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Abstract 

 

 

When animals explore a new environment, they do not acquire a precise map of the 

places visited. In fact, research has shown that learning is a recurring process. Over 

time, new information helps the animal to update their perception of the locations it 

has visited. Yet, they are still able to use the fuzzy and often incomplete representation 

to find their way home. This process has been termed the cognitive mapping process. 

 

The work presented in this thesis uses a mobile robot equipped with sonar sensors to 

investigate the nature of such a process. Specifically, what is the information that is 

fundamental and prevalent in spatial navigation? 

 

Initially, the robot is instructed to compute a “cognitive map” of its environment. 

Since a robot is not a cognitive agent, it cannot, by definition, compute a cognitive 

map. Hence the robot is used as a test bed for understanding the cognitive mapping 

process. Yeap’s (1988) theory of cognitive mapping forms the foundation for 

computing the robot’s representation of the places it has visited. He argued that a 

network of local spaces is computed early in the cognitive mapping process.  

 

Yeap coined these local spaces as Absolute Space Representations (ASRs). However, 

ASR is not just a process of partitioning the environment into smaller local regions. 

The ASRs describe the bounded space that one is in, how one could leave that space 

(exits) and how the exits serves to link the ASRs to form a network that serves as the 

cognitive map (see Jefferies (1999)). Like the animal’s cognitive map, ASRs are not 

precise geometrical maps of the environment but rather, provide a rough shape or feel 

of the space the robot is currently in.  

 

Once the robot computes its “cognitive map”, it is then, like foraging and hoarding 

animals, instructed to find its way home. To do so, the robot uses two crucial pieces of 

information: distance between exits of ASRs and relative orientation of adjacent 

ASRs. A simple animal-like strategy was implemented for the robot to locate home. 

Results from the experiments demonstrated the robot’s ability to determine its location 



  viii  

 

within the visited environment along its journey. This task was performed without the 

use of an accurate map. 

 

From these results and reviews of various findings related to cognitive mapping for 

various animals, we deduce that: 

 

Different animals have different sensing capabilities. They live in different 

environments and therefore face unique challenges. Consequently, they evolve to have 

different navigational strategies. However, we believe two crucial pieces of 

information are inherent in all animals and form the fundamentals of navigation: 

distance and orientation. Higher level animals may encode and may even prefer richer 

information to enhance the animal’s cognitive map. Nonetheless, distance and 

orientation will always be computed as a core process of cognitive mapping. 

 

We believe this insight will help future research to better understand the complex 

nature of cognitive mapping. 
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Chapter One 

 

Introduction 

 

 

This thesis describes work done using a mobile robot equipped with sonar sensors to 

compute a “cognitive map” of its environment, and using it, to find its way home. 

Since a robot is not a cognitive agent, it cannot, by definition, compute a cognitive 

map. Thus, this work is about using a robot as a test bed for understanding cognitive 

mapping.  

 

Cognitive mapping, on the one hand, is a complex process which derives its input 

from an array of sensors and, for humans, is also a knowledge-rich process. Humans’ 

interpretations of their environment are laden with their emotions, memories of past 

events, social etiquette, and others. All these factors affect the humans’ perception of 

their physical environment. Robots, on the other hand, are sensor-poor and knowledge 

poor and they never forget. It is therefore not a straightforward task implementing 

theories of cognitive mapping such as that of Kuipers (1977, 2000); Yeap & Jefferies 

(1999); Chown, Kaplan & Kortenkamp (1995); and others, on a mobile robot. 

 

Consequently, little cross-fertilization between robot mapping and cognitive mapping 

has occurred, although there are increasing attempts to do so recently, see Jefferies & 

Yeap (2008). Understandably, researchers interested in robot mapping focus on 

developing algorithms that will produce a map useful solely for robot navigation. One 

representation commonly produced is that of an accurate global metric map, for 

example, Konolige (2004); Simmons & Koenig (1995); Tardos, Neira, Newman & 

Leonard (2002); Thrun (2008) and Tomatis, Nourbakhsh & Siegwart (2002). Robotics 

researchers often refer to their problem as Simultaneous Localization and Mapping 

(SLAM) – see Thrun (2008) for a comprehensive review of SLAM. In short, the robot 

must know exactly where it is in the map computed so far. 
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In contrast, humans are often lost in a new environment and animals do not compute 

an accurate global metric map. They are easily distracted by what is happening in their 

surroundings and have to be always on the look-out for danger. In addition, views 

obtained during an outward journey from home are not the same as the views obtained 

during the homeward journey. Short-cuts are taken, landmarks are remembered and 

conceptual views are formed. With their different senses, travel moods and needs, 

different species, as varied as ants, birds, fish, rats and humans, compute different 

kinds of fuzzy representations and develop many ingenious algorithms utilizing its 

fuzzy representation. 

 

My goal in this research is to develop a cognitive map-like algorithm for a robot and 

use it to further investigate the nature of cognitive mapping. In particular, three 

questions were addressed in this research: 

 

1. Could the robot be used to compute some kind of a cognitive map? 

2. Could the map computed be used to solve a cognitive mapping related task? 

3. From the above, could further insights be gained about what is happening in 

the early cognitive mapping process? 

 

To many robotics researchers, their robots cannot find its way in its environment 

without having solved the SLAM problem. Thus, the first question is a challenge to 

get the robot to compute something different, moving this research away from the 

mainstream research of robotics. Ideally, the robot should behave like an animal, 

wandering freely in its own environment and compute its own “cognitive map”. The 

map computed should not be mathematically precise for the robot to localize its exact 

position or thereabout on the map. The map computed does not have the exact shape 

of each local environment it has visited. In particular, the shape of each local 

environment could change depending on the direction of travel. Creating such a robot 

would be like having created a new kind of “animal”, with its own peculiar kind of 

sensors. 

 

Providing an answer to the first question would not be interesting if the robot 

computes such a map without doing something useful with it. Thus, the second 
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question is to get the robot to use the cognitive map to solve a fundamental cognitive 

mapping related task. The foraging behavior of animals would suggest that the most 

basic use of one’s cognitive map is to enable one to return home. Could this robot find 

its way home? The robot used in the experiments conducted in this thesis is equipped 

with sonar and odometer sensors. It is a deliberate choice not to equip the robot with 

more powerful sensors such as lasers. Furthermore, no error-correction software is 

used together with the sensors. This helps create a situation atypical to that faced by 

robotics researchers. For instance, one could not re-create the same map on the 

homeward journey so that one could recognize where one is based upon matching. The 

errors in sonar sensing and from the odometer readings would make it very difficult to 

do so. This situation forces the development of other strategies for the robot to find its 

way home and in particular strategies utilizing similar information afforded to animals 

with their own imprecise maps. Animals were found to make much use of distance and 

orientation information. Thus, a new algorithm is developed that uses these two pieces 

of information implicitly available in the robot’s cognitive map. 

 

The third, and final question, is a key question related to cognitive mapping and which 

this research will attempt to address. In Yeap’s (1988) theory of cognitive mapping, it 

was argued that what is computed early in the process are a network of ASRs 

(Absolute Space Representations). An ASR should not be mistaken as any partitioning 

of a large environment into many smaller local environments or regions. In particular, 

an ASR is not the same as the partitioning of the environment into different empty 

spaces popularized by the work of robotics researchers. An ASR is a representation 

that affords two crucial pieces of information: the bounded space that one is in and 

where one could move out of that space (the exits, see Yeap & Jefferies (1999)). One 

continues to shape and re-shape an ASR as one move through an environment. 

 

However, since Yeap’s theory has been proposed, it has rarely been demonstrated how 

a network of ASRs would eventually emerge in one’s exploration of the environment 

and be useful for solving a cognitive mapping task. From the vast literature on 

cognitive mapping (see Downs & Stea (1973); Golledge (1999); Kitchin & 

Freundschuh (2000) and Portugali (1996)) and from an introspection of one’s own 

behavior, one would expect that one remembers some loosely coupled ASRs and 
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landmarks initially. Subsequent explorations of the environment would enable one to 

build a more well-connected network. However, believing so does not explain how a 

loosely coupled network of ASRs could later be turned into a well-connected 

representation. Does this require that the subject be lost several times? If so, how 

could one recover from being lost and how could subsequent learning improve upon 

it? What happens to the network created during the confusion? How useful is the 

initial loosely coupled network of computed ASRs? What could one do from what is 

learned during the initial exploration? 

 

This research does not attempt to answer all of the above questions related to the initial 

cognitive mapping process. It will attempt to address the last two. Experimenting with 

a robot to find its way home using a fuzzy map will help to shed some light into the 

nature of the early cognitive mapping process. The robot provides a situation where 

the minimum amount of information is available and implementing an animal-like 

strategy will allow us to study the problem closely. This exploratory study will show 

how a robot might be useful for finding answers to the above kinds of questions and 

more could be discovered. 

 

All the experiments conducted could be described briefly as follows: The robot 

wanders on its own through an office environment similar to that as shown in Figure 

1.1(a). It collects sonar data (Figure 1.1(b)) and odometer readings of the journey and 

computes ASRs as shown in Figure 1.1(c). Home is defined as the starting point of a 

journey and after exploring for a while, the robot is instructed to turn around and find 

its way home. On its homeward journey, the robot computes another cognitive map, 

representing how the environment is perceived on the homeward journey. This map is 

most likely to be different from the one computed during exploration. Several 

experiments were conducted and, on most occasions, the robot successfully returned 

home.  
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       (a) 

 
 

       (b)         (c) 

 

Figure 1.1 (a) Example of an exploration journey through an office environment. The arrows 

depict the physical movement of the robot during its journey (b) Sonar information collected 

during the exploration journey. The different colors represent the data collected from the 

different sonar sensors and (c) the ASRs computed for the environment visited. The ASRs are the 

spaces between the solid black dots, or split points. The blue lines represent the boundary of the 

ASRs. 

 

Two new algorithms were developed. The first new algorithm is for computing ASRs 

and is based upon the well-known Split and Merge method (see Duda & Hart (1973); 

Niemann (1990) and Pavlidis & Horowitz (1974)), which originated from research in 

pattern recognition. The basic method for computing ASRs as proposed in Jefferies 

(1999) has not changed. However, because the robot has very poor sensors, a new 
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algorithm has to be developed. The second new algorithm consists of two parts: the 

need for a navigation strategy to enable the robot to find its way home and the need for 

the robot to localize itself while returning home. Four new sub-algorithms are 

developed for these two parts. 

 

The strategy developed for the robot to find its way home is quite straightforward. 

Since it is assumed that the robot remembers all the ASRs computed, the strategy for 

going home is to go back to the entrance used for entering the current ASR and then 

back to the entrance used to enter the previous ASR and so on until one reaches home. 

However, the lack of an ability to identify exits poses an interesting localization 

problem. A general solution to the localization problem is developed, which is based 

upon combining confidence measure of different kinds of information. Two different 

kinds of information are used, namely distance traveled in terms of the length of the 

ASR and the orientation between adjacent ASRs. Fusion of the strategies is done using 

the Democratic Integration technique which was originally proposed by Triesch 

(1999) and Triesch & von der Malsburg (2001) for sensor data fusion in computer 

vision, using images as input data.  

 

Chapter 2 provides a review of different theories of cognitive mapping, and the 

different attempts to implement them on a mobile robot. In particular, the chapter 

discusses the theories of Yeap, Kuipers and Chown et al., and three different neural 

models of cognitive mapping. Chapter 3 provides a review of some recent neurological 

and behavioral studies about cognitive maps. Recent experiments to help advance our 

understanding of cognitive mapping are discussed. Chapter 4 describes the 

implementation of a new algorithm for computing ASRs for a mobile robot equipped 

with sonar sensors. The basic idea for computing ASRs is still the same as proposed 

by Jefferies’ (1999) but the details are significantly different. This is because the robot 

is equipped with sonar sensors which do not allow much information to be sensed 

from a single location in the environment. This chapter also provides details about the 

robot and its sensors. Chapter 5 describes how the robot finds its way home using the 

cognitive map computed. Four new algorithms were developed. The first is concerned 

with the strategy for the robot to navigate home. The remaining three algorithms are 

concerned with how the robot localized itself in the environment. The localization 
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algorithms make use of the distance of the path between exits of ASRs visited and the 

relative orientation between adjacent ASRs. Finally, Chapter 6 concludes the thesis 

with a discussion of its findings and future directions. 
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Chapter Two 

 

Theories and Implementations of  

Cognitive Mapping Models 

 

 

This chapter discusses the various theories and models of cognitive mapping. In 

particular, those closely related to the one chosen as the basis for this work, namely 

Yeap’s computational theory of cognitive mapping.   

 

Sections 2.1, 2.2, and 2.3 describe the ASR model, SSH model and PLAN model of 

cognitive mapping respectively. The differences between them and their recent 

progress will be highlighted. In particular, and of most relevance to the current work, 

the focus is also on how these theories have been implemented on a mobile robot. In 

addition to these theories, Section 2.4 describes three different implementations of 

neural-inspired models of cognitive mapping.  These works investigate cognitive 

mapping from a different angle, i.e. at a neural level, and it is thus of complimentary 

value to the work presented here. Again, the major interest is on the theory proposed 

and the way the theory has been tested on a mobile robot. Section 2.5 concludes this 

chapter with an overall discussion of the various models and their implementations. 

For a thorough review of earlier works on cognitive mapping, see Yeap & Jefferies 

(2000). 

 

 

2.1 ASR Model 

Yeap’s (1988) computational theory of cognitive mapping is developed from paying 

attention to how sensor information is used to compute a cognitive map. The key 

question asked in Yeap’s approach is: What needs to be made explicit in the cognitive 

mapping process, why and how? The input to the process is some form of a viewer-

centered representation of surfaces obtained by whatever sensors are available to the 

viewer.  The theory is thus a general one: it accounts for why and how information 
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captured at the sensor level is transformed, via various stages, into a cognitive map. To 

date, four key representations were proposed, namely: 

 

1. An Absolute Space Representation (ASR) – An ASR is a representation of each 

local environment visited. A local environment is identified as any bounded region 

of space which one has wandered into. The feeling of boundedness is perceptually 

driven i.e. it depends solely on how subjects perceive the environment. Thus two 

key pieces of information that define an ASR computed immediately are its 

boundary/shape and its exits, see Yeap & Jefferies (1999). By computing an ASR, 

one makes explicit the space that one is in and the exits for moving out of it.  

 

2. A Memory for One’s Immediate Surroundings (MFIS) – An MFIS is a global map 

of one’s immediate surroundings. It consists of a network of ASRs described using 

a global co-ordinate system and centered on the ASR which contains the subject. 

The MFIS is thus an extension of what an ASR is and provides the subject an 

awareness of their immediate surroundings. The MFIS is thus useful for knowing 

what is immediately beyond the current ASR. 

 

3. A Raw Cognitive Map – This consists of networks of ASRs, each describing how 

local environments are connected together. It is “raw” in the sense that information 

in it is perceptually driven. The network, if well-connected, enables one to 

navigate with ease in one’s environment and provides the basis for further 

development into a much richer cognitive map. 

 

4. A Full Cognitive Map – This map contains all the richness that is found from 

interpreting the world through one’s experience and understanding. A minimal 

representation would be a hierarchy of place representations. Each place 

representation points to or names one or more groups of ASRs. The way one 

interacts with one’s world could change the shape of ASRs and/or how best they 

are remembered. Things in them are remembered for various reasons and at 

different levels of interpretations. 
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Figure 2.1 shows how the different representations are inter-related. Implementing the 

notion of an ASR, using a mobile robot is not a straightforward task. For instance, it is 

not just about computing a representation of the empty spaces traversed. The latter is a 

popular approach among roboticists who are interested in computing a representation 

of the robot’s environment for the sole purpose of navigation in the environment. An 

ASR is a complex entity. It begins with a rough description of the shape of each local 

environment and its exits. Both could change as a result of further explorations of, and 

social interactions within, the environment.  An initial network of ASRs might not be 

useful for navigation as some ASRs in-between could be forgotten while others might 

not be detailed enough.  

 

 

Figure 2.1 Yeap’s computational theory of cognitive mapping. Image has been reproduced from 

Figure 1 in Yeap (2007). Note that although an improved version of the cognitive mapping process 

was discussed in Yeap (2007), it is premature to consider that model in this research. 

 

Given the complex nature of ASRs, very few attempts have been made in 

implementing the idea on a mobile robot. Jefferies (1999) noted the importance of 

exits and used that as an important constraint for computing the boundary of an ASR. 

Subsequently, and using a mobile robot equipped with a laser sensor, she and her co-

workers have implemented two ways to recognize ASRs revisited, namely: (i) the use 

of a neural network for learning signatures of ASRs, see Jefferies, Weng, Baker & 

Mayo (2004), and (ii) the use of an MFIS to help recognize adjacent ASRs, see 
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Jefferies, Weng & Baker (2008). Figure 2.2 shows an example of how an MFIS is 

used to help recognize ASRs revisited. This ability to recognize ASRs revisited allows 

them to build useful networks of ASRs for a large environment. The work presented in 

this thesis continues to investigate this early process of computing ASRs and using 

them to solve a cognitive mapping problem. 

 

  

(a) (b) 

Figure 2.2 (a) A network of ASRs computed so far, and (b) the MFIS. The robot has re-entered 

ASR3 from ASR7 but did not compute a new ASR for it. From the MFIS, it realizes that it is in 

ASR3. Images reproduced from Figure 12.4 of Jefferies et al. (2008). 

 

 

2.2 SSH Model 

Although Yeap (see section above) identified four different representations in a 

cognitive map, he and his co-workers have focused much on the difficult task of 

computing ASRs and to a limited extent, on the MFIS. In contrast, Kuipers developed 

one of the most comprehensive computational models of cognitive mapping to date. 

