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Abstract 
 

This paper outlines an approach for the automatic 
design of material layouts for the residential building 
construction industry. The goal is to cover a flat surface 
using the minimum number of rectangular stock panels by 
nesting the off cut shapes in an efficient manner. This 
problem has been classified as the Minimum Cost 
Polygon Overlay problem. Results are presented for a 
typical problem and two algorithms are compared. 
 
1 INTRODUCTION 
 

This paper describes the application of Genetic 
Algorithms to a class of layout optimisation problems 
found in the construction industry, with particular 
relevance to the construction of residential buildings. This 
class of problem has been defined by previous work as the 
Minimum Cost Polygon Overlay (MCPO) problem [1].  

 
The aim of the work is automate the sheet layout 

process for flat sections of a building. The goal of such an 
automated process is to construct a solution that allows 
the sections to be completely covered with the optimum 
layout. This can be defined as the smallest possible 
amount of stock material, which is cut with minimum 
amount of effort. It is also important for these optimum 
solutions to be found in a reasonable amount of time. 
 
2 2D LAYOUT OPTIMISATION 
 

Optimum two-dimensional layout is a class of 
problems encountered in many industries. The problems 
are characterized with the need to pack non-overlapping 
shapes in an enclosed plane with the aim of minimizing 
the area outside the boundaries of the shapes, therefore 
maximizing the utilization of the material in the base 
sheet. 

 
The actual optimum two-dimensional layout problem 

exists in several variants. Dyckhoff [2] makes an attempt 
to provide a systematic classification of such optimization 
problems. He uses the term cutting and packing (C&P) as 
a generic name for the problem and all its variants. 
Amongst these variants are the sheet layout problem, bin 
packing and strip packing problems, optimum floor plan 
problem, and cutting stock problem. 

 
Strip packing (SP) and bin packing (BP) are specific 

subclasses of the generic sheet layout problems, with the 

objective limited to placing rectangular items within fixed 
width container. Furthermore, rotation is allowed only at 
90º increments whereas mirroring is irrelevant because of 
the rectangle’s symmetry. The subject of SP and BP 
covers problems of various dimensions. However, two-
dimensional BP (2BP) and SP (2SP) problems can be 
considered a subset of sheet layout problem class [3]. 

 
A rather unique variant of the optimum two-

dimensional layout problem is found in the construction 
industry, namely the MCPO problem. A polygon shaped 
area such as wall or ceiling is to be tiled with covering 
sheet material such as cardboard or plywood. With such 
tiling, it is essential that the entire surface is covered with 
no gaps or overlaps. The panels are obtained from the 
supplier in fixed size rectangles. Typically the individual 
panel is much smaller than the area to be covered. It is 
also anticipated that the enclosing area may have an 
irregular outline. 

 
The problem is demonstrated in Figure 1. To keep the 

construction expenses under control, the builder must 
arrange the panels in a way that keeps the cost variables 
low. Such parameters include the number of panels 
allocated, the amount of discarded off cuts, and the 
amount of effort required for cutting the panels. 

 

 
 

Figure 1: Wall Overlay with Fixed Size Panels 
 

A similar problem has been encountered in the 
shipbuilding industry, particularly in cutting steel sheets 
to cover various parts of the ship [4]. 

 
When the panel is homogenous, such as with sheet 

metal, it is desirable to reuse the off cuts to cover irregular 
regions at other places, as this has the potential to reduce 
the total number of sheets required. A particular example 
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was made by Sibley-Punnett and Bossomaier [5] 
regarding the reuse of off cuts from corrugated iron roofs. 
The justification for such effort is provided by the high 
cost of delivering the roofing material. 

 
The diversity of materials used for constructing a 

building provides no guarantee that such homogeneity 
exists for materials used for a particular area. The 
implication is that the constraints for a particular section 
of the building cannot be predetermined. In response, a 
computer program used to resolve such problem must be 
capable of finding the solution under a varying set of 
constraints to allow it to be used for any specific instance 
of the general problem. 

