edge graph is introduced in this

thesis. The approach is promoted as a general tool for the study of multimodal

networks. Moreover, the approach is capable of overcoming some drawbacks

of previous techniques by avoiding the need for either reduction techniques or

6
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application–specific constraints. Although an intuitive approach to modelling

networks in which there are multiple transportation modes, it does appear to

give a new perspective and truly general approach for multimodal networks.

The coloured–edge graph is a graph modelling approach based on the labelling

of edges with colours to represent available transportation modes and paths use

the summed weight separately in each mode. By labelling edges in this man-

ner, the multimodal nature of the network is maintained during an optimization

analysis. This is an important model feature, since current modelling techniques

require the removal of modes from the analysis to make the problem tractable.

The coloured–edge graph approach is formally described in Chapter 2.

Shortest path problems lie at the core of many network optimization problems.

In this thesis, the single–source shortest path problem is investigated for coloured–

edge graphs. Nonetheless, the shortest path problem in a colored–edge graph

significantly differs from traditional formulations since minimal path weights are

partially ordered instead of linearly ordered. Consequently, the shortest path is

not limited to just one specific path, rather a set of paths that are candidates

for the optimal answer. These optimal paths are seen in this thesis as Pareto

efficient, a concept that is formally introduced in Chapter 2.

To compute optimal paths in a weighted coloured–edge graph, a Dijkstra–

like algorithm is presented in Chapter 3. This algorithm is based on a partially

ordered data structure that is able to deal with reasonably large multimodal

networks from the literature. One argument in favour of generating a set of

optimal paths is the possibility to efficiently perform post–optimal analysis. By

modifying parameters in a cost function, a user of the algorithm can estimate

how much change is needed to replace one optimal solution in the set by another.

A description about the benefits of post–optimal analysis is also provided in this

Chapter.

An experimental study complements Chapter 3. The algorithm performance

strongly depends on the number of optimal paths (Pareto set) so that the study

of the cardinality of the Pareto set becomes crucial for estimating the feasibility

of practical implementations. By generating different random instances of the

coloured–edge graph, the algorithm produces sufficient data to conjecture several

7
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facts about the cardinality of the final Pareto set. Additionally, a section of

this chapter experimentally compares the performance of three different data

structures for the handling of minimal paths. Surprisingly, a traditional partially

ordered priority queue performs efficiently.

The cardinality of the final Pareto set is at the heart of model’s tractabil-

ity and constitutes the central issue of Chapters 4 and 5. The cardinality of

the Pareto set is shown in Chapter 4 to be bounded by kn−1 for coloured–edge

graphs with positive arc weights. Furthermore, bounds for special instances of

the coloured–edge graph are developed together with a NP–completeness analy-

sis. A probabilistic analysis is carried out in Chapter 5 to explain the behavior

of the model under random inputs. An argument based on the findings of Röglin

& Vöcking [38] provides an O(n3) probabilistic bound on the expected number

of minimal paths for bicoloured–edge graphs whose weights are drawn according

to a bounded probability density function. The probabilistic bound on the ex-

pectation implies that bicoloured–edge graphs are typically tractable in practice.

This idea is also supported by the experiments presented throughout this thesis.

Any modelling tool proves to be useful if it can be successfully applied in

practice. Real transportation networks are the main ingredient of Chapter 6

to demonstrate the level of applicability of the proposed approach. Large multi-

modal networks are built by taking transportation datasets from several countries

and world–wide airline data. The approach effectively deals with such networks

bolstering the applicability of the approach.

1.3 Bibliographic Notes

Some results of this thesis have been published elsewhere. The study performed

in New Zealand and European multimodal system (Chapter 6) was published by

Lillo & Schmidt in the Proceedings of the 45th Annual Conference of the Oper-

ation Research Society of New Zealand [39]. The edge–coloured graph approach

as well as the experimental results of Chapter 2 were recently submitted by Lillo

& Ensor to be peer–reviewed [40]. Moreover, both the algorithm for determining

Pareto minimal paths and the post–optimal analysis of the Pareto set described

8
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in Chapter 3 are also part of this paper. The coloured–edge graph as a modelling

tool for multimodal networks was presented by Lillo in EURO conference 2009

[41]. The upper bound on the number of minimal paths introduced in Chapter

4 was presented by Ensor in EURO 2010 conference [42]. Likewise, results based

on the probabilistic bounds were also presented by Lillo in this conference [43].

Finally, the main findings in Chapters 4 and 5 will be part of a paper currently

under development by Lillo & Ensor.
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Chapter 2

The Coloured–Edge Graph

In this chapter the coloured–edge graph is introduced. Firstly, a short scientific

review is carried out. It is noticed that previous work with these graphs is very

scarce. The review found only three papers directly addressing the concept of

coloured–edge graph. Moreover, practical applications are scarce throughout the

literature. Next, the coloured–edge graph and some special structures thereof

are formally defined. Finally, the coloured–edge graph approach is presented

as a modelling tool for multiobjective combinatorial problems and multimodal

networks. For the former, a useful graph transformation allows a multiobjective

combinatorial problem to be turned into a coloured–edge graph. As a result, some

multiobjective combinatorial problems can be optimized by using its graphical

representation as a weighted coloured–edge graph.

2.1 Introduction

A well–known problem in graph theory involving colours and graphs is the graph

coloring problem. This problem is about the optimal assignment of colours (la-

bels) to elements of a graph according to certain constraints. Vertex colouring is

one variant of this problem. This problem asks for a way to colour vertices in a

graph using the least number of colours such that no two adjacent vertices share

the same colour. Malaguti & Toth [44] provide a survey of the vertex colouring

problem including algorithms and generalizations. Analogously, the edge colour-
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ing problem looks for an assignation of colours to edges using the least number

of colours so that no two incident edges have the same colour.

Extensive literature has been devoted to the study of the graph colouring

problem. Du & Pardalos [45] provide a bibliographic survey depicting the major

findings in connection with this problem. Many approaches and algorithms have

been engineered for dealing with graph colouring problems in both graph theory

and computer science. However, the coloured–edge graph conceived in this thesis

significantly differs from the graph colouring problem in how colours are treated.

The coloured–edge graph is not related to how colours are assigned to elements

of a graph, rather the problem is to efficiently compute an optimal structure of a

given coloured–edge graph such as a minimum spanning tree or a shortest path.

Unlike the graph colouring problem, optimization problems that utilize mod-

els similar to weighted coloured–edge graphs have received little attention in the

literature. Cĺımaco et al. [46] experimentally studied the number of spanning

trees in a weighted graph whose edges are labelled with a colour. In that work,

weight and colour are two criteria both to be minimized and the proposed al-

gorithm generates a set of non–dominated spanning trees. The computation of

coloured paths in a weighted coloured–edge graph is investigated by Xu et al.

[47]. The main feature of their approach is a graph reduction technique based

on a priority rule. This rule basically transforms a weighted coloured–edge mul-

tidigraph into a coloured–vertex digraph by applying algebraic operations to the

adjacency matrix. Additionally, the authors provide an algorithm to identify

coloured source–destination paths. Nevertheless, the algorithm is not intended

for general instances because its input is a unit–weighted coloured multidigraph

and only paths not having consecutive edges equally coloured are considered.

Finally, Manoussakis [48] studied the computation of paths with specific colour

patterns in unweighted coloured–edge graphs. Particularly, his study focuses on

alternating coloured–edge paths in complete coloured–edge graphs. Algorithms

for finding alternating coloured–edge paths are also presented.

The optimization of weighted coloured–edge graphs is analyzed in this the-

sis. Particularly, the single–source shortest path problem in general weighted

coloured–edge multigraphs is researched. Its capacity for accurately describing

11



2.2. FORMAL DEFINITION

multimodal networks is assessed and described.

2.2 Formal Definition

A coloured–edge graph uses colours to represent transport options in a network.

In the context of multimodal networks, such options are available transport links

between locations. Vertices are employed to represent locations which in prac-

tice can be road junctions, warehouses, hubs, bus stops or suchlike. According

to the system under representation, either directed or undirected edges can be

considered. Likewise, weighted or unweighted instances can be part of the model.

However, in most of the material in this thesis, it is assumed that the underlying

coloured–edge graph is directed and weighted.

Definition 2.2.1. A weighted coloured-edge graph G = 〈V,E, ω, λ〉 consists of a

directed multigraph 〈V,E〉 with vertex set V and edge set E, a weight function

ω : E → R
+, and a (surjective) colour function λ : E → M , where M is a set of

possible colours for the edges.

The graphG is said to be finite if both V and E are finite sets, in which caseM

is also finite with cardinality k. In terms of multimodal networks, the finiteness of

M is justified since the number of available modes to connect locations is always

finite. Figure 2.1 yields an illustration of a directed coloured–edge graph with

u

x

y

v

Figure 2.1: A directed coloured–edge graph.
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v1 v2 v3 v4 vn−1 vn. . .

Figure 2.2: A coloured–edge chain.

M = {red, green}, where the edge weights have been omitted.

Note that there is no restriction placed on the number of edges euv from a

vertex u to a vertex v. However, as this thesis investigates shortest paths and

all weights are positive, it is presumed that graphs do not have any self-loops.

Similarly, it can be presumed that for any two vertices u, v ∈ V and colour c ∈M

there is at most one edge euv ∈ E from u to v for which λ(euv) = c. Therefore, for

a finite coloured–edge graph with n = |V |, m = |E|, k = |M |, there is a bound

on the number of edges, given by m ≤ kn(n− 1).

One special graph that will be frequently cited throughout this thesis is the

coloured–edge chain graph.

Definition 2.2.2. A weighted coloured–edge graph G = 〈V,E, ω, λ〉 is called a

chain if the vertex set V can be ordered 1, 2, . . . , n− 1, n, where n = |V |, and the

graph only has edges euv ∈ E for v = u+ 1.

A coloured–edge chain will prove to be crucial in analyzing the tractability of

the coloured–edge graph approach. A corresponding example is shown by Figure

2.2 for k = 3 (again with weights omitted).

2.3 Paths and Path Weights

Paths establish connectivity patterns in graphs. In this section, the definitions of

path, path length and path weight for the coloured–edge graph are given.

Definition 2.3.1. Let u and v be two given vertices of G. A coloured–edge

path puv is a sequence of edges of the form {ex0x1, ex1x2, ex2x3 , . . . , exl−1xl
}, joining

vertices u = x0 and v = xl, where each xi ∈ V . The path is called simple if the

vertices x0, x1, . . . , xl are all distinct.
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x1

u x2

v

Figure 2.3: A coloured–edge path from u to v.

Figure 2.3 depicts a simple coloured–edge path with three edges from u to v.

Two nodes in the coloured–edge graph are said to be connected if there exists a

path from one of the vertices to the other. Next definitions establish the difference

between path length and path weight.

Definition 2.3.2. The length of a coloured–edge path puv is the number of edges

that the path uses. The length can be zero for the case of the empty path puu
from a single vertex u to itself.

Definition 2.3.3. For any colour i ∈ M and for any path puv between two

vertices u and v, the path weight ωc(puv) in colour c is defined as,

ωc(puv) =
∑

exixi+1∈p, λ(exixi+1 )=c ω(exixi+1
).

So defined, the total path weight is represented as a k-tuple (ωc1(puv), . . . ,

ωck(puv)) giving the total weight of the path in each colour. As an example,

assume all edges weight in Figure 2.3 are one. Hence, the weight tuple for this

path is (2, 1) by taking red as the first tuple component.

2.4 Pareto Set of Minimal Paths

From a computation standpoint, the goal is to determine paths in a coloured–edge

graph whose weights satisfy a specific criterion. Such a criterion is established by

a preference relation on path weights.

Definition 2.4.1. Let Puv be the set of all paths from u (source) to v (destina-

tion) in G. A binary relation between two paths puv and p′uv in Puv, is defined by

puv ≤ p′uv if and only if ωc(puv) ≤ ωc(p
′
uv) for all c.
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u

x

y

v

2
6

4
3

1
5

2
1

3

Set of u–v paths
Path Weight Tuple Minimal
u-x-v (3, 0) Yes
u-x-v (0, 11) No
u-x-v (2, 5) No
u-x-v (1, 6) No

u-y-v (6, 0) No
u-y-v (0, 4) Yes
u-y-v (4, 1) No
u-y-v (2, 3) Yes

u-x-y-v (7, 0) No
u-x-y-v (5, 1) No
u-x-y-v (5, 6) No
u-x-y-v (3, 7) No

Figure 2.4: Small weighted coloured–edge graph and its corresponding Puv set.

The relation ≤ is clearly reflexive and transitive and gives a partial order on

the k-tuple path weights, but only a preorder on the paths themselves as multiple

paths might have the same total path weight.

The imposition of a preference relation on Puv produces a subset composed

of just minimal (or shortest) paths. All tuples in this set come with a special

property termed Pareto optimality.

Definition 2.4.2. The Pareto set of minimal paths,Muv, is a set of paths joining

two vertices u and v in a weighted coloured–edge graph such thatMuv = {puv ∈

Puv | ∀p′uv ∈ Puv with ω(p′uv) 6= ω(puv), ∃ colour c such that ωc(puv) < ωc(p
′
uv)}.

This set has an important characteristic: for any puv ∈ Muv, it is impossible

to determine a path p′uv from u to v which has smaller weight than puv in some of

its k colours without at least one of the other weights being larger, analogously

to Martins [49]. Figure 2.4 illustrates sets Puv and Muv for an example of a

small weighted coloured–edge graph. In this figure the third column of the table

identifies minimal paths. Note that |Puv| = 12 and |Muv| = 3.

The definition of adjacent minimal paths is now introduced.

Definition 2.4.3. Two distinct paths p and p′ are called adjacent if there is no

path p′′ that lies inside the axis aligned box in R
k that has ω(p) and ω(p′) at op-

posite corners. More precisely, there is no path p′′ for which min{ωc(p), ωc(p
′)} <

ωc(p
′′) < max{ωc(p), ωc(p

′)} for every colour c.

15



2.5. MULTIOBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS

For convenience, variables q and ℓ are introduced as the cardinalities ofMuv

and Puv respectively.

2.5 Multiobjective Combinatorial Optimization

Problems

The classical multiobjective optimization problem should not be confused with

its combinatorial version. The difference between them lies in the feasible set

described by their constraints. For the multiobjective combinatorial optimization

problem, this set is strictly bounded and finite, Ehrgott [50]. Decision variables

are binary and usually used in practice for representing yes/no decisions.

Suppose X is a set and f1, . . . , fr : X → R are real valued functions. Mul-

tiobjective optimization is concerned with finding a value of x ∈ X for which

((f1(x), f2(x), . . . , fr(x)) is considered Pareto optimal, optionally subject to con-

straints. In multiobjective combinatorial optimization the set X is finite.

For example, a multiobjective combinatorial optimization problem might be

to minimize the total weight and number of edges in a path between two vertices

for a weighted graph. Let A be the set of all edges between two vertices in the

graph and let X ⊆ 2A be the subset of the power set of A that consists of all paths

between two vertices in the graph. Take f1(x) to be the sum of all edge weights

in the path and f2(x) to be the number of edges |x| in the path x. Then the

multiobjective combinatorial problem is to find the Pareto set of (f1(x), f2(x))

for x ∈ X .

All multiobjective variants of the shortest path problem, minimum spanning

tree problem, assignment problem, knapsack problem and travelling salesman

problem are cases of multiobjective combinatorial optimization problems. Math-

ematical programming and multi–weighted graphs stand out as modelling tech-

niques for these problems (see Section 1.1.2). The reader can refer to Ehrgott

& Gandibleux [51] for an extensive survey about multiobjective combinatorial

problems.

The coloured–edge graph permits the modelling of multiobjective combinato-

rial problems by dividing edges in a multi–weighted graph and assigning colours
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u v (a)
〈ω1

uv, ω
2
uv〉

u x v (b)
ω1
uv ω2

uv

Figure 2.5: Edge division: (a) Initial edge euv. (b) Division of euv by adding
vertex x.

from the colour set M to each new edge. This is an embedding from the class of

all multiweighted graphs into the class of all weighted coloured–edge graphs.

Definition 2.5.1. A multi–weighted graph G = 〈V,E, ω〉 with vertex set V ,

edge set E and number of weights r > 1 (where r ∈ Z) is a graph such that each

edge euv ∈ E connecting vertices u and v has r positive weights ωi
uv for 1 ≤ i ≤ r,

where at least one ωi
uv > 0.

Note that Definition 2.5.1 presumes that at least one of the weight components

in each edge is positive, as is common in most logistic applications of multi–

weighted graphs. However, an alternative definition of multi–weighted graphs

not considered in this thesis drops this requirement and allows negative weight

components.

Definition 2.5.2. Edge division of a multi–weighted edge euv ∈ G with r weights

is a transformation of euv by which euv is split into coloured edges, taking an

intermediate edge of colour i and weight ωi
uv for those ωi

uv that are positive. As

a result, the multi–weighted edge euv is replaced by between 1 and r coloured

edges.

Definition 2.5.2 has not to be confused with graph subdivision (Gross [52]).

Rather, edge division is a mapping for converting a multiweighted graph into a

coloured–edge graph. Edge division is exemplified in Figure 2.5 for a biweighted

graph edge.

