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Abstract

While much has been written about quadrotor MAVommiaerial vehicle) theory and
operation, there is relatively little that commuatis the practical steps necessary to
build, program, and control these complex electrmaaical systems. Research
abounds that deals with the minutia of control amatlelling, but the question of
minimal sufficiency is left unanswered and unproweerreal hardware. This thesis
demonstrates that PID control and operational noithelt are simple in form but
relevant to real time operations are all that isassary to achieve stable autonomous
flight. Furthermore, it presents a clear and pecatapproach to the development of real

flying robots.

This work describes the construction of three fiomatl MAVs that cover a range of
size, complexity, and functionality. Details offeame structure, component selection,
firmware and software development, and tuning astrtg are all included and they

provide a reproducible framework for further resbar

The culmination of this effort takes the form afeal physical (not simulation), fully
autonomous quadrotor MAV of non-trivial mass (geedhan 2kg), payload capacity
(theoretically greater than 2kg), and computing @o@unning Linux on a processor
capable of up to 1400 Dhrystone MIPS). Its sudaésperation is presented and
serves to demonstrate the efficacy of the propetaijhtforward, minimalist approach

to design and development.
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1. Introduction

1.1. Motivation

While much has been written about quadrotor themy operation, there is relatively
little that communicates the practical steps nergs® build, program, and control
these complex electromechanical systems. Theajdhis research has been to employ
uncomplicated but effective mathematical models lzasic control systems in the
development of real physical (not simulation) astmous quadrotor flying machines of
non-trivial mass, payload capacity, and computioggr. The corresponding output of
this research was then to demonstrate a complédtpractical approach to building and
testing fully operational quadrotor robots, frontial system modelling through to fully
autonomous flight.

It is understood that, in many ways, this work rapgpear to cover ground already well
developed by researchers and private developetgh Mf that work, however, is
proprietary and what has been published tendsabwadéh complicated minutia of
operation and possible improvements to it. ltrgppsed here that research sometimes
must stand upon the collected body of knowledgsil@dind reduce it to essential and
sufficient components, and then present a practiepfoducible application of that
knowledge to create a reliable platform for furteerdy. That defines the core of this

work and its significance to the research community

In addition to that, the reality is that quadradtdAV development is often seen as an
end to itself; all of the capability and processtoi@g developed robot is tied up in its
operation. The firmware is dedicated to the tddkyong and processing avionic
requirements and it is rarely considered to beatqim for developing further
capability (e.g. image processing). In cases whesethe development infrastructure
is limited and, of necessity, an adjunct to themtask of flying. This research has
instead pursued a goal of MAV operation under LinBy doing so, the entire
capability and development infrastructure of a vkelbwn operating system is made
available for further research. Programs can lveldped to run on the MAV entirely
independent of any other firmware, including thght tasks. The multi-threaded
nature of Linux and the power of an embedded coergubt just a microcontroller)
define the uniqueness and the potential of whatrésearch seeks to demonstrate.
1



1.2. Approach

In developing any complex system from first prinegpthrough to completion, there are
many paths that could be taken, some longer ané stwrter, some involving more
work and some less. At the outset, it is difficolknow what challenges will need to
be overcome, especially when the area of studgiasgively novel to the researcher, as
was the case for this study. With these consiaersin mind, the approach taken was
an evolutionary one; starting with a light simpidrame and processor on a testing
stand and culminating in a relatively large andvyesrframe with a complex processor
(and operating system) in free flight. In this weggrees of success could be achieved
and evaluated on a given system before tacklingtéater challenges of the next. This
has almost certainly resulted in more total workibuelieved to have decreased the
amount of wasted work that could have been spesstiimg with larger leaps of
difficulty.

1.3. Document Structure

A review of some relevant pieces of current literatis presented immediately
following this introductory section. Subsequenthat is a discussion of the theoretical
models and control systems employed in the devedopiof the flying robots that were
built. That section and the ones following it gemerally organized to align with the
evolutionary approach taken; dependence (wheragpect of the system requires
development of another), complexity/difficulty, adldronology (in that order but
loosely) have been employed to determine the orBlellowing theory, then, is a
chapter on the selection and implementation ohdreware systems developed
(including component descriptions and physical petars). Next is a presentation of
the significant parts of the firmware (code runnarmgthe embedded processors) and
base station software (application code running ®tC). A chapter on testing and
tuning comes next and it essentially describesvinae of the achieved results for all of
the systems involved. To wrap up, there is a @rapscussing the presented results
which is followed by a final chapter that renddre tonclusion and discusses the
implications. References and an appendix (comtgihinks to demonstration movies)

complete the document.



2. Literature review

2.1. Media

Over the last decade, UAVs have increasingly captunedia attention and have taken
a place of interest for the general population.sMmeople are aware of the presence of
these machines in our modern world but they aremgdly regarded with an attitude of
concern and suspicion; their usefulness is in amjliapplications of surveillance,
spying, and destruction. If they have any placeivrian life, it is a place of hobbyists
and fringe technical enthusiasts whose passionbmagteresting, but not of real
practical use. Around the world, however, med@avjaters and journalists have begun
to report on a broader base of usefulness and dhlel vg starting to recognize the much
more significant role these devices are likely awdnin future society.

As early as 2006, the Asian Institute of Technologyhailand captured a headline
with their flying robot that was intended for agrittiral purposes. The bold title of the
article stated “Flying robot helps farmers avoitigerous chemicals” (Sutharoj, 2006).
That captures the sentiment behind the mechanizafimany human tasks; personal
health and safety can be a strong motivator foaadwg robotic capability and

increasing machine deployment.

In 2009, a quadrotor MAV became a news story bexaligs role in dealing with the
forest fires that were raging in northern Greecthat time (European Commission,
2009). Such a story further highlights the keyeas$p of what makes multi-rotor MAVs
so useful: they can be deployed quickly and easigny situation, they keep people out
of harm’s way when the aerial situation is dangsrdiiey can fly when and where

larger aircraft cannot, and they are inexpensivepierate.

The areas of application, then, are nearly bousdies it is not only the military that is
looking for ways to use them in solving common peafis. Police forces are
increasingly taking an interest in reducing thelrance on expensive conventional
helicopters in favour of micro alternatives. Oagional police force in Canada has
integrated drone use into their operations and asgehdrotor MAV last year to find
$744000 (CAD) worth of illegal marijuana growingarfarmer’s field (Rabyniuk,
2013).



There is also a growing fervour of capitalism tgaes along with the increasing
awareness of applications. The market potentipais of the reason for the growing
media interest and for the proliferation of comarpursuing this technology. A quote
printed by the National Geographic magazine regestited “... the civilian market for
drones — and especially small, low-cost, tacticahds — could soon dwarf military
sales, which in 2011 totalled more than threedailldollars.” (Horgan, 2013, pp. 125-
128) This is further emphasized by a report relddast year by an American
aerospace and defence analyst group that gen¢nedudeadline: “Worldwide UAV
market to reach more than $94 billion in ten yedtgJAVs", 2012). The report further
stated that “UAVs have been the most dynamic graetiior of the world aerospace
industry this decade” ("UAVs") which again speatgtte relevance and importance of

this technology in the changing world.

2.2. Academic Works

A number of theses and articles have been writheutahe dynamic control of
helicopter robots and these have generally beemmdsmated with software models
and/or small prototypes. A good representativeitheetailing the theory and
mathematics involved with a quadrotor robot’s caution and its control was
conducted by J. M. B. Domingues in Portugal (Dome®y 2009). Domingues’ work
relied on accelerometer and compass input (magréspfor determining robotic state
and generating corresponding control. He conclubday even with Kalman filtering,
signal noise from the motors affected the acceleters to an unacceptable degree and
that gyroscopes should be employed to more acdyiddéermine the robot’s state
(Domingues, 2009, pp. 75-76). For this reasomfate IMUs involved with this
research perform sensor fusion between gyroscapeslerometers, and

magnetometers.

Domingues’ thesis relied on linearized equationshofion and simple control
processing; for improvement, he suggested chartgmgontrol method to proportional
derivative (PD) (Domingues, 2009, p. 76). In f&iD (and proportional integral
derivative (PID)) control of a quadrotor robot Heeen explored by Katie Miller at
Berkeley (Miller, 2008). Her conclusion was thathrization of the motion equations
and control laws was adequate under “perfect” dand but did not perform well in
the presence of uncertainty (Miller, 2008, pp. B}-1Miller's suggestion was to

explore a more accurate non-linear representafitimecsystem while still employing

4



linearized control. While that is certainly a waosthile aim, this study has focused on
linearized equations and PID control, and attertgppshow their sufficiency even in

non-perfect (e.g. outdoor) conditions, at leasadAV of non-trivial mass.

A decision to focus on PID control is somewhat canytto the prevailing theme of
research. Many papers have been written on theakre@hprovements over PID and
there is undoubtedly a broad range of potentiadyds approaches. For example, a
paper was published by researchers at the Swissd&ddstitute of Technology in 2004
in which they attempted to demonstrate that limgedratic (LQ) control was superior
to PID for quadrotor applications (Bouabdallah, IN& Siegwart, 2004). In the end,
the researchers were not able to perform a frgbtfivith LQ control and stated:
“Contrarily, using the classical approach (PIDg #utonomous flight was a success.”
(Bouabdallah, Noth, & Siegwart, p. 6) They main&l, however, that the modern LQ

technique was optimal and “should give better te8@Bouabdallah, Noth, & Siegwart,
p. 6).

More recently, another group of researchers toeehhance basic PID control by
implementing fuzzy-logic based auto-tuning of tlaéngparameters (Sangyam,
Laohapiengsak, Chonghcharoen, & Nilkhamhang, 20I@g approach they advocated
was never tested on a real system and all of #mgilysis relied on simulation (it is
worth noting that a quadrotor MAV in flight is egmely difficult to model completely;
the paper doesn’t discuss the nature or qualith@kimulation). Nevertheless, they did
determine that fuzzy auto-tuning can yield an imnpraent over static PID in the case
of changing system parameters and an example gex/is a sudden increase of
payload by 7kg (from a starting point of 0.5 kdhat should be considered an
extremely improbable scenario as there are very(jp@ssibly zero for purely academic
use) quadrotor UAVSs that could support a 7kg payiatall, much less one that
dynamically changes by that amount. Regardlessialfowing statement is made of
both conventional PID and fuzzy based auto-tunity Fboth control methodologies
are capable of handling external disturbance for¢@angyam, Laohapiengsak,
Chonghcharoen, & Nilkhamhang, 2010, p. 531)

As there is a trend in seeking improvement over, BiBre is a corresponding trend in
demonstrating improvement by simulation. Dierkd dagannathan (2010) published a
comprehensive article on performing quadrotor aintsing neural networks. Their

paper is thorough and instructive but the conteslatiption alone is extremely complex
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and the only results obtained were simulated. &mesults do show an improvement
but this research aims to maintain simplicity af tontrol algorithms and to

demonstrate that simplicity as viable for a reah4simulated system.

Of course, not all papers written on quadrotor mdrheory focus on deficiencies of the
control algorithm. Salih, Moghavvemi, Mohammedd &gaeid (2010) published a
paper in which they presume sufficiency of PID aatlabout to describe a system of
guadrotor control around it. Once again, theiulissvere limited to simulations based
around simplifying assumptions. In many ways, haavetheir paper sets out a
framework of equations and approach similar to tiiized for this research. Where

they stopped at simulation, this study validateptactical application.

Beyond the control system, there is also publigiedarch tackling the modeling issues
for quadrotor aerial vehicles (some of which weagded by the Miller paper
referenced earlier). The majority of the systemlimearities are small enough in
relative terms to be consistently removed by theega body of research (e.g. rotor
gyroscopic effect). There are cases, however, eviesearchers have attempted to
analyze the significant non-linear contributoran&a, Alsina, and Cerqueira (2008), for
example, examined saturation and deadzone nonliesaas well as aerodynamics and
moments in axial flight. As others have done, thegformed all of their analysis
through simulation and found the effects of theseiés to be measurable. A study of
those results suggests, however, that while thecaddmplexity is probably needed for
better simulation, it is not really worthwhile farsensor-equipped robot. This is
because the deviations they found in simulatioreveenall enough that they won't
significantly impact real flight on a robot abledetect accumulated error. For
example, they present a graph that shows accurdwgater in modeled height during
ascent to be around 40 meters over 300 m totali(tbar model suggests 300m while
the more accurate model reflects around 260 m)dg&gakisina, & Cerqueira, 2008, p.
148); the altitude sensors on a real flying rolmtenmuch better accuracy than that.

Having determined that simulation results will betthe primary pursuit of this
research, it is worth noting that practical endedas its own pitfalls. For example, a
relevant thesis in this area was undertaken by Mdbhmidt at the University of
Kentucky in 2011 (Schmidt, 2011). Schmidt contehtteat other quadrotor UAV
research projects did not utilize the broad systeppsoach to design and

implementation whereas his did with the expressedsgof robustness and ease of
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control. That is similar to the goals pursuedtug tesearch, but ultimately Schmidt’s
success was limited by component failures andladacesources. These are critical
concerns for MAV development as these machines@rglex electro-mechanical
systems comprised of costly and relatively fragaets. Every care in the course of this
research has been taken to avoid damage and mareageed resources.

The goal of non-trivial mass and non-trivial paylaapacity represents yet another
departure from mainstream pursuit. Pounds, Mahcemay Corke (2010) state that
most quadrotor robots used for research are limdedfew hundred grams of payload
capacity and then they go on to say:

“In the commercial sphere, several groups annouptaets to market 4-6 kg devices,
but these did not manifest in products, whereasanans examples of sub-2 kg craft are
now readily available. The rarity of quadrotor UAMsger than 3 kg can be attributed
to the numerous design challenges encounterec asdiight of the vehicle increases,

and to the attendant engineering rigour that mesidercised to safeguard
proportionally more fragile hardware.” (Pounds, Maly, & Corke, p. 692)

Their paper ultimately presents the successfutflaj their 4kg airframe to a height of
2 m. It also maintained stable hover for 10 sesomithout pilot correction (Pounds,
Mahoney, & Corke, p. 22).

Although this research doesn't pursue a MAV exaeg@kg, it does seek to present the
successful development of a quadrotor robot witleas well over 2kg and having a
total weight plus payload capacity theoreticallgager than 4kg. In addition, its flight
goals are to exceed 9 meters of altitude and maintasistent hover attitude at all

times.



3. Modelling and Control Methods

A quadrotor MAV is a highly non-linear system tiesubject to significant external
sources of disturbance and influence. It is inhilyaunder-actuated, having six degrees
of freedom (three of orientation and three of posit but only four actuators (the
motors). It is made up of mechanical, electriaal] software components that must
continuously and reliably interact over tiny amauat real time to keep the machine in
the air and under control. It does this despitéritabeen comprised of parts that
exhibit varying (and variable) delays, parts traise interference (mechanical,
electrical, electromagnetic), other parts that oesinegatively to the introduced
interference, parts that bend (but hopefully ndreek), pieces that are unbalanced, and
bits that are unaccounted for. The full charastion of such a system would involve
an immense amount of analysis, modelling, and caation. It is possible, however, to
reduce the state space of the problem of quadkd#dr flight dramatically by making
simplifying assumptions that reduce the perceivadmexity while still accurately
reflecting the greatest part of the dynamics atefactions involved. To be clear, this
research has endeavoured to achieve autonomoles cbairolled flight using a set of
modelling equations and control approaches thabeaeatiful not only for their

simplicity but also for their efficacy.

3.1. Quadrotor Model

3.1.1. Coordinate Frames and Variables

The most basic quadrotor design involves four nsotioat are placed at each end of
either a real or virtual arm arranged in the shafeplus sign. Each motor is
equidistant from the centre and from the two motaarest it. In this way, motor
symmetry is achieved and then the goal is to aels@wilar symmetry with the rest of
the components, arranging and distributing theengure balance and maintain the
centre of gravity at the effective centre of thessrstructure. A simple representation

of the model is shown in Figure 1.
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Figure 1 - Mathematical Model of Basic Quadrotor

Having established motor position at the ends efctloss frame, it is important to
identify coordinate systems. In the first pla¢ere is the body frame which is
coincident with the airframe itself, has its originthe centre (defined as the midpoint
between the motors and on the same plane as thathjnoves with the airframe as it
changes position. Because of that relative nattitee body frame (from within it, the
airframe is not seen to move; only its orientatbanges), it is necessary to further
define a reference or inertial frame that is fixedpace and from which the movement

of the airframe can be observed and described.

All of the quadrotor variables of position and otetion can now be defined within
those coordinate frames. The body frame is defsueth that, for an all zero
orientation, the x-axis is aligned with one arm &ag a positive direction toward motor
1 (the arbitrarily chosen front or forward directiof the aircraft). The other motors are
defined sequentially in a counter-clockwise direetaround the airframe such that
motor 2 is on the left (port) side, motor 3 isaifd motor 4 is on the right (starboard).
The y-axis is then defined as having a positivei@ah the starboard direction while the
z-axis is positive downward (or opposite the di@tf motor thrust). The unit vectors

for these axes are represented by, andz, respectively.

The inertial frame is then defined to align witle §hosition of the Earth either at or near
the point of launch. The X-axis is aligned withrifdSouth, is positive in the direction
of North, and has a unit vector represented byTKe Y-axis runs East/West, points
positively toward the East, and has a unit veatprasented by. Finally, the Z-axis is
aligned with Up/Down as determined by gravity sti@t down is the direction of the
force of gravity exerted by the Earth upon theraitqand any observer(s) at or near the
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point of origin). The unit vector for the Z-axstiepresented ¥ and is positive in the
downward direction (i.e. gravity exerts force i fhositive direction while motor lift

thrust is exerted in the negative direction).

Orientation of the aircraft can then be defineteims of a triplet of angles that
represent its rotation around the axes of the i@ige. These angles are known as
Euler angles and, for an aircraft, are called mtth, and yaw. The roll angle defines
the airframe rotation about theaxis and, by the well-known right hand rule, isitive
when the airframe is tilted to the starboard side rmegative when it is tilted to port.
The pitch angle defines rotation about $haxis and is positive when the aircraft is
tilted aft (nose up) and negative when tilted famv@nose down). Yaw, then, is the
rotation about theé axis and is positive when the aircraft is turnketkwise. These
three Euler angles, roll, pitch, and yaw, are repnéed by the Greek symbols pdy, (
theta@), and psi{) respectively and are sufficient to define theotation of the
quadrotor aircraft in all situations of concern fiois research (for a quick description of

the common issue with Euler angles known as Girhbek, see Section 3.1.2).

The other significant variables of a quadrotor gesire then the length of the arms, the
mass of the airframe, and the rotation of the nsotérm length (variable I) affects the
relationship between thrust of the motors and éseltant torque on the airframe (in
addition to size and mass, of course). The mat@tion naturally is the same as rotor
rotation and therefore is the contributing variaolenotor thrust. Each motor’s rotation
is described independently by the varialbesw,, ®ws, andws where the subscripts
define the associated motor. The mass of theaaidris denoted m and is directly
related to the downward gravitational force ondlvdfame and the moment of inertia

seen about the axes of rotation.

3.1.2. Gimbal Lock

Euler angles were chosen for orientation descripbecause of their simplicity and

their direct correlation to human intuition. Wham airframe is observed in flight, it is

fairly easy to understand its orientation in tewhgs roll (tilted left or right), its pitch

(nose up or down), and its yaw (heading). The tlaat these natural observations can

also be directly expressed in simple, clean mathieadderms as discovered and proven

by Euler lends further motivation to their use.efénis, however, a well-known

problem with using Euler angles for representatib8-dimensional orientation and it is

known as gimbal lock. This issue will not be ex$tately described here, but at a high-
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level, there is an ambiguity (or singularity) otw@a orientation that occurs when one
angle in an Euler sequence is brought into alignmath another angle (i.e. when the
former angle is +/- 90 degrees). The singularigteXor all systems that employ Euler
angles but its manifestation changes with the ardesich the rotational angles are
applied. For the purposes of this research, yaiways last in sequence and it is the
only angle allowed to approach 90 degrees. Bedhisessearch focused on non-
acrobatic flight, the airframe attitude was consed to limit roll and pitch angles well

away from 90 degrees.

It would, of course, have been possible to emptoglgernative form of orientation
representation that did not exhibit the Euler atighgation. The most common
alternative is quaternion representation that eggofour values to describe the attitude
of a body in space. In so doing, the quaternigragech eliminates the gimbal lock
problem but it introduces a greater complexity e$ctiption (and mathematics) that is

not easily conceptualized or intuited.

3.1.3. Body Torque and Thrust

Given the variables defined above, it is now pdedib define the equations that will
directly affect the orientation of the airframe atedlmovement in space. Within the
overarching goal of simplicity and effectivenesagiut for this research, rotation about
the 3 airframe axes has been assumed to be dedoupde example, only the torque
induced by motors 1 and 3 on the forward and aftsas considered to affect pitch. In
the same way, only motors 2 and 4 contribute to roll torque. Torque about the Z axis

(yaw torque) is resultant from the rotation offallir motors but is considered to be
entirely independent of the instantaneous roll gitch orientation and torques. With
these assumptions in place, then, the followingagqos define roll, pitch, and yaw

torques experienced by the airframe:

15 = (W} - w}) = Iz (1)
75 = Ib(w} - w3) = L (2)
Ty = d(w% + wi - w% — w%) = gl/l (3)
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In these equations,is torque and the subscripts identify the affeetees; | is the

length of the arms; b and d are the propeller trand drag constants, respectively;
represents the rotational velocity of the motord te subscripts identify the motor
number; | is the moment of inertia and has subt&cfgr correlation to each axis;
finally, ¢, 6, andy represent roll, pitch, and yaw, respectively, dresuperscript
double dots are understood to identify the secantvative (angular acceleration in this

case).

In these equations we see that further simplifgiagumptions have been applied. In
the first place, the effective torque on the aifeais related to motor speed through the
use of constants that are considered valid farajular rates of the propellers (it should
be noted that the propellers cannot spin in reyershis is not strictly the case and it
has been shown that the static thrust (and drag)haofvering aircraft does exhibit some
variation over the range of motor speed (Brandtefigs 2011). In a given range,
however, it is reasonably accurate to assume arlie¢ationship between the square of
the propeller angular rates and the resultant fancktorque induced in the airframe.
Since a non-acrobatic quadrotor MAV generally ofgeravithin a narrow range centred
on hover thrust, this assumption is adequate. t@ime ‘static thrust’ is also significant
as it implies that the airframe velocity (and aresponding aerodynamic value known
as the advance ratio) is zero. It should be app#nat the airframe is intended to
move, but its peak velocity goal is fairly smalbaihe assumption of static thrust is

representative of its state in almost all cases.

The thrust constant then provides the relationbbigveen the square of the motor
angular rate and the thrust force exerted on tfiaie. The basic equation for this

constant is shown in (4) where T is the thrustdorc

b=— @

Specifying the thrust constant this way is direetbplicable to the problem here, but it
is actually a reduction of the better known thefficient (G) that is used in other
literature. The thrust coefficient is a constdnatttalso relates squared angular velocity
to effective thrust, but it is defined independehair density §) and propeller radius

(). At any given time, propeller radius is a damg and its inclusion in b is obviously
acceptable. Air density changes with temperatncepaessure and is, therefore, clearly

not constant, but the variation is considered seradugh to be ignored. The
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relationship between b and €an be derived from formulas given by Domingues
(2009, p. 15) as shown in (5).

T
b=—=C
w2 T

If a standard temperature (20 degrees C) and pee€Bdl325 Pa) are assumed, the air

4or*
i (5)

Vs

density p) is equal to 1.204 kg per cubic meter (Moaveni,2(. 631) and b can then
be calculated directly from the thrust coefficiand propeller radius.

The drag constant, d, used here defines a lindarb@tween motor torque and the
square of angular velocity. This is again a reidactrom a better known propeller
constant: the power coefficientgIC Because propeller powergRs related to torque
(tr) as shown in equation (6), the relationship betwetand G can again be derived

from a corresponding Domingues equation (20095p.ds shown in (7).

Pp=1tw (6)

= = =Cp—— (7)

The final equality in (1), (2), and (3) starts witlte moment of inertia and correlates the
torques on the airframe to the resultant accetaratbout the three body axes (i.e.
angular acceleration of roll, pitch, and yaw). d'ts another simplification; it doesn’t
take into account the gyroscopic moment of therspopropellers or the angular
dynamic force of the body in motion. The impacthese effects on the rotation of the
airframe is considered to be small enough reldbuwhe direct contribution of propeller

thrust that it is reasonable to omit them fromeQeaation.

Using the same thrust constant presented abovegtraion for total lift thrust (or,
more accurately, the total thrust exerted on theaane perpendicular to the plane of

the body) generated by the rotors is shown beloggunation (8).

F; = b(w% + w% + w% + wi) (8)

This total thrust then, combined with the effecgadvity (and wind, when present),

determines the acceleration and correspondingatispient of the airframe in space.
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For static hover above the ground, when the aidraparallel to the ground and

neither rising nor falling, the total thrust reqdrwill equal gravity, as per (9).