His Spatial Semantic Hierarchy (SSH) specifies 5 different levels of knowledge known 

to exist in a cognitive map. These levels are: 

 

1. Sensory level – Interface to the agent’s sensory system but at this level, there is 

neither information on the global structure of the environment nor information on 

the robot’s position or orientation within the environment 

 



  12  

 

2. Control level – Exploration of an unknown environment is performed through the 

selection of a control law, which depends on the information collected by the 

sensor(s) of the environment. For example, if the robot is facing free space and 

there is a wall to its left, then maybe, the best control law is ‘Follow the Left 

Wall’. 

 

3. Causal level – The causal level abstracts the sequence of control laws the robot 

uses to move from one distinctive state to another within the environment. This 

description is augmented with views that are generated at the distinctive states 

before and after the agent’s movement. Views are sensory information collected at 

the distinctive states.  

 

4. Topological level - At the topological level, the environment is described using 

places, paths and regions and their connectivity, order and containment.  

 

5. Metrical level - Metrical level involves the generation of a 2-D global map (such 

as grid map) of the explored environment. This provides quantitative information 

to the agent’s representation of the environment, such as distance between places 

and angles between paths.  

 

The model operates in a hierarchical nature. That is, each level provides the properties 

that the next one depends on. In particular, Kuipers stresses that the topological level 

is prior to the metric level. Kuipers (1977, 1978) initially developed a simulation 

model known as the TOUR model to investigate the topological nature of a cognitive 

map. The SSH is an extension of the TOUR model and with it, Kuipers and his co-

workers have begun investigating other levels of cognitive mapping. For example, 

using a simulation model, Kuipers & Byun (1987, 1988, 1991) investigated how a 

robot could reach distinctive states in the environment using simple control laws and 

how a topological and a global metric map are then abstracted from those states (see 

Figure 2.3). Other attempts to implement the SSH model are found in Lee (1996) and 

Remolina (2001). 
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(a) 

 
(b) 

 
(c) 

Figure 2.3 Exploration and mapping performed by the simulated NX robot. (a) The exploration 

journey and distinctive paths and places (b) Fragment of the topological map which identifies 

places and paths; and the measures that were used to define them (c) The global metrical map. 

Images were reproduced from Kuipers (2000). 
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These early SSH implementations have limited utilization of sensory information. 

More recently, Kuipers and his co-workers have begun investigating integrating 

perceptual information from the robot’s sensors to the SSH model, see Beeson et al. 

(2003) and Kuipers, Modayil, Beeson, MacMahon & Savelli (2004). The hybrid SSH 

is an extension of the SSH which includes metrical description of the places described 

in the topological map of the SSH. These local descriptions are known as local 

perceptual model (LPM) and are meant to provide low level metric information that is 

useful for path planning during navigation. 

 

The LPMs were implemented as occupancy grids, each having their own local frame 

of reference. They experimented on how to detect locations that are suitable to be 

places for collecting metrical information in Beeson, Jong & Kuipers (2005) and how 

the LPMs are linked to each other in Kuipers et al. (2004). The model was tested on a 

mobile robot in an environment with multiple nested loops as shown in Figure 2.4(a), 

see Kuipers et al. (2004). The exploration path is depicted by the numbered labels. 

Kuipers et al. (2004) also investigated on solving perceptual aliasing when revisiting 

an already encoded LPM (see figure 2.4(b)); and how gateways on the same path are 

linked as shown in figure 2.4(c) so that the hybrid topological map can later be used to 

generate a global metrical map of the environment, see Modayil, Beeson & Kuipers 

(2004).  

 

 

(a) (b) (c) 

 

Figure 2.4 (a) Robot exploring an environment with multiple nested loops. Numberings denote the 

order the environment was explored. (b) Local Perceptual Models that were generated at each 

place denoted by the numberings and (c) shows the unique LPMs that have been selected and 

connected via gateways that are on the same path. Reproduced from Kuipers  (2008). 
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2.3 PLAN Model 

PLAN stands for Prototypes, Location, and Associative Networks. Chown, Kaplan and 

Kortenkamp (1995) developed the PLAN model of cognitive maps from closely 

mirroring how humans solve their way-finding problem. They argued that the human 

cognitive mapping process is about solving the latter problem and the latter could be 

broken down into four component problems, namely: 

 

1. landmark identification 

2. path selection 

3. direction selection 

4. abstract environmental overviews 

 

Henceforth, PLAN is derived from a solution to each of the above problems. 

Beginning with landmarks, Chown et al. argued that landmark perception is no 

different from the perception of other object categories and therefore the development 

of a general prototype theory for the cognitive mapping process would be adequate to 

address landmark identification. How prototypes are created and represented would 

naturally impact upon the development of one’s cognitive map. PLAN, at present, 

suggests the use of a simple associative network and the idea was tested via a 

connectionist implementation known as NAPS, a Network Activity Passing System, 

see Levenick (1985; 1991). The need for direction selection in way-finding prompted 

Chown et al. to propose the use of a local map in addition to a network of landmarks. 

Local maps tell us how we could orient ourselves to nearby landmarks. Figure 2.5 

shows an example of how visual cues are extracted to form a picture plane, which is 

the observation of a scene from a location from one viewpoint or direction. The view 

is divided into five viewing directions, each having a locational grid connected to it. 

Cues extracted from the scenes are mapped onto the cells in the locational grid. 

Together, the directional and locational grids form the basis of the local map.  
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Figure 2.5 Formation of the local map. Top left: Observer’s view consisting of a tree and a house. 

Top right: Extraction of visual cues onto a picture plane. Bottom: Picture plane is stored 

according to the observation direction. For a place, there are a total of five observation directions. 

The picture planes in all directions form the local map. Image reproduced from Chown et al. 

(1995). 

 

It is interesting to note that they further argued that local maps are not constructed at 

landmarks but rather at choice points in a journey, such as at a fork in a road or a 

doorway. However, choice points are not represented in the network of landmarks and 

as such, how can we create local maps? It turns out that another network is proposed: 

an R-Net which is a network of local maps. Chown et al. (1995, p. 28) speculated that 

having two could be advantageous, namely: (i) it provides a redundant system of route 

structures, and (ii) that the two working in conjunction with each other can operate 

faster and more efficiently. They further speculate that R-Net will eventually supplant 

the associate network of landmarks as the primary structure for use in way-finding. 

Since each local map already contain information about landmarks and as Chown et al. 

(1995, p. 29) have pointed out that R-Net more naturally reflect the experience of a 

journey, it is a puzzle why an independent network of landmarks is still needed. It 
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would be straightforward to create a single network of mixed landmarks and local 

maps. 

 

The third, and final, representation proposed in PLAN is a regional map. This 

representation is meant to capture large-scale spaces that cannot be perceived 

immediately, in contrast to local maps. Interestingly, Chown et al. proposed that such 

regions have gateways that mark the entrance to these spaces. Yeap and Jefferies 

(1999) also argued for the importance of entrance in spaces but these are at the level of 

ASRs (or local spaces) rather than at the level of regional spaces. 

 

R-PLAN or Robot-PLAN describes an implementation of PLAN onto a mobile robot 

equipped with sonar sensors and camera, see Kortenkamp (1993) and Kortenkamp & 

Weymouth (1994). In R-PLAN, they investigated on how sonar sensor information is 

firstly used for identifying gateways and then how visual cues are extracted from 

vision. One major deviation from PLAN was the type of visual cues extracted. In 

PLAN, the cues are abstractions of objects from the scene, e.g. trees, buildings, etc. 

However, this is a task too complex to implement on a mobile robot. Instead, vertical 

edges are extracted as cues from the scenes in R-PLAN. In addition, Kortenkamp and 

Weymouth (1994) investigated how these scenes can be used to perform place 

recognition. 

 

More recently, Chown and Boots (2008) described a new implementation dubbed C-

PLAN (for Corner-PLAN). C-PLAN is conceptually inspired by PLAN but differs 

significantly in implementation. As the name implies, the approach is based on the 

corners detected in the environment and even though gateways can be identified, they 

are not represented as they are in R-PLAN. 

 

In C-PLAN, Chown and Boots investigated how corners can be detected using 

information collected using a laser scanner. A topological map is used to represent the 

environment: each node representing a perceived corner and each path is used to form 

relationships between corners that were perceived simultaneously. Furthermore, the 

connection between nodes also represents the geometrical relationship between linked 
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corners. Over time, this link is strengthened with repeated simultaneous viewing and 

weakened when only one corner is viewed at one time. 

 

Chown and Boots investigated on classifying the two features commonly found in 

laser readings: walls and corners (see Figure 2.6). The authors described walls being 

features with readings that are 180 degrees to each other and corners are readings that 

form a 90-degree angle to each other (see Figure 2.6(b)). The justification is that 

humans are not suited for certain types of environment and can be easily deceived in 

their perception. Whilst this rationale may be true when learning a new environment, 

nonetheless, one can speculate that over time, humans can represent environments that 

consist of various types of corners and other features, such as the environment used in 

the experiments conducted in this thesis (see Figure 4.1 in Chapter 4). 

 

 

 

 

 

 
(a) (b) 

 

Figure 2.6 (a) Laser sensor information that closely resembles a straight line and (b) left: raw 

laser readings and right: identification of a corner due to a large angle between neighboring 

readings. Images reproduced from Chown & Boots (2008). 

 

 

2.4 Neural-inspired Models 

Neural-inspired models, as a class, differ from computational models in that, not that 

rich amount of information is encoded in the model itself. Thus, a neural-inspired 

model is much more concerned with supplying sufficient information extracted from 

different parts of the environment visited to activate and train “cells” in a neural 

network so that these cells could be re-activated when the same part of the 

environment is re-visited. Their reactivation is interpreted as a successful recognition 

of that part of the environment and consequently these cells are dubbed “place cells”. 

In contrast, computational models, as described in the previous section, is more 
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concerned with the rich amount of information stored in a cognitive map and how all 

that information could be obtained, organized, and utilized. Its notion of a place is a 

far more complex entity.  

 

Nonetheless, and at least for completeness, it is useful to review some recent neural-

inspired network models and observe their progress to date. In particular, attention is 

paid to the kind of cognitive maps produced in such models and the way in which 

these models are tested on a mobile robot. 

 

2.4.1 Hafner 

In Hafner’s (2000a, 2000b) model, her neural-inspired network consists of an input 

layer of “neurons” connected to an output layer of fully interconnected neurons, each 

with a weight vector. The output layer would be trained into a topological 

representation which functions as the cognitive map for the environment visited (see 

Figure 2.7). To do so, neurons in the map layer are activated by a function with terms 

concerning feature similarity, neuron connectedness, and angle information of the 

traveled path. 

 

 

 

Figure 2.7 Hafner’s neural network model. The output layer is a topological representation of the 

environment and serves as the cognitive map. The connections between the neurons in the output 

layer also contain connection weights and angle information. Image was reproduced from Hafner 

(2000b). 
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The model was initially tested and optimized using a simulator and then implemented 

on a mobile robot. In both simulation and robot implementations, the robot’s headings 

during exploration are recorded. The simulated robot also collects information on the 

environment through distance readings which are used as input to the neural network 

system.  

 

For the robot implementation, Hafner used an omni-directional camera for sensing the 

robot’s surroundings. Figure 2.8(a) shows the Samurai robot used for the experiments. 

During exploration, the robot is allowed to wander randomly around the environment. 

At every few time steps, as omni-directional image of the environment is captured (see 

example in Figure 2.8(b)).  

 

 

 

 

 

 

(a) (b) 

 

Figure 2.8 (a) Picture of the Samurai robot which is used by Hafner for her experiments. It is 

equipped with an omni-directional camera and a magnetic compass and (b) the environment as 

seen through the camera. Images were reproduced from Hafner (2000b). 

 

The images taken by the camera are then processed to produce a low resolution, 

orientation-invariant output and then transformed into polar coordinates. Vertical 

averaging is applied on the images and then smoothened using a Gaussian filter. To 

ensure rotation invariance, the images are rotated according to the compass reading. 
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The results of these processing stages can be seen in Figure 2.9(a). Sixteen samples are 

then collected from the intensity curve (see Figure 2.9(b)), which are used as inputs to 

the neural network system. 

 

The output of the neural network is a topological layout of the cognitive map, where 

the nodes represent the center of the place fields and the edges represent the 

connections between the places (see Figure 2.10). The thickness of the edges signifies 

the strength of the connection between the place fields.  

 

 

 

 

(a) (b) 

Figure 2.9 Extraction of information from the robot’s vision (a) Image from Figure 2.8(b) 

projected onto a polar plane (top); vertically averaged (center); and smoothened using a Gaussian 

filter (bottom). (b) Intensity curve of the resulting image after processing as shown in the bottom 

image in (a). Images were reproduced from Hafner (2000b). 

 

 

  

(a) (b) 

Figure 2.10 An exploration example using the simulation robot. (a) The simulated environment 

with the white circles depicting the locations where sensor readings were collected. (b) The 

cognitive map generated from the exploration example in (a). The nodes represent the center of 

the place fields and the edges represent connections between places. The thickness of the edges is 

used to represent the strength of the connections. Images were reproduced from Hafner (2000b). 
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2.4.2 Cuperlier et al. 

Cuperlier et al. proposed a model which is based strongly on a model of the 

hippocampal and prefrontal interactions, see Cuperlier, Quoy, & Gaussier (2007). Of 

particular interest here is that what is computed as a cognitive map is a network of 

transition points rather than places. Transition points record transition information 

(such as the directional information linking the starting and ending location) between 

places and their links indicate frequency of use between transition points. Figure 2.11 

shows their model. 

 

The model begins by using a neural network to learn and identify a constellation of 

landmarks from each panoramic image taken of the environment and directional 

information from a compass (see Figure 2.12). Note that the concept of landmark here 

refers to small portions of the original image that have been extracted based on some 

image processing criteria and not the tradition sense of landmarks. More specifically, 

when an image is captured, a gradient image is formed at a reduced resolution. 

Difference of Gaussian (DOG) filtering is then used to extract curvature points. Small 

portions of the image (size of 32 x 32 pixels) are then extracted, with the centers being 

the curvature points. These images are then binarized using a log-polar transform and 

the resulting images becomes the landmarks. Furthermore, the azimuth (the angular 

position relative to the North given by a compass) is computed for each curvature 

point. Together, the binarized images and their corresponding azimuth values form a 

signature or characteristic of a particular location. For each image, 30 pairs of 

landmarks and azimuth values are extracted (see Figure 2.12). 

 

Cuperlier et al. termed the coding of each location a “place cell”, similar to that found 

in the rat’s hippocampus. When a location is reached and the corresponding landmarks 

and azimuth values computed, a matching function is used to compute the distance 

between the current set of values with the learned sets. If the distance is below the set 

threshold, then a new neuron is taken on for encoding this location. The number of 

locations learned therefore depends on two factors: the threshold and the environment 

itself. For the latter, the authors explained how more locations are learned near walls 
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and doors due to fast changes in angular positions of near landmarks, or the 

appearance or disappearance of landmarks, or both. 

 

 

 

Figure 2.11 Cuperlier et al.’s neural model of cognitive mapping. Diagram and description were 

extracted from Cuperlier et al. (2007). 

 

 

 

 

 

Figure 2.12 Image of the environment captured by the panoramic camera of the robot. Fifteen 

landmarks extracted are shown below the image and are linked to the region they were taken 

from. Image is reproduced from Cuperlier, Quoy, Gaussier & Giovannangeli (2005). 
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Another neural network is used to learn the transition information between adjacent 

place cells created. This network produces “transition cells”; each contains directional 

information linking the starting and ending location. For example, transition cell AB 

links location A to location B with directions on getting from place A to B, relative to 

the north. 

 

 

 

Figure 2.13 Cognitive map generated from the exploration of the robot (in triangles) starting from 

the bottom right to the goal on the top left. The image was reproduced from Cuperlier et al. 

(2005). 

 

The cognitive map proposed by Cuperlier et al. is thus composed of nodes and arcs. 

Each node represents a transition. Each time a transition is used, a link or arc is created 

with a given value, to connect the transition used with the previous transition. If the 

link has previously been created, then the value of the link is increased to reinforce its 

usage. Conversely, values are decreased for links that are not used. Therefore, over 

time, a graph of nodes and arcs are created, as seen in Figure 2.13, which represents 

the cognitive map of the robot during a single exploration starting from the bottom 
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right to the goal on the top left of the image. The triangles represent the successive 

locations of the robot during its journey. 

 

2.4.3 RatSLAM 

 

 

 

Figure 2.14 The RatSLAM model. (a) Incorporation of an experience map into the representation. 

The experience map has its own coordinate space and is associated with a certain pose and local 

view cells. (b) Connectivity between two experiences. The dots and arrows show the pose of the 

experiences whilst dij is the odometric distance between the two. (c) Example of the representation 

of information where the solid dots are the experiences and CF, RWF and LWF are the 

movements: CF – Centerline Following; LWF – Left Wall Following; RWF – Right Wall 

Following. Images were redrawn from Milford & Wyeth (2007). 
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RatSLAM proposed the use of three different representations namely, pose cells 

(robot’s position and orientation), local view cells (containing visual information), and 

an experience map (see Figure 2.14). Initially, RatSLAM (see Milford & Wyeth 

(2003)), following proposed models of hippocampus by Arleo (2000) and Redish 

(1999), uses two separate networks to learn the position and orientation information 

but this was found to be inadequate, as described in Milford & Wyeth (2007). To 

ensure proper learning, there is a need to create place cells with different poses, thus 

giving rise to a single network for pose learning. Unfortunately, doing so could result 

in different pose cells representing the same physical place and multiple physical 

places associated with the same pose cells. An additional network is then proposed to 

learn a unique map (or in their terminology, experience) of the environment from the 

pose cells and local views. This latter map, known as experience map, has its own its 

own global co-ordinate system. Each node is a snapshot of activity within the pose 

cells and the local view cells. Links between nodes capture behavioral information that 

enables one to move between the nodes. 

