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Abstract

This systematic review offers a world-first critical analysis of machine learning methods and systems, along with
future directions for the study of cybersickness induced by virtual reality (VR). VR is becoming increasingly popu-

lar and is an important part of current advances in human training, therapies, entertainment, and access to the
metaverse. Usage of this technology is limited by cybersickness, a common debilitating condition experienced upon
VR immersion. Cybersickness is accompanied by a mix of symptoms including nausea, dizziness, fatigue and oculo-
motor disturbances. Machine learning can be used to identify cybersickness and is a step towards overcoming these
physiological limitations. Practical implementation of this is possible with optimised data collection from wearable
devices and appropriate algorithms that incorporate advanced machine learning approaches. The present systematic
review focuses on 26 selected studies. These concern machine learning of biometric and neuro-physiological signals
obtained from wearable devices for the automatic identification of cybersickness. The methods, data processing and

Neural networks, Virtual reality, Extended reality, Simulator

machine learning architecture, as well as suggestions for future exploration on detection and prediction of cyber-
sickness are explored. A wide range of immersion environments, participant activity, features and machine learning
architectures were identified. Although models for cybersickness detection have been developed, literature still lacks
a model for the prediction of first-instance events. Future research is pointed towards goal-oriented data selection
and labelling, as well as the use of brain-inspired spiking neural network models to achieve better accuracy and
understanding of complex spatio-temporal brain processes related to cybersickness.
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1 Introduction

Cybersickness is a type of visually induced motion sick-
ness experienced in virtual environments [1]. It is well-
recognized that the symptoms of nausea, dizziness,
fatigue and oculomotor problems have been a barrier to
mainstream adoption of VR technology [1]. The utility
of VR includes not just gaming and entertainment [2],
but applications for professional training in healthcare,
aerospace, industrial, defence, disaster safety and emer-
gency procedures [3]. VR can also be used for planning
cost-effective architectural designs [4]. Moreover, there
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is potential for VR well-being applications in high-stress
reduction [5], exposure therapy to reduce anxiety and
trauma [6, 7] and health-related interventions using VR
neuromodulation [8]. The importance of VR is further
highlighted in environments with restricted social inter-
actions such as those imposed by the recent COVID-19
pandemic, allowing people to connect despite physical
boundaries [9]. Clearly, the world is progressing towards
an integrated metaverse, which embraces immersive
mixed realities [10]. It is, therefore, crucial to tackle the
issue of cybersickness.

While visible physiological signs can be tell tales of
an ongoing cybersickness event, it is still a perceptual
disorder that is not always apparent until it is commu-
nicated [11]. Machine learning provides a way to log
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cybersickness events without overreliance on commu-
nication from VR users. This information enables timely
prevention and treatment. The source of which comes
from widely available sensor technology, which allows
features to be derived from biometric and physiological
data.

Measures include:

« Electrical activity in the brain [12-27]

« Electrical potentials of eye movement [25, 28, 29]
+ Heart rate and heart rate variability [28, 30, 31]

+ Gastric activity [25, 29]

+ Muscle activity [24]

+ Respiration rate [25, 28—32]

« Skin conductivity [28-31, 33]

« Eye blinks [25, 28, 29]

+ Body movements [25, 34, 35]

Recently, Yildirim [36] reviewed four studies that used
deep learning of electroencephalogram (EEG) data for the
classification of cybersickness. The studies presented prom-
ising results, with accuracies in the range of 83.33-99.12%
[36]. The review noted that extra care should be taken to
report EEG data transformations, or lack thereof, as part of
pre-processing. In addition, it was recommended that stud-
ies report clear descriptions for deep learning architectures,
such as tensor shape, number and type of layers, activation
functions and hyperparameters.

Moving forward, several other aspects in the wider lit-
erature require clarification. Across studies, there is a lack of
homogeneity with regard to the definitions of detection and
prediction. It is important to distinguish between the two to
be clear about the extent of a machine learning model’s capa-
bility. In this review, we define detection as the identification
of data related to an ongoing cybersickness event. In con-
trast, we define prediction as the forecasting of future cyber-
sickness using data prior to the event.

From a clinical perspective, the course of action against
cybersickness would differ depending on the ability to detect
or predict it. A model that detects cybersickness provides an
opportunity for timely intervention, whereas a model that
predicts potentially allows for early prevention.

A machine learning model’s applicability is heavily
dependent upon the data fed into it. Therefore, further
investigation into the experimental design, method of
data selection and data labelling in studies is needed. In
addition, subject demographics, immersion environment
and participant activity all influence the data obtained
and the features extracted; ultimately framing the context
of a model’s results. An overview of these items across
published studies is required, particularly to help future
studies have clear goal implementation when designing
an experiment or machine learning architecture.

Page 2 of 25

Finally, cybersickness is a result of dynamic spatio-tem-
poral processes in the brain, involving different spatially
located areas over time [37, 38]. Appropriate machine
learning (ML) methods can help provide a better under-
standing of these processes, at both the group and indi-
vidual level, but this has not been clearly assessed yet in
previous studies.

The goal of this systematic review was to analyse rel-
evant studies pertaining to various physiological and
biometric-based machine learning approaches towards
the detection and prediction of cybersickness. The review
provides a discussion of the experimental methods for
data collection, processing and machine learning analy-
sis within different architectures. In addition, suggestions
for future exploration are discussed.

The research questions for this review are as follows:

1. How have studies been able to detect or predict
cybersickness?

2. What stimulus type, environment and participant

activity contributed towards cybersickness induc-

tion?

How are the reviewed articles comparable?

Which features are the most important?

5. What new information about brain activities related
to cybersickness have been revealed by the studies?

B

1.1 Contributions
In summary, according to the research questions, we
contribute the following:

+ An in-depth summary of study design and details for
each reviewed study

+ A differentiation between prediction and detection
studies

» Awareness of the consequences of mislabeling cyber-
sickness data

+ A highlight of the most informative features for
machine learning and classification, with the caution
they may not be generalizable or interpretable.

+ Considerations for practical translation of machine
learning algorithms to wearable devices for consumer
usage, including number and type of sensors for dif-
ferent use cases.

+ Future suggestions for machine learning of physi-
ological data related to cybersickness.

Our justification for choosing these research questions
and items of discussion, stems from the need to develop
study protocols that properly capture cybersickness data
according to specific research goals. The aspects chosen
influence the type of data processed and are crucial to the
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meaning of machine learning outputs. Furthermore, this
affects not just the practical translatability of machine
learning algorithms, but also the explainability of models
that pave the way for the generation of new knowledge
about cybersickness. Deliberation on these aspects will
not only help to develop better study designs, but also aid
in human adaptation to digital environments.