Fr=m-g 9)

3.2. Proportional Integral Derivative (PID) Control

Having defined assumptions and arrived at basiatsapus for the forces acting upon
the airframe, it is now possible to approach cdrifdhe aircraft. For many years
(since the 1930s in its current form (Astrom & Hegl, 2006, p. v)), the proportional,
integral, derivative (PID) approach to control pasven effective across systems of
almost every imaginable type and application. Fsystems that are small and agile to
those immense and ponderous, a PID control sysaanalmost always provide a
perfectly satisfactory (and sometimes effectivagdyimal) degree of management.
Furthermore, a PID approach can often provide aelint solution for systems that
lack full characterization, whether that is by imtten or by the practical constraints of
time and equipment. In this case, it is fair tg Bt this research focused on an object
of control (quadrotor MAV) that is not fully chatacized and, indeed, that would be
extremely difficult to characterize fully. Therealso, once again, elements of
simplicity and correlation to natural intuition tht@me along with PID control that add

to its desirability of application in this case.

The intuitive nature of PID control can be seemfra simple description of its
behaviour across the three components found imaitse, along with the illustrative
situation of a car’s acceleration control (the é&@dor or gas pedal). The proportional
control response is, of course, directly relatetheodeviation between the desired value
and the current state. If the difference to thared value is large, the corresponding
response is large, if small, the response is sn@althe car illustration, this means the
accelerator will be pushed harder when an increa88km/h is desired versus when an

increase of only 5km/h is needed.

The integral term represents an accumulation ofrobresponse over time. If the
system exhibits a resistance to achieving a dese#thg exactly, the integral term will
accumulate the offset over time and exert a stnoage stronger compensation
response that corresponds to the delay in reatchengetpoint. In the scenario of

controlling a car’s velocity, now consider that tteg in question encounters a hill to
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climb; as it turns upward, the car will deceleratel the proportional component will
begin to push harder on the accelerator. Inkalihood, an equilibrium state will be
achieved somewhere less than the desired valugvelh amount of pressure to achieve
50 km/h on a level road may only achieve 40km/lomiphill. In that case, the
operator of the vehicle will perceive the deviatioom the setpoint over time and will
increase the displacement of the accelerometergogv@ing amount until the setpoint is

reached once again.

Finally, the derivative term is used as a chechkrsganbounded increases in the
control response; it exists as a damper that wagksnst the proportional and integral
terms to reduce the control strength as the systarts to move. The derivative can be
accurately thought of as the velocity of the systegponse to the control input. The
quicker the system begins to move toward its deésetting, the less the Pl terms
should be trying to push it. This acts as a clegzkinst the momentum gained in the
path from the current state to the desired valukthereby helps to reduce the amount

(or possibility of) overshoot when the setpointaached.

For the car accelerometer, this means that if @s&reld setpoint is 100km/h and it is
currently only at 5, the proportional term will bigjnificant (and the integral term will
have a large value for accumulation), so the punstihe accelerator will be
correspondingly significant. If the car is powerdnd begins to add 20km/h to its
velocity every second, the momentum of acceleratitibe great enough that, even
though the force applied to the accelerator wasedsed as it approached 100km/h
(and the proportional amount reached zero at thiat)p the car would accelerate
beyond the desired value. By employing a derieatérm, however, the operator
would factor in the rate of change of velocity amould stop pushing on the pedal
much sooner, thereby reducing overshoot and actgevsmoother approach to the

desired value.

Another way in which PID can be said to be intutig in the naturally understood
nature of the terms with respect to time: the propoal term reflects the present
difference between desired and actual, the intégral is a response to the
accumulation of deviation in the past, and thewdgrre term attempts to anticipate the
future. With all three components employed, reagla specific desired value for the

system can be achieved with alacrity and finesse.
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This is how a PID system works in descriptive terriviathematically, the formula is

well known, but takes several equivalent formshasag in (10) and (11).

B L[ de(t)
u(t) = K(e(t) + 2 f(; e()dr+ Ty o ) (10)

Kgde(?)

u(t) = Kpe(t) + K; f e(t)dt + (11)
0

The PID output variable is u(t) while the inpuei$) which is defined as the difference
between the setpoint (desired) value and the cuvadne at time t. Equation (10)
utilizes a universal gain constant (K) that is &apto all terms but then modified by an
inverse integral constant for the | term)(@nd a multiplying term for the D term ()T
Equation (11) is effectively the same but concedptuhifferent in that it completely
separates the PID gains from one another (hegck;Kand kKy).

The representation of equation (11) was chosethiework largely because of the
independence of the PID gain terms expressed theheiterms of systems response,
this is perhaps less intuitive than the alternabieeause it blurs the time nature of the
integral and derivative factors. In any case, ihiargely a matter of preference and it
was deemed more desirable to decouple the fadoegpplication herein.

A final note on PID control is this: not all terrage necessary at all times. By changing
the gain factor to zero, any term may be eliminataétihough this effectively changes
the definition of control to some degenerate foat is no longer PID (e.g. it becomes
Pl or PD), it is still nevertheless useful in a dgric system to consider the possibility
of dropping and re-introducing terms in responsehi@nging situations. The control
approaches for this research always implementé&®fDl but in several instances the |
term had a gain of zero. The primary reason fangleo is that tuning of all three
terms together can be challenging and often ann@diate approach to a solution
involves only the proportional and derivative ternhisthe system response was
acceptable with PD-only, tuning of the | term wef for future endeavour (with the
expectation that some (possibly insignificant) Bigneould always be realized from

adding it in at some point).
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3.2.1. PID Tuning

In some cases, it was clear that all of the PID ¢gims were necessary for correct
operation. Specifically, the roll and pitch cotgreequire fast achievement of the
setpoint with minimal overshoot and absolute régecof static offset (otherwise the
airframe will drift). Initial attempts to manualtyne the PID gains were made using

small changes in individual terms and experimeytatiiserving the response.

Ultimately, however, the effort to iteratively acod for all of the system variables and
nonlinearities was deemed either unlikely to achithe desired result or to achieve it
too slowly for practical purposes. What was dekwas a clear and repeatable
approach to tuning that could be applied to fusystems. The path forward then
involved a widely used approach to PID tuning ahiles ultimate cycle methdtat

was first developed by John G. Ziegler and NatHdhi®&lichols (Bolton, 1998, p. 238).

3.2.1.1. Modified Ziegler-Nichols Ultimate Cycle Tuning
The primary attraction of the Ziegler-Nichols ulate cycle method (hereafter referred
to as Z-N tuning) is twofold: first, it is practicand can be experimentally applied, and
second, it reduces the PID tuning problem fromdlva&riables to two.

The approach to application of Z-N tuning invol¥iest setting the PID integral and
derivate terms to zero (i.e. P term only). Thengloportional term is gradually
increased until oscillations of constant amplitade observed. The proportional gain at
that point is identified as the ultimate gain,\Kvhile the period of oscillation is called
the ultimate period (J). Tuned PID gain terms are then calculated as/shio

equations (12), (13), and (14).

K,=06-K, (12)
2-K

K; = T”p (13)
K, T

Ky = p8 . (14)

In theory, this is straightforward, but it quickhgcame apparent that this was not so

simple for quadrotor tuning, especially for lightglet airframes, because almost any P-
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term value that had a measurable system effectestemtause oscillations of
increasing magnitude. As the P-term value was glavdreased, the system would
appear to remain stable until a disturbance ocduthen it would go increasingly
unstable and it was essentially impossible to @ediny particular point at which
constant amplitude oscillations could be said balé/ occur. This was less true of the
heavier airframes and also less true when runmegrtotors at higher nominal thrust,
but a certain degree of instability (and inconsistg always remained. Nevertheless,
for all of the systems developed, some amount oktation could be found between P-

term only gain and predictable oscillation.

This, then, became the basis for a modified apré@&-N tuning. Rather than
requiring absolute values for,kand T,, both were approximated from experimental
results. From those initial numbers, each termtivas swept over a range of nearby
values to determine possible refinement and impr@re in system response.
Altogether, this worked quite well and the resalts discussed in chapter 6.

3.3. Orientation PID Control

3.3.1. Body Torque

Having established modelling equations for the gotad and identified our control
approach, it is now possible to present the metti@pplication to the system. The
first goal of quadrotor development is attitudegatation control. Having this desired
target and intending to employ PID, it is still Besary to select the parameter that will
be controlled in the system (the u(t) term in emuaf11) must be linked to a physical
parameter of the system). ldeally, the associatiirbe as direct as possible between
the sensed error component (e(t)) and the PID oufploe error and desired terms for
orientation are obviously with respect to roll,gbit and yaw. The natural association
for effecting a change in those variables is amfggorque. So then, torque about a
given axis is associated with the correspondingEamgle to give the orientation

control equations seen below.

t
T/ :precb"‘lej(; €¢dl+KDxé¢ (15)

!
Ty = preg + Kl_v j; epdt + KD),ég (16)
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t
TZ/ :KP7€(//+K1_'f e,,/,dl-l-KDwe(/, (17)
b4 < Jo Z

The significance of the ~ (€.g. X) in these equations versus the * (e.g. X) seen associated
with previous torque equations is that these eqoatdescribéesiredtorque as an
output of our control approach versatualtorque described previously. All of the
outputs and the error term inputs are, of coursenetion of time, but the (t) has been
left off to give cleaner expression. The erronteare simply the difference, in radians,
between the desired angle (e.g. O for hover) aad¢titual angle (current attitude of the
airframe). The derivative error terms have thaatizristic that the desired derivative
is always zero (when the angle setpoint is achienedurther angular velocity

(rotation) is desired) and the error derivativerigican then be further broken down as

follows:
€p=da—¢=—¢ (18)
ég=0;—0=-0 (19)
€y =Yqg—Y=-y (20)

The outcome of this is that the derivative termsopee simply the negative of the
angular velocity experienced in the airframe (caneet because this comes directly out

of orientation sensors).

All of this comes together such that, at any gigemt in time, we can calculate the
desired airframe torques (from desired roll, pitgdny, and sensed (actual) roll, pitch,
yaw, and corresponding angular velocities) and tiemnthe desired total thrust (already
identified as equal to the gravitational force as (®) when hovering) to work out the

necessary motor response.
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3.3.2. Motor Response

At this point, we have the following four equatiantaining the four actuator
variables of motor response (motor/propeller ang@tew;.4) as related to the body
torques and total thrust described above:

2 2 _
W, — W = l)l; (21)
T.7
2 2 _ )
2= (22)
w2+w2—w2—w2—‘rz’ 23
2 4 1 3 d ( )
W+ W+ W+ W = Fz (24)
1 2 3 4 b

Solving this equation set for the individual mototations gives:
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There is an obvious pattern in these equationsuprisingly): each motor contributes a
guarter of the total thrust, each contributes atguaf the total yaw torque (motors 1
and 3 contribute positively while 2 and 4 are neg@dt and each contributes half of the
torque for the axis on which it resides (roll footors 2 (positive) and 4 (negative),
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pitch for 1 (positive) and 3 (negative)). Onceiagthis aligns well with intuition and it
can be seen that if everything were ideal, havihgfahe motors matched in rotation
would yield no airframe torques on any of roll,gpit or yaw; the airframe would
maintain its current orientation perfectly. Intisé@uation, the total thrust would be the
sum of the motor thrust and, if the airframe weaigaflel to the ground (perpendicular to
the gravity vector), it would either hover or a@rake up or down depending on the

total thrust’s magnitude relative to gravity.

It may seem strange that total thrust is includegaat of orientation control. It is true
that it does not strictly contribute to orientatiout is, rather, a part of position control
as it relates to the up/down degree of freedonthferairframe. Including it here,
however, is sensible, because the practical albdigontrol the airframe relies on the
simplifying assumptions of linearity around the Bopoint and the overwhelming
magnitude of the motor forces as compared to caidisturbances, as discussed in
Section 3.1.3. For example, if the motors aretb#, theoretical equations would
suggest that no airframe torques should be obsebugdh practical terms the outside
forces would contribute significantly to changesirirame attitude in that situation and
there would be no control. For orientation contoobe practically realizable, the

motors must be running at a total thrust of sorgreiBcance.

3.4. Position PID Control

The aircraft’s ability to move through space defitige second triplet of its degrees of
freedom; it can move forward or backward, leftight, and up or down. Controlling
its movement up and down is relatively straightfargdvas the motor actuators are
generally aligned with that direction (when at eanhover). The other directions
present a problem, however, because there aretmatacs (motors) generally aligned
to move the aircraft forward/back or left/righthig, then, is the reason for quadrotor
aircraft being described as under-actuated. Neekts, movement of the aircraft
across space can be achieved simply by tilting thé desired direction and thereby

converting some of the motor thrust into a compowétateral directional thrust.

Determining a quadrotor’s position in (outdoor) @p& most easily defined in terms of
the common navigational references of latitudegitue, and height. These are fairly
easily obtained in practice from sensors but tiesame difficulty in achieving the
precision required for autonomous flight. Latituadel longitude can be determined

with reasonable precision from standard GPS sengdtsude/height is also available
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via GPS triangulation, but its accuracy is somevidsg. For that reason, air pressure
sensors are typically employed in aircraft; they datect the ambient atmospheric
pressure with a high degree of accuracy and thebeaconverted into an altitude

reading using standard formulas that are accepté@pplied around the world.

An interesting paper that shows how to derive auite equation for altitude from
pressure was published by the Portland State Aacespociety (2004). In it, they
quickly demonstrate the inadequacy of the isomeiyigation that is often applied and
present a better solution and derivation of ittirikhtely, they present the quality of
their derivation in light of the known gold standaguation from the CRC handbook
(1996 edition) and that standard is the one apptethe purposes of this research.
Equation (29) is taken directly from their papeorfRand State Aerospace Society, p.

4). The variable z is altitude in meters whilesRlétermined pressure in pascals.

7 == 44331.5 — 4946.62 - pO-190263 (29)

Whether perfectly achievable or not, the theoréap@roach to outdoor position control
(indoor position control was limited to height chgithe course of this research)
presumes a high level of accuracy in the senseitigpua state. At any given instant in
time the quadrotor’s current position in spacenswn. So also are its derivative terms
of position which correspond to directional velgait three directions: north, east, and
down (with each term defining the positive direotmf movement; south, west, and up
are negative). These parameters then can beldiagglied to form PID equations, but
the decision as to which variable to associate thi¢hPID output needs to be addressed
first.

If the principal of most direct correlation werelie applied here as was done for body
torque when dealing with orientation, the best peater to associate would probably be
directional thrust. Indeed, for height controktig simply and directly done to give a
thrust offset (from the gravitational or hover thijuout of the PID equation. For the
lateral degrees of freedom, however, it was deesimaglest to directly manipulate the

orientation variables (roll and pitch) and therelshieve the translation desired.

The contribution of yaw to position control wouldtarally be to provide angular
influence to the directional components of roll gmidh. For example, if the aircraft’s

nose is pointed east, then pitch affects eastAneasslation; if it is pointed north, pitch
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affects north/south translation. To limit the cdddions involved, yaw is assumed to be
always set to zero (causing the airframe to betpdinorth) when the quadrotor is
operating with autonomous position control engagBae result is that a positive pitch
angle will cause a component of thrust force tayglied in the southern direction
(negative latitude). A positive roll angle willuse a resultant translational force upon

the aircraft in the east direction (positive longe). These, then, are the positional PID

equations:

3
Hd == Plat €latm — Kilaz j(; elalmdt + Kdlmvnorth (30)

!
baq = Kﬁl €longm + Kil f elongmdt - Kd Veast (31)

ong ong 0 long

!
FAd = K,,ahealt + Kialt f eqndt — Kdahvdown (32)

0

Thed subscript indicates the desired or new setpoilieyéat indicates latitude while
long indicates longitude aralt indicates altitudelatm andlongmthen indicate latitude
in meters and longitude in meters, respectivehalfy, north, east anddownare
subscripts for the velocity values in those di@tsi. The error terms for latitude and

longitude in meters are determined according taggus (33) and (34).

Clatm = (latdegd - latdeg) * Kiar (33)

€longm = (longdegd - longdeg) : klong (34)

For testing in Aucklands, is approximated as 110974.88 meters per degrde kdj

is approximately 89181.55 meters/degree (theseesalere determined using a web
based calculator (Computer Support Group, Inc.12@hd the approximate latitude for
testing of -36.85399 degrees (which is the latitofihe building wherein most of this
research was performed)).

It is not strictly correct to apply a conversiogttar for latitude or longitude degrees to

meters. This is due to a couple of factors: 1yeleg of latitude (slightly) and longitude
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(greatly) vary in corresponding distance betweenettpuator and the poles (i.e.
conversion to meters is not constant but depengsition on the earth), and 2) the
surface of the earth is curved and translation eetwwo points cannot generally be
achieved in a straight line. For these reasopsgper calculation of distance between
two GPS points involves the computation of whdinewn as the great-circle distance
and a reasonable approximation for short distamwoesd involve the haversine formula
(Veness, 2012). Because the distances involvédsrstudy are relatively small (the
aircraft, for the foreseeable future, is unlikedyttavel more than a couple of
kilometres) it was deemed acceptable to use aa@atnapproximation as the relative

loss of accuracy is extremely small (compared t& GfRaccuracy, for example).

The translational force that comes from a changstdtide can be easily worked out
from simple trigonometry. As the angle of totaiu$t changes from zero (straight
vertical) on either roll or pitch, the corresporgltomponent of lateral thrust will be
given by the computed tangent of the vertical thfwhich can be assumed to be
constant and equal to mg, the weight of the quadrathen the robot is holding
position). This relationship is illustrated usimdl in Figure 2.

Lateral Thrust

Dowmn

Figure 2 - Lateral Thrust lllustration

And the equation for lateral thrust with respecth® roll angle (i.e. eastward thrust) is
then given in equation (35). The same approaeppsied for northward thrust
(equation (36)), but the pitch value is negativeduse a positive pitch angle (nose up)

when the aircraft is facing north means that therdd thrust will be oriented southward.
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Fease = mg - tan(p) (35)

Frortn = mg - tan(—@) (36)

The desired roll angle, pitch angle, and thrustedfbutputs of the position PID
calculations are directly applied to the orientatemuations described is Section 3.3 to
form a comprehensive whole for autonomous flightthe simplest application, this is
demonstrated by position hold; when the aircraift iight, it can be told to
autonomously hold position by setting the desiegiude, longitude, and height to the
currently sensed values. More complex autonomiayls fpatterns are achieved from
the same starting point (setting the desired mosith the current/starting position) and
then applying increments or offsets according pocggrammed pattern.
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4. MAV Structure Design

MAVs can be built in all sorts of configurationsdainom a huge variety of materials
and components. This research focused on bastr@joa configurations with
propellers parallel to the body frame and providimgist directly perpendicular to it.
The studied airframes were all of significant i®re than 0.5 meter across) and
contained processing power and sufficient sensoesable fully autonomous
orientation control; one of them (Jumbo QBot) wis® @apable of autonomous position
control. The components of these developed andsaare described in the following

sections

4.1. Mechanical

Over the course of this research, three complet&8Mere built. The first was a
simple structure with no landing gear and no cdrtoard protection (it sat exposed on
the top of the airframe). The next was a more detalesign that was spider-like in
inspiration and had landing gear and modular canstn designed to properly house
the control board, the battery, and other companenhe final airframe was
intentionally larger than the other two and wasimgarpose-built for the components

and payload it houses and carries.

4.1.1. Basic Cross Frame (QBotl)

As this was the first airframe studied in this agsh, it was dubbed QBotl (short for
quadrotor robot 1). It was developed by anotheAtudent in the CAD software
called Solidworks™ and was constructed out of almaation of parts, some of which
were 3D printed (in AUT’s rapid prototyping facy)tand some of which were
purchased. Figure 3 shows the mechanical repeagenof this airframe as it was

designed in the CAD software.
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Figure 3 - QBotl1 3D CAD Model

The motor mounts at the end of each arm and theatérousing that ties the arms
together and provides support for the control d¢irooard were all 3D printed. The
arms are made from carbon fibre tubes (often usebddilding large kites) and all of the
components are held together by friction and higérgth epoxy. Figure 3 depicts the
motor holders as they were originally designed thiegt worked well for low motor
speeds. When this research reached a point ghatdltors needed to be run at flight
speed, however, it was seen that the mounts laakedgh rigidity to resist vibration.
They were redesigned and replaced with reinforcednts, as discussed in Section
6.1.2.3.

The fully assembled airframe with the final motaoumts is shown in Figure 4.

Figure 4 - Assembled QBotl

The important characteristics of this airframesrewn in Table 1.

Table 1 - Physical Parameters of QBotl Airframe

Arm Length (1) 0.27m
Assembled mass without battery 660g
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Assembled mass with battery (g) 1.01 kg

This airframe operated exclusively with plastic HPP-style propellers having a 4.5”
pitch. The corresponding thrust and drag constaats calculated using equations (5)
and (7) with the values for{G0.1154) and £(0.0743) given for this propeller in
Domingues’ (2009, p. 15) work. The calculated ltssare shown in Table 2.

Table 2 - Thrust and Drag Constants for Plastic 10x4®ropellers

Thrust Constant (b) 0.0000146 kg*m/fad
Drag Constant (d) 0.00000038 kg*tmad

4.1.2. Spider-Inspired Airframe (Aragnobot)

The second airframe used for this research wagmesiby the same student who had
created the QBotl frame. The new design consaftadnuch more extensive central
housing that would better protect and support trerol board and associated
components. It was also made in a more modulardasuch that the battery holder
and control board platform could be removed whekving the rest of the airframe
intact. Consideration was placed on providing prapounting points for additional
sensors underneath and at the end of each arthe bnd, the design took on a spider-
like aspect and the assembled robot was givenaheemiragnobot. The original CAD

design is shown in Figure 5.

Figure 5 - Aragnobot 3D CAD Model

As with QBotl, this airframe had the central bodg anotor mounts manufactured on a
3D printer. The arms were again made out of tutedabon fibre and glued in place

with high-strength epoxy. The modular circuit libaarrier and battery holder were
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also 3D printed and ultimately held in place by 3iserews and nuts. The final
assembly of the complete MAV is shown in Figure 6.

Figure 6 — Assembled Aragnobot

The relevant mechanical parameters for this airérane contained in Table 3.

Table 3 - Physical Parameters of Aragnobot Airframe

Arm length (1) 0.265m
Assembled mass without battery 780 g
Assembled mass with battery (g) 1.12 kg

At the outset, this airframe employed the samegllexs as QBotl, but a decision was
eventually made to transition away from plasticg@iéers and to use carbon-fibre ones
instead. They have the same EPP-style shape aighdthey are also 10” long and
have a 4.5” pitch, but they are significantly maged and therefore behave closer to
the ideal assumptions we have made (linear resphnggg flight; not subject to
significant flapping or distortion). The thrustdadrag constants for this propeller were
assumed to be the same as those for its plastitexpart and once flight was achieved
it was easy to experimentally see that the thrastponent, at least, was essentially the
same. This is accomplished by using the measuesd wf the airframe to work out the
thrust required to achieve static hover (F=mg, 8R.h this case); if the thrust being
computationally applied by the controller is sigrahtly smaller, or greater, then the
thrust constant must be correspondingly incorrécthis case, the calculated thrust
aligned very well and the previous number was edrforward. The drag constant is
much harder to perceive or measure with precisiah #or basic yaw control, that

precision is considered to be unnecessary. As, shetvalue determined for the plastic
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propeller was applied to the carbon-fibre propedied it yielded reasonable yaw

control. The constants so determined are showialoe 4.

Table 4 - Thrust and Drag Constants for Carbon-Fibre1l0x45 Propellers

Thrust constant (b) 0.0000146 N per¥adc
Drag constant (d) 0.00000038 N-m periset

4.1.3. Large Aluminium Airframe (Jumbo QBot)

The final quadrotor MAV developed entirely as pafrthis study was nicknamed
Jumbo QBot. Its purpose was to move beyond thigedhcapability of the previous
airframes and establish a platform of significaaglpad capacity (both in terms of mass
and area) and computing power that could be used$earch beyond the scope of the
work described herein (hopefully for years to com&$ a design effort, some
principles were derived from the previous airfrarhasotherwise this airframe was to
be entirely different. Something borrowed wasdbecept of hollow arms to house
wiring and interconnect. The central and topmaesitpn of the control board was also
maintained, along with a protective frame for ithasl been used on Aragnobot. Almost
everything else was different. Rather that 3Dtedmylon and carbon-fibre rods, the
airframe material was all aluminium. This kept #idrame light (although heavier

than the previous structures) and allowed asselmbcrews and nuts rather than glue.

It thereby has the advantage of easier repair gpldecement of component pieces.