 

 

Figure 2.15 Map of the outdoor environment explored by the robot. The path the robot took is 

represented by the arrows. Image has been reproduced from Prasser, Wyeth & Milford (2004). 

 

RatSLAM has recently been tested in an outdoor environment (see Figure 2.15) using 

a small tractor equipped with odometry and an omni-directional camera, see Prasser, 

Milford & Wyeth (2005) and Prasser, Wyeth & Milford (2004). Figure 2.16 shows the 

trajectory of two laps in the same direction superimposed. 
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Figure 2.16 Trajectory of the robot performing two laps in the same direction. Image was 

redrawn from Prasser et al. (2004). 

 

It was pointed out that RatSLAM made an error at the start of the first lap where it 

incorrectly re-localizes from point c to point b. However, it successfully recognized 

that it was in a loop during its second lap when it realized that point a is point b after 

completing the first lap. Figure 2.17 shows the result obtained after RatSLAM has 

completed three forward laps and one backward lap. In the first lap, the robot went 

from point b to point a, and then reversed its journey by rotating 180 degrees. It was 

able to maintain the correct path until point d. In the subsequent 2 laps, the robot is 

confused. The failures of RatSLAM in both figures were mainly attributed to its poor 

visual system. 

 

 

 

Figure 2.17 Trajectory of the robot performing three laps in the forward direction and one lap in 

the reverse direction. Image was redrawn from Prasser et al. (2004). 
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2.5 Discussion 

This chapter shows that there has been a significant progress in the development of 

computational models of the cognitive mapping process and especially, significant 

efforts have been made towards their implementations on a mobile robot.  

 

The SSH model provides a clear description of the interplay of the many different 

kinds of knowledge that are involved in a cognitive mapping process. Kuipers and his 

co-workers have begun serious investigation into the perceptual end of the SSH model 

and this could lead to significant implementations of the SSH model on a mobile 

robot. 

 

The PLAN model is similar to the SSH model in that both models are developed from 

an investigation into the very extensive findings about the human cognitive mapping 

process. However, they differ from their point of focus: SSH is centered on the notion 

of a place representation while PLAN is centered on the way-finding problem. In 

particular, PLAN is influenced by the idea that when finding one’s way, one first 

remembers landmarks and builds local maps along choice-points. Consequently, a 

cognitive map with multiple networks has been proposed. It will be interesting to see 

further attempts to implement PLAN on a mobile robot. 

 

The current thesis aims to work towards a better understanding of the ASR model. 

Like the current work on SSH and PLAN, this thesis is also about implementing the 

model on a mobile robot. As can be seen in these attempts, implementing a theory of 

cognitive mapping onto a mobile robot is not a straightforward task. On the one hand, 

if one were to simplify the theory too much, then the implementation does not capture 

the essence of that theory. On the other hand, if one were to implement the theory in 

full, the robot is not a system that is powerful enough (yet) to do so. The approach 

taken here is to strike a balance – treat the robot as a cognitive agent of its own kind 

and implement and test aspects of a cognitive mapping theory with the robot.  

 

For completion, three recent neural-inspired models of cognitive mapping were also 

reviewed. They demonstrated a popular use of vision as input to their mobile robots 
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but that is partly because they could extract with ease some form of a signature of a 

place to do place learning and recognition using a neural network. They also created a 

very dense network of places and this might pose a problem when the problem is 

scaled up. In this respect, RatSLAM is interesting – it was tested in a real-world 

environment. However, and as noted by its creator, its success depends on successful 

visual recognition of places visited. This begs the question: is cognitive mapping about 

remembering everything that one has seen? It would be interesting to see further 

development in this area using real world environment.  

 

Finally, RatSLAM reinforced the importance of implementing and testing various 

theories of cognitive mapping on a mobile robot. It has shown that a popular 

hippocampus model of representing pose using two separate networks is flawed. 
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Chapter Three 

 

Neurological and Behavioral  

Studies on Cognitive Mapping 

 

 

As noted in the Introduction, an idea central to the work reported in this thesis is the 

development of a robot that can, in a sense, behave like a “cognitive agent”, and 

perform cognitive mapping in its own environment. This chapter thus reviews some 

recent research (mostly those published since 2000) on how (real) cognitive agents 

such as humans, rats, fish, ants and others perform cognitive mapping.  Since Chapter 

2 provides a review of both computational and neural models of cognitive mapping, 

this chapter will thus review both neurological and behavioral studies of cognitive 

mapping. 

 

Note that on the one hand, the cognitive mapping process is, in general, a complex 

process (see chapter 2) and on the other hand, the robot used here to test ideas about 

cognitive mapping is an unsophisticated agent. Furthermore, the aim here is to use the 

robot to help us understand a very early stage of the cognitive mapping process: how 

could a network of fuzzy ASRs be useful? What is made explicit in these ASRs are the 

geometrical shape and exits of the local environments. The focus of this review will be 

on whether cognitive agents pay attention to such information and if so, how? The 

review is not meant to be a comprehensive review on the behavioral and neurological 

literature on cognitive mapping. 

 

Sections 3.1 and 3.2 provide a review of recent neurological and behavioral studies of 

cognitive mapping respectively. For this thesis, the former studies will include all 

those works that examine the role of the brain neural structure in relation to cognitive 

mapping and the latter will include all those works that exclude any explicit 

examination of the role of the brain neural structure. Section 3.3 concludes this chapter 

with a discussion of the insights gained from this review. 
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3.1 Neurological studies 

In 1971, O’Keefe and Dostrovsky discovered that place cell activity in the 

hippocampus of rats was closely related to the rodent’s location in its environment, see 

O’Keefe & Dostrovsky (1971). This discovery led O’Keefe and Nadel (1978) to 

propose that the hippocampus functions as a cognitive map and has since become the 

cornerstone of many neurological studies. (for alternative viewpoints, see 

Eichenbaum, Dudchenko, Wood, Shapiro & Tanila (1999) ; Frank & Brown (2000) 

and Jeffery, Gilbert, Burton & Strudwick (2003)). Figure 3.1 shows where the 

hippocampus lies in the human brain. 

 

 

Figure 3.1 Location of the Hippocampus and entorhinal region within the human brain. Image 

was reproduced from (Memories, 2006). 

 

Section 3.1.1 presents some recent studies that continue to support the role of the 

hippocampus as a cognitive map. Sections 3.1.2 and 3.1.3 present some recent studies 

that investigated the learning of geometric information at the neural level, the 

hippocampus and the parahippocampal region respectively. Section 3.1.4 concludes 
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with a cautionary note on the interpretation of such work. For a review of earlier 

neurological studies, see Best and White (1998).  

 

3.1.1 Hippocampus and Cognitive Maps 

Rivard et al. (2004) investigated the rat’s ability to adapt rapidly to dynamic 

environments. In their study, a rat was placed in a cylindrical arena which contains a 

tall barrier. From their experiments, they found a new class of cells within the animal’s 

hippocampus which relates to the proximity to the physical barrier. The following 

observations were recorded during the experiment: 

 

1. When the barrier was fixed, the cells appeared to be ordinary place cells, 

2. When the barrier was moved, the activity of these cells moves equally, 

3. When the barrier was removed, the cells stop firing, and 

4. When the barrier was placed in a different arena (and hence place cells was 

totally changed from previous arena), these cells continue to discharge at the 

barrier. 

 

From their findings, Rivard et al. concluded that the barrier and place cell activity 

represents the current arrangement of the environment. 

 

Kobayashi et al. (2003) investigated the changes in the neural activity as the rat learns 

to navigate efficiently to acquire rewards. Hippocampal activity was recorded as the 

rat learned the locations of the rewards, and gradually developed efficient navigation 

strategies. They reported a change in spatial firing in some neurons, as learning 

proceeded and intensive firing when the rat is near the reward site, once efficient 

navigation was established. They consequently suggested that the hippocampal 

neurons play a crucial role in the formation of efficient navigation. 

 

Gagliardo et al. (1999) investigated whether the hippocampus is needed for landmark 

learning. They compared the differences between hippocampal lesioned pigeons and 

control pigeons in the way they acquire the spatial representation of the environment. 

The control pigeons were found to be able to learn new landmarks which allow them 

to perform “pilotage”, or the use of landmarks without reference to the sun to guide 
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their flight home. The lesioned pigeons relied exclusively on the sun to guide their 

way home. They were only able to learn to use familiar landmarks at the training 

location, to recall the compass orientation based on the sun, referred as “site-specific 

compass orientation”. They thus concluded that the hippocampal formation is required 

for the birds to learn a spatial representation based on numerous independent 

landmarks, which can then be used later to directly guide them home. For a similar 

study, see White, Strasser, & Bingman (2002). 

 

Maguire et al. (1997; 2000) investigated the neural activity of London’s taxi drivers. In 

Maguire et al.’s (1997) experiment, PET (Positron Emission Topography) of 

experienced taxi drivers showed activation of a network of brain regions, including the 

right hippocampus, when they were asked to recall complex routes around the city. 

The cab drivers were then asked to recall famous landmarks which they have no 

knowledge of their location, resulting in similar activation of the brain regions, except 

for the right hippocampus. Consequently, it was suggested that the hippocampus is 

involved in processing spatial information that is established over a long time, whilst 

other parts of the brain maybe responsible for any topographical stimulation. See also 

Ekstrom et al. (2003) and Rosenbaum et al. (2005). 

 

3.1.2 Hippocampus and Geometric Information 

Vargas et al. (2004) investigated the connection between the hippocampal formation 

and the learning of geometric information. In the study, pigeons with lesions to the 

hippocampal formation were trained to search for food in a rectangular arena with a 

wall of a different color. The impaired birds were found to have relied exclusively on 

the wall of a different color for navigation (featural information). The control pigeons 

were able to encode and use both geometric information (namely the shape of the 

environment) and color cues; and when one was absent, the birds used on the other. 

They concluded that the results demonstrate that the hippocampus is also important for 

learning geometric information of space in pigeons.  

 

Similar results were obtained by Tommasi et al. (2003) from their study with domestic 

chicks (Gallus gallus). In the experiment, chicks were trained to search for food at the 

centre of an enclosure, which is next to a landmark. When the landmark was removed, 
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the sham-operated chicks and chicks with lesion of the left hippocampus were able to 

correctly locate the food source by utilizing geometric information provided by the 

enclosure. However, chicks with lesion of the right hippocampus or both hippocampi 

were completely disorientated, when the landmark was removed; and searched around 

the landmark, when the landmark was displaced. Like the pigeons, this result shows 

that the chicks encoded both landmark and geometric information when available and 

in the absence of one information source, the other would be used for localization. 

More importantly, this result also shows that the left and right avian hippocampi have 

different roles in spatial cognition. 

 

Lesion study on rats by McGregor et al. (2004) also found strong evidence which 

suggest that the hippocampus is responsible for mediating geometric information. 

Control rats showed that the animal is able to utilize the shape information provided 

by physical barriers (walls), and array of landmarks. However, rats with excitotoxic 

lesions of the hippocampus were impaired and were unable to use the geometrical 

information. 

 

Long term exposures to differently shaped environments have also been found to 

affect the hippocampal place cell representations (see Lever et al. (2002)). Place cell 

activities show gradual and incremental divergence according to the shape of the 

environment. More importantly, this divergence was further observed when the 

subjects were transferred to new enclosures of the same shape, further indicating the 

encoding of geometric information in the hippocampus. 

 

3.1.3 Parahippocampal and Geometric Information 

Epstein et al. (1998) observed that there is a region within the parahippocampal cortex 

which responses more strongly when subjects are exposed to navigation visual stimuli 

such as street scene, buildings and landscapes. This occurs even if it is only a change 

in viewpoint of the scene, than when they are exposed to other visual stimuli such as 

faces, objects, etc (see Epstein et al. (2003)). These responses were found even when 

subjects were not engaged with navigational tasks. Consequently, they named this 

region the “Parahippocampal Place Area” or PPA (see Figure 3.1). An interesting 

discovery is the strong activation of the PPA region when in the presence of 
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information about the shape and layout of the immediate environment, regardless of 

objects within the environment. In particular, it responds more strongly to depictions 

of surfaces that in some sense “enclose” the observer and define a space within which 

one can act, than to depictions of surfaces that define objects that the observer can act 

upon.  

 

Furthermore, they also recorded that the PPA reacted no more strongly to a 

photograph of a room filled with furniture and other objects than to a photograph of an 

empty room. However, these activations are reduced when the room is rearranged to 

no longer define a coherent space. Consequently, they propose that the PPA represents 

places by encoding the geometry of the local environment. 

 

In Epstein et al. (1999), the authors reported that the PPA activity is not affected by 

the subjects’ familiarity with the place depicted. Furthermore, a study by Epstein et al. 

(2001) on two patients that damaged the PPA from vascular incidents showed that they 

suffered memory problems for topographical materials and were unable to navigate 

unassisted in unfamiliar environments. The subjects showed deterioration in their 

visual memory performance, namely: scene-like stimuli were significantly weaker 

than object-like stimuli. 

 

3.1.4 Conclusion 

There are many studies that continue to investigate place cell activities in relation to 

spatial mapping in the environment. A few of these studies were reported in section 

3.1.1. What is interesting to note is that the more recent studies are not just concerned 

with place cell activities in relation to a place but also to other characteristics of a 

place which are identified as important for cognitive mapping (such as landmark and 

shape of each local environment). 

 

The discovery that PPA, being another possible site for cognitive mapping, responds 

strongly to depictions of surfaces that in some sense “enclose” the observer is 

interesting. This is because such surfaces are exactly those that have been argued by 

Yeap & Jefferies (1999) to be essential for computing ASRs. 
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However, it should be noted that it is always problematic trying to explain what truly 

happens when place cell activities are observed. For instance, not all researchers agree 

with these findings. Pearce et al. (2004) for example, reported that rats did not use the 

overall shape of the local environment to locate a goal, but rather relied on local cues 

of the environment for navigation. Thus rats with lesion of the hippocampus were 

impaired in their ability to use these cues and not the overall shape of the local 

environment. In pigeons, some experiments (for example, Pearce et al. (2005)) showed 

that the hippocampus is not essential for structural discriminations but is important for 

processing some types of spatial information. 

 

 

3.2 Behavioral Studies 

Psychologists involved in cognitive mapping research are interested in the mental 

process which handles the acquisition, coding, storing, recall and decoding of 

information on the spatial environment. In fact, the term cognitive map was first 

coined by an American psychologist, Edward Chace Tolman. Through experiments 

with rats, Tolman (1948) demonstrated that the animal could encode spatial 

information of its environment which could then be used later; rather than simply 

learning responses triggered by environmental stimuli. 

 

In more recent studies, it is widely accepted that Cheng’s (1986) experiments with rats 

provided the initial motivation for studying whether the overall shape, or geometry of 

the environment, is encoded as part of the cognitive map, and if so, how it is used. In 

his experiments, Cheng trained the rats to search for food that was hidden in a corner 

of a rectangular enclosure with various orientations. Each of the corners was marked 

by a distinct featural cue. 

 

Cheng noted that the rats could have easily solved the task by encoding the featural 

cue that was of the same corner as the hidden food. However, the experiments 

revealed that the rat still made errors. Upon examination, Cheng discovered that the 

rats made more errors in the corner diagonally opposite to the correct corner, than the 

expected even distribution of all the incorrect corners. This led Cheng to conclude that 

the rats had only encoded geometrical information of the environment, and as a result, 
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the two corners were not distinguishable since they are both geometrically correct. 

Cheng termed this event systematic rotational error. The setup of Cheng’s experiment 

is shown in Figure 3.2. 

 

 

 

Figure 3.2 (a) Experimental setup where the rectangular box has three black walls and a single 

white wall. The filled circle identifies the location of the hidden food and the open circle is its 

geometrically equivalent corner. Each corner has panels with different visual, tactile and 

olfactory characteristics. (b) Geometrical relation of the test environment when featural cues are 

absent, showing it is not possible to distinguish between the goal and its geometrical equivalent. 

(c) Arrangement of featural cues with letters W and B representing the color of the walls. 

Encoding the goal with respect to the featural information can easily be used to solve this 

problem. The image was reproduced from Cheng (1986). 

 

Since Cheng’s experiment, there was an explosion of interests in trying to find out 

how animals deal with geometrical information about a local environment and in 

particular its shape. The review in this section will focus on these experiments. 

Sections 3.2.1 reviews experiments showing the use of geometrical information in 

spatial mapping, and section 3.2.2 reviews experiments involving both geometrical 

and landmark information. In Section 3.2.3, a further review is done on experiments 

on paths integration by ants. How the ants find their way home would be of particular 

interests to the research conducted here. This is especially true when the problem 
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solved and the sensors used are both compatible. Section 3.2.4 concludes with a 

discussion of the significance of the findings. 

 

3.2.1 Utilizing Geometrical Information in Spatial Mapping 

Burt De Perera (2004) presented a very interesting study on whether the size and shape 

parameters are encoded for spatial tasks. The author experimented on the blind 

Mexican cave fish (Astyanax fasciatus) and noted that this species is excellent for this 

study as it lacks vision; meaning cues from visual landmarks are not available. As the 

fish glides, a flow-field is created around it. This field is affected by nearby objects 

and is monitored by the animal’s lateral line organ. The faster the fish swims, the more 

stimulated the organ becomes. Therefore, when the fish encounters unknown 

environments, it swims at higher velocities to collect information on its new 

surroundings. Over time, the velocity decreases when the fish gets accustomed to its 

new enclosure.  

