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Abstract 

While much has been written about quadrotor MAV (micro aerial vehicle) theory and 

operation, there is relatively little that communicates the practical steps necessary to 

build, program, and control these complex electromechanical systems.  Research 

abounds that deals with the minutia of control and modelling, but the question of 

minimal sufficiency is left unanswered and unproven on real hardware.  This thesis 

demonstrates that PID control and operational models that are simple in form but 

relevant to real time operations are all that is necessary to achieve stable autonomous 

flight.  Furthermore, it presents a clear and practical approach to the development of real 

flying robots. 

This work describes the construction of three functional MAVs that cover a range of 

size, complexity, and functionality.  Details of airframe structure, component selection, 

firmware and software development, and tuning and testing are all included and they 

provide a reproducible framework for further research. 

The culmination of this effort takes the form of a real physical (not simulation), fully 

autonomous quadrotor MAV of non-trivial mass (greater than 2kg), payload capacity 

(theoretically greater than 2kg), and computing power (running Linux on a processor 

capable of up to 1400 Dhrystone MIPS).  Its successful operation is presented and 

serves to demonstrate the efficacy of the proposed straightforward, minimalist approach 

to design and development.   
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1. Introduction 

1.1. Motivation 

While much has been written about quadrotor theory and operation, there is relatively 

little that communicates the practical steps necessary to build, program, and control 

these complex electromechanical systems.  The goal of this research has been to employ 

uncomplicated but effective mathematical models and basic control systems in the 

development of real physical (not simulation) autonomous quadrotor flying machines of 

non-trivial mass, payload capacity, and computing power.  The corresponding output of 

this research was then to demonstrate a complete and practical approach to building and 

testing fully operational quadrotor robots, from initial system modelling through to fully 

autonomous flight. 

It is understood that, in many ways, this work may appear to cover ground already well 

developed by researchers and private developers.  Much of that work, however, is 

proprietary and what has been published tends to deal with complicated minutia of 

operation and possible improvements to it.  It is proposed here that research sometimes 

must stand upon the collected body of knowledge, distil and reduce it to essential and 

sufficient components, and then present a practical, reproducible application of that 

knowledge to create a reliable platform for further study.  That defines the core of this 

work and its significance to the research community. 

In addition to that, the reality is that quadrotor MAV development is often seen as an 

end to itself; all of the capability and processing of a developed robot is tied up in its 

operation.  The firmware is dedicated to the task of flying and processing avionic 

requirements and it is rarely considered to be a platform for developing further 

capability (e.g. image processing).  In cases where it is, the development infrastructure 

is limited and, of necessity, an adjunct to the main task of flying.  This research has 

instead pursued a goal of MAV operation under Linux.  By doing so, the entire 

capability and development infrastructure of a well-known operating system is made 

available for further research.  Programs can be developed to run on the MAV entirely 

independent of any other firmware, including the flight tasks.  The multi-threaded 

nature of Linux and the power of an embedded computer (not just a microcontroller) 

define the uniqueness and the potential of what this research seeks to demonstrate. 
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1.2. Approach 

In developing any complex system from first principles through to completion, there are 

many paths that could be taken, some longer and some shorter, some involving more 

work and some less.  At the outset, it is difficult to know what challenges will need to 

be overcome, especially when the area of study is relatively novel to the researcher, as 

was the case for this study.  With these considerations in mind, the approach taken was 

an evolutionary one; starting with a light simple airframe and processor on a testing 

stand and culminating in a relatively large and heavy airframe with a complex processor 

(and operating system) in free flight.  In this way, degrees of success could be achieved 

and evaluated on a given system before tackling the greater challenges of the next.  This 

has almost certainly resulted in more total work but is believed to have decreased the 

amount of wasted work that could have been spent wrestling with larger leaps of 

difficulty. 

1.3. Document Structure 

A review of some relevant pieces of current literature is presented immediately 

following this introductory section.  Subsequent to that is a discussion of the theoretical 

models and control systems employed in the development of the flying robots that were 

built.  That section and the ones following it are generally organized to align with the 

evolutionary approach taken; dependence (where one aspect of the system requires 

development of another), complexity/difficulty, and chronology (in that order but 

loosely) have been employed to determine the order.  Following theory, then, is a 

chapter on the selection and implementation of the hardware systems developed 

(including component descriptions and physical parameters).  Next is a presentation of 

the significant parts of the firmware (code running on the embedded processors) and 

base station software (application code running on a PC).  A chapter on testing and 

tuning comes next and it essentially describes the whole of the achieved results for all of 

the systems involved.  To wrap up, there is a chapter discussing the presented results 

which is followed by a final chapter that renders the conclusion and discusses the 

implications.  References and an appendix (containing links to demonstration movies) 

complete the document. 
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2. Literature review 

2.1. Media 

Over the last decade, UAVs have increasingly captured media attention and have taken 

a place of interest for the general population.  Most people are aware of the presence of 

these machines in our modern world but they are generally regarded with an attitude of 

concern and suspicion; their usefulness is in military applications of surveillance, 

spying, and destruction.  If they have any place in civilian life, it is a place of hobbyists 

and fringe technical enthusiasts whose passion may be interesting, but not of real 

practical use.  Around the world, however, media providers and journalists have begun 

to report on a broader base of usefulness and the world is starting to recognize the much 

more significant role these devices are likely to have in future society. 

As early as 2006, the Asian Institute of Technology in Thailand captured a headline 

with their flying robot that was intended for agricultural purposes.  The bold title of the 

article stated “Flying robot helps farmers avoid dangerous chemicals” (Sutharoj, 2006).  

That captures the sentiment behind the mechanization of many human tasks; personal 

health and safety can be a strong motivator for advancing robotic capability and 

increasing machine deployment. 

In 2009, a quadrotor MAV became a news story because of its role in dealing with the 

forest fires that were raging in northern Greece at that time (European Commission, 

2009).  Such a story further highlights the key aspects of what makes multi-rotor MAVs 

so useful: they can be deployed quickly and easily in any situation, they keep people out 

of harm’s way when the aerial situation is dangerous, they can fly when and where 

larger aircraft cannot, and they are inexpensive to operate. 

The areas of application, then, are nearly boundless and it is not only the military that is 

looking for ways to use them in solving common problems.  Police forces are 

increasingly taking an interest in reducing their reliance on expensive conventional 

helicopters in favour of micro alternatives.  One regional police force in Canada has 

integrated drone use into their operations and used a quadrotor MAV last year to find 

$744000 (CAD) worth of illegal marijuana growing in a farmer’s field (Rabyniuk, 

2013). 
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There is also a growing fervour of capitalism that goes along with the increasing 

awareness of applications.  The market potential is part of the reason for the growing 

media interest and for the proliferation of companies pursuing this technology.  A quote 

printed by the National Geographic magazine recently stated “… the civilian market for 

drones – and especially small, low-cost, tactical drones – could soon dwarf military 

sales, which in 2011 totalled more than three billion dollars.” (Horgan, 2013, pp. 125-

128)  This is further emphasized by a report released last year by an American 

aerospace and defence analyst group that generated this headline: “Worldwide UAV 

market to reach more than $94 billion in ten years” ("UAVs", 2012).  The report further 

stated that “UAVs have been the most dynamic growth sector of the world aerospace 

industry this decade” ("UAVs") which again speaks to the relevance and importance of 

this technology in the changing world. 

2.2. Academic Works 

A number of theses and articles have been written about the dynamic control of 

helicopter robots and these have generally been demonstrated with software models 

and/or small prototypes.  A good representative thesis detailing the theory and 

mathematics involved with a quadrotor robot’s construction and its control was 

conducted by J. M. B. Domingues in Portugal (Domingues, 2009).  Domingues’ work 

relied on accelerometer and compass input (magnetometer) for determining robotic state 

and generating corresponding control. He concluded that, even with Kalman filtering, 

signal noise from the motors affected the accelerometers to an unacceptable degree and 

that gyroscopes should be employed to more accurately determine the robot’s state 

(Domingues, 2009, pp. 75-76).  For this reason, all of the IMUs involved with this 

research perform sensor fusion between gyroscopes, accelerometers, and 

magnetometers. 

Domingues’ thesis relied on linearized equations of motion and simple control 

processing; for improvement, he suggested changing the control method to proportional 

derivative (PD) (Domingues, 2009, p. 76).  In fact, PD (and proportional integral 

derivative (PID)) control of a quadrotor robot has been explored by Katie Miller at 

Berkeley (Miller, 2008).  Her conclusion was that linearization of the motion equations 

and control laws was adequate under “perfect” conditions but did not perform well in 

the presence of uncertainty (Miller, 2008, pp. 12-13).  Miller’s suggestion was to 

explore a more accurate non-linear representation of the system while still employing 
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linearized control.  While that is certainly a worthwhile aim, this study has focused on 

linearized equations and PID control, and attempts to show their sufficiency even in 

non-perfect (e.g. outdoor) conditions, at least on a MAV of non-trivial mass. 

A decision to focus on PID control is somewhat contrary to the prevailing theme of 

research.  Many papers have been written on theoretical improvements over PID and 

there is undoubtedly a broad range of potentially better approaches.  For example, a 

paper was published by researchers at the Swiss Federal Institute of Technology in 2004 

in which they attempted to demonstrate that linear quadratic (LQ) control was superior 

to PID for quadrotor applications (Bouabdallah, Noth, & Siegwart, 2004).  In the end, 

the researchers were not able to perform a free flight with LQ control and stated: 

“Contrarily, using the classical approach (PID), the autonomous flight was a success.”  

(Bouabdallah, Noth, & Siegwart, p. 6)  They maintained, however, that the modern LQ 

technique was optimal and “should give better results” (Bouabdallah, Noth, & Siegwart, 

p. 6). 

More recently, another group of researchers tried to enhance basic PID control by 

implementing fuzzy-logic based auto-tuning of the gain parameters (Sangyam, 

Laohapiengsak, Chonghcharoen, & Nilkhamhang, 2010).  The approach they advocated 

was never tested on a real system and all of their analysis relied on simulation (it is 

worth noting that a quadrotor MAV in flight is extremely difficult to model completely; 

the paper doesn’t discuss the nature or quality of the simulation).  Nevertheless, they did 

determine that fuzzy auto-tuning can yield an improvement over static PID in the case 

of changing system parameters and an example they used is a sudden increase of 

payload by 7kg (from a starting point of 0.5 kg).  That should be considered an 

extremely improbable scenario as there are very few (possibly zero for purely academic 

use) quadrotor UAVs that could support a 7kg payload at all, much less one that 

dynamically changes by that amount.  Regardless, the following statement is made of 

both conventional PID and fuzzy based auto-tuning PID: “both control methodologies 

are capable of handling external disturbance force.”  (Sangyam, Laohapiengsak, 

Chonghcharoen, & Nilkhamhang, 2010, p. 531) 

As there is a trend in seeking improvement over PID, there is a corresponding trend in 

demonstrating improvement by simulation.   Dierks and Jagannathan (2010) published a 

comprehensive article on performing quadrotor control using neural networks.  Their 

paper is thorough and instructive but the control description alone is extremely complex 
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and the only results obtained were simulated.  Those results do show an improvement 

but this research aims to maintain simplicity of the control algorithms and to 

demonstrate that simplicity as viable for a real, non-simulated system. 

Of course, not all papers written on quadrotor control theory focus on deficiencies of the 

control algorithm.  Salih, Moghavvemi, Mohammed, and Gaeid (2010) published a 

paper in which they presume sufficiency of PID and set about to describe a system of 

quadrotor control around it.  Once again, their results were limited to simulations based 

around simplifying assumptions.  In many ways, however, their paper sets out a 

framework of equations and approach similar to that utilized for this research.  Where 

they stopped at simulation, this study validates by practical application. 

Beyond the control system, there is also published research tackling the modeling issues 

for quadrotor aerial vehicles (some of which were flagged by the Miller paper 

referenced earlier).  The majority of the system nonlinearities are small enough in 

relative terms to be consistently removed by the general body of research (e.g. rotor 

gyroscopic effect).  There are cases, however, where researchers have attempted to 

analyze the significant non-linear contributors.  Sanca, Alsina, and Cerqueira (2008), for 

example, examined saturation and deadzone nonlinearities as well as aerodynamics and 

moments in axial flight.  As others have done, they performed all of their analysis 

through simulation and found the effects of these issues to be measurable.  A study of 

those results suggests, however, that while the added complexity is probably needed for 

better simulation, it is not really worthwhile for a sensor-equipped robot.  This is 

because the deviations they found in simulation were small enough that they won’t 

significantly impact real flight on a robot able to detect accumulated error.  For 

example, they present a graph that shows accumulated error in modeled height during 

ascent to be around 40 meters over 300 m total (the linear model suggests 300m while 

the more accurate model reflects around 260 m) (Sanca, Alsina, & Cerqueira, 2008, p. 

148); the altitude sensors on a real flying robot have much better accuracy than that. 

Having determined that simulation results will not be the primary pursuit of this 

research, it is worth noting that practical endeavor has its own pitfalls.  For example, a 

relevant thesis in this area was undertaken by M.D. Schmidt at the University of 

Kentucky in 2011 (Schmidt, 2011).  Schmidt contended that other quadrotor UAV 

research projects did not utilize the broad systems approach to design and 

implementation whereas his did with the expressed goals of robustness and ease of 
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control.  That is similar to the goals pursued by this research, but ultimately Schmidt’s 

success was limited by component failures and a lack of resources.  These are critical 

concerns for MAV development as these machines are complex electro-mechanical 

systems comprised of costly and relatively fragile parts.  Every care in the course of this 

research has been taken to avoid damage and manage provided resources. 

The goal of non-trivial mass and non-trivial payload capacity represents yet another 

departure from mainstream pursuit.  Pounds, Mahoney, and Corke (2010) state that 

most quadrotor robots used for research are limited to a few hundred grams of payload 

capacity and then they go on to say: 

“In the commercial sphere, several groups announced plans to market 4-6 kg devices, 
but these did not manifest in products, whereas numerous examples of sub-2 kg craft are 
now readily available. The rarity of quadrotor UAVs larger than 3 kg can be attributed 
to the numerous design challenges encountered as the weight of the vehicle increases, 
and to the attendant engineering rigour that must be exercised to safeguard 
proportionally more fragile hardware.” (Pounds, Mahoney, & Corke, p. 692) 

Their paper ultimately presents the successful flight of their 4kg airframe to a height of 

2 m.  It also maintained stable hover for 10 seconds without pilot correction (Pounds, 

Mahoney, & Corke, p. 22). 

Although this research doesn’t pursue a MAV exceeding 3kg, it does seek to present the 

successful development of a quadrotor robot with a mass well over 2kg and having a 

total weight plus payload capacity theoretically greater than 4kg.  In addition, its flight 

goals are to exceed 9 meters of altitude and maintain consistent hover attitude at all 

times. 
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3. Modelling and Control Methods 

A quadrotor MAV is a highly non-linear system that is subject to significant external 

sources of disturbance and influence.  It is inherently under-actuated, having six degrees 

of freedom (three of orientation and three of position), but only four actuators (the 

motors).  It is made up of mechanical, electrical, and software components that must 

continuously and reliably interact over tiny amounts of real time to keep the machine in 

the air and under control.  It does this despite having been comprised of parts that 

exhibit varying (and variable) delays, parts that cause interference (mechanical, 

electrical, electromagnetic), other parts that respond negatively to the introduced 

interference, parts that bend (but hopefully never break), pieces that are unbalanced, and 

bits that are unaccounted for.  The full characterisation of such a system would involve 

an immense amount of analysis, modelling, and computation.  It is possible, however, to 

reduce the state space of the problem of quadrotor MAV flight dramatically by making 

simplifying assumptions that reduce the perceived complexity while still accurately 

reflecting the greatest part of the dynamics and interactions involved.  To be clear, this 

research has endeavoured to achieve autonomous stable controlled flight using a set of 

modelling equations and control approaches that are beautiful not only for their 

simplicity but also for their efficacy. 

3.1. Quadrotor Model 

3.1.1. Coordinate Frames and Variables 

The most basic quadrotor design involves four motors that are placed at each end of 

either a real or virtual arm arranged in the shape of a plus sign.  Each motor is 

equidistant from the centre and from the two motors nearest it.  In this way, motor 

symmetry is achieved and then the goal is to achieve similar symmetry with the rest of 

the components, arranging and distributing them to ensure balance and maintain the 

centre of gravity at the effective centre of the cross structure.  A simple representation 

of the model is shown in Figure 1. 
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Figure 1 - Mathematical Model of Basic Quadrotor 

Having established motor position at the ends of the cross frame, it is important to 

identify coordinate systems.  In the first place, there is the body frame which is 

coincident with the airframe itself, has its origin at the centre (defined as the midpoint 

between the motors and on the same plane as them), and moves with the airframe as it 

changes position.  Because of that relative nature of the body frame (from within it, the 

airframe is not seen to move; only its orientation changes), it is necessary to further 

define a reference or inertial frame that is fixed in space and from which the movement 

of the airframe can be observed and described. 

All of the quadrotor variables of position and orientation can now be defined within 

those coordinate frames.  The body frame is defined such that, for an all zero 

orientation, the x-axis is aligned with one arm and has a positive direction toward motor 

1 (the arbitrarily chosen front or forward direction of the aircraft).  The other motors are 

defined sequentially in a counter-clockwise direction around the airframe such that 

motor 2 is on the left (port) side, motor 3 is aft and motor 4 is on the right (starboard).  

The y-axis is then defined as having a positive value in the starboard direction while the 

z-axis is positive downward (or opposite the direction of motor thrust).  The unit vectors 

for these axes are represented by x̂ , ŷ, and ẑ, respectively. 

The inertial frame is then defined to align with the position of the Earth either at or near 

the point of launch.  The X-axis is aligned with North/South, is positive in the direction 

of North, and has a unit vector represented by X̂ .  The Y-axis runs East/West, points 

positively toward the East, and has a unit vector represented by Ŷ.  Finally, the Z-axis is 

aligned with Up/Down as determined by gravity such that down is the direction of the 

force of gravity exerted by the Earth upon the aircraft (and any observer(s) at or near the 



 
 

10 
 

point of origin).  The unit vector for the Z-axis is represented by Ẑ and is positive in the 

downward direction (i.e. gravity exerts force in the positive direction while motor lift 

thrust is exerted in the negative direction). 

Orientation of the aircraft can then be defined in terms of a triplet of angles that 

represent its rotation around the axes of the body frame.  These angles are known as 

Euler angles and, for an aircraft, are called roll, pitch, and yaw.  The roll angle defines 

the airframe rotation about the x̂  axis and, by the well-known right hand rule, is positive 

when the airframe is tilted to the starboard side and negative when it is tilted to port.  

The pitch angle defines rotation about the ŷ axis and is positive when the aircraft is 

tilted aft (nose up) and negative when tilted forward (nose down).  Yaw, then, is the 

rotation about the ẑ axis and is positive when the aircraft is turned clockwise.  These 

three Euler angles, roll, pitch, and yaw, are represented by the Greek symbols phi (ϕ), 

theta(θ), and psi (ψ) respectively and are sufficient to define the orientation of the 

quadrotor aircraft in all situations of concern for this research (for a quick description of 

the common issue with Euler angles known as Gimbal Lock, see Section 3.1.2). 

The other significant variables of a quadrotor design are then the length of the arms, the 

mass of the airframe, and the rotation of the motors.  Arm length (variable l) affects the 

relationship between thrust of the motors and the resultant torque on the airframe (in 

addition to size and mass, of course).  The motor rotation naturally is the same as rotor 

rotation and therefore is the contributing variable to motor thrust.  Each motor’s rotation 

is described independently by the variables ω1, ω2, ω3, and ω4 where the subscripts 

define the associated motor.  The mass of the airframe is denoted m and is directly 

related to the downward gravitational force on the airframe and the moment of inertia 

seen about the axes of rotation. 

3.1.2. Gimbal Lock 

Euler angles were chosen for orientation description because of their simplicity and 

their direct correlation to human intuition.  When an airframe is observed in flight, it is 

fairly easy to understand its orientation in terms of its roll (tilted left or right), its pitch 

(nose up or down), and its yaw (heading).  The fact that these natural observations can 

also be directly expressed in simple, clean mathematical terms as discovered and proven 

by Euler lends further motivation to their use.  There is, however, a well-known 

problem with using Euler angles for representation of 3-dimensional orientation and it is 

known as gimbal lock.  This issue will not be exhaustively described here, but at a high-
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level, there is an ambiguity (or singularity) of actual orientation that occurs when one 

angle in an Euler sequence is brought into alignment with another angle (i.e. when the 

former angle is +/- 90 degrees).  The singularly exists for all systems that employ Euler 

angles but its manifestation changes with the order in which the rotational angles are 

applied.  For the purposes of this research, yaw is always last in sequence and it is the 

only angle allowed to approach 90 degrees.  Because this research focused on non-

acrobatic flight, the airframe attitude was constrained to limit roll and pitch angles well 

away from 90 degrees. 

It would, of course, have been possible to employ an alternative form of orientation 

representation that did not exhibit the Euler angle limitation.  The most common 

alternative is quaternion representation that employs four values to describe the attitude 

of a body in space.  In so doing, the quaternion approach eliminates the gimbal lock 

problem but it introduces a greater complexity of description (and mathematics) that is 

not easily conceptualized or intuited.  

3.1.3. Body Torque and Thrust 

Given the variables defined above, it is now possible to define the equations that will 

directly affect the orientation of the airframe and its movement in space.  Within the 

overarching goal of simplicity and effectiveness sought for this research, rotation about 

the 3 airframe axes has been assumed to be decoupled.  For example, only the torque 

induced by motors 1 and 3 on the forward and aft arms is considered to affect pitch.  In 

the same way, only motors 2 and 4 contribute to roll torque.  Torque about the ẑ axis 

(yaw torque) is resultant from the rotation of all four motors but is considered to be 

entirely independent of the instantaneous roll and pitch orientation and torques.  With 

these assumptions in place, then, the following equations define roll, pitch, and yaw 

torques experienced by the airframe: 

  (1) 

 

  (2) 

 

  (3) 
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In these equations, τ is torque and the subscripts identify the affected axes; l is the 

length of the arms; b and d are the propeller thrust and drag constants, respectively; ω 

represents the rotational velocity of the motors and the subscripts identify the motor 

number; I is the moment of inertia and has subscripts for correlation to each axis; 

finally, ϕ, θ, and ψ represent roll, pitch, and yaw, respectively, and the superscript 

double dots are understood to identify the second derivative (angular acceleration in this 

case). 

In these equations we see that further simplifying assumptions have been applied.  In 

the first place, the effective torque on the airframe is related to motor speed through the 

use of constants that are considered valid for all angular rates of the propellers (it should 

be noted that the propellers cannot spin in reverse).  This is not strictly the case and it 

has been shown that the static thrust (and drag) of a hovering aircraft does exhibit some 

variation over the range of motor speed (Brandt & Selig, 2011).  In a given range, 

however, it is reasonably accurate to assume a linear relationship between the square of 

the propeller angular rates and the resultant force and torque induced in the airframe.  

Since a non-acrobatic quadrotor MAV generally operates within a narrow range centred 

on hover thrust, this assumption is adequate.  The term ‘static thrust’ is also significant 

as it implies that the airframe velocity (and a corresponding aerodynamic value known 

as the advance ratio) is zero.  It should be apparent that the airframe is intended to 

move, but its peak velocity goal is fairly small and the assumption of static thrust is 

representative of its state in almost all cases. 

The thrust constant then provides the relationship between the square of the motor 

angular rate and the thrust force exerted on the airframe.  The basic equation for this 

constant is shown in (4) where T is the thrust force. 

 
 (4) 

Specifying the thrust constant this way is directly applicable to the problem here, but it 

is actually a reduction of the better known thrust coefficient (CT) that is used in other 

literature.  The thrust coefficient is a constant that also relates squared angular velocity 

to effective thrust, but it is defined independent of air density (ρ) and propeller radius 

(r).  At any given time, propeller radius is a constant and its inclusion in b is obviously 

acceptable.  Air density changes with temperature and pressure and is, therefore, clearly 

not constant, but the variation is considered small enough to be ignored.  The 
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relationship between b and CT can be derived from formulas given by Domingues 

(2009, p. 15) as shown in (5). 

 
 (5) 

If a standard temperature (20 degrees C) and pressure (101325 Pa) are assumed, the air 

density (ρ) is equal to 1.204 kg per cubic meter (Moaveni, 2011, p. 631) and b can then 

be calculated directly from the thrust coefficient and propeller radius. 

The drag constant, d, used here defines a linear ratio between motor torque and the 

square of angular velocity.  This is again a reduction from a better known propeller 

constant: the power coefficient (CP).  Because propeller power (PP) is related to torque 

(τ) as shown in equation (6), the relationship between d and CP can again be derived 

from a corresponding Domingues equation (2009, p. 15), as shown in (7). 

  (6) 

 

 
 (7) 

 

The final equality in (1), (2), and (3) starts with the moment of inertia and correlates the 

torques on the airframe to the resultant acceleration about the three body axes (i.e. 

angular acceleration of roll, pitch, and yaw).  This is another simplification; it doesn’t 

take into account the gyroscopic moment of the spinning propellers or the angular 

dynamic force of the body in motion.  The impact of these effects on the rotation of the 

airframe is considered to be small enough relative to the direct contribution of propeller 

thrust that it is reasonable to omit them from the equation. 

