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Abstract— Software defined networking (SDN) has 
emerged as a new technology to enhance the flexibility, 
resilience, and automated centralized management of a 
network. Recently several reports have identified possible 
vulnerabilities, which may affect its authenticity, availability, 
confidentiality and integrity. This paper analyzes several types 
of security issues in SDNs, especially on how to secure the 
communication between the control plane and the data plane. 
The state-of-the-art security protocol TLS in SDNs has been 
verified using the Scyther Tool. Two security schemes, namely 
TLSHPS and TLSIHP are proposed to improve the 
handshaking procedures of the TLS. Security analysis with the 
Scyther tool shows that both proposed schemes work well to 
prevent various cyber attacks.  

Keywords—Internet of Things, software-defined networks, 
security, handshaking procedure, transport layer security. 

I. INTRODUCTION 
The Internet of Things (IoT) augments the application of 

the Internet to connect physical objects, which are embedded 
with microcontrollers, sensors, and actuators to realise smart 
applications such as intelligent transportation systems (ITS), 
smart cities. The growing complexity of IoT and its ever-
increasing data traffic pose a significant challenge to 
traditional network management on how to respond to 
malicious events securely and timely.  

As we know, traditional network management is complex 
and dedicated to specific services. Every major network 
equipment vendor has a unique network infrastructure, 
firmware and other related software, which are only 
compatible with its hardware. This unfortunately hinders the 
innovation progress of network technologies, which leads to 
higher operation and management costs than equipment 
costs, especially when additional hardware is added to a 
current network due to service expansion [1]. 

To address the bottleneck of traditional network 
management, software defined networks (SDNs) have been 
proposed. SDNs offer promising opportunities for network 
management in terms of flexibility, simplicity and 
programmability. SDNs can reduce the operating cost 
including maintenance, error handling. SDN integrates the 
control plane of multiple devices into one instance to 
simplify the network management, offering robustness 
against outage. Consequently, SDNs oversee the entire 
network and can speed up the service delivery by providing 
both virtual and physical network devices from a central 
location. Furthermore, SDNs allow network engineers and 
administrators to configure the network without affecting the 
existing users. Finally, physical and virtual switches and 
network devices can be managed from a central controller.  

In this paper, we focus on the security enhancement for 
software defined mobile networks (SDWNs), which have 
three layers: data plane, controller layer and application 
layer. As the brain of an SDN, the controller oversees the 
whole network. However, the controller deployments, 
protocols and software are new, thus the history of attacks to 
SDNs is largely unknown. Therefore, it is critical to consider 
security threats carefully before adopting an SDN. For 
example, an SDN physically separates the control and data 
planes of network devices. As such, various attacks can 
affect the security of SDNs [2], which includes their 
confidentiality, integrity, authenticity and availability. 

Currently transport layer security (TLS) is used with data 
encryption protocol within the Openflow to secure the 
communication link between the control plane and the data 
plane in SDNs. However, the improper configurations of 
TLS could make an SDN vulnerable. Authentication and key 
exchange are important to TLS protocol security. The 
vulnerability of TLS can be verified using the Scyther tool. 
This motivates us to study those vulnerable points and 
identify the potential attack scenarios that could compromise 
the security of an SDN with TLS protocol. All attainable 
potential attacks are identified for each layer, then methods 
to prevent these attacks are described. We propose two 
security schemes to improve handshaking procedures and 
enhance the TLS protocol. 

The rest of this paper is organised as follows. Section II 
briefly revisits SDNs and their security issues, followed by 
discussions on different types of cyberattacks in SDNs. 
Section III presents the proposed security schemes with 
improved handshaking procedures for TLS, followed by the 
security verification results in Section IV. Section V 
concludes the paper.  

II. RELATED WORK 

A. Software Defined Networking 
The architecture of SDNs comprises three layers: the 

application plane, the control plane (known as the brain of an 
SDN) and the data plane (infrastructure layer) where all the 
network devices reside in [3]. As shown in Fig. 1, network 
forwarding devices are residing in the data plane, where 
network virtualization is implemented through the control 
layer. The control layer supervises the network forwarding 
behavior by providing the consolidated control functionality 
through open application programming interfaces (APIs) [4]. 
It resides on a server. Network policies and flow of traffic 
throughout the network are managed by the controller plane 
[3]. Finally, the application layer comprises the end user’s 
application that uses the SDN communications and services 
[5], which may include network configuration, monitoring 
and management by leveraging the network information [2]. 