 
Closer examination reveals that the MCPO problem is 

composed of two sub-problems which must be resolved 
sequentially, although each sub-problem still belongs to a 
class of two-dimensional layout optimization problem. 
For a given enclosed area and given dimensions of 
rectangular panels, the requirement is twofold: 

 
(i) Find the optimum arrangement of whole panels in 

which the covered area within the enclosure is 
maximized. The by-product of this process is a set of 
irregular shapes which represent the remaining 
exposed areas. 

 
(ii) Resolve how such irregular shapes can be nested 

within the minimum number of panels. Shapes that 
are bigger than the panel itself are cut at angles 
parallel with the rectangle’s axes to allow such 
nesting. 

 
This decomposition into two sub-problems can 

potentially mask the complexity of the task of finding the 
optimum solution. It is important to recognize that in the 
construction industry, the actual size of the panels is in 
itself a design parameter. In some applications, the panel 
size will remain fixed for the two sub-problems whilst for 
other applications the panel size could potentially be 
varied. With this in mind, it becomes apparent that the 
problem is complex with potentially many locally 
optimum solutions. 

 
3 GENETIC ALGORITHMS 

 
Genetic Algorithms are one of many heuristic 

approaches that have been developed for solving complex 
optimisation problems and dealing with the existence of 
multiple optima in a problem solution space. These 
algorithms use the concept of a population of individuals 
which are subject to a series of probabilistic operators 
such as mutation, selection and recombination. Each 
individual represents a potential solution to a given 
optimization problem. During the computation process, 
the population will undergo a draconian process in which 
stronger individuals thrive whilst the weaker ones perish. 

 

Goldberg [6] asserts that GAs are more robust than 
many other optimization techniques, particularly when the 
search space contains many local optima. He further 
attributes the robustness of GAs to four special 
characteristics of the algorithm: 

 
(i) Instead of working directly with the optimization 

parameters, GA works with a coded set of the 
parameters. 

 
(ii) The optimization result is obtained from a 

population of points instead of a single point. 
 

(iii) GAs directly use the objective function to calculate 
the payoff information instead of derivatives or other 
auxiliary information. 

 
(iv) Probabilistic transition rules are used in GAs instead 

of deterministic rules. 
 

GAs have been applied to a wide range of problems 
that have been considered intractable to other approaches 
and as a result have been selected as a candidate solution 
for solving layout optimisation problems in the 
construction industry. 

 
In many GA implementations in the literature the 

chromosome is commonly implemented as a finite-length 
binary vector. A binary vector provides the maximum 
flexibility for parameter coding and interpretation in much 
the same way as basic data types such as numerical or 
symbolic values are internally represented in the computer 
memory. Non-binary strings are also used however, in 
specific cases such as when representing nodes in 
Traveling Salesman Problem (TSP), where a binary 
equivalent is impractical or inefficient [7]. 

 
Because of its very flexibility, coding the 

optimization parameters into a gene string can be a 
daunting task. For any given optimization problem, there 
are typically a number of possible ways to code the 
parameters into the gene string, some are better than 
others. There is surprisingly little available literature 
providing a general guideline for coding GA parameters. 
Coding guidelines for specific domains do exist however, 
such as those proposed by Nagao for optimization of 
numerical parameters [8]. 

 
The three basic operators in evolutionary computing, 

mutation, selection and recombination, are used in the 
implementation of the genetic algorithm. Specifically in 
the context of GAs, the operators are referred to 
respectively as mutation, reproduction, and crossover [7]. 

 
3.1 GA Parameter Coding 

 
Parameter coding for GAs has a major contribution 

towards the effectiveness of the optimization engine. A 
set of chromosomes containing wrong sets of parameters 

85



or poorly mapped parameter values will ruin an otherwise 
good GA implementation. Similarly a good representation 
of the parameters will make it possible for the GA 
implementation to realize its full potential.  

 
Parameter coding is especially problematic in the 

MCPO problem under consideration. This is especially 
true for the second-stage of the optimization, because 
interdependencies exist among the parameters. The 
second stage optimization appears to be best modelled on 
the 2BP problem. Although the use of a GA in solving 
2BP can be found in a number of publications 
[9][10][11][12], none provides the technical description 
about the actual parameter coding. Perhaps the most 
technical detail can be found in the work of Shian-Miin, 
Cheng-Yan, & Jorng-Tzong [13] where complex tree 
structures are used to represent the nested objects. 

