

Improved Handshaking Procedures for Transport
Layer Security in Software Defined Networks

Xue Jun Li
Department of EEE

Auckland University of Technology
Auckland, New Zealand

xuejun.li@aut.ac.nz

Maode Ma
College of Engineering

Qatar University
Qatar

mamaode@qu.edu.qa

Cho Wai Hlaing
School of EEE

Nanyang Technological University
Singapore

ch0097ng@e.ntu.edu.sg

Abstract— Software defined networking (SDN) has
emerged as a new technology to enhance the flexibility,
resilience, and automated centralized management of a
network. Recently several reports have identified possible
vulnerabilities, which may affect its authenticity, availability,
confidentiality and integrity. This paper analyzes several types
of security issues in SDNs, especially on how to secure the
communication between the control plane and the data plane.
The state-of-the-art security protocol TLS in SDNs has been
verified using the Scyther Tool. Two security schemes, namely
TLSHPS and TLSIHP are proposed to improve the
handshaking procedures of the TLS. Security analysis with the
Scyther tool shows that both proposed schemes work well to
prevent various cyber attacks.

Keywords—Internet of Things, software-defined networks,
security, handshaking procedure, transport layer security.

I. INTRODUCTION
The Internet of Things (IoT) augments the application of

the Internet to connect physical objects, which are embedded
with microcontrollers, sensors, and actuators to realise smart
applications such as intelligent transportation systems (ITS),
smart cities. The growing complexity of IoT and its ever-
increasing data traffic pose a significant challenge to
traditional network management on how to respond to
malicious events securely and timely.

As we know, traditional network management is complex
and dedicated to specific services. Every major network
equipment vendor has a unique network infrastructure,
firmware and other related software, which are only
compatible with its hardware. This unfortunately hinders the
innovation progress of network technologies, which leads to
higher operation and management costs than equipment
costs, especially when additional hardware is added to a
current network due to service expansion [1].

To address the bottleneck of traditional network
management, software defined networks (SDNs) have been
proposed. SDNs offer promising opportunities for network
management in terms of flexibility, simplicity and
programmability. SDNs can reduce the operating cost
including maintenance, error handling. SDN integrates the
control plane of multiple devices into one instance to
simplify the network management, offering robustness
against outage. Consequently, SDNs oversee the entire
network and can speed up the service delivery by providing
both virtual and physical network devices from a central
location. Furthermore, SDNs allow network engineers and
administrators to configure the network without affecting the
existing users. Finally, physical and virtual switches and
network devices can be managed from a central controller.

In this paper, we focus on the security enhancement for
software defined mobile networks (SDWNs), which have
three layers: data plane, controller layer and application
layer. As the brain of an SDN, the controller oversees the
whole network. However, the controller deployments,
protocols and software are new, thus the history of attacks to
SDNs is largely unknown. Therefore, it is critical to consider
security threats carefully before adopting an SDN. For
example, an SDN physically separates the control and data
planes of network devices. As such, various attacks can
affect the security of SDNs [2], which includes their
confidentiality, integrity, authenticity and availability.

Currently transport layer security (TLS) is used with data
encryption protocol within the Openflow to secure the
communication link between the control plane and the data
plane in SDNs. However, the improper configurations of
TLS could make an SDN vulnerable. Authentication and key
exchange are important to TLS protocol security. The
vulnerability of TLS can be verified using the Scyther tool.
This motivates us to study those vulnerable points and
identify the potential attack scenarios that could compromise
the security of an SDN with TLS protocol. All attainable
potential attacks are identified for each layer, then methods
to prevent these attacks are described. We propose two
security schemes to improve handshaking procedures and
enhance the TLS protocol.

The rest of this paper is organised as follows. Section II
briefly revisits SDNs and their security issues, followed by
discussions on different types of cyberattacks in SDNs.
Section III presents the proposed security schemes with
improved handshaking procedures for TLS, followed by the
security verification results in Section IV. Section V
concludes the paper.