Using the same thrust constant presented above, the equation for total lift thrust (or, 

more accurately, the total thrust exerted on the airframe perpendicular to the plane of 

the body) generated by the rotors is shown below in equation (8). 

  (8) 

 

This total thrust then, combined with the effect of gravity (and wind, when present), 

determines the acceleration and corresponding displacement of the airframe in space.  
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For static hover above the ground, when the airframe is parallel to the ground and 

neither rising nor falling, the total thrust required will equal gravity, as per (9). 

  (9) 

 

3.2. Proportional Integral Derivative (PID) Control  

Having defined assumptions and arrived at basic equations for the forces acting upon 

the airframe, it is now possible to approach control of the aircraft.  For many years 

(since the 1930s in its current form (Åström & Hägglund, 2006, p. v)), the proportional, 

integral, derivative (PID) approach to control has proven effective across systems of 

almost every imaginable type and application.  From systems that are small and agile to 

those immense and ponderous, a PID control system can almost always provide a 

perfectly satisfactory (and sometimes effectively optimal) degree of management.  

Furthermore, a PID approach can often provide an excellent solution for systems that 

lack full characterization, whether that is by intention or by the practical constraints of 

time and equipment.  In this case, it is fair to say that this research focused on an object 

of control (quadrotor MAV) that is not fully characterized and, indeed, that would be 

extremely difficult to characterize fully.  There is also, once again, elements of 

simplicity and correlation to natural intuition that come along with PID control that add 

to its desirability of application in this case. 

The intuitive nature of PID control can be seen from a simple description of its 

behaviour across the three components found in its name, along with the illustrative 

situation of a car’s acceleration control (the accelerator or gas pedal).  The proportional 

control response is, of course, directly related to the deviation between the desired value 

and the current state.  If the difference to the desired value is large, the corresponding 

response is large, if small, the response is small.  In the car illustration, this means the 

accelerator will be pushed harder when an increase of 30km/h is desired versus when an 

increase of only 5km/h is needed. 

The integral term represents an accumulation of control response over time.  If the 

system exhibits a resistance to achieving a desired setting exactly, the integral term will 

accumulate the offset over time and exert a stronger and stronger compensation 

response that corresponds to the delay in reaching the setpoint.  In the scenario of 

controlling a car’s velocity, now consider that the car in question encounters a hill to 
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climb; as it turns upward, the car will decelerate and the proportional component will 

begin to push harder on the accelerator.  In all likelihood, an equilibrium state will be 

achieved somewhere less than the desired value.  A given amount of pressure to achieve 

50 km/h on a level road may only achieve 40km/h on an uphill.  In that case, the 

operator of the vehicle will perceive the deviation from the setpoint over time and will 

increase the displacement of the accelerometer by a growing amount until the setpoint is 

reached once again. 

Finally, the derivative term is used as a check against unbounded increases in the 

control response; it exists as a damper that works against the proportional and integral 

terms to reduce the control strength as the system starts to move.  The derivative can be 

accurately thought of as the velocity of the system response to the control input.  The 

quicker the system begins to move toward its desired setting, the less the PI terms 

should be trying to push it.  This acts as a check against the momentum gained in the 

path from the current state to the desired value and thereby helps to reduce the amount 

(or possibility of) overshoot when the setpoint is reached. 

For the car accelerometer, this means that if the desired setpoint is 100km/h and it is 

currently only at 5, the proportional term will be significant (and the integral term will 

have a large value for accumulation), so the push on the accelerator will be 

correspondingly significant.  If the car is powerful and begins to add 20km/h to its 

velocity every second, the momentum of acceleration will be great enough that, even 

though the force applied to the accelerator was decreased as it approached 100km/h 

(and the proportional amount reached zero at that point), the car would accelerate 

beyond the desired value.  By employing a derivative term, however, the operator 

would factor in the rate of change of velocity and would stop pushing on the pedal 

much sooner, thereby reducing overshoot and achieving a smoother approach to the 

desired value. 

Another way in which PID can be said to be intuitive is in the naturally understood 

nature of the terms with respect to time: the proportional term reflects the present 

difference between desired and actual, the integral term is a response to the 

accumulation of deviation in the past, and the derivative term attempts to anticipate the 

future.  With all three components employed, reaching a specific desired value for the 

system can be achieved with alacrity and finesse. 
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This is how a PID system works in descriptive terms.  Mathematically, the formula is 

well known, but takes several equivalent forms as shown in (10) and (11). 

 
 (10) 

 

 
 (11) 

 

The PID output variable is u(t) while the input is e(t) which is defined as the difference 

between the setpoint (desired) value and the current value at time t.  Equation (10) 

utilizes a universal gain constant (K) that is applied to all terms but then modified by an 

inverse integral constant for the I term (Ti) and a multiplying term for the D term (Td).  

Equation (11) is effectively the same but conceptually different in that it completely 

separates the PID gains from one another (hence Kp, Ki, and Kd). 

The representation of equation (11) was chosen for this work largely because of the 

independence of the PID gain terms expressed therein.  In terms of systems response, 

this is perhaps less intuitive than the alternative because it blurs the time nature of the 

integral and derivative factors.  In any case, this is largely a matter of preference and it 

was deemed more desirable to decouple the factors for application herein. 

A final note on PID control is this: not all terms are necessary at all times.  By changing 

the gain factor to zero, any term may be eliminated.  Although this effectively changes 

the definition of control to some degenerate form that is no longer PID (e.g. it becomes 

PI or PD), it is still nevertheless useful in a dynamic system to consider the possibility 

of dropping and re-introducing terms in response to changing situations.  The control 

approaches for this research always implemented full PID but in several instances the I 

term had a gain of zero.  The primary reason for doing so is that tuning of all three 

terms together can be challenging and often an intermediate approach to a solution 

involves only the proportional and derivative terms.  If the system response was 

acceptable with PD-only, tuning of the I term was left for future endeavour (with the 

expectation that some (possibly insignificant) benefit would always be realized from 

adding it in at some point). 
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3.2.1. PID Tuning 

In some cases, it was clear that all of the PID gain terms were necessary for correct 

operation.  Specifically, the roll and pitch controls require fast achievement of the 

setpoint with minimal overshoot and absolute rejection of static offset (otherwise the 

airframe will drift).  Initial attempts to manually tune the PID gains were made using 

small changes in individual terms and experimentally observing the response. 

Ultimately, however, the effort to iteratively account for all of the system variables and 

nonlinearities was deemed either unlikely to achieve the desired result or to achieve it 

too slowly for practical purposes.  What was desired was a clear and repeatable 

approach to tuning that could be applied to future systems.  The path forward then 

involved a widely used approach to PID tuning called the ultimate cycle method that 

was first developed by John G. Ziegler and Nathaniel B. Nichols (Bolton, 1998, p. 238). 

3.2.1.1. Modified Ziegler-Nichols Ultimate Cycle Tuning 

The primary attraction of the Ziegler-Nichols ultimate cycle method (hereafter referred 

to as Z-N tuning) is twofold: first, it is practical and can be experimentally applied, and 

second, it reduces the PID tuning problem from three variables to two. 

The approach to application of Z-N tuning involves first setting the PID integral and 

derivate terms to zero (i.e. P term only).  Then the proportional term is gradually 

increased until oscillations of constant amplitude are observed.  The proportional gain at 

that point is identified as the ultimate gain (Ku) while the period of oscillation is called 

the ultimate period (Tu).  Tuned PID gain terms are then calculated as shown in 

equations (12), (13), and (14). 

  (12) 

 

 
 (13) 

 

 
 (14) 

 

In theory, this is straightforward, but it quickly became apparent that this was not so 

simple for quadrotor tuning, especially for lightweight airframes, because almost any P-
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term value that had a measurable system effect seemed to cause oscillations of 

increasing magnitude. As the P-term value was slowly increased, the system would 

appear to remain stable until a disturbance occurred; then it would go increasingly 

unstable and it was essentially impossible to define any particular point at which 

constant amplitude oscillations could be said to reliably occur.  This was less true of the 

heavier airframes and also less true when running the motors at higher nominal thrust, 

but a certain degree of instability (and inconsistency) always remained.  Nevertheless, 

for all of the systems developed, some amount of correlation could be found between P-

term only gain and predictable oscillation. 

This, then, became the basis for a modified approach to Z-N tuning.  Rather than 

requiring absolute values for Ku and Tu, both were approximated from experimental 

results.  From those initial numbers, each term was then swept over a range of nearby 

values to determine possible refinement and improvement in system response.  

Altogether, this worked quite well and the results are discussed in chapter 6. 

3.3. Orientation PID Control 

3.3.1. Body Torque 

Having established modelling equations for the quadrotor and identified our control 

approach, it is now possible to present the method of application to the system.  The 

first goal of quadrotor development is attitude/orientation control.  Having this desired 

target and intending to employ PID, it is still necessary to select the parameter that will 

be controlled in the system (the u(t) term in equation (11) must be linked to a physical 

parameter of the system).  Ideally, the association will be as direct as possible between 

the sensed error component (e(t)) and the PID output.  The error and desired terms for 

orientation are obviously with respect to roll, pitch, and yaw.  The natural association 

for effecting a change in those variables is airframe torque.  So then, torque about a 

given axis is associated with the corresponding Euler angle to give the orientation 

control equations seen below. 

 
 (15) 

 

 
 (16) 
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 (17) 

 

The significance of the  ́ (e.g. x ́) in these equations versus the ^ (e.g. x̂) seen associated 

with previous torque equations is that these equations describe desired torque as an 

output of our control approach versus actual torque described previously.  All of the 

outputs and the error term inputs are, of course, a function of time, but the (t) has been 

left off to give cleaner expression.  The error terms are simply the difference, in radians, 

between the desired angle (e.g. 0 for hover) and the actual angle (current attitude of the 

airframe).  The derivative error terms have the characteristic that the desired derivative 

is always zero (when the angle setpoint is achieved, no further angular velocity 

(rotation) is desired) and the error derivative terms can then be further broken down as 

follows: 

  (18) 

 

  (19) 

 

  (20) 

 

The outcome of this is that the derivative terms become simply the negative of the 

angular velocity experienced in the airframe (convenient because this comes directly out 

of orientation sensors). 

All of this comes together such that, at any given point in time, we can calculate the 

desired airframe torques (from desired roll, pitch, yaw, and sensed (actual) roll, pitch, 

yaw, and corresponding angular velocities) and then use the desired total thrust (already 

identified as equal to the gravitational force as per (9) when hovering) to work out the 

necessary motor response. 
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3.3.2. Motor Response 

At this point, we have the following four equations containing the four actuator 

variables of motor response (motor/propeller angular rate ω1-4) as related to the body 

torques and total thrust described above: 

 
 (21) 

 

 
 (22) 

 

 
 (23) 

 

 
 (24) 

 

Solving this equation set for the individual motor rotations gives: 

 
 (25) 

 

 
 (26) 

 

 
 (27) 

 

 
 (28) 

 

There is an obvious pattern in these equations (unsurprisingly): each motor contributes a 

quarter of the total thrust, each contributes a quarter of the total yaw torque (motors 1 

and 3 contribute positively while 2 and 4 are negative), and each contributes half of the 

torque for the axis on which it resides (roll for motors 2 (positive) and 4 (negative), 
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pitch for 1 (positive) and 3 (negative)).  Once again, this aligns well with intuition and it 

can be seen that if everything were ideal, having all of the motors matched in rotation 

would yield no airframe torques on any of roll, pitch, or yaw; the airframe would 

maintain its current orientation perfectly.  In that situation, the total thrust would be the 

sum of the motor thrust and, if the airframe were parallel to the ground (perpendicular to 

the gravity vector), it would either hover or accelerate up or down depending on the 

total thrust’s magnitude relative to gravity. 

It may seem strange that total thrust is included as part of orientation control.  It is true 

that it does not strictly contribute to orientation but is, rather, a part of position control 

as it relates to the up/down degree of freedom for the airframe.  Including it here, 

however, is sensible, because the practical ability to control the airframe relies on the 

simplifying assumptions of linearity around the hover point and the overwhelming 

magnitude of the motor forces as compared to outside disturbances, as discussed in 

Section 3.1.3.  For example, if the motors are off, the theoretical equations would 

suggest that no airframe torques should be observed, but in practical terms the outside 

forces would contribute significantly to changes in airframe attitude in that situation and 

there would be no control.  For orientation control to be practically realizable, the 

motors must be running at a total thrust of some significance. 

3.4. Position PID Control 

The aircraft’s ability to move through space defines the second triplet of its degrees of 

freedom; it can move forward or backward, left or right, and up or down.  Controlling 

its movement up and down is relatively straightforward as the motor actuators are 

generally aligned with that direction (when at or near hover).  The other directions 

present a problem, however, because there are no actuators (motors) generally aligned 

to move the aircraft forward/back or left/right.  This, then, is the reason for quadrotor 

aircraft being described as under-actuated.  Nevertheless, movement of the aircraft 

across space can be achieved simply by tilting it in the desired direction and thereby 

converting some of the motor thrust into a component of lateral directional thrust. 

Determining a quadrotor’s position in (outdoor) space is most easily defined in terms of 

the common navigational references of latitude, longitude, and height. These are fairly 

easily obtained in practice from sensors but there is some difficulty in achieving the 

precision required for autonomous flight.  Latitude and longitude can be determined 

with reasonable precision from standard GPS sensors.  Altitude/height is also available 
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via GPS triangulation, but its accuracy is somewhat less.  For that reason, air pressure 

sensors are typically employed in aircraft; they can detect the ambient atmospheric 

pressure with a high degree of accuracy and that can be converted into an altitude 

reading using standard formulas that are accepted and applied around the world. 

An interesting paper that shows how to derive an accurate equation for altitude from 

pressure was published by the Portland State Aerospace Society (2004).  In it, they 

quickly demonstrate the inadequacy of the isometric equation that is often applied and 

present a better solution and derivation of it.  Ultimately, they present the quality of 

their derivation in light of the known gold standard equation from the CRC handbook 

(1996 edition) and that standard is the one applied for the purposes of this research.  

Equation (29) is taken directly from their paper (Portland State Aerospace Society, p. 

4).  The variable z is altitude in meters while P is determined pressure in pascals. 

  (29) 

 

Whether perfectly achievable or not, the theoretical approach to outdoor position control 

(indoor position control was limited to height during the course of this research) 

presumes a high level of accuracy in the sensed positional state.  At any given instant in 

time the quadrotor’s current position in space is known.  So also are its derivative terms 

of position which correspond to directional velocity in three directions: north, east, and 

down (with each term defining the positive direction of movement; south, west, and up 

are negative).  These parameters then can be directly applied to form PID equations, but 

the decision as to which variable to associate with the PID output needs to be addressed 

first. 

If the principal of most direct correlation were to be applied here as was done for body 

torque when dealing with orientation, the best parameter to associate would probably be 

directional thrust.  Indeed, for height control this is simply and directly done to give a 

thrust offset (from the gravitational or hover thrust) out of the PID equation.  For the 

lateral degrees of freedom, however, it was deemed simplest to directly manipulate the 

orientation variables (roll and pitch) and thereby achieve the translation desired. 

The contribution of yaw to position control would naturally be to provide angular 

influence to the directional components of roll and pitch.  For example, if the aircraft’s 

nose is pointed east, then pitch affects east/west translation; if it is pointed north, pitch 
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affects north/south translation.  To limit the calculations involved, yaw is assumed to be 

always set to zero (causing the airframe to be pointed north) when the quadrotor is 

operating with autonomous position control engaged.  The result is that a positive pitch 

angle will cause a component of thrust force to be applied in the southern direction 

(negative latitude).  A positive roll angle will cause a resultant translational force upon 

the aircraft in the east direction (positive longitude).  These, then, are the positional PID 

equations: 

 
 (30) 

 

 
 (31) 

 

 
 (32) 

 

The d subscript indicates the desired or new setpoint value; lat indicates latitude while 

long indicates longitude and alt indicates altitude; latm and longm then indicate latitude 

in meters and longitude in meters, respectively; finally, north, east, and down are 

subscripts for the velocity values in those directions.  The error terms for latitude and 

longitude in meters are determined according to equations (33) and (34). 

  (33) 

 

  (34) 

 

For testing in Auckland, klat is approximated as 110974.88 meters per degree while klong 

is approximately 89181.55 meters/degree (these values were determined using a web 

based calculator (Computer Support Group, Inc., 2011) and the approximate latitude for 

testing of -36.85399 degrees (which is the latitude of the building wherein most of this 

research was performed)).   

It is not strictly correct to apply a conversion factor for latitude or longitude degrees to 

meters.  This is due to a couple of factors: 1) degrees of latitude (slightly) and longitude 
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(greatly) vary in corresponding distance between the equator and the poles (i.e. 

conversion to meters is not constant but depends on position on the earth), and 2) the 

surface of the earth is curved and translation between two points cannot generally be 

achieved in a straight line.  For these reasons, a proper calculation of distance between 

two GPS points involves the computation of what is known as the great-circle distance 

and a reasonable approximation for short distances would involve the haversine formula 

(Veness, 2012).  Because the distances involved in this study are relatively small (the 

aircraft, for the foreseeable future, is unlikely to travel more than a couple of 

kilometres) it was deemed acceptable to use a constant approximation as the relative 

loss of accuracy is extremely small (compared to GPS inaccuracy, for example). 

The translational force that comes from a change of attitude can be easily worked out 

from simple trigonometry.  As the angle of total thrust changes from zero (straight 

vertical) on either roll or pitch, the corresponding component of lateral thrust will be 

given by the computed tangent of the vertical thrust (which can be assumed to be 

constant and equal to mg, the weight of the quadrotor, when the robot is holding 

position).  This relationship is illustrated using roll in Figure 2. 

 

Figure 2 - Lateral Thrust Illustration 

And the equation for lateral thrust with respect to the roll angle (i.e. eastward thrust) is 

then given in equation (35).  The same approach is applied for northward thrust 

(equation (36)), but the pitch value is negative because a positive pitch angle (nose up) 

when the aircraft is facing north means that the lateral thrust will be oriented southward. 
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  (35) 

 

  (36) 

 

The desired roll angle, pitch angle, and thrust offset outputs of the position PID 

calculations are directly applied to the orientation equations described is Section 3.3 to 

form a comprehensive whole for autonomous flight.  In the simplest application, this is 

demonstrated by position hold; when the aircraft is in flight, it can be told to 

autonomously hold position by setting the desired latitude, longitude, and height to the 

currently sensed values.  More complex autonomous flight patterns are achieved from 

the same starting point (setting the desired position to the current/starting position) and 

then applying increments or offsets according to a programmed pattern. 
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4. MAV Structure Design 

MAVs can be built in all sorts of configurations and from a huge variety of materials 

and components.  This research focused on basic quadrotor configurations with 

propellers parallel to the body frame and providing thrust directly perpendicular to it.  

The studied airframes were all of significant size (more than 0.5 meter across) and 

contained processing power and sufficient sensors to enable fully autonomous 

orientation control; one of them (Jumbo QBot) was also capable of autonomous position 

control.   The components of these developed airframes are described in the following 

sections 

4.1. Mechanical 

Over the course of this research, three complete MAVs were built.  The first was a 

simple structure with no landing gear and no control board protection (it sat exposed on 

the top of the airframe).  The next was a more complete design that was spider-like in 

inspiration and had landing gear and modular construction designed to properly house 

the control board, the battery, and other components.  The final airframe was 

intentionally larger than the other two and was again purpose-built for the components 

and payload it houses and carries. 

4.1.1. Basic Cross Frame (QBot1) 

As this was the first airframe studied in this research, it was dubbed QBot1 (short for 

quadrotor robot 1).  It was developed by another AUT student in the CAD software 

called Solidworks™ and was constructed out of a combination of parts, some of which 

were 3D printed (in AUT’s rapid prototyping facility) and some of which were 

purchased.  Figure 3 shows the mechanical representation of this airframe as it was 

designed in the CAD software. 
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Figure 3 - QBot1 3D CAD Model 

The motor mounts at the end of each arm and the central housing that ties the arms 

together and provides support for the control circuit board were all 3D printed.  The 

arms are made from carbon fibre tubes (often used for building large kites) and all of the 

components are held together by friction and high-strength epoxy.  Figure 3 depicts the 

motor holders as they were originally designed and they worked well for low motor 

speeds.  When this research reached a point that the motors needed to be run at flight 

speed, however, it was seen that the mounts lacked enough rigidity to resist vibration.  

They were redesigned and replaced with reinforced mounts, as discussed in Section 

6.1.2.3.   

The fully assembled airframe with the final motor mounts is shown in Figure 4. 

 

Figure 4 - Assembled QBot1 

The important characteristics of this airframe are shown in Table 1. 

Table 1 - Physical Parameters of QBot1 Airframe 

Arm Length (l) 0.27m 

Assembled mass without battery 660g 
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Assembled mass with battery (g) 1.01 kg 

 

This airframe operated exclusively with plastic 10” EPP-style propellers having a 4.5” 

pitch.  The corresponding thrust and drag constants were calculated using equations (5) 

and (7) with the values for CT (0.1154) and CP (0.0743) given for this propeller in 

Domingues’ (2009, p. 15) work.  The calculated results are shown in Table 2. 

Table 2 - Thrust and Drag Constants for Plastic 10x45 Propellers 

Thrust Constant (b) 0.0000146 kg*m/rad2 

Drag Constant (d) 0.00000038 kg*m2/rad2 

 

4.1.2. Spider-Inspired Airframe (Araqnobot) 

The second airframe used for this research was designed by the same student who had 

created the QBot1 frame.  The new design consisted of a much more extensive central 

housing that would better protect and support the control board and associated 

components.  It was also made in a more modular fashion such that the battery holder 

and control board platform could be removed while leaving the rest of the airframe 

intact.  Consideration was placed on providing proper mounting points for additional 

sensors underneath and at the end of each arm.  In the end, the design took on a spider-

like aspect and the assembled robot was given the name Araqnobot. The original CAD 

design is shown in Figure 5. 

 

Figure 5 - Araqnobot 3D CAD Model 

As with QBot1, this airframe had the central body and motor mounts manufactured on a 

3D printer.  The arms were again made out of tubular carbon fibre and glued in place 

with high-strength epoxy.  The modular circuit board carrier and battery holder were 
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also 3D printed and ultimately held in place by 3mm screws and nuts.  The final 

assembly of the complete MAV is shown in Figure 6. 

 

Figure 6 – Assembled Araqnobot 

The relevant mechanical parameters for this airframe are contained in Table 3. 

Table 3 - Physical Parameters of Araqnobot Airframe 

Arm length (l) 0.265 m 

Assembled mass without battery 780 g 

Assembled mass with battery (g) 1.12 kg 

 

At the outset, this airframe employed the same propellers as QBot1, but a decision was 

eventually made to transition away from plastic propellers and to use carbon-fibre ones 

instead.  They have the same EPP-style shape and design, they are also 10” long and 

have a 4.5” pitch, but they are significantly more rigid and therefore behave closer to 

the ideal assumptions we have made (linear response during flight; not subject to 

significant flapping or distortion).  The thrust and drag constants for this propeller were 

assumed to be the same as those for its plastic counterpart and once flight was achieved 

it was easy to experimentally see that the thrust component, at least, was essentially the 

same.  This is accomplished by using the measured mass of the airframe to work out the 

thrust required to achieve static hover (F=mg, 10.98N in this case); if the thrust being 

computationally applied by the controller is significantly smaller, or greater, then the 

thrust constant must be correspondingly incorrect.  In this case, the calculated thrust 

aligned very well and the previous number was carried forward.  The drag constant is 

much harder to perceive or measure with precision and, for basic yaw control, that 

precision is considered to be unnecessary.  As such, the value determined for the plastic 
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propeller was applied to the carbon-fibre propeller and it yielded reasonable yaw 

control.  The constants so determined are shown in Table 4. 

Table 4 - Thrust and Drag Constants for Carbon-Fibre 10x45 Propellers 

Thrust constant (b) 0.0000146 N per rad2/sec2 

Drag constant (d) 0.00000038 N·m per rad2/sec2 

 

4.1.3. Large Aluminium Airframe (Jumbo QBot) 

The final quadrotor MAV developed entirely as part of this study was nicknamed 

Jumbo QBot.  Its purpose was to move beyond the limited capability of the previous 

airframes and establish a platform of significant payload capacity (both in terms of mass 

and area) and computing power that could be used for research beyond the scope of the 

work described herein (hopefully for years to come).  As a design effort, some 

principles were derived from the previous airframes but otherwise this airframe was to 

be entirely different.  Something borrowed was the concept of hollow arms to house 

wiring and interconnect.  The central and topmost position of the control board was also 

maintained, along with a protective frame for it as had been used on Araqnobot.  Almost 

everything else was different.  Rather that 3D printed nylon and carbon-fibre rods, the 

airframe material was all aluminium.  This kept the airframe light (although heavier 

than the previous structures) and allowed assembly by screws and nuts rather than glue.  

It thereby has the advantage of easier repair and replacement of component pieces.   

Another difference is that Jumbo QBot has no central body but rather relies on two sets 

of square aluminium bolted to the top and bottom of the arms.  One set is placed near 

the centre of the airframe and the other is extended further out on the arms.  These 

components keep the arms in alignment and provide torsional rigidity to the airframe.  