2 Methods

2.1 Database search

PubMed and IEEE Xplore databases were used to cover the
intersection between biomedical and life sciences litera-
ture with that of computer science and engineering. Google
Scholar was used to manually screen papers from an exten-
sive array of journals and conferences based on their titles
and abstracts. The review was written with PRISMA guide-
lines [39] for systematic reviews in mind. Eligible publica-
tions needed to utilize a stimulus to induce cybersickness
through a virtual visual medium, such as either a screen pro-
jection, desktop display, VR head-mounted device or simula-
tor environment. Publications also needed to apply machine
learning on physiological data or physical measures of body
and eye movement for the classification of cybersickness
data samples. We define a study to be an instance of machine
learning even if it solely uses regression analysis. Stud-
ies were excluded if an analysis was applied for knowledge

Table 1 Database search and selection criteria
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discovery about physiological correlations with cybersick-
ness without any event detection, prediction or estimation of
sickness levels. Studies analyzing only non-physiological data
such as VR content or subjective questionnaire scores were
excluded. Other exclusions were reviews, methodological
articles, conference abstracts, and publications, where full-
text was not available through our institutions. See Table 1
for the database search and selection criteria.

This review included all studies from 2001 to 10th Novem-
ber 2021. The search strategy was adapted from PICO
criteria (Patient or population, Intervention, Control or
Comparison, Outcome and Study; Table 2).

2.2 Search terms

Cybersickness OR visually induced motion sickness OR
simulator sickness AND physiological AND machine
learning AND Virtual Reality.

2.3 Screening process

Titles and abstracts of potential studies were assessed
independently by three reviewers (AHX Yang, N. Kasa-
bov, YO. Cakmak), according to the Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [40]. The studies that met the inclu-
sion and exclusion criteria were discussed and evalu-
ated based on their content relative to the five research

Database search

1. Pubmed
2. Google Scholar
3. IEEE Xplore

Electronic database

Inclusion criteria
data or from electronic records

1. Articles that develop or validate a prediction or detection model using any data source, e.g., individual patient

2. Studies must utilize a stimulus with a virtual visual medium

3. Any machine learning analysis and physiological processing or physical measures of body/eye movement col-
lected from wearable devices for the classification of cybersickness

4. All outcome measures in any format, e.g., continuous, binary, ordinal, multinomial, time-to-event

Exclusion criteria

1. Studies using machine learning to classify only non-physiological data, e.g., VR content or questionnaire scores

2. Studies that only investigate physiological correlations with cybersickness as a form of knowledge discovery
3. Reviews, Concept papers and abstracts

4. Full text not available

Table 2 Search strategy

Search strategy

Population
Intervention
Comparison
Outcome
Study type
Keywords

Studies using physiological data to build cybersickness classification algorithms
Inducement of cybersickness to create labelled data for classification

Different models and their utility for clinical intervention

Ability to detect or predict cybersickness

Quantitative study

Cybersickness OR visually induced motion sickness OR simulator sickness AND

physiological AND machine learning AND virtual reality
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questions outlined above. Two reviewers (AHX Yang,
YO. Cakmak) evaluated the full-text studies indepen-
dently, while the third reviewer (N. Kasabov) resolved
disagreements.

2.4 Data extraction and analysis

An initial risk of bias (ROB) assessment was run, from a
conservative viewpoint. The ROB covered four domains
from the PROBAST recommendations each containing
their own signalling question items to judge risk of bias
[41].

Responses were formulated as yes (Y) or probably
yes (PY) for the absence of bias and no (N), probably
no (PN), or no information (NI) to indicate a potential
for bias. Overall judgement of risk of bias for publica-
tions was defined as high, low, or unclear. Although it is
important to note that bias in itself is not necessarily a
criticism of the choice of study design, which could be
scientifically reasoned, but an assessment of erroneous
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assumptions that may lead to misleading conclusions
based on machine learning results.

Additional data items were extracted to answer the five
research questions outlined above which are specific to
the field of cybersickness classification. The data items
include subject demographics, immersion type, partici-
pant activity, information on different machine learning
models, reporting styles, data segment labelling, preproc-
essing methods, biometric and neurophysiological fea-
tures relevant to cybersickness and EEG specifications.
These data items are listed in Tables 3, 4, 5, 6, 7, 8, and 9,
which sort studies by year from earliest to most recent.
Two reviewers (AHX Yang, YO. Cakmak) independently
extracted and assessed the data from the included stud-
ies, while the remaining reviewer (N. Kasabov) cross-ref-
erenced, clarified differences in interpretation, and then
confirmed a standardized response. Any disagreements
reached a consensus and were resolved by the third
reviewer (N. Kasabov) after discussion.

Table 3 Subject demographic including sample size, gender, age range and mean with standard deviation where available

Author N Male Female Age range Mean
Subject demographics

Nam et al. [12] 45 25 20 18-26 21.9
Yuetal. [13] 7 - - 21-24 -

Wei et al. [16] 6 - - - -

Wei et al. [14] 6 - - - -

Ko etal.[15] 10 - - - -

Linetal. [17] 10 - - - -

Koetal. [18] 6 - - - -

Linetal [19] 17 - - - -

Dennison et al. [29] 20 (9 completed) 14 6 - -

Pane et al. [26] 9 6 3 25-35 -

Mawalid et al. [21] 9 2 - -
Khoirunnisaa et al. [20] 9 2 - 25.1
Dennison et al. [25] 20 15 5 >18 -

Wang et al. [34] 11 7 4 - 25834458
Garcia-Agundez et al. [28] 66 - - - -

Jeong et al. [22] 24 13 12 20-33 -

Lietal. [35] 20 20 18-27 228

Kim et al. [42] 202 - - - -

Liao et al. [27] 130 65 65 6-23 -

Lietal [23] 18 (6 excluded) 19 5 - 293

Lee, Alamaniotis [43] 31 29 2 - 24044275
Islam et al. [30] 31 (8 excluded) =23 29 2 - 24044275
Islam et al. [31] 31 (8 excluded) =23 29 2 - 24044275
Martin et al. [33] 103 86 17 - 26.12+6.31
Recenti et al. [24] 28 22 6 - 238+12
Oh, Kim [32] 20 (2 excluded)=18 8 12 - -

Dashes (-) are put, where information was missing or not available
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Table 4 Immersion type including mode of stimulus, VR content, platform usage, and participant activity

Page 5 of 25

Author

Mode of stimulus

VR content

Platform (moving/still)

Standing/sitting/active

Immersion type and participant activity

Nam et al. [12]

Yuetal. [13]

Wei et al. [16]

Wei et al. [14]

Ko etal.[15]

Linetal.[17]

Koetal. [18]