The conversion begins by taking the multi–weighted graph representation G

of the multiobjective combinatorial problem. Next, edge division is applied to

G according to the r weights involved. This is done by splitting (r − 1) times

each edge euv. Next, a label (colour) function λ : E → W is applied. Thereby,
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u

y

v

(a)

〈ω1
uy , ω

2
uy〉

〈ω1
uv , ω

2
uv〉

〈ω1
yv , ω2

yv〉

u

x1

y

x2

vx3

(b)

ω1
uy

ω2
uy ω1

yv

ω2
yv

ω1
uv ω2

uv

Figure 2.6: Transformation of a biweighted edge graph (a) into a weighted
coloured–edge graph (b) by edge division.

each new edge has one specific weight ωi
uv and label i assigned. Notice edge

division increases the number of vertices by up to (r− 1)m, where m = |E|. The

application of edge division on a multiweighted graph requires not more than rm

steps. The use of the coloured–edge graph as a modelling tool for multicriteria

combinatorial optimization problems is illustrated in Figure 2.6 with a biweighted

graph.

The transformation demonstrates a special fact about multiobjective combi-

natorial problems. These problems can be found as embeddings in coloured–edge

graphs. This makes the coloured–edge graph a nice analytical tool for multi-

objective combinatorial problems. For example, upper and lower bounds for a

multiobjective combinatorial problem can be established by applying counting

arguments on its corresponding coloured–edge graph representation.

2.6 Modelling Multimodal Networks

Literature in multimodal networks reveals that most papers on multimodal net-

works remove modes from the analysis. In practice, a user of the model is usually

unaware of removal of the modes because of the low level of technical knowledge

about the model (specially when a mathematical programming approach is em-

ployed). An obvious benefit of the coloured–edge graph as a modelling tool is its

explicitness and simplicity. A coloured–edge graph is able to deliver a straight-

forward representation of a multimodal network without incurring a high level

of abstraction. All information related to a multimodal system can be easily
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envisioned by just employing vertices, edges, edge weights and colours.

A decision maker may find a graphical representation useful. Computers do

not. A computational representation is needed to make a coloured–edge graph

analyzable by computers. For instance, the adjacency matrix and cost matrix

can be defined for the coloured–edge graph. A computational representation of

the coloured–edge graph implies the study of its computational tractability.

The coloured–edge graphs is seen in this work to typically be tractable without

the need to apply any application-specific heuristics or constraints (as commonly

occurs in the literature), so can be considered a general tool for the study of

multimodal networks. Application-specific considerations can still be applied to

the resulting setMuv, or a post-optimal analysis undertaken on it. One facet of

this model is that it can be directly applied to multigraph applications, such as

transportation networks where there are multiple transportation means between

two locations, communication networks where there are multiple links or choice of

communication protocols between nodes, or epidemic models which have multiple

paths of infection.

However, focusing attention on only the Pareto optimal paths limits the ap-

proach to shortest path applications where just the summed contribution of each

colour is important, and where any measure of optimality is presumed to be

an increasing (linear or non-linear) function of the summed contribution in each

colour. For instance, the approach presumes in a transportation network that the

optimal path (such as least cost, time, or distance) is some application-specific

increasing function of the total weight in each transportation means, or that the

user can apply some application-specific criteria to select a preferred path from

the Pareto set.

The approach can be adapted for path constraints such as restricting the num-

ber of hops or the number of mode changes by slightly enhancing the algorithm

used to determine the Pareto set. For instance, besides using colours to represent

the different transportation means, an additional colour can be used to count the

number of edges in a path as the path is being built during the analysis or to

count the number of transfers from one means of transportation to another.

The next chapter investigates the feasibility of the approach as a general
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tool for multimodal networks by experimentally analyzing the cardinality of the

Pareto optimal set Muv. Computations are performed taking several random

coloured–edge graphs as input. This allows some conjectures to be made about

the tractability of the model. For instance, it is seen later in the thesis that the

number of modes k is more of a limiting factor of the approach than is the number

of vertices or edges in the graph.
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Chapter 3

Computing Pareto Optimal Paths

The number of Pareto optimal paths was presented in previous chapters as a

crucial indicator of the computational tractability of the coloured–edge graph.

This chapter is devoted to the experimental analysis of this quantity. To carry

this analysis out, an algorithm has to be developed to compute optimal paths

in a given weighted coloured–edge graph. A generalization of the well–known

Dijkstra algorithm will be demonstrated to be adequate for such a task. The

algorithm computes the Pareto set for a given weighted coloured–edge graph.

Hence, the setMuv can be studied in order to discover potential patterns in its

cardinality. This chapter begins by reviewing literature in algorithmic techniques

for the computation of Pareto sets. Next, the multimodal Dijkstra’s algorithm is

presented together with an experimental study of the cardinality ofMuv.

3.1 Introduction

Research in coloured–edge graphs is not extensive. In particular, there is a lack

of literature regarding computation of efficient paths in coloured–edge graph.

However, some understanding can be extracted by analyzing the embedding of

multiobjective optimization problems. For this problem, scientific literature is

considerable. Although this problem is not directly addressed by this work,

multiobjective combinatorial optimization yields a good starting point for the

development of coloured–edge graph algorithms.

Multiobjective combinatorial optimization problems rely on two alternative
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types of algorithmic techniques for computing efficient solutions. Algorithms are

classified as exact when all optimal paths are found, or approximation algorithms

when only some solutions representing the entire optimal set or near optimal

solutions are found.

Five different approaches are used in the development of exact algorithms.

The weighted sum scalarization approach merges objectives into a single weighted

function. By varying the weights of the objectives, different efficient solutions

can be found. The compromise solution method minimizes the distance from

each candidate point to an ideal point. For this approach the Tchebycheff norm

is commonly taken as distance measure. The next three approaches are adapta-

tions from single objective optimization. Dynamic programming splits the prob-

lem into subproblems which are recursively solved. Algorithms for multiobjective

versions of the shortest path problem, knapsack problem and suchlike have been

the main “users” of dynamic programming. Particularly regarding algorithms

for multiobjective shortest path and knapsack problems, nice overviews are pre-

sented by Tarapata [30], Raith & Ehrgott [53] and Martello & Toth [54]. Greedy

approaches are also found in the literature. Tung & Chew [55] and Guerriero

& Musmanno [56] developed greedy algorithms for determining optimal paths in

networks with multiple objectives. Greedy approaches basically take advantage of

local estimators for computing optimal solutions of smaller subproblems. Finally,

branch and bound is an enumeration technique by which the problem is divided

into mutually disjoint and jointly exhaustive subproblems. The efficiency of the

method depends strongly on a good estimation of an upper and lower bound

for each problem division. The estimation of bounds for branch and bound in

multiobjective combinatorial problems is presented by Ehrgott & Gandibleux in

[57].

Approximation methods have become very popular in the last three decades.

Heuristics and metaheuristics are the main techniques comprising this group.

Fast computation and the ability to deal with very hard problems are the main-

stays of their popularity. Heuristics are able to determine near–optimal solutions

by requiring comparatively few computational resources. Because heuristics are

problem–specific, methods developed by this technique cannot solve general in-
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stances of multiobjective combinatorial problems. Metaheuristics works by itera-

tively guiding operations of a subroutine (commonly a heuristic). The subroutine

performs a search in the objective space aimed to spot good solutions. The guid-

ance process can be built upon two principles: (1) A subset of the search space is

used as initial solution. The search for better solutions is driven by the evolution

(adaptation and cooperation) of the population. (2) Starting from an initial so-

lution, a local search is performed on the objective space which is led by a search

direction and an aggregation mechanism of the objectives. A complete survey of

approximations techniques for multiobjective combinatorial problems is provided

by Ehrgott & Gandibleux [58].

Since the coloured–edge graph has a combinatorial structure, techniques pre-

viously mentioned for computing optimal solutions (paths) can be considered in

the development of algorithms. The next section introduces an algorithm which

is capable of identifying optimal paths in a weighted coloured–edge graph by

extending the well–know Dijkstra’s algorithm.

3.2 Multimodal Network Algorithm

To experimentally study the feasibility of using weighted coloured–edge graphs

for multimodal networks an algorithm that determines Muv is required. A gen-

eralization of Dijkstra’s algorithm from unimodal networks will be used for this

task. In addition, this generalization will be seen to be sufficiently fast to be able

to deal with large real multimodal networks.

The classic Dijkstra’s algorithm for solving the Single-Source shortest path

problem in unimodal networks is a greedy algorithm that uses a priority queue Q

to store shortest path estimates from a fixed source vertex s to each vertex v in

the network until the shortest path to v is determined. Since the weights of any

paths psv from s to v are linearly ordered there is only at most one shortest path

estimate in the queue at a time for each vertex v. At the start of each iteration

of the algorithm the shortest path estimate at the front of the queue is the actual

shortest path to one of the vertices in the network as all edge weights are presumed

to be positive. Dijkstra first published his algorithm in 1959 [59]. Despite its
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“age”, it still enjoys widespread use among algorithm developers because of its

efficiency and simplicity. Many extension and variants of this algorithm are found

throughout the literature. Nonetheless, generalizations for multimodal networks

maintaining mode features throughout its computations have not been found. A

recent paper addressing a review and fundamentals about Dijkstra’s algorithm is

provided by Sniedovich [60].

In a weighted coloured–edge graph Dijkstra’s algorithm must be slightly gen-

eralized to handle weights of paths being partially ordered rather than linearly

ordered. A priority queue Q can again be used to store shortest path estimates

with the requirement that if a path psv from s to v has smaller weight than an-

other path p′su then it should appear earlier in the queue. Although the results

presented in this chapter use such a simple queue instead of a more sophisticated

non-linear data structure (such as a directed acyclic graph) the performance of

the algorithm is seen to be surprisingly good. As in the classical Dijkstra’s algo-

rithm the weighted coloured-edge version of the algorithm takes as input a finite

graph G and a source vertex s. It commences at s with the empty path pss and

relaxes each edge that is incident from the source vertex s, adding the single edge

paths to the queue. At the front of the queue will be a shortest path estimate psv

to some vertex v adjacent to s. Since all weights are positive in the network psv

must have minimal weight amongst paths from s to v (although it might not be

the only minimal path from s to v in the queue), so psv is added to the setMuv,

and removed from the queue. The algorithm then relaxes all the edges incident to

v, extending the path psv by each edge to a path p′su = psv ∪ {evu}, adding those

extended paths p′su to the queue that have minimal weight amongst paths from

s to u, and removing any path p′′su from the queue that has greater weight than

p′su. The algorithm repeats itself until the queue is empty, producing as output

the Pareto minimal set Msv for each vertex v ∈ V . Hence, the output of the

algorithm is in fact ∪v∈VMsv. The following pseudocode describes the algorithm

using the notation from [61].
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Multimodal-Dijkstra(G, s)

1 � Initially no Pareto optimal paths known

2 for each vertex v

3 doMsv ← nil

4 � Create a queue Q to hold shortest path estimates during processing

5 Q← nil

6 add the empty path pss from s to s into Q

7 while Q 6= ∅

8 do remove the path psv at front of Q that has some end vertex v

9 � Relax the edges incident from v

10 for each edge evu incident from v

11 do� Extend the path psv by the edge evu

12 p′su = psv ∪ {evu}

13 for each p′′su ∈Msu with greater weight than p′su
14 do remove the path p′′su fromMsu

15 if p′su has minimal weight inMsu

16 then add p′su toMsu and to Q

17 return ∪v∈VMsv

The number of relaxation steps is an important indicator of the algorithm’s

order, so besides analyzing the cardinality ofMsv for each v ∈ V , the experiments

discussed in Section 3.3 also track the number of paths p′su processed by the

algorithm.

As an illustration of an application of the weighted coloured–edge graph ap-

proach, the algorithm is run with a multimodal network from [62] starting at

source vertex 0. Figure 3.1 shows the network which has 21 vertices, 51 edges

and 4 different transport choices (bus, metro, private and transfer). The algo-

rithm commences with just the empty path p00 on the queue and relaxes two

edges: e01 with weight (bus,metro, private, transfer) = (15, 0, 0, 0), and e03 with

weight (0, 0, 5, 0), which are both added to the queue. Since the two weights are

incomparable, either could be at the front of the queue, so the next iteration of

the algorithm either adds the path p01 = {e01} toM01 and relaxes the four inci-

dent edges by extending the path p01 by each, or else adds the path p03 = {e03}
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Figure 3.1: Multimodal network from the literature.

toM03 and relaxes the three incident edges by extending the path p03 by each.

By continuing in this way the Pareto minimal setM0v is obtained for each ver-

tex v in the network, resulting in 52 Pareto minimal paths from vertex 0 to

vertex 20 whose weights are listed in Table 3.1. Depending on the application,

constraints or heuristics can then be applied to the 52 paths to select a path

preferred by the user. By using just a simple priority queue data structure the

generalized Dijkstra’s algorithm can determine M0v for all 21 vertices v within

approximately 10ms. The article [62] instead uses a weighted graph approach
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3.2. MULTIMODAL NETWORK ALGORITHM

Table 3.1: Pareto set for network with 21 vertices and 51 edges.

Transport Choice Cost
Path Number Bus Metro Private Transfer Cost as per [62]

1 25 4 21 5 55
2 0 30 21 4 55
3 32 9 5 9 55
4 13 11 21 8 53
5 24 0 36 10 70
6 11 26 21 5 63
7 21 26 5 7 59
8 50 19 0 4 73
9 41 4 2 7 54
10 8 45 5 9 67
11 3 4 43 3 53
12 13 4 36 11 64
13 10 30 14 12 66
14 25 26 2 12 65
15 26 0 34 10 70
16 3 31 7 10 51
17 16 4 41 5 66
18 47 9 0 5 61
19 31 31 0 6 68
20 14 0 43 2 59
21 23 45 0 8 76
22 52 4 0 1 57
23 24 7 21 7 59
24 25 11 12 10 58
25 19 9 7 12 47
26 32 22 5 6 65
27 16 31 5 7 59
28 29 27 2 8 66
29 36 0 21 4 61
30 15 4 34 11 64
31 14 27 7 9 57
32 12 23 21 7 63
33 63 0 0 0 63
34 39 23 0 3 65
35 24 23 5 7 59
36 36 26 0 6 68
37 12 30 12 6 60
38 10 26 7 13 56
39 18 31 2 9 60
40 27 0 41 4 72
41 26 4 7 11 48
42 29 0 38 6 73
43 52 0 2 6 60
44 22 30 5 6 63
45 34 9 2 8 53
46 48 0 5 4 57
47 37 4 5 5 51
48 37 30 0 2 69
49 36 7 12 9 64
50 18 4 38 7 67
51 27 27 5 6 65
52 37 0 7 10 54
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Figure 3.2: Path 25 used for a sensitivity analysis.

with application-specific constraints and a simple cost function which adds the

weights in each mode together to get a single–valued total weight, resulting in

the paths numbered 2, 25, 33, 47 in the table.

Note that a Pareto set permits a post–optimal analysis to be carried out pro-

vided that the total cost is presumed to be an increasing 4–ary function of the

summed weight in each mode. For example, suppose in the previous network that

the edge weights represent the cost associated to the different means of transport.

A natural optimization question could be how much the unit cost associated to a

particular mode could be increased or decreased with the current optimal path re-

maining optimal. As an illustration, path 25 {e03, e31, e1 9, e9 10, e10 14, e14 15, e15 17,

e17 16, e16 18, e18 19, e19 20} illustrated in Figure 3.2 has least total cost 47, but from

the Pareto set it is easily seen that an increase of over 20% in the relative metro

costing would make path 41 {e03, e31, e19, e9 13, e13 15, e15 17, e17 16, e16 18, e18 19, e19 20}

a better choice, or a 25% increase in bus prices would make path 16 {e03, e32, e2 10,

e10 14, e14 15, e15 17, e17 16, e16 18, e18 19, e19 20} better.

This example demonstrates that the Multimodal Dijkstra’s algorithm can

quickly calculate the Pareto set without the need to assign relative costs for
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the different modes. Then alternative cost functions can be evaluated on the

paths in the Pareto set or a post–optimal analysis conducted without having to

rerun the algorithm.

3.3 Experimental Study

The number of Pareto minimal pathsMuv is investigated for weighted coloured–

edge graphs whose weights are randomly chosen according to some input distri-

bution. Moreover, this variable is studied in both a pathological instance of the

coloured–edge graph and when arc weights are the Euclidean distance. The in-

formation generated about the cardinality ofMuv will help in the establishment

of complexity patterns.

3.3.1 Number of processed paths and cardinality of Muv

The objective here is to identify general patterns for the number of processed

paths andMuv cardinality for a vertex v ∈ V . In this test a weighted complete

graph K
n
in each colour is taken as input so that each analytical scenario is

generated by fixing values for n = |V | and k = |M |. Such a graph is characterized

by having kn(n−1) edges and the maximum number of possible paths |P(u, v)| =
∑n−2

j=0

(

n − 2

j

)

kj+1j! for v 6= u, which is a factorial order in n.

Specifically, the algorithm is run for complete graphs with k = 2, 3, 4, 5 colours

and values of n between 20 and 200. Random edge weights are generated by

means of a continuous uniform distribution from the interval (0, 9], although it

was seen that the upper bound did not affect the results. The algorithm reports

the cardinalities ofMuv for each of the n vertices, but only the cardinality of the

final vertex v = n is considered in the analysis.

Figure 3.3 depicts the patterns followed byMuv cardinality. The graph uses

a logarithmic scale for vertical as well as horizontal axes. A logarithmic scale

is useful to establish the order of the variables in O–notation. This is done

by applying a linear regression analysis between log n and the logarithm of the

studied variable. Thereby, each curve is fitted to a straight line. The slope

of this straight line corresponds to the exponent of n. Table 3.2 provides the
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Figure 3.3: Cardinality ofMuv for random weighted coloured–edge graphs with
different number of colours k.