The arms themselves are made from rectangular extruded aluminium which was 

machined to provide access holes and bolt points in the desired locations.  A pair of 

battery clips was incorporated to hold the larger battery by its ends rather than across its 

entire length.  Landing gear is built from simple angled pieces and provided in various 

lengths to allow for the incorporation of larger objects (payload) underneath the 

airframe.  To accommodate some of the foreseen payload, aluminium pieces were 

crafted to allow attachment of a laser scanner or an actuated camera platform.  The 

entire airframe mechanical design was captured in Solidworks™ and is shown in Figure 

7 (with the longest landing gear depicted). 
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Figure 7 – Jumbo QBot 3D CAD Model 

The design was completed as part of this research, but the machining of the pieces was 

accomplished in the mechanical development facility of AUT (by a technician); some of 

the construction was done by hand, but the majority was performed by computer-

numerically-controlled (CNC) machines.  The assembled bare airframe is shown in 

Figure 8 while the fully assembled MAV is shown in Figure 9. 

 

Figure 8 - Jumbo QBot Bare Frame 
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Figure 9 - Assembled Jumbo QBot 

The physical parameters for this completed system are shown in Table 5. 

Table 5 - Physical Parameters of Jumbo QBot Airframe 

Arm length (l) 0.3265 m 

Assembled mass without battery 1.72 kg 

Assembled mass with battery (g) 2.39 kg 

 

This airframe was a platform for significantly larger, more powerful motors, and the 

propellers increased along with them (and are made by a company called Xoar).  

Diameter was increased to 12” while pitch decreased slightly from 4.5 to 4”.  The 

construction material of the new propellers was changed again and this time beech 

wood was selected on the basis of its lightness, rigidity, and ability to withstand damage 

without failing entirely (several of these propellers were damaged over the course of 

this research and almost all of them would still be able to sustain flight, albeit in a 

reduced capacity). 

The lift thrust constant was initially calculated with equation (4), using numbers posted 

on the motor manufacturer’s website (Scorpion Power System Ltd., n.d.) for the Xoar 

propeller.  It was later fine-tuned by experimental observation in the same manner as 

that applied to Araqnobot (stable hover effective lift thrust extrapolated back to thrust 

constant).  The drag constant was approximated with equation (7) (d is equal to 

propeller power divided by propeller angular rate cubed) using the motor 

manufacturer’s power and RPM numbers (Scorpion Power System Ltd.).  This yielded 
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perfectly acceptable performance and Table 6 shows the constants applied in the control 

algorithms. 

Table 6 - Xoar 12x4 Propeller Constants 

Thrust constant (b) 0.000018 kg*m/rad2 

Drag constant (d) 0.00000038 kg*m2/rad2 

 

4.2. Electro-mechanical 

4.2.1. Motors 

The only components of the quadrotor MAV system that convert the control signals 

from the processor board and the electrical potential of the battery into mechanical 

movement are the motors.  Each developed airframe had a different set of small but 

powerful brushless direct current (BLDC) motors.  QBot1 employed MK2832/35 

motors from a German company called Mikrokopter.  Araqnobot used Robbe Roxxy 

2827-35 motors while Jumbo QBot was powered by Scorpion SII-3008-1090KV(V2) 

motors.  A comparison of the significant motor parameters is given in Table 7 (extracted 

from website information ("MK2832/35", 2009) ("Robbe ROXXY 2827-35", 2009) 

(Scorpion Power System, 2013)). 

Table 7 - Motor Comparison 

Parameter MK2832/35 2827-35 SII-3008-1090KV 

Weight ~68g with cable ~69g with cable 100g with cable 

Max continuous current 9A 9A 26A 

Max continuous power 110W 110W 370W 

No-load speed 760 rpm/V 760 rpm/V 1090 rpm / V 

 

It should be noted that the connector cables for the first two motors are quite long as 

compared to the Scorpion motor.  Also, the Mikrokopter and Robbe motors are 

generally presented as appropriate for equivalent use.  This is apparent in the chart as 

the parameters are nearly identical. 
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4.3. Electrical 

There are many electrical components that make up a quadrotor system, from the simple 

(and increasingly tiny) resistors to the complex ARM processor used for processing in 

Jumbo QBot.  The majority of the bits and pieces, the wires and the passive 

components, are necessary for correct operation, but insignificant for the purposes of 

this research.  The major electrical components, however, are discussed in the following 

sections. 

4.3.1. Batteries 

As with motors, different batteries have different applications and there are always 

trade-offs to be made between battery capacity and corresponding mass.  To have some 

consistency between the airframes, though, this research utilized 3-cell Lithium 

Polymer (LiPo) batteries exclusively.  Individual LiPo cell voltage is nominally 

specified at 3.7V (4.2V fully charged) which gives 11.1V (12.6V) total for a 3-cell 

pack.  The original battery used for QBot1 had a capacity of 3300 mAh and a mass of 

260g.  Araqnobot employed 4000mAh battery packs that weighed in at 340 grams.  The 

high current requirements of Jumbo QBot called for a much larger battery and the one 

eventually employed weighed 670 grams and boasted a capacity of 11000 mAh. 

4.3.2. Inertial Measurement Units 

The inertial measurement unit (IMU) is the most critical sensor for quadrotor flight.  In 

reality, IMUs are integrated devices that combine several sensors together, perform 

input filtering and sensor fusion calculations, and provide, at a minimum, useful 

orientation data as output.  Two different types of IMU were employed in the course of 

this research; the UM6 from CH Robotics was used for both QBot1 and Araqnobot 

while the 3DM-GX3®-45 (referred to as LM345 herein) from LORD MicroStrain® was 

used for Jumbo QBot. 

4.3.2.1. CH Robotics UM6 

The UM6 provides basic IMU functionality and contains an accelerometer, a gyroscope, 

and a magnetometer to detect orientation and changes in orientation.  It has an internal 

processor that performs Kalman filtering on the sensor inputs and computes both Euler 

Angles and Quaternion representation.  It also offers the ability to perform filtering over 

GPS values input from an external device, but that feature was never used.  The primary 
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interface to the UM6 device is either SPI or UART and the serial communication can 

run at up to 115200 baud. 

The communication protocol developed by CH Robotics is a fairly straightforward 

packet type that utilizes a fixed recognizable header and checksums for ensuring packet 

integrity in both directions.  Different packet types are then defined for reading and 

writing registers and for an array of commands that provide access to all the necessary 

functionality of the sensor. 

The source code that runs on the internal processor of the UM6 is also open source, 

which would be nice if changes were necessary.  Overall, though, the sensor worked 

very well with no alteration. 

4.3.2.2. LORD MicroStrain® 3DM-GX3®-45 

The LM345 module is an advanced military-grade IMU with an extensive feature list 

including integrated GPS.  It contains (at least) two processors and provides fully fused 

and filtered basic IMU data (derived from accelerometer, gyroscope, and 

magnetometer), as well as a set of computed (estimated) navigational data that is the 

result of a Kalman filter applied to both the IMU sensor data and the GPS module 

updates.  Unprocessed GPS data is also available and these three sources of orientation 

and position data can be programmed independently to provide all of the information a 

mobile platform might desire. 

Communication with the system processor can occur either via USB or serial RS232.  

The LM345 datasheet states that while the USB interface provides superior bandwidth 

(more than the device could theoretically use), it is limited in determinism (regular 

timing of updates) due to the nature of USB infrastructure in a modern processor 

system.  The RS232 interface, on the other hand, can be strictly timed out of the LM345 

and is advised for use in situations where regular deterministic timing is required or 

desired (as is the case for a quadrotor MAV application).  Bandwidth on the RS232 

interface must be actively managed in the system design to ensure that the requested 

data output of the LM345 does not exceed the capability of the interface.  As it happens, 

that overrun situation was encountered in the course of this research and the data rate 

needed to be increased from the default of 115200 baud.  The final data rate selected 

was 960000 baud, not necessarily because that much was needed but because it worked 

well and decreased the amount of time taken for data transfer. 
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The one element not integrated into the LM345 that is necessary for full functionality is 

the GPS antenna.  Both a passive helical antenna and an active puck-style antenna were 

tested and, in open spaces, the performance of each was perfectly acceptable.  It is 

expected, however, that in areas where GPS signal quality is diminished, the active 

antenna would provide better performance but at the cost of added mass (about 50g). 

4.3.3. GPS 

QBot1 was originally fitted with an LS20036 standalone GPS smart antenna module 

from Locosys Technology Inc.  That device is a small form factor completely integrated 

GPS solution with an extensive feature set including the capability to track up to 32 

satellites at a time.  It communicates with a processor via a very basic serial interface (1 

transmit, 1 receive wire) running at 9600bps.  By default, it provides GPS updates at a 

rate of 1 Hz, but it can be programmed to provide them at higher rates, up to 10 Hz.  At 

one point in time, the control board for QBot1 was upgraded and the LS20036 couldn’t 

be transferred intact.  Because outdoor flight was no longer planned for that platform, a 

replacement for the new board wasn’t considered a priority and this component was 

dropped from the design (but could easily be added back in at any point in the future). 

Araqnobot never had a GPS unit, but it has a location reserved on its control board for 

the LS20036, the same as QBot1. 

A standalone GPS module wasn’t included in the design of Jumbo QBot because the 

LM345 provided adequate GPS capability, as described above. 

4.3.4. Wireless Communication 

None of the quadrotor MAVs developed during the course of this study were intended 

to be remotely controlled in the sense commonly used by hobbyists.  As such, standard 

remote control (RC) transmitters and receivers were not employed despite their obvious 

pertinence to this type of endeavour.  Instead, a more conventional model of robotic 

operation was pursued that involved a base station sending commands to the robotic 

platform on an as-needed basis while the robot otherwise operates autonomously.  

Communication from the robot to the base is generally intended to be informational 

only and conveys telemetry and state data that is deemed useful to an operator/observer.  

In that sense, then, all that is needed is a basic digital link between a computer on the 

ground and the robot as it moves around.  This was achieved in the case of all three 

platforms through the use of XBee® modules from Digi International. 
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XBee modules have small processors on them that can generally support a number of 

different protocols and communication paradigms (for example, point-to-point or 

mesh).  This research exclusively used the XBee firmware supporting point-to-point 

communication employing the IEEE 802.15.4 communication standard.  QBot1 and 

Araqnobot both used wire-antenna low power XBee modules than have an indoor range 

of 30m and an outdoor line-of-sight (LOS) range of up to 90m.  Jumbo QBot has two 

sets of long-range modules available.  One set operates at 900 MHz and could 

communicate up to 140m indoor and 3km with LOS outdoor (up to 10km with high-

gain antennas).  The other set operates at 2.4GHz and can reach 1.6km with LOS 

outdoor or up to 90m indoor.  Testing started with the 2.4GHz setup but eventually the 

modules were switched to gain the greater range and avoid interference issues that had 

been encountered at 2.4GHz. 

One of the greatest benefits of using technology like the XBee modules is that all of the 

complications of wireless communication are taken care of by the devices themselves.  

A small amount of initial setup is required, but after that the only interfaces to be dealt 

with are common UART serial ports that communicate end to end as if the intervening 

XBee infrastructure were simple wires.  On the robot, the UART interface is connected 

to the processor (directly for QBot1 and Araqnobot, via USB for Jumbo QBot) and on 

the base station, the paired XBee is connected via a USB dongle that presents a serial 

interface to the operating system.  What is sent serially from the robot is received 

directly by the base station, and vice versa.  This keeps the interfaces and the protocols 

extremely clean and simple; perfect for reliable embedded communication. 

4.3.5. Altitude Sensors 

Three methods of detecting altitude (height above the ground might be more accurate in 

some cases) were explored during this study, each using different hardware.  The first 

method applied indoor was sonar, next was air pressure, and the third for use outdoor 

was GPS.  GPS position sensing has already been discussed and won’t be covered again 

here. 

4.3.5.1. MB1200 Sonar Module 

For sensing distance to the ground, an MB1200 (XL-MaxSonar®-EZ0™) from 

MaxBotix® Inc. was selected.  These devices are small form factor ultrasonic modules 

that operate on a principal of echo location (like bats use).  They have the ability to 

detect objects from 0 to 765 cm away and can theoretically provide distance information 



 
 

38 
 

with 1cm accuracy for objects between 20cm and 765cm.  Their beam width is 

reasonably narrow (about 1.8m across when 1.5m away from an object (e.g. the floor)); 

care would be necessary indoor to ensure clearance from nearby objects (like walls, 

desks, etc.).  The processor interface provided is a reduced-amplitude RS232 that is tied 

to the device power for logic high (i.e. either 5V or 3.3V) and ground for logic low, 

rather than a standard RS232 voltage range (e.g. ±12V).  The device communicates only 

in one direction and, when enabled, sends calculated range information every 99ms at a 

baud rate of 9600.  The protocol is very basic and consists of a known packet 

arrangement (fixed header, trailing carriage return) that gets populated with the variable 

range information (to the nearest object detected).  Its size and simplicity of use make it 

a good choice for MAV application. 

4.3.5.2. Pressure Sensors 

Only Jumbo QBot (to date) employs air pressure sensors to determine altitude.  It 

accomplishes this in the same way that other aircraft do around the world; it obtains an 

ambient air pressure reading and applies a formula (equation (29)) to convert that to 

altitude.  If a reading is taken at the point of takeoff, the relative difference provides the 

effective height of the aircraft above the ground (at least as long as the ground is level 

or the robot stays near the point of launch).  Obtaining pressure readings of sufficient 

accuracy is somewhat challenging and two different pressure sensors were tested during 

this study.  The first one is made by a company called Measurement Specialties and has 

a model number of MS5803-01BA (called just MS5803 hereafter).  The second sensor 

tested is made by Bosch Sensortec and has model number BMP180.  Both of these 

sensors are small and highly capable (although they look quite different physically).  

Their major attributes are summarized for side-by-side comparison in Table 8. 

Table 8 - Pressure Sensor Comparison 

Feature MS5803-01BA BMP180 

Operating Pressure Range 300 – 1100 hPa 300-1100 hPa 

Communication Interface I2C and SPI up to 

20MHz 

I2C up to 3.4MHz 

Maximum Output Resolution 0.012 hPa 0.01 hPa 

Absolute Accuracy 

  0-50 °C, 300-1100 hPa 

-1.0 to 1.0 hPa -4.0 to 2.0 hPa 

(-1 +/- 1 hPa Typical) 
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Feature MS5803-01BA BMP180 

Relative Accuracy 

  950…1050 hPa at 25 °C 

Not Listed +/- 0.12 hPa Typical 

Typical RMS Noise 

  Maximum Resolution Setting 

0.012 hPa 0.03 hPa 

 

These values are taken from the datasheets for the MS5803 (Measurement Specialties, 

2013) and the BMP180 (Bosch Sensortec, 2012), respectively.  Although the MS5803 

seems to generally have better operating parameters, the lack of a relative accuracy 

specification was a cause for concern.  In the quadrotor MAV application being studied, 

the relative accuracy was deemed of greater importance and so both sensors have been 

employed and, in practical terms, they have nearly identical performance on the Jumbo 

QBot platform.  In the end, both are being used simultaneously and their data is 

averaged to give an overall improvement in useful observed accuracy. 

Although these modules have processor communication interfaces, they do not directly 

provide pressure data over them.  Instead, the output of internal ADC measurements for 

temperature and pressure are relayed (after appropriate conversion times) and must be 

processed according to the algorithms given by the manufacturer.  Only at the end of 

that processing is the sensed pressure known. 

As a further note on the current application, the interface for the BMP180 is I2C as 

listed, but it was actually determined that the module would be more useful with a USB 

interface so that it could be deployed either on the robot or the base station (to track and 

eliminate the impact of changes in the local barometric pressure).  For that reason, the 

BMP180 is installed on a standalone circuit board with a small processor that does all of 

the I2C processing and subsequent calculation.  The resulting pressure value is then 

relayed over the USB bus as a serial stream with known packet arrangement and 

checksum for maintaining integrity. 

4.3.6. Processors 

4.3.6.1. Atmel® ATmega2560 

Both QBot1 and Araqnobot employ ATmega2560 microcontrollers for all of their 

processing.  As 8-bit processors go, the ATmega2560 is reasonably full-featured and 

has proven an excellent choice for this type of application.  It operates at a maximum 
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frequency of 16MHz and has 256 KB flash memory, 8KB SRAM, and a 4KB 

EEPROM.  In addition, it offers a large array of configurable I/O lines, 6 programmable 

timers (that support PWM output for motor control), 4 UARTs, a 16-channel 10-bit A/D 

converter, and a JTAG interface for programming and in-circuit debugging. 

4.3.6.2. Gumstix® Overo FE Computer on Module 

Gumstix is a company that specializes in making components for tiny intelligent 

systems.  They are perhaps best known for making powerful but tiny computer modules 

that are roughly the size of a stick of gum (and presumably they selected their name 

based on this fact).  For Jumbo QBot, an Overo FE COM was selected (hereafter 

referred to as simply the Gumstix or Gumstix Processor) and it was decided that the full 

embedded Linux operating system would serve as the platform for robotic operation.  

As the use of COM (Computer on Module) in the product name suggests, this is not 

simply a processor.  Rather, it is a full computer system that incorporates processor, 

SRAM, (flash) disk drive, USB I/O, ADC capabilities, and networking and serial 

interfaces.  It has prodigious processing capability and its feature list states that it is 

capable of achieving up to 1400 Dhrystone MIPS (Gumstix, Inc., 2012).  Almost all that 

might be expected of a standalone personal computer is wrapped up in this tiny package 

that’s capable of running Linux, Android™, and other operating systems. 

The relevant high-level features of the Gumstix processor used for this research are 

summarized in Table 9. 

Table 9 - Gumstix Overo FE COM Feature Summary 

Processing Unit Texas Instruments OMAP3530 

Applications Processor 

Processor Architecture ARM Cortex-A8 

Processor Speed 720 MHz 

SDRAM 512MB DDR at 200 MHz 

Flash 512MB built-in; microSD slot for more 

Networking Capability Wifi (IEEE 802.11 b/g) and Bluetooth 

USB Support Native Host port (USB 2.0 high-speed 

only) and On-The-Go port 

Other Serial SPI, I2C, UART (2 available channels) 

PWM Outputs 6 

ADC Channels 6 
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It should be apparent that this processor is in an entirely different class than the Atmel.  

Its USB capability was leveraged to offer even more functionality, and in that way 9 

additional serial UART channels were added and four USB plugs were placed on the 

control board (with the potential to be used for external disk drives, a laser scanner, and 

almost anything else with a standard USB interface).  Similarly, additional ADC 

channels were added on the I2C bus and the total ADC capability on the board was 

increased from 6 to 14. 

4.3.7. Motor Speed Controllers 

Aside from the physical structure (which is important and significant), the only major 

difference between QBot1 and Araqnobot are the motor speed controllers.  These small 

devices are crucial to the effective use of the BLDC motors that actuate the aircraft and 

they are commonly referred to by several terms; electronic speed controllers (ESCs), 

BLDC motor controllers, and motor drivers, to name a few.  The core function of these 

devices is to control the flow of power into a motor such that its speed is regulated in 

accordance with an electronic input signal.  That input signal can theoretically be 

anything, but a digital signal employing pulse width modulation (PWM) is most 

common.  As the name implies, PWM communicates information through the width of 

a digital pulse and this allows a single wire to communicate a control variable between a 

master and slave (communication is unidirectional).  This enables the use of a very 

simple timer-based approach for both driving and sampling the wire in question.  

Common pulse widths for this type of control frequently range from 1ms to 2ms where 

1ms conventionally corresponds to zero throttle while 2ms corresponds to full throttle.  

The specific values and the maximum update rate vary significantly between 

controllers, as does corresponding motor response to the output power. 

Both QBot1 and Araqnobot employed PWM to convey the desired control (motor 

throttle), but, as stated previously, different ESCs were used.  QBot1 used the 

Mikrokopter BL-Ctrl 2.0 while Araqnobot was equipped with the AutoQuad ESC32.  

Jumbo QBot also used the ESC32 but added serial UART communication as an option 

for conveying the motor control update information (it can use either PWM or UART 

but the current default is UART). 
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4.3.7.1. Mikrokopter BL-Ctrl 2.0 

The BL-Ctrl 2.0 is an excellent ESC built around an Atmel ATMega168.  It was 

designed specifically for use with Mikrokopter motors and airframes but offers a broad 

feature set and, thanks to its design intent, is generally a good choice for multi-rotor 

MAV use.  Either PWM or I2C can be used for control updates and the I2C interface 

can also be used for extracting data monitored by the ESC (like temperature and 

voltage).  Only the PWM connection was used on QBot1 (partly because there is no 

direct documentation for the communication protocol; only reference code for a 

Mikrokopter control board). 

4.3.7.2. AutoQuad ESC32 2r1 

The ESC32 from AutoQuad is an extremely powerful but still reasonably priced motor 

controller.  Its central processor contains a 32-bit ARM Cortex core running at 72MHz.  

It boasts I2C, PWM, CAN bus, and UART ports.  The firmware it runs is all open 

source and thereby available for analysis and modification.  When using the UART port 

(or any other bidirectional port, presumably), control information is not limited to motor 

control alone.  The default firmware offers a whole range of control parameters and also 

supports configurable telemetry broadcasts that can be used to provide automatic, 

regular updates of motor information back to the controlling processor (e.g. motor 

RPM, current draw, voltage…). 

One of the most useful features of this ESC (and the developer’s software) is the ability 

for self-calibration and subsequent closed loop operation.  When fitted with a propeller 

and installed on a fixed stand (or on the application airframe that is held in place), the 

software can be used to execute either of 2 calibration routines.  The first is for 

associating voltage to RPM so that the motor controller can explicitly bring the motor to 

a desired rotation.  This is a significant capability because the central controller of a 

MAV generally doesn’t care about throttle and really wants to be able to set motor 

rotation.  Throttle is loosely assumed to be linear across the operating range and can 

thereby be used to approximate the desired rotation, but an explicit indication of RPM 

and the corresponding ability of the motor controller to actively achieve it is a definite 

improvement. 

The second calibration routine is used for current limiting.  In general, the motor 

controller, the motors and other wires and circuitry in a system have limits on the 

amount of current they can handle.  Most motor controllers have built-in worst case 
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assumptions to offer some protection in this regard, but greater efficiencies and 

response times can be achieved through explicit tuning of the motor and propeller set 

being used in a given application.  With this routine, then, the motor controller performs 

a series of motor throttle steps to work out what rate of change and, ultimately, what 

maximum throttle is acceptable for a given current limit.  For example, a direct step 

from 10% throttle to 90% is almost certainly going to exceed any normal current limit.  

The motor controller evaluates this and plots the required steps necessary to move from 

10% to 90% without exceeding the limit. 

With the closed-loop mode parameters calculated and applied, this motor controller 

offers optimal responsiveness and setpoint accuracy.  Moving from PWM to serial 

communication further improves the clarity of the desired setpoint (it is explicitly 

specified, not encoded as a pulse width and then decoded again) while reducing the 

response time (i.e. no 2ms wait for PWM pulse width to be conveyed).  Altogether, this 

controller was easy to work with and offered exceptionally good performance. 
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5. Software and Firmware Design 

There are different definitions (and conceptions) for firmware and software (or at least 

the difference between them) around.  For the purposes of this study, firmware is simply 

defined (delineated) as the code that runs on the embedded robot 

processor/microcontroller while software is defined as the code running on the base 

station PC.  For all three quadrotor MAVs constructed for this research, the firmware 

they run is entirely contained on the robot itself in a non-volatile way.  On startup, they 

contain all of the code necessary for flight and only operational commands are passed 

from the base station to the robot.  In that sense, the delineation is appropriate and can 

be rigorously applied and understood. 

All of the firmware developed as part of this research was written in C.  While the 

structure and approach was largely portable, necessity required the use of Atmel AVR 

primitives that needed to be changed to Linux constructs as development moved to the 

Gumstix platform. 

The base station software applications have been developed for Windows1 (currently 

running on the Windows 7 operating system) and were written entirely in C# using 

Microsoft Visual Studio (2010 Professional and 2012 Ultimate). 

A modular approach to firmware development was employed in developing the code for 

embedding in the quadrotor MAVs.  The intention therein is to place code specific to a 

given peripheral in its own .c (code) and .h (header) files.  The term ‘peripheral’ is used 

here to refer to all components and modules external to the central processing unit (even 

if they reside in the same chip) that require some form of programmed communication 

and control to be employed.  The main processing loop also has its own file pair and it 

pulls in (using include statements) the header files of the peripherals that it uses.  In this 

way, peripherals can be easily added to or dropped from the system and, as the firmware 

infrastructure was ported from one processing system to another, corresponding changes 

to peripheral handling were easily isolated.  In the following sections, the root file name 

of the peripheral code (i.e. filename without extension) is included in parentheses for 

any description pertaining exclusively to that code set (to make the association easier 

for anyone studying this document and the developed code at the same time). 

                                                 
1 Windows is a registered trademark of Microsoft Corporation in the United States and other countries 
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The following parts of this chapter are not intended to fully describe (and certainly not 

to recreate) the code that was written for this project, but rather to call out the major 

functional components and describe them in a useful way. 

5.1. ATmega2560 Firmware 

Development for a simple microcontroller has several decided advantages: 

- What is written and compiled is generally all that will run; there are no other 

software routines vying for processor time 

- Access to the hardware is direct and absolute; there are no intervening redirection 

or security mechanisms 

- Analysis at the processing instruction level is reasonably easy and corresponding 

determinism (outside of interrupts from external sources) can be depended upon 

These factors make a microcontroller like the ATmega2560 an excellent platform for 

the development of firmware targeting robotic applications.  It can be simply and 

directly done with corresponding clarity of operation and responsiveness of the 

controlled system. 

