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ABSTRACT 

 
This research is focused on solving problems in the area of software project management using 

metaheuristic search algorithmsand as such is research in the field of search based software 

engineering. The main aim of this research is to evaluate the performance of different 

metaheuristic search techniques in resource allocation and scheduling problemsthat would be 

typical of software development projects.This paper reports a set of experiments which evaluate 

the performance of three algorithms, namely simulated annealing, tabu search and genetic 

algorithms. The experimental results indicate thatall of themetaheuristics search techniques can 

be used to solve problems in resource allocation and scheduling within a software project. 

Finally, a comparative analysis suggests that overall the genetic algorithm had performed 

better than simulated annealing and tabu search. 
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1. INTRODUCTION 

 
In recent years, interest in the area of solving problems with optimisation techniques has 
increased considerably. Because of this it has led to the development of new algorithms, systems 
and methods. When the performances of these new developments are compared against the 
performance of traditional linear programming methods, it is clear that new optimisation 
techniques are often more robust and efficient. Harman & Jones [1]observe that most of these 
techniques are currently implemented in disciplines like software & mechanical engineering, 
biotic engineering, software testing, and many more. The importance of metaheuristics has been 
increasing over the years and to support that argument, many researchers have attempted to solve 
“real world” problems using a range of algorithms, including simulated annealing, tabu search 
and genetic algorithms. The application of search algorithms in the discipline of software 
engineering has resulted in the emergence of the term Search Based Software Engineering 
(SBSE) [1]. 
 
This paper investigates the performance of three metaheuristic algorithms on classes of problems 
that are drawn from the project management discipline and are representative of the types of 
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problems found in the management of software development projects. In particular there is a 
focus on resource and scheduling problems that have already been investigated in previously 
published work in order to allow a comparison of the results to be made. 
 

2. BACKGROUND & RELATED WORK 
 

2.1. Search Based Software Engineering 

 
The history of SBSE predates the term itself, with early research in representing software 
engineering challenges as a search problem dating back to 1976 [2]. Early approaches represented 
problems to be solved using classical techniques such as linear programming. However, Clark et 
al. [3] and Harman [4]suggest that linear programming models are not the best option for solving 
optimisation problems and this is because there are instances where the problem has certain 
objectives which cannot be represented with linear algorithms, furthermore, these problems also 
have multiple characteristics and fitness functions. Clarke et al. (2003) and Harman (2007) have 
identified three areas where problems could persist when implementing metaheuristics search 
techniques, but they have also provided potential solution to overcome the problems. One area in 
which there has been only limited interest is that of software project planning. 
 
2.1.1. Software Project Planning& Resourcing 

 
The software engineering discipline has been in existence for a long time and since its 
introduction there have been substantial introduction of project management techniques to 
manage development projects. Over the years, there has been extensive publication in the area of 
project management and scheduling. Herroelen [5] has further suggested that there is an 
abundance of literature in this area, but for several reasons the theories have not been 
implemented into practice. Project management in the discipline of software engineering has 
always been problematic for many practitioners and there could be several reasons for it. 
Herroelen [5] argued that these problems are mainly caused because of the following reasons: 
 

• Poor project management skills 

• Poor leadership skills 

• Size of the projects 

• Lack of resources 

• Inappropriate cost estimation and allocation methods 
 
Furthermore, Herroelen[5] has also mentioned that these problems have been identified by 
literature in the past. To overcome the above mentioned problems, Herroelen has proposed a 
hierarchical project management model. In interest of solving the above mentioned problems, 
more effectively, it has been suggested to use heuristics approaches and there is a growing body 
of literature whereby researchers and practitioners have used algorithms to solve project 
management and scheduling problems. 
 
Resource Constrained Project Scheduling Problems (RCPSP) is a subsection of the issue 
identified with in the software project planning and literature. This paper makes use of search-
based software engineering to resolve test examples that fall with in this class of problem. 
Kolisch & Hartmann [6] have argued that the problem with software project planning is a high 
level problem and when the problems are analysed further, it turns out that in most cases the 
problems were caused because the resources were scarce. Furthermore, Pinto, Ainbinder & 
Rabinowitz [7] have argued that there are three main resources which are usually scarce in a 
software project and they are as follows: 
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• Lack of human resource 

• Lack of funding 

• Lack of available time 
 
The above mentioned categories are similar to Herroelen [5] whereby he was trying to explain 
reasons for failure or escalation of a project, but having said irresolvable constraintscan also cause 
the project to fail or escalate. Kolisch and Hartmann [6] have suggested that literature in the past 
indicates that if a software project falls within the definition of RCPSP, then it is very likely that 
project will either fail or be escalated. This is the main justification stated by Kolisch and 
Hartmann [6] in support of their research to solve classes of RCPSP. Many researchers have 
argued that literature in the past suggest that researchers and practitioners have used several 
different methodologies to solve RCPSP, but unfortunately, none of the methodologies have been 
successful implemented in the “real-world”.  
 