The northbound interface connects the control layer and 
the application layer. It would be through RESTful APIs of 
SDN controllers [6]. The southbound interface offers 
communication between the infrastructure layer and the 
controller layer. It would use southbound protocols like 
Openflow, etc. 

B. Network Security  
Four major security objectives are discussed as follows.  

Confidentiality is protecting the information from 
disclosure to unauthorized parties, which is ensured by 
encryption and access control. Currently, TLS protocol is 
used to encrypt the communication between the controller 
and the data plane devices. Access control involves granting 
access from management interfaces of the network devices 
after authentication is successful. 

Authenticity is the assurance that communicating entity is 
the one claimed. A digital signature is the usual 
cryptographic method to provide authenticity. For the 
network devices, they exchange keys to provide authenticity 
[2]. For SDNs, TLS exchanges digital certificates during the 
TLS handshake process to check the authentication. Digital 
certificates provide protection against impersonation attacks 
and ensure authenticity by verifying the digital signature, 
certificate chain, activation and expiry date and the 
revocation date [7]. 

Integrity is to protect the information from being 
modified by unauthorised parties. In SDNs, the southbound 
API could be a potential attack vector for malicious intruders 
to compromise the integrity [8]. For instance, if a malicious 
intruder places a device on transmission tunnel between the 
switch and a controller, or simply duplicates the traffic flow 
to that device, then an attacker could get the configuration 
setting, delete the original rule and create a new rule to 
modify the original data flow [9]. This type of attack is 
known as Man-in-the-Middle (MITM) attack. Therefore, the 
rule of network routing flow and limitation of messages 
transmitted between layers are needed to ensure data 
integrity. For example, Message Authentication Code 
(MAC) can be adopted for this purpose. 

Availability is to guarantee reliable access that authorized 
people can access the information when it is required. The 
controller is the most important part of SDN availability. If 
one of the data plane devices is down due to denial of service 
(DOS) attack or configuration error or hardware breakdowns, 
the controller can rapidly redirect the flow of network paths. 
However, if the controller is being attacked or unavailable 
due to configure issues, the network devices can only 
accomplish the predefined rules. To ensure the availability, 
configuration and technical error should be avoided. 

C. Attack Types and Their Solutions 
As illustrated in Fig. 2, at the data plane, attackers could 

launch DOS attacks to reduce SDN availability by gaining 
illegitimate access to the network devices. The DOS is an 
attack to suspend the availability of service and can affect the 
system, which can affect the network by crashing or flooding 
traffic. Traffic diversion attack can happen at the data plane, 
which can compromise network devices to alter the network 
route and allow attackers to eavesdrop on traffic flows. 
Additionally, an attacker may attempt a replay attack to 
spythe flows on the southbound communication to control 
the flows that are in use and the type of network traffic is  

 
Fig. 1. Illustration of the SDN Architecture 

 
Fig. 2. Illustration of Security Threats on the SDNs 

being allowed over the network. An MITM attack can also 
be launched by spoofing the northbound API messages or 
southbound messages. By a successful attack, the attacker 
can sniff, modify and even stop the network traffic. 

Noteworthily, the controller layer is a primary target for 
attackers as it is the central point of failure that could affect 
the entire SDN. A resource exhaustion attack can happen on 
the controller, which requires receiving event updates and it 
can cause a delayed response in Packet_In and Packet_Out 
messages [10]. A network manipulation attack is another 
attack that occurs on the controller layer. A compromised 
controller can produce false data and open other 
vulnerabilities in the entire network.  

At the application layer, an attacker can launch an app 
manipulation attack using SQL injection or cross-site 
scripting techniques. Application vulnerability could lead to 
disruption of service or a malfunction, or allowing the 
attackers to spy on data. An adversary can cause the overall 
disruption of SDN services [11].  

In summary, at data plane, attackers can launch the traffic 
diversion and DOS attacks due to short of (1) authentication 
mechanisms to verify the authenticity of communication 
between data plane devices or network elements and 
controller and (2) unbounded flow state memory allocation 
where a malicious intruder takes advantage of the huge 
memory space required for the forwarding elements [12]. 
Therefore, to prevent spoofing of southbound transmission, 
most organizations use the TLS protocol to authenticate and 
encrypt the traffic [10]. The solution may differ according to 
the southbound protocol being used in SDNs. For instance, 
OpenFlow protocol uses the TLS session and some protocols 
use shared-secret key and nonce to prevent replay attacks. 