5.1.1. Peripherals 

5.1.1.1. Wireless Communication (uart_XBee) 

The code to interface with the XBee devices is relatively straightforward as it is, from 

the microcontroller point of view, simply UART communication.  As such, the standard 

AVR UART initialization occurs in a routine called XBee_uart_init().  That routine sets 

the port baud rate and it must be the same as the value programmed into the connected 

XBee.  It also initializes the receive channel interrupt and thereby places the 

microcontroller in a ready to receive state. 

Bytes received from the XBee associated UART are stored in a 256-character ring 

buffer.  The interrupt processing routine simply takes each byte received and places it in 

the next ring buffer index.  When the index reaches 255, the next value is 0 which forms 

the ring.  There is no checking of overflow as it is expected that bytes will be extracted 

from the buffer long before 256 could accumulate.  If that ever fails to happen, the 

receive interrupt will simply overwrite data that has not yet been read. 

The other significant functions contained in uart_XBee are a function to indicate how 

many characters (if any) are available in the ring (XBee_uart_bytes_available), and 
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another for outputting a single character at a time (XBee_uart_putchar_printf).  The 

character output function was declared in such a way as to allow association with a C 

file handle.  This is significant because, in this way, the default C output construct, 

stdout, can be directly assigned to the XBee.  That then allowed for simple code 

construction using generic printf statements to be used throughout all other source files. 

5.1.1.2. Attitude Sensor (um6_imu) 

Like the XBee, the UM6 IMU connects to the microcontroller via a UART interface.  

An initialization routine (um6_imu_uart_init) was written to setup the Atmel registers 

for correct operation, including receive interrupt processing.  The exact same type of 

256-byte ring buffer is applied in this case as was used for the XBee. 

Sending information to the UM6 is always accomplished a single character at a time 

through the um6_imu_uart_putchar routine (no printf statements are employed in this 

case). 

The most common interaction with the UM6 involves sending a command sequence 

that initiates the transfer of whatever parameters the device is currently programmed to 

relay.  A standalone function called um6_imu_req_data is used for this request and it 

defines each character of the transmit string explicitly (including header and checksum 

characters). 

Data from the UM6 to the microcontroller can be monitored either via the 

um6_imu_bytes_available routine (when the number of expected bytes is known) or the 

um6_imu_check_input_packet routine (when the incoming packet length is unknown or 

variable).  Depending on the nature (or expectation) of the inbound data, it can be 

processed by several different routines: 

- um6_imu_print_generic_packet will print any received IMU packet of known 

length 

- um6_imu_get_triplet_raw will extract any returned set of 3 integers (most UM6 

IMU information comes in triplets) 

- um6_imu_get_roll_pitch_yaw_degrees will extract and properly scale (to degrees) 

returned UM6 Euler angles of roll, pitch, and yaw 

To allow for the reading and writing of registers and for the posting of commands, three 

additional functions were created: um6_imu_generic_read, um6_imu_generic_write, 

and um6_imu_generic_command, respectively.  Each of these routines will build up and 
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transmit a packet as defined by the UM6 datasheet (CH Robotics, 2013) to accomplish 

the corresponding function. 

5.1.1.3. Sonar Rangefinder (mb1200_sonar) 

The MB1200 sonar module connects to yet another UART port on the ATMega 

microcontroller and the code developed for it uses exactly the same type of initialization 

routine (mb1200_sonar_uart_init).  Apart from the initial sameness, however, it differs 

from the other UART peripherals in several ways: 

- A multiplexer sits between the microcontroller and the physical sonar device.  This 

allows up to 4 sonar modules to be connected at once (although only one can be 

communicating with the microcontroller at a time) 

- The MB1200 only transmits data; it has no ability to receive commands or data 

from the microcontroller 

- The data transmitted by the MB1200 is a set pattern that repeats (when enabled) at 

regular intervals to provide 4-byte updates of range to the nearest object; there is 

no need for a dynamic receive structure (like the ring buffers employed in other 

areas) 

With these characteristics in mind, the code written for the MB1200 provided only two 

external functions beyond mb1200_sonar_uart_init.  One is for initializing the I/O pins 

controlling the multiplexer and for establishing the data structure to receive sonar 

updates.  It is named mb1200_sonar_control_init and it must actually be executed prior 

to mb1200_sonar_uart_init.  The other routine is for enabling the sonar module output 

(mb1200_sonar_enable) and it takes a short integer argument to select between the 

multiplexed candidates. 

5.1.1.4. GPS Module (ls20036_gps) 

A fourth UART on the ATmega2560 was dedicated to the optional GPS module.  

Although this component was never used in flight, it was tested to verify proper 

connectivity and correct circuit board design.  Use of a 256-byte ring buffer, receive 

interrupts, and initialization routine (ls20036_gps_uart_init) are all pretty much the 

same as for the XBee and the UM6.  There were no routines written to parse incoming 

data and only the generic byte count (ls20036_gps_bytes_available) and character pop 

(ls20036_gps_get_next_char) functions are currently provided.  A couple of data stream 

configuration routines were developed to test device configurability and extract useful 

state information; ls20036_gps_gga_rmc_only sets up the LS20036 to transfer two 
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specific blocks of GPS information while ls20036_gps_gsv_only sets up transfer of 

only one (different) block of data.  The definition of the GGA, RMC, and GSV data 

blocks can be found in the LS20036 datasheet (LOCOSYS Technology Inc., 2009). 

5.1.1.5. Analog-to-Digital Converter (adc) 

The ATmega2560 ADC is incorporated into the microcontroller and 7 of its 16 

available channels were connected to monitoring points on the QBot1 and Araqnobot 

control boards.  The seven monitored values included current draw by each of the four 

motors and voltage levels for the 3 cells of the attached LiPo battery.  Initial setup of the 

ADC is accomplished by a basic initialization routine (adc_init) that selects the 

reference voltage (external input), programs the frequency, and enables the completion 

interrupt.  It does not, however, actually start any conversion. 

Although the ATmega2560 ADC has 16 channels, it only operates on one of them at a 

time.  Routines were written that would allow monitoring of a selection of single 

channels: adc_check_motor_current could be used with a motor number integer to 

sample any single motor current; adc_check_7v4 would allow testing of the 7.4 volt 

output of the battery (which was selected because the control board is powered from 

that point).  Alternatively, all seven connected channels could be iterated through using 

the adc_full_loop function.  The sampled values of each channel would be stored in 

corresponding variables and the collective current state could be printed at any time 

using the adc_print_status command. 

5.1.1.6. Motor Control (motor_control) 

For QBot1 and Araqnobot, the motors were controlled entirely through the PWM 

outputs of the ATmega2560.  The configuration of individual pulses is accomplished 

through internal timers that are configured to repeat and to output high or low logic 

signals as various thresholds or limits are encountered.  The initialization of the timers 

is performed by the motor_control_init routine and it sets the starting pulse width 

parameters such that the motors are off.  After initialization, 

motor_control_change_throttle can be used to assign different pulse widths (different 

timer on-to-off thresholds) to a specified motor. 

Those two basic functions provide all that is necessary for the most basic motor control, 

but the motor_control codebase is more extensive than that.  Because the motors 

themselves can be thought of individually as peripherals with different characteristics 

(even motors of the same make and model vary significantly), it was deemed useful to 
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maintain the motor control variables alongside the controller interface code.  From 

there, it also seemed reasonable that the PID code affecting motor control would be 

added, along with the conversion logic from thrust and torque to individual rotation and 

then from rotation to PWM.  Because of the significance of these routines, they are 

discussed in greater detail below. 

5.1.1.6.1. Roll, Pitch, and Yaw PID Control 

Although the code to implement the orientation PIDs is little more than a rendering of 

the theoretical equations, it is included here in its entirety (Figure 10) because of the 

critical role it plays in the operation of the quadrotor MAVs.  This block of code 

illustrates the simplicity and elegance of PID control.  When the sensed information is 

accurate, nothing more than this is required to achieve stable orientation maintenance.  

For the most part, the written lines of C should be self-explanatory but a quick note 

should be made on the role of the yaw adjustment logic (to supplement the comments 

in-line with the code).  For the non-aerobatic MAVs developed and studied by this 

research, only yaw will ever see a deviation from its setpoint that approaches 180 

degrees.  The issue with being oriented 180 degrees (π radians) away from the desired 

value is that there are two possible directions to take in resolving the discrepancy.  This 

can correspondingly lead to indecision or erratic behaviour, especially if the robot has 

some momentum that might carry it from one side of 180 degrees to the other.  The 

solution is to create a band (+/-10 degrees in this case) around 180 degrees within which 

the robot will only move to the setpoint directly (via the shortest path) if it does not 

already have some velocity taking it in the other direction. 
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float motor_control_calculate_PID_rpy (uint8_t select, int current_value, 
int current_desired, float time_interval, int angular_velocity, 
float kp, float ki, float kd) 

{ 

 int current_error; 

 float current_error_scaled; 

 float current_integral; 

 float current_derivative; 

  

 const float conversion_factor_angle = 0.0001917471; 

//This will convert the IMU euler angle output to radians 

 const float conversion_factor_angular_velocity = 0.0010652652; 

//This will convert the IMU angular velocity to rad/s 

  

 float PID_output; 

  

 current_error = current_desired - current_value; 

  

 if (select == 2) { 

  //for now, only yaw will approach 180 degrees 

  if (current_error > 16384) { 

   //we're more than 180 degrees away from desired (which means 

//less than 180 in the opposite dir) 

   if ((current_error > 17294) || (angular_velocity < 0))  { 

    //within 10 degrees of inflection, only flip if we're 

//not moving in the right direction  

    current_error = current_error - 32768; 

   }   

  } 

  else if (current_error < -16384) { 

   if ((current_error < -17294) || (angular_velocity > 0)) { 

    current_error = 32767 + current_error; 

    current_error++; 

   } 

  } 

 }  

 
 current_error_scaled = current_error * conversion_factor_angle; 

   

 current_integral = last_rp_integral[select] + 

                          current_error_scaled * time_interval; 

 current_derivative = angular_velocity * conversion_factor_angular_velocity; 

  

 PID_output = kp * current_error_scaled + 

              ki * current_integral - 

        kd * current_derivative; 

      

 last_rp_integral[select] = current_integral; 

  

 return PID_output; 

} 

 

Figure 10 – C Code for Roll, Pitch, Yaw PID Control 
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5.1.1.6.2. Converting Desired Thrust and PID Control Outputs 

(Torques) to Motor Rotations 

When all of the airframe desired torques have been calculated according to the PID 

parameters and the current orientation of the airframe, it is possible to apply the 

equations given in (25), (26), (27), and (28) to work out the desired angular rate for each 

motor.  Figure 11 shows the code that implements this operation and it should be easy to 

identify the rendering of the equations therein and to see that the theory has been 

implemented directly in practice.  
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Motor_Rotations motor_control_calculate_motor_rotations(float roll_pid_value, 
float pitch_pid_value, float yaw_pid_value, float total_thrust) 

{ 
 float quarter_yaw_scaled, quarter_total_thrust_scaled; 
 float half_quarter_total_thrust_scaled; 
 float half_roll_scaled, half_pitch_scaled; 
 float omega_squared[4]; 
  
 Motor_Rotations calculated_rotation; 
  
 uint8_t idx; 
  
 quarter_yaw_scaled = yaw_pid_value / (4 * drag_constant); 
 quarter_total_thrust_scaled = total_thrust / (4 * thrust_constant); 
 half_quarter_total_thrust_scaled = quarter_total_thrust_scaled / 2; 
 //need to limit the yaw input 
 if (quarter_yaw_scaled > half_quarter_total_thrust_scaled) { 
  quarter_yaw_scaled = half_quarter_total_thrust_scaled; 
 } 
 if (quarter_yaw_scaled < - half_quarter_total_thrust_scaled) { 
  quarter_yaw_scaled = - half_quarter_total_thrust_scaled; 
 } 
 half_roll_scaled = roll_pid_value / (2 * arm_length * thrust_constant); 
 half_pitch_scaled = pitch_pid_value / (2 * arm_length * thrust_constant); 
  
 omega_squared[0] = quarter_total_thrust_scaled + quarter_yaw_scaled + 
                          half_pitch_scaled; 
 omega_squared[2] = quarter_total_thrust_scaled + quarter_yaw_scaled –  
                          half_pitch_scaled; 
 omega_squared[1] = quarter_total_thrust_scaled - quarter_yaw_scaled +  
                          half_roll_scaled; 
 omega_squared[3] = quarter_total_thrust_scaled - quarter_yaw_scaled –  
                          half_roll_scaled; 
  
 for(idx = 0; idx < 4; idx++) { 
  if (omega_squared[idx] < motor_idle_rotation_squared) { 
   //printf("\n\n*****************\nERROR ERROR ERROR ERROR\n 
                     //MOTOR %d WANTS TO STALL\n**************\n\n",idx); 
   calculated_rotation.omega[idx] = 84; 
  } 
  else { 
   calculated_rotation.omega[idx] = sqrt(omega_squared[idx]); 
  } 
 } 
  
 return calculated_rotation;  
} 

 

Figure 11 - Motor Rotation Calculation C Code 

Naturally, there are some practical considerations that needed to be applied and that 

weren’t apparent from the equations alone.  In the first place, the large range of yaw (+/- 

180 degrees is possible) and the smallness of the drag constant contributing to yaw 

torque combined to yield a huge potential impact of yaw on the motor outputs.  For a 

yaw deviation (from the desired value) of any significant magnitude, it was possible to 

see that the yaw factor contribution would effectively shut down two of the motors 

while doubling (or more) the output of the other two.  In theory, that would be 
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acceptable, but in practice, each balanced motor pair needs to operate at a significant 

thrust level in order to maintain balance.  For that reason the impact of thrust on any 

given motor is limited to half of the total thrust that motor is currently intended to 

provide (i.e. yaw compensation can’t cause the motor to drop or increase by more than 

half its current throttle setting). 

The other practical code modification was to put a bound on the lowest possible motor 

angular velocity allowed.  In a purely theoretical application, a motor’s rotation can go 

to zero (and even negative), but real motors will stall at some point above zero 

(somewhere less than but near 84 rad/s in this case) (and they can’t spin backwards 

without wiring modification).  Shutdown in itself might not be too bad if the motor 

response remained consistent.  Unfortunately, starting a BLDC motor from stall can 

take a significant amount of time (extremely inconsistent with normal speed changes) 

and it is, therefore, necessary to prevent stall and limit how slow the motors are allowed 

to go. 

5.1.1.6.3. Motor Rotation to PWM 

The final stage of the motor control process is to convert the motor rotational velocity 

(ω) into a PWM pulse width.  Using the assumption of motor linear response to PWM 

(at least near the operating point), the conversion is straightforward and the 

corresponding C code is shown in Figure 12. 

uint16_t motor_control_convert_rotation_to_pwm(uint8_t motor_num, 
                                               uint16_t rotation_in) 
{ 
 uint16_t calculated_pwm; 
  
 calculated_pwm = motor_rotation_pwm_offset[motor_num] + 
                        rotation_in * motor_rotation_pwm_constant[motor_num]; 
 return calculated_pwm; 
} 

 

Figure 12 - Motor Rotation to PWM Conversion C Code 

What is not shown in the code is the declaration of the motor constants.  For QBot1, 

those had to be worked out experimentally and were different for each motor.  For 

Araqnobot, the ESC32 motor controller was designed to actively seek linear response 

and, after calibration, the corresponding constants were all the same. 
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5.1.2. Communication between Base Station and MAV 

As with other aspects of this research, the communication infrastructure between the 

base station and the robot evolved over time.  The first thing achieved was basic 

communication of status from the MAV to the base station by setting up printf 

statements to output to the XBee by default (as discussed in Section 5.1.1.1).  Having 

printf capability to relay information allowed for a complete range of debugging and 

monitoring statements to be embedded in the firmware.  Throughout the project, that 

remained the only method used for sending dynamic information from the MAV to the 

base.  Some statements use a formatted string for automatic parsing by the receiver, but 

all statements are relayed in clear text with no checksums or other data integrity added. 

That approach was taken because of an original desire to test and debug the robot 

without the need to develop both MAV firmware and base station software 

concurrently.  With clear text updates, all that was needed to interact with the robot was 

a basic text terminal and those are readily available for any PC.  For initial development 

then, robot commands took the form of single characters that were entered on the 

controlling terminal.  The responses were observed by the operator and the firmware 

was gradually expanded.  Eventually it became necessary to relay multi-character 

strings (e.g. motor throttle value) and a packet structure was defined that included 

framing, header characters, and packet length.  That was sufficient for some time but the 

switch from human interaction to real base station software highlighted the need for 

some form of integrity protection on the base station commands.  It was at that point 

that a trailing checksum was added and the base to bot commands then took the form 

shown in Figure 13.  The checksums are automatically enabled by the base station 

software but they can be disabled to allow for the original terminal-mode operation. 

 

Figure 13 - Communication Packet Structure 

The reason that checksums are only enabled one-way is due to the fact that 

communication from the MAV to the base station is only ever informational.  Because 

the machines developed were all intended to operate without external processing, there 

is no reactive computation done on the base station (i.e. there is no case where the base 
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station actively responds to changing state on the robot).  As such then, there is no need 

to protect data relayed from the robot; if the information is corrupted, it cannot cause an 

operational fault and it will generally be corrected with the next status update.  That 

said, there is still some sanity checking done by the system software; informational 

updates are parsed to extract their data and, in some cases, used to change displayed 

information in the GUI.  The parsing routines rely on regular expressions that are 

reasonably targeted (e.g. only a string starting with ‘[status_mci] ’ will be recognized as 

indicating motor controller initialization) and there is, therefore, a corresponding 

measure of protection built in. 

This approach has the advantage of simplicity and clarity for direct human interaction, 

but it does lack the efficiency of binary encoding and the protection scheme is arguably 

weak.  If it were to be designed again, a more robust full duplex packet protocol with 

better data integrity and the option for automatic retransmission would be developed. 

5.1.2.1. Communication Processing Firmware (comm_processing) 

At the outset of this research, all of the communication processing code was placed in 

the main processing loop.  As the communication infrastructure grew, it dominated the 

file and obfuscated the code actually running the MAV.  For that reason, it was 

extracted out and a large communication structure (C typedef) was created to hold all of 

the control parameters that could be updated by the base station.  That structure was 

created as part of the main program and a handle was passed to the functions in 

comm_processing.c.  There are only two significant routines: process_serial_command 

and process_serial_packet.  Each accepts only a single character input because all 

receive communication processing on the MAV is limited to one character at a time; 

this ensures that the processing of large input strings never supersedes the time-critical 

processing of the PID loops. 

The process_serial_command routine is stateless and used for those commands that 

need only a single character to identify the desired response (e.g. ‘m’ indicates that the 

base station is requesting motor initialization).  Process_serial_packet is stateful and 

will accumulate characters matching the packet pattern until the identified length (from 

the header) is achieved.  When checksums are enabled, all communication from the 

base station must be encapsulated in a packet with a valid checksum; single character 

commands are wrapped in the packet structure and, when extracted, processed by the 

process_serial_command function. 
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5.1.3. Main Program Loop 

With all of the ancillary functions modularized, the main processing loop becomes quite 

simple.  A high-level flow chart of its operation is shown in Figure 14. 

 

Figure 14 - Main Processing Loop for ATMega Firmware 

Processing begins by initializing the system components.  This includes executing the 

initialization functions for each of the peripherals, by assigning stdout to the XBee 

UART output, and by starting the master timer (which has variable duration, but was 

always set to 10ms for the purposes of this research).  After that, a free-running loop 

begins that starts by checking for any data that might have been received from the base 

station.  If a byte (character) has been received, it will be processed (either as a packet 

byte or a single character command, depending on the communication state), but only a 

single byte is handled at a time, regardless of how many have been received.  Following 

the communication processing is a check of the master timer.  If it has not yet fired (e.g. 

less than 10ms have passed since the last firing), then the loop will return to the 

beginning and another byte, if one is available, will be processed. 
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When the timer fires, the MAV must be in a state wherein updates are relevant before 

any further processing occurs.  If the base station has not requested perpetual updates 

and the robot is not in automatic throttle (orientation control) mode, nothing happens in 

response to a timer event and the loop begins again.  If, however, either of those 

conditions is met, then there is a consumer of orientation data and the IMU will be 

queried.  If the MAV is performing orientation control, the retrieved orientation data 

will be fed into the orientation PIDs and desired torques will be calculated.  Those 

torque values are then combined and factored to yield the desired rotational velocity for 

each motor.  Finally, the motor angular velocities are converted to PWM pulse widths 

and applied to the motors (via PWM timer updates).  The detailed breakdown of that 

motor control process is given in Section 5.1.1.6.  If automatic throttle control is not 

enabled, then those steps are bypassed, but either way, the logic reaches a point where it 

evaluates the need to update the base station. 

From a desire to limit communication processing and reduce the needed bandwidth for 

the wireless link, updates are not relayed to the base station on every firing of the master 

timer.  They are sent at a configurable reduced rate that currently defaults to once per 

second (or, more accurately, once for every 100 times the master timer has expired).  

That is sufficient for the base station to evaluate current MAV status but requires only a 

small amount of processing overhead and bandwidth.  If the programmed update 

interval has not been reached, no data is sent to the host.  If it has, then current telemetry 

(containing a variety of data that currently includes Euler angles, angular rates, battery 

status, etc.) is relayed over the wireless link.  (For clarity here, this is sufficient to 

convey the concept, but the current firmware actually specifies two intervals:  this 

allows for more frequent updating of variables with greater dynamism (e.g. the Euler 

angles) while still permitting judicious bandwidth management. (Both intervals 

currently default to one second.))  After the programmed data set has been relayed (or 

not), loop processing begins again. 

5.2. Gumstix COM Firmware 

The power of the Gumstix processor comes with overhead.  While it is possible to 

imagine programming directly on the ARM processor without an operating system, the 

effort involved in properly configuring all the aspects of the system (including, for 

example SDRAM timing parameters and flash disk accesses) and then building drivers 

to use the networking modules, USB ports, ADC chip, etc. is simply too great.  That 
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work alone would be a complete research effort and certainly fell outside the goals of 

this study.  Because an operating system was necessary, then, it is understood that it 

would come with issues (at minimum) of competition for CPU resources (in some cases 

from highest priority OS threads) and non-determinism (no guarantees of high-precision 

timing).  A real-time operating system is a possible solution to these issues, but no free, 

well-supported OS of that type is readily available for the Gumstix.  From the possible 

candidates, then, it was considered that, in a minimal configuration at least, Linux 

offered the lowest overhead and best potential for consistent responsiveness. 

5.2.1. Embedded Linux Operating System 

5.2.1.1. Building the Kernel 

The operating system chosen to run on the Gumstix processor of Jumbo QBot is a 

distribution of Linux called Ângström and it is compiled using a build framework called 

OpenEmbedded.  Pre-built images are available for the Gumstix processor, but it was 

considered desirable to build an operating system targeted to this application.  Despite 

the fact that extensive instructions are available for this process on the Internet, it is still 

a challenging endeavour filled with hurdles.   

The process starts with the selection of a build computer.  An x86-based PC running 

Ubuntu 12.04 LTS (long term stability) was selected for this project.  On that machine, 

the environment must be set up to include an array of software packages and tools that 

are required by the OpenEmbedded build process.  With those in place, the desired 

kernel repository is targeted and clones of the current revision developer trees are 

brought local.  The kernel revision of overo-2011.03 from the mainline repository was 

used for this research, along with revision 1.12.0 of the bitbake build environment.   

With the build repository and command infrastructure in place, it is possible to launch 

the command to build the kernel that will be embedded: ‘bitbake omap3-console-

image’.  (Note that there are several kernel images that can be built, but the OS here is 

intended to run on a robot that has no means of displaying a graphical desktop, so the 

console image provides a small and efficient kernel intended for headless operation.) 

That bitbake command will hopefully work without further intervention (as intended), 

but several hiccups were encountered at the time it was executed for the Jumbo QBot 

development.  In the first place, the build process does rely on some standard code 

being available on the executing machine.  All of the required code was present on the 
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build machine used, but not all of it had the same revision as expected.  As a result, the 

referring file (specifically: org.openembedded.dev/conf/distro/include/angstrom-2008-

preferred-versions.inc) needed to be changed.  Further along the process, Internet fetch 

issues were encountered.  In addition to code being referenced on the build machine, 

most of the kernel-in-progress is built from code repositories on the Internet.  Some of 

those repositories were either down or relocated (perhaps temporarily) and a number of 

times, the source code had to be manually retrieved.  Thankfully, the build process did 

eventually complete, but it took several days of shepherding and coaxing. 

The end result is twofold: a compiled kernel image is available for installation on the 

Gumstix, and cross-compilation tools are available on the build computer.  The latter 

point is significant because it enables development and compilation of firmware on a 

PC with all of the processing power and graphical tools that come with it (although the 

Gumstix processor is quick, it’s no match for a modern PC). 

Two relatively short steps follow the kernel compilation and they simply build the files 

necessary for initialization and booting of the kernel on the Gumstix.  With those files 

and the built kernel, everything is ready for installation on a Gumstix file system.  That 

file system was built up on an 8GB Class 10 microSD card according to instructions 

given on the Gumstix development website (the file system has a specific structure and 

format) (Gumstix Inc., 2013).  When the file system is ready and all boot and kernel 

files have been installed on it, it can be placed in the microSD slot on the Gumstix 

processor board. 