 

 

Figure 3.3 Diagram showing the change in the layout of the landmarks for testing the size 

(Treatments 1 and 2) and shape (Treatment 3) of the fish’s surroundings. Treatment 4 represents 

the original configuration, which sets the benchmark for the experiment. The image was 

reproduced from Burt De Perera (2004). 
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In the experiment, the blind Mexican cave fish initially learned an array of four 

landmarks. To test whether the fish can encode the size and shape information, the 

array was expanded and contracted (for testing the size parameter); and the array was 

distorted (for testing the latter parameter). Figure 3.3 shows the changes made to the 

landmark’s arrangement in the study. 

 

The experiments recorded a significant increase in swimming velocity for both 

conditions and when the array was modified back to the original configuration, there 

was no significant difference in velocity. Hence, the author concluded that the fish 

must have reacted to the difference between its perception of the new environments 

and its representation of the old one, learnt during training. The author suggested that 

the results show that this species of fish is able to encode the distances between the 

landmarks and maybe even the shape (from the landmark configurations) within the 

enclosure. 

 

Experiments by Sovrano et al. (2002, 2003) found that fish (Xenotoca eiseni) is also 

able to use purely geometric information for reorientation. When tested in a 

rectangular tank without any featural cues, the animal chose the geometrically correct 

corners more frequently than the other two corners. Featural cue in the form of a blue 

wall was then introduced into the environment. The fish was clearly able to distinguish 

and choose the correct corner, which suggests that fish are able to use both geometric 

and non-geometric information in conjunction for reorientation. Further investigation 

also revealed that the fish encoded geometric information even when featural 

information alone sufficed to solve the spatial task. Test also showed that 

transformations that altered the geometrical relationship between the target and the 

shape of the environment had more effect on the reorientation performance of the fish. 

For similar studies but using monkeys, see Gouteux, Thinus-Blanc & Vauclair (2001). 

 

Studies on the use of geometrical information are not limited to non-human animals. 

Waller et al. (2000) researched into the process by which humans establish a memory 

of a location. Specifically, the authors looked into the use of distance and angular 

information between landmarks. In their training experiment, subjects had to 

repeatedly learn the location of a target in relation to three distinct landmarks in a 
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virtual environment. They were then required to return to the target location during 

testing, see Figure 3.4. 

 

 

Figure 3.4 Human experiments conducted by Waller et al. Subjects learned the location of the 

target (star) relative to the three landmarks. The experiment affords geometric information on 

the distances between the target and each of the landmarks (d1, d2 and d3) and the direction of 

each landmark (α1, α2 and α3). The image was reproduced from Waller et al. (2000). 

 

To test the reliance on the distance and angular information between the landmarks, 

the configuration of the landmarks were altered. Subjects displayed greater 

dependency on distance over angular information, with two exceptions: 

 

1. when the relationship between the target and the enclosure was distorted and; 

2. the prominent existence of right angles within the configuration during 

learning 

 

Waller et al. proposed that these result could suggest the existence of a multi-level 

organization of spatial memory or information handling such as that suggested by 

Huttenlocher et al. (1991). Waller et al. argued that there are two level of encoding: a 

“coarse” and a “fine-grain” level. Using that paradigm, they suggested that the 

enclosure could serve as “coarse” level information and metric data could serve as 

“fine-grain” level of information. 
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The authors also pointed out another important finding from their experiments. That is, 

the subjects’ performance did not depend on the accurate perception of absolute 

distances. The relative distances to landmarks were sufficient for successfully 

completing the spatial task. Hence, any errors incurred had no bearing on the subjects’ 

performance. 

 

Kelly and Spetch (2004a) wanted to determine whether human adults encode 

geometric and featural information. To do so, the authors experimented with human 

subjects in a two-dimensional schematic of a rectangular room. The subjects were 

required to locate a hidden goal, which has a position that is constant, relative to 

featural and geometric cues but its absolute position varied across trials. Results from 

the experiment showed that adult humans were able to learn and use featural 

information with ease to find the goal. Cues such as color and shape of distinct 

features were used to encode the target’s location. Even when these features were 

removed, the subjects used distant features to reorient themselves. 

 

More importantly, as well as featural information, the experiments also showed that 

the subjects also encoded geometric properties of the environment. However, they 

found it difficult to learn only geometric properties of the environment. Therefore, it is 

not surprising that they preferred featural information when geometric and featural 

information were contradicting each other (unlike pigeons; see Kelly and Spetch 

(2004b)). 

 

Whilst most researchers agree that the use of geometric information is inherent in 

animals, what and how geometric information is used remains a contentious issue. In 

recent experiments by Pearce et al. (2004), rats were trained to find a submerged 

platform located in a corner of a rectangular arena. The overall shape of the arena was 

then altered to form the shape of a kite, and the rodents were tested to determine their 

search pattern in the new environment. The results revealed that the rats focused their 

search on the geometrically equivalent corner of the arena. Figure 3.5 depicts the 

experimental setup used for this experiment. 
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Figure 3.5 Shapes of the enclosures that were used for the experiments by Pearce et al. The image 

was reproduced from Pearce et al. (2004). 

 

Pearce et al. argued that the animal used references to local features of the 

environment, rather than the overall shape of the environment. They further suggested 

these local features could include featural cues such as lengths of walls of the testing 

environment and geometric properties of the corner where the goal was located.  

 

Tommasi and Polli (2004) presented results that supported this view. In their study, 

domestic chicks (Gallus gallus) were trained to search for food that is located at a 

corner of a parallelogram shaped enclosure. For each test, the chicks were 

disorientated and the enclosure rotated. The shape of the enclosure was chosen 

spontaneously between a rectangle (to test reorientation based on the lengths of the 

wall) and a rhombus (to test reorientation based on the angles between walls). 

Reorientation was possible based on these two local cues only. Results from the 

experiment show that both of these features were encoded, and in the final test where 

the two features conflicted (mirrored parallelogram), the chicks relied on salience of 

corner angles. Tommasi and Polli believe that the local information provided by the 

corners and the walls enabled the animals to reorient themselves in the new 

environment. 

 

Cheng and Gallistel (2005) however, disagree with the conclusions offered by both 

Pearce et al. (2004) and Tommasi and Polli (2004). Even though they agree that 

matching of the similarity of shapes is unlikely in the presented cases, they believe that 

the results of the two studies can be accounted for by the matching of the shape 

parameter of the first principal axis. In short, the first principal axis is the long axis of 

the shape which passes through the centroid of the object. The location of the goal can 

be encoded relative to the first principal axis.  
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For example, the target is located to the left of the centre of the principal axis, or the 

target is at the end of the axis, and so forth. Consequently, they argued that the 

similarities in goal location relative to the first principle axis between the training and 

test enclosures enabled the subjects to successfully complete their goal. Figure 3.6 

illustrates how this explanation was applied to the results acquired by Pearce et al. 

(2004) in Experiment 1A (see Figure 3.5). See Cheng and Gallistel (2005) for their 

explanation of the results recorded in Tommasi and Polli (2004). 

 

However, they do not doubt that animals do use local features for solving spatial tasks 

and hence, they did not discounting its use completely. They suggested that a 

combination of global processes, such as matching by an axis of symmetry, and local 

processes coexists to help decrease the computational complexity for solving spatial 

tasks. 

 

 

Figure 3.6 Cheng and Gallistel’s (2005) explanation of the results recorded by Pearce et al.’s 

(2004) Experiment 1A. Diagram A: shows the training environment where the rats searched the 

target location (marked by the solid dot), as well as the diagonally opposite corner. Diagram B: 

Rats were then transferred to a kite-shaped pool and the results shows that they searched 

predominantly at the two corners indicated by the solid dots. Diagram C: Training and test 

environments are superimposed onto the principal axis. Cheng and Gallistel explained that 

Pearce et al.’s results can be accounted for if the rats chose the corners situated at the end and as 

far right as possible of the principal axis. The diagram was reproduced from Cheng and Gallistel 

(2005). 
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3.2.2 Utilizing Geometrical and Landmark Information in Spatial Mapping 

Learmonth, Nadel and Newcombe (2002) specifically wanted to determine if human 

children are able to use landmarks alongside geometric information for spatial tasks. 

Two sets of children (above and below the age of six) were tested with reorientation 

tasks in large and small spaces. The authors discovered that children under the age of 

six were unable to use featural information such as a blue wall in smaller spaces. In 

larger spaces, children were reported to be quite good at using the featural information 

for reorientation purposes. 

 

Gouteux and Spelke (2001) conducted eight experiments on three to four year old 

children to determine whether the subjects were able to utilize geometric and landmark 

information for reorientation. The experiments were performed in an open 

environment with three (arranged in a triangular configuration with unequal sides) to 

four (rectangular formation) landmarks. The subjects were required to locate an object 

hidden inside one of the landmarks. When oriented, the children successfully found 

the target in every experiment. However, the children were unsuccessful in locating 

the target when they were disoriented. More interestingly, they observed that the 

children did not use the geometric information between the landmarks.  

 

In contrast, when adults were tested, they were found to use both geometric and non-

geometric information. This indicates that the early development of human navigation 

abilities depend on layout of the permanent surfaces (walls) and not from information 

provided by the objects within the environment, whether it be geometric or non-

geometric information. 

 

Results from previous studies by Learmonth et al. (2002) and Hermer and Spelke 

(1994, 1996) showed that disorientated children were able to conjoin geometric and 

landmark information to reorient themselves in large, but not in small spaces. In 2005, 

similar experiments with fish by Sovrano, Bisazza, & Vallortigara (2005) and chicks  

by Vallortigara, Feruglio, & Sovrano (2005) were presented but recorded different 

results. In the respective experiments, fish and chicks did not have any problems in 

using geometric information in combination with featural cues, both in large and small 
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environments. Moreover, both chicks and fish were able to reorient themselves straight 

away when they were transferred from large to small experimental spaces and vice 

versa.  

 

Based on the ease at which these animals accustomed to their new environment, they 

suggested perhaps the animals encoded and used relative metrics, rather than absolute 

measurements. Therefore, even when the lengths differed between the two 

environments, reorientation was not a problem because they distinguished long and 

short walls, rather they absolute lengths. 

 

However, the two species seemed to make more mistakes in two situations. The fish 

made more errors based on geometric information when transferred from a small to 

large tank and made more errors based on landmark information when transferred 

from a large to small tank. The chicks did not have this problem. Instead, the chicks 

made more errors based on geometric information in small spaces rather than in large 

spaces, when geometric relations between the target and the shape of the environment 

were altered. This pattern is consistent with the fact that the animals prefer geometric 

information over featural cues in small spaces and, landmarks over geometric 

information in large spaces, as was confirmed in two more recent studies (see Sovrano 

& Vallortigara (2006) and Sovrano, Bisazza, & Vallortigara (2006)). 

 

In Sovrano & Vallortigara (2006), the authors found that the birds used featural cue 

(blue wall) in large spaces but preferred metrical information in small environments. 

They explained that the reason could be due to the reliability of the information in 

each situation. In small spaces, one could obtain information on the metrical 

properties, such as the length of the surfaces, which may be a reliable source of spatial 

information (for example, the target is at the corner that has a short wall to the right 

and a long wall to the left). In large environments however, the subjects are not able to 

reliably acquire geometric information of the space and thus resorts to relying on 

featural information for reorientation (for example, the target is at the corner that has a 

blue wall to the right and a white wall to the left). However, they did not address the 

reason why featural information is not used in both the large and the small 

environments. See also Chiesa, Pecchia, Tommasi & Vallortigara (2006). 
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Sovrano, Bisazza, & Vallortigara (2006) investigated how redtail splitfins (Xenotoca 

eiseni) use geometry in large and small tanks. In their experiments, the fish was 

initially trained to reorient to find a corner that has a featural cue. A blue wall was 

used as the featural cue (see Figure 3.7). The cue was then moved to the adjacent wall 

and the fish’s selections of the corner were recorded.  

 

 

Figure 3.7 Results from the experiments conducted by Sovrano et al. The top and bottom values 

respectively represent the mean values of choice and the calculated standard error of the mean 

(SEM) for each corner. In the first set of experiments (rows 1 and 2), the featural wall was moved 

from the long to short edge. Rows 1 and 2 respectively show the results for the large and small 

enclosures. Similarly, rows 3 and 4 show the results when the wall was moved from the short to 

the long edge, for the large and small enclosures respectively. The image was reproduced from 

Sovrano et al. (2006). 
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Results show that, in the large tank, the fish chose the corners that have the feature and 

prefers the corner that preserves the correct arrangement (e.g. feature to the left of the 

wall, etc). In the small tank, the fish chose the corners with the features and the corner, 

without the feature but maintains the correct geometric arrangement. The results 

recorded in their study are shown in Figure 3.7. 

 

However, unlike the chicks studied in the experiments in Sovrano & Vallortigara  

(2006), geometric information seems to be relatively more important than featural 

information for redtail splitfins. The authors suggest that this is perhaps due to the 

difference in species: birds have high spatial resolution, whereas fish has 

comparatively reduced spatial resolution. 

 

Kelly and Spetch (2001) also reported the preference of pigeons to encode relative 

geometry, and not absolute geometry of the enclosure. Performed in a rectangular 

enclosure that eliminates all external cues, the geometric properties of the 

experimental apparatus were manipulated to alter the geometric information. In tests 

that preserved relative geometric information but altered absolute geometric 

information, the pigeons successfully choose the geometrically correct corners. 

However, when the pigeons were tested in a square enclosure, essentially distorting 

both relative and absolute geometric information, the birds randomly chose the 

corners. They suggested that this result provides evidence that relative geometric 

information was encoded, which is interesting, given that it contradicts earlier results 

obtained by the authors that showed pigeons encoding landmark arrays in absolute 

metric form.  

 

Kelly and Spetch suggested that one reason could be due to the type of spatial 

information available. In this instance, the birds depended on the shape of the 

enclosure as all external cues have been removed. They suggested that using absolute 

metric information could be inefficient for this situation as the animal will have to 

travel to each corner to determine if the geometrical information matches the ones 

stored in memory. However, absolute distance is likely to be an important piece of 

information when landmarks are used to pinpoint a goal. 
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3.2.3 Path Integration 

Wehner, Gallizzi, Frei, & Vesely (2002) presented an interesting study on the ability 

of desert ants (Cataglyphis fortis), to find its way home during foraging. This species 

of ant is able to leave their underground nest from a tiny hole in the desert for tens to 

hundreds of meters away, before returning to its nest, using only path integration to 

continually estimate the direction and distance relative to its home (see Wehner 

(1983), Collett & Collett (2000) and Wehner & Srinivasan (2003)).  

 

Even though, the ants’ behavior was already reported in 1986 in Wehner & Wehner  

(1986), the ants’ journey to home is worth mentioning. As with any path integration 

system, the ant’s homing system is affected by cumulative errors. Upon its departure 

to find home, the ant first navigates using the home vector. As a result of the 

odometric errors, the ants would not reach home, but would reach a location that is 

close to its nest. From that point, the ant switches to a systematic search strategy to 

locate its nest (see Wehner & Srinivasan  (1981), Wehner & Wehner (1986) and 

Müller & Wehner (1994) for detailed account on the ant’s systematic search). 

Furthermore, landmarks provide additional guidance in the ants to correct for 

odometry errors. 

 

In the current study, Wehner et al. (2002) wanted to investigate the flexibility of the 

ants’ path integration module to adapt to the situation where the point of arrival to the 

feeder from the nest is not the same as the point of departure back to the nest. In other 

words, vectors of the homeward and outbound journeys are not 180 degrees of each 

other. To do so, when the ants arrive at the feeder, they were relocated by 2.5 meters, 5 

meters, 7 meters, 7.5 meters or 10 meters eastwards. Care was taken to prevent the 

ants from seeing any surrounding landscape. Figure 3.8 gives an overview of the 

experimental setup. 

 

As before, the ants started the homeward journey along the home vector, as if they 

were departing from the feeder. When the animal completed the home vector, it started 

a systematic search for the nest. Once the food has been offloaded, the ant returned 

back to the feeder and the testing process was repeated. Ants that were displaced by 

10m had difficulties locating the nest, and would at times take 30 minutes or more to 
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return home. Subsequently, the animal usually did not return to the feeder the same 

day. 

 

 

 
Figure 3.8 Experimental setup where N represents the actual nest and N* projects the fictitious 

nest for ants that have been displaced from the feeder F to the release point R. The orange arrow 

shows the inverse of the ant’s outbound journey from the nest (N→F) and α represents the 

angular displacement from R→N*. The green arrow is the direction of the nest from the release 

point and the red arrow represents the mean vector course of the ants when subjected to the 

experiment. The thin line is an example of an ant’s trajectory after subjected to over 50 

displacements. The image has been redrawn from Wehner et al. (2002). 

 

From the experiments, the authors found the ants recalibrated their homebound 

journey by shifting the home vector towards the true direction of the nest. Hence, the 

home vector is shifted slightly closer to the nest’s direction each time the experiment 

was repeated. Interestingly though, the authors noted that the recalibration only lasted 

until the 4
th
 repetition of testing. After that, home vector remained constant, regardless 

of additional training. This is something the authors were not able to explain. 

However, they conclude that vector calibration within the ants is indeed a fast and 

flexible process, but for some reason incomplete. 

