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Abstract. Computational neuro-genetic models (CNGM) combine two dyoanod-
els — a gene regulatory network (GRN) model at a lower leved, @ispiking neural
network (SNN) model at a higher level to model the dynamiernattion between genes
and spiking patterns of activity under certain conditiofise paper demonstrates that it
is possible to model and trace over time the effect of a geribetotal spiking behavior
of the SNN when the gene controls a parameter of a stochgmsking neuron model
used to build the SNN. Such CNGM can be potentially used toystedrodegenerative
diseases or develop CNGM for cognitive robotics.

1 Introduction

Computational Neuro Genetic Modelling (CNGM) is a biologigahotivated mod-
eling approach that is concerned with the creation of twedl@ierarchical computa-
tional models, where interaction between large number ofadyic variables (called
genes) is modeled over time as a gene-regulatory networleh{@RN) that affects
the activity of a higher level system — modeled as a spikingradenetwork (SNN).
The behavior of the two systems, in their continuous intéwacunder certain input-
output conditions, have been introduced and studied ingiag and Benuskova, 2004,
Kasabov and Benuskova, 2005, Kasabov et al., 2005, Kasabov, Kasabov, 2009,
Kasabov, 2008, Kasabov et al., 2011]. CNGM constitute thé gexeration of compu-
tational modeling techniques built on the foundations eftifaditional neural network
techniques.

The goal of this paper is to explore and to develop further@GhN&GM paradigm
through the introduction of stochastic neuronal modets (fserstner and Kistler, 2002])
used to build stochastic/probabilistic SNN (pSNN). SuchNNSare more biologically
plausible, offering some additional advantages [KasabaV.€2011]. For this purpose
genes are used to control parameters and their effect orettavtor of the whole pSNN
is modeled and studied.

A specific gene from the genome relates to the activity of aoral cell by means
of a specific protein. Complex interactions between geneganteins within the in-
ternal gene/protein regulatory network influence the fioming of each neuron and a
neural network as a whole [Marcus, 2005, Holter et al., 20@4ih the advancement of
molecular research technologies huge amount of data amahiation is available about
the genetic basis of neuronal functions and diseases [Ma2O05, Holter et al., 2001,
NCBI, 2003]. This information can be utilized to create modslbrain functions and
diseases that include models of gene interactions withidetsoof neural networks.

In order to create biologically plausible CNGM we need tognéte knowledge from
genomics, proteomics, neuroscience, psychology, anddtieal disciplines such as
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Figure 1: A schematic illustration of the Computational Kyenetic Modelling framework.

computer science and physics. To understand the functiogsnes, we need to know
how they are expressed, when they are expressed, consaraationg their products
and their response to therapeutic drugs. In addition, we réed to know how they
interact and influence the dynamics of neurons in neural ovitsy

Genetic neuroscience uses principles from cellular aneéowtdr biology to investi-
gate questions about gene actions in the brain. Many tegbgigre designed to collect
data related to the effect of genes and proteins on brairtins; e.g. genetic mutations;
gene knockouts; protein purification; gene expressionyai®lGAS chromatography;
gel electrophoresis; high performance liquid chromatplayg HPLC); western blotting,
etc. Another multi-gene approach, high throughput genntyfechnology, can be used
to define single nucleotide polymorphisms that characeatizeases. All these useful
techniques however need to be complemented and combinkdephisticated bioin-
formatics techniques in order to discover complex genggpronteractions in relation
to a given objective function. This is where CNGM can help.

The functioning of a CNGM is illustrated schematically in &ig 1. A
Gene/Protein Regulatory Network (GRN) models the interactd genes/proteins
over time. Each of these genes/proteins can affect the m@haf a connected
spiking neuron by directly controlling its parameters. Example, some proteins
affect the excitability of the neuron (e.g. AMPAR, NMDAR), Jiothers pro-
mote neural inhibition (e.g. GARBA, GARBRB) [Kasabov and Benusk@®004,
Kasabov and Benuskova, 2005, Kasabov et al., 2005, Kasabov, Kasabov, 2009,
Kasabov, 2008, Kasabov et al., 2011]. By changing the dyraofithe GRN, a spe-
cific behavior can be imposed to the SNN. An optimization athm can be used to
modify the parameters of the GRN in such a way that a desired 8put charac-
teristic is obtained. This behavior could, for example erable real-world data ob-
tained from clinical experiments. The optimized GRN thatsesuthe desired behav-
ior of the SNN is now expected to contain valuable infornrattoout the relationship
and dynamics of the involved genes. Studying these dynamégsprovide interesting
new insights in the area of genetic neuroscience and teilitew discoveries Several
initial studies have investigated the feasibility of the OMGpproach. For example,
in [Villa et al., 2005], a protein regulatory network (PRN) d& was obtained from in-
duced epileptic seizure EEG data from mice. With the use ofmgle neural model
(Integrate-and-Fire [Abbott, 1999]), a genetic algoritfirogel, 2006] was used to op-
timized the PRN model to match some real data [Benuskova analbias2007].