 
In the absence of an exact description regarding the 

parameter coding of 2BP optimization, a novel solution 
for parameter coding has been devised. Substantial effort 
has been expended in designing the chromosome. Not 
only because there are multiple parameters involved in 
layout optimization problems, but some of the parameters 
are also inter-dependent. To construct a suitable model, it 
is quite worthwhile to examine the parameters that define 
a second-stage solution in MCPO. Such parameters are: 

 
(i) The total number of stock panels required 

 
(ii) The list of pieces that are nested within each stock 

panel 
 
(iii) The placement coordinates of each piece within a 

stock panel 
 
(iv) The rotation and flipping applied to that particular 

piece 
 

Evidently the first parameter is dependent on the 
second parameter. Similarly the second parameter is 
largely dependent on the third and fourth parameters. In 
the face of this, the only information available to 
determine the value of those parameters is the list of 
irregular panels represented by their vertices. This all 
leads to a situation radically different from standard sheet 
layout problems found in the literature. 

 
To reiterate, in standard sheet layout problems 

commonly found in the literature, only a single container 
is provided. The solution designer is therefore allowed to 
use the chromosome to directly represent the container 
and map the genes within the chromosome to the nested 
pieces. Static blocks of bits can be used to represent the 
placement coordinates of each piece, its rotation, and so 
on.  

 
This static mapping cannot be easily applied to 

MCPO, since the number of containers itself is a variable 

to begin with. The only possible way to accommodate all 
the parameters within a single chromosome using a static 
mapping is by allocating a large block of bits for each 
stock panel to make it able to contain all the pieces, and 
ensure that enough stock panel blocks are provided within 
that single chromosome to anticipate the possibility of 
having only one piece per panel. Unsurprisingly, the 
resulting bit string is very large and prohibitively 
inefficient to be implemented.  

 
A much more feasible solution is to deliberately use 

only a few parameters in the main model, and to relegate 
the task of populating the rest of the parameters 
somewhere else. Since the first two parameters identified 
above are the most crucial, they are selected to be 
represented in the chromosome.  

 
Resolving the third and fourth parameters is 

important to determine whether the solution for first and 
second parameters is legal. It is most appropriate to make 
finding their correct values an integral part of the fitness 
evaluation function for the original chromosome. 

 
This is done by utilizing the same sequential 

placement routines as used in the greedy algorithm which 
has been which has been adopted as it is fast and 
deterministic in nature. It is important to not that GAs are 
typically used to implement a simultaneous placement 
nesting strategy. The fact that all nesting optimization 
algorithms implemented in this project eventually use a 
sequential placement strategy rules out the possibility of 
comparing the performances of the two. 

 
After all the relevant decisions been made as 

discussed above, the problem is now sufficiently reduced 
to enable the actual modeling of the chromosome. There 
are only two parameters remaining to be coded in the 
chromosome: 

 
(i) The total number of stock panels required 

 
(ii) The list of pieces that are nested within each stock 

panel 
 

Direct coding to the genes in the chromosome is still 
not possible because the second parameter is of a variable 
length. To solve this problem, indirect coding employing 
the concept of clusters is used. 

 
In this technique, static blocks in the chromosome are 

mapped to the pieces to be nested. This represents the 
worst case solution, where each piece requires an 
individual stock panel to be used. From the first step of 
the solution, it is known that all pieces to be nested are 
smaller than the stock panels therefore this provides an 
upper threshold for the maximum number of panels 
required. Each panel is associated with a fixed-width 
block of bits in the chromosome. This block contains only 
a single variable of integer type, namely the cluster ID. 
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Figure 2 shows the association between the panels and the 
blocks in the chromosome. 
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Figure 2: Gene to Panel Mapping 
 
The value of each variable points to an imaginary 

cluster to which the panel belongs. Figure 3 shows an 
example of a populated chromosome with the imaginary 
clusters that result. Because only 17 panels exist, the 
binary string can use five bits to hold the cluster ID. 
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Figure 3: Interpreting a Candidate Chromosome 
 
Using Figure 2 as reference, it is easy to decode the 

chromosome to find that the Panel 0 is a member of 
Cluster 2, whereas Panel 1 is a member of Cluster 8, and 
so on. Similarly, Cluster 0 appears to have only a single 
member, i.e. Panel 4, whereas Cluster 2 has two members: 
Panel 0 and Panel 5. 

