
 

 

Emotion Recognition and Understanding Using EEG Data in A 
Brain-Inspired Spiking Neural Network Architecture

 
Abstract— This paper is in the scope of emotion recognition by 

employing a recurrent spiking neural network (BI-SNN) 
architecture for modelling, mapping, learning, classifying, 
visualising, and understanding of spatio-temporal 
Electroencephalogram (EEG) data related to different emotional 
states. It further explores, develops, and applies a methodology 
based on the NeuCube BI-SNN, that includes methods for EEG data 
encoding, data mapping into a 3-dimensional BI-SNN model, 
unsupervised learning using spike-timing dependent plasticity 
(STDP) rule, spike-driven supervised learning, output 
classification, network analysis, and model visualisation and 
interpretation. The research conducted to model different emotional 
subtypes through mapping both space (brain regions) and time 
(brain dynamics) components of EEG brain data into SNN 
architecture. Here, a benchmark EEG dataset was used to design an 
empirical study that consisted of different experiments for 
classification of emotions. The obtained accuracy of 94.83% for 
EEG classification of four types of emotions was superior when 
compared with traditional machine learning techniques. The BI-SNN 
models not only detected the brain activity patterns related to positive 
and negative emotions with a high accuracy, but also revealed new 
knowledge about the brain areas activated in relation to different 
emotions. The research confirmed that neural activation increased in 
the frontal sites of brain (F7, F3, AF4) associated with positive 
emotions, while in the case of the negative emotions, connectivity 
strength was concentrated in the frontal (F4, AF3, F7, F8) and 
parietal sites of the brain (P7, P8).     
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I. INTRODUCTION 
 motion plays a vital role in human’s daily 
communication. Precise identification of emotional 

subtypes can offer a better understanding of human mental 
states including anxiety and depression [1]. Emotional 
expressions are correlated with different physiological aspects 
[4] that may also be influenced by external stimuli integrating 
acoustic and visual incentives [2, 3]. There are several 
instances of improved applications through emotion 
recognition techniques, such as social network 
communications[4, 5], and patients’ communication who 
have difficulties in expressing their emotions (Autism) [6, 7]. 

Emotion recognition problem has typically been 
conducted through the investigation of human expressions 

using multi-modal procedures, including physiology, text, 
audio, or video [8]. Several studies incorporated automated 
emotion recognition with respect to facial expressions, 
speech, and body gestures [9] by developing various 
techniques such as Bayesian networks [10], Gaussian Mixture 
models [11] and Hidden Markov Models [12]. Some of 
popular machine learning techniques for emotion recognition 
are Support Vector Machines (SVM), Maximum Entropy, and 
Naive Bayes. Deep learning techniques such as Convolutional 
Neural Network (CNN), Extreme Learning Machine (ELM), 
and Long Short-term Memory (LSTM) have also shown great 
promise in the identification of emotion types [13] in real-
world applications including computer vision, speech 
recognition, and Natural Language Processing (NLP) [14]. 
Hitherto, emotion recognition through deep leaning methods 
were conducted by using multiple data inputs such as 
Electroencephalogram (EEG) brainwaves [15], audio-visual 
data [16], facial expression, and body gestures [1].  

EEG records spatio-temporal brain data (STBD) with a 
considerable temporal resolution that expose brain cortical 
activities in millisecond precision. Thus far, EEG has been 
effectively used for assessing brain activity with specific 
performance in comprehension of cognitive patterns related to 
neurological and mental issues [17-21]. In [22], an emotion 
recognition experiment was conducted with respect to the 
impacts of audio and visual stimuli on 25 individuals’ EEG 
brainwaves. The accuracy of emotion identification was 78% 
for valence film clips and 82% for an arousal state. In [23], 
87% accuracy of emotion recognition was achieved using an 
individual-channel Brain Computer Interface (BCI) system 
and H2O deep learning neural circuitry, which was based on 
a multi-layer feedforward artificial neural network. In [24], 
emotion recognition was developed through modelling of 
combined facial movements and EEG signals, when fine 
participants were instructed to watch specific film clips for 
stimulating 5 emotions in their minds. The EEG features space 
was reduced via principal component analysis (PCA), while 
SVM method was applied to categorize the selected vectors 
within various classes of emotion. One of the key attributes of 
these emotion recognition techniques is to achieve a 
reasonably high accuracy of emotion classification. While the 
aforementioned methods achieved good classification 
accuracy, none of them offered model interpretation that can 
help to reveal and understand the brain activities related to 
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different emotions. Emotion recognition using EEG and 
neuro-computational models can offer an enhanced level of 
accuracy and interpretability in BCI systems, that effectively 
improves the interaction between humans and machines [25]. 
However, the interpretation of different types of emotion and 
the underpinnings of cognitive functions have not yet been 
investigated in depth. 