The first time the Gumstix boots a new image, it will perform a one-time sequence of 

configuring all installed modules.  That process takes quite a while but when it 

completes, the system will be fully functional and a command prompt will be presented. 

5.2.1.2. Adding Tools to the Kernel 

At this point, all that has been built is a stock image presented exactly as the developers 

defined it.  That could be sufficient, but it is equivalent to a pre-built image that could 

have been downloaded.  It is at this point, then, that modification and tailoring was 

applied for the purposes of this research.  (As a side note, modification and tailoring 

could have been done prior to building the kernel, but it was deemed preferable to test 

and demonstrate a successful build prior to making modifications so that the fault could 

more easily be determined if any should arise.) 
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The first thing that was done for the Jumbo QBot OS was to build into the kernel 

several useful packages that would improve efficiency and usability of the system.  

These included vim (a text editor), screen (a console enhancement), and all the compiler 

tools (to allow development and recompilation on the robot itself).  This is a fairly basic 

modification, but the process is still a bit obfuscated.  First, in the root build directory, a 

new subdirectory must be created that is called ‘user.collection’.  During the build 

process, bitbake searches for files in the local repository (that was originally cloned 

from the developers’ on the web) and it will check the user.collection directory first to 

see if the local user has overridden any of the files it needs.  If it finds a user-defined 

file, it preferentially includes that one and ignores the developers’ clone.  That is exactly 

what was needed here and a copy of the bitbake command file (called a bitbake recipe) 

for the omap3-console-image (built above) was copied over and placed in a parallel 

location (in this case, the copied file becomes user.collection/recipes/images/omap3-

console-image.bb).  That file can now be modified to add or remove high-level 

components of the kernel.  The packages mentioned above were added to the 

“TOOLS_INSTALL” list and the kernel was ready to be rebuilt. 

5.2.1.3. Modifying Kernel Configuration 

With a kernel now running and built with the tools desired, testing of components began 

and it was quickly seen that the default configuration would not quite work for Jumbo 

QBot.  A standard Gumstix release comes with touchscreen capability and a display 

driver enabled (even on the console image).  Those components would never be used on 

Jumbo QBot and they reserve pins on the Gumstix that are needed for serial SPI 

communication.  As a result, the root configuration file (in this case, 

org.openembedded.dev/recipes/linux/linux-omap3/overo/defconfig) needed to be 

modified.  That file defines all of the significant parameterized options for a Gumstix 

application and it can either be modified directly (it is a basic text file), or a new one 

can be created using bitbake (command: “bitbake -c menuconfig virtual/kernel”).  The 

process for doing this (and more) is well documented on the jumpnow website (Ellis, 

2012b).  The end result is that the defconfig file receives two changes: 

- The line containing ‘CONFIG_TOUCHSCREEN_ADS7846=m’ is changed to ‘# 

CONFIG_TOUCHSCREEN_ADS7846 is not set’ 

- The line containing ‘CONFIG_PANEL_LGPHILIPS_LB035Q02=y’ is changed to 

‘# CONFIG_PANEL_LGPHILIPS_LB035Q02 is not set’ 
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When the kernel is rebuilt, the SPI chip selects will be available and the spidev driver 

for them should be automatically loaded on the running system (with corresponding file 

handles: /dev/spidev1.0 and /dev/spidev1.1). 

5.2.1.4. Patching the Kernel 

As the development effort began in earnest on the Gumstix, a few issues were 

encountered that needed to be dealt with.  The 2011.03 revision was originally selected 

because it seemed to be stable and good instructions were available for working with it, 

but it is also being left behind as developers move to newer revisions.  That means that 

although certain problems are known to the development community, they are no longer 

being actively resolved in that stream.  This was the case for 3 encountered problems: 

1. The wifi driver would often stall the boot process for several minutes 

2. The Gumstix ADC Channels 2-6 were inactive 

3. Loading the driver to use the PWM channels would cause a kernel taint message 

to appear 

These problems were all resolved through the use of kernel patch files.  A kernel patch 

is basically a file that describes changes that need to be made to source files in the 

current repository.  It does this through explicit definition of the paths to the files that 

need to be changed and then it specifies line numbers and context lines around the 

desired changes.  In this way, it is ensured that the patch will only be applied to files 

that exactly match the original specification; the whole patch will be rejected if any file 

fails to align with the changes requested.  It is then possible to find patches online that 

have been created by someone in the open source community for the distribution and 

release that is being worked on.  This was the case for the first two issues and the 

corresponding patch files were created/compiled by Scott Ellis and Ben Keane: 

- Wifi issue patch file was named libertas-async-fwload.patch 

o  Linked as part of a Gumstix discussion group thread and compiled from 

patches originally created by community contributor known as 

Donny3000 (Ellis, 2012a) 

- ADC issue patch was named madc-adcin3-6.patch 

o Linked as part of a Gumstix discussion group thread (Keane, 2012) 
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The PWM kernel taint issue was fairly minor, but it was deemed worthwhile to explore 

the manual patch creation process to aid with understanding and thereby potentially 

allow more significant kernel modification in the future. 

The warning stemmed from the fact that the PWM driver that was being used for Jumbo 

QBot had been developed out-of-tree (presumably outside the primary development tree 

for the kernel) and the kernel was incorrectly flagging that with a taint warning.  The 

problem was fixed in a later kernel but required patching in the kernel for Jumbo QBot.  

That later kernel fix is found in a repository update that was written by Ben Hutchings 

(Hutchings, 2011); unfortunately, it couldn’t be applied directly to the source for Jumbo 

QBot, but it did identify the file that needed to be patched (panic.c) and the flag at issue 

(TAINT_OOT_MODULE). 

In the local build directory for this project, the file in question was found here: 

tmp/work/overo-angstrom-linux-gnueabi/linux-omap3-3.2-r103/git/kernel/panic.c.  The 

process for building a patch file (albeit for a different file: board-overo.c) is described 

on the kernel development page already mentioned (Ellis, 2012b).  The process begins 

by copying the file to be modified into a backup location (panic.c-orig).  Then the 

changes are made; for the purposes of this effort, the modification was quite small and 

applied to panic.c as follows: 

- if (flag != TAINT_CRAP && flag != TAINT_WARN && __debug_locks_off()) 

was changed to 

- if (flag != TAINT_CRAP && flag != TAINT_WARN && flag != 

TAINT_OOT_MODULE && __debug_locks_off()) 

After that, a patch file was created using the following git command: 

git diff --no-prefix git/kernel/panic.c git/kernel/panic.c-orig > 

my_pwm_kernel_taint.patch 

At this point, three patch files were ready for application to the kernel.  To include them 

in the build, they were first copied to the directory containing the kernel build recipe: 

org.openembedded.dev/recipes/linux.  Then they were added to the recipe file (linux-

omap3_git.bb) as additional sources by appending them to the SRC_URI variables as 

follows: 

- Before: 

SRC_URI = "git://www.sakoman.com/git/linux-omap-2.6.git;branch=omap-

3.2;protocol=git \ 
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file://defconfig \ 

file://${BOOT_SPLASH} \ 

“ 

- After: 

SRC_URI = "git://www.sakoman.com/git/linux-omap-2.6.git;branch=omap-

3.2;protocol=git \ 

file://defconfig \ 

file://${BOOT_SPLASH} \ 

file://my_pwm_kernel_taint.patch \ 

file://madc-adcin3-6.patch \ 

file://libertas-async-fwload.patch \ 

" 

After a rebuild and installation on the Gumstix COM, the Linux operating system 

finally had all of the tools and functionality needed for Jumbo QBot operation and 

development. 

5.2.2. Porting the Firmware from ATMega to Linux 

With an operating system and corresponding build environment in place, it was possible 

to start developing the embedded firmware that would run on Jumbo QBot.  The first 

task undertaken was to port the C code that had been developed for the ATMega to 

Linux.  Parts of the code that were purely logical (e.g. arithmetic) could be used directly 

and it was only the parts tied directly to hardware (e.g. register writes for component 

initialization) that needed modification.  The modular development approach provided 

easy isolation of those routines and the process, while somewhat time-consuming, was 

reasonably simple. 

In this way, then, the initial firmware structure for the high-powered processor of Jumbo 

QBot was functionally identical to that employed on QBot1 and Araqnobot.  The 

peripherals employed on those earlier airframes could easily be used by the new model 

and in several cases they were.  In the section that follows, there is some redundancy 

with descriptions already given and that ground will not be covered again.  Only the 

differences will be discussed here for the sake of brevity. 

5.2.3. Peripherals 

5.2.3.1. Wireless Communication (XBee) 

Once operational, the functioning of a serial port on Linux is no different than operation 

on a microcontroller.  Of course, a user level program in Linux doesn’t have direct 
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access to hardware registers and everything must be done by system calls.  These are 

easy to employ, however, and any decent serial communication guide for Linux 

describes the process and functions necessary to achieve character communication as 

had been defined for use by this research.  One significant difference that was 

immediately encountered is the necessity in Linux to use file handles for most hardware 

interaction (a file handle is an integer that unambiguously refers to an I/O device).  

Initialization of a device is not the first thing that occurs; instead, the file handle for the 

device must first be requested and then used for all further interactions.  This meant that 

functions needed to be added to the XBee source code that would open the device 

(request the file handle from the OS) prior to first use and then close it again (release the 

file handle) prior to exit. 

The hardware initialization process also had to be changed, but the intent and 

corresponding outcome were exactly the same.  The primary difference is the scope of 

configurability of a serial port in Linux.  The interface presented to a user application is 

the endpoint of a software stack that has developed over time (as opposed to a set of 

basic hardware registers) and now supports an array of functions covering a broad 

spectrum of intervening (between the application and the hardware) capability.  Setting 

baud rate and character framing are directly analogous between the two systems, but 

higher-level aspects of communication exist that must be initialized properly to achieve 

the desired behaviour.  As an example, serial ports in Linux can operate in ‘canonical’ 

mode where information is not relayed until a carriage return or newline is encountered.  

The communication protocol for this research relied on timely byte-by-byte 

communication and therefore initialization of the XBee serial port required ‘non-

canonical’ mode to be explicitly set. 

Because Linux provides its own buffering of serial port data, there was no need for a 

receive ring structure.  The number of bytes in the buffer can be determined in a non-

blocking way from a system call (specifically, the ioctl function was used) and then a 

simple read command is all that’s needed to fetch available data.  There was also no 

need to convert the ATMega UART write routines as Linux inherently supports using 

printf to send data to a serial port file handle.  Nothing more than the reassignment of 

the stdout variable was needed to enable correct handling of all the transmit 

communication statements that were embedded in the code. 
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5.2.3.1.1. XBee as Terminal 

The preceding section defines the model of interaction with the XBee as it was 

originally defined, and it is a reasonable and sufficient model for interaction with an 

XBee as a peripheral.  Linux has the capability, however, of launching a terminal and 

connecting it to a serial port at startup (or thereafter).  This was the model eventually 

employed for Jumbo QBot and it has the advantage of allowing for complete system 

access (including configuration, recompiling, and anything else possible from a 

command terminal) over the wireless link.  When the system boots, then, the base 

station is presented with a Linux login prompt for a command terminal, rather than 

simply the interface for the developed firmware. 

Operating the developed MAV code from within that terminal then means that the XBee 

file handle does not need to be requested from the system.  For receive, it is already 

identified by the STDIN system variable and, for transmit, there is no need to redirect 

STDOUT because the XBee is already the targeted output device.  This has worked well 

and the current firmware reflects the expectation of operating in this mode (but routines 

for the alternative file handle request/reassignment/release approach are still in place). 

5.2.3.2. Attitude and Position Sensor 

The LM345 sensor comes with a complete software development kit (SDK) available 

from the manufacturer’s website.  That kit includes a full range of C code and header 

files that provide access to almost all of the device’s functionality.  Furthermore, it 

includes sample test software for Linux and the corresponding code to setup the Linux 

communication infrastructure to work with the device.  As such, then, most of the effort 

to use this sensor for the purposes of this study involved extracting the needed functions 

and data structures from the SDK and the sample code and then modifying their use (not 

the content) to fit the Jumbo QBot application. 

Using the high-level functions provided by the SDK, the device is initially setup 

according to the manufacturer recommendations (Microstrain, Inc., 2012, pp. 16-19), 

but with slight modification.  The sequence is as follows: 

1. Initialize the interface 

2. Place sensor into idle mode 

3. Setup NAV data-stream format (for data out of the internal navigation 

processor) 
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4. Setup AHRS data-stream format 

5. Setup GPS data-stream format 

6. Enable NAV, AHRS, and GPS data-streams and initialize data processing 

routines for incoming sensor data 

7. Reset the filter 

8. Setup the magnetometer as the heading source 

9. Initialize the filter from the AHRS 

These steps are carried out at the beginning of the Jumbo QBot firmware application 

and after that, the LM345 operates independently to sense its current state and provide 

regular updates for all of the parameters associated with the data-streams.  Default 

update rates were used and the AHRS and NAV information sets are both relayed every 

10ms (100 Hz) while the GPS information is limited to every 250ms (4 Hz).  The data 

handling routines were copied directly from the Microstrain sample code and placed 

into the Jumbo QBot firmware file main.c (which contains the main operational loop).  

They were the only part of the software for this sensor that was modified and the change 

was slight: a global variable indicating completion of incoming packet processing was 

set at the end of each routine.  This allows the main processing loop to reliably detect 

completed sensor updates and then perform its control loop calculations. 

5.2.3.3. Altitude Sensors 

5.2.3.3.1. MS5803 Pressure Sensor (ms_pressure_sensor) 

The MS5803 is connected to the Gumstix COM via its SPI bus and the standard Linux 

SPI driver, spidev, was used to communicate with it.  The manufacturer provides an 

application note on its website (Measurement Specialties, 2011) that includes C code for 

interfacing with and operating the sensor when connected to an Atmel microcontroller 

(which was conveniently familiar).  That code was extracted and modified to work with 

the Linux spi driver, but was effectively unchanged in procedure and processing.  The 

process of translation did, however, highlight one difficulty of this type of re-

application.  Where byte-wise operation was assumed for the Atmel device, it couldn’t 

be made to work on the Gumstix.  It was eventually realized that the difference lies in 

the fact that the Atmel code controls the SPI chip select line external to the read and 

write commands.  As a result, chip select remains asserted for an entire sequence of 

single-byte operations.  The Linux spidev driver, on the other hand, asserts and releases 
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chip select as part of its read and write operation.  Performing single-byte accesses was 

therefore causing incomplete transactions on the SPI bus and nothing worked properly. 

Eventually, the code was successfully adapted and the device began to return 

temperature and pressure values as expected. 

5.2.3.3.2. USB connected BMP180 (usb_bmp180) 

The BMP180 pressure sensor, as it was purchased for this project, has only an I2C 

interface.  Furthermore, it wasn’t originally intended for incorporation onto the robot 

but was rather targeted for the base station (to provide ambient pressure compensation 

over time).  For those reasons, it was assembled onto a small USB interface board that 

contained an Atmel ATMega48 as the primary point of interface and computation.  The 

code written for that small board was technically part of this research effort, but falls 

outside the central topic and is therefore not discussed further here.  What is important 

is that the output of the USB interface is a serial stream of temperature-compensated 16-

bit pressure updates (in pascals).  The Jumbo QBot firmware that interfaces with it then 

includes the following significant functions: 

- usb_bmp180_open obtains the device file descriptor 

- usb_bmp180_init initializes the serial interface 

- usb_bmp180_process_line parses the next line received from the USB module 

- bmp180_calculate calculates altitude and height from current pressure 

5.2.3.3.3. Altitude Sensor Filtering 

Both pressure sensors employed on Jumbo QBot exhibit a large amount of 

instantaneous noise on the sensed pressure (and corresponding calculated altitude).  The 

obvious solution to that problem is to smooth out the readings and provide a more stable 

altitude reading by applying some form of low-pass filter.  Selection of the filter and the 

corresponding filter parameters then poses a problem of its own as there is a huge array 

of possible options (and opinions surrounding them).  The ideal filter would be simple 

to implement and effective in filtering unwanted noise while still tracking real changes 

in the sensed value.  There are often trade-offs between those desired characteristics, but 

the approach eventually selected provides a good measure of all.  It is called a 

complementary filter and is based upon the definition of that term given by Shane 

Colton in a presentation entitled ‘The Balance Filter’ (Colton, 2007).  (His presentation 
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is actually an excellent resource that covers some of the popular approaches to sensor 

fusion in a balancing robot application.) 

The filters applied to the two pressure sensors on Jumbo QBot are then both 

implemented in the main processing loop.  Whenever there is an updated pressure 

reading, a (generally small) percentage weighting of the update is summed with the 

remainder percentage (100% total) to give the filtered value.  This is a straightforward 

implementation of a low pass digital filter that correlates well with intuition (a recurring 

theme over the course of this research).  It should be apparent that sudden changes only 

contribute a small amount to the instantaneous value and will be offset by opposing 

sudden changes such as would be seen by high frequency oscillation (or noise).  On the 

other hand, a static value or slowly moving change will be well tracked by the ongoing 

summation. 

The same type of filter is applied to both sensors to give smoothed altitude values.  A 

digital derivative (change divided by time delta since last update) for each sensor is then 

calculated from the smoothed value to give an approximation of vertical velocity.  

Because of the noisy nature of a digital derivative, that velocity value is filtered again 

by the same complementary technique. 

5.2.3.3.4. Pressure Sensor Fusion 

The two pressure sensors connected to Jumbo QBot were eventually combined to 

collectively give a single value for both altitude and vertical velocity.  The approach 

was simple: each contributes 50% of the final values after all other calculations and 

filtering have been completed. 

5.2.4. Analog-to-Digital Converter 

Although test code was written for the AD7998 (which sits on the Gumstix I2C bus) 

and significant effort went into ensuring that the Gumstix built-in ADC channels 

worked (using polling software found online (Ellis, 2012c)), neither capability is 

currently being used in active Jumbo QBot firmware.  The C code is available for 

incorporation into the main firmware program and there are many ways in which it will 

be useful in the future, but it wasn’t ultimately needed for this research. 
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5.2.5. Motor Control (motor_control and motor_scont rol) 

The application of the theoretical equations for working out the orientation PIDs and 

calculating desired motor rotational velocity is exactly the same for Jumbo QBot as for 

QBot1 and Araqnobot.  The details of these critical functions are presented and 

discussed in Section 5.1.1.6 (and contained in the firmware motor_control.c and 

motor_control.h files).  For the first part of Jumbo QBot development, everything was 

kept the same, including the use of PWM.  It was eventually determined, however, that 

the advantages of moving to serial control (e.g. immediate, explicit setting of desired 

rotational velocity) should be seized upon and that the capabilities of the Gumstix COM 

and the ESC32 motor controllers in this area should be utilized. 

Each ESC32 motor controller on Jumbo QBot is attached to a USB serial UART 

channel.  The interaction with the controllers is accomplished by a range of software 

routines and definition files that are provided online (Nesbitt, 2012) and distributed as 

open source software.  The code downloaded for this research is actually the calibration 

routine software, but it provides a great resource for embedded development.  With that 

software infrastructure in place, interface files (esc32.c and esc32.h) were created to 

wrap it all together and set up the environment as desired for Jumbo QBot. 

As each motor controller is initialized (motor_scontrol_open), the corresponding serial 

port is opened and a processing thread is spawned to manage the receive data (the motor 

controllers can be configured to provide telemetry updates at regular intervals).  This is 

done so that the main processing loop doesn’t have to manage incoming data from yet 

another set of information sources.  Instead, independent threads are managed by the 

operating system and each maintains its own set of received telemetry information that 

can be retrieved by the central loop at any time.  Before completing the initialization 

function, communication with the motor controller is tested to ensure that all is well (a 

no-operation command is sent and an acknowledgement must be actively received). 

There are then several functions provided that allow arming (must occur prior to 

starting) (motor_scontrol_arm), starting (motor_scontrol_start), stopping 

(motor_scontrol_stop), and rpm target setting (motor_scontrol_set_rpm) of the motors.  

Telemetry updates can also be initialized at any time (motor_scontrol_start_telemetry) 

but should be stopped prior to exit (to prevent overflowing the UART receive buffer) 

(motor_scontrol_cleanup).  This is more complex and extensive than simple PWM 

setting, but it is also a significant improvement in capability. 
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It is hopefully apparent that the motor_scontrol file-set is not a replacement for 

motor_control.  The motor_control .h and .c files still provide all of the functions (like 

the PID logic) needed to control the motors while motor_scontrol .h and .c simply 

provide the handling routines for serial port interaction. 

5.2.6. Position Calculation Logic 

While the firmware necessary for orientation hold is naturally associated with a 

particular peripheral (the motors (controllers)), the functions related to autonomous 

position tracking are somewhat more difficult to associate.  The output of the position 

hold calculations is a set of Euler angles and not a direct feed to a particular actuator.  

Instead, those Euler angles take the place of manual updates that would come from the 

base station and are applied to make the robot change orientation in a way that will 

move it toward (or keep it at) the desired LLH coordinates. 

For that reason, the code (position_calc) is discussed here.  It is an adjunct to the main 

processing loop, referenced in the same way as peripheral code, but not directly tied to a 

given peripheral’s function.  The role it plays in the fully autonomous operation of 

Jumbo QBot is critical, though, and the core PID function is described below. 

5.2.6.1. LLH PID Calculation 

The LLH PID calculation logic is shown in Figure 15.  The current error is first 

calculated and then, for latitude and longitude, converted to meters.  The integral term is 

updated and then a proportional term limit is applied.  As noted in the comments, the 

application of a P-term limit represents an effective bound on velocity (in the absence of 

an I-term; both would have to be limited if both were used and a velocity restriction is 

desired) which has proved helpful in maintaining control when actually flying.  Finally, 

the PID formula is applied and the resultant output returned.  For latitude and longitude, 

the output is in radians (for pitch and roll, respectively) while for height, the output is a 

thrust offset in Newtons (that will be applied to a static hover value). 

As with the orientation PID calculations, there is no special logic here; the theoretical 

formula has been directly applied and the code shown demonstrates the simplicity and 

clarity of the rendering. 
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float position_calc_PID_llh ( 

 uint8_t select, float p_term_limit, double current_value,  
double current_desired, float time_interval, float velocity, 
float kp, float ki, float kd) 

{ 
 
  float current_error; 

  float current_integral; 

  float current_derivative; 

   
  float p_term; 

  float PID_output; 

 
  current_error = (float) (current_desired - current_value); 

   
  //first, convert degrees to meters 

  switch(select) { 

    case 0: //latitude 

      current_error = current_error * latitude_deg_to_meters; 
      break; 

    case 1: //longitude 

      current_error = current_error * longitude_deg_to_meters; 
      break; 

    default: //height is already in meters 

      break; 

  } 
   
  current_integral = last_llh_integral[select] + current_error * time_interval; 
  current_derivative = velocity; 
   
  //Limiting the p_term means that we can control maximum velocity (for now 

  //assuming that the i-term is 0 - which is the case on April 10, 2013) 

  p_term = kp * current_error; 
  if (p_term < 0) { 

    if (p_term < -p_term_limit) p_term = -p_term_limit; 

  } 
  else { 

    if (p_term > p_term_limit) p_term = p_term_limit; 

  } 
 
  PID_output = p_term + 
               ki * current_integral - 
               kd * current_derivative; 
          
  last_llh_integral[select] = current_integral; 
   
  return PID_output; 

   
} 

 

Figure 15 - LLH PID Calculation for Position Control 

5.2.7. Main Program Loop 

In terms of high-level functionality, the main processing loop for Jumbo QBot is only 

slightly more complex than that employed for QBot1 and Araqnobot.  The macroscopic 

program flow is show in Figure 19. 
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Figure 16 - Jumbo QBot Main Processing Flowchart 

When the program is first launched, it begins by initializing all of the components of the 

system.   This involves opening the device file handles, initializing the I/O (including 



 
 

73 
 

beginning the motor telemetry streams), and setting variables to startup values.  

Something not shown in the flow chart (due to its low-level nature) is that file handles 

for writing telemetry data to disk are also opened.  Telemetry data from all of the 

sensors and the motors is stored in an array of dynamic variables (system memory) 

during flight and then written to disk once the flight completes.  This conceptually 

happens in the background to the main program loop but is useful to understand the 

extent of analysis possible on a platform like this.  In any case, if the exit flag is set by a 

command from the base station, the motor telemetry streams are stopped and then all of 

the file handles, both for devices and disk, are closed before the program exits.  This 

ensures a clean return to the command prompt at the end of execution. 

For as long as the exit flag is not set, the main program will perform a loop similar to 

that seen for the previous MAVs.  First, an input character is processed (if one exists).  

Then the sensors are checked and any updates are processed.  If the LM345 has 

provided a new set of position and orientation data (this currently happens every 10ms), 

then a check occurs to determine if the robot is in fully autonomous flight mode.  If not, 

flow continues normally.  Otherwise, the autonomous program is evaluated to determine 

and apply any required updates to desired position.  (The autonomous update would 

arguably fit more logically within the bounds of automatic-throttle (flight) mode, 

because that is the only time it can be applied.  It is separated out because of its role at a 

level above the usual flight mode; the autonomous operator is a virtual replacement of 

the real operator at the base station.) 

In the case that the base station has requested updates but the robot is not in flight mode, 

the update interval will be directly checked and, if required, current airframe status will 

be relayed over the wireless link.  If the robot is in flight mode, position lock is 

evaluated first.  If position lock is engaged, yaw is set to zero degrees and latitude, 

longitude, and height PIDs are evaluated according to whether they are enabled, or not.  