Table 3.2: Order of processed paths andMuv cardinality for several k values.

k processed paths Muv cardinality
2 O(n1.28) O(n0.19)
3 O(n1.37) O(n0.32)
4 O(n1.52) O(n0.46)
5 O(n1.64) O(n0.61)

numerical orders associated to each variable for different k values. These results

demonstrate not only that the Pareto optimal set is calculated in polynomial time

but also that the resulting set requiring further analysis grows very slowly as a

function of n. The results resemble ideas presented by Bentley et al. [63] and

Müller–Hannemann et al. [64] for biweighted graphs, suggesting the applicability

of the model in real multimodal network scenarios, even when the networks are

dense and without having to apply network reduction techniques or heuristics.
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1 2 3 4

Figure 3.4: Coloured–edge graph with n = 4, s = 2 and k = 3.

3.3.2 Coloured–edge graphs under separation conditions

This experimental group seeks to determine variations in the number of minimal

paths when the graph shape is modified by systematically removing edges. To

attain this, the separation condition is introduced. This condition forces paths to

be comprised of more edges, avoiding the influence that individual edges weights

can have on Muv cardinality. To evaluate the effect of separation on the num-

ber of minimal paths, the multimodal Dijkstra’s algorithm is applied to graphs

that satisfy the separation condition: There is an enumeration of the vertices

1, 2, . . . , n and a positive integer s called the separation, so that for any edge eij

from vertex i to vertex j one has 0 < j − i < s. As an example, Figure 3.4 shows

a coloured–edge graph having n = 4, k = 3 and s = 2.

By fixing lower values of s the graph more closely resembles a long chain whose

maximum number of edges can be shown to be given by |E| = k(s− 1)(n− s/2).

This formula can be verified by counting the number of edges Ei from vi to vj for

i fixed and j > i:

|Ei| = k min{s− 1, n− i}.

For i ≤ n−s+1 one has |Ei| = k(s−1) whereas for i > n−s+1 |Ei| = k(n− i).
Thus,

|E1|+ · · ·+ |En−s+1|+ |En−s+2|+ · · ·+ |En−1| = k(s− 1) + · · ·+ k(s− 1)

+k(s− 2) + · · ·+ k · 1

= k

(

(s− 1)(n− s+ 1) +
(s− 1)(s− 2)

2

)

= k(s− 1)(n− s/2).

Separation allows studying the effect that diverse graph shapes have on Muv

cardinality (coloured–edge graphs become thinner as the separation decreases).
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Figure 3.5: Cardinality ofMuv for random weighted coloured–edge graphs with
different separation s.

To analyze the effect of the separation condition on the cardinality of the

Pareto set, weighted coloured–edge graphs with random weights (uniformly dis-

tributed in (0, 9]), |V | = 80 and k equal to 2, 3, 4 and 5 colours are used to

run the Multimodal Dijkstra’s algorithm for different separation values. Results

are shown in Figure 3.5 which confirms an inverse correlation between separation

values andMuv cardinality. Hence, the more a multimodal network resembles a

chain the larger the resulting Pareto set Muv. Unlike other approaches for an-

alyzing multimodal networks, the weighted coloured–edge graph approach often

gives smaller Pareto sets on graphs that have greater density.

However, weighted coloured–edge graphs with random weights obeying sep-

aration conditions do still exhibit polynomial order. Further experiments with

separation values between s = 2 and s = 50 for weighted coloured–edge graphs

with k = 3 colours and up to 400 vertices have been undertaken. They indicate

that the processed paths have approximate order O (n3.5) and Pareto set car-

dinality approximately O (n2.5), as compared to the earlier results for complete

weighted coloured–edge graphs of O (n1.37) and O (n0.32) respectively.
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Figure 3.6: Cardinality of Muv for pathological weighted coloured–edge graphs
with k = 2 colours and four different separations s.

3.3.3 A pathological instance

In paper [35], Hansen provides an example for the bicriteria shortest path prob-

lem that has Pareto set cardinality exponential in n. To demonstrate analogous

behaviour is also possible in the weighted coloured–edge graph approach, the

graphs from Section 3.3.2 with small separation are modified so that all k edges

that have the same initial and terminal vertices are assigned exactly the same

random weight (again uniform distributed in (0, 9]).

Figure 3.6 shows the pattern followed byMuv cardinality for separation s =

2, 5, 10, 20 and k = 2 colours when edges in different colours have the same

weights. For this case only the vertical axis has been set as log–scale. This

shows that the number of Pareto minimal paths behaves exponentially for such

networks, reaching higher orders as k increases. Although this demonstrates the

potential exponential behavior of the algorithm and resulting Pareto set, two

points should be noted. Firstly, such networks can be considered pathological

and rarely would arise in real applications. Secondly, the algorithm can still be

feasibly run on moderate size networks with few colours (such as with |V | = 80
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for k = 2 or 3 colours).

3.3.4 Coloured–edge graphs with Euclidean weights

Many real networked systems are conceived only in an abstract “network space”

where the exact positions of vertices and edges have no particular meaning. For

example, in some cases edges might be an ephemeral representation among ver-

tices, such as business relationships between companies or strategies in a game.

However, in many other application fields such as transportation and telecommu-

nications, networks exist in a real three–dimensional space, with vertices having

well-defined coordinates. Likewise, edges in these networks are often real physical

constructs such as roads or railway lines in transportation networks, optical fibre

or other connections in the Internet, cables in a power grid, or oil pipelines. In

this context is where the study of networks with Euclidean weights emerges.

Networks with geometric settings can generate large datasets containing thou-

sands of points. For example, a global airline traffic network that considers all

airports located around the globe or a national road–rail network whose ver-

tices are road and rail junctions. In such cases, the complexity of the modelling

technique is particularly important.

The main experimental input here is a complete coloured–edge graph whose

vertices are situated in R
b. Edge weight is set as the Euclidean distance between

vertices, which is given by d(u, v) =
√

∑b
i=1(ui − vi)

2, where u and v are two

vertices located in R
b. A coloured–edge graph that lies in a Euclidean space

satisfies three structural properties: (1) The shortest path length in a colour is

the Euclidean distance. (2) The triangle inequality is satisfied in each colour. (3)

Edges of a minimal pure coloured–edge path do not cross each other.

Two experimental setups are reported in this section. Setup 1 analyzes the

cardinality of Muv for complete coloured–edge graphs whose vertices are ran-

domly generated in R, R
2 and R

3. Setup 2 takes a complete coloured–edge

graph in R
2 and perturbs its weights by adding a random variable. Hence,

ω(euv) = (1 + εr)d(u, v), where ε = {0, 0.1, 0.5} and r is a Gaussian random

number. Three different values of k are considered (2,3 and 4). The purpose of ε

is twofold. First, to emulate a more realistic weight behaviour because distances
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Figure 3.7: Muv cardinality for coloured–edge graphs in R, R2 and R
3 with k=2,3

and 4 colours.

in many real transportation systems are not purely Euclidean. Second, to control

the amount of departure from a pure Euclidean case.

Each graph in Figure 3.7 describes the variations of Muv cardinality when

generated coloured–edge graphs move from R to R
3 (Setup 1). A reduction of

cardinality is clearly evident as the dimension increases. Likewise, these results

suggest the order of Muv cardinality changes from exponential to polynomial.

Although, the nature of the reduction is unexplained at this stage, it certainly

yields a promising view regarding applications in 3D environments such as wireless

connected networks where colours might represent different wireless protocols.

Figure 3.8 shows results for Setup 2. The cardinality of Muv decreases as ε

increases. In other words, randomness contributes to decreasing the complexity

of the model. This is very appealing from an application standpoint because real

multimodal networks are predominately subject to some sort of “noise”.
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Figure 3.8: Muv cardinality for coloured–edge graphs with randomly perturbed
weights.

3.3.5 Testing some data structures

All the previous experiments were performed using the multimodal Dijkstra’s

algorithm implemented with a priority queue data structure to hold processed

paths. This section is focused on testing alternative data structures for the

coloured–edge graph.

The data collected from the experiments in this chapter suggest a link between

running time and number of optimal paths. Thus, the ability to efficiently store

and process path weights in a colored–edge graph can propel the performance

of the approach to higher levels. Two experiments are set for evaluating the

performance of two alternative data structures to the queue implementation. Such

data structures are called the LIST and the DAG.

The LIST data structure consists of a linked list in which weight tuples are

arranged in a linear order. Thereby, when a path is extended (step 12 of the

multimodal Dijkstra’s algorithm), its associated weight tuple is added to the end

of the list to be later processed irrespective of the partial ordering. This list
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Figure 3.9: Adding tuple (5, 3) to the DAG.

can be implemented as singly or doubly linked. The current analysis employs a

doubly linked list.

The DAG is a hierarchical data structure for handling coloured–edge path

weights. DAG stands for “Directed Acyclic Graph”. Such a graph has its edges ar-

ranged according to a partial order relation among weight tuples (DAG vertices).

The DAG is a dynamic data structure. Each time a path in a coloured–edge

graph is extended (the relaxation step of the multimodal Dijkstra’s algorithm)

the connectivity is updated (some edges are added whereas others are removed)

and a topological order established. This data structure initially has an empty

DAG holding only an initial node with tuple (0, . . . , 0) and a final node with tuple

(∞, . . . ,∞) for convenience.

Figure 3.9 exemplifies the functioning of the DAG for a coloured–edge graph

with two colours.

Assume that at some iteration of the multimodal Dijkstra’s algorithm the

corresponding DAG is given by graph (a). Next, after applying relaxation the

tuple (5, 3) is added so that graph (b) is obtained. The implementation of the

DAG scans from (0, 0) forward and from (∞,∞) backward to identify where a

new tuple should be added. Minimal tuples are always the successor of the initial

node. These tuples are taken out from the DAG to be inserted in a provisional list.
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In case of Figure 3.9, the optimal tuples picked by the DAG implementation would

be (2, 3) and (4, 0). One advantage the DAG has over other data structures is

that all the minimal paths can be removed together from the DAG and processed

in parallel.

As in previous experiments, the experimental setup here is based on randomly

generated coloured–edge graphs. All the graphs are complete. As the number

of colours and vertices are the parameters affecting running times, a first test

emphasizes the number of vertices over the number of colours, whereas a second

oppositely focuses on the number of colours rather than the number of vertices.

For the sake of simplicity, such tests are named as TEST 1 and TEST 2.

TEST 1 is based on the number of vertices so that k (number of colours) is

fixed to 3. The number of vertices ranges from 10 to 500. Three sets of random

weights (each with weights uniformly distributed in (0, 9]) are generated for each

group of vertices. The running time of each data structured is tracked in each set

to be subsequently averaged. All this is done by a procedure that first generates

the random coloured–edge graph to evoke in turns three subroutines that contain

the multimodal Dijkstra’s algorithm implemented with the corresponding data

structures.

TEST 2 follows the same structure of TEST 1. However, the number of

vertices is fixed this time. The chosen number is 20. Although it seems to be

a low number of vertices, the advantage is that the number of colours can be

made quite large, so the effect of the number of colours can be appreciated more

clearly. The number of colours, k, varies from 2 to 11. The procedure described

for TEST 1 is also employed here for tracing running times.

Running times for TEST 1 and TEST 2 are shown in Figure 3.10. It can be

seen that for TEST 1 the priority queue (QUEUE) as well as the LIST outper-

form the DAG throughout experiments. The performance of the DAG is compar-

atively worse as the number of vertices increases. Nonetheless, the experimental

orders suggest that running times still are polynomially bounded: O(n2.51) for the

QUEUE, O(n2.7) for the LIST and O(n3.31) for the DAG. Meanwhile, TEST 2

reports running times that are almost indistinguishable from each other. Despite

the performance of the DAG being worse at the beginning of the experiments,
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Figure 3.10: Computed running times of TEST 1 and TEST 2.

this improves as the test moves forward. A better understanding of these data

structures is obtained by analyzing their asymptotes.

The use of DAG as a data structure to manipulate partially ordered sets has

been previously studied by Daskalakis et al. [65]. The hierarchical structure of

the DAG is maintained by applying a topological sort on its nodes. This make

any new insertion highly costly. For the DAG an insertion is O(k̺υ) where ̺ is

the average width of the DAG and υ is the number of levels. Since roughly υ is

somewhere between log ̺q and p/̺ (q is the average number of minimal paths),

the final running time should be between O(k̺ log ̺q) and O(kq).

In case of the LIST, the running time is determined by the time spent in

keeping the data structure free of domination. Each new tuple has to be compared

to those already in the processed set. Such operation is performed in O(kp) time.

The priority queue was implemented as a heap. If all paths were comparable,

the order of the running time for this data structure would be O(k log p). Recall

that a totally ordered priority queue just requires O(logn) time for any operation,

where n is the number of nodes in the heap.

The main conclusion obtained from random instances of the coloured–edge

graphs is that QUEUE provides better performance over the LIST and DAG

when vertices are the pervasive parameter. The QUEUE remains as a good

option when the number of colours is more important. Nonetheless, the DAG

and LIST are capable of comparable running times as the number of colours

increases.
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It still needs to be analyzed whether the behaviour of these three data struc-

tures remains similar in real multimodal networks. This question is tackled in

Chapter 6.

3.4 Remarks about The Experimental Study

The main purpose of the experimental study was to identify complexity patterns

in the number of optimal paths (Muv cardinality).

The number of optimal paths observed in randomly weighted coloured–edge

graphs are significantly smaller than those encountered in pathological instances.

Separation conditions also seem to support such results. As the value of s in-

creases, the number optimal paths seems to go down. This leads to questions

regarding the influence that “chainlike” coloured–edge graphs have on the num-

ber of optimal paths. It can be noticed that if the density of a coloured–edge

graph increases, in general its number of minimal paths decreases. Nevertheless,

there is another factor that needs to be taken into account. Weight patterns also

affect the cardinality ofMuv. For some specific weight configurations, the vari-

ableMuv might go up or down. Experiments in pathological graphs apparently

confirm such ideas as well.

Tests in Euclidean spaces provided understanding about the connection be-

tween graph shape and number of optimal paths. More optimal paths were ob-

tained for coloured–edge graphs in R. A graph in one dimensional space resembles

a chain. As the tests increased the number of dimensions, the order of the cardi-

nality decreased. This can be interpreted as re-shaping of a coloured–edge graph

to a more branched configuration. Similarly, a coloured–edge graph subject to

separation gets re–shaped because a thinner graph is obtained when the values of

separation decrease. The action of randomness on weights unveiled the existence

of a potential mechanism that reduces the cardinality of Muv. For instance, a

pathological instance can generate a lower number of optimal paths by adding

random variables to its weights.

Orders are supporting the previous ideas throughout the experiments. An

increment is noticed when separation decreases reaching exponential orders for
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some instances. Likewise, pathological chains provided a high number of optimal

paths, producing orders that might be considered exponential. Finally, exper-

iments in Euclidean spaces also reported exponential orders for coloured–edge

graphs in one dimension. In the same way, orders in the cardinality ofMuv were

lower when the amount of randomness added to weights was increased.

In consequence, the experimental study allows some ideas about the cardinal-

ity of theMuv to be conjectured:

1. The maximum cardinality ofMuv is at least exponential in n.

2. The average cardinality ofMuv is polynomially bounded.

3. An exponential order of Muv rarely occurs in real instances. In other

words, real implementations of the coloured–edge graph are almost always

tractable.

Subsequent chapters address these conjectures as well as other tractability

issues of the colured–edge graph.
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Chapter 4

Upper Bounds on The Number

of Minimal Paths

This chapter addresses the computation of a tight upper bound on the cardinality

of a minimal set of paths. Three theorems are introduced with their corresponding

proofs. The bounds obtained indicate that weighted coloured–edge graphs are

able to generate at most an exponential number of minimal paths. An additional

problem studied in this chapter is related to the result established by Hansen [35]

for the bicriteria shortest path problem. Basically, Hansen proved the existence

of a biweighted graph with an exponential number of optimal paths. However,

two constructions presented here might question how close Hansen’s construction

is to a worst case.

4.1 Introduction

Definition 2.2.1 states that a weighted coloured-edge graph G = 〈V,E, ω, λ〉 is

composed of a directed multigraph 〈V,E〉 with vertex set V and edge set E, a

weight function ω : E → R
+, and a colour function λ : E → M , where M is a

set of colours for the edges. Associated with each edge e ∈ E, there is an initial

vertex u ∈ V and a terminal vertex v ∈ V , a positive weight ω(e) ∈ R
+, and a

colour λ(e) ∈M .

Definition 2.3.3 indicates that a path in G consists of a finite set of edges

{ei | 1 ≤ i ≤ l} for which the initial vertex of each ei+1 is the terminal vertex of
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ei. The path is called simple if no two edges in the path have the same initial

vertex nor the same terminal vertex. It is straightforward to verify that a finite

coloured–edge graph has at most the following number of simple paths from a

chosen vertex u to a vertex v:

k + k2(n− 2) + k3(n− 2)(n− 3) + · · ·+ kn−1(n− 2)(n− 3) · · ·1.