To secure the control plane, there should be different 
access privileges for network engineers or administrators to 



prevent unauthorized access to the SDN controller. Regular 
audit and logging trails can be used to identify the 
illegitimate changes or access from an attacker. Using rate-
limiting and packet dropping techniques can defend the DOS 
attack. For securing the application layer, keeping servers 
updated with the latest patches can prevent the kind of API 
exploitation attack. Using strong encryption techniques can 
prevent ARP spoofing attacks on the application layer or the 
control plane [13]. 

D. Drawbacks of TLS 
The Open Flow protocol used in SDNs for southbound 

API between the controller and network devices is under the 
study [14]. It is important to tighten the security of the Open 
Flow protocol to keep confidentiality, integrity and prevent 
data spying [15].  

TLS is an encryption protocol designed to provide 
reliable transmission security throughout the Internet and 
allow clients and servers to communicate confidentially. The 
TLS has two layers, namely record protocol and handshake 
protocol. Data link encryption and device authentication are 
completed at the record layer. The handshaking process is 
complicated to negotiate the secure attributes, such as session 
identifier, certificate and cipher specification. Fig. 3 shows 
the client-server handshake process. To secure TLS, a strong 
private key and valid certificate using the strong cipher suite 
are used for the authentication of the network devices. 

Unfortunately, the TLS heavily relies on pre-master key (or 
shared secrete key). Thus improper configuration can lead to 
security risk [16] [17]. For instance, if an attacker could 
obtain the pre-master key and place the device between the 
switch and the controller, it will lead to an MITM attack as 
shown in Fig. 4 [9]. An unsecured key exchange can also 
lead to an MITM attack [3]. To overcome it, the controller 
needs to check all TLS handshake messages to verify the 
protocol version, cipher suites, certificate. Since the 
controller inspects all network traffic to enforces policies, it 
can detect and reroute the flow of the MITM attacks. 

If a malicious hacker can obtain the pre-master key 
(which is shared between client and server and generated by 
either side) and interpret the TLS flow by taking the 
advantage of shared secrete key, then the integrity of 
transmission data becomes compromised. 
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Fig. 3. Client-Server TLS Handshaking Process 
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Fig. 4. The Man-in-the-Middle Attack 
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Fig. 5. SDWN Network Architecture 

III. PROPOSED SCHEMES 

A. Proposed TLSHPS 
The first proposed scheme is called TLS Handshake 

Procedure Simplification (TLSHPS), which aims to simplify 
the TLS handshaking procedures and enhance confidentiality 
of the connection between the controller and switches. 
Consequently, it can reduce the transmission delay. By this 
scheme, the controller generates and issues the symmetry 
key for the two communication parties instead of using key 
exchange to prevent from key lost. In addition, the controller 
will verify the certification instead of the terminal. 

Consider the network architecture in Fig. 5, we assume: 
(1) TLS protocol is used to protect the communication 
between the controller and the SDN switches. (2) The trust 
domain covers the access network from the terminal to the 
SDN switches. The controller will validate the attributes of 
all TLS handshake messages attributes, including protocol 
versions, cipher suites, certificates and compression 
methods. Then, it will decide to forward or block the flow.  

As shown in Fig. 6, the proposed TLSHPS protocol 
works in seven steps. (1) Clients initiates the communication 
and sends the Certificate message, Certificate Verify 
message and Client Hello message, including the cipher 
suites, the protocol version, a random number, and session 
ID. The Certificate message contains the Client Certificate 
Chain. The Certificate Verify message includes the digitally 
signed hash value of the combination of Client Hello and 
Certificate message. (2) The controller checks the 
timestamps and nonce in the Client Hello message. If the 
verification is successful, the controller forwards the initial 
handshake message to the server directly. Otherwise, the 
controller drops the connection. (3) The server returns the 
Server Hello message, Certificate message and Certificate 
Verify message to the controller after receiving the Client 
Hello message. (4) The controller checks the timestamp and 
nonce in the Server Hello message, which is forwarded to the 
client upon successful verification (similar to Step 2). (5) 
The controller generates a symmetric key for this TLS 
session after the Certificate Verification of the client and 
server is successful. (6) The client and server will receive the 
Key message and identity message from the controller. The  
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Key message is constructed by the symmetric key, the nonce 
and timestamp. The nonce and timestamp are received in the 
Client Hello and Server Hello messages and will be returned 
to the sender by the controller. (7) Finally, the client and 
server exchange ChangeCipherSpec and finished messages. 