In recent years, Neuroinformatics has emerged in the 
development of neuro-computational techniques to create 
models of different types of spatio-temporal brain data 
collected from neural activities relating to several functions 
including perception, vision, hearing, regulation, speech 
recognition, and memory [26-30] . 

In this paper, a brain-inspired Spiking Neural Network 
(BI-SNN) NeuCube architecture [31-34] is used for 
modelling, visualising, learning, and classification of EEG 
data recorded during an emotion-related task that stimulates 
nine emotional subtypes: excitement, amusement, sadness, 
fear, anger, disgust, happiness, calmness, and surprise. The 
paper extends the proposed earlier methods for using 
NeuCube on EEG data [7, 19, 26, 27, 35-46] with a new 
method and experiments for emotion recognition. The BI-
SNN structure is a 3-dimensional (3D) space of spiking 
neurons that spatially map a brain template. The 4th dimension 
is time during which the temporal information in EEG 
timeseries is learned in the BI-SNN model to investigate the 
patterns in brain data. We applied BI-SNN models to study 
the EEG data related to positive emotions (calmness and 
happiness) and negative emotions (fear and anger). Then, 
different subtypes of emotions are classified. The 
methodology also includes the interpretation of the BI-SNN 
models that illustrate the activated brain areas corresponding 
to different types of emotions. 

The structure of this paper is presented as follows: Section 
II explains the structure and methodology of the NeuCube BI-
SNN architecture and the proposed method for using 
NeuCube for the task of emotion recognition. Section III 
reports the results of EEG data classification of different 
emotional states, and BI-SNN interpretation, as well as a 
comparative analysis using traditional machine learning tools.  
Section IV contains the conclusion and future work. 

 
II. METHODS AND MATERIALS 

This research is conducted to classify different emotional 
subtypes, but more importantly to comprehend the patterns in 
the brain that are associated with emotional states by applying 
a brain-inspired SNN architecture. Spiking Neural Networks 
(SNNs) have been deployed in various tasks such as picture 
classification, pattern recognition and function approximation 
[34]. The brain-inspired structures execute the operations and 
various tasks of computation using the communications of 
spikes through a network of   neurons, which are linked across 
synapses [47-49]. The learning procedures of SNN result in 
forming connection weights between the neurons, the 
adjustment of which is achieved by a spike-interchange 
process. The weights modified in the synapses rely on 
parameters of learning and the precise time of spike emissions 
from pre-synaptic and post-synaptic neurons [50]. SNNs can 
be used for different learning methods (unsupervised, 

supervised learning) and can create different network 
architectures (such as feedforward and recurrent) [34]. 

In this study, we designed a recurrent BI-SNN architecture 
in NeuCube framework (available at https://kedri.aut.ac.nz/R-
and-D-Systems/neucube) which is an evolving spatio-
temporal data machine based on the SNN for modelling, 
learning, classification/regression, clustering, visualising and 
interpretation of spatio-temporal data. NeuCube SNN has 
been employed for modelling of various spatio-temporal 
dataset across different applications [18, 32] 

Here, the framework of SNN emerged via a biologically 
pragmatic model of the brain that learns from input data by 
connecting large groups of spiking neurons [51, 52].  The 
SNN model and its computational architecture used in this 
research involve various algorithms that enable it to better 
learn, represent and analyse EEG brain data. As can be seen 
from Fig. 1, a NeuCube SNN system consists of the following 
five sub-modules/procedures [31, 34]: 
- Input data encoding and mapping.  
- Unsupervised learning in a 3D BI-SNN reservoir, called 

SNNcube. 
- Supervised learning for classification/regression in an 

output evolving SNN classifier. 
- Parameter optimisation. 
- Model visualisation and interpretation. 