For any path puv from a vertex u to a vertex v and any colour c ∈ M the path

weight in colour c is defined by ωc(puv) =
∑

exy∈puv,λ(exy)=c ω(exy), namely the

sum of the weights for all the edges that have colour c. The weight of a path is

represented as a k-tuple (ωc1(puv), ωc2(puv), . . . , ωck(puv)), giving the total weight

of the path in each colour. A preorder ≤ can be defined on the paths from u to

v by puv ≤ p′uv if for every colour c one has ωc(puv) ≤ ωc(p
′
uv), essentially using

the partial order defined on the weights by the product partial ordering on R
k.

This chapter is interested in establishing bounds on the number of paths that

can be minimal. Specifically, for a finite weighted coloured-edge graph G with

vertices u and v, what is the number of path weights that can be minimal. Cer-

tainly, if the graph is disconnected then there might be no paths from u to v, and

if it is connected with edges in each allowed colour then there are at least k mini-

mal paths, since paths that have edges solely in a single colour are incomparable.

However, an upper bound might appear to be difficult to establish. The interest

in this problem arises from multimodal network applications, which can be mod-

eled using weighted coloured-edge graphs, where the weights represent some form

of cost in a network (such as distance) and the colours represent the mode of

transportation. In most multimodal optimization applications constraints need

to be placed on the network to make the determination of a shortest path ful-

filling application-specific criteria tractable. Often such criteria are based on the

path weights. So if the set of minimal paths has manageable cardinality then the

application-specific criteria might just be applied to the set of minimal paths.

As a simple example, consider the graph in Figure 4.1 with four vertices,

fourteen edges and two possible colours. There are 26 paths to consider from u to

v. After carefully checking through these 26 paths it can be seen that there are

between two and a maximum of eight minimal path weights possible, depending
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u

x

y

v

Figure 4.1: Coloured–edge graph with 4 vertices, 14 edges and 2 colours.

on the weights of the edges in the graph. The mechanics in the computation of

minimal paths yields an argument to establish a tight lower bound on the number

of minimal paths for complete coloured–edge graphs.

Proposition 4.1.1. For a finite coloured-edge graph G = 〈V,E, ω, λ〉 connected

by a path from a source vertex u to a destination vertex v in each colour, the

number of minimal paths inMuv is at least k.

Proof. Assume that G is connected in each colour from u to v. Then, there exists

a path purely in each colour from u to v so there must be a minimal path purely

in that colour. Therefore, the graph G must have at least k minimal paths from

u to v.

An example of Preposition 4.1.1 is Figure 2.4 in Chapter 2 where two minimal

pure coloured–edge paths in colours red and green are found.

As an important special case of weighted coloured-edge graphs a graph is called

a chain if in some enumeration of its vertices v1, v2, v3, . . . , vn−1, vn the graph only

has edges from a vertex vx to the next vertex vx+1 in the enumeration. Figure

4.2 illustrates a chain with n vertices and k = 3 colours.

Consider the construction of Figure 4.3 for k colours (for sake of simplicity,

just three colours are shown). This is called an exponentially weighted coloured–

edge chain. This chain has kn−1 minimal paths from v1 to vn as the following

proposition claims.

Proposition 4.1.2. For an exponentially weighted coloured–edge chain with n

vertices and k colours, the number of minimal paths is kn−1.
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v1 v2 v3 v4 vn−1 vn

r1
g1
b1

r2
g2
b2

r3
g3
b3

. . .

rn−1

gn−1

bn−1

Figure 4.2: Coloured–edge chain with n vertices and k = 3 colours.

Proof. The proof goes by induction on n. Let hk(n) be the number of minimal

paths in an exponential coloured–edge chain with n vertices (n ≥ 1) and fixed

number of colours k. The base case hk(1) = 1 clearly holds. For inductive hypoth-

esis, assume that hk(m) = km−1 holds for any exponential weighted coloured–edge

chain with m vertices. Consider now an exponentially weighted–coloured–edge

chain withm+1 vertices and consider two distinct paths p = {e12, e23, . . . , em m+1}

and p′ = {e′12, e
′
23, . . . , e

′
m m+1} from v1 to vm+1. To show that p and p′ are

incomparable, consider two possible cases: (i) If em m+1 = e′m m+1 so p and

p′ share the same edge from vm to vm+1 then p = {e12, e23, . . . , em−1 m} and

p′ = {e′12, e
′
23, . . . , e

′
m−1 m} are distinct paths from v1 to vm so by inductive hy-

pothesis they must be incomparable. Hence p and p′ are incomparable too. (ii)

If em m+1 6= e′m m+1 so the edges em m+1 and e′m m+1 from vm to vm+1 with weight

2m−1 have different colours c and c′ then ωc(p) ≥ 2m−1 > 1+2+4+ . . .+2m−2 ≥

ωc(p
′). Whereas ωc′(p) ≤ 1 + 2+ 4 + . . .+ 2m−2 < 2m−1 ≤ ωc(p

′). Hence p and p′

are incomparable and hk(m+ 1) = hk(m)× k = k(m+1)−1.

Adding more forward edges to the chain from x to y for y > x + 1 increases

the number of paths in the graph but it cannot increase the number in a minimal

set of incomparable paths, and might possibly decrease the number. But adding

backward edges from x to y for y < x appears to greatly complicate the situation.

However, it is shown in Section 4.3 that essentially chains illustrate the worst

possible situation, whereas more general weighted coloured-edge graphs may have

v1 v2 v3 v4 vn−1 vn. . .

1
1
1

2
2
2

4
4
4

2n−2

2n−2

2n−2

Figure 4.3: An exponentially weighted coloured–edge chain.
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a factorial number of paths a minimal set of incomparable paths can only have

cardinality up to kn−1. Hence in a multimodal network this is a tight upper bound

on the Pareto set of minimal path weights that might need to be considered when

applying application-specific constraints.

The number of minimal paths can also be estimated for coloured–edge chains

whose path weights are given by the number of edges. To show this, two lemmas

need to be firstly introduced.

Lemma 4.1.3. Let n ≥ 0 and k ≥ 1. Then the following combinatorial equality

holds
(

n+ k − 1

k − 1

)

+

(

n+ k − 2

k − 1

)

+ · · ·+

(

k − 1

k − 1

)

=

(

n + k

k

)

. (4.1)

Proof. Use induction on n for fixed k. For n = 0 the equality holds since
(

k−1
k−1

)

=

1 =
(

k
k

)

. Suppose for some m ≥ 0 that
(

m+k−1
k−1

)

+
(

m+k−2
k−1

)

+ · · ·+
(

k−1
k−1

)

=
(

m+k
k

)

holds. Then for m+ 1
(

m+ 1 + k − 1

k − 1

)

+

(

m+ k − 1

k − 1

)

+

(

m+ k − 2

k − 1

)

+ · · ·+

(

k − 1

k − 1

)

=

(

m+ k

k − 1

)

+

(

m+ k

k

)

=
(m+ k)!

k!(m+ 1)!
· (k+m+1)

=

(

m+ 1 + k

k

)

.

Hence equality 4.1 holds for m+ 1.

Lemma 4.1.4. Let

Snk = {(x1, x2, . . . , xk) | xi ∈ Z, xi ≥ 0, ∀i = 1, . . . , k and

k
∑

i=1

xi = n}.

Then

|Snk| =

(

n + k − 1

k − 1

)

=
(n+ k − 1)!

(k − 1)!n!
. (4.2)

Proof. Induction on k is used to prove that

|Snk| =

(

n+ k − 1

k − 1

)

∀n ≥ 0.

For k = 1 and any n, Snk = {(x1) | x1 ∈ Z, x1 ≥ 0 and x1 = n} so |Snk| = 1.
For the induction hypothesis, assume for some j that |Snj| =

(

n+j−1
j−1

)

∀n ≥ 0
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and for any n ≥ 0 consider the set Sn j+1 = {(x1, x2, . . . , xj+1) | xi ∈ Z, xi ≥

0, ∀i = 1, . . . , k and
∑j+1

i=1 xi = n}. For any tuple (x1, x2, . . . , xj+1) ∈ Sn j+1 one

has that
∑j

i=1 xi + xj+1 = n so xj+1 ≤ n. Thus (x1, x2, . . . , xj) ∈ Sn−xj+1 j, for

which there are
(

n−xj+1+j−1
j−1

)

such tuples. So by counting over all the possible

values 0, 1, 2, . . . , n for xj+1, there are

|Sn j+1| =

(

n− 0 + j − 1

j − 1

)

+

(

n− 1 + j − 1

j − 1

)

+

(

n− 2 + j − 1

j − 1

)

+ · · ·+

(

n− n+ j − 1

j − 1

)

distinct tuples in Sn j+1. Hence Sn j+1 =
(

n+j
j

)

by Lemma 4.1.3. Hence equality

4.2 is true by induction.

Alternatively, this result can instead be proved by considering the computation

of Snk as a sampling of k items n times with replacement without ordering which

is a well–known combinatorics problem.

As a corollary of the last lemma the number of minimal paths for a k coloured–

edge chain with n vertices is obtained.

Corollary 4.1.5. For a coloured–edge chain with n vertices and k colours where

each edge has weight 1, a maximal set of incomparable minimal paths has cardi-

nality f(n, k) given by

f(n, k) =

(

n+ k − 2

k − 1

)

. (4.3)

Proof. It is enough to show that any tuple (x1, x2, . . . , xk) where
∑n

i=1 xi = n−1

is attainable by some path p in the chain and all such tuples are incomparable.

The path p can be constructed to have weight (x1, x2, . . . , xk) by taking the first

x1 edges of the path in colour c1, then the next x2 edges in colour c2 and so on.

Furthermore, any two distinct tuples (x1, x2, . . . , xk) and (x′
1, x

′
2, . . . , x

′
k) must be

incomparable as
∑k

i=1 xi = n− 1 =
∑k

i=1 x
′
i.

Note that if for all colours the edges in a particular colour have the same

weight, then equality 4.3 still holds for a k–coloured chain with n vertices.

The pattern in f(n, k) is identified by tabulating this function for small values

of k and taking an arbitrary fixed n (see Table 4.1). Observe that the number of

minimal paths for a fixed k is given by nk−1/(k − 1)! for k > 1. The term nk−1

corresponds to a raising factorial power of n (see Graham et al. [66]).
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Table 4.1: Values of f(n, k) for several values of k.

k f(n, k)
2 n

3 n(n+1)
2

4 n(n+1)(n+2)
6

5 n(n+1)(n+2)(n+3)
24

4.2 Canonical Graphs

To prove that kn−1 is an upper bound on the cardinality of the Pareto set of

minimal paths a special class of weighted coloured-edge graph is first introduced.

Definition 4.2.1. A weighted coloured-edge graph G = 〈V,E, ω, λ〉 is called

canonical if:

• G is complete in each colour, namely for all vertices x 6= y and colour c

there is exactly one edge exy from x to y with λ (exy) = c,

• G satisfies the triangle inequality in each colour, namely for all distinct

vertices x, y, z and colour c, the triangle formed by the three edges exy, eyz,

exz with λ (exy)=λ (eyz)=λ (exz) = c obeys ω (exz) ≤ ω (exy) + ω (eyz).

The following lemma shows that it will be sufficient to establish the bound on

the class of canonical graphs.

Lemma 4.2.1. Given any finite weighted coloured-edge graph G = 〈V,E, ω, λ〉

there is a canonical graph G∗ = 〈V,E∗, ω∗, λ∗〉 with the same vertices and colours

as G, where E ⊆ E∗, λ∗|E = λ, and for which every minimal path in G is also

minimal in G∗.

Proof. Firstly note that G can be made complete by adding edges exy with weight

n ·w where n = |V | and w is the maximum weight of any edge in G. The added

edges won’t affect any existing minimal paths as they contain at most n−1 edges

so their path weight in each colour is less than n ·w. It might however introduce

additional minimal paths in the graph if there were no existing paths from x to

y in some colour. Take E∗ to be the resulting set of edges. Next, the graph can

have its weights altered by defining ω∗ (exy) to be the weight of the shortest path

from x to y that only uses edges with colour λ∗ (exy). Thanks to completeness ω∗

is well-defined and clearly the resulting graph satisfies the triangle inequality.
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4.3 Upper Bounds on Minimal Paths

Theorem 4.3.1. Suppose G is a weighted coloured-edge graph with n ≥ 2 vertices

and k colours. Then a set of incomparable minimal paths in G from one vertex

to another can have at most kn−1 paths.

Proof. The proof uses a counting argument and induction to bound the cardi-

nality fc(n) of a set of incomparable minimal paths whose first edge has colour c

in any weighted coloured-edge graph with n vertices. Trivially, fc(2) = 1 for any

graph G with only two vertices.

For the inductive step presume that fc(m) ≤ km−2 in any graph with m ≤ n

vertices and suppose G = 〈V,E, ω, λ〉 has n + 1 vertices. By Lemma 4.2.1 G

can be presumed to be canonical. Let u and v be any two distinct vertices of

G and S be a set of incomparable minimal paths from u to v. By the triangle

inequality it can be presumed that no minimal path in S has two consecutive

edges of the same colour. Furthermore, a useful observation for a minimal path

that starts with an edge eux of colour λ (eux) = c and which passes through some

vertex y before reaching v is that for the edge euy with λ (euy) = c minimality

of the path ensures that ω (eux) < ω (euy). To show that fc(n + 1) ≤ kn−1 for

each colour c order the remaining vertices of V , v1, v2, . . . , vn−1 so that if i < j

then ω (euvi) ≤ ω
(

euvj
)

where euvi and euvj are the edges of colour c from u to

vi and vj respectively. By the earlier observation, no minimal path that starts

with the edge euvi of colour c can pass through any of the vertices vj for j < i.

Hence, any minimal path that starts with the edge euvn−1 has only a choice of

k − 1 edges to reach v (since its consecutive edges are not of the same colour),

so there are at most k − 1 such paths. Similarly, any minimal path that starts

with the edge euvi can only utilize vi, vi+1, . . . , vn−1 and v, so by the inductive

hypothesis for m = n− i+1 there are at most Σc′ 6=cfc′(n− i+1) ≤ (k− 1)kn−i−1

paths. Summing across all the edges euv1 , euv2 , . . . , euvn−1 and euv gives fc(n+1) ≤

(k − 1)kn−2 + (k − 1)kn−3 + · · ·+ (k − 1) + 1 = kn−1. Since there are k possible

colours in which to start a path this completes the proof.

Note that as the proof relies on being able to linearly order the vertices

v1, v2, . . . , vn−1 based on the edge weights ω (euvi) in a specific colour c, the proof

can not be readily adapted to arbitrary multiweighted graphs. This result gives

a tight upper bound on the cardinality of a set of incomparable minimal paths

in a weighted coloured-edge graph. This bound is suitable for applications that

are primarily interested in determining a minimal path given criteria that depend
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on the total weight in each mode of transportation. However, the proof can be

slightly modified to provide a bound on the total number of minimal paths in

the graph from u to v, counting all minimal paths that are comparable with each

other (having the same path weight).

Theorem 4.3.2. Suppose G is a weighted coloured-edge graph with n ≥ 2 vertices

and k colours for which there is only at most one edge of each colour between

vertices. Then G has at most k(k + 1)n−2 minimal paths in Muv from a source

vertex u to a destination vertex v.

Proof. The proof is similar to that of Theorem 4.3.1 except that the counting

argument bounds gc(m) ≤ (k + 1)m−2 and paths are allowed to have the same

colour on two consecutive edges. Thus, the inductive step takes gc(m) ≤ (k +

1)m−2 in any graph with m ≤ n vertices. Suppose G = 〈V,E, ω, λ〉 has n + 1

vertices and it is canonical. Let u and v be any two vertices of G and S be a set

of incomparable minimal paths from u to v. To show that gc(n+1) ≤ (k+1)n−1

for each colour c vertices v1, v2, . . . , vn−1 are sorted so that ω (euvi) ≤ ω
(

euvj
)

for

i < j. Here, euvi and euvj are the edges of colour c from u to vi and vj respectively.

As in the previous theorem, no minimal path that starts with the edge euvi of

colour c can pass through any of the vertices vj for j < i. Therefore, any minimal

path that starts with the edge euvn−1 has only a choice of k edges to reach v,

so there are at most k such paths. Analogously, any minimal path that starts

with the edge euvi can only utilize vi, vi+1, . . . , vn−1 and v, so by the inductive

hypothesis for m = n− i+1 there are at most Σc′ 6=cgc′(n− i+1) ≤ k(k+1)n−i−1.

Adding up across all the edges euv1 , euv2 , . . . , euvn−1 and euv gives,

gc(n+ 1) ≤ k(k + 1)n−2 + k(k + 1)n−3 + · · ·+ k(k + 1) + k + 1

≤ k ·
(k + 1)n−1 − 1

(k + 1)− 1
+ 1

≤ (k + 1)n−1.

The desired bound is obtained by considering k possible colours.

The bound established in Theorem 4.3.2 can be seen to be tight by construct-

ing examples based on the chain example in Section 4.1 but with additional edges,

such as the example for n = 4 shown by Figure 4.4 in which each of the 3 × 42

paths from v1 to v4 is minimal.
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v1 v2 v3 v4

1

1

1

2

2

2

4

4

4

3

3

3

6

6

6

7

7

7

Figure 4.4: Example of a weighted coloured–edge graph in which each path from
v1 to v4 is minimal.

The calculated bounds provide a pessimistic view about the tractability of

the coloured–edge graph as a modelling technique. To appreciate the difficulty of

computing minimal paths in a coloured–edge graph, the NP–completeness of the

problem is next studied. Recall first that the well–known Bin Packing Problem

is NP–complete:

Bin packing problem

Instance: A set N of n items, each with a positive integer weight ωi for 1 ≤ i ≤ n,

a positive number of bins k and a positive integer bin capacity βj , for 1 ≤ j ≤ k.