 

The experiments described by Wehner et al. (2002) investigated the ability of the ants 

when the direction of the homeward journey was altered.  In a separate study, Cheng 

and Wehner (2002) experimented with the same species of ants (Cataglyphis fortis), to 

determine how the ants cope, when the distance of the outbound journey to the feeder 
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is different from the distance back to the nest. By releasing ants at various distances 

away from the nest, and comparing their behavior to the control group (where control 

ants experienced outbound and homebound journeys of the same distance), the authors 

found that the ants did not increase their estimate of the global vector for the 

homebound journey. However, the experiments revealed the search pattern of the ants 

altered, with significant bias towards the nest. Consequently, the authors conclude that 

the desert ants can learn to modify their search pattern based on their previous 

experiences. 

 

3.2.4 Conclusion 

There are a number of important findings that surfaced out of the review on behavioral 

studies. Various species show different abilities or preferences to use different types of 

information. 

 

Studies show that the representation of spatial information does not need to be an 

accurate description of one’s environment. Humans in Waller et al.’s (2000) study for 

example, did not have precise distance or angular measurements to their targets. Being 

imprecise enables one to be flexible in adapting to new environments, hence yielding 

quick completion of spatial tasks. When errors occur, the performance is not affected 

significantly. Perhaps this is the reason why the fish and chicks in Sovrano, 

Vallortigara and colleagues (see Sovrano et al. (2002, 2003, 2005, 2006); Sovrano & 

Vallortigara (2006) and Vallortigara et al. (2005)) were not affected by the size of the 

environment. 

 

Moreover, Wehner et al.’s desert ants (see Cheng & Wehner (2002); Wehner et al. 

(2002) and Wehner & Wehner (1986)) and Burt de Perera’s (2004) blind Mexican fish  

showed that learning is a recurring process where new information helps the animal to 

constantly readjust their perception of the environment. In doing so, the representation 

improves with experience, rather than generating an accurate representation right at 

the beginning. This makes sense as the environment is a highly dynamic entity. There 

is no need to generate a highly accurate representation when the surroundings change 

constantly. 
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Another interesting idea is that animals have a multi-level representation of the 

environment, such as described by Waller et al. (2000) where different levels of detail; 

or types of information are stored and used depending on one’s need. Cheng and 

Gallistel (2005), for example, hypothesized that global geometric information of the 

environment exist in conjunction with local features. In doing so, computation 

complexity can be kept to a minimum. 

 

Furthermore, multiple strategies also increase flexibility to deal with a lack of 

information. For instance, the chicks in Chiesa et al.’s (2006) experiment still managed 

to locate the goal when featural cues were removed, albeit in a less efficient manner. 

Even though the chicks performed better when landmark information was available, 

they could also rely on geometric information, since it was simultaneously encoded 

during training. 

 

Lastly, some animals appear to use different strategies to help them in their navigation 

or reorientation. The desert ants in Wehner et al. for example, initially used a simple 

strategy to get themselves close to the nest (see Cheng & Wehner (2002), Wehner et 

al. (2002) and Wehner & Wehner (1986)). Once within the vicinity, it started a more 

complex searching strategy to pinpoint home. 

 

Another example is the different behaviors observed when animals were experimented 

in different enclosure sizes in Sovrano et al. (2005, 2006),  Sovrano & Vallortigara 

(2006) and Vallortigara et al. (2005). Animals used featural cues in large spaces but 

preferred geometrical information in smaller environments. Perhaps in smaller spaces 

the animals needed to be certain of their surroundings. Therefore more accuracy was 

necessary to efficiently navigate within smaller environments. Consequently, 

geometric information was preferred over featural cues. In larger environments, on the 

other hand, landmarks may be the preferred cue because using geometric information 

requires larger memory and computation capacities. Hence, features are used as 

orientation cues which approximately guide animals to the required destination, and 

upon arrival, geometric information would then more accurately guide them to their 

final objective. 
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3.3 Discussion 

The review conducted here, at both neural and behavioral level, has demonstrated that 

recent research focused much on the importance of geometrical information in spatial 

mapping. It is interesting to note that even blind fish developed a special organ, the 

lateral line organ, to sense their surroundings in high details. This shows nature’s 

emphasis on computing the shape of one’s local environment or ASRs according to 

Yeap’s theory of cognitive mapping. 

 

It is a pity that most, if not all, of these experiments focused on the ability of the 

subjects to re-locate the goal in a changed environment once that environment is 

learned. Consequently they tell us little regarding how computing the geometrical 

information of each local environment will help the individuals to navigate in the 

larger environment when they first had their experience of the environment. 

 

The method which ants used to find their way home after foraging for food provides 

an interesting case study. The ants would appear to be using more primitive sensors 

than our robot. However, the algorithm they used demonstrated an ingenious use of 

distance information to return home and the ants’ ability to deal with a dynamic 

environment. If the shape of each local environment becomes available when using 

more powerful sensors, more powerful strategies could be developed.  

 

Chapter 5 investigates what kind of strategy could be developed for a mobile robot 

exploring its environments with sonar sensors. As we shall soon see, the strategy 

developed bears some similarity to the ant’s strategy. But first, the next chapter 

investigates how the robot with its sonar sensors and odometers computes a cognitive 

map of its environment. 
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Chapter Four 

 

ASR Computations 

 

 

This chapter describes how the robot explores its environment and computes ASRs. 

Initially, the robot is positioned somewhere in the corridor in an office surrounding 

and is allowed to explore the environment until it is told to stop. The starting location 

is referred to as home. There are no restrictions as to where the robot can travel and no 

modifications are made to the environment. That is, things that already existed in the 

environment (such as rubbish bins, chairs, flower pots, cabinets, etc.) remain there but 

may or may not be there during subsequent journeys. In addition, doors leading into 

offices are closed or opened depending on the time of the experiment. 

 

 

Figure 4.1 Example of a robot’s journey during an exploration run. 
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The robot’s exploration algorithm is simply to move forward in a “straight-line” 

manner until it is impeded by an obstacle. When it stops, it “looks” for an empty space 

by calculating which direction has the most free space. The robot would then turn 

towards that direction and continues its journey. Figure 4.1 shows an example of a 

journey of the robot during an exploration. Note that the environment is one section of 

a single floor of a three section, three level building. It has a floor space of 

approximately 100 m
2
. Each of the arrows represents a straight-line movement, which 

is also known as a path. In certain situations (such as encountering a dead end or a 

tight corner), the sonar sensors would report that the robot is impeded in all directions. 

The experiments will then be aborted. However, such cases rarely happened in our 

experiments. 

 

Figure 4.2 Flowchart of processes involved in computing ASRs for the environment 

 

Information collected from the robot’s sonar and odometric readings during any single 

exploration run is processed in 4 stages to produce the required ASRs (see Figure 4.2). 

Section 4.1 describes the robot and the sonar sensors used in this research. Section 4.2 

Input: Sonar and odometry readings 

Pre-processing (Filter and merge 

measurements from all sonar sensors) 

Determine bounded region for each 

path traversed 

Transform sonar readings to surfaces 

Apply Split and Merge to bounded 

regions 

Output: ASRs 
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describes the pre-processing of the sonar readings into surfaces. Section 4.3 describes 

the construction of ASRs for each path (as defined above) traversed. Section 4.4 

describes the construction of ASRs for the environment experienced and Section 4.5 

presents the conclusion for this chapter. 

 

 

4.1 The Robot and Its Sensors 

The robot platform used for testing is a Pioneer 3DX mobile robot from MobileRobots 

Inc. (MobileRobots Inc), which was formerly known as ActivMedia Robotics. It is 

equipped with eight ultrasonic (or sonar) sensors for collecting information of the 

environment and integrated wheel encoders for computing the movement of the robot. 

However, it is worth noting that the proposed algorithm is not restricted to using sonar 

sensors. In fact, the performance will improve when more densely sampled data (e.g. 

from laser) are available.  

 

Sonar sensors are time-of-flight devices that work on the following principle: distance 

from the sensor to an object is proportional to the time taken for a signal to travel from 

the sensor to an object and back. Figure 4.3 gives an illustration of the physical 

arrangement of the eight sonar sensors, each with a maximum sensing distance of 

approximately 3.5 meters.  

 

 
Figure 4.3 Alignment of the robot’s eight sonar sensors, labeled from S0 to S7.  The image was 

redrawn from Figure 12 in the Pioneer 3™ & Pioneer 2™ H8-Series Operations Manual (2003) 

and is not to scale. 
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Sonar sensors however, have a few major drawbacks, namely: 

• They are highly sensitive to the angle of reflection from objects. If the surface 

of the object is not near perpendicular to the sonar signal, the signal would not 

be reflected back to the sensor. Consequently, the sensor would think that there 

is nothing in front of it. For this reason, sonar sensors are not deemed to be 

very reliable. 

• Short measurement distance – As mentioned above, the maximum range of 

sonar sensors is approximately 3.5 meters. Most rooms are beyond this 

capacity and compared to lasers, which have a maximum range of 

approximately 100 meters, sonar sensors are very restricted. 

• Large beamwidth (coverage area) and the physical dimension of sonar sensors, 

means that this type of sensors produces sparse readings. Unlike laser, which 

collects 360 readings over 180 degrees, only eight sonar sensors are used to 

cover the same range.  

 

The robot has two solid rubber tires, driven by a two-wheel differential, reversible 

drive system. A caster wheel is positioned at the rear of the robot to provide balance. 

However, it is also a major source of odometric errors. When the robot rotates, the 

caster wheel provides resistance to the movement, which results in the robot rotating 

less than it intended to. In addition, the robot platform also suffers severely from 

odometric errors during translational movement. A slight change of conditions in the 

surface of the ground causes the robot to veer slightly to one direction. However, the 

robot still thinks that it is moving in a straight-line. As a result of both rotational and 

translational errors, the robot has a highly distorted representation of the environment.  

 

Figure 4.4 gives an example of the effect of odometric errors on the robot’s map. ‘O’ 

marks the starting point of the journey and ‘X’ marks the stop location. The robot’s 

“map” (in red) is overlaid onto the actual map of the environment. Even after a short 

15-meter journey, the robot’s estimate of its own location is off by more than 5 meters. 

Since odometric error is accumulative, its estimate becomes poorer and poorer over 

time. 
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Figure 4.4 Accumulation of odometric errors significantly affects the robot’s representation of the 

environment and its own location. The robot started its exploration at ‘O’ and stopped at ‘X’. Red 

lines signify walls and objects detected by the robot’s sonar sensors. The odometric error is more 

than 5 meters after a short 15-meter journey. 

 

 

          

Figure 4.5 Robots used for this thesis. Both are equipped with eight sonar sensors and optical 

wheel encoders. The robot on the right is also equipped with bump sensors but they were not used 

in the experiments. 
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A laptop computer is used for processing information collected by the robot’s sensors. 

It is placed in the center, on top of the robot to avoid affecting the robot’s balance. If 

the balance of the robot is changed, it would cause the robot to drift towards one side, 

compounding the problem of odometric drift. The laptop is connected to the onboard 

microprocessor via a USB-to-serial connector. Processing can be performed “onboard” 

by the laptop or alternatively, the laptop can also act as a gateway through a wireless 

network connection so that information can be processed at other preferred terminals. 

Figure 4.5 shows the two robots that were used for the experiments performed for this 

thesis. 

 

 

4.2 Pre-processing of Raw Data 

The Pre-processing stage is responsible for: 

1. Eliminating noise 

2. Turning sonar points into surfaces 

3. Combining surfaces generated from different sonar sensors to form a single 

representation of surfaces as perceived by all the sensors 

 

During the data collection phase, the sonar sensors either return: 

1. A valid sonar reading (a value which approximately equates to the distance to 

the closest object) 

2. An invalid sonar reading (random values due to specular reflections) 

3. A 9999 reading (which means no object detected or free space) 

 

Invalid readings that are beyond the sonar sensors’ maximum detection range 

(approximately 3.5 meters) are easy to nullify. Basically, any readings above 3.5 

meters were considered useless, and eliminated using a filter. Figures 4.6 and 4.7 

respectively show plots of the sonar readings of the environment before and after the 

filter was applied. The black line represents the physical movement of the robot during 

exploration.  
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The color of the plot corresponds to the sensor the data was collected from: 

• Red – readings from sonar sensors 0 and 7 

• Magenta – readings from sonar sensors 1 and 6 

• Blue – readings from sonar sensors 2 and 5 

• Green – readings from sonar sensors 3 and 4 

 

Depending on the size of the environment tested, the amount of data from an 

experiment can reach an enormous proportion. Raw range readings are hard to handle 

and computationally expensive to process because the information is of too low level. 

The information must therefore be converted to a higher level representation. 

 

 

Figure 4.6 Raw sonar information collected by the robot as it moved through the environment 

shown in Figure 4.1. The colors correspond to the sensor that collected the data. Red: Sensors 0 

and 7. Magenta: Sensors 1 and 6. Blue: Sensors 2 and 5. Green: Sensors 3 and 4. The black line 

represents the robot’s journey. 

 



  60  

 

 

Figure 4.7 Sonar plot after readings that were above 3500mm were removed. The colors 

correspond to the sensor that collected the data. Red: Sensors 0 and 7. Magenta: Sensors 1 and 6. 

Blue: Sensors 2 and 5. Green: Sensors 3 and 4. The black line represents the robot’s physical 

movement. 

 

In the case of the sonar information collected here, the range readings are put through 

a line segmentation algorithm to generate linear representations of the environment. 

These linear representations correspond to the surfaces of walls and objects detected, 

and henceforth will be referred to as surfaces. There are many algorithms that provide 

linear approximations from points. Two examples are Split and Merge and Least 

Squared methods. For this thesis, the surfaces are simply computed by determining the 

spatial relationship between neighboring sonar information.  

 

Recall that the robot has eight sonar sensors (see Figure 4.3). As the robot moves 

forward, sonar points collected from each sensor are first turned into surfaces 

independently. The line-forming algorithm is described below:  
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1. Cluster formation – The sonar points collected from each sonar sensor are first 

grouped into different clusters based upon the Euclidean distance between 

readings. If this value exceeds a certain threshold then a new cluster is formed. 

 

2. Cluster segmentation – For each of the clusters formed, a further check is made 

to see if that cluster contains one or more surfaces. This is done by dividing the 

cluster into smaller clusters and then calculating their respective average 

gradient. If the gradients between the smaller clusters are found to differ 

significantly, then the original cluster would be segmented further, eventually 

producing two or more surfaces (see Figure 4.8). 

 

3. Surface formation – Surfaces are formed by drawing a straight line between the 

first and last sonar readings of each of the clusters formed in the second step.  

 

 

 

 
Figure 4.8 Example showing the need for cluster segmentation. The image on the left shows a 

cluster of sonar readings. The image in the middle shows two line segments used to represent the 

cluster and on the right, the image shows a single line of best fit. Even though both 

representations are correct, the extra information from the angles between surfaces maybe useful 

for later computations. 

 

The above line-forming algorithm is a crude algorithm for generating a linear 

representation from the sonar points. However, it is adequate for the purpose here 

since what is needed is only a rough description of the environment. Figure 4.9 

illustrates the linear representation were formed from the information collected from 

each sonar sensor.  
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Figure 4.9 Surfaces formed from the sonar readings collected from each sensor. The colors of the 

surfaces correspond to the sensor that collected the data. Red: Sensors 0 and 7. Magenta: Sensors 

1 and 6. Blue: Sensors 2 and 5. Green: Sensors 3 and 4. The black line represents the robot’s 

journey. 

 

Applying the above algorithm, we get four sets of surfaces on both sides of the path. 

Surfaces on the left side are generated from sensors 0, 1, 2, and 3. Surfaces on the right 

side are generated from sensors 4, 5, 6, and 7. These surfaces need to be merged into a 

single set on each side, representing the final surfaces perceived by the robot. To 

merge them, it is observed that for sonar sensors, readings indicating the presence of 

an object nearby are more reliable than readings indicating the presence of an object 

far away. Henceforth the merging algorithm simply samples a point from the nearest 

surface on each side and for each discrete step along the path. By reapplying the above 

line-forming algorithm to these points collected, the points are then turned into the 

final set of surfaces as seen by the robot for that path.  
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Figure 4.10 Surfaces (in blue) of the environment explored after information from all sensors 

have been merged. The black line represents the robot’s journey. 

 

The advantage of the above method is that it can be applied to a variable number of 

sensors. By adding more sensors, one would obviously obtain a more complete picture 

of the environment. The approach can also be used to test the reliability of particular 

sensors by using only those sensors to sense the environment. Figure 4.10 shows the 

overall representation of the environment after surfaces from all the sonar sensors have 

been combined together. 

 

 

4.3 Computing ASRs of Paths 

According to Yeap’s (1988) theory of cognitive mapping, the significance of 

computing an ASR is the immediate identification of a region of space that constitutes 

one’s local environment. The perceiver feels it is bounded and identifies exits out of 
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the bounded region (see Yeap & Jefferies (1999)). If the robot has more powerful 

sensors such as vision, an initial ASR would be computed from a single view of the 

environment and will subsequently be modified or updated with information from 

subsequent views (see Jefferies, Cree, Mayo, & Baker (2004); Jefferies, Weng & 

Baker (2008); Jefferies, Weng, Baker & Mayo (2004) and Jefferies, Yeap, Cosgrove, 

& Baker (2005)). However, since the robot has only sonar sensors, the information 

obtained from a single view is not rich enough for computing an ASR. In this sense, 

my robot could be considered as “partially blind”. Consequently, a new algorithm is 

developed for computing ASR for each path traversed rather than from each sonar 

reading of the environment. 

 

After traversing each path, the robot would have obtained many surfaces of various 

lengths on both sides of the path. To form an ASR, the robot needs to select the 

appropriate surfaces on both sides of the path to form a boundary description for the 

ASR. The new algorithm first considers, independently for each side, all the larger 

surfaces “in view” to be boundary surfaces. If these surfaces together form a 

significant boundary, say exceeding 70% of the distance traveled (path length), then 

these surfaces adequately represent the boundary of the ASR and the smaller surfaces 

perceived will be ignored.  If not, the algorithm iteratively uses smaller surfaces to 

form the boundary, until a significant proportion of the boundary is formed.  