Another difference is that Jumbo QBot has no cébtdy but rather relies on two sets
of square aluminium bolted to the top and bottorthefarms. One set is placed near
the centre of the airframe and the other is extérideher out on the arms. These
components keep the arms in alignment and prowicgoinal rigidity to the airframe.
The arms themselves are made from rectangulardedraluminium which was
machined to provide access holes and bolt pointsamesired locations. A pair of
battery clips was incorporated to hold the largtdyy by its ends rather than across its
entire length. Landing gear is built from simptegked pieces and provided in various
lengths to allow for the incorporation of largejjextis (payload) underneath the
airframe. To accommodate some of the foreseermadyhluminium pieces were
crafted to allow attachment of a laser scannenaciuated camera platform. The
entire airframe mechanical design was capturealit\Borks™ and is shown in Figure

7 (with the longest landing gear depicted).
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Figure 7 — Jumbo QBot 3D CAD Model

The design was completed as part of this resebtuththe machining of the pieces was
accomplished in the mechanical development facithUT (by a technician); some of
the construction was done by hand, but the majaréy performed by computer-
numerically-controlled (CNC) machines. The asseutlbare airframe is shown in
Figure 8 while the fully assembled MAV is showrFigure 9.

Figure 8 - Jumbo QBot Bare Frame
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Figure 9 - Assembled Jumbo QBot

The physical parameters for this completed systenstaown in Table 5.

Table 5 - Physical Parameters of Jumbo QBot Airframe

Arm length (1) 0.3265 m
Assembled mass without battery 1.72 kg
Assembled mass with battery (g) 2.39 kg

This airframe was a platform for significantly largmore powerful motors, and the
propellers increased along with them (and are nbgdecompany called Xoar).
Diameter was increased to 12” while pitch decreasigtitly from 4.5 to 4”. The
construction material of the new propellers wasgleal again and this time beech
wood was selected on the basis of its lightnegality, and ability to withstand damage
without failing entirely (several of these propedlevere damaged over the course of
this research and almost all of them would stileb&e to sustain flight, albeit in a

reduced capacity).

The lift thrust constant was initially calculatedhvequation (4), using numbers posted
on the motor manufacturer’s website (Scorpion Pdyatem Ltd., n.d.) for the Xoar
propeller. It was later fine-tuned by experimemtagervation in the same manner as
that applied to Aragnobot (stable hover effectiftehrust extrapolated back to thrust
constant). The drag constant was approximatedegttation (7) (d is equal to
propeller power divided by propeller angular rateed) using the motor

manufacturer's power and RPM numbers (Scorpion P&ystem Ltd.). This yielded
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perfectly acceptable performance and Table 6 shiogvsonstants applied in the control

algorithms.
Table 6 - Xoar 12x4 Propeller Constants
Thrust constant (b) 0.000018 kg*m/fad
Drag constant (d) 0.00000038 kg*tnad
4.2. Electro-mechanical
4.2.1. Motors

The only components of the quadrotor MAV systent toavert the control signals
from the processor board and the electrical patkaotithe battery into mechanical
movement are the motors. Each developed airfraadeldifferent set of small but
powerful brushless direct current (BLDC) motorsBa@l employed MK2832/35

motors from a German company called Mikrokopteraghobot used Robbe Roxxy
2827-35 motors while Jumbo QBot was powered by BoorSI1-3008-1090KV(V2)
motors. A comparison of the significant motor paeters is given in Table 7 (extracted
from website information ("MK2832/35", 2009) ("RabBROXXY 2827-35", 2009)
(Scorpion Power System, 2013)).

Table 7 - Motor Comparison

Parameter MK2832/35 2827-35 S11-3008-1090KV
Weight ~68g with cable ~69g with cable 100g with cable

Max continuous current [ReJay 9A 26A
Max continuous power RO 110W 370W
No-load speed 760 rpm/V 760 rpm/V 1090 rpm / V

It should be noted that the connector cables #@fitlst two motors are quite long as
compared to the Scorpion motor. Also, the Mikraleo@and Robbe motors are
generally presented as appropriate for equivaleat rhis is apparent in the chart as
the parameters are nearly identical.
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4.3. Electrical

There are many electrical components that makequadrotor system, from the simple
(and increasingly tiny) resistors to the complexM\Rrocessor used for processing in
Jumbo QBot. The majority of the bits and piecks,wires and the passive
components, are necessary for correct operatiannsignificant for the purposes of
this research. The major electrical componentaglver, are discussed in the following

sections.

4.3.1. Batteries

As with motors, different batteries have differapplications and there are always
trade-offs to be made between battery capacitycamgsponding mass. To have some
consistency between the airframes, though, thesareh utilized 3-cell Lithium

Polymer (LiPo) batteries exclusively. IndividuaPb cell voltage is nominally
specified at 3.7V (4.2V fully charged) which givek.1V (12.6V) total for a 3-cell

pack. The original battery used for QBotl hadacdy of 3300 mAh and a mass of
260g. Aragnobot employed 4000mAh battery packswiegghed in at 340 grams. The
high current requirements of Jumbo QBot calledafonuch larger battery and the one

eventually employed weighed 670 grams and boastegacity of 11000 mAnh.

4.3.2. Inertial Measurement Units

The inertial measurement unit (IMU) is the mostical sensor for quadrotor flight. In
reality, IMUs are integrated devices that combieeesal sensors together, perform
input filtering and sensor fusion calculations, anadvide, at a minimum, useful
orientation data as output. Two different type$\) were employed in the course of
this research; the UM6 from CH Robotics was useddnh QBotl and Aragnobot
while the 3DM-GX3®-45 (referred to as LM345 hereirgm LORD MicroStrain® was
used for Jumbo QBot.

4.3.2.1. CH Robotics UM6
The UMG6 provides basic IMU functionality and comisian accelerometer, a gyroscope,
and a magnetometer to detect orientation and clsang®ientation. It has an internal
processor that performs Kalman filtering on thessernputs and computes both Euler
Angles and Quaternion representation. It alsorstiiee ability to perform filtering over

GPS values input from an external device, butfiéstiire was never used. The primary
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interface to the UM6 device is either SPI or UART dhe serial communication can
run at up to 115200 baud.

The communication protocol developed by CH Robatsasfairly straightforward
packet type that utilizes a fixed recognizable leeahd checksums for ensuring packet
integrity in both directions. Different packet ggare then defined for reading and
writing registers and for an array of commands giravide access to all the necessary

functionality of the sensor.

The source code that runs on the internal proceédbe UM6 is also open source,
which would be nice if changes were necessary.rédly¢hough, the sensor worked

very well with no alteration.

4.3.2.2. LORD MicroStrain® 3DM-GX3®-45
The LM345 module is an advanced military-grade IMith an extensive feature list
including integrated GPS. It contains (at least) processors and provides fully fused
and filtered basic IMU data (derived from acceleeben, gyroscope, and
magnetometer), as well as a set of computed (estthhaavigational data that is the
result of a Kalman filter applied to both the IMEnsor data and the GPS module
updates. Unprocessed GPS data is also availathlthase three sources of orientation
and position data can be programmed independaengyolvide all of the information a

mobile platform might desire.

Communication with the system processor can odtherevia USB or serial RS232.
The LM345 datasheet states that while the USBfexterprovides superior bandwidth
(more than the device could theoretically usdy litmited in determinism (regular
timing of updates) due to the nature of USB infiagure in a modern processor
system. The RS232 interface, on the other hamdbeastrictly timed out of the LM345
and is advised for use in situations where regigderministic timing is required or
desired (as is the case for a quadrotor MAV apptoj Bandwidth on the RS232
interface must be actively managed in the systesigddo ensure that the requested
data output of the LM345 does not exceed the cépabi the interface. As it happens,
that overrun situation was encountered in the @afshis research and the data rate
needed to be increased from the default of 11520@ b The final data rate selected
was 960000 baud, not necessarily because that wasineeded but because it worked

well and decreased the amount of time taken fa ttahsfer.
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The one element not integrated into the LM345 ihaecessary for full functionality is
the GPS antenna. Both a passive helical antertharaactive puck-style antenna were
tested and, in open spaces, the performance ofveasperfectly acceptable. It is
expected, however, that in areas where GPS sigadityis diminished, the active
antenna would provide better performance but attis¢ of added mass (about 50g).

4.3.3. GPS

QBotl was originally fitted with an LS20036 starated GPS smart antenna module
from Locosys Technology Inc. That device is a $reain factor completely integrated
GPS solution with an extensive feature set inclgdie capability to track up to 32
satellites at a time. It communicates with a pssoe via a very basic serial interface (1
transmit, 1 receive wire) running at 9600bps. Bfadlt, it provides GPS updates at a
rate of 1 Hz, but it can be programmed to providgant at higher rates, up to 10 Hz. At
one point in time, the control board for QBotl wggraded and the LS20036 couldn’t
be transferred intact. Because outdoor flight m@songer planned for that platform, a
replacement for the new board wasn’t consideredogity and this component was
dropped from the design (but could easily be admad in at any point in the future).

Aragnobot never had a GPS unit, but it has a lonatserved on its control board for
the LS20036, the same as QBotl.

A standalone GPS module wasn't included in thegihesf Jumbo QBot because the
LM345 provided adequate GPS capability, as desdrdi®ve.

4.3.4. Wireless Communication

None of the quadrotor MAVs developed during thersewf this study were intended
to be remotely controlled in the sense commonlysehobbyists. As such, standard
remote control (RC) transmitters and receivers weteemployed despite their obvious
pertinence to this type of endeavour. Insteadpeernonventional model of robotic
operation was pursued that involved a base staBading commands to the robotic
platform on an as-needed basis while the robotraibe operates autonomously.
Communication from the robot to the base is gehenatended to be informational
only and conveys telemetry and state data thagesnéd useful to an operator/observer.
In that sense, then, all that is needed is a llgital link between a computer on the
ground and the robot as it moves around. Thisaghgeved in the case of all three
platforms through the use of XBee® modules fromigernational.
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XBee modules have small processors on them thageaerally support a number of
different protocols and communication paradigms éfample, point-to-point or
mesh). This research exclusively used the XBaaware supporting point-to-point
communication employing the IEEE 802.15.4 commurocastandard. QBotl and
Aragnobot both used wire-antenna low power XBee utexithan have an indoor range
of 30m and an outdoor line-of-sight (LOS) rangeipfto 90m. Jumbo QBot has two
sets of long-range modules available. One setabgeat 900 MHz and could
communicate up to 140m indoor and 3km with LOS oatdup to 10km with high-
gain antennas). The other set operates at 2.4@tHzan reach 1.6km with LOS
outdoor or up to 90m indoor. Testing started it 2.4GHz setup but eventually the
modules were switched to gain the greater rangeaaoid interference issues that had

been encountered at 2.4GHz.

One of the greatest benefits of using technoldgy tihe XBee modules is that all of the
complications of wireless communication are takare ©of by the devices themselves.
A small amount of initial setup is required, buieafthat the only interfaces to be dealt
with are common UART serial ports that communieatd to end as if the intervening
XBee infrastructure were simple wires. On the tptiee UART interface is connected
to the processor (directly for QBotl and Aragnobat,USB for Jumbo QBot) and on
the base station, the paired XBee is connected &B dongle that presents a serial
interface to the operating system. What is semalgefrom the robot is received
directly by the base station, and vice versa. Kbeps the interfaces and the protocols

extremely clean and simple; perfect for reliabldbedded communication.

4.3.5. Altitude Sensors

Three methods of detecting altitude (height abbreeground might be more accurate in
some cases) were explored during this study, esiclg different hardware. The first
method applied indoor was sonar, next was air presand the third for use outdoor
was GPS. GPS position sensing has already beeusded and won'’t be covered again

here.

4.3.5.1. MB1200 Sonar Module
For sensing distance to the ground, an MB1200 (XaxSbnar®-EZ0™) from
MaxBotix® Inc. was selected. These devices ardldoran factor ultrasonic modules
that operate on a principal of echo location (llegs use). They have the ability to

detect objects from 0 to 765 cm away and can tliealy provide distance information
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with 1cm accuracy for objects between 20cm and m65€heir beam width is
reasonably narrow (about 1.8m across when 1.5m &wayan object (e.g. the floor));
care would be necessary indoor to ensure cleafemmenearby objects (like walls,
desks, etc.). The processor interface providedresluced-amplitude RS232 that is tied
to the device power for logic high (i.e. either 6¥3.3V) and ground for logic low,
rather than a standard RS232 voltage range (e2y/)t1The device communicates only
in one direction and, when enabled, sends calaitaigge information every 99ms at a
baud rate of 9600. The protocol is very basic @mkists of a known packet
arrangement (fixed header, trailing carriage rétthat gets populated with the variable
range information (to the nearest object detectéid)size and simplicity of use make it

a good choice for MAV application.

4.3.5.2. Pressure Sensors
Only Jumbo QBot (to date) employs air pressure@srte determine altitude. It
accomplishes this in the same way that other dirdoaaround the world; it obtains an
ambient air pressure reading and applies a forfegjaation (29)) to convert that to
altitude. If a reading is taken at the point ddetaff, the relative difference provides the
effective height of the aircraft above the grouatdiéast as long as the ground is level
or the robot stays near the point of launch). @btg pressure readings of sufficient
accuracy is somewhat challenging and two diffepgassure sensors were tested during
this study. The first one is made by a compankeddfleasurement Specialties and has
a model number of MS5803-01BA (called just MS58@8ehfter). The second sensor
tested is made by Bosch Sensortec and has modélendMP180. Both of these
sensors are small and highly capable (althoughltdakyquite different physically).
Their major attributes are summarized for side-olg-gomparison in Table 8.

Table 8 - Pressure Sensor Comparison

Feature MS5803-01BA BMP180
300-1100 hPa

Operating Pressure Range 300 — 1100 hPa

Communication Interface 1°C and SPI up to 1°C up to 3.4MHz
20MHz
Maximum Output Resolution [J0X0k¥E =] 0.01 hPa
Absolute Accuracy -1.0to 1.0 hPa -4.0to0 2.0 hPa
0-50 °C, 300-1100 hPa (-1 +/- 1 hPa Typical)
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Feature MS5803-01BA BMP180
+/- 0.12 hPa Typical

Relative Accuracy Not Listed
950...1050 hPa at 25 °C
Typical RMS Noise 0.012 hPa 0.03 hPa

Maximum Resolution Setting

These values are taken from the datasheets fov 85803 (Measurement Specialties,
2013) and the BMP180 (Bosch Sensortec, 2012), césply. Although the MS5803
seems to generally have better operating paraméhtertack of a relative accuracy
specification was a cause for concern. In the sqptadMAYV application being studied,
the relative accuracy was deemed of greater impoetand so both sensors have been
employed and, in practical terms, they have naddytical performance on the Jumbo
QBot platform. In the end, both are being useduftemeously and their data is
averaged to give an overall improvement in uselisieoved accuracy.

Although these modules have processor communicatterfaces, they do not directly
provide pressure data over them. Instead, theubofgnternal ADC measurements for
temperature and pressure are relayed (after apategonversion times) and must be
processed according to the algorithms given bythaufacturer. Only at the end of

that processing is the sensed pressure known.

As a further note on the current application, titerface for the BMP180 is 12C as
listed, but it was actually determined that the mledvould be more useful with a USB
interface so that it could be deployed either @rtibot or the base station (to track and
eliminate the impact of changes in the local bartoimpressure). For that reason, the
BMP180 is installed on a standalone circuit boattth & small processor that does all of
the 12C processing and subsequent calculation. rdhéting pressure value is then
relayed over the USB bus as a serial stream witlwkrpacket arrangement and

checksum for maintaining integrity.

4.3.6. Processors

4.3.6.1. Atmel® ATmega2560
Both QBotl and Aragnobot employ ATmega2560 micraasiers for all of their
processing. As 8-bit processors go, the ATmega#b6fasonably full-featured and
has proven an excellent choice for this type ofiagpon. It operates at a maximum
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frequency of 16MHz and has 256 KB flash memory, S8B8AM, and a 4KB
EEPROM. In addition, it offers a large array offigurable 1/O lines, 6 programmable
timers (that support PWM output for motor contrdl)}JARTSs, a 16-channel 10-bit A/D

converter, and a JTAG interface for programming ianrcircuit debugging.

4.3.6.2. Gumstix® Overo FE Computer on Module
Gumstix is a company that specializes in makingmaments for tiny intelligent
systems. They are perhaps best known for makimggol but tiny computer modules
that are roughly the size of a stick of gum (arespmably they selected their name
based on this fact). For Jumbo QBot, an Overo EQvas selected (hereafter
referred to as simply the Gumstix or Gumstix Preogsand it was decided that the full
embedded Linux operating system would serve apl#torm for robotic operation.
As the use of COM (Computer on Module) in the paidwame suggests, this is not
simply a processor. Rather, it is a full compstgstem that incorporates processor,
SRAM, (flash) disk drive, USB I/O, ADC capabilitiemnd networking and serial
interfaces. It has prodigious processing capghalid its feature list states that it is
capable of achieving up to 1400 Dhrystone MIPS (&ixninc., 2012). Almost all that
might be expected of a standalone personal compneiapped up in this tiny package

that's capable of running Linux, Android™, and atbperating systems.

The relevant high-level features of the Gumstixcpssor used for this research are

summarized in Table 9.

Table 9 - Gumstix Overo FE COM Feature Summary

Processing Unit Texas Instruments OMAP3530
Applications Processor

Processor Architecture ARM Cortex-A8

Processor Speed 720 MHz

SDRAM 512MB DDR at 200 MHz

Flash 512MB built-in; microSD slot for more

Networking Capability Wifi (IEEE 802.11 b/g) andu&tooth

USB Support Native Host port (USB 2.0 high-speed
only) and On-The-Go port

Other Serial SPI, 12C, UART (2 available channels)

PWM Outputs 6

ADC Channels 6
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It should be apparent that this processor is iarditely different class than the Atmel.
Its USB capability was leveraged to offer even nfaretionality, and in that way 9
additional serial UART channels were added and tsB plugs were placed on the
control board (with the potential to be used faieexal disk drives, a laser scanner, and
almost anything else with a standard USB interfa&nilarly, additional ADC
channels were added on the 12C bus and the totél édpability on the board was

increased from 6 to 14.

4.3.7. Motor Speed Controllers

Aside from the physical structure (which is impattand significant), the only major
difference between QBotl and Aragnobot are the nggeed controllers. These small
devices are crucial to the effective use of the BLotors that actuate the aircraft and
they are commonly referred to by several termstedaic speed controllers (ESCs),
BLDC motor controllers, and motor drivers, to naaiew. The core function of these
devices is to control the flow of power into a ntadach that its speed is regulated in
accordance with an electronic input signal. Thatt signal can theoretically be
anything, but a digital signal employing pulse \eidbodulation (PWM) is most
common. As the name implies, PWM communicatesméion through the width of
a digital pulse and this allows a single wire toncounicate a control variable between a
master and slave (communication is unidirection@his enables the use of a very
simple timer-based approach for both driving amdang the wire in question.
Common pulse widths for this type of control fregilgrange from 1ms to 2ms where
1ms conventionally corresponds to zero throttledevBms corresponds to full throttle.
The specific values and the maximum update ratg significantly between

controllers, as does corresponding motor respangeetoutput power.

Both QBotl and Aragnobot employed PWM to conveydésired control (motor
throttle), but, as stated previously, different ES@re used. QBotl used the
Mikrokopter BL-Ctrl 2.0 while Aragnobot was equigpwith the AutoQuad ESC32.
Jumbo QBot also used the ESC32 but added serialflUzgRimunication as an option
for conveying the motor control update informat{drcan use either PWM or UART
but the current default is UART).
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4.3.7.1. Mikrokopter BL-Ctrl 2.0
The BL-Ctrl 2.0 is an excellent ESC built aroundfmel ATMegal68. It was
designed specifically for use with Mikrokopter m&a@nd airframes but offers a broad
feature set and, thanks to its design intent, meg@ly a good choice for multi-rotor
MAYV use. Either PWM or 12C can be used for contrptates and the 12C interface
can also be used for extracting data monitoredhbyESC (like temperature and
voltage). Only the PWM connection was used on QBpartly because there is no
direct documentation for the communication protpooly reference code for a
Mikrokopter control board).

4.3.7.2. AutoQuad ESC32 2r1
The ESC32 from AutoQuad is an extremely powerfuldtili reasonably priced motor
controller. Its central processor contains a 322BM Cortex core running at 72MHz.
It boasts 12C, PWM, CAN bus, and UART ports. Timvare it runs is all open
source and thereby available for analysis and nuadibn. When using the UART port
(or any other bidirectional port, presumably), cohinformation is not limited to motor
control alone. The default firmware offers a whi@age of control parameters and also
supports configurable telemetry broadcasts thabeamsed to provide automatic,
regular updates of motor information back to thetaaling processor (e.g. motor
RPM, current draw, voltage...).

One of the most useful features of this ESC (apdi#tveloper’s software) is the ability
for self-calibration and subsequent closed loopapm. When fitted with a propeller
and installed on a fixed stand (or on the applocatirframe that is held in place), the
software can be used to execute either of 2 céltloraoutines. The first is for
associating voltage to RPM so that the motor cdlietroan explicitly bring the motor to
a desired rotation. This is a significant cap&pliecause the central controller of a
MAYV generally doesn’t care about throttle and ngathnts to be able to set motor
rotation. Throttle is loosely assumed to be lirsanss the operating range and can
thereby be used to approximate the desired rotabiatnan explicit indication of RPM
and the corresponding ability of the motor congotb actively achieve it is a definite

improvement.

The second calibration routine is used for curlemting. In general, the motor
controller, the motors and other wires and cirguitra system have limits on the

amount of current they can handle. Most motorraders have built-in worst case
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assumptions to offer some protection in this reglund greater efficiencies and
response times can be achieved through explianguof the motor and propeller set
being used in a given application. With this roatithen, the motor controller performs
a series of motor throttle steps to work out whas 0of change and, ultimately, what
maximum throttle is acceptable for a given curtenit. For example, a direct step
from 10% throttle to 90% is almost certainly gotogexceed any normal current limit.
The motor controller evaluates this and plots dwired steps necessary to move from
10% to 90% without exceeding the limit.

With the closed-loop mode parameters calculatedapptied, this motor controller
offers optimal responsiveness and setpoint accurlftyving from PWM to serial
communication further improves the clarity of thesuled setpoint (it is explicitly
specified, not encoded as a pulse width and thead#el again) while reducing the
response time (i.e. no 2ms wait for PWM pulse widtbe conveyed). Altogether, this

controller was easy to work with and offered exmmyally good performance.
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5. Software and Firmware Design

There are different definitions (and conceptioms)firmware and software (or at least
the difference between them) around. For the mepof this study, firmware is simply
defined (delineated) as the code that runs onrtiteedded robot
processor/microcontroller while software is defirasdthe code running on the base
station PC. For all three quadrotor MAVs consteddbor this research, the firmware
they run is entirely contained on the robot itseld non-volatile way. On startup, they
contain all of the code necessary for flight anty @perational commands are passed
from the base station to the robot. In that setigedelineation is appropriate and can

be rigorously applied and understood.

All of the firmware developed as part of this resbavas written in C. While the
structure and approach was largely portable, nggesguired the use of Atmel AVR
primitives that needed to be changed to Linux qots as development moved to the

Gumstix platform.

The base station software applications have beeslafeed for Windows(currently
running on the Windows 7 operating system) and wweitten entirely in C# using
Microsoft Visual Studio (2010 Professional and 2Ql&mate).

A modular approach to firmware development was eye in developing the code for
embedding in the quadrotor MAVsS. The intentiorréire is to place code specific to a
given peripheral in its own .c (code) and .h (hegfies. The term ‘peripheral’ is used
here to refer to all components and modules extéorthe central processing unit (even
if they reside in the same chip) that require séone of programmed communication
and control to be employed. The main processiog &iso has its own file pair and it
pulls in (using include statements) the heades fifethe peripherals that it uses. In this
way, peripherals can be easily added to or drojfoed the system and, as the firmware
infrastructure was ported from one processing sys$teanother, corresponding changes
to peripheral handling were easily isolated. I fibllowing sections, the root file name
of the peripheral code (i.e. filename without esfen) is included in parentheses for
any description pertaining exclusively to that cedé (to make the association easier
for anyone studying this document and the develape@ at the same time).

! Windows is a registered trademark of Microsoft @wation in the United States and other countries
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The following parts of this chapter are not inteshdie fully describe (and certainly not
to recreate) the code that was written for thiggmtp but rather to call out the major

functional components and describe them in a usedyl

5.1. ATmega2560 Firmware

Development for a simple microcontroller has semvgegided advantages:

- What is written and compiled is generally all thalt run; there are no other
software routines vying for processor time

- Access to the hardware is direct and absoluteetaer no intervening redirection
or security mechanisms

- Analysis at the processing instruction level isscewbly easy and corresponding

determinism (outside of interrupts from externalrees) can be depended upon

These factors make a microcontroller like the ATafgH0 an excellent platform for
the development of firmware targeting robotic apgiions. It can be simply and
directly done with corresponding clarity of opeoatiand responsiveness of the

controlled system.