Question: Can the set N be partitioned in k subsets such that for each subset,

the sum of the weights ωi in partition i is at most βj?

By using a reduction from the bin packing problem, the determination of

minimal paths in a coloured–edge graph can be shown to be NP–complete.

Restricted minimal paths in a coloured–edge graph

Instance: a coloured–edge graph G = 〈V,E, ω, λ〉 with k colours, two distin-

guished vertices s and t and a maximum path weight α = (α1, . . . , αk).

Question: Does there exist a path from s to t with total weight ≤ α?

Theorem 4.3.3. The restricted minimal path problem in a coloured–edge graph

is NP–complete.

Proof. Use a reduction from the Bin Packing Problem. Consider a coloured–edge

chain with k colours, n+1 vertices, s = v1 and t = vn+1. Assign each item weight

ωi to each edge from vi to vi+1. Note that each path joining s and t has a weight
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tuple indicating the total weight assigned to each bin. Hence, each path from

s to t in a coloured–edge chain is a partition that might solve the bin packing

problem. Next, set α = (β1, β2, . . . , βk) and apply the condition that the weight

of a path from s to t in the chain has not to be greater than α.

4.4 Hansen’s Result for Biweighted Graphs

As far as the literature about multicriteria combinatorial optimization problems

indicates, the multicriteria version of the shortest path problem is intractable even

for two criteria. This assertion was originally proved by Hansen [35]. In his paper

a family of graphs were given for which the number of efficient paths in a minimal

complete set grows exponentially with the number of vertices. As a complement,

Serafini [67] later demonstrated the NP–completeness of this problem. He did

this by constructing a reduction from the 0–1 Knapsack problem to the Single–

Source Shortest Path Problem. No further analysis has been undertaken until

now regarding these results.

This section aims to re–analyze the result introduced by Hansen and compares

it with the coloured–edge graph bound. As shown in Chapter 2, the coloured–edge

graph can be utilized for representing multicriteria combinatorial optimization

problems. Due to this, this graph is an alternative tool for the determination of

bounds on multicriteria optimization problems.

To begin, the theorem developed by Hansen is presented.

Theorem 4.4.1 (Hansen [35]). The bicriteria shortest path problem is, in worst

case, intractable, i.e. require for some problems a number of operations which

grows at least exponentially with these problem’s characteristics.

Proof. It is sufficient to show there exists for each problem a family of graphs

for which the number of efficient paths in the Pareto set grows exponentially

with n. Consider a family of graphs G with an odd number n of vertices and

3(n − 1)/2 edges defined as follows: each vertex vi, with i = 1, 3, . . . , n − 2 is

the start of an edge evi vi+2
with weight (2

i−1
2 , 0) and of an edge evi vi+1

with

weight (0, 2
i−1
2 ); each vertex vi+1 is the start of an edge evi+1 vi+2

with weight

(0, 0); there are no other edges. Let t = 2
n−1
2 . Clearly, any path from v1 to vn

takes either an edge evi vi+2
or instead both the edges evi,vi+1

and evi+1 vi+2
for
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v1

v2

v3

(2, 0)

(0, 1) (0, 1)

v4

(4, 0)

(0, 2)

v5

(0, 2)

v6

(8, 0)

(0, 4)

v7

(0, 4)

b b b b vn−2

vn−1

vn

(2
n−1

2 , 0)

(0, 2
n−3

2 ) (0, 2
n−3

2 )

Figure 4.5: Alternative construction of Hansen’s result without using zero weight
edges.

i = 1, . . . , n− 2. Therefore, there are t paths in G, and these paths have lengths

(t − 1, 0), (t − 2, 1), (t − 3, 2), . . . , (0, t − 1). Hence, all paths of G are efficient

paths for the bicriteria shortest path problem and constitute a minimal complete

set.

Technically, in Hansen’s original proof he utilized zero weight edges (0, 0)

in the construction, but this is not really necessary as Figure 4.5 illustrates.

A special construction of the coloured–edge graph based on the transformation

introduced in Section 2.5 of Chapter 2 can be developed to prove the same result

as Figure 4.6 shows.

The construction in Figure 4.6 is also capable of producing an exponential

number of minimal paths. However, this section presents three constructions

based on complete graphs with 3, 4 and 5 vertices that generate a number of

minimal paths that equals the total number of simple paths in the graph. The

total number of simple paths between two vertices in a complete graph is given

by
∑n−2

j=0

(

n−2
j

)

j!, Lawler [28]. The importance of these results is that a higher

number of minimal paths might exist for biweighted graphs than that presented

v1

v2

v3

2

1 1

v4

4

2

v5

2

b b b b vn−2

vn−1

vn

2
n−3

2

2
n−1

2

2
n−3

2

Figure 4.6: Special construction of the coloured–edge graph to prove Hansen’s
result.
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v1 v2 v3 v4
(0, 6) (1, 0)

(0, 1)

(0, 12)

(6, 0) (12, 0)

(19, 0)

Figure 4.7: Biweighted graph whose five paths from v1 to v4 are minimal.

v1 v2 v3 v4 v5
(0, 6)

(3, 3)

(25, 0)

(6, 0)

(1, 0)

(0, 1)

(18, 0)

(1, 0)

(0, 1)

(9, 9)

(1, 0)

(0, 1)

(0, 18)

Figure 4.8: Construction of a biweighted complete graph whose 16 paths from v1
to v5 are minimal.

by Hansen.

To build a complete graph with three vertices in which all paths are incom-

parable is easy by just applying Hansen’s construction. The four vertex case is

a bit less obvious. Nevertheless, a construction of a graph with four vertices in

which each of the five paths from v1 to v4 is incomparable is still attainable as

Figure 4.7 shows.

The construction in Figure 4.7 requires the initial path v1, v2, v3, v4 to begin.

Next more edges are added so that more incomparable paths are generated. This

initially needs a trial and error process for the assignation of weight tuples ca-

pable of preserving incomparability. Similarly, a construction for a five vertices

complete graph is also possible as Figure 4.8 shows. The total number of minimal
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Table 4.2: Minimal paths in the five vertices biweighted complete graph.

Paths Weights
v1, v2, v5 (18, 6)

v1, v2, v3, v5 (10, 15)
v1, v2, v3, v4, v5 (2, 24)
v1, v2, v4, v5 (0, 25)

v1, v2, v4, v3, v5 (9, 17)
v1, v3, v5 (12, 12)

v1, v3, v4, v5 (4, 21)
v1, v3, v4, v2, v5 (23, 3)
v1, v3, v2, v5 (21, 4)

v1, v3, v2, v4, v5 (3, 23)
v1, v4, v5 (6, 18)

v1, v4, v2, v5 (25, 0)
v1, v4, v2, v3, v5 (17, 9)
v1, v4, v3, v5 (15, 10)

v1, v4, v3, v2, v5 (24, 2)
v1, v5 (25, 0)

paths as well as simple paths here is 16. Table 4.2 shows the corresponding set

of incomparable paths.

Also there are constructions for n = 6 in which more than 50 of the 64

paths are minimal (so many more than can occur in a 2–coloured edge graph

with n = 6 vertices). Whether weights can be chosen so that all 64 paths are

minimal is currently unknown. However, from the four and five vertex cases it

is seen that intermediate vertices are apparently following a pattern base on 0–1

tuples. Table 4.3 compares the maximum number of minimal paths obtained by

the construction in a biweighted graph versus the maximum number of minimal

paths of a bicoloured–edge graph.

The two presented cases pose an important question: For some family of

graphs the number of minimal paths might be a factorial function of n. If this

is true, then Hansen’s result is not the actual maximum number of minimal

paths. The sense in determining a more intractable result is justified by the fact

that a factorial number of minimal paths could truly ratify the intractability of
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Table 4.3: Comparison of the maximum number of minimal paths.

Minimal Paths
Vertices Biweighted Bicoloured

Graph Graph
3 2 4
4 5 8
5 16 16
6 > 32 32

the bicriteria shortest path problem. The justification in doing this concerns

the applicability of the coloured–edge graph for the modelling of multicriteria

combinatorial optimization problems. The exponential bound developed for the

coloured–edge graph is tight and guarantees that in the worst case no more than

kn−1 path are minimal. Hence, a more intractable result for the bicriteria shortest

path problem could make the coloured–edge graph a useful modelling alternative

for some multicriteria problems.

The generalization of the construction as well as the determination of a tighter

upper bound for the bicriteria shortest path problem based on them remain as

an open problem.
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Chapter 5

Probabilistic Analysis of the

Coloured–Edge Graph

Numerical results shown in Chapter 3 raise two questions involving the behaviour

of the cardinality ofMuv in weighted coloured–edge graphs

1. Why does the computation of minimal paths perform well in randomly

weighted coloured–edge graphs?

2. Why does the cardinality ofMuv for coloured–edge graphs with Euclidean

weights decrease when randomness is added to edge lengths?

In the answers lies an important understanding about the computational tractabil-

ity of the coloured–edge graph. This chapter attempts to find the answers by

probabilistically studying the coloured–edge graph in different settings. First,

some probabilistic techniques are presented.

5.1 Introduction

Probabilistic analysis is the employment of probability in the analysis of problems,

Ross [68]. Commonly, probabilistic analysis is used to study the running time

of algorithms. Nonetheless, other quantities can also be analyzed such as the

number of minimal paths in a coloured–edge graph. A probabilistic analysis is

carried out by making assumptions about the distribution of the input. Then, the

problem is analyzed by estimating the expected value of the variable under study,

57



5.1. INTRODUCTION

Cormen et al. [61]. Two techniques are popular for the probabilistic analysis of

problems: Average Case Analysis and Smoothed Analysis.

Average Case Analysis focuses on the determination of the expected value of

a complexity measure of a problem whose inputs are randomly generated. The

usefulness of this technique is the mathematical rigor in explaining why some

problems may be very tractable in practice despite their worst cases being the-

oretically intractable. Nevertheless, the main drawback of this technique is the

interpretation of a random input. Random input may be unconvincing in prac-

tical situations as input parameters found in many applications can significantly

differ from pure random numbers. Cormen et al. present the same idea dif-

ferently. For some problems, it is reasonable to assume something about the

distribution of all potential inputs so that average case analysis can be used as

a technique for gaining insight into the problem. For other problems however,

an input distribution cannot be described and in consequence an average is not

useful. A drawback from a heuristic’s design viewpoint is given by Simchi–Levi

et al. [69], an average–case analysis is usually only possible for a heuristic that is

very close to the optimal solution. This “closeness” is achieved in large instances

of the problem. This implies that the analysis can only provide asymptotics of

the complexity measure.

How likely in practice is it that our model becomes intractable? Theoretically,

this question can be answered by performing a smoothed analysis on the model.

Smoothed analysis was introduced by Spielman & Teng [70] as a hybrid between

worst and average case analysis. This technique builds a probabilistic argument

by adding slight perturbations to parameters in a model according to a probability

distribution. The aim is to bound the probability that a current worst case

solution(s) becomes more tractable as a result of the perturbations. In other

words, smoothed analysis can be regarded as an interpolation between a worst

case scenario and an average case scenario. Manthey & Reischuk [71] formally

define smoothed analysis as follows: Let C be some complexity measure and f a

probability distribution. The expresion x ∼ f is used to indicate that a variable x

is randomly generated from f . The worst case complexity is maxx C(x), and the

average case complexity is Ex∼fC(x), where E denotes expectation with respect
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to a probability distribution f and x is drawn (∼) according to f . The smoothed

complexity is defined as maxx Ey∼f(x,σ)C(y). Here, x is chosen by an adversary

and y is randomly chosen according to some probability distribution f(x, σ) that

depends on x and a parameter σ. Usually, f(x, σ) favours y in the vicinity of

x. The smoothing parameter σ, which is for instance the variance of f(x, σ),

denotes how strongly x is perturbed. Intuitively, for σ = 0, smoothed complexity

becomes worst case complexity, while for large σ, smoothed complexity becomes

average case complexity.

In simple words, if the smoothed complexity of an algorithm is low, then it is

unlikely to accidentally come across an instance for which the algorithm behaves

poorly, even if the worst case complexity of the algorithm is bad. In this case,

worst case scenarios are isolated events.

A crucial feature of this technique is the construction of a perturbation model

by which a random variable is added to the model’s parameters. Particularly, the

perturbation model employed by Spielman & Teng requires the definition of a very

specific problem instance (such as the worst case) which is assumedly specified

by an adversary. Next, the parameters of the instance are perturbed by adding

a random number. This perturbation approach is known as the two–step model.

However, this approach is restricted to both a continuous perturbation model and

a Gaussian distributed random variable. It is important that the selected model

make “sense” in the context of the problem. For example, Spielman & Teng

indicate in [72] that a natural perturbation of a graph is obtained by adding

edges between unconnected vertices and removing edges with some probability.

However, a graph subject to such perturbations is highly unlikely to have a large

clique (an embedded subgraph that is complete), and thus it could be meaningless

to measure the performance of algorithms that determine the maximum clique.

As a result, the performance of an algorithm under this perturbation model would

be misleading since it is unable to establish instances close to the largest clique.

In other words, a perturbation model must always maintain the original structure

of a problem.

A more general model based on a semi–random input model was introduced by

Beier & Vöcking [73]. In the one step model the adversarial instance is perturbed
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by adding random numbers to the inputs drawn according to a specified family of

probability density functions satisfying the following conditions. Let f : R→ R
+

be a probability density function such that sups(f(s)) = 1 and E =
∫

R
|s|f(s)ds

is finite. This means that the random variable described by f has a probability

density function bounded by 1 and a finite expected value. The function f is a

“perturbation model”. Let fφ be the scaled version of f . This means for φ ≥ 1

and every s ∈ R, fφ(s) = φf(sφ). Thus, sups∈R(fφ(s)) = φ and the expected

value is
∫

R
|s|fφ(s)ds = E/φ. Therefore, perturbations according to the model

f can be obtained by adding independent random variables with probability

density function fφ to each parameter of the adversary’s instance. For example,

Gaussian distributed perturbations can be obtained by setting f to be a Gaussian

probability density function with standard deviation (2π)−1/2. This probabilistic

model is complemented by the following lemma that allows the determination of

tail bounds for independent random variables.

Probabilistic analysis is used in this chapter to study the complexity of the

coloured–edge graphs with random inputs. In particular, this chapter focuses on

the determination of bounds on the number of optimal paths for coloured–edge

graphs with a probabilistic input model.

5.2 Coloured–Edge Chains

The focus now is to establish the behaviour of the number of optimal paths in a

coloured–edge chain with probabilistic inputs. The main motivation for carrying

this out is concerned with the behaviour of the worst case. Chapter 4 provides

an intractable example based on a coloured–edge chain. It could make sense at

first glance to think that this example is not typically part of a real networked

system.

To begin, pathological weighted coloured–edge chains are analyzed.

Lemma 5.2.1. Let G be a complete chain with k colours and n vertices for which

the weights of the edge ec from vi to vi+1 satisfy the following conditions:

1. For all colours c, c′, the edges ec and ec′ from vi to vi+1 have the same

weight, ω(ec) = ω(ec′) = ωi.
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2. For the weights W = {ω1, ω2, . . . , ωn−1} the sum function
∑

: P(W ) \ ∅ →

R
+ is one to one. For instance, if {ωi1, ωi2, . . . , ωis} and {ωj1, ωj2, . . . , ωjt}

are two distinct non–empty subsets of W , then ωi1 + ωi2 + · · · + ωis 6=

ωj1 + ωj2 + · · ·+ ωjt.

ThenMv1 vn has cardinality kn−1.

Proof. Firstly note that by condition 1, for any path p from u = v1 to v = vn the

sum of all the edge weights in the path is fixed:

∑

colour c

ωc(p) =

n−1
∑

i=1

ωi.

Suppose p and q are two distinct paths from u = v1 to v = vn. Then in some

colour c′, p and q must use different edges, so by condition 2 ωc′(p) 6= ωc′(q).

Without loss of generality suppose ωc′(p) < ωc′(q). As

∑

colour c

ωc(p) =
∑

colour c

ωc(q)

it follows that there is another colour c′′ for which ωc′′(p) > ωc′′(q). Hence p and

q are incomparable, so all kn−1 paths are minimal.

Note that if the weights ω1, ω2, . . . , ωn−1 are independent random variables

then almost always the second condition of the theorem holds. Hereafter, a chain

meeting the conditions of Lemma 5.2.1 is called a uniformly weighted coloured–

edge chain. As a special case the exponentially weighted coloured–edge chain

from Chapter 4 satisfies the conditions of the lemma.

Corollary 5.2.2. Suppose G is a coloured–edge chain with n vertices and k

colours that has Euclidean weights in R where the vertices are randomly posi-

tioned. Then G has kn−1 minimal paths.

A weighted coloured–edge chain in two colours is next analyzed. The following

lemma demonstrates that some chains can instead be very well behaved.

Lemma 5.2.3. Suppose G is a bicoloured–edge chain with n vertices v1, v2, . . . , vn
whose n− 1 edges ei : vi → vi+1 in colour c satisfy

ω(e1) < ω(e2) < . . . < ω(en−1)
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vi vi+1 vi+2

e′i

ei+1

Figure 5.1: Argument used for proving Lemma 5.2.3.

and in colour c′ satisfy

ω(e′1) > ω(e′2) > . . . > ω(e′n−1).