II. RELATED WORK

A. Software Defined Networking
The architecture of SDNs comprises three layers: the

application plane, the control plane (known as the brain of an
SDN) and the data plane (infrastructure layer) where all the
network devices reside in [3]. As shown in Fig. 1, network
forwarding devices are residing in the data plane, where
network virtualization is implemented through the control
layer. The control layer supervises the network forwarding
behavior by providing the consolidated control functionality
through open application programming interfaces (APIs) [4].
It resides on a server. Network policies and flow of traffic
throughout the network are managed by the controller plane
[3]. Finally, the application layer comprises the end user’s
application that uses the SDN communications and services
[5], which may include network configuration, monitoring
and management by leveraging the network information [2].

The northbound interface connects the control layer and
the application layer. It would be through RESTful APIs of
SDN controllers [6]. The southbound interface offers
communication between the infrastructure layer and the
controller layer. It would use southbound protocols like
Openflow, etc.

B. Network Security
Four major security objectives are discussed as follows.

Confidentiality is protecting the information from
disclosure to unauthorized parties, which is ensured by
encryption and access control. Currently, TLS protocol is
used to encrypt the communication between the controller
and the data plane devices. Access control involves granting
access from management interfaces of the network devices
after authentication is successful.

Authenticity is the assurance that communicating entity is
the one claimed. A digital signature is the usual
cryptographic method to provide authenticity. For the
network devices, they exchange keys to provide authenticity
[2]. For SDNs, TLS exchanges digital certificates during the
TLS handshake process to check the authentication. Digital
certificates provide protection against impersonation attacks
and ensure authenticity by verifying the digital signature,
certificate chain, activation and expiry date and the
revocation date [7].

Integrity is to protect the information from being
modified by unauthorised parties. In SDNs, the southbound
API could be a potential attack vector for malicious intruders
to compromise the integrity [8]. For instance, if a malicious
intruder places a device on transmission tunnel between the
switch and a controller, or simply duplicates the traffic flow
to that device, then an attacker could get the configuration
setting, delete the original rule and create a new rule to
modify the original data flow [9]. This type of attack is
known as Man-in-the-Middle (MITM) attack. Therefore, the
rule of network routing flow and limitation of messages
transmitted between layers are needed to ensure data
integrity. For example, Message Authentication Code
(MAC) can be adopted for this purpose.

Availability is to guarantee reliable access that authorized
people can access the information when it is required. The
controller is the most important part of SDN availability. If
one of the data plane devices is down due to denial of service
(DOS) attack or configuration error or hardware breakdowns,
the controller can rapidly redirect the flow of network paths.
However, if the controller is being attacked or unavailable
due to configure issues, the network devices can only
accomplish the predefined rules. To ensure the availability,
configuration and technical error should be avoided.

C. Attack Types and Their Solutions
As illustrated in Fig. 2, at the data plane, attackers could

launch DOS attacks to reduce SDN availability by gaining
illegitimate access to the network devices. The DOS is an
attack to suspend the availability of service and can affect the
system, which can affect the network by crashing or flooding
traffic. Traffic diversion attack can happen at the data plane,
which can compromise network devices to alter the network
route and allow attackers to eavesdrop on traffic flows.
Additionally, an attacker may attempt a replay attack to
spythe flows on the southbound communication to control
the flows that are in use and the type of network traffic is

Fig. 1. Illustration of the SDN Architecture

Fig. 2. Illustration of Security Threats on the SDNs

being allowed over the network. An MITM attack can also
be launched by spoofing the northbound API messages or
southbound messages. By a successful attack, the attacker
can sniff, modify and even stop the network traffic.

Noteworthily, the controller layer is a primary target for
attackers as it is the central point of failure that could affect
the entire SDN. A resource exhaustion attack can happen on
the controller, which requires receiving event updates and it
can cause a delayed response in Packet_In and Packet_Out
messages [10]. A network manipulation attack is another
attack that occurs on the controller layer. A compromised
controller can produce false data and open other
vulnerabilities in the entire network.

At the application layer, an attacker can launch an app
manipulation attack using SQL injection or cross-site
scripting techniques. Application vulnerability could lead to
disruption of service or a malfunction, or allowing the
attackers to spy on data. An adversary can cause the overall
disruption of SDN services [11].