5.1.1. Peripherals

5.1.1.1. Wireless Communication (uart_XBee)
The code to interface with the XBee devices istiaty straightforward as it is, from
the microcontroller point of view, simply UART conumication. As such, the standard
AVR UART initialization occurs in a routine calletBee_uart_init(). That routine sets
the port baud rate and it must be the same asalhe pyrogrammed into the connected
XBee. It also initializes the receive channelinipt and thereby places the

microcontroller in a ready to receive state.

Bytes received from the XBee associated UART ameedtin a 256-character ring

buffer. The interrupt processing routine simples each byte received and places it in
the next ring buffer index. When the index reac&5, the next value is 0 which forms
the ring. There is no checking of overflow asiekpected that bytes will be extracted
from the buffer long before 256 could accumuldfehat ever fails to happen, the

receive interrupt will simply overwrite data thatdnot yet been read.

The other significant functions contained in uamBe¢ are a function to indicate how

many characters (if any) are available in the (KBee_uart_bytes_available), and
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another for outputting a single character at a {iXtgee_uart_putchar_printf). The
character output function was declared in suchyagao allow association with a C
file handle. This is significant because, in thiy, the default C output construct,
stdout, can be directly assigned to the XBee. Tiet allowed for simple code

construction using generic printf statements toased throughout all other source files.

5.1.1.2. Attitude Sensor (um6_imu)
Like the XBee, the UM6 IMU connects to the micrototier via a UART interface.
An initialization routine (um6_imu_uart_init) wagiten to setup the Atmel registers
for correct operation, including receive interrpppcessing. The exact same type of
256-byte ring buffer is applied in this case as wsed for the XBee.

Sending information to the UM6 is always accomm@isla single character at a time
through the um6_imu_uart_putchar routine (no pstatements are employed in this
case).

The most common interaction with the UM6 involvesding a command sequence
that initiates the transfer of whatever parameteesdevice is currently programmed to
relay. A standalone function called um6_imu_redadsused for this request and it
defines each character of the transmit string eilyli(including header and checksum

characters).

Data from the UM6 to the microcontroller can be maned either via the
um6_imu_bytes_available routine (when the numbexpected bytes is known) or the
um6_imu_check_input_packet routine (when the inognpiacket length is unknown or
variable). Depending on the nature (or expectawdmhe inbound data, it can be
processed by several different routines:

- um6_imu_print_generic_packet will print any receiy®U packet of known
length

- um6_imu_get_triplet_raw will extract any returned sf 3 integers (most UM6
IMU information comes in triplets)

- um6_imu_get_roll_pitch_yaw_degrees will extract anoperly scale (to degrees)
returned UM6 Euler angles of roll, pitch, and yaw

To allow for the reading and writing of registersldor the posting of commands, three
additional functions were created: um6_imu_geneeiad, um6_imu_generic_write,

and um6_imu_generic_command, respectively. Eathesk routines will build up and
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transmit a packet as defined by the UM6 datasli&@dtRobotics, 2013) to accomplish

the corresponding function.

5.1.1.3. Sonar Rangefinder (mb1200_sonar)
The MB1200 sonar module connects to yet another Up&t on the ATMega
microcontroller and the code developed for it wesesctly the same type of initialization
routine (mb1200_sonar_uart_init). Apart from thi#éial sameness, however, it differs

from the other UART peripherals in several ways:

- A multiplexer sits between the microcontroller ahd physical sonar device. This
allows up to 4 sonar modules to be connected at (aithough only one can be
communicating with the microcontroller at a time)

- The MB1200 only transmits data; it has no abildyé¢ceive commands or data
from the microcontroller

- The data transmitted by the MB1200 is a set patteathrepeats (when enabled) at
regular intervals to provide 4-byte updates of etwthe nearest object; there is
no need for a dynamic receive structure (like thg buffers employed in other

areas)

With these characteristics in mind, the code wrmifta the MB1200 provided only two
external functions beyond mb1200_sonar_uart_i@ite is for initializing the I/O pins
controlling the multiplexer and for establishing tthata structure to receive sonar
updates. Itis named mb1200_sonar_control_initiamdist actually be executed prior
to mb1200_sonar_uart_init. The other routine rsefeabling the sonar module output
(mb1200_sonar_enable) and it takes a short ineageiment to select between the

multiplexed candidates.

5.1.1.4. GPS Module (1s20036_gps)
A fourth UART on the ATmega2560 was dedicated ®dptional GPS module.
Although this component was never used in flightvas tested to verify proper
connectivity and correct circuit board design. déa 256-byte ring buffer, receive
interrupts, and initialization routine (Is20036_gpart_init) are all pretty much the
same as for the XBee and the UM6. There were atnes written to parse incoming
data and only the generic byte count (Is20036_gyesbavailable) and character pop
(Is20036_gps_get_next_char) functions are currgmtlyided. A couple of data stream
configuration routines were developed to test deemnfigurability and extract useful

state information; 1s20036_gps_gga _rmc_only sethedpS20036 to transfer two
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specific blocks of GPS information while 1s20036sggsv_only sets up transfer of
only one (different) block of data. The definitiohthe GGA, RMC, and GSV data
blocks can be found in the LS20036 datasheet (LOC®®echnology Inc., 2009).

5.1.1.5. Analog-to-Digital Converter (adc)
The ATmega2560 ADC is incorporated into the micrdoaller and 7 of its 16
available channels were connected to monitoringtpan the QBotl and Aragnobot
control boards. The seven monitored values indudgrent draw by each of the four
motors and voltage levels for the 3 cells of thadhted LiPo battery. Initial setup of the
ADC is accomplished by a basic initialization rogti(adc_init) that selects the
reference voltage (external input), programs tequency, and enables the completion

interrupt. It does not, however, actually starg aanversion.

Although the ATmega2560 ADC has 16 channels, iy oplerates on one of them at a
time. Routines were written that would allow monig of a selection of single
channels: adc_check_motor_current could be usddanitotor number integer to
sample any single motor current; adc_check_7v4 avallibw testing of the 7.4 volt
output of the battery (which was selected becausedontrol board is powered from
that point). Alternatively, all seven connectedmchels could be iterated through using
the adc_full_loop function. The sampled valuesath channel would be stored in
corresponding variables and the collective curstaitie could be printed at any time

using the adc_print_status command.

5.1.1.6. Motor Control (motor_control)
For QBotl and Aragnobot, the motors were contradlietirely through the PWM
outputs of the ATmega2560. The configuration diividual pulses is accomplished
through internal timers that are configured to eg@ad to output high or low logic
signals as various thresholds or limits are enayent The initialization of the timers
is performed by the motor_control_init routine ansets the starting pulse width
parameters such that the motors are off. Afteaiation,
motor_control_change_throttle can be used to asftgrent pulse widths (different

timer on-to-off thresholds) to a specified motor.

Those two basic functions provide all that is neaegfor the most basic motor control,
but the motor_control codebase is more extensiae that. Because the motors
themselves can be thought of individually as pepls with different characteristics

(even motors of the same make and model vary signily), it was deemed useful to
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maintain the motor control variables alongsidedbwetroller interface code. From
there, it also seemed reasonable that the PID aieleting motor control would be
added, along with the conversion logic from thrarsd torque to individual rotation and
then from rotation to PWM. Because of the sigaifice of these routines, they are

discussed in greater detail below.

51.1.6.1. Roll, Pitch, and Yaw PID Control

Although the code to implement the orientation PiDlttle more than a rendering of
the theoretical equations, it is included herdsrentirety (Figure 10) because of the
critical role it plays in the operation of the quaidr MAVs. This block of code
illustrates the simplicity and elegance of PID coht When the sensed information is
accurate, nothing more than this is required toesehstable orientation maintenance.
For the most part, the written lines of C shouldsbi-explanatory but a quick note
should be made on the role of the yaw adjustmet igto supplement the comments
in-line with the code). For the non-aerobatic MAd&s/eloped and studied by this
research, only yaw will ever see a deviation fresrsetpoint that approaches 180
degrees. The issue with being oriented 180 degtea@slians) away from the desired
value is that there are two possible directionske in resolving the discrepancy. This
can correspondingly lead to indecision or erratibdviour, especially if the robot has
some momentum that might carry it from one sid&&f degrees to the other. The
solution is to create a band (+/-10 degrees indhse) around 180 degrees within which
the robot will only move to the setpoint directiyg the shortest path) if it does not

already have some velocity taking it in the othieection.

49



float motor_control_calculate PID rpy (uint8 t select, int current_value,
int current_desired, float time_interval, int angular_velocity,
float kp, float ki, float kd)

int current_error;

float current_error_scaled;
float current_integral;
float current_derivative;

const float conversion_factor_angle = 0.0001917471;

//This will convert the IMU euler angle output to radians
const float conversion_factor_angular velocity = 0.0010652652;
//This will convert the IMU angular velocity to rad/s

float PID output;
current_error = current_desired - current_value;

if (select == 2) {
//for now, only yaw will approach 180 degrees
if (current_error > 16384) {
//we're more than 180 degrees away from desired (which means
//less than 180 in the opposite dir)
if ((current_error > 17294) || (angular_velocity < 0)) {
//within 10 degrees of inflection, only flip if we're
//not moving in the right direction
current_error = current_error - 32768;
}
}

else if (current_error < -16384) {
if ((current_error < -17294) || (angular_velocity > 0)) {
current_error = 32767 + current_error;
current_error++;

}

current_error_scaled = current_error * conversion_factor_angle;

current_integral = last rp_integral[select] +
current_error_scaled * time_interval;
current_derivative = angular_velocity * conversion_factor_angular_velocity;

PID output = kp * current_error_scaled +
ki * current_integral -
kd * current_derivative;

last_rp_integral[select] = current_integral;

return PID_output;

Figure 10 — C Code for Roll, Pitch, Yaw PID Control
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5.1.1.6.2. Converting Desired Thrust and PID Control Outputs

(Torques) to Motor Rotations

When all of the airframe desired torques have lwadculated according to the PID
parameters and the current orientation of theaamé, it is possible to apply the
equations given in (25), (26), (27), and (28) takvout the desired angular rate for each
motor. Figure 11 shows the code that implemenssajperation and it should be easy to
identify the rendering of the equations therein emdee that the theory has been

implemented directly in practice.
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{

Motor_Rotations motor_control_calculate_motor_rotations(float roll_pid_value,

float pitch_pid_value, float yaw_pid_value, float total_thrust)

float quarter_yaw_scaled, quarter_total_thrust_scaled;
float half_quarter_total_thrust_scaled;

float half_roll_scaled, half_pitch_scaled;

float omega_squared[4];

Motor_Rotations calculated_rotation;
uint8_t idx;

quarter_yaw_scaled = yaw_pid_value / (4 * drag_constant);

quarter_total thrust_scaled = total _thrust / (4 * thrust_constant);

half_quarter_total thrust_scaled = quarter_total thrust_scaled / 2;

//need to limit the yaw input

if (quarter_yaw_scaled > half_quarter_total_thrust_scaled) {
quarter_yaw_scaled = half_quarter_total_thrust_scaled;

}

if (quarter_yaw_scaled < - half_quarter_total_thrust_scaled) {
quarter_yaw_scaled = - half_quarter_total_thrust_scaled;

}

half_roll _scaled = roll pid value / (2 * arm_length * thrust_constant);
half_pitch_scaled = pitch_pid_value / (2 * arm_length * thrust_constant);

omega_squared[@] = quarter_total_thrust_scaled + quarter_yaw_scaled +
half pitch_scaled;

omega_squared[2] = quarter_total_thrust_scaled + quarter_yaw_scaled -
half_pitch_scaled;

omega_squared[1] = quarter_total_thrust_scaled - quarter_yaw_scaled +
half_roll_scaled;

omega_squared[3] = quarter_total_thrust_scaled - quarter_yaw_scaled -
half_roll_scaled;

for(idx = 0; idx < 4; idx++) {
if (omega_squared[idx] < motor_idle_rotation_squared) {
//printf (" \n\n¥FFrrkokokokkkokkx\ nERROR ERROR ERROR ERROR\n
//MOTOR %d WANTS TO STALL\n*¥¥*¥kkxkkktikx\n\n" idx);
calculated_rotation.omega[idx] = 84;
}
else {
calculated_rotation.omega[idx] = sqrt(omega_squared[idx]);
}
}

return calculated_rotation;

Figure 11 - Motor Rotation Calculation C Code

Naturally, there are some practical considerattbas needed to be applied and that

weren’'t apparent from the equations alone. Irfitseplace, the large range of yaw (+/-

180 degrees is possible) and the smallness ofrigeabnstant contributing to yaw

torque combined to yield a huge potential impacgta on the motor outputs. For a

yaw deviation (from the desired value) of any digant magnitude, it was possible to

see that the yaw factor contribution would effeetyvshut down two of the motors

while doubling (or more) the output of the otheptwin theory, that would be
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acceptable, but in practice, each balanced moionpads to operate at a significant
thrust level in order to maintain balance. Fot teason the impact of thrust on any
given motor is limited to half of the total thrukat motor is currently intended to
provide (i.e. yaw compensation can’t cause the ntotdrop or increase by more than
half its current throttle setting).

The other practical code modification was to pbband on the lowest possible motor
angular velocity allowed. In a purely theoretiapplication, a motor’s rotation can go
to zero (and even negative), but real motors wall st some point above zero
(somewhere less than but near 84 rad/s in thig ¢asd they can’t spin backwards
without wiring modification). Shutdown in itselfight not be too bad if the motor
response remained consistent. Unfortunately,iis¢pat BLDC motor from stall can
take a significant amount of time (extremely indstent with normal speed changes)
and it is, therefore, necessary to prevent stalllanit how slow the motors are allowed

to go.

51.1.6.3. Motor Rotation to PWM

The final stage of the motor control process isdovert the motor rotational velocity
() into a PWM pulse width. Using the assumptiomattor linear response to PWM
(at least near the operating point), the conversatraightforward and the

corresponding C code is shown in Figure 12.

uintl6_t motor_control_convert_rotation_to_pwm(uint8_t motor_num,
uintl6_t rotation_in)

{

uintl6_t calculated_pwm;

calculated_pwm = motor_rotation_pwm_offset[motor_num] +

rotation_in * motor_rotation_pwm_constant[motor_num];

return calculated_pwm;

}

Figure 12 - Motor Rotation to PWM Conversion C Code
What is not shown in the code is the declaratiothefmotor constants. For QBot1,
those had to be worked out experimentally and d#ferent for each motor. For
Aragnobot, the ESC32 motor controller was designeattively seek linear response

and, after calibration, the corresponding constaet® all the same.
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5.1.2. Communication between Base Station and MAV

As with other aspects of this research, the comaation infrastructure between the
base station and the robot evolved over time. fiFbething achieved was basic
communication of status from the MAV to the basdish by setting up printf
statements to output to the XBee by default (asudised in Section 5.1.1.1). Having
printf capability to relay information allowed farcomplete range of debugging and
monitoring statements to be embedded in the firrawdihroughout the project, that
remained the only method used for sending dynamficcrnation from the MAV to the
base. Some statements use a formatted stringifomatic parsing by the receiver, but
all statements are relayed in clear text with neckums or other data integrity added.

That approach was taken because of an originaled&stest and debug the robot
without the need to develop both MAV firmware aras® station software
concurrently. With clear text updates, all thaswaeded to interact with the robot was
a basic text terminal and those are readily aviglady any PC. For initial development
then, robot commands took the form of single charadhat were entered on the
controlling terminal. The responses were obsebyetthe operator and the firmware
was gradually expanded. Eventually it became rsacggo relay multi-character
strings (e.g. motor throttle value) and a packetcstire was defined that included
framing, header characters, and packet lengtht was sufficient for some time but the
switch from human interaction to real base stasioitware highlighted the need for
some form of integrity protection on the base statommands. It was at that point
that a trailing checksum was added and the balsettoommands then took the form
shown in Figure 13. The checksums are automatieatbled by the base station

software but they can be disabled to allow fordhginal terminal-mode operation.

'S$| Control | Length | Payload | Checksum |
Framing ’ N V V
2 Bytes 2 Bytes 0-29 2 Bytes
Byte Bytes

Figure 13 - Communication Packet Structure

The reason that checksums are only enabled onesvaae to the fact that
communication from the MAYV to the base stationngyaever informational. Because
the machines developed were all intended to op&igheut external processing, there

IS no reactive computation done on the base stétmrthere is no case where the base
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station actively responds to changing state omdhet). As such then, there is no need
to protect data relayed from the robot; if the miation is corrupted, it cannot cause an
operational fault and it will generally be corretigith the next status update. That
said, there is still some sanity checking donehieysystem software; informational
updates are parsed to extract their data and e sases, used to change displayed
information in the GUI. The parsing routines relyregular expressions that are
reasonably targeted (e.g. only a string startirtty Vistatus_mci] * will be recognized as
indicating motor controller initialization) and tieeis, therefore, a corresponding

measure of protection built in.

This approach has the advantage of simplicity dadlty for direct human interaction,
but it does lack the efficiency of binary encodargl the protection scheme is arguably
weak. If it were to be designed again, a more sohul duplex packet protocol with

better data integrity and the option for automegicansmission would be developed.

5.1.2.1. Communication Processing Firmware (comm_processing)
At the outset of this research, all of the commaitian processing code was placed in
the main processing loop. As the communicatiorastfucture grew, it dominated the
file and obfuscated the code actually running th&W For that reason, it was
extracted out and a large communication structQrgypedef) was created to hold all of
the control parameters that could be updated bpdlse station. That structure was
created as part of the main program and a handigpassed to the functions in
comm_processing.c. There are only two significantines: process_serial command
and process_serial_packet. Each accepts onlygkesiharacter input because all
receive communication processing on the MAYV is tedito one character at a time;
this ensures that the processing of large inpurggmever supersedes the time-critical
processing of the PID loops.

The process_serial_command routine is statelessseuifor those commands that
need only a single character to identify the désiesponse (e.g. ‘m’ indicates that the
base station is requesting motor initializatioRyocess_serial_packet is stateful and
will accumulate characters matching the packeepatintil the identified length (from
the header) is achieved. When checksums are ehatleommunication from the
base station must be encapsulated in a packeawigiid checksum; single character
commands are wrapped in the packet structure ameh) wxtracted, processed by the

process_serial_command function.
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5.1.3. Main Program Loop

With all of the ancillary functions modularizedetmain processing loop becomes quite

simple. A high-level flow chart of its operatiamshown in Figure 14.

4 N

( Start )

A /
—

‘ Initialize Components ‘

Rx
Wireless Byte
Available?

Y—p Process Byte

Status Updates
Requested or
Automatic Throttle
Enabled?

utomati
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Fired?
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_>
Update ¥ Calculate PIDs

v
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v

N Convert Motor
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v
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Throttle Settings
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Interval
N\W
Y

v

Relay Updated Status
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Y

Figure 14 - Main Processing Loop for ATMega Firmware

Processing begins by initializing the system congmds.  This includes executing the
initialization functions for each of the peripheraby assigning stdout to the XBee
UART output, and by starting the master timer (ihi@s variable duration, but was
always set to 10ms for the purposes of this rebgarkfter that, a free-running loop
begins that starts by checking for any data thghbtave been received from the base
station. If a byte (character) has been receiv@d|l be processed (either as a packet
byte or a single character command, depending®ordmmunication state), but only a
single byte is handled at a time, regardless of mamy have been received. Following
the communication processing is a check of the endisher. If it has not yet fired (e.g.
less than 10ms have passed since the last fitimgy),the loop will return to the
beginning and another byte, if one is availabldl, va processed.
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When the timer fires, the MAV must be in a stateergin updates are relevant before
any further processing occurs. If the base stdtamnot requested perpetual updates
and the robot is not in automatic throttle (origiota control) mode, nothing happens in
response to a timer event and the loop begins adkihowever, either of those
conditions is met, then there is a consumer ohtaieon data and the IMU will be
queried. If the MAV is performing orientation coolt the retrieved orientation data
will be fed into the orientation PIDs and desiretjties will be calculated. Those
torque values are then combined and factored td the desired rotational velocity for
each motor. Finally, the motor angular velocites converted to PWM pulse widths
and applied to the motors (via PWM timer updatdd)e detailed breakdown of that
motor control process is given in Section 5.1.1fG&utomatic throttle control is not
enabled, then those steps are bypassed, but edyethe logic reaches a point where it
evaluates the need to update the base station.

From a desire to limit communication processing @tlice the needed bandwidth for
the wireless link, updates are not relayed to teelstation on every firing of the master
timer. They are sent at a configurable reducesltradt currently defaults to once per
second (or, more accurately, once for every 10@githe master timer has expired).
That is sufficient for the base station to evaliateent MAV status but requires only a
small amount of processing overhead and bandwiditine programmed update

interval has not been reached, no data is sehetbhdst. If it has, then current telemetry
(containing a variety of data that currently ina@sduler angles, angular rates, battery
status, etc.) is relayed over the wireless lirfkor(clarity here, this is sufficient to
convey the concept, but the current firmware abtisgecifies two intervals: this

allows for more frequent updating of variables wgtkeater dynamism (e.g. the Euler
angles) while still permitting judicious bandwidttanagement. (Both intervals
currently default to one second.)) After the peogmed data set has been relayed (or

not), loop processing begins again.
5.2. Gumstix COM Firmware

The power of the Gumstix processor comes with aaalh While it is possible to
imagine programming directly on the ARM processahwaut an operating system, the
effort involved in properly configuring all the asgs of the system (including, for
example SDRAM timing parameters and flash disk s&e®) and then building drivers

to use the networking modules, USB ports, ADC chitp, is simply too great. That
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work alone would be a complete research effortaanthinly fell outside the goals of
this study. Because an operating system was ragesisen, it is understood that it
would come with issues (at minimum) of competitionCPU resources (in some cases
from highest priority OS threads) and non-deteramm{no guarantees of high-precision
timing). A real-time operating system is a possslution to these issues, but no free,
well-supported OS of that type is readily availalolethe Gumstix. From the possible
candidates, then, it was considered that, in am@hconfiguration at least, Linux

offered the lowest overhead and best potentiatdosistent responsiveness.

5.2.1. Embedded Linux Operating System

5.2.1.1. Building the Kernel
The operating system chosen to run on the Gumstisggsor of Jumbo QBot is a
distribution of Linux called Angstrém and it is cpited using a build framework called
OpenEmbedded. Pre-built images are availablehi®nGumstix processor, but it was
considered desirable to build an operating systegeted to this application. Despite
the fact that extensive instructions are availédehis process on the Internet, it is still
a challenging endeavour filled with hurdles.

The process starts with the selection of a buildmater. An x86-based PC running
Ubuntu 12.04 LTS (long term stability) was seledi@dthis project. On that machine,
the environment must be set up to include an afapftware packages and tools that
are required by the OpenEmbedded build processh tbse in place, the desired
kernel repository is targeted and clones of theeturevision developer trees are
brought local. The kernel revision of overo-20BLli®m the mainline repository was
used for this research, along with revision 1.1#.the bitbake build environment.

With the build repository and command infrastruetur place, it is possible to launch
the command to build the kernel that will be emtestdbitbake omap3-console-
image’. (Note that there are several kernel imalgasscan be built, but the OS here is
intended to run on a robot that has no means pfajigsig a graphical desktop, so the

console image provides a small and efficient keimtehded for headless operation.)

That bitbake command will hopefully work withoutfiaer intervention (as intended),
but several hiccups were encountered at the tinvastexecuted for the Jumbo QBot
development. In the first place, the build proa#sss rely on some standard code
being available on the executing machine. Allhaf tequired code was present on the
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build machine used, but not all of it had the saewsion as expected. As a result, the
referring file (specifically: org.openembedded.aewf/distro/include/angstrom-2008-
preferred-versions.inc) needed to be changed.h&ualong the process, Internet fetch
iIssues were encountered. In addition to code heiffegenced on the build machine,
most of the kernel-in-progress is built from codpasitories on the Internet. Some of
those repositories were either down or relocatedh@ps temporarily) and a number of
times, the source code had to be manually retriedédnkfully, the build process did

eventually complete, but it took several days @&jsterding and coaxing.

The end result is twofold: a compiled kernel imégavailable for installation on the
Gumstix, and cross-compilation tools are availavighe build computer. The latter
point is significant because it enables developraadtcompilation of firmware on a
PC with all of the processing power and graphicals that come with it (although the

Gumstix processor is quick, it's no match for a emdPC).

Two relatively short steps follow the kernel comapibn and they simply build the files
necessary for initialization and booting of therledron the Gumstix. With those files
and the built kernel, everything is ready for itlateon on a Gumstix file system. That
file system was built up on an 8GB Class 10 micr@@il according to instructions
given on the Gumstix development website (thedylstem has a specific structure and
format) (Gumstix Inc., 2013). When the file systsmeady and all boot and kernel
files have been installed on it, it can be placethe microSD slot on the Gumstix

processor board.

The first time the Gumstix boots a new image, it perform a one-time sequence of
configuring all installed modules. That procesetaquite a while but when it

completes, the system will be fully functional amdommand prompt will be presented.