ThenMv1 vn has cardinality n.

Proof. Firstly, consider any path p from v1 to vn that for some i ≤ n−2 uses edges

e′i and ei+1 (see Figure 5.1). As ω(e
′
i) > ω(e′i+1) in colour c′ and ω(ei+1) > ω(ei) in

colour c, p has weight (ωc(p), ωc′(p)) which is greater than the weight of the path q

that uses the same edges as p for j < i and for j > i+1, but uses edges ei and e′i+1

in place of e′i and ei+1. Hence, p is not minimal. Consequentially, any minimal

path can only use edges e1, . . . , ei, e
′
i+1, e

′
i+2, . . . , e

′
n−1 for some 0 ≤ i ≤ n − 1, of

which there are n possible paths which are easily seen to be incomparable.

Corollary 5.2.4. Suppose G is a bicoloured–edge chain with n vertices, whose

2(n−1) edge weights are independent random variables. Then the probability that

Mv1 vn has cardinality n is at least 1/(n− 1)!

Proof. Without loss of generality it can be presumed that ω(e1) < ω(e2) < . . . <

ω(en−1) as the vertices can be rearranged in any chain without affecting any path

weights. Then the weights ω(e′1), ω(e
′
2), . . . , ω(e

′
n−1) can be arranged in (n − 1)!

ways, all equally likely and one arrangement satisfies the criteria of the previous

lemma.

5.3 Expected number of minimal paths

This section seeks to demonstrate that the expected number of minimal paths for

a bicoloured–edge graph is polynomially bounded. The main approach is based
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on the works of Röglin & Vöcking [38] and Beier et al. [74]. However, several

arguments have been modified to be applied in the context of coloured–edge

graphs.

SupposeG is a finite weighted bicoloured–edge graph with colours {red, green}

for convenience and let u, v be vertices of G for which there is a pure coloured–

edge path in colour green from u to v.

Assume e is a red edge of G whose weight is a random variable with bounded

probability density function fe : (0,∞)→ [0, φe] for some φe > 0.

Define the function ∆e : [0,∞)→ (0,∞] for r ≥ 0 by the following. Consider

the paths pe from u to v that do not include the edge e and for which ωred(pe) ≤ r.

Since there is a pure path in colour green from u to v, there are such paths pe,

and since G is finite there are only finitely many such paths. Take pmax
e to be such

a path that has least green weight gr = ωgreen(p
max
e ). Note that gr is uniquely

defined for r and does not depend in any way on the value of ω(e).

Next, consider the paths qe from u to v that include the edge e and for which

ωgreen(qe) < gr. If there is no such path then take ∆e(r) = ∞ for convenience,

otherwise let qmin
e denote such a path that has least red weight and take ∆e(r) =

ωred(q
min
e ). Note that although ωred(q

min
e ) depends on the value of ω(e), the

weight of this edge does not affect the relative red ordering between the various

qe (since they each include e). Hence the choice of qmin
e (or another qe with

same red weight) does not depend in any way on the value of ω(e), and sr =

ωred(q
min
e ) − ω(e) (where sr is the sum of red weights except for e) is uniquely

determined by r and does not depend on the choice of ω(e).

Figure 5.2 illustrates ∆e and its associated variables, black dots are used to

represent paths not using edge e, whereas white dots represent otherwise. Note

that all qe paths just shift horizontally depending on the value of ω(e). However,

they do not change their relative positions.

Lemma 5.3.1. For any r ≥ 0 and ε ≥ 0, if ∆e(r) <∞ then

P(r < ∆e(r) ≤ r + ε) ≤ φe · ε.
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Figure 5.2: Representation of ∆e(r) and associated variables.

Proof. Let r ≥ 0, ε > 0 and qmin
e be a path that includes e with ωgreen(q

min
e ) < gr

and ωred(q
min
e ) minimal amongst such paths. As sr does not depend on the value

of ω(e)

P(r < ∆e(r) ≤ r + ε) = P(r < sr + ω(e) ≤ r + ε)

= P(r − sr < ω(e) ≤ r − sr + ε)

=

∫ r−sr+ε

r−sr

fe(x)dx

≤

∫ r−sr+ε

r−sr

φedx = φe · ε.

Now, suppose for the graph G that all its red edges e have weights that

are random variables with bounded probability density functions, and suppose

there is also a pure coloured–edge path in red from u to v, with a minimal pure

coloured–edge path in red having red weight rtot.

Define the function ∆ : [0, rtot) → (0,∞) for 0 ≤ r < rtot by the following.

Consider the minimal paths q from u to v for which ωred(q) > r. Since there is

a pure red path with weight rtot, there are such paths q, and since G is finite

64



5.3.EXPECTED NUMBER OF MINIMAL PATHS

b

b

b

b

b

b

b

b

b

b

b
pmax

b

b

b

b
qmin

b

b

b

b

b

b

b

b

b

b

Pareto set
∆(r)

r
red

green

Figure 5.3: Representation of ∆(r) and associated variables.

there are only finitely many such paths. Take qmin to be a minimal path with

ωred(q
min) > r that has least red weight and take ∆(r) = ωred(q

min) > r. Figure

5.3 illustrates ∆(r) and qmin.

Lemma 5.3.2. For 0 ≤ r < rtot, there exists a red edge e for which ∆(r) =

∆e(r).

Proof. Consider the minimal paths p from u to v for which ωred(p) ≤ r. Since

there is a pure green path from u to v there are such paths, and since G is finite

there are only finitely many such paths.

Take pmax to be a minimal path with ωred(p) ≤ r that has greatest red weight,

so pmax and qmin are adjacent minimal paths in the Pareto set (see Definition

2.4.3). Note that there can be no path for which both its red weight is less than

ωred(q
min) and its green weight is less than ωgreen(p

max). As a result, there cannot

be minimal paths between pmax and qmin (Figure 5.4). Since ωred(p
max) ≤ r <

ωred(q
min) there must be some red edge e that is in qmin but not in pmax.

As pmax
e has the least green weight amongst paths pe that do not include e and

for which ωred(pe) ≤ r, ωgreen(p
max
e ) ≤ ωgreen(p

max). However, since ωred(p
max
e ) ≤

r < ωred(q
min) and there are no paths between pmax and qmin it follows that

ωgreen(p
max
e ) ≥ ωgreen(p

max). Hence gr = ωgreen(p
max). As pmax and qmin are

incomparable ωgreen(p
max) > ωgreen(q

min). Next, as qmin
e has the least red weight

amongst paths qe that do include e and for which ωgreen(qe) < gr, ωred(q
min
e ) ≤
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pmax

qmin

b

b
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No minimal paths here

Figure 5.4: Argument used to prove Lemma 5.3.2.

ωred(q
min). But since ωgreen(q

min
e ) < gr = ωgreen(p

max) and there are no paths

between pmax and qmin, it follows that ωred(q
min
e ) ≥ ωred(q

min). Hence ∆(r) =

ωred(q
min) = ωred(q

min
e ) = ∆e(r).

Corollary 5.3.3. For any 0 ≤ r < rtot and ε > 0

P(∆(r) ≤ r + ε) ≤

(

∑

red edge e

φe

)

· ε.

Proof. If r < ∆(r) ≤ r + ε then by Lemma 5.3.2, there exists a red edge e for

which r < ∆e(r) ≤ r + ε. Hence using a union bound 1 and Lemma 5.3.1,

P(r < ∆(r) ≤ r + ε) ≤
∑

red edge e

P(r < ∆(r) ≤ r + ε)

≤
∑

red edge e

φe · ε.

Lemma 5.3.1 and Lemma 5.3.2 provide the main arguments to establish a

bound on the expected number of minimal paths for a bicoloured–edge graph.

1A union bound (also known as Boole’s Inequality) states that for any finite or countable
set of events, the probability that at least one of the events happens is no greater than the sum
of the probabilities of the individual events, Ross [68].
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Figure 5.5: Pareto minimal elements and partition of the interval (0, rtot].

Theorem 5.3.4. Let G be a finite weighted bicoloured–edge graph and let u, v

be vertices of G for which there is a pure colour path from u to v in each of

the two colours. Suppose that the weights of all edges e in one of the colours

are random variables with probability density functions bounded above by φe, and

let rtot denote the weight of the minimal pure colour path in that colour. Then

the expected number of Pareto minimal elements with distinct weights is bounded

above by
∑

e φe · rtot + 1.

Proof. As previously denote the colours by {red, green} for convenience. As G

is finite there are only finitely many minimal paths q from u to v, and they all

have red weight between 0 and rtot inclusive.

Partition the interval (0, rtot] into κ equal subintervals and note that since only

minimal paths with distinct (red) weights are considered, there is a threshold

κmin above which each interval can contain at most one minimal path. Hence for

all κ ≥ κtot, the expected number of distinct minimal paths is

1 +
κ−1
∑

i=0

P

(

∃ minimal path q with
rtot
κ

i < ωred(q) ≤
rtot
κ

(i+ 1)
)

including the minimal pure green path that has red weight 0. Figure 5.5 depicts

the partition of (0, rtot].

Now for each i there is a minimal path q with rtot
κ
i < ωred(q) ≤

rtot
κ
(i+ 1) if and
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only if ∆( rtot
κ
i) ≤ rtot

κ
(i+ 1) which has probability bounded above by (

∑

φe)
rtot
κ

by Corollary 5.3.3. Hence the expected number of minimal paths with distinct

weights is bounded by

1 +
κ−1
∑

i=0

(

∑

φe

) rtot
κ

= 1 + (
∑

φe) · rtot.

Note that if each red edge has weight bounded by rmax then rtot is O(n), so the

expected number of minimal paths is O(mn) + 1 where m denotes the number of

red edges. Furthermore, there are only at most n2− 3n+3 red edges to consider

in a graph with n vertices so the order is bounded by O(n3).

Theorem 5.3.4 indicates that bicoloured–edge graphs are typically tractable.

The bound is also consistent with the experiments presented in Chapter 3 were

several graphs with random weights were tested.

5.4 Bounds in Multicriteria Optimization

In their paper Röglin & Teng [75] obtained a bound for the number of Pareto

optimal solutions for multicriteria optimization problems. Their bound was

O(n2d−1(d+1)!) ,where d stands for the number of criteria. Their approach ba-

sically considered the bound of Beier et al. [74] as a base case in the construction

of an inductive argument upon the number of criteria. Very recently, Moitra &

O’Donnell [76] improved such bound to O(n2d) by using a rather intricate family

of probabilistic events. An open question proposed by Moitra & O’Donnell in

their paper was about how much further their bound can be improved. Brunsch

& Röglin [77] provided a pessimistic answer to this question in the sense that

no significant improvement is attainable. They proved this by creating a very

specific class of instances lower bounded by Ω(nφ)(d−log(d)·(1−Θ(1/φ)).

Because of the recentness of these results, it is still unclear whether such

constructions can be replicated in the context of the coloured–edge graph.
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Chapter 6

The Coloured–Edge Graph in

Practice

This Chapter experimentally studies the applicability of the coloured–edge graph

as a modelling tool in real multimodal networks. To do this, several datasets

have been constructed. These datasets describe real multimodal transportation

systems of different types. The main idea is to utilize such dataset information as

input for the multimodal Dijkstra’s algorithm presented in Chapter 2. Three cases

are studied. Firstly, a comparison between multimodal transportation systems

of New Zealand and Europe is carried out. Secondly, the limits of the current

modelling approach are explored by a large dataset based on the multimodal

transportation system of France. Finally, a dataset containing airlines and their

corresponding worldwide routes is used by the multimodal Dijkstra’s algorithm for

computing minimal flight routes. Results in this chapter support the theoretical

finding developed in previous sections.

6.1 Introduction

Multimodal networks arise in a variety of applications. Particularly freight and

urban transportation are application domains of interest because of their impor-

tance nowadays in business. These two application domains also account for a

considerable number of applied studies about multimodal networks.

This chapter is devoted to investigating real application cases of multimodal
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6.1. INTRODUCTION

networks in the context of transportation. A series of tests in this chapter based

on real transport networks seeks to assess the performance of the coloured–edge

graph approach in real as well as large multimodal datasets.

The importance in assessing the performance of any approach in a realistic

instance stems from the fact that these instances behave very differently to those

generated in a random fashion. As Zhan & Noon indicate [78] most computational

evaluations in the literature take random networks as input. These networks

usually range from complete networks with uniformly distributed arc lengths to

highly structured grid networks. However, such experimental inputs often differ

from real cases in both the degree and configuration of the network’s connectivity.

Moreover, random networks can induce irregularities that might considerably

favor certain types of algorithms and drastically disfavor others.

Large multimodal datasets are typical in the real world. This justifies the

need for an assessment under this circumstance. Largeness is a variable that

in real scenarios can be considered by taking the size of previous research into

consideration. As far as this thesis is concerned, a large multimodal network can

be regarded as such in terms of either its number of vertices and edges or instead

transport modes. The latter means the use of a higher number of colours in a

coloured–edge graph.

Two works in particular raise attention regarding the analysis of real mul-

timodal networks. This is mainly because of the size of their tested instances.

In their paper Ayed et al. [79] applied a hybrid approach for solving the time–

dependent multimodal transportation problem. The approach is based on a trans-

fer graph model that is optimized by an ant–colony heuristic. Both model and

optimization technique are applied on realistic instances of a multimodal net-

work. The author reported results for datasets based on real urban multimodal

networks from several cities around the world. The largest analyzed network was

composed of 4000 vertices, 15000 edges and 5 transport modes. The only pitfall

with this dataset is that it is an “equivalent” instance of another paper’s network.

This means the authors emulated a dataset from another paper by generating a

network that accordingly follows parameters such as the number of vertices and

edges, modes and network density. A second appealing paper is provided by Von
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6.2. CASE 1: MULTIMODAL SYSTEMS OF NEW ZEALAND AND EUROPE

Ferber et al. [80]. These authors presented a practical study which evaluated

statistical properties of fourteen urban multimodal transportation networks from

several cities. The compiled datasets stand out in terms of their largeness. The

largest multimodal dataset obtained corresponds to the city of Hamburg with

8084 vertices, 708 transport routes and 5 transport modes. The authors use the

statistical properties of the networks to build a model that is capable of reproduc-

ing the majority of the features of urban transportation systems found in German

cities. This model is mainly based on the dynamics of routes growth.

Three real cases are used in this chapter as input for the multimodal Dijkstra’s

algorithm. Case 1 explores five moderate multimodal transportation systems that

come from New Zealand and some European countries. Cases 2 and 3 analyze

the approach from two different perspectives of the size of the input. Case 2 em-

phasizes the number of vertices as variable determining the network size, whereas

in Case 3 the number of transport modes (colours) is the predominant variable.

All data employed in the following sections required a level of preprocessing so

that they could be used as input to the multimodal Dijkstra’s algorithm.

6.2 Case 1: Multimodal Systems of New Zealand

and Europe

An appraisal is carried out in this section to analyze the behaviour of the number

of minimal paths of two sets of multimodal transportation networks. One set is

the New Zealand transportation system which consists of road, rail and airways.

The other set consists of different transportation networks from four European

countries. Railways and roadways are the dominant modes in this case. Apart

from studying the number of minimal paths, another interest of this section is

to establish whether European multimodal transportation systems differ from

the New Zealand one. The modelling technique used the coloured–edge graph

in such a way that modes, cities, intercity links and distances are modelled by

colours, vertices, edges and weights respectively. The resulting graph is used by

the multimodal Dijkstra’s algorithm as input to compute the minimal Pareto set

of paths from a specified source vertex to all other vertices in the graph.
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6.2. CASE 1: MULTIMODAL SYSTEMS OF NEW ZEALAND AND EUROPE

Table 6.1: Characteristics of the Networks.

Network Country Vertices Edges Modes
1 Denmark 124 1284 Road,Rail
2 Hungary 305 7418 Road,Rail
3 Spain 901 5326 Road,Rail
4 Norway 122 641 Road,Rail,Airways
5 New Zealand 183 1436 Road,Rail,Airways

6.2.1 Networks setup

The study built one multimodal network for New Zealand and four for Eu-

rope. Vector data information about Denmark, Hungary, Spain, Norway and

New Zealand were collected from a GIS library (Geofabrik [81]) for this end.

Countries were selected based on the degree of similarity they have regarding

shape and number of locations. For example, New Zealand has resemblances

with Norway in shape and number of vertices. Both countries have an elongated

shape and between 100 and 200 locations.

The multimodal networks were stored and maintained as a set of vertices and

bidirectional links. A network dataset for each mode was generated by firstly

snapping vertices (towns and cities) to network features according to a tolerance

radius. Secondly, a connectivity map was created by an ad-hoc algorithm that

iterates itself through vertices. As a spin–off, this algorithm also calculated the

real intercity distances as decimal geographic degrees. Additionally, airways were

added as a third mode for Norway and New Zealand. Straight distances between

airports were used as edge length in this case and airports had to be snapped to

cities to build a connectivity map. Airway data was obtained from OpenFlights

[82]. Characteristics of the resulting networks are shown in Table 6.1.

As an illustration, Figure 6.1 displays the Hungary roadway system which is

composed of motorways and primary roads. Likewise, Figure 6.2 yields a view

of the New Zealand airway and road systems. For New Zealand, the connection

between the north and the south island is made only by airplane.

The reported runtimes correspond to CPU times measured while computing
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Figure 6.1: Hungary roadway system.

Figure 6.2: New Zealand airway and road system.
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Table 6.2: Results for multimodal networks from vector data: Scenario 1.