Linetal [19]

Dennison et al. [29]
Pane et al. [26]
Mawalid et al. [21]
Khoirunnisaa et al. [20]

Dennison et al. [25]
Wang et al. [34]
Garcia-Agundez et al. [28]
Jeong et al. [22]

Lietal. [35]

Kim et al. [42]
Liao et al. [27]

Lietal [23]

Lee and Alamaniotis [43]
Islam et al. [30]

Islam et al. [31]

Martin et al. [33]

Recenti et al. [24]

Oh and Kim [32]

3D virtual environment
simulator

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

360 degree Simulator, 6
degrees freedom motion
platform

Display Monitor 1920 x 1280
resolution, Oculus Rift

47 Inches LED Monitor
HD-1366 x 768 resolution

47 Inches LED Monitor
HD-1366 x 768 resolution

47 Inches LED Monitor
HD-1366 x 768 resolution

Oculus rift DK2
HTC Vive HMD
Oculus rift DK2
FOVE VR headset
Projected screen

HTC vive HMD
HTC vive HMD

HTC vive HMD
HTC vive HMD
HTC vive HMD
HTC vive HMD
Oculus rift

VR Goggles HMD + moving
platform

HTC vive HMD

Virtual background of build-
ings

Auto driving

Auto driving

Auto driving

Auto driving

Auto driving

Auto driving

Auto driving

VR exploration
Mirrors edge
Mirrors edge
Mirrors edge

VR exploration
Virtual exploration
VR plane flying

6 VR videos

Forward/backward video,
auto driving

44 /R videos

Roller coaster, space simula-
tor, boat

VR roaming

VR rollercoaster

VR rollercoaster

VR rollercoaster

Multiple VR games
Open sea boat on waves

VR rollercoaster

None

Moving, sync with simulator

Moving, sync with simulator

Moving, sync with simulator

Moving, sync with simulator

Moving, sync with simulator

Moving, sync with simulator

Moving, sync with simulator

None
None
None
None

None
None
None
None
None

None
None

None
None
None
None
None

Moving, sync with VR waves

None

Unclear

Passive sitting (visual 4 ves-
tibular)

Passive sitting (visual + ves-
tibular)

Passive sitting (visual 4 ves-
tibular)

Passive sitting (visual + ves-
tibular)

Passive sitting (visual 4 ves-
tibular)

Passive sitting (visual 4 ves-
tibular)

Passive sitting (visual + ves-
tibular)

Passive sitting (visual)

Sitting (active playing, visual)
Sitting (active playing, visual)
Sitting (active playing, visual)

Standing (visual)
Standing (visual)
Active sitting (visual)
Unclear

Standing (visual)

Unclear
Passive siting (visual)

Passive sitting (visual

(
Passive sitting (visua
(

)
)
Passive sitting (visual)
Passive sitting (visual)
Active sitting (visual)

Standing in all stages, active
balancing (visual 4 vestibular)

Passive sitting (visual)

3 Results

3.1 Search and Selection

The

database search

identified 446 studies.
manual screening for titles and abstracts, 40 studies

remained based on the inclusion/exclusion criteria. 14
studies were further excluded upon assessment of the

After

full text. Among them, there were 2 reviews, 2 concept
papers, 2 duplicates, 3 did not use machine learning for
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Table 6 Reporting styles and data labelling

Page 9 of 25

Author Biosignal Report Non-cybersickness Cybersickness labelling
labelling
Nam et al. [12] EEG, EOG, ECG, finger tip Verbal Data points not labelled as Within 3 s of report while
skin temperature, PPG, skin cybersick immersed
conductance
Yuetal [13] EEG Joystick scale Participant defined time Continuous scale
segments
Wei et al. [16] EEG Joystick scale Participant defined time Continuous scale
segments
Wei et al. [14] EEG Joystick scale Participant defined time Continuous scale
segments
Koetal. [15] EEG Joystick scale Participant defined time Continuous scale
segments
Linetal.[17] EEG Joystick scale Participant defined time Continuous scale
segments
Ko etal.[18] EEG Joystick scale Participant defined time Middle of motionsickness level
segments graph and after highest sick-
ness rating
Linetal. [19] EEG Joystick scale Participant defined time Continuous scale

Dennison et al. [29]

Pane et al. [26]
Mawalid et al. [21]
Khoirunnisaa et al. [20]
Dennison et al. [25]

Wang et al. [34]
Garcia-Agundez et al. [28]

Jeong et al. [22]
Li et al. [35]

Kim et al. [42]

Liao et al. [27]

Lietal [23]

Lee and Alamaniotis [43]
Islam et al. [30]

Islam et al. [31]

Martin et al. [33]

Recenti et al. [24]
Oh and Kim [32]

ECG, EGG, EOG, blink rate,
PPG, breathing rate, GSR

EEG
EEG
EEG

EEG, ECG, EQG, blink rate,
breathing rate, EGG, postural
sway, head movement

Postural sway

ECG, EOG, blink rate, breath-
ing rate, GSR

EEG

EEG, postural sway, head
body movement

EEG
EEG
EEG
EEG
ECG, breathing rate, GSR
ECG, breathing rate, GSR

BVP, EDA

EEG, EMG, heart rate
BVP, respiratory signal

SSQ

SSQ cut-off score
SSQ cut-off score
SSQ cut-off score
In game input via controller

SSQ
SSQ

Keyboard marker
Keyboard marker

Likert scale

Verbal
Tact switch
Mouse click
Verbal
Verbal

Verbal

MSSQ
Verbal

segments
N/A (SSQ score estimation)

Before gameplay
Before gameplay
Before gameplay

Score of zero for 'no symp-
toms’on a zero to three point
scale

N/A (SSQ score estimation)
SSQ score cut off

Unclear

During VR, before video
movement

Video contents scored '1:
comfortable’on Likert-like
scale

Lack of cybersickness report
during VR immersion

Before VR immersion

During VR, before video
movement

Sickness scale cutoff for
entire VR immersion

Before VR immersion, and
before video movement

Score of zero on VR sickness
scale

N/A (index classification)

no report of cybersickness
and pre-immersion neutral
states

Entire VR immersion

Tailend of gameplay
tailend of gameplay
total gameplay

30 s intervals

N/A (SSQ score classification)
Entire VR immersion

entire video

Varying interval throughout
video

Mid video

Report of sickness, entire
recording

Varying interval throughout
immersion

2 stimespan, 1 s before cyber-
sickness report

Sickness scale cutoff for entire
VR immersion

Entire VR immersion

Window sizes of 10, 30, 60, 90,
120 s before report of sickness
with a score equal to or more

than 1

N/A

Entire VR immersion

Simulator sickness questionnaire (S5Q), motion sickness questionnaire (MSSQ)
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Table 7 Preprocessing methods