Kolisch& Hartmann [6] have clearly extended the thoughts of Clarke et al. [3] by conducting 
experiments to resolve this problem (i.e. implementing search techniques to solve RCPSP). 
Having said that, Kolisch& Hartmann [6] have conducted experiments based on their assumptions 
and their own past research in 2001 which could make this research biased, but on the other hand 
Gueorguiev, Harman, &Antoniol [8] have conducted experiments using data from the “real-
world” and this could potentially return results which are not biased. 
 
Kolisch& Hartmann [6] and Gueorguiev, Harman, &Antoniol[8] all have mainly focused on 
solving RCPSP using search-based software engineering approaches. The authors have clearly 
followed the guidelines provided by Harman and Jones [1] and Clarke et al. [3] whereby they 
reformulated the RCPSP as search problem. In the next stage authors have selected a 
representation of the problem and after that, authors have identified their fitness functions to 
evaluate candidate solutions. Having said that, each research had different criteria for fitness 
function and this mainly because the nature of the experiments was different. 
 

3. METHEURISTIC SEARCH ALGORITHMS 

 
Metaheuristic search algorithms have been an area of growing interest for several decades as the 
recent growth in computing power has resulted in the potential of these approaches being realised. 
A wide range of algorithms have been developed, each of which has its own merits. This research 
is not intended to be an exhaustive exploration of the performance of every algorithm and is 
restricted to three standard algorithms, namely Simulated Annealing, Tabu Search, and Genetic 
Algorithms.  
 

2.1. Simulated Annealing 

 
Simulated annealing is a metaheuristic search technique which can be used to solve optimisation 
problems. The technique has the ability to find solutions in large and small solution spaces. 
Unlike many other metaheuristic search techniques, this technique is a direct search method 
involving a single search trajectory [9]. The name and inspiration for this search technique was 
derived from the process of annealing metals. This annealing process involved heating and 
gradually cooling the solid material so that the defects are reduced. After the completion of this 
process, it can be concluded that the solid material has reached a global minimum state. 
 
The simulated annealing algorithm is therefore very straight forward. When the algorithm is 
initiated, an initial solution to the problem is randomly generated. After initial value is selected, it 
is evaluated in accordance to the problem cost function and then changed slightly to generate a 
new candidate solution from the neighbourhood of the initial solution. After selecting a new 
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candidate solution, the value of the cost function is obtained and if the value is better than 
previous candidate solutions then it is retained. However, if the value is worse than any other 
candidate solution, then there is small probability that the search will move to the next candidate 
solution and continue. The calculation of the probability is calculated using an analogy to the 
Maxwell-Boltzmann probability function. 
 
When there is a change in the value of the cost function, it determines the change in energy. The 
units of temperature control parameters and cost function is the same. Additionally, the 
temperature control parameter also enables the probability of selection. During the initial stages 
of the execution process of the algorithm, the temperature is kept steady and this allows the 
system to gain momentum in searching. As the temperature drops, the probability of selecting a 
bad solution reduces. Hence towards the end, this algorithm tends to move towards an optimum 
solution. Previous work [10] has shown that Simulated Annealing and Tabu Search both have the 
capacity to solve complex problems, but with different solution trajectories. 
 

2.2. Tabu Search 

 
Tabu search has similar search method characteristics to simulated annealing and is generally 
implemented as a single search trajectory direct search method. The concept was originally 
coined by Glover [11, 12] and since then the application of this search technique has increased 
considerably. Tabu search has been successfully implemented to solve discrete combinatorial 
optimisation problems such as graph colouring and Travelling Salesman Problems, and has also 
been applied to a range of practical problems. In terms of operations, tabu search is initiated at a 
random starting point within a solution. After that, it identifies sequences of moves and whilst 
that process is executed, a tabu list is generated. Evaluation of cost function can determine 
whether the member belongs to the tabu list or not. Some members of the tabu list can belong to 
an aspiring set. The criteria for aspiring move are dependent on the size and the type of the 
problems; hence this could differ for each implementation. Additionally, tabu search also uses 
tabu restrictions and a number of flexible memories with different time cycles. The flexible 
memories allow search information to be exploited more thoroughly than rigid memory or 
memoryless systems, and can be used to either intensify or diversify the search to force the 
method to find optimum solutions. Previous work has shown that Tabu Search has the potential to 
find solutions to complex problems much more efficiently than Genetic Algorithms [13]. 
 