 

The reasons for choosing the larger surfaces first are twofold. Firstly, larger surfaces 

are more likely to correspond to some real surfaces in the physical world and, if they 

exist, they are also more likely to act as a boundary for the current local space. 

Secondly, and again, what is needed is only a rough description of the shape of the 

local environment. Hence, once we have established this rough description using the 

larger surfaces, the algorithm can be terminated.  

 

The algorithm is described in detail below. It consists of two steps (the threshold 

values used are intuitively chosen):  
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Step 1: Selecting boundary surfaces – For each side of the path do (four possible 

iterations): 

a) Select all perceived surfaces that are greater than 700mm in length. If the sum 

of the surfaces selected is greater than 70% of the distance traveled, then go to 

Step 2. 

b) Select all perceived surfaces that are greater than 500mm in length. If the sum 

of the surfaces selected is greater than 70% of the distance traveled, then go to 

Step 2. 

c) Select all perceived surfaces that are greater than 300mm in length. If the sum 

of the surfaces selected is greater than 70% of the distance traveled, then go to 

Step 2. 

d) Select all perceived surfaces that are greater than 200mm in length (the 

surfaces that are less than 200mm are considered as too small for 

consideration). Go to Step 2. 

 

 Step 2: Given the surfaces from Step 1, compute the boundary for the ASR: 

a) For each side, determine the Euclidean distance of the gap between 

neighboring surfaces.  

b) For all gaps greater than the 500mm threshold, leave the gap as it is. 

c) For all gaps less than the 500mm threshold, replace it with a virtual surface. 

That is, a line is added from the end point of the first surface to the start point 

of the second surface. 

d) For all virtual surfaces, calculate and compare the gradients of the virtual 

surface and the first surface it is connected to. If the gradients do not differ 

significantly, then it is not necessary to keep two surfaces. The two surfaces are 

replaced with a single surface by simply connecting the start point of the first 

surface with the end point of the second surface. If the gradients differ 

significantly, the virtual surface will be considered as part of the boundary for 

the ASR. 

 

The threshold that signifies a significant gap was set at 500mm because the robot 

would not be able to safely move through a gap that is narrower than 500mm. In most 
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cases, the gaps less than 500mm exist due to the sonar sensor’s inconsistencies and 

should nonetheless be treated as if a surface is present.  

 

The progression of the boundary selection process of Step 1 is applied to the surfaces 

shown in Figure 4.10. The results after each of the four iterations are shown in Figure 

4.11. It clearly illustrates those paths that contain large surfaces do not need to retain 

smaller surfaces. However, when larger surfaces are absent, smaller surfaces are relied 

upon to provide spatial description of the surroundings. 

 

  

(a) 

 

(b) 

  

(c) (d) 

 

Figure 4.11 Progression of the boundary selection process from the first Iteration (a) to the last 

iteration (d). Smaller surfaces are not used if large surfaces are sufficient for computing the 

boundary. 
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Figure 4.12 Individual plots of the surfaces selected for paths 1 to 8 

Path 1 Path 2 

Path 4 

Path 5 

Path 3 

Path 6 

Path 7 Path 8 



  68  

 

  

  

  

  
 

Figure 4.13 Individual plots of the surfaces selected for paths 9 to 16 

Path 9 

Path 11 

Path 14 Path 13 

Path 10 

Path 12 

Path 15 Path 16 
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The actual surfaces selected for each path for computing an ASR are shown in Figures 

4.12 and 4.13 in their own local coordinate system. The final boundary computed after 

applying Step 2 is shown in Figure 4.14. This can now be used to compute the ASRs 

for the environment as a whole. 

 

 

 

 

Figure 4.14 The final boundary computed for each path which is also the ASR for each path. The 

result is then used to compute the final ASRs for the environment as a whole (see next section). 

 

 

4.4 Computing ASRs of the Environment 

As noted above, once ASRs for each path are computed, one needs to combine or split 

ASRs to better reflect the shape of each local environment experienced. Such 

combining or splitting will take into consideration of other spatial characteristics of 

ASRs. For example, if the robot moves down a straight corridor in a zigzag manner, 

the ASRs for these paths are combined as a single ASR representing the corridor. 
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Similarly, if the robot moves out of a corridor into a junction and straight into another 

corridor, the single ASR computed for the path is split into three different ASRs. 

 

The basis of the ASR generating algorithm for this final step is the well-known Split 

and Merge method, which originated from research in pattern recognition (see Duda & 

Hart (1973); Niemann (1990) and Pavlidis & Horowitz (1974)). A classic application 

of this algorithm is finding piecewise linear approximations of contour points that 

have been detected in an image. A variety of other applications has been proposed, 

including segmentation of image regions given a homogeneity criterion, e.g., with 

respect to color or texture (see Niemann (1990)). Additionally, Split and Merge has 

also been popular in robotics for generating geometric maps from range data by 

extracting lines (for example, Baltzakis & Trahanias (2002); Borges & Aldon (2000) 

and Newman, Leonard, Tardds, & Neira (2002)). However, it has rarely been utilized 

before for generating topological information from a metric map, as described here. 

The Split and Merge algorithm forms the core part of the process resulting in a 

topological ASR representation of the environment.  

 

The objective here is to transform the initial network of ASRs based upon path 

movements of the robot into a network of ASRs based upon the spatial characteristics 

of the environment experienced. Splitting is done along the robot movement path, 

using an objective function that computes the quality of a region, based on local metric 

features derived from the geometric map, such as the average room width (corridors 

are long and narrow compared to rooms) and overall direction (e.g., a corridor is 

separated from another one by a sharp bend in the wall). 

 

The step by step operation of the original Split and Merge algorithm described by 

Niemann (1990) are as follows: 

 

1. Start with an initial set 0R  consisting of 0n  regions 0

1

0

0 0
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3. Merge two adjacent regions k

iR  and k

iR 1+  into one new region 1+k
jR  if 

( ) θ<+
k

i

k

i RRh 1, . Repeat until merging is not possible any more. 

4. Shift the split point shared by two adjacent regions k

iR  and k

iR 1+  to left and 

right while leaving the overall number of parts fixed. Keep the split that 

reduces the overall error, repeat until no further changes occur.  

 

Split and Merge is a recursive algorithm. It starts with an initial partitioning of the 

map, and then refines it until a stable configuration has been reached. The algorithm 

results in a piecewise approximation of the original points, where every single residual 

error is below a given threshold θ. 

 

To apply Split and Merge, the following initialization steps must be completed first: 

 

1. The input data, consisting of contour points, which is to be approximated, is 

sorted. 

2. Choose a parametric function F (for example, lines, curves, etc.) to be used for 

approximating the contour points. 

3. Choose a method for computing the residual error ε of the resulting 

approximation (usually root mean square error), or, when used for regions, a 

homogeneity or quality criterion, 

4. Set the threshold θ  which determines whether a split or merge is required. 

 

Split and Merge is applied twice to generate the final ASR representation: the first, to 

generate initial partitioning of the map; and the second, to refine the initial split points 

to give a better approximation of the regions. 

 

4.4.1 Initial Split and Merge 

Before the region Split and Merge algorithm on the map can be applied, it is necessary 

to create an initial split of the map. This can be generated using a number of different 

approaches. However, the robot’s map in this case is already split into different ASRs 

where each split is based upon a straight line path. Consequently, the start and end 

points of each path provide the necessary initial split points for the algorithm. As such 
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the initial Split and Merge algorithm for ASRs excludes the split part of the algorithm. 

What needs to be done is to see whether the initial ASRs need to be merged together. 

One instance where it is needed is when the robot moves through a corridor in a zigzag 

fashion. Such paths through a corridor create several ASRs which should be merged 

into one. The merging algorithm for ASRs is described below. 

 

Merging: For all ASR1 to ASRn, do: 

1. Take the first two ASRs (say, ASR1 and ASR2) with their respective split 

points (e.g. SP1, SP2 and SP3). 

2. Connect SP1 and SP3 using a straight line (call this line SP1��SP3). 

3. Sub-divide the two paths between SP1 and SP3 into equidistant points 

(currently set to 500mm apart), starting from SP1. 

4. For each of the points, calculate the distance of the norm from the division 

point to the line SP1��SP3.  

5. If any of the distances (and hence the residual error) is above a threshold, then 

repeat the process with ASR2 and the rest of the ASRs. In other words, no 

merging of ASR2 with ASR1. 

6. If all of the distances (and hence the residual error) are below the threshold, 

then the split point SP2 is removed and ASR1 and ASR2 becomes a single ASR, 

ASR1. Repeat the process.  

 

Note that the original Split and Merge algorithm specifies a shifting step after the 

merging phase. The objective of this is to fine tune the split points. However, this level 

of “accuracy” is not needed since the ASRs are only an approximate representation of 

the environment. For this reason, the shifting process was not implemented as part of 

the algorithm for computing the ASRs. 

 

4.4.2 Region Split and Merge 

The initial Split and Merge will group the ASRs that have the same orientation. These 

ASRs are caused by zigzag movements along a confined space, say, a corridor. 

However, the above does not take into consideration any spatial characteristics of 

ASRs. To do so, the Split and Merge algorithm is repeated using a different residual 

error function h(ASRi, ASRj). This function compares two ASRs, ASRi and ASRj, and 
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computes the homogeneity of the two regions (low values of h(ASRi, ASRj) mean 

homogeneous, high values very inhomogeneous).  

 

The residual error function is used during the splitting phase for deciding whether an 

k

iASR will be split at a given position into two new regions 1+k
jASR  and 1

1

+
+
k

jASR , and in 

the merge phase to determine whether two adjacent ASRs can be joined together. 

When the homogeneity is above a given threshold rθ , the region will be split into two 

ASRs. Conversely, two neighboring regions are merged when the homogeneity is 

below the threshold. 

 

One of the criteria to distinguish one local region from another is through spatial 

characteristics. Based on this concept, the basic idea is to use the average width of a 

region in the map as a criterion for splitting, as a width change resembles a changing 

environment, e.g., a transition from a corridor to a big room. The homogeneity 

(residual) function used is: 
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where ( )iASRfw  is the average width of region iASR , and ( )
ji ASRASRr ,  is a 

regularization term that takes care of additional constraints during splitting. The factor 

rs  controls the influence of ( )
ji ASRASRr , . 

 

Obviously, the average width is given by ( )
i

i

R

R

i
l

A
ASRfw = , where 

iR
A is the area of 

iASR , and 
iR
l  is its length. The definition of the length of an ASR in particular is not 

always obvious, but can be handled using the robot movement paths, which are part of 

each ASR. The length 
iR
l  is then defined by the length of the line connecting the start 

point of the first robot path of an ASR and the end point of the last path of the ASR, 

i.e., the line connecting the exits of an ASR, which the robot used while traveling 
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through the environment. This is an approximation of a region’s length having the 

advantage that disturbance caused by zigzag movement of the robot during mapping 

does not affect the end result. 

 

For area computation, the gaps contained in the map have to be taken into account, 

either by closing all gaps, or by using a fixed maximum distance for gaps. Closing a 

gap is a good approach if it originated from missing sensor data, but may distort the 

splitting result when the gap is an actual part of the environment. Closing it would 

make the ASR appear smaller than it actually is. The implementation uses a 

combination of methods: small gaps are closed in a pre-processing step; and large ones 

are treated as distant surfaces.  

 

Depending on how gaps are handled, the algorithm possibly creates a large number of 

very small ASRs. This is where the regularization term ( )
ji ASRASRr ,  comes in: it 

ensures that ASRs do not get too small. It penalizes small ASRs but still allows their 

creation if the overall quality is very good. A sigmoid function centered at n is used, 

where n is the desired minimum size of a region: 
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This function can assume values between −1 and 0. The exponent is basically the ratio 

of the area of the smaller one of two adjacent ASRs to the maximum area maxA of the 

smallest possible ASR that the algorithm is still allowed to create. Thus, the smallest 

ratio is 1. It increases when the region gets larger. Figure 4.15 shows a graph which 

roughly approximates the regularization function. 

 

The regularization term only has an influence when an ASR is already small, by 

reducing the likelihood the region will be split again. As the sigmoid reaches zero 

asymptotically, it has virtually no influence when a region is large. The overall 

influence of the regularization can be controlled by the factor rs  in Equation 4.1. It is 
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given by rr ss θ= , where 10 ≤≤ s  is set manually and defines the percentage of the 

threshold rθ  that is to be used as a weight. rθ  is the threshold introduced earlier, 

which determines that a region is to be split into two when the first region is rθ  times 

larger than the second one. 

 

 

Figure 4.15 Graph showing the characteristics of the regularization function 

 

The following is a summary of the region Split and Merge algorithm: 

 

Step 1: Splitting 

1. Take an ASR (e.g. ASR1) with its respective split points (e.g. SP1 and SP2) 

2. At each of the division points along the path of the robot, have a temporary 

split. (Let us denote the region to the left of the temporary split as ASR1L and 

the region to the right as ASR1R.) 

3. Calculate the areas of ASR1L and ASR1R 

4. Calculate the lengths from the regions split points (SP1 and SP2) to the current 

temporary split point 

5. Calculate the average widths for ASR1L and ASR1R 

6. Calculate the homogeneity function h(ASR1L and ASR1R) 

7. If h(ASR1L and ASR1R) is LESS THAN the threshold rθ then proceed with next 

division point and repeat steps 1 – 7. 
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8. If h(ASR1L and ASR1R) is MORE THAN the threshold rθ then this confirms that 

the current split point as an actual split point.  

9. The splitting procedure continues with the newly created region and all other 

remaining regions. 

 

Step 2: Merging 

1. Take three regions (e.g. ASR1, ASR2 and ASR3) with their respective split 

points (e.g. SP1 SP2, SP3 and SP4) 

2. Temporarily “remove” the split point between ASR1 and ASR2 (i.e. SP2) to 

temporarily merge the two ASRs (call it TempR) 

3. Calculate the areas of TempR and ASR3 

4. Calculate the lengths of both TempR and ASR3 

5. Calculate the average widths of both regions 

6. Calculate the homogeneity function h(TempR, ASR3) 

7. If h(TempR, ASR3) is above the threshold rθ , then the split point remains and 

the regions remain as ASR1, ASR2 and ASR3. The process continues with the 

remaining regions. 

8. If h(TempR, ASR3) is below the threshold rθ , then permanently remove split 

point SP2 to merge regions ASR1 and ASR2 together. The splitting process 

continues with the newly created region, with the remaining regions. 

 

For the same reason mentioned earlier, the shifting step of the Split and Merge 

algorithm was not implemented for the region Split and Merge. The result of applying 

this algorithm onto the surfaces in Figure 4.14 is shown in Figure 4.16. The black dots 

mark the split points whilst the regions between the split points represent the ASRs. 

 

The split points would be generated at different locations by varying the two 

parameters θr and s. Their influences are shown in the following figures. Figures 4.17 

and 4.18 depict splitting results for different values of θr whilst Figures 4.19 and 4.20 

show the results for different values of s. 
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Figure 4.16 ASRs generated from the boundaries shown in Figure 4.14 using θr = 1.7 and s = 0.1. 

The black dots represent the split points, which divide the environment into ASRs. 

 

 

 

Figure 4.17 ASRs computed using parameter values θr = 1.3 and s = 0.1 
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Figure 4.18 ASRs computed using parameter values θr = 2.2 and s = 0.1 

 

 

 

Figure 4.19 ASRs computed using parameter values θr = 1.7 and s = 0.005 
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Figure 4.20 ASRs computed using parameter values θr = 1.7 and s = 0.95. 

 

The maps in Figures 4.17 and 4.18, were computed using θr values of 1.3 and 2.2 

respectively, while the other parameter was fixed to s = 0.1. In Figures 4.19 and 4.20, 

the maps were generated using s values of 0.005 and 0.95 respectively, while θr was 

fixed to 1.7. Since θr controls the ratio of the average width of adjacent ASRs, 

increasing this parameter results in fewer splitting points and therefore larger ASRs. 

The parameter s shows a similar behavior, i.e., the higher its value the higher the 

influence of the regularization term, which results in larger regions on average.  

 

The following are more examples of the different exploration journeys and their 

corresponding ASR representations. Figure 4.21 presents the robot mapping the 

environment in the opposite direction compared to the journey presented in Figure 4.1. 

Figure 4.22 shows the robot successfully explore the large space situated in the middle 

of the section. Interestingly, the robot performed a couple of loops during its journey 

through the middle section and yet produces a single ASR representing that space. 

Finally, Figure 4.23 shows the robot’s exploration through two sections of the 

building. 
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(a) 

 

(b) 

 

Figure 4.21 Exploration of the environment in the opposite direction to the journey in Figure 4.1. 

(a) Journey of the robot in the experiment and (b) the ASRs generated - (0,0) relates to the start 

location 
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(a) 

 

(b) 

 

Figure 4.22 Exploration of the large space in the middle section of the floor (a) Physical movement 

of the robot took during the journey and (b) the ASRs generated - (0,0) corresponds to the start 

location 
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(a) 

 

 

(b) 

 
Figure 4.23 Exploration of an extended environment (a) The robot’s journey and (b) the ASRs 

generated - (0,0) corresponds to the start location 
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The parameters used in the last three examples were identical to that used for 

generating the points in Figure 4.16. Their values are θr = 1.7 and s = 0.1. These values 

are empirically determined. These results show that once the parameter values are set, 

the Split and Merge algorithm is successful for computing ASRs for different types of 

maps. No “tweaking” is found to be necessary, hence enabling the robot to be truly 

operating without human intervention.  