 
A cluster is regarded as legal if all its members can be 

nested in a single stock panel. As previously discussed, 
part of the fitness function’s task is to discover whether 
such nesting is possible. In the case of an invalid cluster 
being encountered, there are a number of possible ways to 
respond. 

 
The use of clusters effectively addresses the variable 

length problem of the nesting list. Because the list only 
exists implicitly in the chromosome, no assumption about 
the number of clusters needs to be made beforehand. 
Furthermore by allowing the pieces to map themselves to 
the clusters, it is guaranteed that the number of clusters 
will always be less than or equal to the number of pieces. 

Typically, the number of bits allocated for each panel 
is a good deal more than required to express all the 
possible Cluster IDs for a given optimization problem. 
Consequently, assigning the pieces with a random Cluster 
ID number will often result in single-member clusters 
with widely scattered IDs. While this phenomenon does 
not affect the validity of the result, it does potentially bias 
the optimization engine into giving an inefficient result. 
This problem is easy to solve however, by using a modulo 
operator to convert all IDs to the acceptable range. 

 
3.2 Valid/Invalid Chromosomes 

 
A chromosome in the context of layout optimization 

is accepted as valid only when all pieces can be 
successfully nested in their associated stock panel. Its 
opposite is the invalid chromosome, which contains one 
or more clusters whose members cannot be nested in a 
stock panel. Because the search is set-oriented, there is no 
guarantee that all the clusters extracted from a 
chromosome are valid. Invalid clusters are found very 
frequently in the actual tests because many of the 
individual pieces are quite large compared to the size of 
stock panels, invariably claiming most of the available 
area after only one or two nested pieces. 

 
Mindlessly discarding invalid chromosome is not a 

desirable option using a GA. Because the direction of the 
search is dictated by the collective patterns in its 
population of chromosomes, great care must be taken to 
ensure that the population can survive and retain good 
quality patterns at each turn of generation. A dilemma 
inevitably arises: should an invalid chromosome be 
retained in spite of its lack of value as a solution; or 
should it be discarded and risk the population dwindling 
and becoming stagnant after just a few generations? The 
sensible answer must lie somewhere between those two 
extremes.  

 
Whilst a number of strategies have been considered 

[1], at this stage an approach labelled Redistribute from 
Beginning (RFB) has been adopted. An attempt is made at 
nesting the rejected piece in an already created panel 
before creating a new cluster at the end of the list if 
required. Theoretically this approach will result in a more 
even distribution of the pieces, and ultimately a better 
overall fitness value. 

 
3.3 Cluster Placement Strategy 

 
An important aspect of generating clusters that are 

both valid and good is the positioning of the pieces in an 
available container. The second problem to be solved 
about a particular piece is about where it should be placed 
within the container. It is evident that when the container 
is considered continuous, the candidate panel may be 
placed inside in an infinite number of ways. 
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Reducing the container to a discrete set of possible 
placement choices is vital to make search possible. Given 
the exponential nature of the size of the overall 
optimization problem as a whole, limiting the number of 
possible ways of placing candidate panels in the container 
from that discrete set is also necessary. This particular 
implementation uses incident vertex placement, which is 
an approach similar to linear programming. If the area of 
the container is considered as the feasible area, then the 
potential optimum solutions are associated to its vertices. 
Only those vertices will be evaluated as incident vertex 
candidates for the panel at hand. The panel is then shifted 
to various places to make its vertices overlap with those 
of the container. 

 
Figure 4 shows the evaluation of how a small 

triangular piece can be placed inside a rectangular 
container using such a method. It appears that twelve 
possible solutions exist, of which three are valid as a 
nesting solution.  

 

 
Figure 4: Layout Solution by Vertex Incidence 

 
Because the solution is not singular, a further decision 

must be made to select the “best” from these equally valid 
options. There are two options available in response: 
those based on the first fit and the best fit strategies. The 
results presented in this paper are based on the use of the 
best fit strategy. Figure 5 shows three legal ways a 
triangle abc can be placed inside a rectangular container. 
These three candidates will be evaluated to determine 
which one is the “best”. The notion of best solution is 
elusive and problem-specific however, requiring analysis 
about what goal the algorithm is set to achieve and what 
means are available to achieve it. 