Network Source city Average Maximum Processing CPU
Muv cardinality Muv cardinality Paths time

1 Copenhagen 56 171 10704 0.515
2 Budapest 69 227 53587 6.024
3 Madrid 133 1039 181976 32.216
4 Oslo 41 147 6248 0.158
5 Wellington 759 9342 611230 311.184

the total number of shortest paths (Muv cardinality) from a source vertex to all

other vertices. Networks were all tested on a standard desktop computer with

dual core, 1.86 GHz CPU and 1.99 GB of RAM.

TheMuv cardinality for each city v (vertex) was calculated using two different

source vertex scenarios. Scenario 1 considered the capital city of each country

as the source vertex whereas Scenario 2 uses a city chosen at one end of the

network as source. For instance, Wellington and Kaitaia were picked as source

vertices for scenarios 1 and 2 respectively in the New Zealand case. In addition,

the algorithm reported the total number of processing paths (total number of

paths taken by the iterative subroutine of the algorithm) as well as average and

maximum Muv cardinality. Average cardinality was calculated by averaging all

destination vertex cardinalities whereas the maximum cardinality corresponds to

the largest value ofMuv cardinality among destination vertices.

6.2.2 Results

Results for Scenario 1 are shown in Table 6.2. CPU times are given in seconds.

One fact that Table 6.2 demonstrates is that just a small fraction of paths are

minimal in comparison to the number of processing paths taken by the algorithm.

No more than 2% of such paths are found to be minimal for the studied multi-

modal networks. This is a promising result from a tractability viewpoint as the

number of minimal paths that might need to be considered further is generally

quite small.

Spain and New Zealand obtained the largest values ofMuv cardinality. What
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6.2. CASE 1: MULTIMODAL SYSTEMS OF NEW ZEALAND AND EUROPE

these countries have in common is a high level of network overlap between road

and rail as well as a high number of cities located along such overlaps. These

features together induce a high number of minimal paths because some network

sections resemble coloured–edge chains. Coloured–edge chains are important sub-

graphs in a general coloured–edge graph because they are able to potentially re-

sult in a worst case scenario. Chapter 4 showed a construction of a coloured–edge

chain that produced an exponential number of minimal paths. When this con-

struction occurs in a coloured–edge graph, the total number of minimal paths

is bounded above by kn−1. In practical terms, those cities (or towns) that are

reached via two or more intertwined modes are prone to generate an elevated

number of shortest coloured–edge paths. To envisage the concept of network

overlap, Figure 6.3 shows road and rail networks for New Zealand.

On the other hand, the rich variety of network links presented in Denmark,

Hungary and Norway have less overlap so that the number of minimal paths

tends to be lower. Moreover, maximal cardinalities were found for remote cities

(or towns) with no direct link from the sources. For example, Frederiksharn and

Rakamaz were the locations reporting the maximum number of minimal paths

Figure 6.3: Network overlap between road (left) and rail (right) networks.
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6.2. CASE 1: MULTIMODAL SYSTEMS OF NEW ZEALAND AND EUROPE

Table 6.3: Results for multimodal networks from vector data: Scenario 2.

Network Source city Average Maximum Processing CPU
Muv cardinality Muv cardinality Paths time

1 Hanstholm 76 332 20009 1.262
2 Csenger 149 600 135218 68.423
3 Tarroella 423 1864 606609 507.657
4 Ergersund 78 245 11674 0.332
5 Kaitaia 5969 33246 1644768 20572.52

for Denmark and Hungary, respectively. This indicates the number of minimal

paths is affected when the location of the destination is changed. A special case

is a vertex located at one of the country extreme ends.

Scenario 2 was set to analyze the impact that source location has on the

cardinality ofMuv. Table 6.3 summarizes the corresponding results. The selected

source locations were extreme points situated at one of the four cardinal points.

Spain and New Zealand again concentrate the highest numbers of paths. Here,

maximum cardinalities were obtained to destinations San Fernando (Spain) and

Riverton (New Zealand). Long shapes again account for a high number of minimal

paths.

6.2.3 Analysis

The cardinality ofMuv was investigated in this section for real multimodal trans-

portation systems. Such cardinality turns out to be higher and significantly so for

locations situated far away from the sources in those countries whose transporta-

tion systems exhibited a greater level of intertwining. Intertwining results that

certain sections of a multimodal network may resemble a coloured–edge chain.

These chains were proved to be a potential cause of an exponential number of

minimal paths in a coloured–edge graph.

Computational times were reasonable considering that the multimodal Dijk-

stra’s algorithm was implemented with a basic data structure (priority queue).

Multimodal networks in Scenario 2 required longer runs than Scenario 1 due to

the greater number of paths processed by the algorithm. This indicates higher
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6.2. CASE 1: MULTIMODAL SYSTEMS OF NEW ZEALAND AND EUROPE

number of minimal paths to reach distant cities (or towns) when the source vertex

is located at the very extreme of a country. Scenario 2 demonstrates that country

shapes can significantly alter the number of minimal paths. Longer and slimmer

shapes are closer to behaving like coloured–edge chains where the edge weights

are correlated between modes. Hereby, the special shape of New Zealand is also

accounting for the elevated number of minimal path found for its extreme loca-

tions. Although Norway has a shape resemblance with New Zealand, the lower

number of minimal paths is explained by its different circumstances: (1) Norway’s

rail system does not connect as much of the country. Rail roughly covers just

20% of the territory. (2) The multimodal transportation system of Norway goes

from dense to very sparse as a user moves from the south to the north. Road is

predominantly defining the connectivity in the north. (3) The number of airways

is much lower than in New Zealand. New Zealand has about 116 different air

connections whereas Norway has just 62.

A significant difference between Europe and New Zealand can be established

by analyzing a post–optimal scenario for each. After selecting a minimal path

from the final Pareto set based on some overall measure of cost, a natural question

to pose is how easily the chosen path should change when the cost measure

fluctuates. A minimal solution is understood as a unique solution picked from

the final Pareto set using some overall cost function. New Zealand possesses a

greater number of minimal paths than any of the four tested European countries

so that more alternatives are available for interchanging. This is because its two

main transport modes present high level of intertwining (the train system tends

to closely follows the road system producing similar path weights). On the other

hand, Europe reports lower cardinalities due to a more “compact” shape of its

networks. An optimal solution in this scenario can in general be harder to replace

by small fluctuations in an overall cost function. In summary, a selected path can

be expected to better cope with perturbations on relative costs in Europe rather

than New Zealand. Expressed in a different way, a cost function that depends on

distance in each mode would typically require greater variations on its coefficients

in case of Europe to effect a change in the best path.
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6.3. CASE 2: FRANCE MULTIMODAL NETWORK

Table 6.4: ArcGIS data for France multimodal network.

Modes Number of Number of Polyline length
Junctions polylines Maximum Mean Stnd. Dev.

Roadways 53562 47660 0.868028 0.010674 0.032452
Railways 18671 20083 1.280264 0.014966 0.046192
Motorway 7720 7432 1.221951 0.033488 0.078485
Waterways 17113 11635 3.238686 0.032070 0.095573

6.3 Case 2: France Multimodal Network

The approach is now tested on a large multimodal network. In this test, largeness

is in the sense of number of vertices and edges. The selected network scenario

corresponds to the multimodal transportation system of France being one of the

largest networks in Europe. The multimodal network was obtained from vector

data information retrieved from a public GIS library, Geofabrik [81].

The network dataset for each transport choice was firstly processed in ArcGIS

to make it suitable for computation. ArcGIS is a Windows platform application

for the analysis and processing of vector geographic information system data.

This application has a network analysis extension that permits the identification

of junctions and polylines 1 in each transport system. In addition, ArcGIS also

has a macro for the computation of the adjacency matrix for each system of

junctions

Table 6.4 summarizes the number of junctions and polylines given by ArcGIS

for each transport mode as well as some statistics of the networks. All edge

lengths are given in decimal geographic degrees. Four transport modes comprise

the France transport system: road, rail, waterways and motorways. The road

system mainly consists of primary roads but not roads classified as secondary.

The rail system is comprised of common train lines disregarding subway and tram.

Waterways are the channels and rivers used as transportation links. Finally, the

motorway system of France includes toll roads and is considered a different mode

1In computer graphics a “polyline” is also known as “polygonal chain” which is a connected
series of line segments, Burke [83].
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6.3. CASE 2: FRANCE MULTIMODAL NETWORK

Figure 6.4: France roadway system.

of transport in its own right. As an illustration, Figure 6.4 depicts the France

road system.

The construction of the multimodal network requires assembling the data for

the four network modes together. This task is accomplished by an ad–hoc algo-

rithm coded in the Java language. The code basically takes two inputs. These

are the adjacency matrix of each transport mode network and a list of minimum

interjunction distances in each mode. The latter is built in ArcGIS by taking

a mode junction dataset and applying the “join and relates” tool with respect

to each other mode junction dataset. This information facilitates the perfor-

mance of a subsequent clustering procedure used inside of the ad–hoc algorithm.

As ArcGIS treats the data for each transport mode as a separate network the

clustering ensures that junctions that are within a specified radius of each other

are identified to allow transfer between different modes. A partial view of the

corresponding input files is found in Appendix A.

Two parameters need to be specified once the algorithm code is executed. A

minimum clustering distance (this generates the network vertices) and a source

vertex (a junction number). After entering this information, the Java code in-
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6.3. CASE 2: FRANCE MULTIMODAL NETWORK

Table 6.5: Results of Case 2.

Cluster Number of Number of Running Avg. Max
Vertices Edges Time Paths Paths

0.150 1501 4216 0.0180 33.0930 702
0.140 1869 5218 0.6950 208.270 3320
0.130 2343 6280 4.4010 404.380 14972
0.120 2948 7696 245.40 2013.82 37128
0.115 3108 8018 823.10 3575.03 46984

vokes the multimodal Dijkstra’s algorithm, reporting upon completion a list with

the total number of minimal paths to each vertex together with two additional

variables: the maximum number of paths found in a particular vertex and the

average number of paths.

This dataset was tested by firstly clustering junctions between 0.150 and 0.115

decimal degrees (14 to 11 km). The resulting networks together with running

times (minutes) and average number of minimal paths are shown in Table 6.5.

The computations were performed on a standard desktop computer with dual

core 2.93 GHz CPU and 8 GB of RAM that was set with the queue version of

the multimodal Dijkstra algorithm.

The results can be compared with some large multimodal networks from the

literature. Comparability is established here in terms of number of vertices and

edges. Networks from references [20], [84], [85] and [86] are used, which appear to

be among the largest practical applications found in journal articles about multi-

modal networks. Unfortunately, these papers do not provide enough information

to fully replicate the experiments. In addition, the data are not longer available

from the authors. Technical features of the networks as well as the corresponding

computational times (minutes) cited in the papers are shown in Table 6.6. The

times given in the table should be interpreted with caution as they have different

goals and probably utilize different computer hardware specifications.

Mathematical programming is applied in [20] to optimize a large international

intermodal system considering multi–commodity options. In [84], a urban mul-

timodal travel system is designed based on object modelling techniques and a
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Table 6.6: Large networks from the literature.

Network Reference Nodes Edges Modes Running time
1 [20] 112 407 5 2.00
2 [84] 1000 2830 5 0.11
3 [85] 1000 2747 2 0.23
4 [86] 3488 7200 2 5.00

K–shortest path algorithm. An algorithm for a time-dependent multimodal net-

work is constructed in [85] based on a label-setting technique which invokes an

optimality equation to update distance labels. Lastly, [86] studies a long–haul

freight transportation system which is optimized by a heuristic approach based on

a multicriteria shortest path problem model. All models are applied in the con-

text of the constrained shortest path problem, and none are multigraphs unlike

the France dataset.

As seen, the France multimodal network is as large as those instances found in

the literature. Despite France’s networks required longer runs of the multimodal

Dijkstra’s algorithm when the clustering distance is reduced, it cannot be disre-

garded that no constraints or reductions were required for obtaining the results

in Table 6.5.

6.4 Case 3: World–Wide Airline Routes

The third experimental group is a worldwide dataset containing airline routes.

The data was obtained from OpenFlights [82] and comprises of over 60000 world–

wide flight connections for 655 international airlines together with the location

of 5400 main global airports. For instance, some of the airlines included in the

dataset are Delta (2400 connections), United Airlines (2200 connections) and

American Airlines (1244 connections). These companies together account for 5844

coloured edges in the entire traffic airline system. These airlines can therefore

be regarded as different transportation modes of a multimodal network. All such

data is formatted as a text file to be read by a Java program. This program

firstly filters the flight routes according to the name of the airlines and airport
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Figure 6.5: Lufthansa routes among the top 50 international airports.

names and next prepares the data in such a way that it can be used as input

to the Multimodal Dijkstra’s algorithm. Thus, the main inputs to this program

are a set of airlines and their routes, a list of airports and their locations and a

source airport.

The airline data allows the coloured–edge graph modelling approach to be

evaluated in terms of a higher number of colours rather than vertices. Based on

this, a list containing the top 50 international airports in terms of passenger traffic

and a top 10 ranking of the 10 most popular international airlines are utilized as

input to the algorithm. Direct arc distance in kilometers was considered as edge

weights between airports. Figure 6.5 illustrates the routes of Lufthansa Airlines

as an extract of the multimodal network. Additionally, a partial view of the data

(as text format) is found in Appendix B.

The test was performed by increasing the number of airlines one at a time.

The two top airlines, Delta and United Airlines, were initially selected from the

ranking. Next, the other five were included one by one so that the number of

colours was gradually increased.

The DAG data structure was tested against the queue implementation in or-
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6.4. CASE 3: WORLD–WIDE AIRLINE ROUTES

Table 6.7: Results of Case 3.

Num Number of Number of Max Avg Queue DAG
Airlines Vertices Edges Paths Paths R.Time R.Time
2 50 811 57 11.84 0.07 0.23
3 50 865 573 72.12 0.28 0.75
4 50 1138 10262 983.54 30.64 1857.28
5 50 1310 22843 3586.18 701.94 86749.83
6 50 1388 125952 18577.62 16939.56 191642.38
7 50 1390 125645 18674.70 17387.20 201543.41

der to assesses its performance in a real multimodal network. The main goal

was to verify whether the performances seen in random graphs repeats itself.

Final results are shown in Table 6.7. Times are stated in seconds. The computa-

tions were performed on a standard desktop computer with dual core 2.93 GHz

CPU and 8 GB of RAM that was set with both the queue and DAG versions

of the multimodal Dijkstra algorithm. The computational capacity just allowed

to increment the number of airlines up to 7 (Delta, United Airlines, Southwest

Airlines, American Airlines, Lufthansa, China Southern and Ryanair).

Results show a significantly better performance of the queue data structure

over the DAG. This fact supports the experimental results presented in Chapter

3 where these data structures were tested on random instances of the coloured–

edge graph. Clearly, the number of airlines (colours) is the determining factor of

the tractability. Results also reveal a high number of minimal paths to Jakarta

International Airport in the case of 6 and 7 colours. This mostly is a product

of the lack of direct connections from European and Western countries. Thus,

most of the flights between distant locations have to traverse several intermediate

airports. This fact is also explained by the low number of connections of the

seventh airline in the ranking (Ryanair). This airline carries a significant number

of passengers but has low connectivity among the 50 airports. This also accounts

for the similarity of the running times for the queue data structure between the

6 and 7 number of airlines.
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Chapter 7

Conclusions and Future Work

7.1 Multimodal Networks

Multimodal networks are pervasive. An extensive number of real systems can

be modelled by these networks. As a modelling tool, multimodal networks seem

to provide a straightforward approach for the representation of natural systems

where several modes of transport operate between locations. Despite its poten-

tial, scientific literature in multimodal networks has mostly focused on specific

applications. The lack of a theoretical framework for the study of multimodal

networks is evident. Applications of multimodal networks preferentially target

freight and urban transportation systems. However, research in fields that might

be regarded as far from logistics such as biology, computer networks and game

theory have began to utilize multimodal networks as a modelling tool.

Traditionally, the modelling of multimodal networks has been primarily per-

formed by adapting single–edge graphs where vertices represent physical locations

such as hubs, warehouses and suchlike, whereas edges emulate roads, railways or

motorway connections. The inclusion of transport modes in the model is not

immediately perceived under this modelling approach. Similarly, the optimiza-

tion of multimodal networks does not provide clarity about the treatment of the

modes during analysis since they are mostly removed by reduction techniques

and application–specific constraints in order to make the problem tractable.

This thesis introduced the coloured–edge graph which is a graph–based ap-

proach for the modelling and analysis of multimodal networks. The mainstay
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of this graph technique is simple: use a multigraph and label its edges with as

many colours as transport mode there are, where each colour represents a specific

transport choice for connecting two vertices. Unlike previous approaches, modes

are explicitly represented in the graph and kept throughout analysis. A particular

problem studied in this work has been the determination of minimal paths in the

coloured–edge graph. Minimal paths are paths in the coloured–edge graph that

are minimal in a sense of a partial order relation on paths weights.

Literature in the theoretical study of multimodal networks is scarce as the

first part of this thesis has shown. Likewise, coloured-edge graphs were noted to

be rarely investigated in the literature. Only two papers were identified for this

research directly addressing the concept of coloured–edge graphs (see Chapter 2).

Importantly, the most recent of these papers claims that optimization problems

related to coloured–edge graphs such as the computation of the shortest paths

still remains as a novel topic.