If latitude lock is enabled, desired pitch will be overridden autonomously; if longitude 

lock is enabled, roll will be overridden; if height lock is enabled, thrust will be 

automatically adjusted.  If no locks are enabled, then the desired orientation remains 

under manual control as dictated by the base station.  (As a side note, latitude and 

longitude locks will only override manual roll and pitch if the LM345 has a valid GPS 

lock.) 
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The orientation PIDs are calculated next to give desired airframe torques.  Those 

torques are converted to motor angular velocities and those values (converted from 

radians/sec to RPM) are communicated over the serial interfaces to the motor 

controllers.  After the motor updates are completed during flight, the base station timer 

interval is evaluated and status is relayed in accordance with programmed settings. 

Every iteration of the main program loop for Jumbo QBot is ended by a thread sleep 

function call.  That sleep time (currently 500μs) is necessary to ensure that the firmware 

program operating on the Gumstix does not dominate the processor and cause a backlog 

of operating system processing.  The concern is that the operating system may then 

degrade processing consistency as it starts to schedule high priority tasks in the middle 

of the execution of critical Jumbo QBot operations.  By behaving in a way that is 

considerate of other OS threads and interrupts, it is believed that the flight program will 

always see a consistent level of CPU access.  This has worked well to date and the 

Gumstix processing is fast enough that the sleep time is inconsequential. 

5.3. Base Station (Windows Application) 

All of the base station software was designed in Microsoft Visual Studio 2010 and 

written in C#.  Using that development suite for this research really highlighted the 

changing reality of GUI development for the modern world.  Where a statement like 

‘this code was written in C#’ used to be sufficient, a graphical application is now as 

much (or more) designed as written; a significant portion of the code is automatically 

generated by the drag-and-drop of design environment components onto a graphical 

framework.  Adding a named event to a designed component then generates a functional 

stub in the source code to which event actions can be added, and it is at that point that a 

developer actually has to write something.  As a result, the development process 

involves a combination of purely graphical design and conventional programming to 

yield a functional whole. 

The base station application that was first developed for QBot1 was directly applicable 

to Araqnobot as well and they are now both controlled by the same software with no 

functional changes between them.  Development for Jumbo QBot took that application 

as the starting point, but it eventually evolved into something more as the need for 

additional controls (for position hold, for example) and functionality was realized.  The 

following section on the original base station will discuss the major components and 
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functionality of the initial GUI application while the subsequent section focuses on the 

enhancements made for Jumbo QBot. 

5.3.1. Controlling Application for QBot1 and Araqno bot 

5.3.1.1. Main GUI 

Figure 17 shows the GUI of the base station application developed for QBot1 and 

Araqnobot. 

 

Figure 17 - Base Station GUI for QBot1 and Araqnobot 

At the bottom left is a window for connecting the application to the serial port 

associated with the wireless transceiver (XBee).  That window functions as a console 

that displays all messages received from the MAV and that sends any characters typed 

into it over the link.  Most of the functionality of the GUI is disabled when no serial 

connection is active because the lack of serial connection implies the lack of a robot to 

receive information. 

Along the left side of the GUI are all of the robot control variables that can be adjusted.  

All of the PID gains can be set here (the GUI includes height control terms that were 

never fully utilized and remain provisional), as can desired orientation, master timer 

period, thrust, and individual motor throttle settings (only usable when not in automatic 

flight mode).  Some of these controls are dynamic (like thrust, orientation, and motor 
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throttle settings) and updates are sent to the MAV as soon as they are changed.  Other 

controls (like PID settings and master timer interval) require the ‘Update QBot’ button 

to be clicked before they will be collectively relayed.  The ‘Query QBot’ button can be 

used to retrieve the current status of the control settings from the robot and the values 

retrieved will be placed in the appropriate GUI boxes (overriding the previous values).  

The sonar button will cause activation of an attached sonar module (if one exists) and 

the MAV will then include sensed height information in its status updates. 

The centre of the GUI has status update control at the top and joystick interface settings 

beneath that.  Much of the box labelled ‘Controller Settings’ is purely informational; it 

was created to monitor all of the available joystick controls (some of which are used and 

labelled accordingly) to determine what values were being seen by the software in 

response to certain movements and button presses.  The most frequently used controller 

for the purposes of this research was a Playstation®3 DualShock® wireless controller 

that provides orientation and movement sensing in addition to conventional thumbstick 

input.  The base station GUI then has a button (Use Gyros) to toggle between these 

input modes and thereby allow the robot to be controlled either by simply tilting the 

controller or by manipulating the thumbsticks (which is the default).  Of course, the 

system can be operated without a controller and one must be actively connected (which 

is a software process, not a physical one) after communication with the MAV has been 

established.  The default controller setting for this research has one thumbstick assigned 

to thrust, another one assigned to roll and pitch (with gyro input an alternative), and 

analog trigger buttons used for yaw. 

Below the central AUT logo are a series of buttons and a macro status box (indicating 

‘Pending Initialization’ in the Figure).  The ‘Initialize Motors’ button will cause the 

MAV to execute its motor initialization routine and arm the motors.  On initial startup, 

the MAV motor controls are not automatically configured (hence, ‘Pending 

Initialization’) and any command that might cause them to begin turning is essentially 

ignored.  This provides a measure of safety that allows for initial sanity checking and 

clearance of the flight area before arming the motors.  Once clicked, the MAV should 

indicate that initialization has been performed and the status box will turn green and 

indicate ‘Armed’.  In that state, the MAV is ready to fly (or, alternatively, to have its 

motors controlled via the manual throttle settings).  The ‘Halt’ button will set all of the 

motors to zero throttle and switch off the automatic throttle (if it was on).  The ‘Engage’ 

button switches on the MAV’s automatic throttle and places it into full flight mode 
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where it will begin using the PIDs to maintain desired orientation.  When that occurs, 

the status box will switch to ‘Starting Motors’ as the MAV spins up the propellers and 

then to ‘Flying’ when the MAV hits desired thrust. 

Informational output is the focus of the right side of the GUI.  Text boxes are provided 

to relay instantaneous motor current and throttle status, battery cell levels, Euler angles, 

and angular rates.  A graphical indicator of height is also included.  Buttons are 

provided to assist with IMU calibration; the ‘Update Position’ button can be used to 

retrieve instantaneous values from the IMU at any time and can thereby be used to 

determine if any sensor drift or loss of reference has occurred.  If the IMU does show 

calibration issues, the ‘Zero Gyros’, ‘Set Accel Ref’, and ‘Set Magnet Ref’ can be 

clicked to calibrate the corresponding internal sensor (assuming that the airframe is 

stationary, level, and pointing North, of course). 

Four arrays to store logged variables from the MAV were incorporated into the GUI for 

post-flight analysis.  The limited memory on QBot1 and Araqnobot only allows for 

about 5 seconds of full rate (100Hz) logging and those MAVs track roll, pitch, and yaw 

by default.  When the ‘Dump Log’ button is clicked, the MAV will transmit its stored 

array and the base station software will then populate its internal values into the 

collection indicated by the Log 0-3 radio buttons.  The Plot button will bring up a 

separate GUI window for data analysis, as described below in Section 5.3.1.2. 

The two large black boxes in the right hand corners of the GUI are used for graphical 

display of dynamic status from the MAV.  The bottom right box will display a plot of 

the Euler angles, each with its own line colour, as they vary over time.  The top right 

box contains a graphical representation of the airframe that will tilt and turn in 

accordance with the indicated orientation from the robot.  When the Euler angles are all 

zero, the airframe is depicted as pointing into the GUI with the observer standing 

directly behind.  The coloured squares at the end of the arms are to indicate the port and 

starboard sides of the airframe while the ‘F’ in the image is located near the nose.  

These visual aids are necessary in an un-shaded symmetric wireframe model because 

the visual representation of an upside down or rotated object can be ambiguous (e.g. 

there is no difference in the 2D rendering of the model between facing directly away 

right side up and facing directly toward but upside down; the ‘F’ is what will indicate 

the inversion). 
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The code to properly render the 3D model is actually all based on Euler angles and 

Euler rotations and it provides an instructive correlation to the theory behind the real 

MAV orientation and the nature of its mathematical rotation in space.  The software to 

accomplish it was all based around some basic Euler rotation code originally developed 

by a user called VCSKicks (VCSKicks, 2007).  He provided source code for a simple 

C# project that would rotate a cube in response to sliders that each represented one 

Euler angle of rotation.  For the purpose of building the base station GUI for this 

research, it formed the starting point, and so the C# namespace for the final application 

is still EulerRotation as defined by VCSKicks in his code. 

5.3.1.2. Log Analysis GUI 

When the “Plot” button is clicked on the main GUI, a subordinate window opens.  

When it first appears, none of the checkboxes will be selected and the text and plot 

windows will be empty.  Figure 18 shows the window as it appears after some options 

are selected.  The plot window on the right hand side is used for quick analysis and 

comparison of the telemetry recorded from the logged flights.  Individual logs can be 

selected for rendering and any combination of roll, pitch, and yaw can be displayed.  

The horizontal dashed line on the display is placed at zero degrees while the vertical 

dashed lines mark every 100th data point (corresponding to 1 second at 100 Hz).  Using 

this facility greatly enhanced the tuning process for the orientation control parameters. 

The text box on the left can be used to selectively extract portions of the recorded 

information for transfer to other programs (e.g. spreadsheet).  Again, the logs can be 

selected independently as can the Euler angles.  When the ‘Go’ button is clicked, the 

text box will be populated with the requested information and it can all be copied to the 

clipboard by pressing the “Copy” button.  When pasted into spreadsheet software as 

space delimited data, it will be allocated into rows and columns that can be analysed 

further. 
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Figure 18 - Base Station Log Analysis GUI for QBot1 and Araqnobot 

5.3.2. Controlling Application for Jumbo QBot 

5.3.2.1. Main GUI 

Figure 19 shows the modified base station application as it was used for Jumbo QBot 

development and operation.  For the most part, it is nearly identical to the original 

version and only significant differences will be described here.  The most obvious 

change is the addition of many more control parameters.  This reflects the positional 

capability that was added to Jumbo QBot which required the addition of PID gain 

factors for latitude, longitude, and height.  To aid with tuning, a group of controls were 

added that enabled the quick calculation and application of Ziegler-Nichols gains 

(discussed in Section 3.2.1.1) to the roll, pitch, and yaw PIDs.  Selection checkboxes 

were added for the position lock degrees of freedom and then buttons were created to 

control the enabling and disabling of those locks.  A series of explicit angle offsets was 

created to compensate for drift issues (largely due to flexing of the airframe when in 

flight versus on the ground) and allow for manual tuning of the hover attitude 

(effectively the same as trim compensation).  The ‘Disable Magnetometer when Flying’ 

checkbox was intended to trigger that function on the MAV (for use when flying near 

sources of significant magnetic interference), but it hasn’t been fully tested and remains 

largely provisional. 

Possibly the most significant addition (in conceptual terms, at least), is the ‘Enable 

Autonomous Flight’ checkbox.  When that is checked and position lock is enabled, the 

MAV will begin executing an internal program to automatically adjust the desired 
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position relative to the starting point (defined as the position of the aircraft at the point 

that position lock is enabled).  In this way, the robot is able to execute a fully 

autonomous flight plan and the base station operator no longer has any direct input to its 

behaviour (control can always be returned to manual be disabling position lock). 

 

Figure 19 - Base Station Main GUI for Jumbo QBot 

The two buttons located at the middle bottom of the GUI are provided to allow the 

launching of the MAV program from the Linux command line (on boot, Jumbo QBot 

presents a console terminal over the wireless interface) and the termination of execution 

(to return to the command prompt). 

Finally, the LM345 orientation and position sensor has different capabilities than the 

IMU that was used for QBot1 and Araqnobot, so the ‘Zero Gyros’ and ‘Set Accel Ref’ 

buttons were removed.  The added ‘Zero Roll Pitch’ button will cause the firmware on 

the robot to automatically work out the angle offsets for roll and pitch.  This means that 

the orientation of the robot at the moment that button is clicked will be computed as 

zero thereafter (similar to ‘Set Accel Ref’ for the previous MAVs). 

5.3.2.2. Log Analysis GUI 

The log analysis GUI for Jumbo QBot represents only an incremental evolution from 

the original design.  It is shown in Figure 20.  The plot window was expanded to 

accommodate the larger amount of data that can be tracked and relayed by Jumbo QBot 
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(which thereby allows more extended analysis).  All of the same buttons and 

checkboxes are available in the new design and only a couple of features have been 

added.  

 

Figure 20 – Base Station Log Analysis GUI for Jumbo QBot 

First is a ‘Scale’ number box that can be used to increase or decrease the magnitude of 

the plotted data points.  Its function is a little different than normal scaling functions of 

this sort; rather than being a multiplier, it is a zoom factor subtracted from 100 and used 

as a divisor for the data points.  A value in the zoom box of 99 will cause the data points 

to be rendered at unity (divide by 1); a value of 0 will cause each to be divided by 100 

before rendering. 

The second added feature is the series of text boxes underneath the plot window.  Those 

boxes will be populated with the average max-to-min and min-to-max interval for each 

of the log arrays for whatever angle is currently selected (e.g. if roll is selected, the first 

box will contain a calculation of the average number of entries between the successive 

inflection points for the roll data in log 1; the second box will contain the calculated 

value for log 2, and so on).  This provides a quick way to evaluate the oscillation period 

for a given waveform (which is useful for PID tuning). 



 
 

82 
 

6. Experimental Results 

The firmware and software developed as part of this research are, unsurprisingly, the 

end result of a vast amount of testing and iteration.  Despite the apparent simplicity, 

many things were tried and explored in the process of developing the operational 

systems that were produced.  Some sensors worked in different ways than expected, 

communication issues were encountered, and even one compiler bug caused issues.  

Beyond the pitfalls of software and hardware development, extensive tuning of control 

parameters was required.  All of this was done on physical systems using real data and 

the details of the process are presented below. 

6.1. QBot1 

The first goal defined for this research was to achieve orientation control of the basic 

QBot1 airframe on a 3 degree-of-freedom (DOF) test stand.  Before the theory of 

operation could be applied and tested, however, each combination of motor, motor 

controller, and propeller required characterization. 

6.1.1. Motor Testing 

The theoretical formulas for orientation control rely on being able to set each motor to a 

known rotational velocity.  Because the motor controllers for QBot1 had no automatic 

calibration capability, each one had to be tested to work out the relationship between 

PWM (throttle setting) and RPM (which can be directly converted to angular velocity).  

This was accomplished through the use of a PowerLog 6S device (made by Shenzen 

Junsi Electronic Co., LTD.) that uses a detector to count interruptions in detected light 

as they are caused by a spinning rotor.  The detector is mounted below the spinning 

blade and a steady light source (not fluorescent) is positioned above.  Then pulse width 

and RPM are logged as the throttle is swept through its operational range. 

As an example, the data for motor 1 was recorded as shown in Table 10: 

Table 10 - RPM to PWM Values for QBot1 Motor1 

RPM 

[rpm] 

Pos. Pulse Width 

[μs] 

960 1200 

1230 1220 
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RPM 

[rpm] 

Pos. Pulse Width 

[μs] 

1365 1240 

1590 1260 

1725 1280 

1920 1300 

2040 1320 

2100 1340 

2340 1360 

2410 1380 

2478 1400 

2760 1420 

2840 1440 

3060 1460 

3140 1480 

3480 1500 

3530 1520 

3780 1540 

3870 1560 

3937 1580 

4170 1600 

4275 1620 

4350 1640 

4590 1660 

4640 1680 

4830 1700 

4935 1720 

4995 1740 

5190 1760 

5310 1780 

5370 1800 

5520 1820 

5625 1840 
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Overall, that data is remarkably linear and indicates the quality of the motor and motor 

controller over the operational range.  It also helps to justify the assumption of motor 

linearity for firmware calculations.  With the data above, linearization parameters can be 

easily extracted.  The slope can be calculated by taking the RPM delta and dividing by 

the pulse width delta: (5625 – 960) / (1840 – 1200) = 7.289 RPM/μs.  This would be 

good enough, but a better value was desired (or, at least, an appreciation of the quality 

of this number was desired). 

The approach to a better solution involved using a spreadsheet to first correlate slope to 

effective offset; namely the value that needs to be subtracted from pulse width * slope 

to give the expected RPM value.  Because the airframe was intended to operate near 

hover thrust, only those values central to the operating range were used: 1920- 4830 

RPM.  The offset given by ‘offset = pulse width * slope – RPM’ was calculated for each 

data point and then the average was used for the constant offset.  Those values were 

then used to convert the pulse width data points back to RPM (linearized RPM = pulse 

width * slope – constant offset) and the absolute difference between the real RPM and 

the linearized RPM was placed in a column of its own.  The sum of the differences 

across the selected operational range was then used as a measure of quality of the linear 

approximation.  An iterative process of adjusting the slope was employed until a 

minimum summed deviation was achieved.  In this case, a slope value of 7.36 yielded 

the minimum total deviation (and 0.01 plus or minus made very little difference) and 

that value was selected for this motor and controller combination.  The corresponding 

offset was calculated to be 7680.95.  A plot of the original motor data versus the 

linearized data is shown in Figure 21. 
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Figure 21 - QBot1 Motor1 Linearization Plot 

RPM values are significant to motor manufacturers and are easily understood in 

conversation, but the theoretical formulas for this research require angular velocity in 

rad/s.  Furthermore, the internal PWM values for QBot1 had ½ μs precision (meaning 

that a 1200μs pulse width had an internal representation of 2400) and the firmware 

solves for PWM pulse width from desired angular velocity, not the other way around.  

So then, a slope of 7.36 RPM per μs converts to 2.595 ½ μs per rad/s while the offset of 

7680.95 RPM (804 rad/s) converts to a PWM offset of 2086 ½ us (i.e. a pulse width of 

1.043 ms would correspond to 0 rad/s).  The same process was applied to the other three 

motor & controller sets and the final values for slopes and offsets are given in Table 11. 

Table 11 - QBot1 Motor Characterization Parameters 

Motor Slope (½ μs per rad/s) Offset (½ us) 

1 2.595 2086 

2 2.709 2116 

3 2.938 2300 

4 2.616 2106 

 

6.1.2. Orientation Control 

6.1.2.1. Single Axis PID Tuning 

With the motors characterized, it was possible to begin testing the control theory.  An 

initial attempt was made to move directly to the 3-DOF test stand.  That proved overly 

ambitious as there were too many variables involved and it was difficult to detect 
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improvements (if there were any) amidst the general chaos.  It was determined that the 

best approach would then be to limit the airframe to a single DOF at a time and 

demonstrate control for roll and pitch separately before attempting them altogether 

again. 

Because QBot1 had round arms, a clamping system was devised for this research that 

holds two arms of the airframe between a set of roller bearings.  The roller bearings 

allow unrestricted rotation about the axis held by the clamps while preventing rotation 

about the other axes.  The roller-clamp concept was developed as part of this research, 

but the physical design and creation of the clamps was performed by a mechanical 

engineering technician at AUT.  One of the clamps is shown disassembled in Figure 22. 

 

Figure 22 - Roller clamp used for single-axis testing 

Even with only a single allowed axis of rotation, tuning the PID parameters proved a 

very challenging task.  A lack of experience in this type of control system tuning no 

doubt contributed to the difficulty, but this system certainly exhibited a significant 

degree of complexity beyond a conventional machine with a first order type of response.   

6.1.2.1.1. Experimental PID Tuning 

The first PID tuning effort of this research employed simple guesswork and evaluation 

of system response to changing parameters.  An example progression of roll testing is 

shown by the three figures below.  In each, the horizontal axis is simply the sample 

number (100 per second) while the vertical axis represents the raw IMU output for the 

roll Euler angle (the UM6 IMU outputs 16-bit integers such that 16384 is equivalent to 

π radians (180 degrees); for simplicity, it can be considered that every 1000 steps 

corresponds roughly to 10 degrees).  Figure 23 depicts the system response when the 

PID gains are set to 1, 2, and 0.2, respectively.  Figure 24 shows the system response 
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when the derivative gain constant is increased to 0.25 while Figure 25 shows the 

response to a derivative decrease to 0.18. 

 

Figure 23 - Roll PID Experimentation Kp=1.25, Ki=2, Kd=0.2 

 

Figure 24 - Roll PID Experimentation Kp=1.25, Ki=2, Kd=0.25 

 

Figure 25 - Roll PID Experimentation Kp=1.25, Ki=2, Kd=0.18 

At a high-level, these results are unsurprising as they reflect well known system 

response to PID derivative gain changes.  When the derivative gain is increased, it can 

begin to over-damp and cause the system to approach the setpoint in steps rather than 

directly.  When decreased, it can reach a point where it has little effect at all and the 

other terms dominate (in this case resulting in ongoing oscillation). 
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At a lower-level, the system response to a high-value derivative gain (Figure 24) 

warrants a bit more analysis.  After initially crossing the setpoint, the approach back to 

it is taken in steps, as might be expected, but the normal derivative action is usually 

limited to reducing or stopping the velocity toward the setpoint (because the derivative 

term must go to zero when velocity is zero), not reversing it as is seen.  The reversal 

could, of course, be attributed to integral windup that occurred prior to the first crossing 

and that is likely the case to a significant degree.  Another contributor, however, could 

be the system delays and it may be that the detected velocity and corresponding 

response to it are time-shifted by a sufficient amount to cause acceleration overshoot. 

6.1.2.1.2. Modified Ziegler-Nichols Tuning 

It was at this point in testing that the weakness of a purely manual approach to tuning 

was appearing inefficient (at best) and an alternative was sought.  The initial framework 

for the modified approach to Z-N tuning (discussed in Section 3.2.1.1) was applied and 

values for the Z-N tuning parameters, Ku and Tu, were sought. 

In the case of roll testing for QBot1, a proportional gain value of 1.0 gave a reasonable 

measure of system response and, while still ultimately unstable, oscillations remained 

fairly consistent for several cycles.  The cycle period was seen to be at least 1 second 

and that became the first approximation.  The Z-N Tuning PID equations ((12), (13), 

and (14)) were then applied to give Kp = 0.6, Ki = 1.2, and Kd = 0.075.  With these 

parameters, the system achieved stable hold at a roll angle of zero, but it didn’t seem 

very well tuned.  As a result, the approximated Z-N tuning values were evaluated 

experimentally using a number of different values for each.  First, the Ku value was 

tested and the system response was captured for values of 0.1, 0.5, 1.0 (the original 

approximation), and 1.5.  The plotted results are shown in Figure 26. 
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Figure 26 - QBot1 Z-N Tuning for Roll (Tu = 1.0) 

It is apparent that a Ku of 0.1 is insufficient, and while the other plots do reach the 

setpoint and are stable there, none of them exhibit a response that would be considered 

well-tuned.  As an observer of the physical system, it did seem that the Ku value of 1.0 

was the most robust, but that was a subjective assessment only.  It needed to be seen if 

that value could provide a reasonably tuned output with other values of Tu. 

Setting Ku to 1.0 and sweeping Tu through several values was the next test undertaken. 

The values chosen were 0.5, 1.0, 1.5, and 2.0 and the plotted results are shown in Figure 

27. 

 

Figure 27 - QBot1 Z-N Tuning for Roll (Ku = 1.0) 

A Tu value of 0.5 was obviously unstable, 1.0 (as previously tested) showed slow 

convergence, 1.5 and 2.0 both exhibited good system response.  Tu = 1.5 exhibited more 

overshoot than 2.0, but it was quicker to achieve the setpoint and the system response 

waveform is very similar to that expected of a system tuned using the Z-N tuning 
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method.  Furthermore, it was very stable in the roll testing apparatus.  As a result, the 

values of Tu = 1.5 and Ku = 1.0 were selected as reasonable approximations of the Z-N 

tuning parameters and the corresponding calculated PID gain values for application on 

the MAV were: Kp = 0.6, Ki = 0.8, Kd = 0.1125. 

The same process was applied to pitch testing to ensure there were no major differences 

between the two axes.  Although the intent of a quadrotor airframe design is to keep 

everything symmetrical about the centre, there are necessarily some deviations.  For 

QBot1, the major difference between roll and pitch came from the orientation of its 

battery.  The battery represents the largest single component of mass in the system and 

it is rectangular.  It was aligned lengthwise with the x axis and thereby created a 

significantly higher moment of inertia for pitch than existed for roll.  Because the 

moment of inertia is inversely proportional to the amount of acceleration caused by 

torque (which is the selected PID output for orientation control), it was possible that it 

would significantly impact the system response and corresponding tuning. 

As with roll testing, the pitch testing exhibited similar instability and difficulties in 

achieving consistent oscillation.  A Ku value of 1.0 was, however, once again selected 

as yielding something closest to what is desired for Z-N tuning.  In this case, the 

observed system response had an approximated period of oscillation near 1.5 seconds.  

As those were the same values determined for roll, they made a reasonable starting 

point, but the same sweeping of Tu and Ku were employed again to double-check the 

approximations for improvement.  The results are shown in Figure 28 (Ku sweep) and 

Figure 29 (Tu sweep). 

 

Figure 28 - QBot1 Z-N Tuning for Pitch (Tu = 1.5) 
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Figure 29 - QBot1 Z-N Tuning for Pitch (Ku = 1.0) 

These results demonstrate that the approximations of Tu = 1.5 and Ku = 1.0 are 

reasonable for Z-N tuning of the pitch PID.  The corresponding Kp, Ki, and Kd terms are 

the same as were calculated for roll: 0.6, 0.8, and 0.1125, respectively. 