Page 10 of 25

Author

Biosignal

Preprocessing

Preprocessing methods
Nam et al. [12]

Yuetal [13]
Wei et al. [16]
Wei et al. [14]
Koetal. [15]

Linetal [17]

Ko etal. [18]

Linetal [19]

Dennison et al. [29]

Pane et al. [26]

Mawalid et al. [21]
Khoirunnisaa et al. [20]

Dennison et al. [25]

Wang et al. [34]

Garcia-Agundez et al. [28]

Jeong etal. [22]

Lietal. [35]

Kim et al. [42]

Liao et al. [27]

EEG, EOG, ECG, finger tip skin temperature, PPG, skin
conductance

EEG
EEG
EEG
EEG

EEG

EEG

EEG

ECG, EGG, EOG, blink rate, PPG, breathing rate, GSR

EEG

EEG
EEG

EEG, ECG, EQQG, blink rate, breathing rate, EGG, postural
sway, head movement

Postural sway
ECG, EOQG, blink rate, breathing rate, GSR
EEG

EEG, postural sway, head body movement

EEG

EEG

Power band extraction, standard deviation of EOG, mean

R-R of ECG, mean and standard deviation of fingertip skin
temperature, PPG and skin conductivity. Data segments for

all variables calculated in period 3 (30 s after to the end of VR
immersion) ratioed to period 1 and 2 (1 min before VR immer-
sion and 30 s after)

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT and conversion to decibel power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT and conversion to decibel power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT and conversion to decibel power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT and conversion to decibel power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT for PSD and subsequent conver-
sion to decibel power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT for PSD and conversion to decibel
power

1-50 Hz high and low pass filter, 250 Hz down sampling, ICA,
component clustering, FFT for PSD and conversion to decibel
power

ECG bandpass filter 0.5-30 Hz, EGG bandpass filter 0.005-2 Hz
and FFT with Hamming window, percentage band power for
tachygastric and bradygastric activity, respiration bandpass
filter 0.1-1 Hz, PPG bandpass filter 0.1-10 Hz, EOG bandpass
filter 0.1-5 Hz, baseline normalization for skin conductivity,
standard deviation of yaw, pitch and roll head rotation in
degrees

FIR bandpass 1-40 Hz, ICA, ratio logarithmic of PSD (percent-
age power), change in percentage power pre-stimuli to post
stimuli (percentage change) Daubechies 4 wavelet (db4)
function

ICA, Chebyshev bandpass filter type Il

FIR bandpass 1-40 Hz, ICA, Discrete Wavelet transform,
Welch's method for PSD

ECG bandpassfilter 0.5-30 Hz, EEG bandpass filter 0.1-30 Hz,
data interpolation from other channels after manual artifact
removal, ICA, FFT, EOG bandpass filter 0.1-5 Hz, EGG band-
pass filter 0.005-2 Hz, FFT with Hamming window, percent-
age band power for tachygastric and bradygastric activity,
respiration bandpass filter 0.1-1 Hz, standard deviation of
yaw, pitch and roll rotation degrees, average and standard
deviations in weight changes for postural sway. Any missing
data replaced and standardized across features

Mean and standard deviation on game content vectors

4-45 Hz automatic filter. Data sets created based on 4 custom
signal quality weightings, min max normalization/standardi-
zation

Channel integration, paired interception, simultaneous arti-
fact removal, FFT for PSD

Bandpass filter 0.3-100 Hz, notch filter at 60 Hz, FFT applied
through a sliding Hann window. EEG Data transformed into a
8 channel stacked spectogram

FFT for PSD




Yang et al. Brain Informatics (2022) 9:24 Page 11 of 25
Table 7 (continued)

Author Biosignal Preprocessing

Lietal [23] EEG Elliptical pass band filter 0.5-30 Hz, Fourier transform, 7 level

Lee and Alamaniotis [43]  EEG
Islam et al. [30] ECG, breathing rate, GSR
Islam et al. [31] ECG, breathing rate, GSR

Martin et al. [33] BVP, EDA

Recenti et al. [24] EEG, EMG, heart rate

Oh and Kim [32] BVP, respiratory signal

WPT
256 Hz down sampling
z-score removal of outliers

z-score removal of outliers, 1 Hz down sampling, min-max
normalization

BVP inter-beat interval extraction bandpass filter 0.66-3.33 Hz,
frequency and time domain feature computation, EDA tonic
and phasic computation

0.1-40 Hz high pass and low pass filter, 300 microvolts upper
limit, common average reference, interpolation for removed
channels, baseline correction, DC offset correction, Welch's
method for PSD, relative power averaged across all channels

Exclusions of data samples after inspection for artifacts

Independent component analysis (ICA), fast Fourier transform (FFT), power spectral density (PSD), wavelet packet transform (WPT), direct current (DC)

classification and 5 did not analyze biometric or physi-
ological signals. The remaining 26 papers were included
in this review. Figure 1 presents a flowchart of the study
screening and selection process.

3.2 Risk of Bias

All studies had an overall low risk of bias (see Table 10). Of
these, one study [27] had a “No” for item 17, because data
segments were labelled as cybersick that may have con-
tained control data. Another study [23] sampled control
data that may have been influenced by conditions other
than the lack of cybersickness, such as non-VR immer-
sion. One study [12] had “No” for item 14, because only
participants who felt nausea were used and “NI” for 15 and
19, because it was unclear if there were missing data or if
the model accounted for overfitting. Most studies (21/26),
had a low participant sample size (item 12). Two studies
[15, 17] had a “No” for items 3 and 5 as they employed
feature selection algorithms that differed among partici-
pants. Eleven studies (see Table 10) were either unclear, or
did not report exclusion of participants with health disor-
ders (item 2) which could affect the feature variables used
in classification of cybersickness and even contribute to
already having nausea, although this was not weighted as
heavily in the overall ROB assessment.

3.3 Subject demographics

The sample size of subjects ranges from 6 to 202 throughout
the 26 studies. Of the 26 studies, 17 report gender, and 9 do
not. Most of the studies consist of predominantly male par-
ticipants, while one study uses comparatively more females
[32] and a few balance both male and female participants [12,
22, 27]. With regard to age reporting, 15 out of 26 studies
report ages, of which 12 studies either report the age range
or mean with standard deviation. For details, refer to Table 3.