As a conclusion, the coloured–edge graph constitutes a powerful and straight-

forward modelling tool for the study of multimodal networks. However, more

theoretical research into multimodal networks is still an issue that needs to be

addressed. In addition, more study on application fields other than only freight

and urban transportation is worth being researched.

7.2 Tractability of the Approach

This thesis addressed one particular problem associated with the coloured–edge

graph. This is the computation of minimal paths. This problem states that given

a weighted coloured–edge graph and a source vertex s, compute all the minimal

paths from s that satisfy a product order partial relation defined on its path

weights.

The computation of minimal paths is executed by a generalization of the well–

know Dijkstra’s algorithm. The implementation of the algorithm required the

development of a partially ordered data structure. The imposition of an order

relation on path weights does not produce a unique solution to this problem

so that an optimal solution has to be obtained by selecting a path from the
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set of solutions according to some rule imposed by a potential user. Hereby,

the multimodal Dijkstra’s algorithm introduced in Chapter 3 produces a set of

minimal paths. The cardinality of this set determines the tractability of the

problem. The benefit in generating an entire set of optimal paths is twofold. First,

it gives more decision power to a potential user since all minimal combinations

of modes are listed. Second, post–optimal analysis can be performed without

re–running the algorithm.

The number of minimal paths was firstly studied experimentally. Random

coloured–edge graphs were used as inputs for the multimodal Dijkstra’s algo-

rithm. The results for complete random coloured–edge graphs with uniform

weights were promising. The cardinality in this case became low order poly-

nomial in most instances. At the other extreme pathological instances based on

coloured–edge chains showed exponential orders in the number of minimal paths.

Coloured–edge graphs with Euclidean weights were also studied. Remarkably

good performances of the algorithm were obtained for higher dimensions. Data

structures for handling weight tuples were also tested. To this end, the multi-

modal Dijkstra’s algorithm was implemented with a priority queue, a simple list

and a DAG data structure. Tests based on complete coloured–edge graphs with

uniform weights revealed the priority queue as the most efficient data structure

for handling minimal paths in a random coloured–edge graph.

The experiments with random coloured–edge graphs raised a series of question

regarding the behaviour of the number of minimal paths in a best, average and

worst case scenario. Chapters 4 and 5 sought answers for these question by

means of the determination of upper and lower bounds on the number of minimal

paths. It was discovered that the number of minimal paths is bounded above by

kn−1 , where k and n stand for the number of colours and vertices, respectively.

This bound is tight and demonstrates the potential intractability of the minimal

path problem in coloured–edge graphs. This result is also consistent with the

results encountered in the experiments with pathological instances. Specifically,

coloured–edge chains whose weights follow very special patterns are likely to

produce an exponential number of minimal paths. For instance, a high level of

correlation among weights in a chain tend to result in more minimal paths. In
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Chapter 4 the number of minimal paths was bounded below by k for complete

coloured–edge graphs. This shows that there is a big range between the best case

and the worst case cardinalities.

As a complement of the bounds, the NP–completeness of the problem was

shown. A reduction from the bin packing problem indicated the computation of

minimal paths in a weighted coloured–edge graph has nondeterministic polyno-

mial time.

Despite the potential exponential behaviour evidenced by the upper bound

on the number of minimal paths, random instances provide more tractable cases.

The experiments with random coloured–edge graphs seemed to support this idea.

A semi–random input model was the main tool used in the development of prob-

abilistic bounds for the coloured–edge graph. Although this model does not

explain what happens in an average case, it does yield an understanding about

the behaviour of the coloured–edge graph with probabilistic inputs. This ap-

proach turns out to be more realistic than a pure random setting because it is

difficult to interpret in reality what a random input is. The analysis delivered

an O(n3) bound for the expected number of minimal paths in bicoloured–edge

graphs whose weights in one colour are randomly chosen.

As a conclusion, the computation of minimal paths in real multimodal net-

works is typically computationally tractable when the coloured–edge graph is used

as modelling tool. Such tractability is attainable without resorting to reduction

techniques, special constraints or heuristics. The semi–random input model also

provides a method by which tractability can be “controlled” in a coloured–edge

graph since intractable cases can be handled by slightly perturbing their edge

weights. Additionally, the conditions that a multimodal network has to meet in

order to produce an exponential number of paths are so specific that intuitively

they are unlikely to occur in a random instance. This might be an indication that

the number of minimal paths are predominantly concentrated between these two

extremes.

Future work can investigate approximation algorithms based on semi–random

instances of the coloured–edge graph. More theoretical as well as experimental

studies in efficient data structures is also needed. For example, the outperfor-
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mance of the QUEUE over the DAG requires more analysis.

Another source of research in coloured–edge graphs is the development of an

average case for coloured–edge graphs with higher number of colours since it could

clarify whether the polynomial behaviour is still obtainable. How concentrated

the number of minimal paths are around its expected value is another issue that

deserves investigation. As worst and best case require very special settings to

occur, so minimal paths are mostly found between these two extremes. However,

it is unknown whether general instances of the coloured–edge graph predomi-

nantly concentrate their minimal sets closer to a best or worst case. Finally,

the probabilistic bounds for multicriteria optimization problems presented at the

end of Chapter 5 might provide evidence that an improvement of the probabilistic

bounds is attainable. However, it remains unclear whether the probabilistic input

models utilized in these studies are replicable for instances of the coloured–edge

graph.

7.3 Multicriteria Optimization Problems

This thesis also investigated the applicability of the coloured–edge graph in the

modelling of multicriteria problems whose structure is combinatorial, specifically,

the Multicriteria Shortest Path Problem.

A transformation based on the division of edges enables a Multicriteria Short-

est Path Problem to be turned into shortest path problem in a coloured–edge

graph. Such a transformation is algorithmically tractable. The use of the coloured–

edge graph in the modelling of these problems permits the use of combinatorial

tools such as counting arguments that might help in the development of more

accurate bounds for multicriteria combinatorial problems.

An important contribution of this analysis was the determination of two cases

in which all the paths in the graph were minimal. The construction considered

biweighted complete graphs. These instances might question the exponential

upper bound provided by Hansen for the bicriteria shortest path problem since the

number of paths in a complete graph has factorial order. Future work can study

the generalization of the constructions presented in the last section of Chapter 4.
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7.4 Applicability of the Approach

Real multimodal networks were used in Chapter 6 of this thesis for evaluating

the performance of coloured–edge graph as modelling tool. Three cases were

analyzed.

The setup in Case (1) sought to study the computation of minimal paths in

small instances. Multimodal networks from New Zealand and some European

countries were the inputs. The number of vertices ranged between 120 and 900.

The maximum number of colours (modes) were three. An important considera-

tion in this case was the degree to which network shape influences the number of

minimal paths. Countries with long shapes reported higher numbers of minimal

paths. The resemblance of these long shapes to coloured–edge chains partly ex-

plains the large number of minimal paths. The other factor contributing is the

trend in building mode networks very close to each other. For instance, railway

systems tend to follow alongside to roadways systems in real systems. This cre-

ates a certain level of correlation between edge weights in different modes. As a

result, weight patterns arise that might produce a high number of minimal paths.

Case (2) was set in order to determine the effect of n on the number of minimal

paths and the time required to determine them. The setup was a large system

of junctions that describes the transportation system of France. Four transport

modes were used. By first applying a cluster routine to interconnect the different

modes, the multimodal Dijkstra’s algorithm computed minimal paths for several

clustering radii for the France network. As far as this research is concerned, these

instances are as large as those presented in literature about multimodal networks.

More importantly, no restrictions or reductions whatsoever were needed to be

applied to obtain the minimal paths.

Unlike Case (2), Case (3) focused more on the influence of k in the computa-

tion of minimal paths. Thus, the selected multimodal network (an international

airline system) employed airlines as colours. This variable took values between 2

and 7 colours. The number of vertices was just 50, much smaller than the France

multimodal network. Moreover, computations were performed by comparing two

data structures: the priority queue and the DAG. The computations were longer
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as the number of airlines increased. A significant difference was noticed in the

performance of the queue with respect to the DAG, the former by far being faster.

From Case (2) and (3) it is concluded that the number of colours (k) is a more

limiting factor for the computations than the number of vertices in the network

(n). The improvement of data structures requires more research.

Although a few of the running times obtained in the practical study could be

regarded as excessive, it cannot be overlooked that these times can be considerably

reduced by network reduction techniques. For instance, all intercity connections

were considered as bidirectional, a fact that in reality is not true. Additionally, the

topology of these real networks significantly differs from simple networks such as

lattice or random graphs 1. In other words, a more realistic modelling produces

a series of constraints that might help the performance of the computations.

The main purpose of the practical study was to push the multimodal Dijkstra’s

algorithm as far as possible in order to establish the degree of “computational

amenability” of the coloured–edge graph.

7.5 Open Problems

The analysis of coloured–edge graphs is a nascent research field. Resulting from

this thesis, a series of open problems involving coloured–edge graphs have arisen.

• The determination of exact asymptotics for the data structures presented

in Chapter 3. The better performance obtained by the QUEUE over the

DAG requires more theoretical analysis.

• To corroborate the existence of a factorial upper bound on the number

of solutions for the bicriteria shortest path problem. The constructions

presented at the end of Chapter 4 suggest the existence of an upper bound

that might be of factorial order in n rather than exponential order.

• The determination of a bound on the expected number of minimal paths

for coloured–edge graphs with k > 2. In other words, the determination of

1In network theory, the study of the topology of real networks is part of a branch know
as“Complex Networks”.
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a bound on the average number of minimal paths in higher dimensions of

the colour space.

• The distribution of the cardinality of Muv around its mean. This can

be done by establishing a concentration bound. In probability theory a

concentration bound measures the deviation of a random variable from

its expected value, Steele [87]. The determination of such a bound might

significantly improve the probabilistic analysis of the coloured–edge graph

since it can clarify whether a typical instance of the coloured–edge graph is

closer to a worst or best case scenario.

• The observed reduction of the number of minimal paths for coloured–

edge graphs with Euclidean weights in higher dimensional spaces requires

more analysis. This work explained that a coloured–edge graph in a one–

dimensional Euclidean space results in a worst case, so this case has to be

avoided in order to obtain better performance. However, the nature of the

reduction in higher dimensions remains unclear.

• Whether the the probabilistic bounds in Chapter 5 can be improved. This

answer might be partly answered by Brunsch & Röglin [77]. However, they

obtained probabilistic bounds for the multicriteria combinatorial optimiza-

tion problem. Possibly the approach used by these authors might be able

to be applied in the context of coloured–edge graphs.
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Appendix A

France Input Dataset

The following data are a partial view of the input required by the multimodal

Dijkstra’s algorithm in order to compute minimal paths. For sake of simplicity,

files of just one transport mode are depicted (motorways). Each transport mode

has the same set of files. The abbreviations MW (motorways), PR (primary

road), RW (railway), and WW (waterways) stand for the transport modes. The

connectivity of the mode network is provided by the file “MWedges.txt”. The

rest of the text files represent interjunction distances which are measured as

straight distance between a junction in a mode and the closest junction in another

mode (e.g. “MWtoRW.txt”). These files are generated by using the ArcGIS tool

“join and relates”. The main purpose of these interjunction distances is the

computation of a clustering that permits the generation of the final multimodal

network.

------ File: MWedges.txt ------

#from to distance

0 2 0.0198899315658

1 3 0.0198604670494

2 0 0.0198899315658

2 4 0.000493028972852

3 1 0.0198604670494

3 5 0.000494609084695

5 3 0.000494609084695

5 7 0.000510371492751

...

------ File: MWtoRW.txt ------

#from, to, distance

0, 541, 0.019053

1, 541, 0.019168

2, 547, 0.024415

3, 547, 0.024539

4, 547, 0.024646

5, 547, 0.024769

6, 547, 0.024901

7, 547, 0.025013

...
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------ File: MWtoPR.txt ------

#from, to, distance

0, 2618, 0.016378

1, 2621, 0.016326

2, 2625, 0.006981

3, 2625, 0.007105

4, 2625, 0.007275

5, 2625, 0.007397

6, 2625, 0.007611

7, 2625, 0.007719

...

------ File: MWtoWW.txt ------

#from, to, distance

0, 1015, 0.010086

1, 1015, 0.010190

2, 1015, 0.024010

3, 1015, 0.024113

4, 1015, 0.024458

5, 1015, 0.024562

6, 1015, 0.024942

7, 1015, 0.025026

...

As a reminder, the motorway system (MW) has 7720 junctions and 7432

polylines. The final multimodal network is comprised of four transport modes

that together provide 97066 junctions and 86810 edges.
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Appendix B

Airline Data

The following data are a partial view of the input required by the multimodal

Dijkstra’s algorithm in order to compute minimal paths for the global airline

network. The multimodal Dijkstra’s algorithm takes three text files as inputs in

order to produce a set of minimal paths. The file “airlines.txt” is a top 10 ranking

of international airlines based on number of passengers carried in decreasing order.

The file “routes.txt” has over 60000 airport connections shown by airline. Finally,

the file “airports.txt” contains a list with the 50 busiest airports in the world

together with their corresponding longitude and latitude coordinates (in decimal

degrees). All the presented information is coded according to IATA notation

(www.iata.com).

------ File: airlines.txt ------

# airline-id airline-name

DL Delta

UA United Airlines

WN Southwest Airlines

AA American Airlines

LH Lufthansa

CZ China Southern AW

FR Ryanair

AF Air France

KL KLM

MU China Eastern Airlines

------ File: routes.txt ------

# airline from to

0B AGP BBU

0B BBU AGP

0B BBU BCN

0B BBU BGY

0B BBU BLQ

0B BBU BRU

0B BBU BVA

0B BBU CTA

0B BBU DUB

0B BBU FCO

...
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------ File: airports.txt ------

#IATA latitude longitude AIRPORT

ATL 33.63670 -84.42810 United States Hartsfield-Jackson Atlanta International Airport

LHR 51.47750 -0.46140 United Kingdom London Heathrow Airport

PEK 40.07330 116.59500 People’s Republic of China Beijing Capital International Airport

ORD 41.97860 -87.90480 United States O’Hare International Airport

HND 35.55330 139.78120 Japan Tokyo International Airport

CDG 49.00970 2.54780 France Paris Charles de Gaulle Airport

LAX 33.94250 -118.40810 United States Los Angeles International Airport

DFW 32.89680 -97.03800 United States Dallas-Fort Worth International Airport

FRA 50.03330 8.57050 Germany Frankfurt Airport

DEN 39.86170 -104.67320 United States Denver International Airport

MAD 40.47220 -3.56090 Spain Madrid-Barajas Airport

JFK 40.63970 -73.77890 United States John F. Kennedy International Airport

HKG 22.30890 113.91460 Hong Kong Hong Kong International Airport

AMS 52.30810 4.76420 Netherlands Amsterdam Airport Schiphol

DXB 25.25280 55.36440 United Arab Emirates Dubai International Airport

BKK 13.68110 100.74730 Thailand Suvarnabhumi Airport

LAS 36.08040 -115.15230 United States McCarran International Airport

IAH 29.98440 -95.34140 United States George Bush Intercontinental Airport

PHX 33.43420 -112.01150 United States Phoenix Sky Harbor International Airport

SFO 37.61890 -122.37490 United States San Francisco International Airport

SIN 1.35920 103.98940 Singapore Singapore Changi Airport

CGK -6.12390 106.66110 Indonesia Soekarno-Hatta International Airport

CAN 23.39000 113.30670 People’s Republic of China Guangzhou Baiyun International Airport

CLT 35.21400 -80.94310 United States Charlotte Douglas International Airport

MIA 25.79330 -80.29060 United States Miami International Airport

FCO 41.80030 12.23890 Italy Leonardo da Vinci Airport

MCO 28.42940 -81.30900 United States Orlando International Airport

SYD -33.94670 151.17670 Australia Kingsford Smith Airport

EWR 40.69250 -74.16870 United States Newark Liberty International Airport

MUC 48.35380 11.78610 Germany Munich Airport

LGW 51.14810 -0.19030 United Kingdom London Gatwick Airport

MSP 44.88200 -93.22180 United States Minneapolis-Saint Paul International Airport

NRT 35.76470 140.38640 Japan Narita International Airport

PVG 31.14170 121.79000 People’s Republic of China Shanghai Pudong International Airport

DTW 42.21240 -83.35340 United States Detroit Metropolitan Wayne County Airport

SEA 47.44900 -122.30930 United States Seattle-Tacoma International Airport

PHL 39.87190 -75.24110 United States Philadelphia International Airport

YYZ 43.67720 -79.63060 Canada Toronto Pearson International Airport

IST 40.97610 28.81390 Turkey Atat??rk International Airport

KUL 2.74330 101.69810 Malaysia Kuala Lumpur International Airport

ICN 37.46250 126.43920 South Korea Seoul Incheon International Airport

BCN 41.29710 2.07850 Spain Barcelona Airport

BOS 42.36430 -71.00520 United States Logan International Airport

DEL 28.56870 77.11210 India Indira Gandhi International Airport

MEL -37.67330 144.84331 Australia Melbourne Airport

ORY 48.72330 2.37940 France Paris-Orly Airport

SHA 31.20000 121.33330 People’s Republic of China Shanghai Hongqiao International Airport

BOM 19.09080 72.86670 India Chhatrapati Shivaji International Airport

SZX 22.63830 113.81170 People’s Republic of China Shenzhen Bao’an International Airport

MEX 19.43630 -99.07220 Mexico Mexico City International Airport
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