5.2.1.2. Adding Tools to the Kernel
At this point, all that has been built is a stoglage presented exactly as the developers
defined it. That could be sufficient, but it isudgplent to a pre-built image that could
have been downloaded. Itis at this point, thieat modification and tailoring was
applied for the purposes of this research. (Asl@sote, modification and tailoring
could have been done prior to building the kerbet,it was deemed preferable to test
and demonstrate a successful build prior to makiodgifications so that the fault could

more easily be determined if any should arise.)
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The first thing that was done for the Jumbo QBotv@S to build into the kernel

several useful packages that would improve efficyeand usability of the system.
These included vim (a text editor), screen (a clenephancement), and all the compiler
tools (to allow development and recompilation o tbbot itself). This is a fairly basic
modification, but the process is still a bit obfatsxl. First, in the root build directory, a
new subdirectory must be created that is calledr.asllection’. During the build
process, bitbake searches for files in the loqabsaory (that was originally cloned

from the developers’ on the web) and it will chélek user.collection directory first to
see if the local user has overridden any of tles fil needs. If it finds a user-defined
file, it preferentially includes that one and igesithe developers’ clone. That is exactly
what was needed here and a copy of the bitbake emahrfile (called a bitbake recipe)
for the omap3-console-image (built above) was abpier and placed in a parallel
location (in this case, the copied file becomes.askection/recipes/images/omap3-
console-image.bb). That file can now be modifeddd or remove high-level
components of the kernel. The packages mentiobedeavere added to the
“TOOLS_INSTALL?” list and the kernel was ready to tEbuilt.

5.2.1.3. Modifying Kernel Configuration
With a kernel now running and built with the todkssired, testing of components began
and it was quickly seen that the default configoratvould not quite work for Jumbo
QBot. A standard Gumstix release comes with totreles capability and a display
driver enabled (even on the console image). Thosgonents would never be used on
Jumbo QBot and they reserve pins on the Gumstbatteaneeded for serial SPI
communication. As a result, the root configuratfida (in this case,
org.openembedded.dev/recipes/linux/linux-omap3@defconfig) needed to be
modified. That file defines all of the significgparameterized options for a Gumstix
application and it can either be modified dire¢ttys a basic text file), or a new one
can be created using bitbake (command: “bitbakaexuconfig virtual/kernel”). The
process for doing this (and more) is well documemie the jumpnow website (Ellis,

2012b). The end result is that the defconfigriéeeives two changes:

- The line containing ‘CONFIG_TOUCHSCREEN_ADS7846=mthanged to ‘#
CONFIG_TOUCHSCREEN_ADS7846 is not set’

- The line containing ‘CONFIG_PANEL_LGPHILIPS LBO035@%y’ is changed to
‘# CONFIG_PANEL_LGPHILIPS LB035Q02 is not set’
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When the kernel is rebuilt, the SPI chip selectsba available and the spidev driver
for them should be automatically loaded on the mgpsystem (with corresponding file

handles: /dev/spidevl1.0 and /dev/spidevl.1).

5.2.1.4. Patching the Kernel
As the development effort began in earnest on tn@skix, a few issues were
encountered that needed to be dealt with. The.R8X#&vision was originally selected
because it seemed to be stable and good instreatiere available for working with it,
but it is also being left behind as developers moweewer revisions. That means that
although certain problems are known to the devegraoommunity, they are no longer
being actively resolved in that stream. This weessdase for 3 encountered problems:

1. The wifi driver would often stall the boot procdes several minutes
2. The Gumstix ADC Channels 2-6 were inactive
3. Loading the driver to use the PWM channels woultseaa kernel taint message

to appear

These problems were all resolved through the ugermiel patch files. A kernel patch
is basically a file that describes changes thatl hede made to source files in the
current repository. It does this through explagfinition of the paths to the files that
need to be changed and then it specifies line ntsvdrel context lines around the
desired changes. In this way, it is ensured tiepatch will only be applied to files
that exactly match the original specification; ieole patch will be rejected if any file
fails to align with the changes requested. Ihentpossible to find patches online that
have been created by someone in the open souragawaity for the distribution and
release that is being worked on. This was the fragée first two issues and the
corresponding patch files were created/compile&tott Ellis and Ben Keane:

- Wifi issue patch file was named libertas-async-twdgatch
0 Linked as part of a Gumstix discussion group tthir@ad compiled from
patches originally created by community contriblioown as
Donny3000 (Ellis, 2012a)
- ADC issue patch was named madc-adcin3-6.patch

0 Linked as part of a Gumstix discussion group thigaehne, 2012)
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The PWM kernel taint issue was fairly minor, butvds deemed worthwhile to explore
the manual patch creation process to aid with wstdeding and thereby potentially

allow more significant kernel modification in thetdre.

The warning stemmed from the fact that the PWMaetrihat was being used for Jumbo
QBot had been developed out-of-tree (presumablyideithe primary development tree
for the kernel) and the kernel was incorrectly g that with a taint warning. The
problem was fixed in a later kernel but requirettpeng in the kernel for Jumbo QBot.
That later kernel fix is found in a repository upglthat was written by Ben Hutchings
(Hutchings, 2011); unfortunately, it couldn’t bepéipd directly to the source for Jumbo
QBot, but it did identify the file that needed te patched (panic.c) and the flag at issue
(TAINT_OOT_MODULE).

In the local build directory for this project, thike in question was found here:
tmp/work/overo-angstrom-linux-gnueabi/linux-omap2-8103/git/kernel/panic.c. The
process for building a patch file (albeit for aferent file: board-overo.c) is described
on the kernel development page already mentioniid,(E012b). The process begins
by copying the file to be modified into a backupdtion (panic.c-orig). Then the
changes are made; for the purposes of this eff@tmodification was quite small and

applied to panic.c as follows:

- if (flag != TAINT_CRAP && flag != TAINT_WARN && _ debug locks_off())
was changed to

- if (flag != TAINT_CRAP &% flag != TAINT_WARN && flag !=
TAINT_OOT_MODULE && __ debug locks_off())

After that, a patch file was created using theolelhg git command:

git diff --no-prefix git/kernel/panic.c git/kernel/panic.c-orig >

my_pwm_kernel taint.patch

At this point, three patch files were ready for lagggion to the kernel. To include them
in the build, they were first copied to the diregtoontaining the kernel build recipe:
org.openembedded.dev/recipes/linux. Then they aeded to the recipe file (linux-
omap3_git.bb) as additional sources by appendieg tto the SRC_URI variables as

follows:

- Before:
SRC_URI = "git://www.sakoman.com/git/linux-omap-2.6.git;branch=omap-

3.2;protocol=git \
62



file://defconfig \
file://${BOOT_SPLASH} \

o«

- After:
SRC_URI = "git://www.sakoman.com/git/linux-omap-2.6.git;branch=omap-
3.2;protocol=git \
file://defconfig \
file://${BOOT_SPLASH} \
file://my_pwm_kernel taint.patch \
file://madc-adcin3-6.patch \
file://libertas-async-fwload.patch \

After a rebuild and installation on the Gumstix COe Linux operating system
finally had all of the tools and functionality nestifor Jumbo QBot operation and

development.

5.2.2. Porting the Firmware from ATMega to Linux

With an operating system and corresponding buildrenment in place, it was possible
to start developing the embedded firmware that diouh on Jumbo QBot. The first
task undertaken was to port the C code that hadl theeeloped for the ATMega to
Linux. Parts of the code that were purely logieat). arithmetic) could be used directly
and it was only the parts tied directly to hardw@g. register writes for component
initialization) that needed modification. The mtaudevelopment approach provided
easy isolation of those routines and the procekge womewhat time-consuming, was

reasonably simple.

In this way, then, the initial firmware structuie the high-powered processor of Jumbo
QBot was functionally identical to that employed@Bot1l and Aragnobot. The
peripherals employed on those earlier airframesdoeasily be used by the new model
and in several cases they were. In the sectidrfdhaws, there is some redundancy
with descriptions already given and that ground mok be covered again. Only the

differences will be discussed here for the sakerevity.

5.2.3. Peripherals

5.2.3.1. Wireless Communication (XBee)
Once operational, the functioning of a serial mort_inux is no different than operation

on a microcontroller. Of course, a user level progin Linux doesn’t have direct
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access to hardware registers and everything musbhe by system calls. These are
easy to employ, however, and any decent serial agmoation guide for Linux

describes the process and functions necessaryig@vacharacter communication as

had been defined for use by this research. Omdfisignt difference that was
immediately encountered is the necessity in Lirunde file handles for most hardware
interaction (a file handle is an integer that uneguabusly refers to an I/O device).
Initialization of a device is not the first thinlat occurs; instead, the file handle for the
device must first be requested and then used féuréther interactions. This meant that
functions needed to be added to the XBee souroe ttad would open the device
(request the file handle from the OS) prior totfuse and then close it again (release the

file handle) prior to exit.

The hardware initialization process also had telmenged, but the intent and
corresponding outcome were exactly the same. Tihepy difference is the scope of
configurability of a serial port in Linux. The grface presented to a user application is
the endpoint of a software stack that has developedtime (as opposed to a set of
basic hardware registers) and now supports an afrayctions covering a broad
spectrum of intervening (between the applicatiot e hardware) capability. Setting
baud rate and character framing are directly amalsdpetween the two systems, but
higher-level aspects of communication exist thasinie initialized properly to achieve
the desired behaviour. As an example, serial portsnux can operate in ‘canonical’
mode where information is not relayed until a Gage return or newline is encountered.
The communication protocol for this research rebadimely byte-by-byte
communication and therefore initialization of thBeé serial port required ‘non-
canonical’ mode to be explicitly set.

Because Linux provides its own buffering of sepait data, there was no need for a
receive ring structure. The number of bytes inktber can be determined in a non-
blocking way from a system call (specifically, tloetl function was used) and then a
simple read command is all that's needed to fetetiable data. There was also no
need to convert the ATMega UART write routines asuk inherently supports using
printf to send data to a serial port file handMothing more than the reassignment of
the stdout variable was needed to enable correctling of all the transmit

communication statements that were embedded iodthe.
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5.2.3.1.1. XBee as Terminal

The preceding section defines the model of intevactith the XBee as it was
originally defined, and it is a reasonable andisigiit model for interaction with an
XBee as a peripheral. Linux has the capabilityyéwer, of launching a terminal and
connecting it to a serial port at startup (or ta#ter). This was the model eventually
employed for Jumbo QBot and it has the advantagdl@#fing for complete system
access (including configuration, recompiling, angithing else possible from a
command terminal) over the wireless link. Whengiwstem boots, then, the base
station is presented with a Linux login prompt&ocommand terminal, rather than

simply the interface for the developed firmware.

Operating the developed MAV code from within thextiiinal then means that the XBee
file handle does not need to be requested fromsyteem. For receive, it is already
identified by the STDIN system variable and, f@ansmit, there is no need to redirect
STDOUT because the XBee is already the targetquuodevice. This has worked well
and the current firmware reflects the expectatiboperating in this mode (but routines
for the alternative file handle request/reassigriinelease approach are still in place).

5.2.3.2. Attitude and Position Sensor
The LM345 sensor comes with a complete softwareldgwment kit (SDK) available
from the manufacturer’s website. That kit includefsill range of C code and header
files that provide access to almost all of the de'a functionality. Furthermore, it
includes sample test software for Linux and theesponding code to setup the Linux
communication infrastructure to work with the devicAs such, then, most of the effort
to use this sensor for the purposes of this stodgived extracting the needed functions
and data structures from the SDK and the sample and then modifying their use (not
the content) to fit the Jumbo QBot application.

Using the high-level functions provided by the St device is initially setup
according to the manufacturer recommendations @gtcain, Inc., 2012, pp. 16-19),
but with slight modification. The sequence is @ofvs:

1. Initialize the interface
2. Place sensor into idle mode
3. Setup NAV data-stream format (for data out of titennal navigation

processor)
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4. Setup AHRS data-stream format

5. Setup GPS data-stream format

6. Enable NAV, AHRS, and GPS data-streams and iragaliata processing
routines for incoming sensor data

7. Reset the filter

8. Setup the magnetometer as the heading source

9. Initialize the filter from the AHRS

These steps are carried out at the beginning afuh#o QBot firmware application

and after that, the LM345 operates independentbettse its current state and provide
regular updates for all of the parameters assatiatth the data-streams. Default
update rates were used and the AHRS and NAV infbomaets are both relayed every
10ms (100 Hz) while the GPS information is limitecevery 250ms (4 Hz). The data
handling routines were copied directly from the Mgirain sample code and placed
into the Jumbo QBot firmware file main.c (which tans the main operational loop).
They were the only part of the software for thiss® that was modified and the change
was slight: a global variable indicating completanincoming packet processing was
set at the end of each routine. This allows thempeocessing loop to reliably detect

completed sensor updates and then perform itsaldatp calculations.
5.2.3.3. Altitude Sensors

5.2.3.3.1. MS5803 Pressure Sensor (ms_pressure_sensor)

The MS5803 is connected to the Gumstix COM vi&Rs bus and the standard Linux
SPI driver, spidev, was used to communicate witlThe manufacturer provides an
application note on its website (Measurement Siesa2011) that includes C code for
interfacing with and operating the sensor when ected to an Atmel microcontroller
(which was conveniently familiar). That code wat@&cted and modified to work with
the Linux spi driver, but was effectively unchangegrocedure and processing. The
process of translation did, however, highlight diféculty of this type of re-
application. Where byte-wise operation was assuimeithe Atmel device, it couldn’t
be made to work on the Gumstix. It was eventuadfized that the difference lies in
the fact that the Atmel code controls the SPI &ailect line external to the read and
write commands. As a result, chip select remasserded for an entire sequence of

single-byte operations. The Linux spidev driver te other hand, asserts and releases
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chip select as part of its read and write operati®arforming single-byte accesses was

therefore causing incomplete transactions on thd&#and nothing worked properly.

Eventually, the code was successfully adapted lamdévice began to return

temperature and pressure values as expected.

5.2.3.3.2. USB connected BMP180 (usb_bmp180)

The BMP180 pressure sensor, as it was purchasekigqoroject, has only an 12C
interface. Furthermore, it wasn't originally inteed for incorporation onto the robot

but was rather targeted for the base station @wige ambient pressure compensation
over time). For those reasons, it was assemblexlaboemall USB interface board that
contained an Atmel ATMega48 as the primary poinhidrface and computation. The
code written for that small board was technicaliytf this research effort, but falls
outside the central topic and is therefore notudised further here. What is important

is that the output of the USB interface is a sesiedam of temperature-compensated 16-
bit pressure updates (in pascals). The Jumbo @Bovare that interfaces with it then

includes the following significant functions:

- usb_bmp180 open obtains the device file descriptor
- usb_bmp180 init initializes the serial interface
- usb_bmp180 process_line parses the next line mat@éiom the USB module

- bmpl80_calculate calculates altitude and heigimh fcarrent pressure

5.2.3.3.3. Altitude Sensor Filtering

Both pressure sensors employed on Jumbo QBot &éhidige amount of

instantaneous noise on the sensed pressure (aredmomding calculated altitude). The
obvious solution to that problem is to smooth twet teadings and provide a more stable
altitude reading by applying some form of low-paker. Selection of the filter and the
corresponding filter parameters then poses a probldats own as there is a huge array
of possible options (and opinions surrounding theiit)e ideal filter would be simple

to implement and effective in filtering unwantedsewhile still tracking real changes

in the sensed value. There are often trade-offgsdsn those desired characteristics, but
the approach eventually selected provides a go@$une of all. It is called a
complementary filter and is based upon the ded@nibf that term given by Shane

Colton in a presentation entitled ‘The Balancedfil{Colton, 2007). (His presentation

67



is actually an excellent resource that covers sointiee popular approaches to sensor

fusion in a balancing robot application.)

The filters applied to the two pressure sensordumnbo QBot are then both
implemented in the main processing loop. Whenthane is an updated pressure
reading, a (generally small) percentage weightintp@ update is summed with the
remainder percentage (100% total) to give theréllevalue. This is a straightforward
implementation of a low pass digital filter thatri@ates well with intuition (a recurring
theme over the course of this research). It shbealdpparent that sudden changes only
contribute a small amount to the instantaneousevahd will be offset by opposing
sudden changes such as would be seen by high fregoscillation (or noise). On the
other hand, a static value or slowly moving chawgebe well tracked by the ongoing

summation.

The same type of filter is applied to both sensorgve smoothed altitude values. A
digital derivative (change divided by time deltac® last update) for each sensor is then
calculated from the smoothed value to give an appration of vertical velocity.

Because of the noisy nature of a digital derivatitiat velocity value is filtered again

by the same complementary technique.

5.2.3.3.4. Pressure Sensor Fusion

The two pressure sensors connected to Jumbo QBetaventually combined to
collectively give a single value for both altituded vertical velocity. The approach
was simple: each contributes 50% of the final valaiger all other calculations and

filtering have been completed.

5.2.4. Analog-to-Digital Converter

Although test code was written for the AD7998 (whsits on the Gumstix 12C bus)
and significant effort went into ensuring that Bemstix built-in ADC channels
worked (using polling software found online (Ell&)12c)), neither capability is
currently being used in active Jumbo QBot firmwafée C code is available for
incorporation into the main firmware program aneréhare many ways in which it will

be useful in the future, but it wasn’t ultimatelgeded for this research.
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5.2.5. Motor Control (motor_control and motor_scont rol)

The application of the theoretical equations forkirmg out the orientation PIDs and
calculating desired motor rotational velocity isaetty the same for Jumbo QBot as for
QBotl and Aragnobot. The details of these critioattions are presented and
discussed in Section 5.1.1.6 (and contained iffitimevare motor_control.c and
motor_control.h files). For the first part of Jumm@Bot development, everything was
kept the same, including the use of PWM. It waanéwally determined, however, that
the advantages of moving to serial control (e.gnediate, explicit setting of desired
rotational velocity) should be seized upon and thatcapabilities of the Gumstix COM
and the ESC32 motor controllers in this area shbaldtilized.

Each ESC32 motor controller on Jumbo QBot is adddb a USB serial UART
channel. The interaction with the controllersas@mplished by a range of software
routines and definition files that are providedioal(Nesbitt, 2012) and distributed as
open source software. The code downloaded forélsisarch is actually the calibration
routine software, but it provides a great resofiocembedded development. With that
software infrastructure in place, interface filesq32.c and esc32.h) were created to
wrap it all together and set up the environmerdessred for Jumbo QBot.

As each motor controller is initialized (motor_stroh open), the corresponding serial
port is opened and a processing thread is spaven@amnage the receive data (the motor
controllers can be configured to provide telemefpgates at regular intervals). This is
done so that the main processing loop doesn’t tmuganage incoming data from yet
another set of information sources. Instead, inddpnt threads are managed by the
operating system and each maintains its own sefoeived telemetry information that
can be retrieved by the central loop at any tilBefore completing the initialization
function, communication with the motor controllsrtésted to ensure that all is well (a

no-operation command is sent and an acknowledgemestt be actively received).

There are then several functions provided thatadoning (must occur prior to
starting) (motor_scontrol_arm), starting (motor rgcol_start), stopping
(motor_scontrol_stop), and rpm target setting (macontrol_set_rpm) of the motors.
Telemetry updates can also be initialized at amg fmotor_scontrol_start_telemetry)
but should be stopped prior to exit (to preventrbowing the UART receive buffer)
(motor_scontrol_cleanup). This is more complex exignsive than simple PWM

setting, but it is also a significant improvementapability.
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It is hopefully apparent that the motor_scontri@-8et is not a replacement for
motor_control. The motor_control .h and .c filé# provide all of the functions (like
the PID logic) needed to control the motors whilgton_scontrol .h and .c simply

provide the handling routines for serial port iateion.

5.2.6. Position Calculation Logic

While the firmware necessary for orientation haehaturally associated with a
particular peripheral (the motors (controllershe functions related to autonomous
position tracking are somewhat more difficult te@sate. The output of the position
hold calculations is a set of Euler angles andarditect feed to a particular actuator.
Instead, those Euler angles take the place of nhaipdates that would come from the
base station and are applied to make the robotgehanentation in a way that will
move it toward (or keep it at) the desired LLH atinates.

For that reason, the code (position_calc) is dsedidere. It is an adjunct to the main
processing loop, referenced in the same way aphmal code, but not directly tied to a
given peripheral’s function. The role it playstire fully autonomous operation of

Jumbo QBot is critical, though, and the core Plbction is described below.

5.2.6.1. LLH PID Calculation
The LLH PID calculation logic is shown in Figure.1%he current error is first
calculated and then, for latitude and longitudeveoted to meters. The integral term is
updated and then a proportional term limit is aggpli As noted in the comments, the
application of a P-term limit represents an effeethound on velocity (in the absence of
an I-term; both would have to be limited if bothre/@ised and a velocity restriction is
desired) which has proved helpful in maintainingteol when actually flying. Finally,
the PID formula is applied and the resultant outpturned. For latitude and longitude,
the output is in radians (for pitch and roll, resipesly) while for height, the output is a

thrust offset in Newtons (that will be applied tstatic hover value).

As with the orientation PID calculations, theregsspecial logic here; the theoretical
formula has been directly applied and the code shaemonstrates the simplicity and

clarity of the rendering.
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float position_calc_PID_11h (
uint8_ t select, float p_term_limit, double current_value,
double current_desired, float time_interval, float velocity,
float kp, float ki, float kd)

float current_error;
float current_integral;
float current_derivative;

float p_term;
float PID_output;

current_error = (float) (current_desired - current_value);

//first, convert degrees to meters
switch(select) {
case 0: //latitude
current_error = current_error * latitude_deg to_meters;
break;
case 1: //longitude
current_error = current_error * longitude_deg to_meters;
break;
default: //height is already in meters
break;
}

current_integral = last_llh_integral[select] + current_error * time_interval;
current_derivative = velocity;

//Limiting the p_term means that we can control maximum velocity (for now
//assuming that the i-term is @ - which is the case on April 10, 2013)
p_term = kp * current_error;
if (p_term < 9) {

if (p_term < -p_term_limit) p_term = -p_term_limit;
}
else {

if (p_term > p_term_limit) p_term = p_term_limit;

}

PID output = p_term +

ki * current_integral -

kd * current_derivative;
last_11h_integral[select] = current_integral;

return PID_output;

Figure 15 - LLH PID Calculation for Position Control

5.2.7. Main Program Loop

In terms of high-level functionality, the main pessing loop for Jumbo QBot is only
slightly more complex than that employed for QBatil Aragnobot. The macroscopic
program flow is show in Figure 19.
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Figure 16 - Jumbo QBot Main Processing Flowchart

When the program is first launched, it begins byahzing all of the components of the

system. This involves opening the device filedias, initializing the I/O (including
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beginning the motor telemetry streams), and settargbles to startup values.
Something not shown in the flow chart (due toadts-level nature) is that file handles
for writing telemetry data to disk are also open&eélemetry data from all of the
sensors and the motors is stored in an array dadrdyvariables (system memory)
during flight and then written to disk once thglfit completes. This conceptually
happens in the background to the main program lbaps useful to understand the
extent of analysis possible on a platform like.this any case, if the exit flag is set by a
command from the base station, the motor telenstteams are stopped and then all of
the file handles, both for devices and disk, aosetll before the program exits. This

ensures a clean return to the command prompt a&nti@f execution.

For as long as the exit flag is not set, the maog@m will perform a loop similar to

that seen for the previous MAVSs. First, an inphéracter is processed (if one exists).
Then the sensors are checked and any updatesoaesged. If the LM345 has

provided a new set of position and orientation @tz currently happens every 10ms),
then a check occurs to determine if the robot fslliy autonomous flight mode. If not,
flow continues normally. Otherwise, the autonomprggram is evaluated to determine
and apply any required updates to desired positfdhe autonomous update would
arguably fit more logically within the bounds oftamatic-throttle (flight) mode,

because that is the only time it can be appli¢ds deparated out because of its role at a
level above the usual flight mode; the autonoma@qesator is a virtual replacement of

the real operator at the base station.)

In the case that the base station has requestedagdout the robot is not in flight mode,
the update interval will be directly checked atdequired, current airframe status will
be relayed over the wireless link. If the robaniflight mode, position lock is
evaluated first. If position lock is engaged, yiawet to zero degrees and latitude,
longitude, and height PIDs are evaluated accorttivghether they are enabled, or not.
If latitude lock is enabled, desired pitch will beerridden autonomously; if longitude
lock is enabled, roll will be overridden; if heiglbtk is enabled, thrust will be
automatically adjusted. If no locks are enabledntthe desired orientation remains
under manual control as dictated by the base stafias a side note, latitude and
longitude locks will only override manual roll apdch if the LM345 has a valid GPS
lock.)
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The orientation PIDs are calculated next to givaree airframe torques. Those
torques are converted to motor angular velocitesthose values (converted from
radians/sec to RPM) are communicated over thel set@faces to the motor
controllers. After the motor updates are complehading flight, the base station timer

interval is evaluated and status is relayed in at@tce with programmed settings.