 

 

4.5 Discussion 

The basic algorithm for computing an ASR is the same as the algorithm reported in 

Jefferies (1999). Thus, there is no change to the theory of ASR computations. 

However, Jefferies tested her algorithm using a simulator whereas the algorithm 

developed here works for a robot equipped with sonar sensors. This is the first time 

that an algorithm is developed for computing ASRs for a robot equipped with sonar 

sensors. 

 

With sonar sensors, the robot collects very little and possibly unreliable information 

about its environment from a single position in space. Consequently, the robot can 

only “sense” where it is (via the act of computing an ASR that it is in) after it has gone 

down a path through the environment. This posed two major new challenges:  

 

1. How do you compute a boundary for each path traversed from the eight sonar 

sensors available to the robot?, and 

2. How do you combine ASRs computed for each path into ASRs computed for 

the whole environment? 

 

This chapter presented a solution to these problems using a multi-level representation 

of surfaces and a modified version of the Split and Merge algorithm developed for 

pattern recognition research. ASRs are identified using two criteria:  

 

1. Similarity in the path traversed; and  

2. Similarity in the bounded space. 

 



  84  

 

The algorithm developed has been well tested by the robot making numerous 

explorations in an office-like environment. The algorithm did not fail to generate 

ASRs and, for most of the time, the ASRs generated were judged by humans to 

partition the environment well. The latter judgment is not important, though, as the 

view of the robot is different to that of the humans. 

 

It is argued that the new algorithm is cognitively interesting because it has the 

following characteristics: 

 

1. It generates ASR with approximate shape rather than precise co-ordinates; 

2. The resulting ASRs computed for an environment are dependent on the 

direction of travel. 

 

Both these properties are commonly observed characteristics of cognitive maps of 

cognitive agents. A strategy to use such a map to find its way home is presented in the 

next chapter. 
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Chapter Five 

 

Returning Home: Algorithm,  

Experiments, and Results 

 

 

With the successful implementation of an algorithm for computing ASRs for the robot, 

this chapter describes the design and implementation of several algorithms that will 

enable the robot to find its way home. As noted in Chapter 1, the ability to return home 

is a crucial task for foraging animals and in Chapter 3, it was noted that animals make 

significant use of distance and orientation information to find their way home. These 

two pieces of information are available implicitly in the network of ASRs computed. 

This chapter explores how such information could be extracted from a fuzzy map and 

used by the robot to find its way home.  

 

The returning home experiment begins with the robot being positioned approximately 

where it stopped during the exploration journey. Like the exploration journey, no 

modifications were made to the environment in the homeward journey. That is, no 

changes were made to ensure that the environment be the same for both journeys. 

Quite often, the homeward journey is made days, weeks or even months after the 

original exploration journey. Thus the environment could have changed significantly. 

For example, doors were open during the initial exploration but were shut during the 

going home journey; and vice versa.  

 

Like in exploration, the robot generates a “cognitive map” of its environment during 

the homeward journey. However, and as shown in the previous chapter, this map is 

likely to be different from the map computed during exploration. Furthermore, while it 

was sufficient during the exploration stage to collect all the data first and then process 

it at the end, the robot will now have to process the sensor information into ASRs 

every time it stops. This is because the robot now needs to decide whether it has 

reached home or not. If not, it needs to know where it is and where to move next. In 
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short, during the homeward journey, the robot needs a navigation strategy and a 

method to localize itself.  

 

To develop a suitable navigation strategy, recall that in chapter 3, ants find their way 

home by traveling towards the home direction and at an approximate distance away 

from it. When they are near their home, they search for it. Similarly, observe here that 

the robot knows which ASR it is in when it turns around to go home. It also knows 

how far it needs to travel from its current position in order to reach the end of this 

ASR and into the next. Thus a simple strategy would be to travel approximately the 

required distance to the exit and then begin to search for the exit whereabouts. 

However, the robot is unable to use its sensors to detect if it has reached the end of that 

ASR if it were to travel the required distance. Furthermore, when going home, it does 

not follow the wall and thus attempts to travel in a straight line to reach the end of the 

corridor. This strategy is not always useful anyway since the robot is also tested 

moving through a large empty room. The solution to this problem is that the robot 

needs to somehow localize itself whenever it reaches the end of an ASR. 

 

At any particular moment in the homeward journey, two representations of the 

environment are available: A cognitive map generated during the exploration journey 

(henceforth referred to as CM-in-memory) and a cognitive map generated during the 

homeward journey but only up to the point where the robot stops (henceforth referred 

to as CM-current). Since the shape of the ASRs computed in either cognitive map are 

not accurate enough to match and localize oneself, a new algorithm is developed 

which makes use of the length of the ASRs computed and the relative orientation 

between adjacent ASRs.  

 

If the robot, say, has computed the 3
rd

 ASR in its homeward journey, it could calculate 

the distance it has traveled in terms of the sum of the length of the three ASRs 

computed. From that, it could calculate roughly where it is in the CM-in-memory and 

which ASR in the CM-in-memory that it is in. The robot could use a variety of 

information to increase its confidence in localizing itself. In the experiments 

conducted here, two pieces of information are used, namely length of ASR and relative 

orientation between adjacent ASRs. 
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Section 5.1 describes the navigation strategy used by the robot to find its way home. 

Section 5.2 describes the localization algorithm and section 5.3 describes the results of 

the returning home experiments conducted with the robot. Section 5.4 concludes this 

chapter with a summary of the results obtained. 

 

 

5.1 Navigation Strategy for Returning Home 

When the robot is trying to find its way home, it needs a navigation strategy, not 

random exploration. Initially, the robot knows where it is i.e. the last ASR computed 

in the CM-in-memory. Let us label the ASRs in CM-in-memory as ASR1, ASR2, … 

ASRn. ASR1 is the home ASR and ASRn is the last ASR computed at the end of the 

exploration (i.e. the ASR that the robot is in, at the start of the going home journey). 

The robot also knows which exit to go to and how far it is from its current position. 

The navigation strategy used by the robot can be described as follows: 

 

Navigation Strategy (d: estimated distance to exit): 

1. Turn towards the exit. 

2. Move forward d-0.5 meter.  

3. If an obstacle is encountered before having traversed d-0.5 meter, avoid the 

obstacle and continue to move forward the remaining distance calculated in 

steps 4 and 5. 

4. Localize where the robot is using the algorithm described in Section 5.2. The 

localization algorithm works out which ASR the robot is most likely to be in 

and how far it has moved into that ASR. 

5. If the robot is still in the current ASR, then work out how much more to travel 

to get into the next ASR. Set d to the required distance. Go to step 2. 

6. If you have moved into the next ASR, check if this ASR is the home ASR. If 

so, proceed towards home and stop. 

7. Calculate d, the distance from the current position to the exit of the current 

ASR. Go to step 1. 
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The above strategy bears some similarity to how some lower level cognitive agents 

(such as ants and bees) find their way home. Using distance and orientation 

information, they work their way close to home and when they are near their home, 

they carry out a search to find it. The above strategy gets the robot close to each exit 

and then localizes itself for the exit. 

 

Note that an earlier version of the above algorithm was implemented and reported in 

Wong, Yeap, & Sapiyan (2005). The algorithm is as follows: 

 

1. Move to the other end of the current ASR by traveling L-x distance. L is the 

perceived length of the ASR and x is a small distance so that the robot arrives 

at the decision point of the journey. 

2. Once there, re-position by moving forward and backward to detect two side 

walls. 

3. Move to a point which is equidistant from the two side walls. 

4. Check whether the next ASR is on its left or right. If it is on the left (right), 

search for the open space on one’s left (right).  

5. Move into that open space and one has now moved into the next ASR. 

6. Repeat the algorithm until all ASRs have been re-visited. 

 

The earlier algorithm assumes that an ASR is always connected left or right of the 

current ASR. This constraint is found to be too restrictive and is derived from 

observing that the environment being tested at that time consists of corridors only. 

Furthermore, as noted above, moving a distance of L-x does not guarantee one reaches 

the end of the ASR computed during exploration stage. Unless the robot happens to 

orient straight towards the end of the corridor, the distance traversed could fall well 

short. Indeed, and as shown in Figure 5.1, that was the case and the robot failed to 

reach home. What is lacking in the earlier algorithm is the ability for the robot to 

localize itself in the homeward journey and this is now solved with the addition of step 

4 in the new algorithm. 
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Unsuccessful journey 1 Unsuccessful journey 2 

 

Figure 5.1 Unsuccessful attempts by the robot to get home using the previous algortihm: The 

shaded region is the area where the robot was confused. The robot failed to go straight to the end 

of the corridor and thus mis-localized itself. 

 

It is interesting to note that both versions of the algorithm produce interesting 

observable robot behavior at the exits. Figure 5.2 shows in detail the robot’s 

movements at some of the decision points. It shows that the robot was cautious and 

was looking for a gap on its left.  

 

Figure 5.3 shows the robot’s cautions when crossing the exit of an ASR using the 

latest algorithm developed. The robot was free to wander from the start up until 

location 1, which is where the robot thinks it is about 0.5m away from the exit. At that 

location, it calculates to see if it is still within the old ASR or in the next ASR. The 

former is true and so it moves forward to location 2, believing it has crossed the exit. It 

has not and it re-calculates how far to move forward again so as that it could cross into 

the ASR. At location 3, it found itself in the next ASR and it rotates towards the blue 

arrow (direction of the next split point). However, it senses an obstacle and it rotates 

away from it. 
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(a) 

 

 

(b) 

 

Figure 5.2 (a) Example of a successful going home journey and (b) The robot’s cautious 

movements at decision points A, B and C are shown in detail. Each arrow indicates that the robot 

made a turn to inspect the environment. A longer arrow also indicates that it has moved forward 

too. 
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Figure 5.3 Detailed movement of the robot going home through the first ASR. The black dot 

represents the split point or exit of the first ASR.  

 

 

5.2 Localization Strategies on the Way Home 

The robot could localize itself using a variety of information and in this section, a new 

algorithm is developed which uses two key pieces of information implicitly available 

in the network of ASRs namely, distance and orientation. Sections 5.2.1 and 5.2.2 

describe the individual localization strategy using distance and orientation information 

respectively. Section 5.2.3 describes the fusion of the two localization results to tell 

the robot where it is. Fusion is done using the Democratic Integration technique which 

was originally proposed by Triesch (1999) and Triesch & von der Malsburg (2001) for 

sensor data fusion in computer vision, using images as input data. The use of this 

technique allows integration of other information when they become available later. 

 

5.2.1 Localization Strategy – Distance 

Just as humans have a rough notion of how far they have walked starting from a 

certain location, so could a robot. However, if one were to measure it based upon the 

actual distance traveled as provided by the odometer, then the information collected 

would be difficult to use. This is because the robot often moves in a zigzag fashion 

across the environment and because of the accumulated errors in comparing such 

measurements would be excessive. 
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In the representation shown in Figure 4.16, the start and end points of an ASR are 

depicted by dark dots (split points) located on a set of connected lines representing the 

physical movement of the robot. Figure 5.4 shows the actual paths taken by the robot 

through one of these ASRs. The zigzag movement of the robot in between two splits is 

clearly visible, and can be quite different from the line connecting start and end points. 

This is especially true if the ASR describes a large empty space.  

 

 

 
Figure 5.4 Section extracted from Figure 4.16 showing the paths of the robot (blue dashed line 

between the split points) can be quite different to the ASR length. 

 

To localize using the distance traveled, it is better to use the effective distance traveled 

as measured by the total length of the ASRs visited. The length of an ASR is measured 

as the straight line distance between the entrance and the exit that the robot uses for 

moving through that ASR.  

 

When the robot stops at point X in its homeward journey and wants to localize itself, it 

has two pieces of information. It can calculate the effective distance it has traveled so 

far using the ASRs computed in the CM-current. Let this be dRJ, effective distance 

traveled so far during the return journey. It can also calculate the effective distance it 

needs to travel to reach the entrance of all the ASRs already computed in CM-in-

memory i.e. those computed during the exploration phase. Let this be dASRn, effective 

distance needed to travel from the end point of exploration to the entrance of ASRn. 

By comparing dRJ and  dASRn (for n = 1 to m where m is the number of ASRs computed 

in the outward journey), one can compute a local confidence map, CdRJ(t) of all ASRs 

in memory to tell us the likelihood that the robot is in ASRn.  
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Gaussian distribution is used for modeling the confidences for each ASR, as it allows 

for a smooth transition between regions, and the width can be easily adjusted by 

altering the standard deviation. The latter feature is rather useful. The further the robot 

travels, the overall distance traveled gets more and more unreliable due to slippage and 

drift. This error can be reflected by increasing the standard deviation that broadens the 

Gaussian, which in effect decreases confidence levels over time. For the plot, the 

horizontal axis is the distance traveled in millimeters, centered at the current overall 

effective distance traveled dRJ. The Gaussian’s standard deviation σ  was chosen as 

d05.0=σ . Note that although a Gaussian distribution is used here, we do not try to 

model a probability density function, but rather make use of its bell-shape curve. The 

normal distribution is computed using the following equation: 
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The confidence value for a particular ASR is determined by sampling the Gaussian at 

the position given by the accumulated (ASR) distances from the origin (i.e., where the 

robot started the homeward journey) to the entrance of this ASR. Figure 5.5 shows an 

example of this computation.  

 

 

Figure 5.5 Example of a normal distribution curve used for determining the confidence level 

based on the distance strategy. The mean of this example is 10 and it has a standard deviation of 

0.5. 
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Here, the robot has moved effectively 10 meters in the homeward journey. Hence the 

mean is 10 and standard deviation is 0.5. The confidence level is sampled along this 

curve. For instance, if ASR 8 in CM-in-memory has an accumulative distance of 10.5, 

then its confidence level is approximately 0.48, as shown by the black solid dot. After 

a value for each ASR is computed, the local confidence map ( )tcDist  is normalized to 

the interval [0; 1] by dividing the values by the maximum value, which is ( )µf . 

 

5.2.2 Localization Strategy – Relative Orientation 

The second method for computing local confidence maps containing estimates of the 

robot's position with respect to the CM-in-memory is based on using relative 

orientation information between adjacent ASRs. During its journey, the robot enters an 

ASR at one location and exits at a different one, usually involving multiple 

movements of various directions in between. We define the direction of an ASR as the 

direction of the line connecting the entrance and exit points.  

 

As before, direction information varies every time the robot travels through the 

environment. However, the overall shape between adjacent ASRs is relatively stable. 

We therefore propose to use angles between ASR directions as a local measure of the 

current position of the robot. Note that this information is not very effective on its 

own, because the same angles (i.e., direction changes) can be found at different 

locations of the environment. This is especially true when the robot has made a 

lengthy exploration journey. Nonetheless, by combining this strategy with others, it 

can help to choose between position estimates that would otherwise be 

indistinguishable. 

 

Firstly, all angles 11 ,, −Nαα K between adjacent ASRs in the CM-in-memory are 

computed once the exploration journey has been completed. In the re-mapping process 

while returning home, new ASRs are computed in the new map based on data gathered 

while the robot travels. Using the direction information contained in this map, the 

angle β  between the current ASR and the previous one can be computed. Comparing 
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this angle to all angles of the original map gives a clue (or multiple clues) for the 

current location of the robot. 

 

The comparison of angles is done by computing the difference angle between the 

current angle β  obtained from the newly generated map and all angles iα  of the 

original map. This difference angle is then mapped linearly to the interval [0; 1]. 

Hence the confidence level 
iDirc is give by: 
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Another option would be to use the cosine of the difference angle instead of the linear 

mapping. However, this “compresses" confidence values for similar angles, which is 

not a desirable effect. 

 

The mapping given by this function results in high values for similar angles, and low 

values for dissimilar ones. The confidence map computed this way is used for further 

processing. Since the overall reliability of the relative orientation strategy as described 

above is rather low compared to the confidence values from other methods (in this 

case using distance information), the confidence values from relative orientation are 

reduced by a constant factor. As the data fusion method implemented is capable of 

adjusting the relative weights of the different localization strategies, this is non-

critical, because it will change automatically over time, depending on the reliability of 

the other methods as well. 

 

5.2.3 Fusion by Democratic Integration 

The Democratic Integration technique was originally proposed in Triesch (1999) and 

Triesch & von der Malsburg (2001) for sensor data fusion in computer vision, using 

images as input data. The method was extended and embedded into a probabilistic 

framework for 3D object tracking in Denzler, Zobel, & Triesch (2002); Kahler & 

Denzler (2005) and Kahler, Denzler, & Triesch (2004). It is also used for segmentation 

purposes in Tang, Garrett, & Malsburg (2005). 
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The separate local confidence maps are merged into a global confidence map by 

computing a weighted sum of all local maps. The main advantage of the Democratic 

Integration algorithm is that it allows for the weights to be adjusted dynamically and 

automatically over time, depending on the reliabilities of the local map. 

 

Given M number of strategies with their respective local confidence maps ( )tcli  at 

time t, the global map ( )tcg  is computed as: 
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where ( )twi  are weighting factors that add up to one.  

 

An estimate of the current position of the robot with respect to the original map can 

now be computed by determining the largest confidence value in ( )tcg . The index n 

that produces the highest confidence value is equivalent to the index of the ASR that 

the robot believes it is in. Furthermore, the value ( )tc
mg

 itself is a good indicator of 

how reliable the position estimate is in absolute terms, while comparing it to other 

ASRs shows the relative reliability. 

 

One problem of having various strategies is not knowing which strategies are reliable, 

and which ones are not. For this reason, it is an advantage to use Democratic 

Integration because the weighting factors ( )twi  are automatically updated after each 

time step. They are adjusted according to the reliability of the confidence output. If a 

particular method constantly reports low confidences, its influence on the overall 

confidence map decreases over time. This means that the fusion will automatically 

detect unreliable localization strategies and decrease their influence over time. 