By the proposed TLSHPS protocol, the controller 
intercepts the certificate messages and also sends the identity 
information of the correspondent terminal. The verification 
of the handshake message integrity is not between the two 
communication terminals, but between the terminal and the 
controller. At Step 5, the controller generates and issues the 
symmetric key for the two terminals through the encrypted 
link between the controller and the SDN switch. The 
symmetric key is used as the pre_master _secret. 

B. Proposed TLSIHP 
If the controller is utilized for verifying and generating 

the symmetric key for TLS communications, heavy traffic 
flows might overload the controller because the controller is 
a single entity, which is responsible for the centralized 
network management in SDNs. Therefore, another scheme of 
TLS with Improved Handshaking Procedure (TLSIHP) has 
been proposed, under which edge controller and fabric 
controller (FC) in the control plane are used to support 
different functions and services. The former verifies the 
handshake message, and the latter manages routing and other 
tasks. The controller will only verify the certificate and 
restrict the cipher suites to use the strong authentication 
approach. The policy rule will check the TLS handshaking 
attribute; cipher suites and certificate issuer. The controller 
performs the verification and decides which TLS connection 
will be established or blocked. 

In the SDN architecture shown in Fig. 7, edge switches 
forward the TLS handshake message to the controller for 
verification purpose. The controller checks the TLS flow  
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Fig. 7. SDWN Network Architecture with Edge Switches 
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attributes according to the policy rule defined in the 
controller [18]. Once the TLS handshake message is 
classified, the policy box installs the forwarding rule to the 
switches to build the connection between client and server. 
The TLSIHP only verifies the TLS flow attributes and check 
the particular values inside the TLS Hello messages. Then, it 
searches for particular TLS parameters, aiming to match 
their values with the policy rule defined inside the controller 
policy box. Fig. 8 shows the detailed flow of the TLSIHP 
handshake process. 

(1) A client sends a Client Hello message, Certificate 
message and Certificate Verify message to the server. (2) 
The controller will verify TLS flow attributes, including 
client TLS protocol version, cipher suites, certificate issuers, 
and nonce. Upon successful verification, the controller 
forwards it to the server. Otherwise, it will be blocked. (3) 
After receiving the Client Hello message, the server sends 
the Server Hello message, Certificate message and Server 
Key (key identity of server) to the client. (4) The controller 
checks the server TLS protocol version, cipher suites, 
certificate issuers, timestamp and nonce (Similar to Step 2). 
Upon successful verification, the controller will forward it to 
the client. Otherwise, the controller will stop it. (5) The client 
sends the Client Key exchange, ChangeCipherSpec and 
Finished message to the server after receiving the Server 
Hello message, Server Key Exchange and so on. (6) Finally, 
the server sends the ChangeCipherSpec and Finished 
message to the client after receiving the client message. 

The difference between the TLSHPS and the TLSIHP 
protocol is that the TLSHPS protocol verifies the certificate 
and generates the symmetric key for client and server and 
issues it to authenticate the confidentiality of transmission 
between two terminals. By the TLSIHP, the controller 
verifies the certificate only, which can significantly reduce 
the load of the controller. 

IV. SECURITY VERIFICATION RESULTS AND DISCUSSIONS 
Scyther is an automatic security protocol verification 

tool, which is widely used for the classification of 
cryptography protocol secrecy, including robustness and 
integrity. To use Scyther, the protocol description is written 
in the Security Policy Definition Language (SPDL). It takes 
a role-based description of a protocol as input and a claim is 
declared to verify the intended security properties. Scyther 
provides three functions to check the protocol verification: 



(1) verify protocol—only the claim events are verified or 
falsified by Scyther. (2) verify automatic claims—Scyther 
can automatically generate claims and check them even 
security properties are not specified as claim events. (3) 
characterise roles—Scyther analyses each protocol role and 
provides all finite representation traces, which includes an 
execution of the protocol role.  

A. Verification of the TLS protocol 
The verification process includes the TLS v1.2 for 

mutual TLS_RSA protocol. The RSA authentication is the 
most commonly deployed mode of the TLS [19]. By the 
TLS-RSA, four single-use symmetric keys are generated to 
as session keys to authenticate and encrypt the application 
data in consequent transmission. Therefore, the TLS-RSA 
protocol will be tested by the Scythe tool.  

The SPDL language is used to write the process of the 
TLS handshaking. Two roles have been identified as a client 
and a server. It makes the global declaration for the required 
variable names, hash function, user types and miscellaneous 
and asymmetric keys. Then, the role definitions as sequences 
of events are identified. Once the protocol description in 
SDPL is ready, one can click the verify tab in the first panel 
of Scythe GUI, it provides three types of verification. For the 
TLS-RSA protocol, automatic claims function is run to 
generate claims and check them. Fig. 9 shows the outcome of 
the Scyther verification protocol function for the TLS 
protocol. 