2.3. Genetic Algorithms 

 
Unlike simulated annealing and tabu search, genetic algorithm is not a local search method. This 
search technique uses a population of solutions that are manipulated independently of the 
evaluation of the cost function. This algorithm was built on the principles of Darwinian Evolution 
[14]. Since its introduction, this search technique has been used in variety of disciplines and there 
is substantial research to identify its practical implementations. 
 
Goldberg [14] further adds that genetic algorithmsare a non-derivative based optimisation 
technique and the outcome of this algorithm is based upon the principle of the survival of the 
fittest. When the algorithm is initiated, a candidate solution set is created on random and this is 
called a population. Using the existing population, new generation is created using genetic 
operators like crossover, mutation, and reproduction. Ideally as the algorithm progresses, the 
solutions are improved and optimum solutions can be achieved over time. 
 
Genetic Algorithms are a broad and effective search method which has been applied to a wide 
range of practical problems. The term Genetic Algorithm is particularly broad and covers many 
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variations in implementation ranging from the simple GA presented by Golberg[14] through to 
complex multi-objective algorithms such as NSGA-II [15]. 
 

4. TEST PROBLEMS 

 
Each of the algorithms described in Section 3 have been implemented and tested on a number of 
different test problems. Prior to investigating resourcing and scheduling problems, the 
performance and scalability of the implementations were tested on numerical test functions and 
other discrete optimisation problems, such as the n-Queens problem. This is not reported in this 
paper but allowed for each algorithm to be suitably tuned to allow a fair comparison to be made. 
 

4.1. Resourcing Problem 

 
To schedule a project effectively, project planners must select appropriate costing and resourcing 
options. This selection will determine the duration of the project. In most cases, projects have 
multiple costing and resourcing options which lead to multiple due dates. The main objective in 
the evaluation is to schedule resource unconstrained and constrained project using metaheuristics 
search techniques.  
 
Traditionally, project schedules can be generated using a critical path method and that project 
planners can also include resources and activities assigned to those resources. Unfortunately, such 
schedules have a down side whereby it is difficult for project planners to identify when the 
resources were freed from the previous activity. Hence this evaluation will overcome the 
limitation identified by using critical path method. Before the evaluation process starts, consider a 
small project presented in Table 1 by each activity with its early start, early finish, late start, late 
finish and total float.  
 

Table 1.Project Scheduling Data [16] 
 

 
 
This data was used by Christodoulou [16] to schedule the project using ant colony optimisation 
algorithm. The critical path calculations on the above mentioned case study topology and the 
resulting early start, early finish, late start, late finish and total float can be solved by applying 
traditional critical path planning methods. Based on the critical path method calculation and 
activities 4, 10 and 17 have been identified as critical and the total duration of the project is 126 
time units.  
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Christodoulou [16] has also solved the above mentioned case study using critical path method 
resource unconstrained and resource constrained environment
that can be compared to the work of 
this small project. 
 

4.2. Scheduling Problem 
 
This paper also evaluates the performance of three meta
time-cost trade-off project scheduling problem which is discrete in nature. 
presented in Table 2. This data has also used by Elbeltagi, Hegazy& Grierson 
& Burns [18] to solve discrete optimisation problem by implementing a number of different 
algorithms. 
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has also solved the above mentioned case study using critical path method 
resource unconstrained and resource constrained environments. Results are presented in section 5 
that can be compared to the work of Christodoulou [16].Figure 1 illustrates the critical path for 
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Table 2.Project Scheduling Data [17] 

 

 
 
The data presented above relates to a project which constitutes 18 activities and has been 
presented with 5 options of different cost and duration.  In each case, the first option is the most 
expensive option but it will take the least number of days to complete the project and the fifth 
option is the cheapest option and it will take the longest to complete. For each task the project 
managers would have to choose from five options and this could traditionally be done using 
heuristics approaches, but to get most optimised solution, one of the five options will be selected 
for each task using genetic algorithm, simulated annealing and tabu search. As mentioned earlier, 
this data is related to time-cost trade-off problem and as such there is likely to be a pareto-optimal 
set of solutions to the problem. Thepareto-optimal set of solutions is a unique line through the 
total set of solutions that represents what are considered to be non-dominated solutions. Each 
solution along the pareto-optimal front is equally valid in terms of how it trades off cost and time. 
Before the evaluations are carried out, a critical path must be established for the 18 tasks 
mentioned above and it illustrated in Figure 2. 
 

