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Abstract. Computational neuro-genetic models (CNGM) combine two dynamic mod-
els – a gene regulatory network (GRN) model at a lower level, and a spiking neural
network (SNN) model at a higher level to model the dynamic interaction between genes
and spiking patterns of activity under certain conditions.The paper demonstrates that it
is possible to model and trace over time the effect of a gene onthe total spiking behavior
of the SNN when the gene controls a parameter of a stochastic spiking neuron model
used to build the SNN. Such CNGM can be potentially used to study neurodegenerative
diseases or develop CNGM for cognitive robotics.

1 Introduction
Computational Neuro Genetic Modelling (CNGM) is a biologically motivated mod-

eling approach that is concerned with the creation of two-level hierarchical computa-
tional models, where interaction between large number of dynamic variables (called
genes) is modeled over time as a gene-regulatory network model (GRN) that affects
the activity of a higher level system – modeled as a spiking neural network (SNN).
The behavior of the two systems, in their continuous interaction under certain input-
output conditions, have been introduced and studied in [Kasabov and Benuskova, 2004,
Kasabov and Benuskova, 2005, Kasabov et al., 2005, Kasabov, 2007, Kasabov, 2009,
Kasabov, 2008, Kasabov et al., 2011]. CNGM constitute the next generation of compu-
tational modeling techniques built on the foundations of the traditional neural network
techniques.

The goal of this paper is to explore and to develop further theCNGM paradigm
through the introduction of stochastic neuronal models (e.g. [Gerstner and Kistler, 2002])
used to build stochastic/probabilistic SNN (pSNN). Such pSNN are more biologically
plausible, offering some additional advantages [Kasabov et al., 2011]. For this purpose
genes are used to control parameters and their effect on the behavior of the whole pSNN
is modeled and studied.

A specific gene from the genome relates to the activity of a neuronal cell by means
of a specific protein. Complex interactions between genes andproteins within the in-
ternal gene/protein regulatory network influence the functioning of each neuron and a
neural network as a whole [Marcus, 2005, Holter et al., 2001]. With the advancement of
molecular research technologies huge amount of data and information is available about
the genetic basis of neuronal functions and diseases [Marcus, 2005, Holter et al., 2001,
NCBI, 2003]. This information can be utilized to create modelsof brain functions and
diseases that include models of gene interactions within models of neural networks.

In order to create biologically plausible CNGM we need to integrate knowledge from
genomics, proteomics, neuroscience, psychology, and theoretical disciplines such as
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Figure 1: A schematic illustration of the Computational Neurogenetic Modelling framework.

computer science and physics. To understand the functions of genes, we need to know
how they are expressed, when they are expressed, conservation among their products
and their response to therapeutic drugs. In addition, we also need to know how they
interact and influence the dynamics of neurons in neural networks.

Genetic neuroscience uses principles from cellular and molecular biology to investi-
gate questions about gene actions in the brain. Many techniques are designed to collect
data related to the effect of genes and proteins on brain functions, e.g. genetic mutations;
gene knockouts; protein purification; gene expression analysis; GAS chromatography;
gel electrophoresis; high performance liquid chromatography (HPLC); western blotting,
etc. Another multi-gene approach, high throughput genotyping technology, can be used
to define single nucleotide polymorphisms that characterize diseases. All these useful
techniques however need to be complemented and combined with sophisticated bioin-
formatics techniques in order to discover complex gene/protein interactions in relation
to a given objective function. This is where CNGM can help.

The functioning of a CNGM is illustrated schematically in Figure 1. A
Gene/Protein Regulatory Network (GRN) models the interaction of genes/proteins
over time. Each of these genes/proteins can affect the behavior of a connected
spiking neuron by directly controlling its parameters. Forexample, some proteins
affect the excitability of the neuron (e.g. AMPAR, NMDAR), while others pro-
mote neural inhibition (e.g. GARBA, GARBRB) [Kasabov and Benuskova, 2004,
Kasabov and Benuskova, 2005, Kasabov et al., 2005, Kasabov, 2007, Kasabov, 2009,
Kasabov, 2008, Kasabov et al., 2011]. By changing the dynamics of the GRN, a spe-
cific behavior can be imposed to the SNN. An optimization algorithm can be used to
modify the parameters of the GRN in such a way that a desired SNNoutput charac-
teristic is obtained. This behavior could, for example, resemble real-world data ob-
tained from clinical experiments. The optimized GRN that causes the desired behav-
ior of the SNN is now expected to contain valuable information about the relationship
and dynamics of the involved genes. Studying these dynamicsmay provide interesting
new insights in the area of genetic neuroscience and facilitate new discoveries Several
initial studies have investigated the feasibility of the CNGM approach. For example,
in [Villa et al., 2005], a protein regulatory network (PRN) model was obtained from in-
duced epileptic seizure EEG data from mice. With the use of a simple neural model
(Integrate-and-Fire [Abbott, 1999]), a genetic algorithm[Fogel, 2006] was used to op-
timized the PRN model to match some real data [Benuskova and Kasabov, 2007].