In summary, at data plane, attackers can launch the traffic
diversion and DOS attacks due to short of (1) authentication
mechanisms to verify the authenticity of communication
between data plane devices or network elements and
controller and (2) unbounded flow state memory allocation
where a malicious intruder takes advantage of the huge
memory space required for the forwarding elements [12].
Therefore, to prevent spoofing of southbound transmission,
most organizations use the TLS protocol to authenticate and
encrypt the traffic [10]. The solution may differ according to
the southbound protocol being used in SDNs. For instance,
OpenFlow protocol uses the TLS session and some protocols
use shared-secret key and nonce to prevent replay attacks.

To secure the control plane, there should be different
access privileges for network engineers or administrators to

prevent unauthorized access to the SDN controller. Regular
audit and logging trails can be used to identify the
illegitimate changes or access from an attacker. Using rate-
limiting and packet dropping techniques can defend the DOS
attack. For securing the application layer, keeping servers
updated with the latest patches can prevent the kind of API
exploitation attack. Using strong encryption techniques can
prevent ARP spoofing attacks on the application layer or the
control plane [13].

D. Drawbacks of TLS
The Open Flow protocol used in SDNs for southbound

API between the controller and network devices is under the
study [14]. It is important to tighten the security of the Open
Flow protocol to keep confidentiality, integrity and prevent
data spying [15].

TLS is an encryption protocol designed to provide
reliable transmission security throughout the Internet and
allow clients and servers to communicate confidentially. The
TLS has two layers, namely record protocol and handshake
protocol. Data link encryption and device authentication are
completed at the record layer. The handshaking process is
complicated to negotiate the secure attributes, such as session
identifier, certificate and cipher specification. Fig. 3 shows
the client-server handshake process. To secure TLS, a strong
private key and valid certificate using the strong cipher suite
are used for the authentication of the network devices.

Unfortunately, the TLS heavily relies on pre-master key (or
shared secrete key). Thus improper configuration can lead to
security risk [16] [17]. For instance, if an attacker could
obtain the pre-master key and place the device between the
switch and the controller, it will lead to an MITM attack as
shown in Fig. 4 [9]. An unsecured key exchange can also
lead to an MITM attack [3]. To overcome it, the controller
needs to check all TLS handshake messages to verify the
protocol version, cipher suites, certificate. Since the
controller inspects all network traffic to enforces policies, it
can detect and reroute the flow of the MITM attacks.

If a malicious hacker can obtain the pre-master key
(which is shared between client and server and generated by
either side) and interpret the TLS flow by taking the
advantage of shared secrete key, then the integrity of
transmission data becomes compromised.

(3)
Verify
server

certificate.
Check

cryptograp
hic

parameters

(6)
Verify
client

certificate
(if

required)

(1) client hello
cryptographic info.

(2) server hello
cipher suite

client certificate request (optional)

(4) client key exchange
send secret key info.

encrypted with server public key
(5) send client certificate

(7) client “finish”
(8) server “finished”

(9) exchange messages
(encrypted with shared secret key)

SSL Client SSL Server

Fig. 3. Client-Server TLS Handshaking Process

OpenFlow Controller

Attacker

OpenFlow Switch

new OpenFlow connection

original OpenFlow connection
using TLS protocol

Fig. 4. The Man-in-the-Middle Attack

controller

communication data
Trust

domain

Trust
domain

Untrust
domain

Terminal A Terminal B
SDN access

switch
SDN access

switch

Fig. 5. SDWN Network Architecture

III. PROPOSED SCHEMES

A. Proposed TLSHPS
The first proposed scheme is called TLS Handshake

Procedure Simplification (TLSHPS), which aims to simplify
the TLS handshaking procedures and enhance confidentiality
of the connection between the controller and switches.
Consequently, it can reduce the transmission delay. By this
scheme, the controller generates and issues the symmetry
key for the two communication parties instead of using key
exchange to prevent from key lost. In addition, the controller
will verify the certification instead of the terminal.