 
 

Figure 2.Task dependency network 
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This task dependency network does not display a critical path as the selection of different options 
from Table 2 may result in different critical paths being generated. The objective of this problem 
is to minimise the total cost of the project and to do this a fitness function has been used against 
each algorithm. This fitness function is defined by Equation 1. 
 

���� = ��� 	�
 ×  �� +  � ���
�

��� � 

 
Equation 1: Cost Estimation Fitness Function 

 
The variables mentioned in the above mentioned fitness function represents the following: 
 
n = number of activities 
Cij= direct cost of activity i using its method of construction j 
T = total project duration 
I = daily indirect cost 
 
The three different metaheuristic search algorithms are used to minimise the total cost of the 
project using the fitness function mentioned above. The underlying application and parameters for 
each algorithm is similar to the previous evaluations. The results generated from these evaluations 
will be compared against the results from evaluations carried out by Elbeltagi, Hegazy& Grierson 
[17] and Feng, Liu & Burns [18]. 
 

5. EXPERIMENTAL RESULTS 

 
5.1. Resourcing Problem 

 
Resource unconstrained scheduling is fairly straight forward and in most cases can be solved 
using critical path methods. For the purpose of this evaluation, the genetic algorithm, simulated 
annealing and tabu search algorithms will be used. Because the case study is relatively simple, all 
search techniques were able to find an optimum solution in a reasonable timescale. In this case 
the optimum solution is 126 time units for the project duration. When this solution is compared 
against the solution presented using critical path method it is the same. 
 
Although in this case the solution is the same as critical path method, it may always not be the 
same. If the size of the project would be extensively large then finding an optimum project 
duration would take longer and may not be correct because of human intervention. In this case 
study, the critical path method calculation required ten conditional statements and 17 additions / 
subtractions for each forward or backward pass in the network. In contrast to that the 
metaheuristic search algorithms are more efficient in finding the optimum solution. The 
advantage of this might not be so obvious in this evaluation mainly because of the size of the 
data, but it is likely that for larger dataset these algorithms would generate results significantly 
faster and more efficiently. 
 

Table 3. Unconstrained Resourcing Problem Results 

 
Algorithm Duration Critical Path Activities Iterations 

Ant Colony Optimisation [16] 126 4, 10, 17 <= 50 

Genetic  Algorithm 126 4, 10, 17 <= 39 

Simulated Annealing 126 4, 10, 17 <= 49 

Tabu Search 126 4, 10, 17 <= 55 
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The results presented above for each algorithm are the same and that is mainly because there are 
no constraints on the project. However, some search techniques have found the optimum solution 
sooner than other search techniques. In this case, genetic algorithm was the quickest to find the 
best solution. In the evaluations carried out by Christodoulou [16], he has also achieved the same 
results as genetic algorithm, simulated annealing and tabu search. Although the size of the case is 
study is fairly small the overall process for calculating the total duration and identifying critical 
activities was very straight forward. The main idea behind this evaluation is to schedule the 
project as soon as possible, hence any constraints were not considered. However, if we were to 
assign resources constraint to each task and still wanted to same project due date, there would be 
some over allocated resources.  
 
Scheduling a resource-unconstrained project is reasonably straightforward, but as soon as there is 
a constraint on resources for the project, the scheduling becomes very complicated and critical 
path method may not be sufficient to achieve an optimised project schedule. The lack of resources 
needed to start and complete an activity make certain critical paths unfeasible solutions.As a 
result, some of the activities in a project can be put on hold which in turn can impact the entire 
project schedule. In the standard critical path method the importance of activities are determined 
by its total float value. The importance of activity increases as the value of total float drops. 
Hence, when scheduling a project activities with fewer totals float value get preference in 
allocating resources. 
 
In the unconstrained problem, it is assumed that each activity in the problem presented in Table 1 
utilises one unit of resources for each day and based on that a resource histogram is can be 
generated. However for this evaluation it is assumed that the availability of resource is 
constrained to 7 units. As a result the need for resources has exceeded the available resource 
threshold. When the constraints are implemented the results shown in Table 4 are achieved. 
 