Using a CNGM approach to build robots was investigated in [Meng et al., 2010].
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The functions of the robot are distributed between a SNN model and a PRN model that
enables to implement a principally new concept of functional and structural flexibil-
ity in robots. Robotic systems that employed PRN were also introduced as epigenetic
robots [Morse et al., 2010].

The studies in CNGM so far have used simple and deterministic spiking neuron mod-
els, such as the Leaky Integrate-and-Fire (LIF) model [Abbott, 1999]. However it has
already been demonstrated that using probabilistic/stochastic spiking neuron models,
that are more biologically plausible, enhances the functionality and the applicability of
SNN. The probabilistic approach is motivated by the fact that biological neurons ex-
hibit significant stochastic characteristics. Including non-deterministic elements into
the neural model would bring benefits for modelling brain information processes and
for modelling stochastic engineering processes too.

One of the problems of using pSNN is to optimize and control the neuronal param-
eters, even though for many biologically plausible parameters it is already known what
genes/protein control them. In a simple experiment this paper demonstrates that it is
possible to model the effect of a gene, that controls a particular neuronal parameter, on
the spiking activity of the whole pSNN. This will enable a further study and develop-
ment of pCNGM and their applications.

2 Probabilistic Neural Models
In this section, we describe the probabilistic neural models that we have used to

replace the deterministic LIF neurons of a traditional SNN.In this study, we employ
some very simple probabilistic extensions of the LIF model.

Models of probabilistic neurons have been proposed in several studies, e.g. in
the form of dynamic synapses [Maass and Zador, 1999], the stochastic integration of
the post-synaptic potential [Gerstner and Kistler, 2002] and stochastic firing thresh-
olds [Clopath et al., 2007].

In [Kasabov, 2010] a probabilistic neuronal model is introduced that has three proba-
bilistic parameters to extend the LIF model:pcj,i(t) is the probability that a spike emitted
by neuronnj will reach neuronni at a time momentt trough the connection between
nj andni; psj,i(t) is the probability of the synapsesj,i to contribute to the post synap-
tic potentialPSPi(t) after the latter has received a spike from neuronnj; pi(t) is the
probability parameter for the neuronni to emit an output spike at timet, once the total
post-synaptic potentialPSPi(t) has reached a value above the PSP threshold (a noisy
threshold). As a partial case, when all or some of the probability parameters are fixed to
“1”, the pSNM can be reduced to the LIF.

The LIF neuron is arguably the best known model for simulating spiking networks.
It is based on the idea of an electrical circuit containing a capacitor with capacitanceC
and a resistor with resistanceR, where bothC andR are assumed to be constant. The
model dynamics are then described by the following differential equation:

τm

du

dt
= −u(t) + R I(t) (1)

The constantτm is called the membrane time constant of the neuron. Whenever the
membrane potentialu crosses a thresholdϑ from below, the neuron fires a spike and its
potential is reset to a resting potentialur. It is noteworthy that the shape of the spike
itself is not explicitly described in the traditional LIF model. Only the firing times are
considered to be relevant.

We define astochastic reset (SR) model that replaces the deterministic reset of the
potential after spike generation with a stochastic one. Lett(f) : u(t(f)) = ϑ be the firing
time of a LIF neuron, then

lim
t→t(f),t>t(f)

u(t) = N (ur, σSR) (2)
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Figure 2: Evolution of the post-synaptic potentialu(t) and the firing thresholdϑ(t) over time (blue (dark)
and yellow (light) curves respectively) recorded from a single neuron of each neural model. The input
stimulus for each neuron is shown at the top of the diagram. The output spikes of each neuron are shown
as thick vertical lines above the corresponding threshold curve.

defines the reset of the post-synaptic potential.N (µ, σ) is a Gaussian distributed ran-
dom variable with meanµ and standard deviationσ. VariableσSR represents a parame-
ter of the model.

We define two stochastic threshold models that replace the constant firing threshold
ϑ of the LIF model with a stochastic one.

In thestep-wise stochastic threshold (ST) model, the dynamics of the threshold up-
date are defined as

lim
t→t(f),t>t(f)

ϑ(t) = N (ϑ0, σST ) (3)

VariableσST represents the standard deviation of the Gaussian distribution N and is
a parameter of the model. According to Eq. 3, the threshold isthe outcome of aϑ0-
centered Gaussian random variable which is sampled whenever the neuron fires. We
note that this model does not allow spontaneous spike activity. More specifically, the
neuron can only spike at timet(f) when also receiving a pre-synaptic input spike att(f).
Without such a stimulus a spike output is not possible.

The continuous stochastic threshold (CT) model updates the thresholdϑ(t) contin-
uously over time. Consequently, this model allows spontaneous spike activity, i.e. a
neuron may spike at timet(f) even in the absence of a pre-synaptic input spike att(f).
The threshold is defined as an Ornstein-Uhlenbeck process [van Kampen, 2007]:

τϑ

dϑ

dt
= ϑ0 − ϑ(t) + σCT

√
2τϑξ(t) (4)

where the noise termξ corresponds to Gaussian white noise with zero mean and unit
standard deviation. VariableσCT represents the standard deviation of the fluctuations of
ϑ(t) and is a parameter of the model. We note thatϑ(t) has an overall drift to a mean
valueϑ0, i.e. ϑ(t) reverts toϑ0 exponentially with rateτϑ, the magnitude being in direct
proportion to the distanceϑ0 − ϑ(t).