 

 
 

Figure 5: Candidate Solutions for Best Fit Placement 
 

Because the objective of layout optimization is to put 
the pieces so as to occupy as much container space as 
possible without overlapping, the logical posture of the 
best fit strategy is to maintain a continuous and convex 
free space after each piece is placed. Hence, the best 
solution for a given iteration is the one that provides the 

least possible obstructions in the remaining unoccupied 
space. 

With the criterion of the best solution established, the 
next task is to develop an effective and inexpensive way 
to make the necessary evaluation. Unfortunately there is 
no straightforward way the amount of obstruction within 
the vacant space can be measured. A less direct 
calculation based on overlapping edges is used instead. 
For a given candidate solution, the length of the edges of 
the piece that overlap with the outline of the container is 
calculated. If previously placed pieces exist, the length of 
overlapping edges with those pieces is also added. The 
best solution is defined as the one with highest total 
length of the overlapping edges. 

 
4 RESULTS 

 
A number of experiments have been conducted that 

compare the performance of the GA against a simple 
implementation of Greedy algorithm that utilises the same 
best fit strategy. The Greedy approach cycles through the 
available pieces and attempts to fit the largest piece in the 
available space of an existing panel. If the piece does not 
fit in any of the existing panels, a new panel is used to fit 
the piece. One such experiment was conducted on the 
complex roof problem. The roof is shown in Figure 6. 
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Figure 6: Complex Roof Layout 

 
Table 1 compares the performance of the GA against 

the Greedy search method. In this experiment, the same 
best fit strategy was used and the material was allowed to 
rotate 180° only.  
 

Criteria Greedy GA 
Full Panels Used 25 25 
No. Offcuts to Nest 129 129 
Total No. Pieces 154 154 
Stock Panels Used 64 85 
Shared Edge Length 9930 9814 
Area to be Covered 124153 124153 
Area of Stock Panels 128000 170000 
Wasted Material 3847 45847 
Solution Efficiency 97% 73% 
Search Duration 0:00:03 0:45:35 

 
Table 1: Solution Quality Criteria 
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Whilst a number of different experiments have been 
undertaken, these results provide some interesting insight 
into the approach taken. Despite the Genetic Algorithm 
being a more robust algorithm, it has consistently found 
less attractive solutions than the simple Greedy algorithm. 

 
Retrospective analysis of the GA implementation has 

identified the potential cause of this unexpected poor 
performance. Whilst the mapping of pieces to clusters is a 
powerful approach for dealing with the fact that the 
number of pieces is in fact an optimisation parameter, the 
method of dealing with invalid clusters has a certain 
weakness. 

 
The redistribution of pieces in an invalid cluster is 

also powerful, however the weakness is the new cluster 
data is not reintroduced into the GA population. The GA 
is therefore operating on a large population of invalid 
clusters, which could be limiting the performance of the 
method.  
 
5 CONCLUSIONS 

 
This paper has described an approach for automating 

a class of 2D material layout optimisation defined as the 
Minimum Cost Polygon Overlay problem. This class of 
problem is common in the construction industry where 
large areas are required to be fully covered using the 
minimum number of rectangular stock panels. 

 
The key element of this problem is the allocation of 

irregular shapes to multiple stock panels and the reuse of 
off cut sections to minimise wastage. Two algorithms 
have been applied to the solution of this stage, namely a 
deterministic algorithm based on the allocation of the next 
available piece, and a heuristic algorithm for a pseudo-
simultaneous approach. 

 
The deterministic, or Greedy, algorithm clearly 

outperforms the heuristic approach which utilises a 
Genetic Algorithm. Analysis of the implementation has 
show that the approach for dealing with invalid clusters in 
the Genetic Algorithm is the most likely cause for such 
poor performance. 

 
Whilst the results of the Greed algorithm are suitable 

for use by architects and builders working in this area, 
future work will investigate improved approaches for 
dealing with invalid clusters and also investigate the 
suitability of alternative heuristic algorithms. 
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