Fig. 1(1) illustrates the EEG data measurement while 
participants were watching several emotional video clips [2]. 
Figs. 1, 2 and 3 demonstrate the procedure of employing SNN 
for encoding, mapping, learning, classifying, and visualising 
of EEG data. Figs. 1 and 2a depict encoding of EEG signals 
into spike trains using a threshold-based and representation 
method (TBR). Figs. 1 and 2b show the mapping of EEG 
variables into a 3D SNN reservoir with respect to neural 
coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  as placed in the Talairach brain atlas 
[40]. Talairach template [53] was utilized in the neuronal 
coordinates as an essential aspect in the reservoir dimensions. 
The SNN initialisation was then performed using the Small-
World (𝑆𝑆𝑆𝑆)  connectivity rule with radios=2.5. After the 
SNN mapping, the SNN model was trained using the 
unsupervised spike timing-dependent plasticity (STDP) 
learning [50]. The mentioned procedures are explained in the 
following sections. 

A. Encoding and Mapping of Input Data 

The input sub-module first encodes the input data (which, 
in this research is EEG) into spike trains to precisely represent 
significant changes in the brain signals over time. In this 
paper, we use a threshold-based representation (TBR) method 
[54] for EEG data encoding to spike trains. The created spike 
trains represent variations in the EEG signals that passed the 
threshold TBR. Then the data is spatially mapped into a brain 
structured SNN reservoir that is designed according to a 
topological information of brain regions in Talairach. An SNN 
model is scalable and compatible with different brain 
templates such as MNI [55], Talairach [53], or coordinates of 
individual brain data [29]. Then, input neurons are assigned in 



 

the SNN model to transfer the spike trains. Every input neuron 
has the same (𝑥𝑥,𝑦𝑦, 𝑧𝑧) coordinate as positioned in a brain atlas 
[41]. Lastly, the neurons in the SNN are initially connected to 
each other using the Small-World (SW) connectivity rule [31, 
56]. The initial neural connections will be modified during the 
learning process. 
 

B. SNN Learning Process using EEG Data 

The unsupervised spike timing-dependent plasticity 
(STDP) learning rule is employed to modify the SNN neural 
connections while streaming the training spatio-temporal 
EEG samples via the input neurons [31]. STDP learning rule 
is based on the Hebbian’s theory [50], which distributes a 
steady stream of synaptic conductance with respect to the 
arrangement of receiving spikes, contributing to control of the 
spike possibilities over time [33].  

C. Supervised Learning 

This training stage is carried out utilising dynamic 
evolving SNN (deSNN) [57], where the same data series that 
are used for the unsupervised learning phase are deployed 
again to the SNN model, to train the output neurons of the 
classifier.  All neurons in the SNNcube model are connected 
to each output neuron, and output neurons are created, or 
“evolved”, to capture patterns of spatio-temporal activity in 
the SNN model related to different class labels. The activated 
sets of neurons will be used for classification/regression of the 
input data. 

 

D. Parameter Optimisation 

The proposed methodology in this paper contains different 
methods and parameters. Here we employed an exhaustive 
GRID search approach [58] with an objective function of 
reducing the testing error of the classification. Some of the 
main parameters that can be selected in the optimisation 
process are as follows:  

- A self-adaptive bidirectional threshold for spike encoding.  
-  Distance threshold that is employed for the neuron 
connectivity initialisation using small-world connectivity. 
- STDP learning rate.  
- Parameters of the deSNN classifier:  mod (modulation 
factor) and drift (adjusting the connection weights in a 
positive or negative way depending on the spikes that 
followed the first spike at a synapse) [57]. 

E. EEG Dataset Description 

We used the benchmark DREAMER EEG dataset [2] 
recorded from 23 healthy participants (14 Males, 9 Females) 
with an average age of 26.50 while watching four diverse film 
clips. There were 18 visual and audio clips, which have been 
evaluated effectively with respect to several emotions [59]. 
The EEG data were recorded using a wearable wireless 
headset with 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, 
P8, T8, FC6, F4, F8, AF4), with sampling rate of 128 Hz. The 
videos contained clips from numerous films to evoke a wide 
range of emotions (excitement, amusement, sadness, fear, 
anger, disgust, happiness, calmness, and surprise). The EEG 
data was recorded while the emotions of the participants were 

Fig. 1. The SNNcube architecture processes the input infortion as follows: encoding EEG data to spike trains; mapping to 3-dimensional SNNcube; 
unsupervised learning for EEG dataset; supervised learning and classification. 
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rated according to their sense of arousal, valence, and 
dominance. 