The dynamics of the four models are presented in Figure 2. Foreach model a single
neuron is shown that is stimulated by a random spike train generated by a Poisson pro-
cess with mean rate 150Hz. Both the evolution of the post-synaptic potentialu(t) and
the evolution of the firing thresholdϑ(t) are recorded and shown in the figure. We note
the step-wise and the continuous update of the two thresholdmodels and the stochas-
tic reset of the reset model. Due to the stochastic dynamics each probabilistic model
displays a different spike output pattern compared to the deterministic LIF neuron.
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Figure 3: A Gene Regulatory Network (GRN) interacting with aspiking neural network (SNN) with 1000
neurons. The GRN controls a single parameter, i.e. the decayrateτ , over a period of five seconds. The
top diagram shows the evolution ofτ . The response of the SNN is shown as a raster plot of spike activity.
A black point in this diagram indicates a spike of a specific neuron at a specific time in the simulation.
The bottom diagram presents the evolution of the membrane potential of a single neuron in the network
(green curve) along with its firing thresholdϑ (red curve). Spikes of the neuron are indicated as black
vertical lines in the same diagram.

3 Modelling the effect of gene dynamics on the spiking dynamics of a pSNN
for a pCNGM

Here we assume that a pSNN is built with the use of a probabilistic spiking neuron
model and that the probability parameters are controlled bygenes from the GRN. In or-
der to illustrate the feasibility of modeling the effect of agene that controls a probabilis-
tic parameter on the functioning of the whole pSNN we have created the following ex-
perimental scenario. We constructed a reservoir having a small-world inter-connectivity
pattern as described in [Maass et al., 2002]. A recurrent SNNis generated by aligning
1000 neurons in a three-dimensional grid of size10× 10× 10. In this grid, two neurons
A andB are connected with a connection probability

P (A,B) = C × e
−d(A,B)

λ2 (5)

whered(A,B) denotes the Euclidean distance between two neurons andλ corresponds
to the density of connections which was set toλ = 3 in all simulations. ParameterC
depends on the type of the neurons. We discriminate into excitatory (ex) and inhibitory
(inh) neural types resulting in the following parameters for C: Cex−ex = 0.3, Cex−inh =
0.2, Cinh−ex = 0.4 andCinh−inh = 0.1. The network contained 80% excitatory and 20%
inhibitory neurons. All parameter values are directly adopted from [Grzyb et al., 2009].

The SNN is stimulated by a random spike train generated by a Poisson process with
a mean rate of 75Hz. This stimulus is injected into 100 spiking neurons that were
randomly selected from the reservoir.

The GRN is designed as a single gene that changes periodicallyits expression. It
controls a single parameter of the SNN namely the decay rateτm of the LIF neuron.
The value ofτm is periodically modified ranging between values of 10 and 30ms. The
impact of this temporal change is monitored in a computer simulation over five seconds
of real time.

Figure 3 presents the results of the performed computer simulation. The top diagram
shows the evolution ofτm illustrating its periodic changes caused by the GRN output.
The neural response of the SNN is depicted in the middle diagram. Here a point in-
dicates the firing time of a particular neuron in the network.Clearly, the network is
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impacted by the change of its neural parameterτm. Lower levels ofτm result in a de-
creased activity of the spiking neurons. The same observation is made when looking at
the evolution of the membrane potential of a single neuron inthe network (lower dia-
gram in Figure 3). The potential is represented by the green curve, while the red curve
corresponds to the firing thresholdϑ of the neuron. We note the stochastic nature of the
threshold. The output spikes of the neuron are shown as blackvertical markers in the
lower diagram. Clearly, the spike activity decreases for smaller values ofτm.

From this simple illustration, we conclude that the dynamics of the pSNN behaviour
can be indeed controlled by the dynamics of a GRN as part of a pCNGM. By provid-
ing a quality measure for the behaviour of the pSNN, we can employ an optimization
method, such as evolutionary algorithms, to match the pSNN output to a desired real-
world dataset. After the optimization, a study of the GRN can lead to the discovery of
new information.

4 Conclusion and further research
The paper demonstrated that using probabilistic models of spiking neurons in

CNGM facilitates the study of the interaction between genes in the GRN model and
the SNN behaviour. Further development of these models includes evolvability of
the pSNN [Kasabov, 2007, Kasabov, 2009, Kasabov, 2008]. CNGMis a promising
paradigm for future development of intelligent systems andtheir applications across
disciplines. The models will potentially allow to model andtrace the progress of neu-
rodegenerative diseases under certain treatments and drugs [Kasabov et al., 2011]. Sev-
eral pilot practical applications are aimed to be developedfurther across disciplines,
including Bioinformatics, Neuroinformatics, Engineering, Economics and Social Sci-
ences.
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