Consider the network architecture in Fig. 5, we assume:
(1) TLS protocol is used to protect the communication
between the controller and the SDN switches. (2) The trust
domain covers the access network from the terminal to the
SDN switches. The controller will validate the attributes of
all TLS handshake messages attributes, including protocol
versions, cipher suites, certificates and compression
methods. Then, it will decide to forward or block the flow.

As shown in Fig. 6, the proposed TLSHPS protocol
works in seven steps. (1) Clients initiates the communication
and sends the Certificate message, Certificate Verify
message and Client Hello message, including the cipher
suites, the protocol version, a random number, and session
ID. The Certificate message contains the Client Certificate
Chain. The Certificate Verify message includes the digitally
signed hash value of the combination of Client Hello and
Certificate message. (2) The controller checks the
timestamps and nonce in the Client Hello message. If the
verification is successful, the controller forwards the initial
handshake message to the server directly. Otherwise, the
controller drops the connection. (3) The server returns the
Server Hello message, Certificate message and Certificate
Verify message to the controller after receiving the Client
Hello message. (4) The controller checks the timestamp and
nonce in the Server Hello message, which is forwarded to the
client upon successful verification (similar to Step 2). (5)
The controller generates a symmetric key for this TLS
session after the Certificate Verification of the client and
server is successful. (6) The client and server will receive the
Key message and identity message from the controller. The

client serverSDN
switchcontrollerSDN

switch

Client Hello,
Certificate,

Certificate Verify
Client Hello

Client Hello

Sever Hello,
Certificate,

Certificate Verify

Verify
certificate

Server Hello
Server Hello

Verify Certificate
Generate symmetric key

Key, Identity
(of A) Key, Identity

(of A)
Key, Identity

(of B)Key, Identity
(of B)

Change
Cipher Spec,

Finished

Client Hello,
Certificate,

Certificate Verify

Sever Hello,
Certificate,

Certificate Verify

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished
Change

Cipher Spec,
Finished

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished
Fig. 6. Flow Diagram of the TLSHPS

Key message is constructed by the symmetric key, the nonce
and timestamp. The nonce and timestamp are received in the
Client Hello and Server Hello messages and will be returned
to the sender by the controller. (7) Finally, the client and
server exchange ChangeCipherSpec and finished messages.

By the proposed TLSHPS protocol, the controller
intercepts the certificate messages and also sends the identity
information of the correspondent terminal. The verification
of the handshake message integrity is not between the two
communication terminals, but between the terminal and the
controller. At Step 5, the controller generates and issues the
symmetric key for the two terminals through the encrypted
link between the controller and the SDN switch. The
symmetric key is used as the pre_master _secret.

B. Proposed TLSIHP
If the controller is utilized for verifying and generating

the symmetric key for TLS communications, heavy traffic
flows might overload the controller because the controller is
a single entity, which is responsible for the centralized
network management in SDNs. Therefore, another scheme of
TLS with Improved Handshaking Procedure (TLSIHP) has
been proposed, under which edge controller and fabric
controller (FC) in the control plane are used to support
different functions and services. The former verifies the
handshake message, and the latter manages routing and other
tasks. The controller will only verify the certificate and
restrict the cipher suites to use the strong authentication
approach. The policy rule will check the TLS handshaking
attribute; cipher suites and certificate issuer. The controller
performs the verification and decides which TLS connection
will be established or blocked.

In the SDN architecture shown in Fig. 7, edge switches
forward the TLS handshake message to the controller for
verification purpose. The controller checks the TLS flow

end-to-end path

Policy-Box

Controller

client serveringress
switch

egress
switchInternet

forwarding
rules

Fig. 7. SDWN Network Architecture with Edge Switches

client serveregress
switch

Policy Box
(controller)