Using a CNGM approach to build robots was investigated in [iyletal., 2010].
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The functions of the robot are distributed between a SNN maaeg a PRN model that
enables to implement a principally new concept of functicarad structural flexibil-
ity in robots. Robotic systems that employed PRN were alsodiuized as epigenetic
robots [Morse et al., 2010].

The studies in CNGM so far have used simple and determinjsitiag) neuron mod-
els, such as the Leaky Integrate-and-Fire (LIF) model [AHlA®99]. However it has
already been demonstrated that using probabilistic/aiah spiking neuron models,
that are more biologically plausible, enhances the funetity and the applicability of
SNN. The probabilistic approach is motivated by the fact thialogical neurons ex-
hibit significant stochastic characteristics. Includirmnrdeterministic elements into
the neural model would bring benefits for modelling brairomfiation processes and
for modelling stochastic engineering processes too.

One of the problems of using pSNN is to optimize and contrelrtauronal param-
eters, even though for many biologically plausible paramseit is already known what
genes/protein control them. In a simple experiment thisepalemonstrates that it is
possible to model the effect of a gene, that controls a pdaticieuronal parameter, on
the spiking activity of the whole pSNN. This will enable ather study and develop-
ment of pPCNGM and their applications.

2 Probabilistic Neural Models

In this section, we describe the probabilistic neural medeat we have used to
replace the deterministic LIF neurons of a traditional SNiNthis study, we employ
some very simple probabilistic extensions of the LIF model.

Models of probabilistic neurons have been proposed in aewtudies, e.g. in
the form of dynamic synapses [Maass and Zador, 1999], thehastic integration of
the post-synaptic potential [Gerstner and Kistler, 20024l atochastic firing thresh-
olds [Clopath et al., 2007].

In [Kasabov, 2010] a probabilistic neuronal model is introeld that has three proba-
bilistic parameters to extend the LIF modgl; ;(¢) is the probability that a spike emitted
by neuronn; will reach neurom; at a time moment trough the connection between
n; andn;; ps;i(t) is the probability of the synapse; to contribute to the post synap-
tic potential PSP;(t) after the latter has received a spike from neungnp;(t) is the
probability parameter for the neuren to emit an output spike at time once the total
post-synaptic potentiaP S P;(t) has reached a value above the PSP threshold (a noisy
threshold). As a partial case, when all or some of the prdibaparameters are fixed to
“1”, the pSNM can be reduced to the LIF.

The LIF neuron is arguably the best known model for simugaspiking networks.
It is based on the idea of an electrical circuit containingpacitor with capacitanc@
and a resistor with resistandg where both”' and R are assumed to be constant. The
model dynamics are then described by the following diffeedequation:

du

Ty = —u(t)+ R I(t) 1)

The constant,,, is called the membrane time constant of the neuron. Whenheer t
membrane potential crosses a thresholéifrom below, the neuron fires a spike and its
potential is reset to a resting potential It is noteworthy that the shape of the spike
itself is not explicitly described in the traditional LIF mel. Only the firing times are
considered to be relevant.

We define astochastic reset (SR) model that replaces the deterministic reset of the
potential after spike generation with a stochastic onez¥et u (")) = ¥ be the firing
time of a LIF neuron, then

lim  w(t) = N(uq,08r) 2

t—t(H) t>t(f)
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Figure 2: Evolution of the post-synaptic potentigt) and the firing threshold(¢) over time (blue (dark)
and yellow (light) curves respectively) recorded from agimneuron of each neural model. The input
stimulus for each neuron is shown at the top of the diagrar.ctiiput spikes of each neuron are shown
as thick vertical lines above the corresponding threshotdec

defines the reset of the post-synaptic potentllu, o) is a Gaussian distributed ran-
dom variable with meap and standard deviation Variableosy represents a parame-
ter of the model.

We define two stochastic threshold models that replace thstaot firing threshold
9 of the LIF model with a stochastic one.

In the step-wise stochastic threshold (ST) model, the dynamics of the threshold up-
date are defined as

lim 19(15) = N(ﬁo, O'ST) (3)

t—t(5) t>t(f)

Variable ogr represents the standard deviation of the Gaussian distniby” and is
a parameter of the model. According to Eg. 3, the threshotdasoutcome of a},-
centered Gaussian random variable which is sampled whetleveneuron fires. We
note that this model does not allow spontaneous spike gctiMore specifically, the
neuron can only spike at tim€”) when also receiving a pre-synaptic input spike‘at
Without such a stimulus a spike output is not possible.

The continuous stochastic threshold (CT) model updates the threshaldt) contin-
uously over time. Consequently, this model allows spontasepike activity, i.e. a
neuron may spike at tim&/) even in the absence of a pre-synaptic input spike/at
The threshold is defined as an Ornstein-Uhlenbeck procass{ampen, 2007]:

70T = 9y~ 9(1) + 0TV IR @
where the noise terrg corresponds to Gaussian white noise with zero mean and unit
standard deviation. Variable-; represents the standard deviation of the fluctuations of
Y(t) and is a parameter of the model. We note th@) has an overall drift to a mean
valued,, i.e. J(t) reverts to, exponentially with rate, the magnitude being in direct
proportion to the distancé, — ¥(t).