Every iteration of the main program loop for Jun@@Bot is ended by a thread sleep
function call. That sleep time (currently 530 is necessary to ensure that the firmware
program operating on the Gumstix does not domitineg@rocessor and cause a backlog
of operating system processing. The concern igthigesoperating system may then
degrade processing consistency as it starts talatéhbigh priority tasks in the middle

of the execution of critical Jumbo QBot operatio®s, behaving in a way that is
considerate of other OS threads and interrupis bielieved that the flight program will
always see a consistent level of CPU access. hEsisvorked well to date and the

Gumstix processing is fast enough that the sleee s inconsequential.

5.3. Base Station (Windows Application)

All of the base station software was designed iorbBoft Visual Studio 2010 and
written in C#. Using that development suite fastlesearch really highlighted the
changing reality of GUI development for the modewrld. Where a statement like
‘this code was written in C#’ used to be sufficiemgraphical application is now as
much (or more) designed as written; a significantipn of the code is automatically
generated by the drag-and-drop of design envirohgwnponents onto a graphical
framework. Adding a named event to a designed compt then generates a functional
stub in the source code to which event actionsbeaadded, and it is at that point that a
developer actually has to write something. Assaltethe development process
involves a combination of purely graphical desigd aonventional programming to
yield a functional whole.

The base station application that was first devesdiojor QBot1 was directly applicable
to Aragnobot as well and they are now both corgblly the same software with no
functional changes between them. Developmentuiothd QBot took that application
as the starting point, but it eventually evolvetbisomething more as the need for
additional controls (for position hold, for exampéad functionality was realized. The

following section on the original base station wikcuss the major components and
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functionality of the initial GUI application whilthe subsequent section focuses on the
enhancements made for Jumbo QBot.

5.3.1. Controlling Application for QBotl1 and Aragno  bot

5.3.1.1. Main GUI
Figure 17 shows the GUI of the base station apjdicaleveloped for QBotl and
Aragnobot.
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Figure 17 - Base Station GUI for QBot1 and Aragnobot

At the bottom left is a window for connecting thgplcation to the serial port
associated with the wireless transceiver (XBed)at Tvindow functions as a console
that displays all messages received from the MAY that sends any characters typed
into it over the link. Most of the functionalityf the GUI is disabled when no serial
connection is active because the lack of seriaheotion implies the lack of a robot to

receive information.

Along the left side of the GUI are all of the roleaintrol variables that can be adjusted.
All of the PID gains can be set here (the GUI idelsi height control terms that were
never fully utilized and remain provisional), as@esired orientation, master timer
period, thrust, and individual motor throttle segs (only usable when not in automatic
flight mode). Some of these controls are dynaiike ¢hrust, orientation, and motor
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throttle settings) and updates are sent to the MA&¥oon as they are changed. Other
controls (like PID settings and master timer inédyvequire the ‘Update QBot’ button
to be clicked before they will be collectively re¢al. The ‘Query QBot’ button can be
used to retrieve the current status of the costtings from the robot and the values
retrieved will be placed in the appropriate GUI ésXoverriding the previous values).
The sonar button will cause activation of an attgicbonar module (if one exists) and

the MAV will then include sensed height informationts status updates.

The centre of the GUI has status update contribleatop and joystick interface settings
beneath that. Much of the box labelled ‘Controfettings’ is purely informational; it
was created to monitor all of the available joystiontrols (some of which are used and
labelled accordingly) to determine what values weag seen by the software in
response to certain movements and button pre3$esmost frequently used controller
for the purposes of this research was a Playst@8ddualShock® wireless controller
that provides orientation and movement sensinglditin to conventional thumbstick
input. The base station GUI then has a button @&ges) to toggle between these
input modes and thereby allow the robot to be odlett either by simply tilting the
controller or by manipulating the thumbsticks (Whis the default). Of course, the
system can be operated without a controller andhaung be actively connected (which
is a software process, not a physical one) aftemconication with the MAV has been
established. The default controller setting fas tlesearch has one thumbstick assigned
to thrust, another one assigned to roll and piath(gyro input an alternative), and

analog trigger buttons used for yaw.

Below the central AUT logo are a series of buttand a macro status box (indicating
‘Pending Initialization’ in the Figure). The ‘Imatize Motors’ button will cause the
MAYV to execute its motor initialization routine aadm the motors. On initial startup,
the MAV motor controls are not automatically configd (hence, ‘Pending
Initialization’) and any command that might causen to begin turning is essentially
ignored. This provides a measure of safety tHawal for initial sanity checking and
clearance of the flight area before arming the msot@®nce clicked, the MAV should
indicate that initialization has been performed #relstatus box will turn green and
indicate ‘Armed’. In that state, the MAV is reattyfly (or, alternatively, to have its
motors controlled via the manual throttle settingBhe ‘Halt’ button will set all of the
motors to zero throttle and switch off the autométrottle (if it was on). The ‘Engage’

button switches on the MAV’s automatic throttle grddces it into full flight mode
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where it will begin using the PIDs to maintain dediorientation. When that occurs,
the status box will switch to ‘Starting Motors’ tie MAV spins up the propellers and
then to ‘Flying’ when the MAV hits desired thrust.

Informational output is the focus of the right safedhe GUI. Text boxes are provided
to relay instantaneous motor current and throtdeus, battery cell levels, Euler angles,
and angular rates. A graphical indicator of heigt#lso included. Buttons are
provided to assist with IMU calibration; the ‘Updd®osition’ button can be used to
retrieve instantaneous values from the IMU at amy tand can thereby be used to
determine if any sensor drift or loss of referehas occurred. If the IMU does show
calibration issues, the ‘Zero Gyros’, ‘Set AccefRand ‘Set Magnet Ref’ can be
clicked to calibrate the corresponding internalsserfassuming that the airframe is
stationary, level, and pointing North, of course).

Four arrays to store logged variables from the M#&fe incorporated into the GUI for
post-flight analysis. The limited memory on QBatid Aragnobot only allows for
about 5 seconds of full rate (100Hz) logging arasthMAV s track roll, pitch, and yaw
by default. When the ‘Dump Log’ button is clickede MAV will transmit its stored
array and the base station software will then pateuts internal values into the
collection indicated by the Log 0-3 radio buttoishe Plot button will bring up a
separate GUI window for data analysis, as desctiedolv in Section 5.3.1.2.

The two large black boxes in the right hand coreéthie GUI are used for graphical
display of dynamic status from the MAV. The bottaght box will display a plot of

the Euler angles, each with its own line colourthesy vary over time. The top right
box contains a graphical representation of theaaré that will tilt and turn in
accordance with the indicated orientation fromrtit®t. When the Euler angles are all
zero, the airframe is depicted as pointing into@Gt# with the observer standing
directly behind. The coloured squares at the dritdeoarms are to indicate the port and
starboard sides of the airframe while the ‘F’ ia tnage is located near the nose.
These visual aids are necessary in an un-shademelyim wireframe model because
the visual representation of an upside down otedtabject can be ambiguous (e.g.
there is no difference in the 2D rendering of thedel between facing directly away
right side up and facing directly toward but upsildevn; the ‘F’ is what will indicate

the inversion).
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The code to properly render the 3D model is actadllibased on Euler angles and
Euler rotations and it provides an instructive etation to the theory behind the real
MAYV orientation and the nature of its mathematicahtion in space. The software to
accomplish it was all based around some basic Eotation code originally developed
by a user called VCSKicks (VCSKicks, 2007). Heyided source code for a simple
C# project that would rotate a cube in responstiders that each represented one
Euler angle of rotation. For the purpose of buiddihe base station GUI for this
research, it formed the starting point, and sddHeamespace for the final application
is still EulerRotation as defined by VCSKicks irs ltiode.

5.3.1.2. Log Analysis GUI
When the “Plot” button is clicked on the main GHdlsubordinate window opens.
When it first appears, none of the checkboxeshvelselected and the text and plot
windows will be empty. Figure 18 shows the windas\vit appears after some options
are selected. The plot window on the right hade & used for quick analysis and
comparison of the telemetry recorded from the lagitjghts. Individual logs can be
selected for rendering and any combination of ptth, and yaw can be displayed.
The horizontal dashed line on the display is plaaterkro degrees while the vertical
dashed lines mark every 10fata point (corresponding to 1 second at 100 Higing
this facility greatly enhanced the tuning procesdsiie orientation control parameters.

The text box on the left can be used to selectiegtyact portions of the recorded
information for transfer to other programs (e.gesplsheet). Again, the logs can be
selected independently as can the Euler anglesenwhe ‘Go’ button is clicked, the
text box will be populated with the requested infation and it can all be copied to the
clipboard by pressing the “Copy” button. When pdshto spreadsheet software as
space delimited data, it will be allocated into scand columns that can be analysed

further.

78



‘»‘ LogForm =T | I <

7] log0 [ log1 [ log2 [ Log3 (VEFEEEE [V (/| Flot Loo2 [ PIGEUSES (V] Pict Roll [T] Plot Pich  [Z] Plot Yaw
| Roll | Pitch [T Yaw | G |

25053

6264

-23 260

60363

83359

-113264
-138 1 62
-168 1 60
-189 4 62
-2155 59
-24111 56
-264 1153
-287 11 56
-308 1153
-330 1351
3441248
3611243
37710 34
-3309 28
-400 1220
4031115
4161513
417148

| Copy

Figure 18 - Base Station Log Analysis GUI for QBot1 ash Aragnobot

5.3.2. Controlling Application for Jumbo QBot

5.3.2.1. Main GUI
Figure 19 shows the modified base station appboads it was used for Jumbo QBot
development and operation. For the most pas,nearly identical to the original
version and only significant differences will besdebed here. The most obvious
change is the addition of many more control paramsetThis reflects the positional
capability that was added to Jumbo QBot which neglihe addition of PID gain
factors for latitude, longitude, and height. Td wiith tuning, a group of controls were
added that enabled the quick calculation and agipdic of Ziegler-Nichols gains
(discussed in Section 3.2.1.1) to the roll, pitg yaw PIDs. Selection checkboxes
were added for the position lock degrees of freedaththen buttons were created to
control the enabling and disabling of those locksseries of explicit angle offsets was
created to compensate for drift issues (largelytdiftexing of the airframe when in
flight versus on the ground) and allow for manuwaling of the hover attitude
(effectively the same as trim compensation). Thisable Magnetometer when Flying’
checkbox was intended to trigger that functionteMAYV (for use when flying near
sources of significant magnetic interference),ibbhasn’t been fully tested and remains

largely provisional.

Possibly the most significant addition (in concepterms, at least), is the ‘Enable
Autonomous Flight’ checkbox. When that is chec&ad position lock is enabled, the

MAV will begin executing an internal program to antatically adjust the desired
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position relative to the starting point (definedlas position of the aircraft at the point
that position lock is enabled). In this way, tbbat is able to execute a fully
autonomous flight plan and the base station operatdonger has any direct input to its

behaviour (control can always be returned to mahealisabling position lock).
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Figure 19 - Base Station Main GUI for Jumbo QBot

The two buttons located at the middle bottom of@t# are provided to allow the
launching of the MAV program from the Linux commaire (on boot, Jumbo QBot
presents a console terminal over the wirelessfate) and the termination of execution

(to return to the command prompt).

Finally, the LM345 orientation and position senkas different capabilities than the
IMU that was used for QBotl and Aragnobot, so #er6 Gyros’ and ‘Set Accel Ref’
buttons were removed. The added ‘Zero Roll Pikehton will cause the firmware on
the robot to automatically work out the angle ader roll and pitch. This means that
the orientation of the robot at the moment thatdsuis clicked will be computed as

zero thereafter (similar to ‘Set Accel Ref’ for theevious MAVS).

5.3.2.2. Log Analysis GUI
The log analysis GUI for Jumbo QBot represents anlyncremental evolution from
the original design. It is shown in Figure 20.eTg#lot window was expanded to
accommodate the larger amount of data that carabked and relayed by Jumbo QBot
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(which thereby allows more extended analysis). oAthe same buttons and

checkboxes are available in the new design andanbtuple of features have been
added.
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Figure 20 — Base Station Log Analysis GUI for Jumbo 8ot

First is a ‘Scale’ number box that can be uset¢osiase or decrease the magnitude of
the plotted data points. Its function is a liliéferent than normal scaling functions of
this sort; rather than being a multiplier, it ig@m factor subtracted from 100 and used
as a divisor for the data points. A value in therma box of 99 will cause the data points
to be rendered at unity (divide by 1); a value @fill cause each to be divided by 100
before rendering.

The second added feature is the series of textshaxe@erneath the plot window. Those
boxes will be populated with the average max-to-amd min-to-max interval for each
of the log arrays for whatever angle is currendiested (e.g. if roll is selected, the first
box will contain a calculation of the average numifeentries between the successive
inflection points for the roll data in log 1; thec®nd box will contain the calculated
value for log 2, and so on). This provides a quiely to evaluate the oscillation period

for a given waveform (which is useful for PID tug)n
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6. Experimental Results

The firmware and software developed as part ofrégsarch are, unsurprisingly, the
end result of a vast amount of testing and itenatiDespite the apparent simplicity,
many things were tried and explored in the procésieveloping the operational
systems that were produced. Some sensors worldiffarent ways than expected,
communication issues were encountered, and evenampiler bug caused issues.
Beyond the pitfalls of software and hardware demelent, extensive tuning of control
parameters was required. All of this was doneloysigal systems using real data and
the details of the process are presented below.

6.1.  QBotl

The first goal defined for this research was ta@aahorientation control of the basic
QBotl airframe on a 3 degree-of-freedom (DOF) s&mtd. Before the theory of
operation could be applied and tested, howeveh eambination of motor, motor

controller, and propeller required characterization

6.1.1. Motor Testing

The theoretical formulas for orientation contrdiren being able to set each motor to a
known rotational velocity. Because the motor coliegrs for QBotl had no automatic
calibration capability, each one had to be testesdrk out the relationship between
PWM (throttle setting) and RPM (which can be diecbnverted to angular velocity).
This was accomplished through the use of a PoweBlSdevice (made by Shenzen
Junsi Electronic Co., LTD.) that uses a detectaoant interruptions in detected light
as they are caused by a spinning rotor. The detecmounted below the spinning
blade and a steady light source (not fluorescentpsitioned above. Then pulse width

and RPM are logged as the throttle is swept throtsgbperational range.

As an example, the data for motor 1 was recordesthewn in Table 10:

Table 10 - RPM to PWM Values for QBotl Motorl

RPM Pos. Pulse Width
[rpm] [ns]

960 1200

1230 1220
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RPM Pos. Pulse Width
[rpm] [ns]
1365 1240
1590 1260
1725 1280
1920 1300
2040 1320
2100 1340
2340 1360
2410 1380
2478 1400
2760 1420
2840 1440
3060 1460
3140 1480
3480 1500
3530 1520
3780 1540
3870 1560
3937 1580
4170 1600
4275 1620
4350 1640
4590 1660
4640 1680
4830 1700
4935 1720
4995 1740
5190 1760
5310 1780
5370 1800
5520 1820
5625 1840

83




Overall, that data is remarkably linear and indisahe quality of the motor and motor
controller over the operational range. It alsgpheb justify the assumption of motor
linearity for firmware calculations. With the dathove, linearization parameters can be
easily extracted. The slope can be calculatedking the RPM delta and dividing by
the pulse width delta: (5625 — 960) / (1840 — 12007)289 RPMis. This would be

good enough, but a better value was desired (teaat, an appreciation of the quality

of this number was desired).

The approach to a better solution involved usisgraadsheet to first correlate slope to
effective offset; namely the value that needs tsuigracted from pulse width * slope
to give the expected RPM value. Because the midgraas intended to operate near
hover thrust, only those values central to the ajr@y range were used: 1920- 4830
RPM. The offset given by ‘offset = pulse widthlbge — RPM’ was calculated for each
data point and then the average was used for the&tanat offset. Those values were
then used to convert the pulse width data pointk bmRPM (linearized RPM = pulse
width * slope — constant offset) and the absolufferd@nce between the real RPM and
the linearized RPM was placed in a column of itmowhe sum of the differences
across the selected operational range was thenagsgdheasure of quality of the linear
approximation. An iterative process of adjusting slope was employed until a
minimum summed deviation was achieved. In thigcaslope value of 7.36 yielded
the minimum total deviation (and 0.01 plus or mimesde very little difference) and
that value was selected for this motor and comrabmbination. The corresponding
offset was calculated to be 7680.95. A plot ofdhiginal motor data versus the

linearized data is shown in Figure 21.
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Figure 21 - QBotl Motorl Linearization Plot

RPM values are significant to motor manufactureis are easily understood in
conversation, but the theoretical formulas for tieisearch require angular velocity in
rad/s. Furthermore, the internal PWM values foro@Bhad ais precision (meaning
that a 1200s pulse width had an internal representation oD24@d the firmware

solves for PWM pulse width from desired angulaoeél, not the other way around.

So then, a slope of 7.36 RPM perconverts to 2.595 ¥s per rad/s while the offset of
7680.95 RPM (804 rad/s) converts to a PWM offsé2@86 %2 us (i.e. a pulse width of
1.043 ms would correspond to 0 rad/s). The sameegs was applied to the other three

motor & controller sets and the final values fapas and offsets are given in Table 11.

Table 11 - QBotl Motor Characterization Parameters

Slope (Y2nus per rad/s) Offset (Y2 us)

6.1.2. Orientation Control

6.1.2.1. Single Axis PID Tuning
With the motors characterized, it was possibledgitv testing the control theory. An
initial attempt was made to move directly to thB®¥F test stand. That proved overly

ambitious as there were too many variables invobumdlit was difficult to detect
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improvements (if there were any) amidst the gengrabs. It was determined that the
best approach would then be to limit the airframa single DOF at a time and
demonstrate control for roll and pitch separatefobe attempting them altogether

again.

Because QBotl had round arms, a clamping systendexased for this research that
holds two arms of the airframe between a set ¢érdlearings. The roller bearings
allow unrestricted rotation about the axis heldh®y clamps while preventing rotation
about the other axes. The roller-clamp conceptdeasloped as part of this research,
but the physical design and creation of the clamgs performed by a mechanical
engineering technician at AUT. One of the clangpshown disassembled in Figure 22.

Figure 22 - Roller clamp used for single-axis tesig

Even with only a single allowed axis of rotatiomning the PID parameters proved a
very challenging task. A lack of experience irsttyipe of control system tuning no
doubt contributed to the difficulty, but this systeertainly exhibited a significant
degree of complexity beyond a conventional machirtle a first order type of response.

6.1.2.1.1. Experimental PID Tuning

The first PID tuning effort of this research emmdysimple guesswork and evaluation
of system response to changing parameters. Anm@rgmogression of roll testing is
shown by the three figures below. In each, thézbatal axis is simply the sample
number (100 per second) while the vertical axisesgnts the raw IMU output for the
roll Euler angle (the UM6 IMU outputs 16-bit integesuch that 16384 is equivalent to
7 radians (180 degrees); for simplicity, it can basidered that every 1000 steps
corresponds roughly to 10 degrees). Figure 23ctiefhie system response when the
PID gains are set to 1, 2, and 0.2, respectivElgure 24 shows the system response
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when the derivative gain constant is increased26 @hile Figure 25 shows the

response to a derivative decrease to 0.18.
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Figure 23 - Roll PID Experimentation K,=1.25, K=2, K;=0.2
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Figure 24 - Roll PID Experimentation K,-1.25, K=2, K4=0.25

P=125 |=2 D=0.18
2000

1500
1000

500

-500

IMU Roll Value

-1000

-1500

-2000

-2500

Sample

Figure 25 - Roll PID Experimentation K,=1.25, K=2, K;4=0.18
At a high-level, these results are unsurprisinthayg reflect well known system
response to PID derivative gain changes. Whed¢ehigative gain is increased, it can
begin to over-damp and cause the system to apptbad@etpoint in steps rather than
directly. When decreased, it can reach a poinravhdias little effect at all and the

other terms dominate (in this case resulting inoamg oscillation).
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At a lower-level, the system response to a higlwalerivative gain (Figure 24)
warrants a bit more analysis. After initially csosy the setpoint, the approach back to
it is taken in steps, as might be expected, buhtmmal derivative action is usually
limited to reducing or stopping the velocity towdh@ setpoint (because the derivative
term must go to zero when velocity is zero), neersing it as is seen. The reversal
could, of course, be attributed to integral windligt occurred prior to the first crossing
and that is likely the case to a significant degrAaother contributor, however, could
be the system delays and it may be that the deéteelecity and corresponding
response to it are time-shifted by a sufficient antdo cause acceleration overshoot.

6.1.2.1.2. Modified Ziegler-Nichols Tuning

It was at this point in testing that the weakndss purely manual approach to tuning
was appearing inefficient (at best) and an altéreavas sought. The initial framework
for the modified approach to Z-N tuning (discusse8&ection 3.2.1.1) was applied and
values for the Z-N tuning parameters, ahd T, were sought.

In the case of roll testing for QBot1, a proporaibgain value of 1.0 gave a reasonable
measure of system response and, while still ulefgatnstable, oscillations remained
fairly consistent for several cycles. The cyclegdwas seen to be at least 1 second
and that became the first approximation. The ZtMiiig PID equations ((12), (13),
and (14)) were then applied to givg ¥0.6, K = 1.2, and K= 0.075. With these
parameters, the system achieved stable hold ditangle of zero, but it didn’t seem
very well tuned. As a result, the approximated #iiNing values were evaluated
experimentally using a number of different valugsdach. First, the Kvalue was
tested and the system response was captured tarsvaf 0.1, 0.5, 1.0 (the original
approximation), and 1.5. The plotted results @ in Figure 26.
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Figure 26 - QBot1 Z-N Tuning for Roll (T, = 1.0)
It is apparent that a kof 0.1 is insufficient, and while the other plais reach the
setpoint and are stable there, none of them exhil@sponse that would be considered
well-tuned. As an observer of the physical systenid seem that the Kvalue of 1.0
was the most robust, but that was a subjectivesassnt only. It needed to be seen if

that value could provide a reasonably tuned oudgpitit other values of I

Setting K, to 1.0 and sweeping,Through several values was the next test undartake
The values chosen were 0.5, 1.0, 1.5, and 2.0rengdlbtted results are shown in Figure

27.
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Figure 27 - QBot1 Z-N Tuning for Roll (K, = 1.0)
A T, value of 0.5 was obviously unstable, 1.0 (as jmesly tested) showed slow
convergence, 1.5 and 2.0 both exhibited good systsponse. 1= 1.5 exhibited more
overshoot than 2.0, but it was quicker to achiéeesetpoint and the system response

waveform is very similar to that expected of a sgstuned using the Z-N tuning
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method. Furthermore, it was very stable in thetesiting apparatus. As a result, the
values of T,= 1.5 and K = 1.0 were selected as reasonable approximatidhe @-N
tuning parameters and the corresponding calcuRliedjain values for application on
the MAV were: K, = 0.6, K = 0.8, Ky=0.1125.

The same process was applied to pitch testinggorerthere were no major differences
between the two axes. Although the intent of adgoiar airframe design is to keep
everything symmetrical about the centre, therenacessarily some deviations. For
QBotl, the major difference between roll and pitaime from the orientation of its
battery. The battery represents the largest sc@igonent of mass in the system and
it is rectangular. It was aligned lengthwise wiltke x axis and thereby created a
significantly higher moment of inertia for pitchati existed for roll. Because the
moment of inertia is inversely proportional to #maount of acceleration caused by
torque (which is the selected PID output for oméioin control), it was possible that it

would significantly impact the system response @mtesponding tuning.

As with roll testing, the pitch testing exhibiteidhdar instability and difficulties in
achieving consistent oscillation. A,Kalue of 1.0 was, however, once again selected
as yielding something closest to what is desired#dl tuning. In this case, the
observed system response had an approximated mérasdillation near 1.5 seconds.
As those were the same values determined forth&ll; made a reasonable starting
point, but the same sweeping qfdnd K, were employed again to double-check the
approximations for improvement. The results a@ashin Figure 28 (I sweep) and

Figure 29 (T, sweep).
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Figure 28 - QBot1 Z-N Tuning for Pitch (T, = 1.5)
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Figure 29 - QBot1 Z-N Tuning for Pitch (K, = 1.0)

These results demonstrate that the approximatibfig® 1.5 and kK= 1.0 are
reasonable for Z-N tuning of the pitch PID. Theresponding K, Ki, and K terms are

the same as were calculated for roll: 0.6, 0.8,&aad25, respectively.

6.1.2.2. Three-Axis Testing
With pitch and roll orientation control working w@hdependently, the QBot1 airframe
was moved from the single DOF testing apparatiisd® DOF of freedom test stand.

The assembled apparatus with QBotl on it is shoviigure 30.

Figure 30 - QBot1 on 3DOF Test Stand

The tuned parameters worked perfectly and the nalstable to robustly hold itself in
hover attitude. Induced disturbances (e.g. pulingin arm by hand) were strongly
rejected and the return to hover was consistemty guick and clean (little overshoot,

no steps along the way).