ingress
switch

Client Hello

Client Hello
Client Hello

Sever Hello,
Certificate,
Server Key
Exchange,

Server Hello
Done

Client Hello

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished

Change
Cipher Spec,

Finished

V
er

ify
 th

e
ha

nd
sh

ak
e

m
es

sa
ge

Flow-ModFlow-Mod

Client Key
Exchange, Change

Cipher Spec,
Finished

Sever Hello,
Certificate,
Server Key
Exchange,

Server Hello
Done

Sever Hello,
Certificate,
Server Key
Exchange,

Server Hello
Done

Sever Hello,
Certificate,
Server Key
Exchange,

Server Hello
Done

Client Key
Exchange, Change

Cipher Spec,
Finished

Client Key
Exchange, Change

Cipher Spec,
Finished

Client Key
Exchange, Change

Cipher Spec,
Finished

SSL session established
Fig. 8. Flow Diagram of the TLSIHP

attributes according to the policy rule defined in the
controller [18]. Once the TLS handshake message is
classified, the policy box installs the forwarding rule to the
switches to build the connection between client and server.
The TLSIHP only verifies the TLS flow attributes and check
the particular values inside the TLS Hello messages. Then, it
searches for particular TLS parameters, aiming to match
their values with the policy rule defined inside the controller
policy box. Fig. 8 shows the detailed flow of the TLSIHP
handshake process.

(1) A client sends a Client Hello message, Certificate
message and Certificate Verify message to the server. (2)
The controller will verify TLS flow attributes, including
client TLS protocol version, cipher suites, certificate issuers,
and nonce. Upon successful verification, the controller
forwards it to the server. Otherwise, it will be blocked. (3)
After receiving the Client Hello message, the server sends
the Server Hello message, Certificate message and Server
Key (key identity of server) to the client. (4) The controller
checks the server TLS protocol version, cipher suites,
certificate issuers, timestamp and nonce (Similar to Step 2).
Upon successful verification, the controller will forward it to
the client. Otherwise, the controller will stop it. (5) The client
sends the Client Key exchange, ChangeCipherSpec and
Finished message to the server after receiving the Server
Hello message, Server Key Exchange and so on. (6) Finally,
the server sends the ChangeCipherSpec and Finished
message to the client after receiving the client message.

The difference between the TLSHPS and the TLSIHP
protocol is that the TLSHPS protocol verifies the certificate
and generates the symmetric key for client and server and
issues it to authenticate the confidentiality of transmission
between two terminals. By the TLSIHP, the controller
verifies the certificate only, which can significantly reduce
the load of the controller.

IV. SECURITY VERIFICATION RESULTS AND DISCUSSIONS
Scyther is an automatic security protocol verification

tool, which is widely used for the classification of
cryptography protocol secrecy, including robustness and
integrity. To use Scyther, the protocol description is written
in the Security Policy Definition Language (SPDL). It takes
a role-based description of a protocol as input and a claim is
declared to verify the intended security properties. Scyther
provides three functions to check the protocol verification:

(1) verify protocol—only the claim events are verified or
falsified by Scyther. (2) verify automatic claims—Scyther
can automatically generate claims and check them even
security properties are not specified as claim events. (3)
characterise roles—Scyther analyses each protocol role and
provides all finite representation traces, which includes an
execution of the protocol role.

A. Verification of the TLS protocol
The verification process includes the TLS v1.2 for

mutual TLS_RSA protocol. The RSA authentication is the
most commonly deployed mode of the TLS [19]. By the
TLS-RSA, four single-use symmetric keys are generated to
as session keys to authenticate and encrypt the application
data in consequent transmission. Therefore, the TLS-RSA
protocol will be tested by the Scythe tool.

The SPDL language is used to write the process of the
TLS handshaking. Two roles have been identified as a client
and a server. It makes the global declaration for the required
variable names, hash function, user types and miscellaneous
and asymmetric keys. Then, the role definitions as sequences
of events are identified. Once the protocol description in
SDPL is ready, one can click the verify tab in the first panel
of Scythe GUI, it provides three types of verification. For the
TLS-RSA protocol, automatic claims function is run to
generate claims and check them. Fig. 9 shows the outcome of
the Scyther verification protocol function for the TLS
protocol.