6.1.2.2. Three-Axis Testing 

With pitch and roll orientation control working well independently, the QBot1 airframe 

was moved from the single DOF testing apparatus to the 3 DOF of freedom test stand.  

The assembled apparatus with QBot1 on it is shown in Figure 30. 

 

Figure 30 - QBot1 on 3DOF Test Stand 

The tuned parameters worked perfectly and the robot was able to robustly hold itself in 

hover attitude.  Induced disturbances (e.g. pulling on an arm by hand) were strongly 

rejected and the return to hover was consistently very quick and clean (little overshoot, 

no steps along the way). 

It should be noted that the test stand causes a noticeable impact on the system and isn’t 

truly representative of free flight.  For PID response, it actually represents a worse-case 

scenario for several reasons: 
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1. The centre of mass and the pivot point are displaced from one another 

2. The mounting plate effectively becomes an added element of mass to the airframe 

3. The stand adds resistance to orientation changes due to resistance of the supporting 

bearing 

With good bearing selection and lightweight mounting hardware, the first point is 

arguably the only one of significance.  To expand on that in the case of the test stand 

shown in Figure 30, the airframe can only be rotated on the roll and pitch axes about the 

bearing at the bottom of the mounting plate.  When the robot is in hover attitude, the 

difference in pivot point is hardly noticeable.  When the robot leaves the level position, 

however, the force needed to restore it is significantly greater than would be needed for 

operation in free flight.  This is exacerbated by mounting the battery above the airframe 

as was done for these initial tests.  When out of level it is no longer just the moment of 

inertia that must be overcome to rotate the airframe, but also some portion of gravity; 

the airframe must effectively be lifted to return (arrive) at  a hover position.  These 

effects had been encountered during preliminary testing before application of the tuning 

process described above and it was seen that ‘takeoff’ represented the greatest challenge 

on a test stand like the one shown.  After tuning, that startup process was no problem 

and the PID parameters were sufficient to bring the airframe from its idle position well 

away from level to hover attitude with alacrity. 

Roll and pitch position control was therefore deemed successful.  Not much testing or 

tuning went into yaw control.  A couple of values were tested and it seemed that a PD 

approach was sufficient to reliably bring the airframe to a desired directional setting.  

Because of the relatively long times involved with yaw compensation (it takes a couple 

of seconds to spin the airframe 180 degrees), adding the integral term degraded system 

stability and it was removed (anti-windup would, perhaps, have been a better solution).  

In the end, using experimentally determined PID gain terms of 1.0, 0, and 0.2, 

respectively, gave desired system response and full orientation control was achieved. 

6.1.2.3. Tethered Flight 

Having achieved a stable hover attitude on the 3 DOF test stand, the next experiments 

involved actually flying the robot.  The first issue encountered was that significantly 

more thrust was required to lift the MAV off the ground than had been required to hold 

it “hovering” on the stand and that resulted in excessive vibration of the motor mounts.  

The original design for QBot1 used lightweight wireframe style supports for the motor 
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attachment points (seen on the left of Figure 31) that simply had too much flex when the 

motors were running at higher speeds.  Two mounts broke and they needed to be 

redesigned; the new mounts (right of Figure 31) performed much better. 

 

Figure 31 - QBot1 Motor Mount Comparison 

At this point, the Base Station software was still in development and no controls for 

orientation adjustment had been implemented.  The only operational control was thrust 

and that meant that QBot1 had to be constrained to prevent it drifting into other objects.  

This was accomplished by using lengths of string attached to a large square frame on 

the ground.  The string lengths were set to allow the airframe to move about a half meter 

in any direction from the centre of the square.  To achieve flight, the motors were 

started and thrust was increased until the airframe left the ground.  The PID tuning 

parameters continued to work well and stable tethered flight was easily reproduced. 

6.2. Araqnobot 

Having achieved success with QBot1, the focus of this research shifted to assembling 

and testing Araqnobot with the intention of first repeating the approach employed to 

tune QBot1.  The desired end goal for this platform was subsequently untethered flight 

with autonomous orientation hold and operator position compensation (i.e. manual 

thrust control and obstacle avoidance). 

6.2.1. Motor Testing 

Because it had been fitted with the new ESC32 motor controllers, the calibration 

approach for Araqnobot was significantly different from QBot1.  The developers of the 

ESC32 device have created automatic calibration routines and have implemented closed 
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loop modes of operation that provide internal linearization of response and a guard 

against overdrawing current.  The process of calibration consists of the following steps: 

1. Install the desired propeller on the motor 

2. Fix the motor in place so that it cannot move 

3. Connect the motor controller 

4. Power up the motor and controller 

5. Connect the motor controller to a serial port on a PC 

6. Run the developer’s calibration routines 

7. Program the calibration parameters in the controller’s non-volatile memory 

Two calibration routines are provided: the first determines the motor’s RPM achieved in 

response to voltage applied (motor speed vs. throttle) while the second evaluates the 

current draw seen by sudden changes in voltage (dynamic current draw from 

acceleration). 

6.2.1.1. Voltage to RPM Calibration 

To determine RPM vs. voltage, the calibration routine simply sweeps through the 

throttle settings (which are equivalent to applied voltage and duty cycle (at 100%, the 

full voltage of the battery is being applied)).  For Araqnobot’s motor 1, the collected 

data and corresponding calibration terms are shown in Figure 32 (which was 

automatically generated by the calibration software). 

 

Figure 32 - Araqnobot Motor 1 RPM vs Voltage Calibration 

This effectively takes the place of all of the manual characterization that was done for 

QBot1.  The motor controller has worked out a best-fit linearization that will be 
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internally utilized.  When the ESC32 is programmed with the FF1TERM and 

FF2TERM parameters that have been calculated, it can be placed in closed-loop mode.  

At that point, the PWM inputs are no longer reflective of throttle value (0 to 100%), but 

rather of desired RPM value.  The exact determination of the value desired is defined by 

the PWM_LO_VALUE, PWM_HI_VALUE, and PWM_SCALE parameters.  These 

specify the linearized response of the motor, and this is the description given in the 

ESC32 datasheet table entry for PWM_SCALE: “The scale of the input PWM pulse 

length. In closed loop RPM run mode, PWM_LO_VALUE will indicate 0 RPM and 

PWM_HI_VALUE will indicate this RPM.” (AutoQuad, 2012, p. 11) 

For Araqnobot, all of the motor controllers were set to have PWM_HI_VALUE of 2000 

(2ms), PWM_LO_VALUE of 1000 (1ms), and PWM_SCALE of 6000 (RPM).  As a 

result, a 1ms pulse width is expected to give 0 RPM, 2ms will yield 6000 RPM, and 

everything in between is linear (e.g. 1.5ms pulse is expected to give 3000 RPM). To 

make direct use of this relationship, the rotation to PWM conversion logic for 

Araqnobot was changed to use a static PWM value of 2000 ½ μs and then each rad/s of 

desired rotational velocity added another 3.1831 ½ μs. 

6.2.1.2. Current Limit Calibration 

The ESC32 current limit calibration routine works by iterating through duty cycle steps 

and tracking dynamic motor current draw (e.g. it steps from 5% throttle to 10%, then 

5% to 15%, then 5% to 20%, and so on).  BLDC motors generally draw peak current on 

motor acceleration rather than at a static setpoint (e.g. a jump from 5% to 100% will 

draw significantly more instantaneous current than static 100%).  A quadrotor MAV 

generally exhibits continual acceleration and deceleration as the orientation logic is 

updated and the PIDs are applied; by limiting the dynamic current, efficiency can be 

increased and overheating can be avoided.  The intent of the calibration, then, is for the 

motor controller to work out terms for its acceleration logic that will keep the dynamic 

current within the defined bounds (i.e. significant throttle increases can be executed in 

stages rather than all at once).  

For the motors on Araqnobot, the current limit was set to 9 amps and the routine was 

executed.  The results for motor 1, as generated by the software, are shown in the graph 

of Figure 33.  A full explanation of the graphed results is beyond the scope of this 

research (the output values and corresponding expected operation were sufficient), but it 

is believed that the dots represent real sampled values while the lines superimposed 
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reflect the applied software terms.  As an example of analysis, consider the horizontal 

line of dots around 6 Volts; the leftmost values represent increased current draw as the 

motor is spinning less than it would at a constant value around 6V (it is therefore 

accelerating).  The rightmost values are then more abundant because they indicate the 

more natural speed of the motor in response to an applied 6V (and correspondingly 

reduced steady-state current draw). 

 

Figure 33 - Araqnobot Motor 1 Current Limit Calibrat ion 

Each motor underwent the same calibration and the CL1-CL5TERM values were 

programmed into the respective controllers. 

6.2.2. Orientation Control 

6.2.2.1. Single Axis PID tuning 

Having a new airframe allowed an opportunity to test and refine the approach that was 

successful on QBot1.  The round carbon fibre arms on Araqnobot allowed them to be 

clamped into the same roller bearing apparatus that had previously been employed.  One 

aspect of testing that was changed was the amount of thrust applied on the test stand.  

For QBot1, only a fraction of lift thrust had been used on the stand because that was all 

that was needed to stabilize the airframe.  It was later recognized, however, that it would 

be more accurate to perform tuning near the thrust level required for flight.  The 

interesting thing about this approach is that it provided more consistency in system 

response for the Z-N tuning method.  With only a P-term applied, a certain amount of 

system stability could be achieved and somewhat consistent oscillations could be 

recorded, as long as the deviation from the setpoint was minimized.  This allowed a 
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more conventional Z-N analysis and the output of several P-only iterations for pitch 

control is shown in Figure 34. 

 

Figure 34 - Araqnobot Pitch Testing - P-term only 

This data demonstrates that the system can give fairly stable oscillations with a K-term 

gain around 1.2.  Although the amplitude appears to increase in the first 5 seconds of 

operation (the data capture window), it did stabilize and eventually the oscillations even 

diminished.  Increasing the gain to 1.25, however, causes a measurable loss of stability 

and decreasing to 1.1 yields an increase.  1.2 was therefore selected as Ku and the 

waveform was analysed to determine an approximate Tu of 0.65 seconds. 

These values yield PID gain terms of 0.72, 2.2154, and 0.0585.  It was quickly apparent 

that, although the system would stabilize, these gain coefficients were not well tuned.  

As was done for QBot1, a sweep of Tu terms was performed to determine if better 

tuning could be achieved.  The corresponding system response of a few selected values 

is shown in Figure 35. 

 

Figure 35- Araqnobot Z-N Tuning for Pitch (Ku = 1.2) 
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This demonstrates that a Tu value of 0.65 is clearly inadequate.  0.9 yielded a near-

expected Z-N tuning response while 1.1 was starting to exhibit latency from the 

growing derivative term.  1.0 was therefore selected as the characteristic Tu and then the 

value of Ku was tested again to ensure its validity with the modified ultimate period.  

The results of a couple of tests on either side of 1.2 are shown in Figure 36. 

 

Figure 36 - Araqnobot Z-N Tuning for Pitch (Tu = 1.0) 

The quality of these responses is largely a matter of subjective evaluation as there is 

little real difference.  Although the data corresponding to a Ku value of 1.4 shows 

quicker convergence, it is a less conventional Z-N tuning response and the value of 1.2 

can certainly be declared as sufficiently well-tuned.  For this reason, final Z-N tuning 

parameters were set at Ku = 1.2 and Tu = 1.0.  Application of the Z-N tuning equations 

thereby yields PID gain terms as follows: Kp = 0.72, Ki = 1.44, and Kd = 0.09. 

With pitch reasonably well tuned, the airframe was switched in the apparatus so that roll 

could be tested.  Because QBot1 had demonstrated fairly little difference in system 

response between roll and pitch, the same PID parameters were applied.  Figure 37 

shows the achieved result and it was determined that this was sufficient. 
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Figure 37 - Araqnobot Roll PID Parameter Check 

6.2.2.2. Three-Axis Testing 

Araqnobot received relatively little testing on a 3 DOF test stand.  The roll and pitch 

tuning had worked well and stability was excellent.  The yaw PID gain terms (Kp = 1.0, 

K i = 0, Kd = 0.2) that worked well on QBot1 also yielded sufficient response for 

Araqnobot.  In that area, all that was considered necessary for indoor operation was the 

ability to maintain heading and those values provided satisfactory response. 

Remote control of thrust and orientation (for position compensation) had been 

implemented in the base station software by this point and those controls were exercised 

on the test stand in preparation for free flight. 

6.2.2.3. Free Flight 

The transition from constrained testing to free flight was a major step and several 

difficulties were encountered.  As an example, the pointed design of Araqnobot’s 

landing gear tended to catch on the carpet in the testing area and that would result in 

integral windup of roll and pitch and a loss of yaw control (the airframe would spin 

when a leg caught).  These effects led to corresponding instability on takeoff and 

landing. 

Another issue quickly realized was that tuning for a static setpoint on the test stand 

yielded insufficient responsiveness for the continuous adjustments of free flight.  Any 

time the control changed, there was a corresponding wobble of the airframe and the 

response was not as crisp as needed for proper control.  That led to an experimental 

adjustment of the scale factor for the PID (which is simply a multiplier applied to the 

PID output and has the same effect as increasing (or decreasing) the Ku for Z-N tuning).  

It was found that doubling or tripling the gain factor increased responsiveness and a 
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series of tests (back on the 1 DOF test apparatus) were performed to evaluate the effect.  

The corresponding data is shown in Figure 38. 

 

Figure 38 - Araqnobot PID Scale Factor Increase for Pitch 

This data clearly shows that multiplying the PID output yields much stronger system 

response.  As the multiplication factor is increased, however, the system begins to 

respond more strongly to sensed disturbances from the IMU and the amount of 

undesirable twitching is increased.  In this case, a gain factor of 2 was selected for 

Araqnobot and that gave a good level of responsiveness without excessive twitching 

during flight. 

The araqnobot airframe has been flown somewhat regularly indoor for many months.  It 

was also tested outdoor and worked well but is significantly impacted by wind 

disturbance. Overall, the testing process has demonstrated the ability of this platform to 

execute reliable autonomous orientation maintenance in free flight and it will serve as a 

solid platform for the development of further capability. 

6.2.3. Position Control 

With a focus on indoor use, it was recognized that localization would be a challenge for 

Araqnobot.  Echo location was considered to be the best option for initial testing due to 

the compactness of sonar rangefinders and their ease of use.  The starting point for 

position control was altitude and an MB1200 sonar module was oriented to point 

downward from the bottom of Araqnobot’s battery holder.  A few tests were made 

flying the airframe off the ground and significant variability was discovered.  Over a 

number of readings, the height value could be reliably determined, but individual data 
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points ranged from zero to maximum.  Those extremes were next filtered out (by 

rejecting extreme jumps and carrying the previous sample forward), but the data output 

of the sonar module continued to be erratic.  A record of sampled data through a short 

flight is shown in Figure 42. 

 

Figure 39 - Araqnobot Sonar Testing 

The flight corresponding to this data consisted of take-off after about 2 seconds, 

followed by an ascent to more than half a meter, several seconds of hover (plus or 

minus a small amount), followed by descent back to the ground.  The sonar data roughly 

correlates, but the instantaneous variation is far too great to allow autonomous control.  

Possible influences on the reading include vibration, noise, air turbulence, and echo 

material (carpet); some of these could perhaps be altered to improve accuracy.  It would 

also be possible to filter the data for reliable determination of position, but the number 

of samples would have to be quite large (accumulated over a second, or more).  That is 

probably a reasonable approach to take so long as the robot is intended to move at a 

correspondingly slow rate.  For the purposes of this research, limited time was spent on 

this problem and no reliable solution was found. 

6.3. Jumbo QBot 

6.3.1. Motor Testing 

Jumbo QBot uses the same motor controllers as Araqnobot but has larger motors and 

propellers.  Once again, the intelligent calibration software of the ESC32 developers 

was employed in setting up the motor systems.  The output graph for Motor 1 from the 

RPM to Voltage test routine is shown in Figure 40. 
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Figure 40 - Jumbo QBot Motor 1 RPM to Voltage Testing 

The most significant difference between the motors for Jumbo QBot and the motors for 

Araqnobot (and QBot1) is the maximum RPM of around 8500 as compared to 

approximately 6500.  Combined with a larger propeller and considering the squared 

relationship between angular velocity and static thrust, the Jumbo QBot power system is 

capable of more than twice the vertical thrust of its predecessors. 

The extra output power naturally comes with a correspondingly dramatic increase in 

input power.  The ESC32 current limiter calibration was run on each Jumbo QBot motor 

system and the graphed result for motor 1 is shown in Figure 41. 

 

Figure 41 - Jumbo QBot Motor 1 Current Limiter Calibr ation 

This chart was produced with the current limit setting equal to 30A and it looks very 

similar to the output of the same test for Araqnobot.  One difference worth considering 

is that the Araqnobot motor test had a fairly solid sloped line forming the upper bound 

of its data points.  Jumbo QBot does not and that suggests a difference apparent in the 
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tests; the Araqnobot motor tested did not really need a current limiter while the Jumbo 

QBot motor tested certainly does.  This is because the Araqnobot motor was able to 

quickly spin faster in response to increasing voltage and would thereby never allow a 

high voltage at a low speed to occur (which would have caused a corresponding 

significant increase in current draw).  In other words, as the ESC32 started to increase 

the voltage duty cycle, the motor would respond almost as quickly as the increase would 

occur and the RPM to Voltage disparity remained small, along with the associated 

current (and many data points were accumulated along the acceleration line).  The 

Jumbo QBot motor that was tested, however, could see a much larger differential and 

that was constrained only by the ESC32 current limiter.  As soon as a spike over 30A 

was detected (voltage was rising, but RPM was staying low), the current limiter would 

engage and stop the progression. As a result, the acceleration line is much more sparse 

and characterized by steps representing each interval of the test program.  If the current 

limit were increased, more data would be expected to appear in the top-left quadrant of 

Figure 40. 

6.3.1.1. Motor Flight Data 

The processing power and memory capacity of Jumbo QBot allowed for extensive 

monitoring of all system aspects.  Voltages applied to the motor and corresponding 

current draw were tracked during flight to evaluate power consumption and the 

performance of the current limiter.  A plot of some collected data (at a sample rate 

around 25 Hz) is shown in Figure 42. 

 

Figure 42 - Jumbo QBot Sample of Real Time Flight Data for Motor 1 
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The spike around point 10 corresponds to the first command to bring the motor up to 

hover speed.  The current draw exceeds the limit of 30 amps instantaneously, but it 

would presumably be much higher without the stepping function in place.  This chart 

demonstrates the highly dynamic nature of quadrotor flight as the motor voltage, 

current, and corresponding rotational velocity are constantly changing.  Data from the 

other 3 motors was collected during the same flight (which continued beyond the data 

shown in Figure 40) and yielded further interesting information, as collected in Table 

12. 

Table 12 - Jumbo QBot Real Time Flight Motor Data 

 Motor 1 Motor 2 Motor 3 Motor 4 

Max Voltage 9.5 V 6.9 V 9.0 V 7.7 V 

Max Current 35.5 A 33.3 A 33.2 A 30.7 A 

Average Voltage 7.1 V 4.2 V 7.2 V 4.6 V 

Average Current 9.8 A 4.5 A 11.9 A 4.2 A 

 

Particularly interesting is that the motors affecting pitch (motor 1 and motor 3) draw 

significantly more power than the motors affecting roll.  This is almost certainly due to 

the lack of an integral term in the PID for yaw; with a Ki value of zero, the equilibrium 

point of the yaw control system will have some static offset that, thanks to the non-zero 

Kp term, will cause slightly more thrust to be required on one of the roll/pitch axes 

while the other has less required.  The end result is that two motors see higher loading 

than the others and the distribution is dependent upon the ongoing static yaw offset. 

A further interesting data point is that the average total current draw for the airframe 

motors was found to be 30.3 amps.  Assuming around 1A average for the control board 

and given the theoretical battery capacity of 11000mAh, this suggests that Jumbo QBot 

could remain in flight for over 21 minutes (with no payload). 

6.3.2. Orientation Control 

Orientation control of Jumbo QBot was approached in a similar manner to that 

employed for QBot1 and Araqnobot in that it began with Z-N tuning of the roll and 

pitch axes PIDs.  After that, the transition was made directly to free flight (rather than to 

a three DOF test stand) and the steps of this approach are detailed below. 
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6.3.2.1. Single-Axis PID Tuning 

Because the arms of Jumbo QBot had been constructed out of rectangular aluminium, 

the roller bearing apparatus couldn’t be used for single-axis testing.  An entirely 

different fixture was manufactured out of an inverted table and various hardware 

(including high-load fishing swivels).  The assembled apparatus is shown in Figure 43. 

 

Figure 43 - Jumbo QBot on 1 DOF Test Stand 

One advantage of this setup was that it allowed the fixed motors to be run at the same 

time as the motors on the axis being tuned.  By running all four motors, the gyroscopic 

impact of the motors on the axis of rotation would be included in the tuning result.  

Gyroscopic effects are not being compensated for mathematically, but their (arguably 

small) impact will still affect the desired rotation and tuning in their presence was 

expected to yield results more representative of real flight. 

Once again, the modified Z-N tuning approach was applied and the first step to find an 

approximation of Ku was taken by increasing the proportional gain while leaving Ki and 

Kd equal to zero.  Jumbo QBot exhibited different behaviour from Araqnobot but it was 

again an improvement toward an expected Z-N tuning response.  Consistency of 

oscillation was much more reliable and stable than had been experienced in testing 

either of the previous models.  Because Jumbo QBot had significantly more memory, it 

was also possible to start the system near an angle of zero and observe the progression 

toward oscillation, whether stable or otherwise.  Figure 44, Figure 45, and Figure 46 

show the results of pitch testing with different Kp terms over 10 second intervals from 

startup. (Note: all single-axis testing for Jumbo QBot was done with a lift thrust setting 

of 20N.) 
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Figure 44 - Jumbo QBot  P-term Only Pitch Testing (Kp = 2.5) 

 

Figure 45 - Jumbo QBot P-term Only Pitch Testing (Kp = 2.8) 

 

Figure 46 - Jumbo QBot P-term Only Pitch Testing (Kp = 2.9) 

At a proportional gain of only 2.5, the airframe pitch would begin to oscillate then 

diminish and stabilize.  2.6, 2.7, and 2.8 all tended to yield fairly stable oscillations 

while a gain term of 2.9 caused oscillation increase and a loss of stability.  2.8 was 

therefore selected as Ku and the oscillations were analysed to yield an approximate 

period (starting point for Tu exploration) of 0.84 seconds. 

Two iterations of ultimate period tuning were then employed; the first one used coarse 

steps around 0.84 while the second performed fine adjustments on the evaluated best 

response from the first iteration.   
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Figure 47 - Jumbo QBot Pitch Only Testing: Tu Coarse Sweep 

Figure 47 shows that Tu values of 0.5 and 0.84 are insufficient while a value is 1 is 

pretty well tuned and 1.5 is too much.  To explore the possibility of better tuning, 1 was 

then taken as a starting point and the effect of small increments was captured as shown 

in Figure 48. 

 

Figure 48 - Jumbo QBot Pitch Only: Tu Fine Sweep 

At this point, a value of 1.05 was considered an optimal Z-N response as it had a small 

amount of characteristic overshoot on the second setpoint crossing, but it was slightly 

less than that observed for 1.  With a Ku, then, of 2.8 and a Tu of 1.05, the PID gain 

terms were calculated as: Kp = 1.68, Ki = 3.2, and Kd = 0.21. 

Having determined on Araqnobot that better stability when flying could be achieved 

through uniform amplification of all PID terms, an evaluation was done on Jumbo QBot 
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to determine the optimum scale factor to apply.  All integer terms from 1 to 6 were 

tested, but only the final three have been captured in Figure 49, below. 

 

Figure 49 - Jumbo QBot Pitch Only PID Term Scaling 

This seems to demonstrate a turning point between a multiplication factor of 5 and 6.  

Between 2, 3, 4 and 5, the trend was always toward a reduction in deviation from the 

setpoint and reduced area of overshoot.  At 6, there is increased overshoot and slightly 

slower convergence.  In the end, a multiplier of 4 was used as the default setting for 

Jumbo QBot flights.  As was seen with Araqnobot, a strong multiplier does yield some 

twitchiness in response to IMU noise, but it gave excellent responsiveness when flying. 

The same approach was rigorously applied to roll testing and, on the Jumbo QBot 

airframe, a measurable difference was encountered.  The Z-N tuning parameters that 

were eventually selected as optimal were Ku = 3.5 and Tu = 1.1.  The corresponding PID 

gain factors are Kp = 2.1, Ki = 3.8182, and Kd = 0.28875. The scaling multiplier applied 

for most flights was set at 3. 

6.3.2.2. Free Flight 

No yaw testing on a three DOF test stand was performed for Jumbo QBot as part of this 

research.  The Jumbo QBot airframe was transitioned directly to free flight and the same 

yaw PID parameters successfully used on the previous airframes were applied again.  

They continued to work well and full orientation control was successfully realized. 