Table 4.Constrained Resourcing Problem Results 

 
Algorithm Duration Critical Path Activities Iterations 

Ant Colony Optimisation [16] 142 3, 13, 15 <= 50 

Genetic  Algorithm 139 4, 7, 17 <= 58 

Simulated Annealing 147 5, 9, 17 <= 55 

Tabu Search 143 2, 9, 17 <= 62 

 
This table represents time taken in the duration column, and also highlights the critical activity. 
The first results are derived from the experiments of Christodoulou [16]. In his experiments, ant 
colony optimisation finds a solution that takes 142 time units to complete a project and in 
comparison that genetic algorithm implemented in this research will take 139 time units and the 
critical activities are 4, 7 and 17. Whilst the genetic algorithm has found the solution by 
projecting to complete the project in 139 time units, it took more iterations than ant colony 
optimisation and simulated annealing. Ant colony optimisation has outperformed simulated 
annealing and tabu search in terms of both duration of the outcome and the number of iterations 
required to find the solution. 
 

5.2. Scheduling Problem 

 
The summary of results generated from this evaluation is presented in Table 5. This table 
represents the minimum and average of project cost and duration over multiple runs of the 
algorithms. In addition to this, it also presents the percentage of success against the other 
algorithms. The percentage of success is calculated based on numbers of days and total cost of the 
project. Hence, the lower the total cost of project and duration, higher the success rate of the 
algorithm. 
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Table 5.Scheduling Problem Results

Algorithm 

 Duration 

Genetic Algorithm 104 

Simulated Annealing 110 

Tabu Search 108 

 
The genetic algorithm was again 
managers to complete the project in 104 days with total cost of 
found by simulated annealing was to complete the project in 110 days with total cost of 
and the best combination found by tabu search was to complete the project in 108 days with total 
cost of $156,720. Although the combination f
faster than simulated annealing, the cost of
than simulated annealing. Hence simulated annealing has a greater success rate than tabu search. 
These results can be compared with those of Feng, Liu & Burns 
Algorithm to solve this problem and they discovered two non
days/$133,320 and 101 days/$129,320. The best solution found in the current research is 
close to the pareto-optimal front for this problem. The above solutions appear to be an 
improvement when compared with the results o
comparative study indicated that the Particle Swarm Optimisation algorithm w
the problem; however the best solution it found was 110 days/ $161,270. The overall results 
achieved for each algorithm is presented in a time
 

Figure 3 illustrates the pareto-optimal fronts identified by the different algorithsm, where each 
point on the curve represents a unique
stages of evaluation, trade-off curve are generated, but they are scattered all over the solution 
space and does not gather into one region, but as the evaluation progresses 
takes shape. The Genetic Algorithm took 6
the trade-off curve whereas simulated annealing took 77 iterations and tabu search took 71 
iterations. An effective way to judge a performance of the algorithm is to ensure that the trade
curve is closest to the axis. Hence looking at Figure 
genetic algorithm has performed better than that of simulated annealing and tabu search. 
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Minimum Average 

 Cost Iterations Duration Cost Iterations

139,320 64 111 152,010 68 

145,820 77 118 156,310 80 

156,720 71 113 156,910 75 
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than simulated annealing. Hence simulated annealing has a greater success rate than tabu search. 
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achieved for each algorithm is presented in a time-cost trade-off curve as illustrated in Figure 3
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7. CONCLUSIONS 
 
This paper presents the results of applying three metaheuristic search algorithms to a number of 
problems that would be typical of those found in the management of software development 
projects. All three of the algorithms have the potential to solve scheduling and planning problems, 
though the genetic algorithm has performed consistently well when compared against the other 
algorithms. Simulated annealing was the second most favourable for this evaluation, and that it is 
evident that tabu search is the least favourable choice of algorithm to solve the problems 
presented in this paper. This isdifferent to conclusions of Elbeltagi, Hegazy& Grierson [17] who 
mentioned that tabu search has been used widely by many researchers to solve not only time-cost 
trade-off problem, but many other NP-hard problems.  
 
After finding the trade-off curve, project managers can determine the total cost of the project by 
summing up the estimated indirect cost and direct cost from trade-off curve. Using trade-off curve 
as the objective function allows for much more efficient evaluation of various other indirect 
costs.Future work will investigate the scalability of the approach to significantly larger problems. 
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