It should be noted that the test stand causesi@nbte impact on the system and isn’t
truly representative of free flight. For PID regpe, it actually represents a worse-case

scenario for several reasons:
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1. The centre of mass and the pivot point are displé@am one another
2. The mounting plate effectively becomes an addetieht of mass to the airframe
3. The stand adds resistance to orientation changesdesistance of the supporting

bearing

With good bearing selection and lightweight mougtirardware, the first point is
arguably the only one of significance. To expandhat in the case of the test stand
shown in Figure 30, the airframe can only be ratate the roll and pitch axes about the
bearing at the bottom of the mounting plate. Wihenrobot is in hover attitude, the
difference in pivot point is hardly noticeable. @fhthe robot leaves the level position,
however, the force needed to restore it is sigaifity greater than would be needed for
operation in free flight. This is exacerbated byumting the battery above the airframe
as was done for these initial tests. When ouewéllit is no longer just the moment of
inertia that must be overcome to rotate the airéaout also some portion of gravity;
the airframe must effectively be lifted to retuanr{ve) at a hover position. These
effects had been encountered during preliminatynigbefore application of the tuning
process described above and it was seen that ffakegaresented the greatest challenge
on a test stand like the one shown. After tunihgt startup process was no problem
and the PID parameters were sufficient to bringainkame from its idle position well

away from level to hover attitude with alacrity.

Roll and pitch position control was therefore dedraeccessful. Not much testing or
tuning went into yaw control. A couple of valuesre tested and it seemed that a PD
approach was sufficient to reliably bring the @nfre to a desired directional setting.
Because of the relatively long times involved witw compensation (it takes a couple
of seconds to spin the airframe 180 degrees), gdtimintegral term degraded system
stability and it was removed (anti-windup wouldrhsgs, have been a better solution).
In the end, using experimentally determined PIDhgarms of 1.0, 0, and 0.2,

respectively, gave desired system response andrfatitation control was achieved.

6.1.2.3. Tethered Flight
Having achieved a stable hover attitude on the & D3t stand, the next experiments
involved actually flying the robot. The first issencountered was that significantly
more thrust was required to lift the MAV off theogind than had been required to hold
it “hovering” on the stand and that resulted inessive vibration of the motor mounts.

The original design for QBotl used lightweight iiegne style supports for the motor
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attachment points (seen on the left of Figure Ba) simply had too much flex when the
motors were running at higher speeds. Two moumtiseband they needed to be

redesigned; the new mounts (right of Figure 31jguered much better.

Figure 31 - QBot1 Motor Mount Comparison

At this point, the Base Station software was stillilevelopment and no controls for
orientation adjustment had been implemented. Tiyeaperational control was thrust
and that meant that QBot1 had to be constraingdeteent it drifting into other objects.
This was accomplished by using lengths of stritgchied to a large square frame on
the ground. The string lengths were set to allesvairframe to move about a half meter
in any direction from the centre of the square.athieve flight, the motors were

started and thrust was increased until the airfreeftehe ground. The PID tuning

parameters continued to work well and stable tethéight was easily reproduced.

6.2. Aragnobot

Having achieved success with QBotl, the focus isfrssearch shifted to assembling
and testing Aragnobot with the intention of firepeating the approach employed to
tune QBotl. The desired end goal for this platfaras subsequently untethered flight
with autonomous orientation hold and operator pmsitompensation (i.e. manual

thrust control and obstacle avoidance).

6.2.1. Motor Testing

Because it had been fitted with the new ESC32 nmuatrollers, the calibration
approach for Aragnobot was significantly differémoim QBotl. The developers of the
ESC32 device have created automatic calibratiotimesiand have implemented closed
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loop modes of operation that provide internal Innestion of response and a guard

against overdrawing current. The process of caiilin consists of the following steps:

Install the desired propeller on the motor

Fix the motor in place so that it cannot move
Connect the motor controller

Power up the motor and controller

Connect the motor controller to a serial port ddGa
Run the developer’s calibration routines

N o o bk bR

Program the calibration parameters in the contrsli@on-volatile memory

Two calibration routines are provided: the firstedenines the motor's RPM achieved in
response to voltage applied (motor speed vs. tejathile the second evaluates the
current draw seen by sudden changes in voltage(digncurrent draw from

acceleration).

6.2.1.1. Voltage to RPM Calibration
To determine RPM vs. voltage, the calibration no@isimply sweeps through the
throttle settings (which are equivalent to appliettage and duty cycle (at 100%, the
full voltage of the battery is being applied)). riRragnobot’s motor 1, the collected
data and corresponding calibration terms are showigure 32 (which was

automatically generated by the calibration softyare

RPM vs Voltage

FF1TERM +5.460956e-08

FF2TERM +1.393150e-03

Figure 32 - Aragnobot Motor 1 RPM vs Voltage Calibiation
This effectively takes the place of all of the maintharacterization that was done for

QBotl. The motor controller has worked out a ligditaearization that will be
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internally utilized. When the ESC32 is programmetth the FFITERM and

FF2TERM parameters that have been calculatednibeglaced in closed-loop mode.
At that point, the PWM inputs are no longer refieetof throttle value (0 to 100%), but
rather of desired RPM value. The exact deternonatif the value desired is defined by
the PWM_LO_VALUE, PWM_HI_VALUE, and PWM_SCALE paraters. These
specify the linearized response of the motor, aiglis the description given in the
ESC32 datasheet table entry for PWM_SCALE: “Thdesofthe input PWM pulse
length. In closed loop RPM run mode, PWM_LO_VALUH|wdicate 0 RPM and
PWM_HI_VALUE will indicate this RPM.” (AutoQuad, 2@, p. 11)

For Aragnobot, all of the motor controllers weréteehave PWM_HI_VALUE of 2000
(2ms), PWM_LO_VALUE of 1000 (1ms), and PWM_SCALEGH00 (RPM). As a
result, a 1ms pulse width is expected to give 0 RBals will yield 6000 RPM, and
everything in between is linear (e.g. 1.5ms pusexpected to give 3000 RPM). To
make direct use of this relationship, the rotatm®WM conversion logic for
Aragnobot was changed to use a static PWM val@®00 “2us and then each rad/s of
desired rotational velocity added another 3.183is%

6.2.1.2. Current Limit Calibration
The ESC32 current limit calibration routine worlsiterating through duty cycle steps
and tracking dynamic motor current draw (e.g.epstfrom 5% throttle to 10%, then
5% to 15%, then 5% to 20%, and so on). BLDC maogerserally draw peak current on
motor acceleration rather than at a static setgeigt a jump from 5% to 100% will
draw significantly more instantaneous current th@tic 100%). A quadrotor MAV
generally exhibits continual acceleration and deragiion as the orientation logic is
updated and the PIDs are applied; by limiting thieasnic current, efficiency can be
increased and overheating can be avoided. Thetiatehe calibration, then, is for the
motor controller to work out terms for its accetera logic that will keep the dynamic
current within the defined bounds (i.e. significimbttle increases can be executed in

stages rather than all at once).

For the motors on Aragnobot, the current limit wasto 9 amps and the routine was
executed. The results for motor 1, as generatdtdogoftware, are shown in the graph
of Figure 33. A full explanation of the grapheduls is beyond the scope of this
research (the output values and corresponding eegbeperation were sufficient), but it

is believed that the dots represent real samplesavhile the lines superimposed
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reflect the applied software terms. As an exaropknalysis, consider the horizontal
line of dots around 6 Volts; the leftmost valugsresent increased current draw as the
motor is spinning less than it would at a constafiie around 6V (it is therefore
accelerating). The rightmost values are then mbuedant because they indicate the
more natural speed of the motor in response tgphea 6V (and correspondingly

reduced steady-state current draw).

Current calculated RPM vs Voltage

CL1TERM +2.907520e-01
CL2TERM +1.270380e-03
CL3TERM +3.699518e-02
CLATERM -2.931067e-05
CLSTERM +1.488704e+0

2000 3000 4000 5000 6000
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Figure 33 - Aragnobot Motor 1 Current Limit Calibrat ion

Each motor underwent the same calibration and tHe @L5TERM values were

programmed into the respective controllers.

6.2.2. Orientation Control

6.2.2.1. Single Axis PID tuning
Having a new airframe allowed an opportunity td texl refine the approach that was
successful on QBotl. The round carbon fibre armAmqgnobot allowed them to be
clamped into the same roller bearing apparatustdcipreviously been employed. One
aspect of testing that was changed was the amdtimtust applied on the test stand.
For QBotl, only a fraction of lift thrust had beesed on the stand because that was all
that was needed to stabilize the airframe. It \ates recognized, however, that it would
be more accurate to perform tuning near the thewst required for flight. The
interesting thing about this approach is thatavmted more consistency in system
response for the Z-N tuning method. With only tefn applied, a certain amount of
system stability could be achieved and somewhadistamt oscillations could be

recorded, as long as the deviation from the setpeas minimized. This allowed a
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more conventional Z-N analysis and the output gésa P-only iterations for pitch

control is shown in Figure 34.

P-term Only

’

1 \\ : \ ~ - - Kp=10
;

! \ A - Kp=11

Kp=12

IMU Pitch Value

Kp=125

1000

1500

2000

Figure 34 - Aragnobot Pitch Testing - P-term only

This data demonstrates that the system can gikhg &able oscillations with a K-term
gain around 1.2. Although the amplitude appearsdeease in the first 5 seconds of
operation (the data capture window), it did stakiland eventually the oscillations even
diminished. Increasing the gain to 1.25, howewauses a measurable loss of stability
and decreasing to 1.1 yields an increase. 1.Zhesisfore selected as ldind the

waveform was analysed to determine an approximaté 0.65 seconds.

These values yield PID gain terms of 0.72, 2.28p4, 0.0585. It was quickly apparent
that, although the system would stabilize, these gaefficients were not well tuned.
As was done for QBotl, a sweep @ft€rms was performed to determine if better
tuning could be achieved. The corresponding syseésmonse of a few selected values

is shown in Figure 35.
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Figure 35- Aragnobot Z-N Tuning for Pitch (Ku = 1.2)
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This demonstrates that g falue of 0.65 is clearly inadequate. 0.9 yieldetkar-
expected Z-N tuning response while 1.1 was statorexhibit latency from the
growing derivative term. 1.0 was therefore selgete the characteristic, &nd then the
value of K, was tested again to ensure its validity with thaified ultimate period.

The results of a couple of tests on either side ®fare shown in Figure 36.
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Figure 36 - Aragnobot Z-N Tuning for Pitch (Tu = 1.0)

The quality of these responses is largely a maftsubjective evaluation as there is
little real difference. Although the data corresgimg to a K value of 1.4 shows
quicker convergence, it is a less conventional #uNng response and the value of 1.2
can certainly be declared as sufficiently well-inéor this reason, final Z-N tuning
parameters were set at K 1.2 and T= 1.0. Application of the Z-N tuning equations
thereby yields PID gain terms as follows; ¥0.72, K = 1.44, and K= 0.09.

With pitch reasonably well tuned, the airframe wagtched in the apparatus so that roll
could be tested. Because QBotl had demonstratédlitéle difference in system
response between roll and pitch, the same PID peteamwere applied. Figure 37

shows the achieved result and it was determinddhismwas sufficient.
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Figure 37 - Aragnobot Roll PID Parameter Check

6.2.2.2. Three-Axis Testing
Aragnobot received relatively little testing on ®OF test stand. The roll and pitch
tuning had worked well and stability was excellefhe yaw PID gain terms (& 1.0,
Ki =0, Ky = 0.2) that worked well on QBotl also yielded gidint response for
Aragnobot. In that area, all that was considemszkasary for indoor operation was the

ability to maintain heading and those values predidatisfactory response.

Remote control of thrust and orientation (for positcompensation) had been
implemented in the base station software by thist@ond those controls were exercised

on the test stand in preparation for free flight.

6.2.2.3. Free Flight
The transition from constrained testing to fregttiwas a major step and several
difficulties were encountered. As an example,gbimted design of Aragnobot’s
landing gear tended to catch on the carpet ingbinig area and that would result in
integral windup of roll and pitch and a loss of ya@ntrol (the airframe would spin
when a leg caught). These effects led to corredipgrinstability on takeoff and

landing.

Another issue quickly realized was that tuningdatatic setpoint on the test stand
yielded insufficient responsiveness for the cordumiadjustments of free flight. Any
time the control changed, there was a correspondotible of the airframe and the
response was not as crisp as needed for propeotomhat led to an experimental
adjustment of the scale factor for the PID (whiglsimply a multiplier applied to the
PID output and has the same effect as increasimge@easing) the for Z-N tuning).
It was found that doubling or tripling the gainti@acincreased responsiveness and a
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series of tests (back on the 1 DOF test apparatei® performed to evaluate the effect.

The corresponding data is shown in Figure 38.
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Figure 38 - Aragnobot PID Scale Factor Increase foPitch

This data clearly shows that multiplying the PIDpui yields much stronger system
response. As the multiplication factor is increhdewever, the system begins to
respond more strongly to sensed disturbances fnenfMU and the amount of
undesirable twitching is increased. In this casgain factor of 2 was selected for
Aragnobot and that gave a good level of responssemwithout excessive twitching

during flight.

The aragnobot airframe has been flown somewhatadguindoor for many months. It
was also tested outdoor and worked well but isiogmtly impacted by wind

disturbance. Overall, the testing process has dstradad the ability of this platform to
execute reliable autonomous orientation maintenanfree flight and it will serve as a

solid platform for the development of further cajtigh

6.2.3. Position Control

With a focus on indoor use, it was recognized libedlization would be a challenge for
Aragnobot. Echo location was considered to béo#st option for initial testing due to
the compactness of sonar rangefinders and thesradasse. The starting point for
position control was altitude and an MB1200 sonadube was oriented to point
downward from the bottom of Aragnobot’s batterydesl A few tests were made
flying the airframe off the ground and significasatriability was discovered. Over a

number of readings, the height value could bebblidetermined, but individual data
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points ranged from zero to maximum. Those extrewee next filtered out (by
rejecting extreme jumps and carrying the previame forward), but the data output
of the sonar module continued to be erratic. Aréof sampled data through a short
flight is shown in Figure 42.
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Figure 39 - Aragnobot Sonar Testing

The flight corresponding to this data consisteth&é-off after about 2 seconds,
followed by an ascent to more than half a metereisé seconds of hover (plus or
minus a small amount), followed by descent badkéoground. The sonar data roughly
correlates, but the instantaneous variation isdfaigreat to allow autonomous control.
Possible influences on the reading include vibratiwise, air turbulence, and echo
material (carpet); some of these could perhapdtbeed to improve accuracy. It would
also be possible to filter the data for reliabléedmination of position, but the number
of samples would have to be quite large (accumdlater a second, or more). That is
probably a reasonable approach to take so longea®bot is intended to move at a
correspondingly slow rate. For the purposes &f thsearch, limited time was spent on

this problem and no reliable solution was found.

6.3. Jumbo QBot

6.3.1. Motor Testing

Jumbo QBot uses the same motor controllers as Atagjrbut has larger motors and
propellers. Once again, the intelligent calibnatsoftware of the ESC32 developers
was employed in setting up the motor systems. olitput graph for Motor 1 from the

RPM to Voltage test routine is shown in Figure 40.
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Figure 40 - Jumbo QBot Motor 1 RPM to Voltage Testing

The most significant difference between the motorsumbo QBot and the motors for
Aragnobot (and QBotl) is the maximum RPM of aro8600 as compared to
approximately 6500. Combined with a larger pragedind considering the squared
relationship between angular velocity and statiagt) the Jumbo QBot power system is

capable of more than twice the vertical thrust®predecessors.

The extra output power naturally comes with a gpoadingly dramatic increase in
input power. The ESC32 current limiter calibratisas run on each Jumbo QBot motor

system and the graphed result for motor 1 is shiaviaigure 41.

Current calculated RPM vs Voltage
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CL3TERM +2.664611e-02
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CL5TERM +5.167664e-01

Figure 41 - Jumbo QBot Motor 1 Current Limiter Calibr ation

This chart was produced with the current limitisgtiequal to 30A and it looks very
similar to the output of the same test for Araqriol®@ne difference worth considering
is that the Aragnobot motor test had a fairly sslmped line forming the upper bound

of its data points. Jumbo QBot does not and thggssts a difference apparent in the
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tests; the Aragnobot motor tested did not realgdn@ current limiter while the Jumbo
QBot motor tested certainly does. This is becaluisé\ragnobot motor was able to
quickly spin faster in response to increasing \gdtand would thereby never allow a
high voltage at a low speed to occur (which wowdsiehcaused a corresponding
significant increase in current draw). In otherds) as the ESC32 started to increase
the voltage duty cycle, the motor would respondasthas quickly as the increase would
occur and the RPM to Voltage disparity remainedlsralng with the associated
current (and many data points were accumulatedyalumacceleration line). The
Jumbo QBot motor that was tested, however, colddagauch larger differential and
that was constrained only by the ESC32 currentémiAs soon as a spike over 30A
was detected (voltage was rising, but RPM was isgalgiw), the current limiter would
engage and stop the progression. As a resultcttedeaation line is much more sparse
and characterized by steps representing each atteirthe test program. If the current
limit were increased, more data would be expeaexppear in the top-left quadrant of
Figure 40.

6.3.1.1. Motor Flight Data
The processing power and memory capacity of Juntbat @llowed for extensive
monitoring of all system aspects. Voltages appitethe motor and corresponding
current draw were tracked during flight to evaluadever consumption and the
performance of the current limiter. A plot of son@dlected data (at a sample rate
around 25 Hz) is shown in Figure 42.
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Figure 42 - Jumbo QBot Sample of Real Time Flight Dat for Motor 1
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The spike around point 10 corresponds to the dwstmand to bring the motor up to
hover speed. The current draw exceeds the linBOamps instantaneously, but it
would presumably be much higher without the stegimction in place. This chart
demonstrates the highly dynamic nature of quadrtight as the motor voltage,
current, and corresponding rotational velocity@estantly changing. Data from the

other 3 motors was collected during the same flfgiich continued beyond the data

shown in Figure 40) and yielded further interestimigrmation, as collected in Table
12.

Table 12 - Jumbo QBot Real Time Flight Motor Data

Motor 1 Motor 2 Motor 3 Motor 4

Max Voltage 95V 6.9V 9.0V 7.7V
Max Current 355A 33.3A 33.2A 30.7 A
Average Voltage 7.1V 42V 7.2V 46V

Average Current 9.8A 45 A 119A 4.2 A

Particularly interesting is that the motors affegtpitch (motor 1 and motor 3) draw
significantly more power than the motors affectiof. This is almost certainly due to
the lack of an integral term in the PID for yawtlwa K value of zero, the equilibrium
point of the yaw control system will have someistaffset that, thanks to the non-zero
Kp term, will cause slightly more thrust to be regdion one of the roll/pitch axes
while the other has less required. The end réstitiat two motors see higher loading

than the others and the distribution is dependgahuhe ongoing static yaw offset.

A further interesting data point is that the averégal current draw for the airframe
motors was found to be 30.3 amps. Assuming ardénadverage for the control board
and given the theoretical battery capacity of 11088, this suggests that Jumbo QBot
could remain in flight for over 21 minutes (with payload).

6.3.2. Orientation Control

Orientation control of Jumbo QBot was approachea smmilar manner to that
employed for QBotl and Aragnobot in that it begati-N tuning of the roll and

pitch axes PIDs. After that, the transition wasimdirectly to free flight (rather than to
a three DOF test stand) and the steps of this apprare detailed below.
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6.3.2.1. Single-Axis PID Tuning
Because the arms of Jumbo QBot had been constrocteaf rectangular aluminium,
the roller bearing apparatus couldn’t be used ifigls-axis testing. An entirely
different fixture was manufactured out of an inedrtable and various hardware

(including high-load fishing swivels). The asseetbapparatus is shown in Figure 43.

Figure 43 - Jumbo QBot on 1 DOF Test Stand

One advantage of this setup was that it allowedixieel motors to be run at the same
time as the motors on the axis being tuned. Bwingall four motors, the gyroscopic
impact of the motors on the axis of rotation wolddincluded in the tuning result.
Gyroscopic effects are not being compensated fahenaatically, but their (arguably
small) impact will still affect the desired rotati@and tuning in their presence was

expected to yield results more representative afflight.

Once again, the modified Z-N tuning approach wasieg and the first step to find an
approximation of K was taken by increasing the proportional gain evtghving Kand
Kq equal to zero. Jumbo QBot exhibited differentebebur from Aragnobot but it was
again an improvement toward an expected Z-N turesgonse. Consistency of
oscillation was much more reliable and stable tieh been experienced in testing
either of the previous models. Because Jumbo @Baisignificantly more memory, it
was also possible to start the system near an ahgkro and observe the progression
toward oscillation, whether stable or otherwiséyuFe 44, Figure 45, and Figure 46
show the results of pitch testing with differenftérms over 10 second intervals from
startup. (Note: all single-axis testing for JumtBaDwas done with a lift thrust setting
of 20N.)
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Figure 44 - Jumbo QBot P-term Only Pitch Testing (K = 2.5)
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Figure 45 - Jumbo QBot P-term Only Pitch Testing (K = 2.8)
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Figure 46 - Jumbo QBot P-term Only Pitch Testing (K = 2.9)
At a proportional gain of only 2.5, the airframécpiwould begin to oscillate then
diminish and stabilize. 2.6, 2.7, and 2.8 all &uhtb yield fairly stable oscillations
while a gain term of 2.9 caused oscillation inceeasd a loss of stability. 2.8 was
therefore selected as, lnd the oscillations were analysed to yield ar@pmate

period (starting point for Jexploration) of 0.84 seconds.

Two iterations of ultimate period tuning were trenployed; the first one used coarse
steps around 0.84 while the second performed filigsements on the evaluated best

response from the first iteration.
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Figure 47 - Jumbo QBot Pitch Only Testing: T, Coarse Sweep

Figure 47 shows that,Values of 0.5 and 0.84 are insufficient while &ueas 1 is
pretty well tuned and 1.5 is too much. To explbw possibility of better tuning, 1 was
then taken as a starting point and the effect @afllsimcrements was captured as shown

in Figure 48.
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Figure 48 - Jumbo QBot Pitch Only: T, Fine Sweep
At this point, a value of 1.05 was considered atinogd Z-N response as it had a small
amount of characteristic overshoot on the secotpbs# crossing, but it was slightly
less than that observed for 1. With g #en, of 2.8 and a,1of 1.05, the PID gain
terms were calculated asp K 1.68, K= 3.2, and IK= 0.21.

Having determined on Aragnobot that better stabilihen flying could be achieved
through uniform amplification of all PID terms, amaluation was done on Jumbo QBot

107



to determine the optimum scale factor to applyl ileger terms from 1 to 6 were

tested, but only the final three have been capturé&agure 49, below.
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Figure 49 - Jumbo QBot Pitch Only PID Term Scaling

This seems to demonstrate a turning point betwawraltiplication factor of 5 and 6.
Between 2, 3, 4 and 5, the trend was always towaediuction in deviation from the
setpoint and reduced area of overshoot. At 6etlseincreased overshoot and slightly
slower convergence. In the end, a multiplier @fak used as the default setting for
Jumbo QBot flights. As was seen with Aragnobattrang multiplier does yield some

twitchiness in response to IMU noise, but it gaveedlent responsiveness when flying.

The same approach was rigorously applied to rsting and, on the Jumbo QBot
airframe, a measurable difference was encounterbd.Z-N tuning parameters that
were eventually selected as optimal were=k3.5 and T = 1.1. The corresponding PID
gain factors are K= 2.1, K = 3.8182, and K= 0.28875. The scaling multiplier applied

for most flights was set at 3.

6.3.2.2. Free Flight
No yaw testing on a three DOF test stand was peddrfor Jumbo QBot as part of this
research. The Jumbo QBot airframe was transitialivedtly to free flight and the same
yaw PID parameters successfully used on the pre\aotrames were applied again.
They continued to work well and full orientationntm| was successfully realized.

This was well demonstrated through the achievermeatprimary flight goal: ascent to
over 9 meters (30 feet) above the ground under ataauntrol. A plot of the altitude
readings (after normalization) from the succesHifyiht is shown in Figure 50. These

readings were taken from the MS5803 pressure selismrssed in the next section.
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Figure 50 - Jumbo QBot High-Flight Data

6.3.3. Position Control

6.3.3.1. Position Detection Component Testing

6.3.3.1.1. Pressure Sensor Testing

Having observed the limitations of sonar rangeifigdvith the Aragnobot MAYV, a
different approach was taken for altitude controlDaombo QBot. Tiny pressure sensors
were employed that can pick up minute variationaiirpressure to the degree that they
are able to discern elevation changes of lessdmagter. Two different sensors were
employed (as discussed in Section 4.3.5.2) and $estiag data is presented in the

following sections.