This was well demonstrated through the achievement of a primary flight goal: ascent to 

over 9 meters (30 feet) above the ground under manual control.  A plot of the altitude 

readings (after normalization) from the successful flight is shown in Figure 50.  These 

readings were taken from the MS5803 pressure sensor discussed in the next section. 
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Figure 50 - Jumbo QBot High-Flight Data 

6.3.3. Position Control 

6.3.3.1. Position Detection Component Testing 

6.3.3.1.1. Pressure Sensor Testing 

Having observed the limitations of sonar range-finding with the Araqnobot MAV, a 

different approach was taken for altitude control on Jumbo QBot.  Tiny pressure sensors 

were employed that can pick up minute variations in air pressure to the degree that they 

are able to discern elevation changes of less than a meter.  Two different sensors were 

employed (as discussed in Section 4.3.5.2) and some testing data is presented in the 

following sections. 

6.3.3.1.1.1. MS5803 Testing 
The MS5803 was the first sensor to be tested and it yielded reasonably good results.  

Pressure sensors are known to generate readings with a significant amount of noise and 

an example of the raw data (after conversion from pressure to altitude) collected from 

the MS5803 is shown in Figure 51.  The solution to noise is filtering and a 

complementary filter was applied to the sensor output, as described in the firmware 

Section 5.2.3.3.3.  The result of a complementary filter with a 10% weighting for new 

data and 90% for the previous value is shown superimposed over the raw data in Figure 

52. 



 
 

110 
 

 

Figure 51 - MS5803 Pressure Sensor Raw Altitude Data 

 

Figure 52 - MS5803 Pressure Sensor Filtered Altitude Data 

The data shown in these figures was collected during a short flight that began by 

spinning up the motors at around data point 100.  The air pressure disturbance caused 

by the propellers spinning at near hover velocity on the ground is seen by the sudden 

pressure increase (altitude drop) at that point.  After achieving lift velocity, the MAV 

was flown to a height of around 4 meters before returning to the ground (where the 

rotors wash again drops the altitude reading below ground level).  It should be noted 

that the absolute pressure was not significant for the purposes of this research.  All 

autonomous operations (e.g. altitude hold) are performed relative to the sensed 

pressure/altitude at the point they are engaged and the recorded filtered data correlates 

well to the observed flight pattern. 

6.3.3.1.1.2. BMP180 Testing 
Although the MS5803 worked well, it was thought that another device might yield a 

small improvement and that would correspondingly enhance altitude hold performance.  

A USB module containing a Bosch BMP180 pressure sensor was attached to one of 
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Jumbo QBot’s USB ports and the same filter was applied to its output as was used for 

the MS5803.  A sample of the output results (from the same flight used for the MS5803 

sample data) is shown in Figure 53. 

 

Figure 53 - BMP180 Pressure Sensor Filtered Altitude Data 

These results are very similar to the MS5803 (again, absolute pressure/altitude is 

considered irrelevant), but it can be seen that the air disturbance near the ground causes 

a pressure drop for this sensor (at least in the position it was installed). 

6.3.3.1.1.3. Pressure Sensor Fusion 
Both pressure sensors worked well, but they had opposite responses to air disturbance 

near the ground and the advantage of averaging their values was apparent.  A fusion 

ratio of 50% each was selected and the combined result is shown in Figure 54. 

 

Figure 54 - Pressure Sensor Fusion Altitude Data 
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This fused data approach eventually became the default for altitude sensing in flight, but 

much of the testing described in the subsequent sections relied exclusively on the 

MS5803.  This is because the BMP180 module wasn’t available until relatively late in 

the research process.  In the meantime, other approaches had been considered and 

extracting altitude from the GPS data was also explored. 

6.3.3.1.2. GPS Testing 

The LM345 offers two different sources of GPS information: raw data from the internal 

GPS module, and Kalman-filtered data from the navigation processor that can provide 

approximated position even in the event of GPS outage (provided it is of short 

duration).  The latter was considered to be the most desirable and a large amount of 

testing was performed with the navigation source as the default.  It was eventually 

discovered, however, that the raw GPS output provided data better correlated to the 

actual movement of the airframe and that the Kalman filtered values were quite 

different.  An example of the disparity is shown with respect to latitude in Figure 55. 

 

Figure 55 - LM345 GPS Raw Data vs. Data Processed by Kalman Filter 

The differences were substantial enough during autonomous-mode testing that the 

decision was eventually made to rely on the raw GPS data only.  This has proven 

sufficient for basic position holding and tracking. 

Although it is well known that GPS altitude values lack accuracy, they are nonetheless 

provided and they were evaluated to determine if they could be usefully monitored.  An 

example of recorded data from testing done on a level surface (i.e. no altitude change) is 
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shown in Figure 56.  This type of uncorrelated variation was typical and the GPS height 

value was considered too unreliable for altitude hold logic (but may be useful for terrain 

awareness in applications beyond the scope of this research). 

 

Figure 56 - LM345 GPS Altitude 

6.3.3.2. Latitude and Longitude Control 

6.3.3.2.1. Mathematical Simulation 

Because the latitude and longitude PIDs generate angular orientation outputs, it is 

possible to easily calculate the corresponding lateral thrust as shown in equation (35).  

A quick mathematical simulation can then be performed using an assumption of perfect, 

instantaneous system response that is subject to no external forces.  This is useful as a 

means of evaluating PID parameters in general terms and it helps to isolate reasonable 

relationships between the gains without risk to the physical MAV (the initial testing of 

autonomous operation is potentially dangerous because it means that the operator must 

relinquish control to the firmware; if the algorithms are flawed (or have the expected 

bugs) the airframe behaviour may become erratic (and potentially destructive)).  

Newton’s basic laws of motion provide formulas for linear acceleration (a), velocity(v), 

and corresponding displacement (Δposition) seen by an applied force (F) according to the 

equations below.  (Other variables are as follows: m is mass, v0 is initial velocity, and t 

is time.) 

 

 
 (37) 

 



 
 

114 
 

  (38) 

 

 
 (39) 

 

Combining these equations together, then, we have the components for a virtual 

simulation that can be worked out in a spreadsheet.  Constant variables can be defined 

for desired position (the setpoint or endpoint), for the system update interval 

(correlating to, for example, the GPS update rate), for P term gain, I term gain (if used), 

and D term gain.  The system response over time is then organized into rows having one 

column for position that starts at a set value.  Another column contains velocity (and is 

initially zero).  If the I term were employed (it wasn’t for this study), the accumulated 

positional error could take another column.  PD (or PID) output, resultant translational 

force, and corresponding acceleration then each have their own subsequent columns.  

From all of these values, then, subsequent rows of the table can be populated where 

each row is derived from the preceding one and uses equation (30) or (31) (latitude and 

longitude PID formulas) to update the simulated orientation and work out the 

corresponding positional changes.  Simulated response is then very easy to see in a chart 

that plots the position changes over time and can be used to evaluate the gain terms of 

the control algorithm.  Figure 57 shows a chart with changing P terms while Figure 58 

depicts the effect of changing D terms. 

 

Figure 57 - Simple Simulation of P-term Increase for Latitudinal or Longitudinal Translation 
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Figure 58 - Simple Simulation of D-term Increase for Latitudinal or Longitudinal Translation 

This approach is very helpful in visualizing and evaluating the theoretical system 

response.  It highlights, however, the difference between an ideal theoretical system and 

a real practical one.  In the mathematical simulation, it can be demonstrated that larger 

and larger gain terms lead to quicker achievement of the setpoint and stability at it.  The 

corresponding behaviour of the virtual system is to turn the virtual airframe more and 

more vertical and thereby increase total thrust without bound (vertical thrust has been 

defined as always equal to mg, so if the airframe is tilted toward 90 degrees, the total 

thrust required must approach infinity).  It makes sense, then, that the virtual airframe 

can instantly move between points if its gains are set large enough. 

Of course, in a practical system, this is not possible.  Furthermore, it falls outside the 

defined characterization of the system as always remaining in a linear region near an 

attitude of hover.  Placing a limit on the angle that can be output from the PID deals 

with that issue, but still leaves a practical concern; even with a moderate allowed angle, 

lateral acceleration can theoretically continue without bound.  In reality, this will 

ultimately be limited by resistance of the air through which the airframe moves, but the 

achieved velocity would still be much higher than might be practically desired (for 

example, for operation near the ground, it may be desired that the MAV not be allowed 

to travel faster than a person can run).  Limiting the achieved velocity (and thereby 

defining the point at which acceleration should stop) is fairly easily done in a PID 

calculation.  The P and I terms must be collectively limited to a set amount.  Because 

the D terms corresponds to negative velocity (i.e. counter to the PI terms), as the 

velocity approaches the PI limit, the PID output will approach zero. 
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In the airframe, this would be seen as an aggressive change of attitude (assuming 

significant P term) in response to a jump in desired position (e.g. the airframe will roll 

significantly in response to a 20m change in longitude).  As the MAV gains velocity, 

the degree of roll will be less and less until it returns to a hover attitude.  At such a 

point, however, it still maintains its lateral velocity (e.g. will continue to drift eastward) 

at a value equivalent to the PI limit because no force is being exerted to stop it.  That 

will continue to be the case until the setpoint is approached and the PI terms are 

correspondingly diminished.  This behaviour is illustrated in Figure 59. 

 

Figure 59 - Proportional Limiter Simulation for Latit udinal or Longitudinal Simulation 

Without a P-term limit, the simulation airframe reaches a top speed over 28 km/h in 

response to a 20m setpoint change (note that the simulated maximum angle is 0.26 

radians (~15 degrees)).  With a P-term limit of 3 (effectively 3 m/s), the maximum 

velocity achieved is less than 11 km/h. 

6.3.3.2.2. PID Tuning 

There was limited time for position hold tuning during the course of this research.  

Several values were tested experimentally before the simulation approach described 

above was taken.  The primary effect of the virtual simulation was to demonstrate that 

much larger derivative terms could be used for position control than had been used for 

orientation control.  Even from a Ziegler-Nichols understanding, this makes sense as the 

position time constants are necessarily larger and the derivative component is directly 

proportional to the ultimate period in the Z-N tuning method.  Using larger derivative 

terms quickly led to better stability and reasonable maintenance of positional latitude 

and longitude.  The airframe still had a tendency to slowly oscillate, but it was bounded 

to a small area (approx. a couple meters of deviation) and the robot could be relied upon 
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to track its position well.  For both latitude and longitude, the gain terms that were 

eventually determined to be effective are: Kp = 0.1, Ki = 0, Kd = 0.2.  These are quite 

small in comparison with the virtual simulated values, but they reflect the reality of GPS 

uncertainty.  Because GPS values can vary significantly between samples, the system 

response (overreaction) is minimized through the use of smaller terms.  A chart of 

sample latitudinal and longitudinal deviation values from a flight in which position hold 

was engaged is shown in Figure 61. 

 

Figure 60 - Latitude and Longitude Position Hold Data 

It is important to note that the samples for this plot are being taking at 100Hz and the 

total chart area spans about 40 seconds of flight.  Interestingly, the robot exhibits 

significantly better stability for longitudinal maintenance of position versus latitudinal.  

The reasons for this may be a greater degree of accuracy in the longitude value from the 

GPS, variation in responsiveness of the airframe between pitch and roll, or perhaps 

external factors such as wind.  In any case, this result demonstrates that autonomous 

position hold can be achieved with respect to GPS latitude and longitude readings. 

6.3.3.3. Altitude Hold 

6.3.3.3.1. Mathematical Simulation 

A similar virtual simulation approach was applied for altitude hold as had been used for 

latitude/longitude hold (see Section 6.3.3.3.1).  The primary difference between the 

other positional degrees of freedom and altitude is that relative thrust (around the hover 

point) is the PID output, rather than angle.  Otherwise, the same concepts of 

proportional limiting (or PI limiting) (to bound velocity) and PID limiting (in this case, 
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to bound thrust delta) are applied and the same type of spreadsheet setup is arranged.  A 

plot of a few sample “simulations” is shown in Figure 61. 

 

Figure 61 - Theoretical Simulation of Altitude Hold PD parameters 

Once again, this chart exhibits the importance of the derivative term in achieving 

stability; if it is too low, more oscillatory behaviour is to be expected.  The proportional 

term, on the other hand, determines the aggressiveness of the response to setpoint 

changes and it should be made as large as possible within the constraints of desired 

system response. 

6.3.3.3.2. PID Tuning 

The process for tuning the altitude hold PID was again primarily experimental in nature.  

The theoretical simulations applied above suggested strengthening the derivative term 

and this was tested.  A number of other tests were performed and a selection of results is 

plotted in Figure 62, Figure 63, and Figure 64. 

 

Figure 62 - Jumbo QBot Altitude Hold Testing (Kp = 4, Kd = 8) 
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Figure 63 - Jumbo QBot Altitude Hold Testing (Kp = 4, Kd = 4) 

 

Figure 64 - Jumbo QBot Altitude Hold Testing (Kp = 1, Kd = 1) 

These plots all look reasonably similar, but they do not tell the whole story.  The filtered 

altitude reading is representative of the state of the airframe but tends to lag behind it to 

a significant degree.  What is shown in the chart is, therefore, not the actual 

instantaneous altitude of the robot, but rather an averaged indication of its position.  

Unfortunately, it falls outside the scope of this research to provide a means of 

correlating the sensed value to the real state of the airframe.  Observation by the 

controller is sufficient to state that, in the higher value cases (e.g. Kp = 4) the airframe 

would oscillate much more than indicated by the logged values.  Essentially, the robot 

would drop and then surge back up again before the average reflected the degree of the 

drop.  The lower values saw some up and down drift and compensation, but it was much 

slower and the filtered values that were captured better reflect the real world behaviour.  

In the end, the most stable results (from an observer’s standpoint, at least) were 

achieved with values of 1 for both P and D gain terms and this was selected as the final 

(roughly) tuned parameter set. 
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6.3.3.4. Full Position Hold  

With reasonable values for the position hold PID gain terms corresponding to latitude, 

longitude, and height/altitude, the robot was tested for autonomous operation.  In a 

representative flight, Jumbo QBot was flown off the ground to a height around 1.5 

meters and then autonomous position hold was engaged.  Position hold is, of course, 

overlaid on the orientation hold operation and, when enabled, the robot performs all 

flight operations independently.  A plot of the sensed values (after processing to 

normalize and, where necessary, convert to meters) from the representative flight is 

shown in Figure 65. 

 

Figure 65 - Position Hold Flight Data 

Those values were recorded at 100Hz and this flight, then, took over 50s during which 

automatic position hold was engaged for more than 35 seconds.  It represents the first 

major achievement in truly independent operation of the developed MAVs. 

6.3.4. Fully Autonomous Flight Plan Execution 

Position hold is a sufficient form of fully autonomous operation.  When the robot takes 

control of its own orientation and position, the controller and the base station no longer 

have any role in its flight.  It is truly autonomous in all respects at that point, but it is not 

terribly useful.  Simple firmware was therefore written to demonstrate mobility by 

incrementing position values in a programmable way.  This was successfully tested 

outdoor via a program that increased desired altitude to 8 meters, hovered briefly, and 

then slowly decreased elevation to bring the robot carefully back to the ground.  Figure 

66 shows the data recorded during the flight (after normalization and unit conversion), 

along with the status of the control signal engaging autonomous operation. 
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Figure 66 - Autonomous Flight Data 

Because of the air pressure disturbance near the ground, the autonomous landing 

involved a bit of bouncing, but the airframe did eventually settle.  That problem has 

been successfully resolved through indoor testing, but weather and time have limited 

further outdoor testing as part of this research. 
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7. Discussion 

7.1. Results 

Most of the results of this research have been described along with the presented data, 

but a quick summary is rendered here. At a high-level, three quadrotor MAVs (QBot1, 

Araqnobot, and Jumbo QBot) have been assembled with necessary electrical, 

mechanical, and electro-mechanical components and brought to flight readiness.  One of 

those airframes (Jumbo QBot) was designed from the ground up and was constructed 

entirely as part of this research.  A full firmware suite was developed for the 8-bit 

processors at the core of QBot1 and Araqnobot that includes modules for a number of 

different peripherals and sensors.  Fully autonomous orientation control was 

implemented in that firmware such that the robots are able to maintain a given 

orientation without any external input.  Base station software was created for the 

purpose of controlling and testing all three airframes.  An embedded Linux image was 

compiled from online repositories for operation on the Jumbo QBot Gumstix COM; the 

build was customized and patches were applied to ensure adequate operation of all 

desired parts of the system.  The 8-bit firmware was ported to Linux and expanded to 

include operational components that the more powerful system enabled (e.g. serial 

motor control).  Finally, fully autonomous operation was achieved on the Jumbo QBot 

platform that started with position hold and culminated in automated takeoff and 

landing. 

7.2. Issues 

In general, successful operations and corresponding data have been discussed and 

described herein.  Many real world issues have been encountered, however, and a few 

will be discussed here to further enhance the practical value of this research. 

In the first place, lithium polymer (LiPo) batteries must be handled with great care.  No 

explosions or fires were caused over the course of this study, but one connector set was 

partially melted simply through a momentary lack of attention.  Furthermore, LiPo 

battery balancing is critical to longevity and endurance of any given pack.  3-cell 

batteries were used exclusively for all of the airframes involved in this study and it is 

important that each cell be charged and discharged at an equal rate to maintain equal 
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voltage between the cells.  The 8-bit ATMega processor boards, however, used 2 of the 

three cells as their primary power source and this caused imbalance over time that 

needed to be constantly corrected.  Whenever possible, all battery cells should be drawn 

upon to power MAV components so that this imbalance may be avoided.  Finally, one 

large battery pack exhibited imbalance without cause shortly after first use.  The cells 

were rebalanced and the problem ignored, but eventually the plastic wrapping on the 

pack puffed out, indicating near critical failure of the battery.  It was replaced, but the 

dangerous situation should have been avoided by returning the battery as soon as the 

first issue was detected. 

A significant number of other problems have involved communication.  There is an 

inherent weakness in digital communication (as opposed to the analog control typically 

employed by radio control hobbyists) in that it is typically all or nothing.  Either a 

command is received correctly, or not at all, or possibly with some amount of 

corruption that renders it entirely different from its intended value.  This can cause all 

kinds of havoc for the control of an aircraft with four high-speed rotors spinning in the 

air.  Checksums were implemented from the host to the robot to help ensure accurate 

reception, but end-to-end integrity and guaranteed delivery were not built into the 

protocol.  For the most part, this has worked to a sufficient degree, but remote control is 

not as robust as might be desired. 

Another communication issue has been experienced with Jumbo QBot and it involves 

the wireless serial link randomly (and without warning) stopping operation.  This has 

only happened twice in actual flight but it is currently unexplained (it is considered 

likely to be a kernel driver issue) and it caused airframe inversion and at least one 

broken propeller in both cases. 

Safety has been an ongoing concern during the testing and development of these 

potentially dangerous machines.  Of particular concern has been the lack of a failsafe to 

disconnect battery power in the event of an electrical short, a fire, motor controller 

insanity, or just total loss of control.  There was one incident where such a failsafe 

would have been useful as one motor was running at high speed while its propeller was 

hitting a rigid wooden surface; the friction almost started a fire and the only solution 

was to manually pull the battery plug.  This will be addressed in the future through the 

addition of a battery interface board that has interruption relays that can be triggered 
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remotely.  It will therefore be possible to cut battery power from the base station even if 

the control board has been damaged or gone crazy in some unexpected way. 

QBot1 and Araqnobot were tested incrementally and in tightly controlled ways.  As 

such, crashes rarely happened and no propellers were broken on those airframes over 

the course of this research.  Jumbo QBot experienced a much higher rate of destructive 

accidents.  This is largely due to 2 significant factors: increased complexity of the 

design, and a reduction in operator control as autonomous functions were developed.  

Among the problems encountered were a faulty serial communication cable, a motor 

controller that failed and caught fire, a motor controller transistor that went full open 

and burned out the motor, and an autonomous elevation into the ceiling.  The aftermath 

of events like these is shown in Figure 67.  Some of the accidents may have been 

avoidable, but the pursuit of autonomy with a large airframe hereby comes with two 

pieces of advice: 1) be very careful, and 2) stock up on propellers. 

 

Figure 67 - Broken Jumbo QBot Propellers 

Finally, battery life is the primary endurance issue for MAVs of this type.  Range and 

flight duration are greatly determined by the availability of lightweight, long-life 

batteries.  LiPo’s have come a long way in recent years, but to see quadrotor flights 

exceeding an hour’s duration with today’s motors would require tripling battery life 

with no increased mass.  For the purposes of this research, the duration of testing was 

continuously constrained by battery life and that’s an ongoing reality for development 
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in this field.  A breakthrough in either motor or battery technology (or both) will be a 

factor in the further commercialization of multi-rotor MAVs. 

7.3. Future Work 

In many ways, the outcome of this research has been a platform for further research.  

There is so much that remains to be refined and so much more that the Jumbo QBot, 

especially, is capable of.  Future work can be done to take advantage of its extensive 

computing power and an array of sensors and attachments can be tested thanks to its 

significant payload capacity.  As such, there are many things that follow naturally from 

the successful concluding point of this research. 

Firstly, the communication framework could be rebuilt to switch from clear text to 

binary.  As the base station has evolved, the command line has been used less and less 

and it now exists almost exclusively for legacy reasons.  In addition to binary data 

transfer, a more robust integrity system could be developed (expanding upon simple 

checksum and maybe employing inner and outer checksums, or something like that).  

Then explicit acknowledgement and automatic retries could be added to increase 

reliability of remote control and status messages. 

All of the airframes exhibit some amount of twitchiness that comes from IMU noise.  It 

would be useful to spend some time analysing the source of that noise and trying to 

isolate the IMUs from potential sources of disturbance like vibration.  Other alternatives 

such as filtering of either the IMU input or the motor output could also be explored 

(smoothing the motor control could also result in an improvement of power efficiency). 

Both QBot1 and Araqnobot should be capable of indoor altitude hold with a decent 

rangefinder sensor.  Laser or infrared sensors should be tested to find a functional 

alternative (or, perhaps, enhancement) to sonar.  Presuming a reliable sensor can be 

found, further localization could be added to all of the MAVs by mounting the sensors 

to detect objects horizontally and that would allow fully autonomous indoor operation 

(e.g. maintaining static position relative to walls). 

Jumbo QBot already has mounting hardware and available USB ports that will allow the 

attachment of a 240 degree scanning laser rangefinder.  That device should be installed 

and firmware developed to perform intelligent indoor navigation, obstacle avoidance, 

and environment mapping. 
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The position hold logic obviously works, but it is currently understood to be 

rudimentary.  The approach and equations presented in Section 3.4 are acknowledged to 

be somewhat basic.  A desire for minimal sufficiency should not supplant a rigorous 

approach to engineering and it was only due to time constraints that a primarily 

experimental approach was taken in this area. A more comprehensive modelling and 

control framework needs to be developed.  Furthermore, the control parameters should 

be tested and tuned much more extensively and other control methods (such as feed 

forward) should be evaluated.  It is believed to be possible to achieve smooth position 

hold without the constant oscillations or adjustments observed in the current system. 

Finally, the base station software should be either reworked or set aside in favour of 

something more suitable to navigation and flight.  The current framework is focused on 

PID tuning and evaluation which will become less important as the system evolves (PID 

tuning should perhaps be moved to a secondary C# form).  A more conventional 

waypoint planning interface with graphical telemetry information should be developed 

for more extensive flying. 
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8. Conclusion 

It can clearly be said that this research has demonstrated the construction of a fully 

autonomous quad-rotor MAV of non-trivial size (almost 1 meter from rotor-tip to rotor-

tip and weighing over 2kg), payload capacity (theoretically up to 2kg), and computing 

power.  This was achieved through an evolutionary approach that involved a 

progression of three physical robots that increased in complexity and capability at each 

stage.  Fully autonomous orientation control was implemented on all three MAVs and 

the final MAV, Jumbo QBot, flew to a height over 9m and also implemented 

autonomous position control and flight plan execution from takeoff to landing.  All 

theory and control was based on a set of equations and models that align well with 

intuition and that have both the elegance of minimal sufficiency and the validation of 

demonstrated effectiveness.   The theory, the development process, the components, and 

the experimental results have been practically and thoroughly presented herein. 

The embedded computer system on Jumbo QBot runs a fully capable version of the 

Linux operating system and the flight program requires only a small amount of the 

available processing power (less than one third) and memory (less than 1%).  

Considering this and the available payload capacity of the flight system, it is evident 

that this research has established a platform for a broad range of future work, research, 

and exploration.  The sky is not the limit; it is just the beginning. 
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10. Appendix A – Video Links 

- QBot1 Three DOF Test Stand – Tuned PID 

o http://youtu.be/jHiF4AiMh_8 

- QBot1 Tethered Flight 

o http://youtu.be/mxvZeuJDQTo 

- Araqnobot Indoor Flight 

o http://youtu.be/oqj76vawkwQ 

- Araqnobot Outdoor Flight 

o http://youtu.be/EtJOVm9ToQo 

- Introduction to Jumbo QBot 

o http://youtu.be/pgo3tFJHrus 

- Jumbo QBot Early Indoor Flight 

o http://youtu.be/Pqh2zNGI2A4 

- Jumbo QBot First High Flight 

o http://youtu.be/g4JKEWTOfws 

- Jumbo QBot Over 9m Flight 

o http://youtu.be/p-8s4_YoEP4 

- Jumbo QBot Autonomous Flight Testing 

o http://youtu.be/H0hsqsCxOUI 

- Fully Autonomous Takeoff and Landing 

o http://youtu.be/74n0M5eEJBI 

- Improved Autonomous Landing (Indoor) 

o http://youtu.be/dQgLupYWX-s 

 