3.4 Immersion type and participant activity

Both vestibular and visual stimuli or visual alone have been
used. Visual mediums include 360° simulators, LED desk-
top display monitors, projected screens and head mounted
displays (HMDS), refer to Table 4. Moving platforms have
been incorporated, including ones that mimic sea waves on
a ship [24] and automatic driving simulators [13-19], both
of which introduce vestibular stimuli in synchronicity with
their virtual environments. Studies have made participants
play games [20, 21, 26, 28, 33], undergo virtual navigation
[12, 23, 25, 34], or watch virtual videos [22, 27, 30-32, 35, 42,
43]. During these activities, there would doubtless exist some
self-induced vestibular stimuli through head movements
or balancing while standing. It is unclear in three studies
whether a standing or sitting posture was used during either
virtual simulator environment immersion or VR HMD usage
while watching videos [12, 22, 42]. Each study’s mode of
stimulus, VR content, platform usage and type of participant
activity are summarized in Table 4.

3.5 Machine learning models

Table 5 summarizes the machine learning analysis under-
taken by all 26 studies. This includes biosignal recordings,
algorithm(s) used, classification types in terms of binary,
multiclass, or score estimation, accuracies, and abilities
of models to detect or predict cybersickness. Out of all
the studies, five have built predictive algorithms, while
the rest have detected cybersickness [30, 27, 31, 33, 43].

3.6 Biosignals recorded

Studies have utilized electroencephalogram (EEG), elec-
trooculography (EOG), electrocardiogram (ECG), pho-
toplethysmography (PPG), electrogastrogram (EGG),
electromyogram (EMG), Respiration signals, galvanic
skin response (GSR) also known as electrodermal activity
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(EDA), eye tracker, postural sway and body sensors at
the head and waist. Derived variables include power
band analysis of EEG [12-27], electrical potentials of eye
movement from EOG [25, 28, 29], heart rate and heart
rate variability measures from ECG [25, 28-33] which
can also be calculated from blood volume pulse (BVP)
obtained from PPG [32, 33], gastric activity from EGG
[25, 29], muscle activity from EMG [24], respiration rate
[25, 28-32], skin conductivity from GSR [28-31, 33], eye
blinks [25, 28], weight shifts [25, 34] and center of pres-
sure for postural sway [35], and head and waist move-
ments from body sensors [25, 35].

3.7 Neural networks

Nam et al. [12] is the earliest known publication in the
field of automatic detection of cybersickness. The study
used a 2-layer feed-forward artificial neural network to
partially detect nausea timings. Other studies used deep
neural networks (DNN) [22], including multilayer per-
ceptron (MLP) [35], radial basis function neural network
(RBENN) [14, 16], convolutional neural network (CNN)
[42], recurrent neural network-long short term memory
(RNN-LSTM) [27], as well as self-organizing neural fuzzy
inference network (SONFIN) [19], and deep embedded
self-organizing map (DESOM) with a CNN auto encoder
and decoder from EEGnet [43].

DNN:s are neural networks with two or more fully con-
nected hidden layers, usually stacked linearly in groups.
MLP and RBENN are DNNs that differ in how their out-
puts are determined. MLP networks work globally and
their outputs are decided by all neurons. In contrast,
RBFNNSs are local approximation networks whose out-
puts are determined by hidden units in local receptive
fields. CNNs are also a type of DNN. They learn pat-
terns in the data through filtering in convolutional lay-
ers, then pass data through pooling layers to compress
the size of representation, allowing for parameters to be
computed faster. CNNs are optimized for image data.
RNNs are another type of DNN. They learn representa-
tions in an iterative manner, using outputs of a layer as
recurrent inputs to the same or other layers. LSTMs are
a subset of RNNSs, that allow for the learning and recon-
struction of signals, and allow for the prediction of future
signals based on previous timesteps of data [27, 30, 31,
42]. SONFIN and DESOM are examples of self-organiz-
ing neural networks, that work based on weights between
nodes.

3.8 Other ML tools

There are a variety of other non-neural network machine
learning tools employed in the reviewed studies. These
include: maximum gaussian likelihood estimator [13];
a simple tool that uses a gaussian distribution, where
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maximum probability of a label occurs if the data points
are closer to their mean value, support vector machines
(SVM) which try and find the best hyperplane between
data sets that belong to different classes [13, 18, 17], its
variations with kernel functions of polynomial SVM [23],
SVM-radial basis function (RBF) [20, 23], support vector
regression (SVR) [16, 19], linear regression (LR) which
assumes a linear relationship between input and output
variables [15, 16, 19, 33], linear discriminant analysis
(LDA) which finds linear combinations of features that
can separate classes [20, 25], principle component regres-
sion (PCR) [15] based on principle component analysis,
naive bayes based on probability theorem [21], k-nearest
neighbours (kNN) [13, 20, 21, 23, 25, 28, 32, 35, 43] which
labels new data according to the majority of nearby pre-
labelled data, decision trees that employ a flowchart-like
structure for decision making [25, 26], including random
forest [24, 35] and bagged decision tree which reduces
the variance of a decision tree [25], gradient boosting
trees to minimize errors [24], and CN2 rule induction
that extracts rules from features in a data set [26]. Stud-
ies that have used these machine learning tools have
detected but not predicted future cybersickness states.

3.9 Classification types

Some studies use a mix of binary and multiclass classi-
fication. Binary classification refers to the labelling of
two different classes in a machine learning task, whereas
multiclass classification refers to multiple labels, which
in this review concerns levels of cybersickness severity.
Other studies use machine learning to estimate simula-
tor sickness questionnaire (SSQ) scores, which is another
form of multiclassification.

3.10 Data selection
A summary of reporting styles, cybersickness and non-
cybersickness data labelling is summarized in Table 6.

Multiple methods for choosing data segments related
to cybersickness have been used. These include a report
on the first instance of cybersickness perception [12, 43].
Commonly, entire video segments or VR immersion ses-
sions were used if they had been labelled as cybersickness
[20, 22, 27-32]. Specific timeframes were also picked.
This is so that either cybersickness is highest or most
likely at the selected data segment [18, 21, 26] to capture
cybersickness intervals [23, 25, 35], or to predict future
states using past data sectioned in various temporal win-
dow sizes [33].

The method of labelling data segments as ‘non-cyber-
sickness’ varied among studies. Some studies choose to
label ‘non-cybersickness’ as the beginning data segment
while wearing an HMD, with a static image and no cam-
era movement in the VR environment [35, 43]. Others
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have opted to use data segments recorded before VR
immersion or gameplay [20, 21, 23, 26, 31, 32]. Stud-
ies have also chosen to select data that does not meet
different cutoffs using SSQs scores or rating scales [25,
28, 30, 33, 42]. Alternatively, chosen data samples were
those with no report of cybersickness during VR immer-
sion [27, 32], or data segments not corresponding to
the cybersickness label [12]. In studies, where motion
sickness levels were estimated, the ‘non-cybersickness’
labels and time segments were participant defined via a
self-operated joystick scale, keeping note that the earliest
timepoint of recording in these studies already included
a moving video [13—19]. Several studies included in this
review do not label data specifically as ‘non-cybersick-
ness. These consist of two studies that attempt to esti-
mate SSQ scores [29, 34], while one tries to classify EEG,
heart rate and EMG signals into specific binary indexes
related to motion sickness [24]. Thus, the classification
of ‘non-cybersickness’ data refers to participants in many
different environments across studies, in terms of pre and
during immersion states as well as exposure to move-
ment and non-movement of visual scenes.