From Fig. 9, the TLS protocol is secure and with some
vulnerability points. A status is either OK or Fail. The status
OK means that the claim has been verified no attacks or no
attacks within bounds. The status Fail means that the claim
has been falsified with at least one attack. The 1 attack
button under the class can be clicked and it will open up a
new window, which shows the point where the attack
appears. In particular, a random fresh pre-master secret
(PMS) key is generated by the client side, which is the only
secret information used in the computation of all session
keys [19]. Hence, the secrecy of PMS fundamentally
determines the secrecy of the session keys. The Scyther tool
observes that the session key secrecy has been attacked using
{LKRactor} by service side AKC attack. The hacker has
essentially eavesdropped on a regular handshake. Then, the
hacker has decrypted {PMS}pk(s) by using the sk(S) to
obtain the PMS and computed the session keys. It allows the
hacker to hijack any subsequent transmitted messages or
implant rendition to establish an unsecured transmission
channel. Therefore, it proves that the TLS is unsecure.

B. Verification of the Proposed TLSHPS and TLSIHP
According to the TLSHPS protocol description, the

controller records the timestamp and nonce in the Client and
Server Hello message and holds on for a time window. The
TLSHPS has been written in SPDL to test with the Scythe.
After running the verify protocol, it is approved that the
TLSHPS protocol does not carry any loose hole and it
ensures secure transmission. Fig. 10(a) shows the result
window for the TLSHPS testing by the Scyther. Most of the
claims have been used to verify the security properties to
show status OK, without attacks discovered within bounds.
Therefore, it can conclude that the TLSHPS is secure.

Next, the description of the proposed TLSIHP is
presented in the SPDL language for the evaluation. As
shown in Fig. 10(b), all claims have been verified with OK

TLS_RSA_mutual, client1 Secret pms Ok No attacks within bounds.

TLS_RSA_mutual, client2 Secret sid Fail Falsified At least 1 attack.

TLS_RSA_mutual, client3 Secret na Fail Falsified At least 1 attack.

TLS_RSA_mutual, client4 Secret pb Fail Falsified At least 1 attack.

TLS_RSA_mutual, client5 Secret nb Fail Falsified At least 1 attack.

TLS_RSA_mutual, client6 Alive Ok Verified No attacks.

TLS_RSA_mutual, client7 Weakagree Ok No attacks within bounds.

TLS_RSA_mutual, client8 Niagree Ok No attacks within bounds.

TLS_RSA_mutual, client9 Nisynch Fail Falsified At least 1 attack.

TLS_RSA_mutual, server1 Secret pb Fail Falsified At least 1 attack.

TLS_RSA_mutual, server2 Secret nb Fail Falsified At least 1 attack.

TLS_RSA_mutual, server3 Secret pms Ok No attacks within bounds.

TLS_RSA_mutual, server4 Secret sid Fail Falsified At least 1 attack.

TLS_RSA_mutual, server5 Secret na Fail Falsified At least 1 attack.

TLS_RSA_mutual, server6 Alive Ok Verified No attacks.

TLS_RSA_mutual, server7 Weakagree Ok Verified No attacks.

TLS_RSA_mutual, server8 Niagree Ok No attacks within bounds.

TLS_RSA_mutual, server9 Nisynch Fail Falsified At least 1 attack.

1 attack

1 attack

1 attack

1 attack

1 attack

1 attack

1 attack

1 attack

1 attack

1 attack

TLS_RSA_mutual client

 server

Fig. 9. The Result of TLS Verification Claim using Scyther Tool

Tlshps, A1 Secret NA Ok Verified No attacks.

Tlshps, A2 Secret NB Ok Verified No attacks.

Tlshps, A3 Niagree Ok Verified No attacks.

Tlshps, A4 Nisynch Ok Verified No attacks.

Tlshps, A5 Alive Ok Verified No attacks.

Tlshps, A6 Weakagree Ok Verified No attacks.

Tlshps, C1 Secret NA Ok Verified No attacks.

Tlshps, C2 Screte NB Ok Verified No attacks.

Tlshps, C3 Niagree Ok Verified No attacks.

Tlshps, C4 Nisynch Ok Verified No attacks.

Tlshps, C5 Alive Ok Verified No attacks.

Tlshps, C6 Weakagree Ok Verified No attacks.

Tlshps, B1 Secret NA Ok Verified No attacks.

Tlshps, B2 Secret NB Ok Verified No attacks.

Tlshps, B3 Niagree Ok Verified No attacks.