Fig. 2 illustrates the analysis of two classes of EEG data 
(positive and negative emotions) using surface plots and 
signal-to-noise ratio (SNR) [60]. The SNR measures the 
power of each variable (EEG channel) for discriminating 
samples belonging to different classes in a classification task. 
It can be observed from Fig. 2(b) that the highest SNR values 
connected to variables 7, 1, and 5 (O1, AF3, T7 EEG 
channels) by 0.27, 0.24, 0.21 values, respectively. This 
represents the best variables for discriminating and classifying 
EEG samples in the calmness and happiness classes (positive 
emotions). On the other hand, Fig. 2(d) demonstrates that 
variables T7, AF4, and P7 (with SNR values of 0.17, 0.16, 
0.15) have greater ability to discriminate/classify EEG 
samples in the fear and anger classes (negative emotions). 

 

F. SNN-based Experimental Design 
     The current research objectives are:   

1. Classification of emotional subtypes through modelling 
of EEG data in a recurrent brain inspired SNN 
architecture. 

2. Visualisation of the spatio-temporal relationships 
between the EEG channels in a 3D SNN reservoir for 
pattern recognition and understanding of the brain 
dynamics.    

3. Comparing the results obtained via SNN models 
versus traditional machine-learning techniques 
(MLR, MLP, and RBF). 

     To this aim, we designed four experimental sessions 
(depicted in Fig. 3) as follows: 

 

                                                                                    
(a)                                                                                                                         (b) 

  

                                          
(c)                                                                                                                          (d) 

Fig. 2. EEG data analysis using surface plots (in a and b) and signal to noise ratio (in c and d) for positive and negative emotions correspondingly. 
 
 

Experiment I 
 (E1) 

Experiment II 
 (E2) 

Experiment III 
 (E3) 

                 

 

Fig. 3. The classification and samples of three datasets in NeuCube format. The images are from https://www.kingsnews.org 



 

Experiment 1 (E1): Unsupervised training of a NeuCube 
model on EEG data of calmness and happiness, referred as 
positive emotions (named E1). There are 46 EEG samples (23 
spatio-temporal samples per class). 

Experiment 2 (E2): Unsupervised learning of EEG data 
of fear and anger, referred as negative emotions (named E2). 
There are 46 EEG samples (23 samples per class).  

Experiment 3 (E3): Unsupervised learning in a NeuCube 
model and supervised learning for classification of positive 
verses negative emotions.     

Experiment 4 (E4): Classification of EEG data into the 
four types of emotions (calmness, fear, happiness, and anger) 
that cover both positive and negative emotions (named E3). 
There are 92 EEG samples (23 samples per class). 

In all experiments, the EEG datasets have the same spatio-
temporal dimension across all the samples (128 data time 
points representing one second measurement from 14 EEG 
electrodes).  

III. RESULTS 
     In order to study and classify different emotional states, 
three SNN models were trained under unsupervised learning 
with EEG data related to experiments E1 to E4.  

A. Visualisation of the 3D SNN Models Trained with EEG 
Data via STDP Learning  

Fig. 4 illustrates that the SNN models were trained with 
different EEG sample files (from E1, E2, and E3) through 
unsupervised STDP learning rule. Here, the visualised SNN 
models are computational models that can be studied and 
interpreted to better understand the EEG data and the 
underpinning brain functions. They captured the spatio-
temporal associations between the EEG channels and the 
corresponding brain regions. The positive neural connections 
in the SNN models are displayed in blue lines, while negative 
connections are in red. The brighter colour of neurons 
represents a greater number of spikes was generated during 
the learning process, reflecting more activated brain regions. 

The SNN models represent the differences between the 
EEG data related to different emotions. For instance, it can be 
seen from Fig. 4(a) and Fig. 4(b) that fear and anger emotions 

have elicited stronger SNN connectivity than calmness and 
happiness emotions. Furthermore, it can be observed from 
Fig. 4 that the activity of different regions of the brain revealed 
that there is an increase in the connectivity of SNN concerning 
the frontal (F7, F3, AF4), frontocentral (FC6), and parietal 
part (P7, P8) in the samples of positive emotions. The intensity 
of this connectivity was focused on the frontal parts of the 
brain (F4, AF3, F7, F8), frontocentral (FC5, FC6), occipital 
areas (O2) and parietal parts (P7, P8) in the samples of 
negative emotions. More comprehensive activation occurred 
in the frontal areas of the brain for calmness and happiness 
emotional states, while the significant activation occurred 
over the frontal and parietal sites for anger and fear emotions. 