3.11 Preprocessing

Preprocessing refers to the manipulation of raw data so
that specific variables can be generated for further pro-
cessing. During preprocessing, methods are used to
reduce redundancy and extract meaningful data. Meth-
ods include down sampling to reduce the amount of data,
filters to remove artifacts and select only a portion of
data, manual artifact correction, computational artifact
correction, such as z-scores and independent compo-
nent analysis (ICA), weighting data based on signal qual-
ity, data transformation using variations of Fast Fourier
Transform (FFT), and optimization of fixed windowed
time segments. This is summarized in Table 7.

3.12 Features extraction, selection and fusion

Feature extraction and selection is a method to get a sub-
set of relevant features/variables from the data, to be fed
as an input into a machine learning tool. The idea is to
reduce complexity and feed algorithms with the most
relevant data. Studies have focused on spatial locations
of EEG channels, as well as temporal, frequency and
amplitude variables from recorded biosignals. Methods



Yang et al. Brain Informatics (2022) 9:24

used range from manual selection to statistical compu-
tations, genetic algorithms, and convolutional networks.
Most notably, three studies focus on selecting as few EEG
channels as possible, showing that one to three channels
can be used for cybersickness detection [20, 26, 27]. In
addition to obtaining features, feature fusion allows data
from multiple biometric and physiological signals to be
combined for classification. Out of 26 studies, 13 studies
have fused features from multiple signals. Feature extrac-
tion and selection techniques and details of studies that
have applied feature fusion are displayed in Table 8.

3.13 Important features for classification

Important features (Table 8) were included according to
the following criteria: correlation to cybersickness scores
or by optimal classification accuracies, appearance in
multiple machine learning models [25], and if eight or
fewer channels are involved and named [12, 15, 23]. In
cases, where the authors have not explicitly pointed out
or done an analysis to rank the importance of features,
all the features used in the classification are included in
the list for transparency of information and comparison
to other studies [12, 13, 16, 27, 32]. For a full compilation
of EEG devices, channels and power band frequencies
used in the reviewed studies, refer to Table 9. Frequency
ranges for each power band are reported in Table 9
because of the inconsistencies between studies, especially
in regard to differentiation of the beta and gamma bands.

Across reviewed studies, the overall importance of
broad band EEG frequency signals is revealed; with a
focus on alpha (8—12 Hz), beta (13-20 Hz) and gamma
bands (21-30 Hz) in channels relating to cortical regions
in occipital areas (O1, O2, Oz) [12, 15, 17-20, 23, 25, 26],
parietal areas (P3, P4, Pz) [12, 15, 17, 18, 25, 42] and left
and right frontal areas [15, 20, 23, 25].

Postural sway [24, 34, 35], head and body movement
[25, 35] and blink rate [25, 28, 29] have shown to be use-
ful features for cybersickness classification. Among oth-
ers, heart rate has consistently been an important feature
across studies [24, 25, 28, 30—33]. A heart rate variability
(HRV) indicator, pNN50, which is the percentage of N-N
intervals within 50 ms, has also been a high contributor
to results obtained in both binary and multiclassifica-
tion tasks [33]. Alongside ECG derived variables, respi-
ration rate has been identified as an important feature
for cybersickness classification and estimation [25, 28,
32]. Electrodermal activity also known as galvanic skin
response has shown promise as an important feature in
four studies [28, 30, 31, 33], but did not make a statisti-
cally significant correlation with SSQ scores in another
[29].
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4 Discussion

Overall, the type of population, and an assessment of
algorithm utility remains ambiguous and wanting. The
wide differences in study protocols, data labelling and
processing make it difficult to compare the reviewed
studies. Although scarce, the available studies have high-
lighted that it is possible to track cybersickness using a
variety of biosignals. The robustness of these signals to
noise in practical settings, however, requires careful con-
sideration. Looking forward, the discovery of new infor-
mation about cybersickness requires machine learning
tools that are open and explainable. These aspects are
discussed below.

4.1 Subject demographics
4.1.1 The subject demographics are biased towards males,
with a lack of age range reporting
There is evidence that females tend to be more susceptible to
visually-induced motion sickness than males [45]. Both ves-
tibular and visual motion sickness incidence in females tends
to be higher than in males, but with no difference in the
severity of symptoms [46—49]. Emerging evidence suggests
that interpupillary distance non-fit, while wearing HMDs is
one driving factor for this gender discrepancy [50]. A meta-
analysis of factors associated with cybersickness suggested
that age may be a contributor to likelihood of sickness [51].
As much as possible, the gender demographic and age range
should be reported as a means of identifying possible influ-
ences towards study results. Studies may want to balance or
separate analyses of females and males. An argument could
be made, however, that female and male analysis should be
done together so that a machine learning model can be sub-
ject to a wide population and subject demographic.

4.2 Prediction versus detection
4.2.1 Studies have presented evidence for the detection

of cybersickness and further cybersickness events,

but predictive capabilities for novel, first-instance

cybersickness events are in question
It is not necessarily the machine learning algorithm
used that determines the model’s ability to detect
or predict cybersickness but the choice of data seg-
ments. Data segments in prediction studies have been
chosen before the onset of cybersickness, allowing
machine learning models to be trained on data prior
to the future event. Training on prior data is inbuilt
for studies using LSTMs, allowing researchers to spec-
ify timesteps of certain lengths as training for signal
reconstruction of relative future timepoints [52]. How-
ever, studies do not specify the timing of cybersickness
occurrence in each data sample, meaning that crossing
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a certain timepoint, the model could be trained on
data already related to cybersickness to detect future
cybersickness events. This leads to the question: are
the models truly predictors, detectors, or a combina-
tion of both? If indeed they are a combination, these
models could be defined as a detection-based predic-
tion model, in which current cybersick data can be
used to predict future cybersick data. With the excep-
tion of Islam et al. [31], the literature lacks models only
trained on clear non-cybersickness segments that are
used to detect future cybersick events. Furthermore,
literature so far has focused on detecting cybersick-
ness events using data segments related to VR immer-
sion, but few have tried to predict future cybersick
events using pre-VR immersion baselines [31]. To
the best of our knowledge, there is a lack of machine
learning studies focused on predicting susceptibility or
future cybersick events in VR using the normal resting
physiological state of an individual.