Tlshps, B4 Nisynch Ok Verified No attacks.

Tlshps, B5 Alive Ok Verified No attacks.

Tlshps, B6 Weakagree Ok Verified No attacks.

Tlshps A

C

B

(a)

Tlsihp, C1 Secret NC Ok Verified No attacks.

Tlsihp, C2 Secret NS Ok Verified No attacks.

Tlsihp, C3 Niagree Ok Verified No attacks.

Tlsihp, C4 Nisynch Ok Verified No attacks.

Tlsihp, C5 Alive Ok Verified No attacks.

Tlsihp, C6 Weakagree Ok Verified No attacks.

Tlsihp, P1 Secret NC Ok Verified No attacks.

Tlsihp, P2 Screte NS Ok Verified No attacks.

Tlsihp, P3 Niagree Ok Verified No attacks.

Tlsihp, P4 Nisynch Ok Verified No attacks.

Tlsihp, P5 Alive Ok Verified No attacks.

Tlsihp, P6 Weakagree Ok Verified No attacks.

Tlsihp, S1 Secret NC Ok Verified No attacks.

Tlsihp, S2 Secret NS Ok Verified No attacks.

Tlsihp, S3 Niagree Ok Verified No attacks.

Tlsihp, S4 Nisynch Ok Verified No attacks.

Tlsihp, S5 Alive Ok Verified No attacks.

Tlsihp, S6 Weakagree Ok Verified No attacks.

Tlsihp C

P

S

(b)

Fig. 10. Verification Results for (a) TLSHPS (b) TLSIHP by Scyther Tool

status. Thus, the security property has been successfully
verified and the proposed TLSIHP is also secure. As
compared to the standard TLS, the proposed TLSHPS and
TLSIHP protocol can reduce about 13% and 21% of the
delay in the handshake, respectively.

C. Security Analysis
Ability against replay attacks—A replay attack is a kind

of network attack, which maliciously repeated valid data
transmission [18] or is delayed as the attacker intercepts the
message and resends an old message. For both proposed
schemes, a fresh timestamp is used only once. A nonce is a
random number generated by the client or server. The
controller records the nonce and timestamp in the Client

Hello and Server Hello messages. The records are held for a
time window. The controller drops a message if its
timestamp falls outside the window. If an attacker resends a
message to a terminal inside the time window, the SDN
switch will forward the handshake message to the controller.
Then the controller will check the record of the nonce and
timestamp, and the message will be rejected. Therefore, a
replay attack can be prevented.

Message Integrity—The message integrity is the most
important security property so that the correctness of the
information is guaranteed. It is to defend against information
alteration or destruction in the transmission. Therefore, by
both proposed schemes, a cipher suite allows using a
combination of pseudo-random function (PRF) algorithm,
the message authentication code algorithm, the key exchange
algorithm and the encryption algorithm.

Ability against impersonation attacks—By the
impersonation attack, the identity of a legitimate party in the
SDN is successfully assumed by an adversary [11]. Using
asymmetrical cryptography can prevent the impersonation
attacks. The client / server puts its public key into the
certificate message and a signature signed by its private key
into the Certificate Verify message. The controller decrypts
the message using the public key and verifies the decryption
results. The client / server can prove that it has a private key
compatible with the public key to pass the verification
successfully. It can prevent impersonation attacks.

Ability against MITM attacks—By both proposed
schemes, each handshake message is only transmitted
between the controller and the SDN switch, encrypted by the
TLS protocol provided in the SDWN. No information could
be obtained even if an attacker intercepts the encrypted
handshake messages. Furthermore, the verification of the
hash value in the Finished message will fail if the attacker
tampers with the handshake messages [18].

V. CONCLUSION
In this paper, the security of the TLS for the SDNs has

been evaluated by Scyther tool to discover its vulnerability.
To improve the TLS protocol, two security enhancement
schemes, the TLSHPS and the TLSIHP, have been proposed
and evaluated. The security verification results show that
both proposed schemes can prevent some malicious attacks
successfully. Moreover, they can satisfy the security property
of confidentiality, integrity and authentication. Finally, they
both reduce the handshake delay as compared to the TLS.