From Fig. 9, the TLS protocol is secure and with some 
vulnerability points. A status is either OK or Fail. The status 
OK means that the claim has been verified no attacks or no 
attacks within bounds. The status Fail means that the claim 
has been falsified with at least one attack. The 1 attack 
button under the class can be clicked and it will open up a 
new window, which shows the point where the attack 
appears. In particular, a random fresh pre-master secret 
(PMS) key is generated by the client side, which is the only 
secret information used in the computation of all session 
keys [19]. Hence, the secrecy of PMS fundamentally 
determines the secrecy of the session keys. The Scyther tool 
observes that the session key secrecy has been attacked using 
{LKRactor} by service side AKC attack. The hacker has 
essentially eavesdropped on a regular handshake. Then, the 
hacker has decrypted {PMS}pk(s) by using the sk(S) to 
obtain the PMS and computed the session keys. It allows the 
hacker to hijack any subsequent transmitted messages or 
implant rendition to establish an unsecured transmission 
channel. Therefore, it proves that the TLS is unsecure. 

B. Verification of the Proposed TLSHPS and TLSIHP 
According to the TLSHPS protocol description, the 

controller records the timestamp and nonce in the Client and 
Server Hello message and holds on for a time window. The 
TLSHPS has been written in SPDL to test with the Scythe. 
After running the verify protocol, it is approved that the 
TLSHPS protocol does not carry any loose hole and it 
ensures secure transmission. Fig. 10(a) shows the result 
window for the TLSHPS testing by the Scyther. Most of the 
claims have been used to verify the security properties to 
show status OK, without attacks discovered within bounds. 
Therefore, it can conclude that the TLSHPS is secure.  

Next, the description of the proposed TLSIHP is 
presented in the SPDL language for the evaluation. As 
shown in Fig. 10(b), all claims have been verified with OK 

TLS_RSA_mutual, client1   Secret pms Ok    No attacks within bounds.

TLS_RSA_mutual, client2   Secret sid Fail Falsified    At least 1 attack.

TLS_RSA_mutual, client3   Secret na Fail Falsified    At least 1 attack.

TLS_RSA_mutual, client4   Secret pb Fail Falsified    At least 1 attack.

TLS_RSA_mutual, client5   Secret nb Fail Falsified    At least 1 attack.

TLS_RSA_mutual, client6   Alive Ok Verified     No attacks.

TLS_RSA_mutual, client7   Weakagree Ok        No attacks within bounds.

TLS_RSA_mutual, client8   Niagree Ok    No attacks within bounds.

TLS_RSA_mutual, client9   Nisynch Fail Falsified    At least 1 attack.

TLS_RSA_mutual, server1   Secret pb Fail Falsified    At least 1 attack.

TLS_RSA_mutual, server2   Secret nb Fail Falsified    At least 1 attack.

TLS_RSA_mutual, server3   Secret pms Ok    No attacks within bounds.

TLS_RSA_mutual, server4   Secret sid Fail Falsified    At least 1 attack.

TLS_RSA_mutual, server5   Secret na Fail Falsified    At least 1 attack.

TLS_RSA_mutual, server6   Alive Ok Verified    No attacks.

TLS_RSA_mutual, server7   Weakagree Ok Verified    No attacks.

TLS_RSA_mutual, server8   Niagree Ok       No attacks within bounds.

TLS_RSA_mutual, server9   Nisynch Fail Falsified   At least 1 attack.
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Fig. 9. The Result of TLS Verification Claim using Scyther Tool 

Tlshps, A1   Secret NA Ok Verified     No attacks.

Tlshps, A2   Secret NB Ok Verified     No attacks.

Tlshps, A3   Niagree Ok Verified     No attacks.

Tlshps, A4   Nisynch Ok Verified     No attacks.

Tlshps, A5   Alive Ok Verified     No attacks.

Tlshps, A6   Weakagree Ok Verified     No attacks.

Tlshps, C1   Secret NA Ok Verified     No attacks.

Tlshps, C2   Screte NB Ok Verified     No attacks.

Tlshps, C3   Niagree Ok Verified     No attacks.

Tlshps, C4   Nisynch Ok Verified     No attacks.

Tlshps, C5    Alive Ok Verified     No attacks.