4.3 Labelling
4.3.1 Labelling cybersick data in long windows could
increase false positives and negatives
A drawback to labelling entire video segments or VR
immersion sessions based on a post SSQ or on a first
instance reporting basis is the lack of temporal preci-
sion. Large portions of data could in truth represent
the wrong label, increasing rates of false positives and
false negatives during classification. Where possible,
a solution would be to have data segments that are
in relatively small temporal windows, ideally near the
time of reporting and to avoid large temporal windows
in the order of minutes.

4.3.2 Non-cybersick data should be labelled under the same
experimental conditions as cybersick data

If ‘non-cybersickness’ data is not under the same con-

ditions as ‘cybersick’ labelled data, the risk increases

that a machine learning algorithm learns the difference

between conditions influenced by a different environ-

ment, rather than the perception of cybersickness itself.

4.4 The reviewed studies are difficult to compare

Stimulus type, environment and participant activity
differ greatly across studies. Different stimuli inputs,
as well as virtual environments and scene content, and
standing and sitting conditions make studies difficult to
compare. With regard to comparing EEG studies, ves-
tibular stimuli and visual stimuli used to induce motion
sickness activates a vast array of different cortical areas
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in the brain [37, 53-62]. Previous research has also
found that certain movements of visual scenes inside
VR can alter HRV [8, 63]. Constant clockwise rotation
of the visual environment has been found to inhibit
cardiac parasympathetic activity [8]. Root mean square
of successive differences of R-R intervals (RMSSD)
and standard deviation of R-R intervals (SDRR), meas-
ures of parasympathetic activity, were also found to be
decreased in forward visual movement compared to
backward visual movement during VR immersion in a
rollercoaster ride [63]. In addition, vestibular stimuli
is known to increase cardiac sympathetic activity [64],
meaning that different activity levels could potentially
alter HRV variables and associated feature importance.
Thus, on top of feature extraction and selection meth-
ods, extra care needs to be taken when deciding which
features to choose for a new study.

4.5 Features
4.5.1 Parietal, occipital and frontal cortical areas
in the alpha, beta and gamma band are highly related
to cybersickness in machine learning studies
Gamma band signal importance for classification is in
line with recent findings, showing increased gamma
power with increased cybersickness severity [65]. In
the application of frequency filters to reduce artifacts
and noise, one should be careful not to filter out valu-
able information that could exist past chosen frequency
boundaries.

It is also important to keep in mind that evidence
for parietal and occipital feature importance in cyber-
sickness stem mainly from two studies that either have
considerably more vestibular stimuli through moving
platforms or use desktop LED displays rather than VR
HMDs [23, 25], and are thus different in environment
and stimulation type. More research is needed as a
cross reference to determine if these features are com-
mon regardless of environment or stimulation type.

Nevertheless, the involvement of multiple brain regions
suggests that interactions and connections exist across
different spatial locations. In an fMRI study by Toschi
et al. [37], reduced connectivity was found in nausea
states compared to baseline, between the right and left
primary visual cortex (V1), as well as increased con-
nectivity between the right middle temporal visual area
(MT +/V5) and anterior insular, and between the left
MT +/V5 and the middle cingulate cortex. Thus, deeper
brain structures could be involved that may not neces-
sarily be revealed in the above machine learning EEG
studies.
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4.5.2 None of the machine learning methods used

so far have clearly revealed the complex, dynamic,

spatio-temporal processes in the brain related

to cybersickness
Studies have relied on statistical comparisons between
sets of cybersickness and normal/control data, to find
important frequency-based power spectra in isolated
channels, or spatial clusters over large brain regions.
Beyond this, communication between spatial locations,
functional networks, and temporally relevant informa-
tion still needs to be explored. More complex machine
learning algorithms have not been employed for knowl-
edge extraction. This important task requires new
machine learning methods on its own.

4.5.3 Heart rate, heart rate variability, postural sway,
head and body movement, blink rate, breathing rate
and EDA are informative features

Important features of increased heart rate have been
found to be correlated with increasing cybersickness
severity [65]. Heart rate variability measures other than
pNN50, like changes in the average duration of N-N
intervals (AVGNN), and changes in the standard devia-
tion of N-N intervals (STDNN) have been correlated
with SSQ scores [66]. Head and body movement could
potentially exacerbate sensory mismatches while in VR
and is part of the generally accepted sensory mismatch
theory [67]. The contribution of increased postural sway
to detect cybersickness is rooted in the postural insta-
bility theory for motion sickness [68], although a study
has shown a weak link between postural instability and
cybersickness. Eye movements have also been hypoth-
esized to generate motion sickness [69]. Blink rate seems
likely a symptom of oculomotor disturbances, which is
a subcategory for simulator sickness [70]. Breathing rate
appears to be an important feature under experimental
conditions [25, 28, 29, 32]. Furthermore, controlled dia-
phragmatic breathing has also been studied to manage
cybersickness through modulation of the parasympa-
thetic nervous system [71].

4.5.4 The fewer channels, the better

The number of channels is important for simplicity and
ergonomic reasons. The fewer the channels, the less
bulky an automated cybersickness detection or predic-
tion system device needs to be. Using 64 channels [24,
25] is unwieldy outside of lab conditions in an operational
or consumer setting. It also requires good signal quality
from most, if not all channels. Therefore, it is suggested
that studies investigate channel reduction methods while
still preserving accuracy.
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4.5.5 Features discovered from extraction and selection,

or those that contribute the most to optimal

classification accuracies, may not be generalizable

or interpretable
While studies have drawn attention to many features, it is
important to note that the most correlated features may
not be the most frequently chosen by feature extraction/
selection tools [14]. The generalizability of features to dif-
ferent experimental settings still needs to be assessed.
This will help build a robust model of physiological
activity during cybersickness events. Features related to
cybersickness can also be statistically tested and com-
pared to their importance in machine learning models.
This can be a helpful indicator of their correlation versus
importance. Finally, features obtained for novel, first-
instance future cybersickness event prediction are pre-
dictive features. They may not necessarily be the same
features occurring during cybersickness. Thus, caution
is warranted as the same features listed in this review
may not be generalizable to a study attempting to predict
cybersickness from pre-immersion baselines.