The dynamics of the four models are presented in Figure 2e&cin model a single
neuron is shown that is stimulated by a random spike traireigead by a Poisson pro-
cess with mean rate 150Hz. Both the evolution of the postgympotentiah.(t) and
the evolution of the firing threshold(t) are recorded and shown in the figure. We note
the step-wise and the continuous update of the two threshotikls and the stochas-
tic reset of the reset model. Due to the stochastic dynanaick probabilistic model
displays a different spike output pattern compared to therdenistic LIF neuron.
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Figure 3: A Gene Regulatory Network (GRN) interacting witspéking neural network (SNN) with 1000
neurons. The GRN controls a single parameter, i.e. the datay, over a period of five seconds. The
top diagram shows the evolution of The response of the SNN is shown as a raster plot of spikatscti

A black point in this diagram indicates a spike of a specifiaroa at a specific time in the simulation.
The bottom diagram presents the evolution of the membratenpal of a single neuron in the network
(green curve) along with its firing threshotd(red curve). Spikes of the neuron are indicated as black
vertical lines in the same diagram.

3 Modelling the effect of gene dynamics on the spiking dynamics of a pSNN
for apCNGM

Here we assume that a pSNN is built with the use of a prob#bilpiking neuron
model and that the probability parameters are controllegdmes from the GRN. In or-
der to illustrate the feasibility of modeling the effect aj@ne that controls a probabilis-
tic parameter on the functioning of the whole pSNN we havaterthe following ex-
perimental scenario. We constructed a reservoir havingedi-smorld inter-connectivity
pattern as described in [Maass et al., 2002]. A recurrent &\i¢nerated by aligning
1000 neurons in a three-dimensional grid of gigex 10 x 10. In this grid, two neurons
A and B are connected with a connection probability

—d(A,B)

P(A,B)=Cxe 2 (5)

whered(A, B) denotes the Euclidean distance between two neurong anttesponds
to the density of connections which was sef\te- 3 in all simulations. Parametér
depends on the type of the neurons. We discriminate intdagrcy (ex) and inhibitory
(inh) neural types resulting in the following parametensdo C., ., = 0.3, Cep—inn =
0.2, Cinh—ex = 0.4andCi,;,_inn = 0.1. The network contained 80% excitatory and 20%
inhibitory neurons. All parameter values are directly agddrom [Grzyb et al., 2009].

The SNN is stimulated by a random spike train generated byiss&o process with
a mean rate of 75Hz. This stimulus is injected into 100 sgikmeurons that were
randomly selected from the reservoir.

The GRN is designed as a single gene that changes perioditsalypression. It
controls a single parameter of the SNN namely the decaymatef the LIF neuron.
The value ofr,, is periodically modified ranging between values of 10 and 80fhe
impact of this temporal change is monitored in a computeukition over five seconds
of real time.

Figure 3 presents the results of the performed computeraion. The top diagram
shows the evolution of,, illustrating its periodic changes caused by the GRN output.
The neural response of the SNN is depicted in the middle dragrHere a point in-
dicates the firing time of a particular neuron in the netwo@{early, the network is
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impacted by the change of its neural parameter Lower levels ofr,, result in a de-
creased activity of the spiking neurons. The same observaimade when looking at
the evolution of the membrane potential of a single neurathénnetwork (lower dia-
gram in Figure 3). The potential is represented by the greevecwhile the red curve
corresponds to the firing threshaldf the neuron. We note the stochastic nature of the
threshold. The output spikes of the neuron are shown as bktical markers in the
lower diagram. Clearly, the spike activity decreases forlemaalues ofr,,.

From this simple illustration, we conclude that the dynawitthe pSNN behaviour
can be indeed controlled by the dynamics of a GRN as part of a pMNBY provid-
ing a quality measure for the behaviour of the pSNN, we canl@yrgn optimization
method, such as evolutionary algorithms, to match the pShiiNut to a desired real-
world dataset. After the optimization, a study of the GRN aadlto the discovery of
new information.

4 Conclusion and further research

The paper demonstrated that using probabilistic modelspdirng neurons in
CNGM facilitates the study of the interaction between gemethé GRN model and
the SNN behaviour. Further development of these modelsidies evolvability of
the pSNN [Kasabov, 2007, Kasabov, 2009, Kasabov, 2008]. CN&® promising
paradigm for future development of intelligent systems #rar applications across
disciplines. The models will potentially allow to model atndce the progress of neu-
rodegenerative diseases under certain treatments ansl [#taspbov et al., 2011]. Sev-
eral pilot practical applications are aimed to be developether across disciplines,
including Bioinformatics, Neuroinformatics, Engineerjrigconomics and Social Sci-
ences.
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