Tlshps, C6   Weakagree Ok Verified     No attacks.

Tlshps, B1   Secret NA Ok Verified     No attacks.

Tlshps, B2   Secret NB Ok Verified     No attacks.

Tlshps, B3   Niagree Ok Verified    No attacks.
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Tlshps, B5    Alive Ok Verified     No attacks.

Tlshps, B6   Weakagree Ok Verified     No attacks.
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Tlsihp, C1   Secret NC Ok Verified     No attacks.

Tlsihp, C2   Secret NS Ok Verified     No attacks.

Tlsihp, C3   Niagree Ok Verified     No attacks.

Tlsihp, C4   Nisynch Ok Verified     No attacks.

Tlsihp, C5   Alive Ok Verified     No attacks.

Tlsihp, C6   Weakagree Ok Verified     No attacks.

Tlsihp, P1   Secret NC Ok Verified     No attacks.

Tlsihp, P2   Screte NS Ok Verified     No attacks.

Tlsihp, P3   Niagree Ok Verified     No attacks.

Tlsihp, P4   Nisynch Ok Verified     No attacks.

Tlsihp, P5    Alive Ok Verified     No attacks.

Tlsihp, P6   Weakagree Ok Verified     No attacks.

Tlsihp, S1   Secret NC Ok Verified     No attacks.

Tlsihp, S2   Secret NS Ok Verified     No attacks.

Tlsihp, S3   Niagree Ok Verified    No attacks.

Tlsihp, S4   Nisynch Ok Verified    No attacks.

Tlsihp, S5    Alive Ok Verified     No attacks.

Tlsihp, S6   Weakagree Ok Verified     No attacks.
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(b) 

Fig. 10. Verification Results for (a) TLSHPS (b) TLSIHP by Scyther Tool 

status. Thus, the security property has been successfully 
verified and the proposed TLSIHP is also secure. As 
compared to the standard TLS, the proposed TLSHPS and 
TLSIHP protocol can reduce about 13% and 21% of the 
delay in the handshake, respectively.  

C. Security Analysis 
Ability against replay attacks—A replay attack is a kind 

of network attack, which maliciously repeated valid data 
transmission [18] or is delayed as the attacker intercepts the 
message and resends an old message. For both proposed 
schemes, a fresh timestamp is used only once. A nonce is a 
random number generated by the client or server. The 
controller records the nonce and timestamp in the Client 



Hello and Server Hello messages. The records are held for a 
time window. The controller drops a message if its 
timestamp falls outside the window. If an attacker resends a 
message to a terminal inside the time window, the SDN 
switch will forward the handshake message to the controller. 
Then the controller will check the record of the nonce and 
timestamp, and the message will be rejected. Therefore, a 
replay attack can be prevented. 

Message Integrity—The message integrity is the most 
important security property so that the correctness of the 
information is guaranteed. It is to defend against information 
alteration or destruction in the transmission. Therefore, by 
both proposed schemes, a cipher suite allows using a 
combination of pseudo-random function (PRF) algorithm, 
the message authentication code algorithm, the key exchange 
algorithm and the encryption algorithm. 

Ability against impersonation attacks—By the 
impersonation attack, the identity of a legitimate party in the 
SDN is successfully assumed by an adversary [11]. Using 
asymmetrical cryptography can prevent the impersonation 
attacks. The client / server puts its public key into the 
certificate message and a signature signed by its private key 
into the Certificate Verify message. The controller decrypts 
the message using the public key and verifies the decryption 
results. The client / server can prove that it has a private key 
compatible with the public key to pass the verification 
successfully. It can prevent impersonation attacks. 

Ability against MITM attacks—By both proposed 
schemes, each handshake message is only transmitted 
between the controller and the SDN switch, encrypted by the 
TLS protocol provided in the SDWN. No information could 
be obtained even if an attacker intercepts the encrypted 
handshake messages. Furthermore, the verification of the 
hash value in the Finished message will fail if the attacker 
tampers with the handshake messages [18]. 

V. CONCLUSION 
In this paper, the security of the TLS for the SDNs has 

been evaluated by Scyther tool to discover its vulnerability. 
To improve the TLS protocol, two security enhancement 
schemes, the TLSHPS and the TLSIHP, have been proposed 
and evaluated. The security verification results show that 
both proposed schemes can prevent some malicious attacks 
successfully. Moreover, they can satisfy the security property 
of confidentiality, integrity and authentication. Finally, they 
both reduce the handshake delay as compared to the TLS.  
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