B. Network Analysis through Neuronal Clustering and 
Feature Intercation  

     After the unsupervised learning process is completed, 
the spatio-temporal connections that were formed during 
STDP learning with EEG data in the trained SNN models can 
be further analysed. Here, we used clustering method to group 
the model’s neurons with respect to their level of spike 
communication during the learning process. As shown in Fig. 
5, the input neurons are allocated to the cluster centres and 
labelled by the input variables (EEG channels). The rest of the 
neurons are then clustered by the centres with respect to the 
number of spikes that were received from each centre. Every 
neuron belongs to a cluster centre (EEG channel) that received 
the greatest number of spikes from that centre as compared to 
the other centres [51]. It can be seen from Fig. 5(a to c) that 
EEG datasets of experiments E1, E2, and E3 developed 
different clustering patterns in the trained SNN models. 

Fig. 5(d to f) illustrates an information route analysis 
traced by spike max gradient for the top three input neurons. 
Fig. 5(d) suggests that in E1 experiment, channels P7, T8, and 
O2 with neuron proportions of 21%, 19%, and 16% 
respectively obtained the greatest spike gradient. Fig. 5(e) 
shows that channels P7, P8, and T8 with neuron percentage of 
23%, 19%, and 13% respectively had the greatest spike max 
gradient in E2 experiment. On the other hand, Fig. 5(f) 
illustrates that in E3 experiment the biggest spike max 
gradients were captured in channels P7, T8, and AF4 with 
neuron proportion of 25%, 19%, 9% respectively. 

 
Data collected at E1 (Positive Emotions)   Data collected at E2 (Negative Emotions)                Data collected at E3 (Both Emotions) 

 

 
  

(a) (b)                                           (c) 
  Fig. 4. SNN models connectivity after unsupervised STDP learning with three experimental EEG datasets. (a) SNN trained with 46 EEG samples of positive 
emotions, (b) SNN trained with 46 EEG samples of negative emotions, (c) SNN trained with 92 EEG samples of both positive and negative emotions. 



 

We also developed a Feature Interaction Network (FIN) 
that captures the level of spike interaction over time between 
the generated neural clusters of 14 EEG channels (brain 
regions) in terms of recognition of different emotional states. 
Fig. 6 (a and b) illustrates the neural clusters with dots and the 
level of internal spike interactions with lines.  

The thicker the lines, the greater the spikes exchanged 
between the neural clusters during the STDP learning time.  In 
both graphs of E1 and E2, most of the thicker lines were 
established in the left hemisphere, specifically between EEG 
channel T7 and channels FC5, F3, F7 and AF3, reflecting that 
more spikes were transmitted between the neurons placed in 
these sites of the brain. Additionally, there were broader 
connections between the neurons that were positioned in the 
parietal and posterior areas (O1 and P7 channels)  in  E1 and 
E2. 

On the other hand, the EEG channels FC6, F4, F8, and 
AF4 which are in the right hemisphere, show stronger 
interactions in the SNN model of positive emotions (Fig. 6(a)) 
than the negative emotions (Fig. 6(b)). The findings revealed 
that positive and negative emotions have different cognitive 
processes in the brain and illustrate the areas of differences.  

Each SNN model is supported by quantitative information 
that represents the number of spikes emitted in each neuron 
during the STDP learning process (shown in Fig. 6(c and d)). 
This measured the intensity of spikes produced by a neuron 

and sent to other neurons (post-spike); thus, information 
propagation occurs in the model.   

C. EEG Classification Using SNN Models 

The EEG datasets for different emotion states were learned 
in the SNN models using the unsupervised STDP learning. 
When the STDP learning is completed, the deSNN supervised 
learning technique was performed for classification of EEG 
samples to different emotions. At this stage, the relationship 
between the training EEG samples and their class label 
information is learned. The classification was performed 
using leave-one-out cross validation (LOOCV) with a grid-
search optimisation technique that optimised the main SNN’s 
parameters with an objective function of reducing the 
classification error. Here, we selected three main parameters 
(STDP learning rate, 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) to be optimised. 