4.5.6 Some forms of signal acquisition are more practical
than others

VR content has been explored as a data source for cyber-
sickness classification as well [42, 72]. Current inter-
ventions include narrowing the field of view or slightly
changing the visual scene to attenuate cybersickness
symptoms [73]. While virtual environment contents pro-
vide useful data in retrospect, they cannot be the medium
for intervention in all situations. Such would be the case
for high-stakes training simulations or even immersive
real-time operations that require large fields of view and
a high degree of realism. Unfortunately, even with live
streaming, the predictive nature of virtual content would
be limited without availability beforehand. VR content is
a stimulus and cannot be used to directly assess individ-
ual cybersickness. Biometric and physiological signals, on
the other hand, can measure human states and responses
to both the environment and clinical treatment [74, 75].
Moreover, wearable devices are portable and can still be
used while engaging with VR in a non-sedentary man-
ner. This level of practicality and freedom is currently
not possible with other forms of data capture such as
with the brain (magnetoencephalography [76], functional
magnetic resonance imaging [77]). Still, not all signals
from wearable devices are as practical as each other. EEG,
EOG, ECG, PPG, EGG and eye tracker could be used in
combination for cybersickness detection and prediction
in a practical consumer or operational setting. Respira-
tion signals, GSR, postural sway and body movement, in
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contrast, could be difficult to implement. In high activity
settings, these signals may become riddled with artifact
and noise (from heavy erratic breathing, profuse sweat-
ing, and large amounts of movement), reducing the prac-
ticality of these signals.

4.6 Future suggestions

Along with reporting of subject demographics, proper
labelling of data and investigations of channel reduction
methods to reduce the number of sensors needed to cap-
ture this data, there are several other future suggestions.
The future of machine learning on cybersickness involves
not just the alteration of visual displays for human ergo-
nomic comfort, but the understanding of physiological
states and subsequent mitigation of potentially harm-
ful perceptual responses. Given the interactive nature of
immersive technology, devices that capture data related
to physiological states have to be wearable and not bulky
or restraining while engaging in virtual reality. The field
of cybersickness also requires more understanding, both
on the mechanisms of how it originates and on the bio-
markers through which this event can be either predicted
or detected. One potential avenue of machine learning
exploration could be to pair cybersickness along with
other correlated or anticorrelated psychological aspects,
such as vection [78] and presence [79], respectively.

Future studies could collect data from eyetrackers embed-
ded in VR devices to track both gaze and fixation and fuse
this with other already known biosignals [80]. Further on,
building algorithms designed to process multiple signals in
combination and independently would be especially useful
in operational environments. If one source of data is cut off,
another could take its place. This would maintain robust data
streams for the monitorization of physiological states.

The next step in machine learning would be to gener-
ate new information every time new sample data is added
(incremental, online learning) and to better model and
explain related spatio-temporal brain processes. One way
to do this would be to use a 3D evolving spiking neural net-
work architecture [81, 82]. Considered the 3rd generation
of artificial neural networks (ANN), spiking neural net-
works use spike information representation to account for
changes in brain data and to learn spatio-temporal patterns
from the data, which patterns can then be interpreted to
understand the dynamics of the brain under certain condi-
tions. This is in contrast to the 2nd generation ANNS, some
of them reviewed above, which are not biologically plausible
and do not reflect how neurons in the brain actually work in
time and space under different conditions. ANNs are more
computationally and energy intensive and less efficient in
the interpretation of results. Perhaps, the biggest pitfall of
deep neural network (DNN)-type algorithms is that they
are ‘black boxes’ with many hidden layers, meaning that data
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interpretation is limited [83]. A dynamic evolving spiking
neural network is based on the concept of an evolving con-
nectionist system [82]. It is a modular system that evolves
both structure and functionality from incoming data, in a
way that is continuous, self-organized, online adaptive and
interactive [84]. This makes it possible to learn spatio-tempo-
ral brain data (STBD), and the actual machine learning archi-
tecture as an interpretable model of the brain. This is useful,
because unlike DNNS, it allows researchers to then act on
the modelling results in a meaningful way. Architectures like
NeuCube are robust to noise and create an approximate map
of structural and functional cortical areas of interest using
EEG data [81]. The data can be used to interpret brain activ-
ity during cybersickness experiments. Open and explainable
AT systems built on brain-inspired spiking neural networks
would further pave the way for integrated cybersickness
prevention and alleviation techniques through better neuro-
physiological data modelling, biomarker discovery and
deeper understanding of personalised cybersickness pro-
cesses. From an industry perspective, this information will
help producers of VR content understand their consumer
more, and help lift barriers to non-contact training simula-
tions in professional fields, gaming and the building of inter-
active digital economies. Finally, training for resistance to
cybersickness based on both objective physiological data and
subjective feedback will pave the way for human adaptation
to an era of ever-increasing virtual environments.

5 Conclusions

This review of machine learning approaches in cyber-
sickness studies demonstrated that a wide range of bio-
metric and neuro-physiological signals for cybersickness
identification have been analysed and discovered through
the use of machine learning. Multiple machine learning
architectures, modes of stimulus, VR content, environ-
ment, and participant activity have been used in studies
for the automatic detection of cybersickness and pre-
diction of further cybersick events based on these bio-
markers. The predictive capabilities of current machine
learning models for novel, first-instance cybersickness
events, however, are still in question. Common impor-
tant features have been highlighted that may be used as
an input for future machine learning research in the field
of cybersickness. Future research is pointed towards the
collection of quality data, and the use of brain-inspired
spiking neural network models [82] to achieve better
accuracy and understanding of complex spatio-temporal
brain processes related to cybersickness.

Appendix
See Table 10.
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PROBAST 20 signalling question items:
Selection of participants and data sources used.

1. Were appropriate data sources used?
2. Were all inclusion/exclusions appropriate?

Definition and measurement of features used for
classification.

3. Were predictors defined and assessed in a similar
way for all participants?

4. Were predictor assessments made without knowl-
edge of outcome data?

5. Are all predictors available at the time the model is
intended to be used?

How and when the outcome of cybersickness was
defined and determined.

6. Was the outcome determined appropriately?
7. Was a pre-specified or standard outcome definition
used?
8. Were predictors excluded from the outcome defini-
tion?
9. Was the outcome defined and determined in a sim-
ilar way for all participants?
10. Was the outcome determined without knowledge
of predictor information?
11. Was the time interval between predictor assess-
ment and outcome determined appropriate?

Statistical methods to develop and validate the model.
12. Were there a reasonable number of participants

with the outcome?
13. Were continuous and categorical predictors han-

dled appropriately?

14. Were all enrolled participants included in the anal-
ysis?

15. Were participants with missing data handled
appropriately?

16. Was selection of predictors based on univariable
analysis avoided?

17. Were complexities in the data accounted for appro-
priately?

18. Were relevant model performance measures evalu-
ated appropriately?

19. Were model overfitting and optimism in model
performance accounted for?

20. Do predictors and their assigned weights reported
in the final model correspond to the rest of the
analysis?
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