6.3.3.1.1.1. MS5803 Testing
The MS5803 was the first sensor to be tested ayidlded reasonably good results.

Pressure sensors are known to generate readinga wignificant amount of noise and
an example of the raw data (after conversion froesgure to altitude) collected from
the MS5803 is shown in Figure 51. The solutiondcse is filtering and a
complementary filter was applied to the sensor atigs described in the firmware
Section 5.2.3.3.3. The result of a complementéeyr fwith a 10% weighting for new
data and 90% for the previous value is shown sogmsed over the raw data in Figure
52.
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Figure 51 - MS5803 Pressure Sensor Raw Altitude Deat
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Figure 52 - MS5803 Pressure Sensor Filtered Altituel Data

The data shown in these figures was collected dwishort flight that began by
spinning up the motors at around data point 10@e dir pressure disturbance caused
by the propellers spinning at near hover velocitytiee ground is seen by the sudden
pressure increase (altitude drop) at that poirfterAachieving lift velocity, the MAV
was flown to a height of around 4 meters beforerrehg to the ground (where the
rotors wash again drops the altitude reading bgawnd level). It should be noted
that the absolute pressure was not significanthiempurposes of this research. All
autonomous operations (e.g. altitude hold) areopexdd relative to the sensed
pressure/altitude at the point they are engagedrencecorded filtered data correlates

well to the observed flight pattern.

6.3.3.1.1.2. BMP180 Testing
Although the MS5803 worked well, it was thoughttthaother device might yield a

small improvement and that would correspondinglyaste altitude hold performance.

A USB module containing a Bosch BMP180 pressure@ewas attached to one of
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Jumbo QBot’s USB ports and the same filter wasia@b its output as was used for

the MS5803. A sample of the output results (fromdame flight used for the MS5803

sample data) is shown in Figure 53.
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Figure 53 - BMP180 Pressure Sensor Filtered Altituel Data

These results are very similar to the MS5803 (ggdirolute pressure/altitude is

considered irrelevant), but it can be seen thaathdisturbance near the ground causes

a pressure drop for this sensor (at least in tiséipo it was installed).

6.3.3.1.1.3. Pressure Sensor Fusion

Both pressure sensors worked well, but they hadsifgpresponses to air disturbance

near the ground and the advantage of averagingwvalkeies was apparent. A fusion

ratio of 50% each was selected and the combinedt ieshown in Figure 54.
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Figure 54 - Pressure Sensor Fusion Altitude Data
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This fused data approach eventually became theliéda altitude sensing in flight, but
much of the testing described in the subsequetibssaelied exclusively on the
MS5803. This is because the BMP180 module wasailable until relatively late in
the research process. In the meantime, other apipes had been considered and

extracting altitude from the GPS data was alsoaxyl.

6.3.3.1.2. GPS Testing

The LM345 offers two different sources of GPS infiation: raw data from the internal
GPS module, and Kalman-filtered data from the ratiog processor that can provide
approximated position even in the event of GPSgmufprovided it is of short
duration). The latter was considered to be thetbesirable and a large amount of
testing was performed with the navigation sourcthaglefault. It was eventually
discovered, however, that the raw GPS output peal/athta better correlated to the
actual movement of the airframe and that the Kalfitemed values were quite

different. An example of the disparity is showrttwiespect to latitude in Figure 55.
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Figure 55 - LM345 GPS Raw Data vs. Data Processeg Kalman Filter
The differences were substantial enough duringremmmus-mode testing that the
decision was eventually made to rely on the raw G&8& only. This has proven

sufficient for basic position holding and tracking.

Although it is well known that GPS altitude valuask accuracy, they are nonetheless
provided and they were evaluated to determineeiy tould be usefully monitored. An

example of recorded data from testing done on e kwface (i.e. no altitude change) is
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shown in Figure 56. This type of uncorrelated atawn was typical and the GPS height
value was considered too unreliable for altitudiel hagic (but may be useful for terrain

awareness in applications beyond the scope of¢kesarch).
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Figure 56 - LM345 GPS Altitude

6.3.3.2. Latitude and Longitude Control

6.3.3.2.1. Mathematical Simulation

Because the latitude and longitude PIDs generaelanorientation outputs, it is
possible to easily calculate the correspondingahtarust as shown in equation (35).

A quick mathematical simulation can then be perftrasing an assumption of perfect,
instantaneous system response that is subjecteéatemal forces. This is useful as a
means of evaluating PID parameters in general tamdst helps to isolate reasonable
relationships between the gains without risk toghgsical MAV (the initial testing of
autonomous operation is potentially dangerous lscduneans that the operator must
relinquish control to the firmware; if the algomtis are flawed (or have the expected
bugs) the airframe behaviour may become erratid fementially destructive)).
Newton'’s basic laws of motion provide formulas lioear acceleration (a), velocity(v),
and corresponding displacementdsiion Seen by an applied force (F) according to the
equations below. (Other variables are as follawss mass, vO is initial velocity, and t

is time.)

(37)

S|

113



v =at+v (38)

1
Aposition =Vvi+ Eatz (39)

Combining these equations together, then, we Hasedmponents for a virtual
simulation that can be worked out in a spreadsh@enstant variables can be defined
for desired position (the setpoint or endpoint),tfe system update interval
(correlating to, for example, the GPS update rdbe)P term gain, | term gain (if used),
and D term gain. The system response over tirtteers organized into rows having one
column for position that starts at a set value.other column contains velocity (and is
initially zero). If the | term were employed (itasn’t for this study), the accumulated
positional error could take another column. PDRID) output, resultant translational
force, and corresponding acceleration then each tieir own subsequent columns.
From all of these values, then, subsequent rowiseofable can be populated where
each row is derived from the preceding one and egeation (30) or (31) (latitude and
longitude PID formulas) to update the simulate@mtation and work out the
corresponding positional changes. Simulated resp@nthen very easy to see in a chart
that plots the position changes over time and eansed to evaluate the gain terms of
the control algorithm. Figure 57 shows a charhwitanging P terms while Figure 58

depicts the effect of changing D terms.

Theoretical Simulation

P=0.150D=0.1

Position

- = P=04,D=0.1

Figure 57 - Simple Simulation of P-term Increase foLatitudinal or Longitudinal Translation
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Figure 58 - Simple Simulation of D-term Increase foLatitudinal or Longitudinal Translation

This approach is very helpful in visualizing anclenating the theoretical system
response. It highlights, however, the differeneaeen an ideal theoretical system and
a real practical one. In the mathematical simaigtit can be demonstrated that larger
and larger gain terms lead to quicker achievemgtiteosetpoint and stability at it. The
corresponding behaviour of the virtual system itta the virtual airframe more and
more vertical and thereby increase total thrushout bound (vertical thrust has been
defined as always equal to mg, so if the airfragntted toward 90 degrees, the total
thrust required must approach infinity). It makesse, then, that the virtual airframe

can instantly move between points if its gainssatdarge enough.

Of course, in a practical system, this is not gaesi Furthermore, it falls outside the
defined characterization of the system as alwaysim@ng in a linear region near an
attitude of hover. Placing a limit on the anglattban be output from the PID deals
with that issue, but still leaves a practical canceven with a moderate allowed angle,
lateral acceleration can theoretically continuéhaitt bound. In reality, this will
ultimately be limited by resistance of the air tgh which the airframe moves, but the
achieved velocity would still be much higher thaigin be practically desired (for
example, for operation near the ground, it maydmardd that the MAV not be allowed
to travel faster than a person can run). Limitimg achieved velocity (and thereby
defining the point at which acceleration shouldts fairly easily done in a PID
calculation. The P and | terms must be collecyiViehited to a set amount. Because
the D terms corresponds to negative velocity ¢oeinter to the Pl terms), as the
velocity approaches the Pl limit, the PID outpull pproach zero.
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In the airframe, this would be seen as an aggressiange of attitude (assuming
significant P term) in response to a jump in despesition (e.g. the airframe will roll
significantly in response to a 20m change in lardg). As the MAV gains velocity,
the degree of roll will be less and less untiktiurns to a hover attitude. At such a
point, however, it still maintains its lateral veity (e.g. will continue to drift eastward)
at a value equivalent to the PI limit because modas being exerted to stop it. That
will continue to be the case until the setpoirdpproached and the Pl terms are

correspondingly diminished. This behaviour issthated in Figure 59.
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Figure 59 - Proportional Limiter Simulation for Latit udinal or Longitudinal Simulation

Without a P-term limit, the simulation airframe cbas a top speed over 28 km/h in
response to a 20m setpoint change (note thatitidatied maximum angle is 0.26
radians (~15 degrees)). With a P-term limit o&Bectively 3 m/s), the maximum

velocity achieved is less than 11 km/h.

6.3.3.2.2. PID Tuning

There was limited time for position hold tuning ishgr the course of this research.
Several values were tested experimentally bef@eitinulation approach described
above was taken. The primary effect of the virgialulation was to demonstrate that
much larger derivative terms could be used fortmoscontrol than had been used for
orientation control. Even from a Ziegler-Nicholsderstanding, this makes sense as the
position time constants are necessarily largerthedlerivative component is directly
proportional to the ultimate period in the Z-N tougimethod. Using larger derivative
terms quickly led to better stability and reasorahbhintenance of positional latitude

and longitude. The airframe still had a tendermcglowly oscillate, but it was bounded

to a small area (approx. a couple meters of dewipind the robot could be relied upon
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to track its position well. For both latitude dodgitude, the gain terms that were
eventually determined to be effective arg: 0.1, K = 0, Ky = 0.2. These are quite
small in comparison with the virtual simulated \egubut they reflect the reality of GPS
uncertainty. Because GPS values can vary significhetween samples, the system
response (overreaction) is minimized through treeaismaller terms. A chart of
sample latitudinal and longitudinal deviation vadem a flight in which position hold
was engaged is shown in Figure 61.

2.5

2

1.5

1

Deviation from Setpoint (m)

0.5 Latitude
0 Longitude
-0.5
4 \
-1.5
1 1001 2001 3001 4001

Figure 60 - Latitude and Longitude Position Hold Daa

It is important to note that the samples for tHi pre being taking at 100Hz and the
total chart area spans about 40 seconds of fliyiterestingly, the robot exhibits
significantly better stability for longitudinal n@enance of position versus latitudinal.
The reasons for this may be a greater degree afawgin the longitude value from the
GPS, variation in responsiveness of the airfrantedxen pitch and roll, or perhaps
external factors such as wind. In any case, #s8lt demonstrates that autonomous

position hold can be achieved with respect to Giifutde and longitude readings.
6.3.3.3. Altitude Hold

6.3.3.3.1. Mathematical Simulation

A similar virtual simulation approach was applied &ltitude hold as had been used for
latitude/longitude hold (see Section 6.3.3.3.1he primary difference between the
other positional degrees of freedom and altitudbas relative thrust (around the hover
point) is the PID output, rather than angle. Othse, the same concepts of

proportional limiting (or PI limiting) (to bound \@xity) and PID limiting (in this case,
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to bound thrust delta) are applied and the same aygpreadsheet setup is arranged. A

plot of a few sample “simulations” is shown in Fig61.

Theoretical Simulation
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Figure 61 - Theoretical Simulation of Altitude HoldPD parameters
Once again, this chart exhibits the importancénefderivative term in achieving
stability; if it is too low, more oscillatory behiawr is to be expected. The proportional
term, on the other hand, determines the aggressganf the response to setpoint
changes and it should be made as large as possthla the constraints of desired

system response.

6.3.3.3.2. PID Tuning

The process for tuning the altitude hold PID waaimgrimarily experimental in nature.
The theoretical simulations applied above suggesttetigthening the derivative term
and this was tested. A number of other tests werformed and a selection of results is

plotted in Figure 62, Figure 63, and Figure 64.
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)
o
N

Figure 62 - Jumbo QBot Altitude Hold Testing (K, = 4, K; = 8)

118



=

©
I

K
=
a
]
S

-29

85
113
141
169
197
225
253
281
309
337
365
393
421

-29.5

-30

-30.5

Altitude

-31

315

-32

= Filtered Value

—Setpoint

Figure 63 - Jumbo QBot Altitude Hold Testing (K, = 4, Ky = 4)
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Figure 64 - Jumbo QBot Altitude Hold Testing (K, = 1, Ky = 1)

These plots all look reasonably similar, but theyndt tell the whole story. The filtered

altitude reading is representative of the statinefairframe but tends to lag behind it to

a significant degree. What is shown in the clartherefore, not the actual

instantaneous altitude of the robot, but rathes\araged indication of its position.

Unfortunately, it falls outside the scope of tresearch to provide a means of

correlating the sensed value to the real stateeobirframe. Observation by the

controller is sufficient to state that, in the heglvalue cases (e.g,k 4) the airframe

would oscillate much more than indicated by thegejvalues. Essentially, the robot

would drop and then surge back up again beforavbeage reflected the degree of the

drop. The lower values saw some up and down anift compensation, but it was much

slower and the filtered values that were captusdteb reflect the real world behaviour.

In the end, the most stable results (from an oles&argtandpoint, at least) were

achieved with values of 1 for both P and D gaimieand this was selected as the final

(roughly) tuned parameter set.

119



6.3.3.4. Full Position Hold
With reasonable values for the position hold Plihgarms corresponding to latitude,
longitude, and height/altitude, the robot was e$be autonomous operation. In a
representative flight, Jumbo QBot was flown off reund to a height around 1.5
meters and then autonomous position hold was edgdgesition hold is, of course,
overlaid on the orientation hold operation and, mvaeabled, the robot performs all
flight operations independently. A plot of the sed values (after processing to
normalize and, where necessary, convert to mefters)the representative flight is

shown in Figure 65.

------- Position Hold Control
Signal

-=-=--Latitude Deviation
from Startpoint {m)

— = Longitude Deviation
from Startpoint {m)

Sensed Altitude {m)

Figure 65 - Position Hold Flight Data

Those values were recorded at 100Hz and this flikn, took over 50s during which
automatic position hold was engaged for more tfase®onds. It represents the first

major achievement in truly independent operatiothefdeveloped MAVS.

6.3.4. Fully Autonomous Flight Plan Execution

Position hold is a sufficient form of fully autonounms operation. When the robot takes
control of its own orientation and position, theattoller and the base station no longer
have any role in its flight. It is truly autonon®un all respects at that point, but it is not
terribly useful. Simple firmware was therefore tbamn to demonstrate mobility by
incrementing position values in a programmable walyis was successfully tested
outdoor via a program that increased desired d#ito 8 meters, hovered briefly, and
then slowly decreased elevation to bring the raogfully back to the ground. Figure
66 shows the data recorded during the flight (afemalization and unit conversion),

along with the status of the control signal engggintonomous operation.
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------- Autonomous
Operation Control
Signal

-==--Latitude Deviation
from Startpoint {m)

~ Longitude Deviation
from Startpoint {m)

——Sensed Altitude {m)

1 1001 2001 3001 4001 5001

Figure 66 - Autonomous Flight Data

Because of the air pressure disturbance near tndy the autonomous landing
involved a bit of bouncing, but the airframe dicertually settle. That problem has
been successfully resolved through indoor tesbagweather and time have limited

further outdoor testing as part of this research.
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7. Discussion

7.1. Results

Most of the results of this research have beenribestalong with the presented data,
but a quick summary is rendered here. At a higlelleétaree quadrotor MAVs (QBotl,
Aragnobot, and Jumbo QBot) have been assembledwibssary electrical,
mechanical, and electro-mechanical components emdajbt to flight readiness. One of
those airframes (Jumbo QBot) was designed frongtbend up and was constructed
entirely as part of this research. A full firmwangte was developed for the 8-bit
processors at the core of QBotl and Aragnobotitichides modules for a number of
different peripherals and sensors. Fully autonasramientation control was
implemented in that firmware such that the robo¢sadle to maintain a given
orientation without any external input. Base stasoftware was created for the
purpose of controlling and testing all three airies. An embedded Linux image was
compiled from online repositories for operationtba Jumbo QBot Gumstix COM; the
build was customized and patches were appliedsareradequate operation of all
desired parts of the system. The 8-bit firmwars parted to Linux and expanded to
include operational components that the more pawsystem enabled (e.g. serial
motor control). Finally, fully autonomous operatiwas achieved on the Jumbo QBot
platform that started with position hold and culated in automated takeoff and

landing.
7.2. Issues

In general, successful operations and correspordiiteghave been discussed and
described herein. Many real world issues have beeountered, however, and a few

will be discussed here to further enhance the jgalatalue of this research.

In the first place, lithium polymer (LiPo) battesienust be handled with great care. No
explosions or fires were caused over the courski®ftudy, but one connector set was
partially melted simply through a momentary laclatiention. Furthermore, LiPo
battery balancing is critical to longevity and erahce of any given pack. 3-cell
batteries were used exclusively for all of therairies involved in this study and it is

important that each cell be charged and dischaajad equal rate to maintain equal
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voltage between the cells. The 8-bit ATMega preceboards, however, used 2 of the
three cells as their primary power source anddhised imbalance over time that
needed to be constantly corrected. Whenever dessibbattery cells should be drawn
upon to power MAV components so that this imbalames be avoided. Finally, one
large battery pack exhibited imbalance without easlsortly after first use. The cells
were rebalanced and the problem ignored, but eaéiyntihe plastic wrapping on the
pack puffed out, indicating near critical failuretbe battery. It was replaced, but the
dangerous situation should have been avoided hyniag the battery as soon as the
first issue was detected.

A significant number of other problems have invalwmmunication. There is an
inherent weakness in digital communication (as gpddo the analog control typically
employed by radio control hobbyists) in that ityigically all or nothing. Either a
command is received correctly, or not at all, asgdbly with some amount of
corruption that renders it entirely different froi® intended value. This can cause all
kinds of havoc for the control of an aircraft withur high-speed rotors spinning in the
air. Checksums were implemented from the hodteéaabot to help ensure accurate
reception, but end-to-end integrity and guarantedivery were not built into the
protocol. For the most part, this has worked soifficient degree, but remote control is

not as robust as might be desired.

Another communication issue has been experiencéddumbo QBot and it involves
the wireless serial link randomly (and without wiag) stopping operation. This has
only happened twice in actual flight but it is @mtly unexplained (it is considered
likely to be a kernel driver issue) and it causefifaane inversion and at least one

broken propeller in both cases.

Safety has been an ongoing concern during then¢eatid development of these
potentially dangerous machines. Of particular eondas been the lack of a failsafe to
disconnect battery power in the event of an eleaitshort, a fire, motor controller
Insanity, or just total loss of control. There veaee incident where such a failsafe
would have been useful as one motor was runnihggatspeed while its propeller was
hitting a rigid wooden surface; the friction almstdrted a fire and the only solution
was to manually pull the battery plug. This widl Addressed in the future through the

addition of a battery interface board that hasriofgion relays that can be triggered
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remotely. It will therefore be possible to cuttbay power from the base station even if

the control board has been damaged or gone crapnme unexpected way.

QBotl and Aragnobot were tested incrementally artiyhtly controlled ways. As
such, crashes rarely happened and no propelleeshweken on those airframes over
the course of this research. Jumbo QBot experieagauch higher rate of destructive
accidents. This is largely due to 2 significartéas: increased complexity of the
design, and a reduction in operator control asraartmus functions were developed.
Among the problems encountered were a faulty seommunication cable, a motor
controller that failed and caught fire, a motor tcoler transistor that went full open
and burned out the motor, and an autonomous ebevatio the ceiling. The aftermath
of events like these is shown in Figure 67. Sofrte@accidents may have been
avoidable, but the pursuit of autonomy with a laagéame hereby comes with two

pieces of advice: 1) be very careful, and 2) stgelon propellers.

Figure 67 - Broken Jumbo QBot Propellers

Finally, battery life is the primary endurance isgar MAVs of this type. Range and
flight duration are greatly determined by the aaaility of lightweight, long-life
batteries. LiPo’s have come a long way in receatry, but to see quadrotor flights
exceeding an hour’s duration with today’s motorsildaequire tripling battery life
with no increased mass. For the purposes of éisisarch, the duration of testing was
continuously constrained by battery life and thatisongoing reality for development
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in this field. A breakthrough in either motor attery technology (or both) will be a

factor in the further commercialization of multitoo MAVS.

7.3. Future Work

In many ways, the outcome of this research has ag@atform for further research.
There is so much that remains to be refined andiszh more that the Jumbo QBot,
especially, is capable of. Future work can be dortake advantage of its extensive
computing power and an array of sensors and attactsncan be tested thanks to its
significant payload capacity. As such, there aamyrthings that follow naturally from

the successful concluding point of this research.

Firstly, the communication framework could be rdfiai switch from clear text to
binary. As the base station has evolved, the camdrtiae has been used less and less
and it now exists almost exclusively for legacys@ss. In addition to binary data
transfer, a more robust integrity system could &eetbped (expanding upon simple
checksum and maybe employing inner and outer chetksor something like that).
Then explicit acknowledgement and automatic rettadd be added to increase

reliability of remote control and status messages.

All of the airframes exhibit some amount of twiteéss that comes from IMU noise. It
would be useful to spend some time analysing thieceoof that noise and trying to
isolate the IMUs from potential sources of distumtalike vibration. Other alternatives
such as filtering of either the IMU input or the tmiooutput could also be explored

(smoothing the motor control could also resultinrmprovement of power efficiency).

Both QBotl and Aragnobot should be capable of inédtdude hold with a decent
rangefinder sensor. Laser or infrared sensorsl@h@utested to find a functional
alternative (or, perhaps, enhancement) to son@suiing a reliable sensor can be
found, further localization could be added to &llhee MAVs by mounting the sensors
to detect objects horizontally and that would alfoy autonomous indoor operation
(e.g. maintaining static position relative to walls

Jumbo QBot already has mounting hardware and #@l@ildSB ports that will allow the
attachment of a 240 degree scanning laser rangefinthat device should be installed
and firmware developed to perform intelligent indoavigation, obstacle avoidance,

and environment mapping.
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The position hold logic obviously works, but itasrrently understood to be
rudimentary. The approach and equations presémtgection 3.4 are acknowledged to
be somewhat basic. A desire for minimal sufficiesbould not supplant a rigorous
approach to engineering and it was only due to tiorestraints that a primarily
experimental approach was taken in this area. Aernomprehensive modelling and
control framework needs to be developed. Furthegtbe control parameters should
be tested and tuned much more extensively and otimtrol methods (such as feed
forward) should be evaluated. It is believed tgbssible to achieve smooth position
hold without the constant oscillations or adjustteerbserved in the current system.

Finally, the base station software should be eitbeorked or set aside in favour of
something more suitable to navigation and flighhe current framework is focused on
PID tuning and evaluation which will become lespariant as the system evolves (PID
tuning should perhaps be moved to a secondary @&# foA more conventional
waypoint planning interface with graphical telemgeiformation should be developed

for more extensive flying.
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8. Conclusion

It can clearly be said that this research has dstrated the construction of a fully
autonomous quad-rotor MAV of non-trivial size (ashd meter from rotor-tip to rotor-
tip and weighing over 2kg), payload capacity (tle¢ically up to 2kg), and computing
power. This was achieved through an evolutionppr@ach that involved a
progression of three physical robots that increasedmplexity and capability at each
stage. Fully autonomous orientation control wagl@mented on all three MAVs and
the final MAV, Jumbo QBot, flew to a height over &nd also implemented
autonomous position control and flight plan exemufirom takeoff to landing. All
theory and control was based on a set of equatiodsnodels that align well with
intuition and that have both the elegance of mihisaéficiency and the validation of
demonstrated effectiveness. The theory, the dpuatnt process, the components, and

the experimental results have been practicallytaacbughly presented herein.

The embedded computer system on Jumbo QBot rurk/a@pable version of the
Linux operating system and the flight program reggionly a small amount of the
available processing power (less than one third)raamory (less than 1%).
Considering this and the available payload capaxditiie flight system, it is evident
that this research has established a platform byoad range of future work, research,

and exploration. The sky is not the limit; it iss§ the beginning.
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10. Appendix A —Video Links

- QBotl Three DOF Test Stand — Tuned PID
0 http://youtu.be/HiIF4AIMh_8

- QBotl Tethered Flight
0 http://youtu.be/mxvZeuJDQTo0

- Aragnobot Indoor Flight
o0 http://youtu.be/oqj76vawkwQ
- Aragnobot Outdoor Flight
0 http://youtu.be/EtJOVmMIToQo
- Introduction to Jumbo QBot
0 http://youtu.be/pgo3tFJHrus
- Jumbo QBot Early Indoor Flight
0 http://youtu.be/Pgh2zNGI2A4
- Jumbo QBot First High Flight
0 http://youtu.be/g4JKEWTOfws
- Jumbo QBot Over 9m Flight
0 http://youtu.be/p-8s4_YoEP4
- Jumbo QBot Autonomous Flight Testing
0 http://youtu.be/HOhsqsCxQUI
- Fully Autonomous Takeoff and Landing
0 http://youtu.be/74n0M5eEJBI
- Improved Autonomous Landing (Indoor)
0 http://youtu.be/dQgLupYWX-s
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