The parameters were selected by assigning 10 steps 
between the minimum and maximum values of each 
parameter range. Therefore, for every SNN model creation, 
1000 iterations of training (using all samples except the 
holdout sample) and testing (using the single holdout sample) 
were performed with different combination of these three 
parameters. The classification accuracy between EEG 
samples of positive emotions (E1) versus negative emotions 
(E2) is reported in Table 1. The optimised parameters are 
STDP rate: 0.012, the mod: 0.45, and drift: 0.3. Furthermore, 
the results of EEG data classification accuracy using SNN 

TABLE 1: CLASSIFICATION BETWEEN EEG SAMPLES OF POSITIVE EMOTIONS (FROM E1) VERSUS NEGATIVE EMOTIONS (FROM E2) AND BETWEEN THE FOUR 
EMOTIONS (CALMNESS, HAPPINESS, FEAR, AND ANGER) USING BI-SNN MODELS AND TRADITIONAL METHODS.  

 

Session Samples NeuCube MLR MLP RBF 
E3: 2 classes: positive emotions (E1) versus negative emotions (E2) 92 (46 per class) 83.5% 74.83% 79.69% 68.54% 
Experiment E4: 4 classes: calmness, happiness, fear, and anger 92 (23 per class) 94.83% 78.88% 72.96% 74.06% 

 

 

           Positive Emotions (E1)            Negative Emotions (E2)                               Both Emotions (E3) 
 

   
(a) (b)                                       (c) 

   
(d) (e)                                        (f) 

 

Fig. 5. Neural clustering by spike communications in the SNN models of EEG data related to positive emotions (in a), negative emotions (in b), and both EEG 
data from positive and negative emotions (in c).  The spike max gradient for the top three input neurons for positive emotions (in d), negative emotions (in e), 
and both positive and negative emotions (in f).  



 

models were compared with the outcomes of other machine 
learning methods such as Multi-Layer Perceptron (MLP), 
Radial Basis Function (RBF), and Multiple Linear Regression 
(MLR) obtained from NeuCom software v0.919 available at 
www.theneucom.com. The greatest classification accuracy of 
traditional methods was achieved by MLP of 79.69%, which 
is less than the SNN model accuracy of 94.83%. This shows 
that SNN models could differentiate the spatio-temporal 
patterns of EEG data much better when compared to other 
techniques (MLR, MLP, and RBF). 

IV. CONCLUSION AND FUTURE DIRECTIONS  

This research explores the scope of emotion recognition 
by employing SNN architecture for modelling, mapping, 
learning, classifying, visualising and understanding of EEG 
brain data related to different emotional states. The obtained 
accuracy of 94.83% for EEG classification of four types of 
emotions was superior when compared with standard machine 
learning techniques (MLR, MLP, and RBF). The 
experimental study was divided into three sessions that 
consisted of 14 EEG channels from 23 healthy participants (14 
Males, 9 Females). Experiment I focused on two classes of 
positive emotions (calmness, and happiness), Experiment II 
concentrated on two classes of negative emotions (fear, and 
anger), and finally Experiment III included all four emotions. 
A variety of techniques was implemented to analyse and 
classify the EEG data, including 3D visualisation of SNN 
connections (developed after unsupervised learning), spike 
emitted, neural clustering, feature interaction network, and 
max spike gradient. The research outcomes suggest there were 
differences between the SNN models of positive and negative 
emotions (from Experiment I and II) which were elaborated in 
this paper. Also, there is an increase in the connectivity of the 
frontal areas related to positive emotions, while the strength 
of connectivity was concentrated on the frontal and parietal 
sites of the brain for negative emotions. The classification 
accuracy in the SNN approach was higher when compared 
with the classification results using MLR, MLP, and RBF.  As 

the future direction, the authors plan to use a larger dataset of 
EEG samples regarding emotional recognition. The next 
suggestion is to obtain new EEG datasets that involve older 
participants (age 50 or over) as a means of exploring 
emotional perception in different age groups. One practical 
application of this research is the creation of brain computer 
interface [4] towards developing human-computer interaction 
systems [61, 62].  
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