REFERENCES
[1] Y. Jarraya, T. Madi, and M. Debbabi, "A Survey and a Layered

Taxonomy of Software-Defined Networking," IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 1955-1980, 2014.

[2] L. Schehlmann, S. Abt, and H. Baier, "Blessing or curse? Revisiting
security aspects of Software-Defined Networking," in 10th
International Conference on Network and Service Management
(CNSM) and Workshop, Rio de Janeiro, Brazil, 2014, pp. 382-387.

[3] H. Arora. (2017). Software Defined Networking (SDN) - Architecture
and role of OpenFlow. Available:
https://www.howtoforge.com/tutorial/software-defined-networking-
sdn-architecture-and-role-of-openflow/

[4] Open Networking Foundation. (2013, 1 September). Software-Defined
Networking: The New Norm for Networks. Available:

https://opennetworking.org/sdn-resources/whitepapers/software-
defined-networking-the-new-norm-for-networks/

[5] Open Networking Foundation. (2013). SDN Security Considerations
in the Data Center. Available: https://opennetworking.org/sdn-
resources/solution-briefs/sdn-security-considerations-in-the-data-
center/

[6] W. Zhou, L. Li, M. Luo, and W. Chou, "REST API Design Patterns
for SDN Northbound API," in 2014 28th International Conference on
Advanced Information Networking and Applications Workshops,
2014, pp. 358-365.

[7] IBM Knowledge Center. (2019). How TLS provides identification,
authentication, confidentiality, and integrity. Available:
https://www.ibm.com/docs/en/ibm-mq/9.1?topic=tls-how-provides-
identification-authentication-confidentiality-integrity

[8] N. Lawrence. (2018). SDN and its Role in Automating & Scaling in
the Data Center. Available:
https://www.cisco.com/c/en/us/solutions/collateral/enterprise/cisco-
on-cisco/cs-en-08022017-sdn-thesis.html

[9] D. Samociuk, "Secure Communication Between OpenFlow Switches
and Controller," in AFIN2015-The Seventh International Conference
on Advances in Future Internet, Venice, Italy, 2015.

[10] S. Hogg. (2014). SDN Security Attack Vectors and SDN Hardening.
Available: https://www.networkworld.com/article/2840273/sdn-
security-attack-vectors-and-sdn-hardening.html

[11] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
"A security enforcement kernel for OpenFlow networks," presented at
the Proceedings of the first workshop on Hot topics in software
defined networks, Helsinki, Finland, 2012. Available:
https://doi.org/10.1145/2342441.2342466

[12] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, "Software-Defined
Network (SDN) Data Plane Security: Issues, Solutions, and Future
Directions," in Handbook of Computer Networks and Cyber Security:
Principles and Paradigms, B. B. Gupta, G. M. Perez, D. P. Agrawal,
and D. Gupta, Eds. Cham: Springer International Publishing, 2020,
pp. 341-387.

[13] D. Asturias. (2017). 9 Types of Software defined network attacks and
how to protect from them

[14] B. Agborubere and E. Sanchez-Velazquez, "OpenFlow
Communications and TLS Security in Software-Defined Networks,"
in 2017 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2017, pp. 560-566.

[15] SDxCentral Studios. (2016). What Is an OpenFlow Controller?
Available:
https://www.sdxcentral.com/networking/sdn/definitions/openflow-
controller/

[16] H. Böck. (2016). TLS – The most important crypto protocol on the
Internet. Available: https://int21.de/slides/hackpra-tls/#/

[17] C. Schum, "Correctly implementing forward secrecy," 2015.
[18] A. Ranjbar, M. Komu, P. Salmela, and T. Aura, "An SDN-based

approach to enhance the end-to-end security: SSL/TLS case study,"
presented at the NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, Istanbul, Turkey, 2016. Available:
https://doi.org/10.1109/NOMS.2016.7502823

[19] D. Basin, C. Cremers, and M. Horvat, "Actor Key Compromise:
Consequences and Countermeasures," in 2014 IEEE 27th Computer
Security Foundations Symposium, 2014, pp. 244-258.