 

To update the weighting factors, the local confidence maps ( )tcli  have to be 

normalized first, so that the quality of each local map can be computed. The 

normalized map ( )tcli′  is given by: 



  97  

 

 

( ) ( ) 4.5
1

Equationtc
N

tc lili =′  

 

where N is the total number of ASRs in the outward map.  

 

The idea when updating the weights is that local confidence maps that provide very 

reliable data get higher weights than those which are unreliable. Different ways for 

determining the quality of each local confidence map are presented in Triesch & 

Malsburg (2001). We use the normalized local confidence values at index m, which 

has been determined from the global confidence map as described above, i.e., the 

quality ( )tqi  of each local map ( )tcli  is given by ( )tc
ml
′ . Normalized qualities ( )tqi′  are 

computed by: 
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The new weighting factors ( )1+twi  can now be computed from the old values using 

the following equation: 
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This is a recursive formulation of the average over all qualities from time zero to time 

t. Using this update equation and the normalization of the qualities in Equation 5.5 

ensures that the sum of the weights equals one at all times (see Triesch (1999) and 

Triesch & Malsburg (2001) for details). 
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5.3 Experiments 

Various experiments were conducted to ascertain whether the robot is able to 

successfully determine its location based on its cognitive map of the environment. This 

section describes three such experiments. 

 

5.3.1 Experiment 1 

Figure 5.6 shows the journey the robot took during exploration and the CM-in-

memory computed (which are from Figures 4.1 and 4.16). The robot was then 

instructed to return to home. The physical movement of the robot during the going 

home journey is as shown in Figure 5.7 and its representation of the environment when 

it stopped is shown in Figure 5.8.  

 

 

 

 

 

(a) (b) 

 

Figure 5.6 (a) The robot’s journey during the exploration of Experiment 1 and (b) the CM-in-

memory computed for this journey. 
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Figure 5.7 The robot’s return home journey. 

 

 

 

 

Figure 5.8 The robot’s representation of the environment computed at the end of the going home 

journey. 
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The graphical plots in Figure 5.9 show the confidence maps computed at four different 

locations during the return home journey. The light dotted lines show the ASR 

estimate using the ASR length information (distance method) and the dark dashed 

lines depicts the ASR estimate using the angles between ASRs (relative orientation 

method). The solid line is the overall ASR estimate for the corresponding ASR 

(horizontal axis). Note that the confidences have values between 0 and 1 (vertical axis) 

but do not sum up to 1.  

 

  

  

 

Figure 5.9 Confidence maps generated at 4 different locations during the going home journey. 

The light dotted line represents confidences generated using the ASR distance method, dark 

dashed line is the confidences from the ASR relative orientation and the solid line represents the 

overall confidence map. 
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In Figure 5.9, the top left plot shows a narrow peak for the overall confidence at ASR 

1, with corresponding peaks for both distance and relative orientation. The narrow 

peak signifies the robot being very confident of being in ASR 1. The top right graph 

however is quite different. It has two peaks, one slightly higher than the other. It 

shows that the robot is around the transition region between ASR 2 and 3. The higher 

confidence value for ASR 3 shows that the robot feels that it has already moved into 

ASR 3. The bottom left plot shows a similar account except that this time, both 

neighboring ASRs (4 and 6) have higher values, resulting in a wider peak. Finally, the 

bottom right map shows that ASRs 7 and 8 have similar confidence levels, indicating 

that the robot is unsure which of these two ASRs it is in.  

 

Figure 5.10 shows the distribution of weighting used on the localization strategies for 

calculating the overall confidence values. The solid line is the plot of distance method 

weights and the dashed line represents the weights of the relative orientation method. 

For the first three ASRs, the weights for both distance and orientation are initialized to 

be of equivalent values (0.5 in this case since there are only two strategies) because we 

only start computations after the third ASR. The weight for ASR distance then 

increases, because the confidence on ASR distance is higher than the confidence 

computed from the orientation method. As time progresses, the weights of the distance 

method decrease due to a decrease in confidence, and vice versa for confidence from 

the orientation method.  

 

 

Figure 5.10 Adjusting the weighting factor to reflect the confidences on each of the strategies 

used. Weights for ASR length (solid line) and weights for ASR relative angles (dotted line). 
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The current experiment presented a simple environment which consisted primarily of 

corridors and a couple of small spaces. This experiment was repeated more than 20 

times and achieved a success rate of 80%. The experiment was considered success if 

the robot reached +/-3m from its home position. For this particular example, the robot 

stopped two meters short of home. The next experiments look at traversing more 

complex environments, including across a large space, where large spaces are defined 

as areas that are larger than the robot’s sensing capabilities. Furthermore, it is also 

important to note the robot’s path crossed over on more than one occasion in both the 

exploration and return home journeys. If conventional robotic mapping was used, the 

algorithm would have needed to account for surfaces that have been detected more 

than once. 

 

5.3.2 Experiment 2 

For the second experiment, the robot moved through the large room in the middle of 

the building. The journey the robot took during the exploration journey is shown 

Figure 5.11. 
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Figure 5.11 Physical movement of the robot during the exploration journey of Experiment 2. 

 

The robot’s cognitive map of the environment, which becomes CM-in-memory for this 

experiment, is shown in Figure 5.12. Note that the robot’s starting location is at 

coordinates (0, 0). ASR segmentations for the explored environment are represented 

by the black dots. 

 

 

 

Figure 5.12 Representation of the environment generated by the robot during the exploration 

journey. The solid black dots represent the split points computed. Hence, the spaces between the 

split points are the ASRs. 

 

The robot’s journey to return home is depicted in Figure 5.13, which shows very 

different paths compared to the exploration journey. The ASRs generated during the 

exploration journey are indicated by ellipses and are numbered from zero starting at 

the last ASR (so that during the homeward journey ASRs are visited in ascending 

order).  
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Figure 5.13 Physical movement of the robot during the homebound journey (solid line). The 

ellipses (with their respective labels 0-7) represent the ASRs computed during the exploration 

journey (i.e. see Figure 5.12). The asterisks (with their respective labels A-F) are locations where 

confidence maps are displayed in the plots in Figures 5.15 and 5.16. 

 

The cognitive map of the robot computed during the homebound journey is shown in 

Figure 5.14. Note that due to the re-initialization of the robot before returning home, 

the starting point for both, outward and homeward journeys, is the origin of the 

coordinate system, which also results in the map depicted in Figure 5.12 to be upside-

down with respect to the map in Figure 5.14.  

 

As in the previous example, with maps generated during both journeys, it is obvious 

that different representations are computed, in particular a different number of ASRs, 

and split points generated at different locations. Furthermore, and as shown in Figure 

5.14 (see the dotted path crossing over a solid line), it is also interesting to note that 

the CM-current is so distorted that the robot “moved” through an earlier detected wall 

to exit the large room.  
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Figure 5.14 Representation of the environment generated by the robot during the homebound 

journey. 

 

The position of the robot is always given with respect to the ASR representation of the 

original outward journey map. What can be clearly seen in all maps generated in both 

experiments is that the algorithm is capable of representing the large room as a single 

ASR, independent of the path that the robot took while mapping. The algorithm is 

capable of separating the corridors from bigger rooms (e.g., ASRs 3 and 4 in Figure 

5.13), and corridors from other corridors. To evaluate the performance of the 

localization algorithm, confidence maps have been selected at six positions on the 

homeward journey. These physical locations are marked by asterisks, labeled A - F in 

Figure 5.13.  

 

Firstly, the plots of Figures 5.15 (a), (c) and (e) show the intermediate maps generated 

at positions A, B and C in Experiment 2 (see Figure 5.13). The corresponding 

confidence maps are depicted in the graphs of Figures 5.15 (b), (d) and (f). Similarly, 

Figures 5.16 (a), (c) and (e) show the intermediate maps generated at positions D, E 

and F and their corresponding confidence maps are presented in Figures 5.16 (b), (d) 

and (f).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5.15 Cognitive maps (a, c, e) and confidence maps (b, d, f) generated at locations A, B and 

C respectively (see Figure 5.13). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5.16 Cognitive maps (a, c, e) and confidence maps (b, d, f) generated at locations D, E and 

F respectively (see Figure 5.13). 
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In the confidence graphs, the light dotted line shows the ASR estimate using the ASR 

length information (distance method) and the dark dashed line depicts the ASR 

estimate using the relative angles between ASRs (relative orientation method). The 

solid line is the overall estimate after fusion. The horizontal axis corresponds to the 

index of the ASR, the vertical axis to the confidence level, which can have values 

between zero and one. 

 

The confidence graph at position A (Figure 5.15 (b)) shows a peak for the overall 

confidence at ASR 1, signifying the robot is very confident of being in this particular 

local space. The same is true for the graph in Figure 5.15 (d) corresponding to position 

B, where the robot has moved far into the big room in the centre. The confidence 

graph at position B shows a peak for ASR 4. Note that at this point, the robot is 

attempting to move out of ASR 4. It calculates the distance to travel and moves to C. 

Note that it moves towards C because that was the only forward motion possible from 

position B. At C, it is close to the border between ASRs 4 and 5, which is reflected by 

high confidence values for both ASRs in the confidence map in Figure 5.15 (f), where 

the robot gets more and more unsure about whether it is still in the big room or 

whether it has entered the next region yet (ASR 5). Nonetheless, it calculates the 

necessary distance to move out of ASR 4 from point C but it headed in the wrong 

direction. 

 

Consequently, it moves further away from the exit and back into the room, reaching 

position D. At D, it is very confident again that it is still in ASR 4, not having actually 

exited the big room (see Figure 5.16 (b)). Position E is close to where the robot has 

entered the room, coming through ASR 3. Again, this can be observed in the 

confidences plotted in Figure 5.16 (d), which shows that the robot is still quite 

confident of being in ASR 4, but where the value for ASR 3 has increased 

considerably, i.e., the robot “knows" that it is close to where it was when it entered the 

room. Finally, the graph in Figure 5.16 (f) was generated at position F, which is at the 

border between ASRs 6 and 7, reflected by high confidences for both. 
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The robot continued to travel into ASR 7 and stopped when it thought it has reached 

home. In this experiment the robot stopped to within one meter of the actual location 

of home. 

 

5.3.3 Experiment 3 

The final experiment reported here is similar to Experiment 2. The physical movement 

of the robot during the exploration journey and the cognitive map generated during 

this journey are shown in Figures 5.17 and 5.18 respectively. The homebound journey 

is shown in Figure 5.19 and the map it generated is depicted in Figure 5.20. 

 

As before, the ASRs generated during the exploration journey are indicated by ellipses 

and are numbered from zero starting at the last ASR. Six locations have also been 

chosen from the going home journey (labeled A-F) to determine the performance of 

the localization algorithm. The intermediate maps generated at these locations and 

their corresponding confidence maps are shown in Figure 5.21 and 5.22. 

 

 

 

Figure 5.17 Physical movement of the robot while exploring the environment in Experiment 3. 
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Figure 5.18 Representation of the environment generated by the robot during the exploration 

journey. The solid black dots represent the split points computed. 

 

 

Figure 5.19 Physical movement of the robot during the homebound journey. The ellipses (with 

their respective labels 0-7) represent the ASRs computed during the exploration journey. The 

solid dots (with their respective labels A-F) are locations where confidence maps are displayed in 

the plots in Figures 5.21 and 5.22. 
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Figure 5.20 Representation of the environment generated by the robot during the homebound 

journey. 

 

Figures 5.21 and 5.22 show intermediate maps generated at positions A - C and D - F 

respectively for Experiment 3; and the corresponding confidence maps. As in the 

previous experiment, when reaching position A the robot is very confident about being 

in ASR 1, indicated by the distinct peak in the graph in Figure 5.21 (b). At position B 

it has entered the big room being ASR 4. As can be seen in Figure 5.21 (d) it is not 

sure about whether it is still in ASR 4, or whether it has reached the next ASR already, 

the confidences for both being equally high, with a slight bias towards ASR 4.  

 

Taking into account odometric inaccuracies and the information that is available to the 

robot using the present localization methods, this behavior makes perfect sense. When 

it reaches position C after traveling through the big room in a loop, the robot is highly 

confident (Figure 5.21 (f)) that it is still in ASR 4 (which is true for the positions in 

between as well, but not shown here).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5.21 Cognitive maps (a, c, e) and confidence maps (b, d, f) generated at locations A, B and 

C respectively (see Figure 5.19). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5.22 Cognitive maps (a, c, e) and confidence maps (b, d, f) generated at locations D, E and 

F respectively (see Figure 5.19). 
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Being close to where it has entered the room, the confidence for ASR 3 starts to 

increase at this location. This effect becomes more prominent in Figure 5.22 (b), when 

the robot is at position D, which is at the border between ASRs 3 and 4. Again, it is 

unsure about which ASR it is in; meaning that it can infer that it actually is at the 

border between two regions, near the entrance to the room. Moving away from the 

border to position E (Figure 5.22 (d)), it is again confident about being in ASR 4. At 

the last position F, the robot is very close to its home position in ASR 6 already, which 

is reflected in the high confidence values shown in Figure 5.22 (f). 

 

In this experiment, the robot stopped to within 0.5 meter of the home location. More 

than 10 similar experiments were conducted and the success rate was about 70%.  

 

 

5.4 Discussion 

More than 30 experiments were conducted and they demonstrated consistent results, 

with over 75% of them successfully reaching home. When the robot was able to 

successfully locate home, it was usually within +/- 2m from the target in the physical 

world.  

 

Many strategies have been developed by animals in nature to help them find their way 

home or to migrate to faraway places. For example, they could perform vector 

calculation, orient towards the magnetic pole and reason about the geometry of space. 

The question explored in this chapter is: Could the robot find its way home after 

computing a fuzzy map of its environment i.e. without the need to compute a precise 

metric map? 

 

The answer is yes. A new algorithm has been successfully developed for the robot to 

find its way home using a fuzzy map consisting of a network of ASRs. The navigation 

strategy is similar to that used in animals – try to get near to your goal (exit in this 

case) and then search for it. The localization algorithm makes use of the effective 

distance traversed as measured between the entry and exit point of each ASR and the 

relative orientation between adjacent ASRs. Separate confidence maps are created for 
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each kind of information used for localization and a fusion algorithm is implemented 

to combine them to produce a global confidence map.  

 

While one does not expect the relative orientation between adjacent ASRs to be 

effective (and especially in such an environment), the use of the distance between exits 

of ASRs is surprisingly effective as a localization tool. It helps the robot to get home. 

However, its limitation can be seen when the robot wanders through the large middle 

room. When the robot is searching around in the middle room on its way home, it does 

not quite know where it is. It was just trying to travel the next x meters (which it 

calculates itself) to reach the next exit. After trying a few times, it manages to get out 

in the right exit and heads for home. The limitation here is due to the inability of the 

robot to orient towards its goal and to recognize a place. The robot can calculate an 

initial orientation towards the goal when it first enters a new ASR but, after that, it will 

not be able to orient towards the exit it wants to go to.   

 

Work reported in this chapter has been published in Wong, Schmidt & Yeap (2007) 

and Schmidt, Wong & Yeap (2007).  
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Chapter Six 

 

Conclusion 

 

 

One significant contribution of this thesis is to show how a mobile robot could be used 

to investigate the nature of cognitive mapping. Since the mobile robot was invented, 

the term, robot mapping, has become synonymous with the process of creating a map 

for the robot to use. Consequently, the map created is crisp: it is complete, accurate, 

and useful for navigation. Cognitive mapping, however, describes how cognitive 

agents gain their environmental knowledge. A cognitive map is thus incomplete, 

fuzzy, and often cause confusion when used initially for finding ones way. 

 

Nonetheless, a mobile robot is an autonomous system and there is no reason why it 

could not be programmed to do cognitive mapping. The real question is how. This 

research demonstrated that we could program a robot to compute a fuzzy cognitive 

map and then experiment with animal-like strategies to perform interesting cognitive 

mapping tasks. Some implications to be drawn from this research about cognitive 

mapping will be discussed in the sections below. Note that much of the work done 

here is still considered as exploratory and much more still needs to be done. 

 

In summary, different theories and implementations of cognitive mapping models 

were discussed in Chapter 2. Recent experimental works on cognitive mapping were 

reviewed in Chapter 3. Three key questions were asked in this research, namely: 

 

1. Could the robot be used to compute some kind of a cognitive map? 

2. Could the map computed be used to solve a cognitive mapping related task? 

3. From the above, could further insights be gained about what is happening in 

the early cognitive mapping process? 

 

Chapters 4 and 5 have discussed the work done to answer questions 1 and 2 above 

respectively. These works will be discussed again respectively in Sections 6.1 and 6.2 
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with respect to the insights gained about the cognitive mapping process, thus providing 

an answer to question 3 above. Section 6.4 concludes this chapter with a discussion on 

possible future work. 

 

 

6.1 The Robot and Its Cognitive Map 

There are many interesting questions one could ask about the nature of one’s cognitive 

map and the early cognitive mapping process during the initial explorations of an 

environment. Some of these questions include: 

 

1. The initial map is believed to be fuzzy and with loosely-coupled ASRs and 

sporadic landmarks. How could we get a robot to compute such a map? 

2. Subsequent explorations would improve the map’s contents but how does that 

learning process work? 

3. To be able to have subsequent explorations, one would assume one could find 

one’s way back home. How could one use the initial fuzzy map to find one’s 

way home? 

4. What happens to the information perceived on the way home and how does 

that affect the map computed? Should we merge them to form a more 

consistent map? 

5. What happens when one is confused while exploring a large environment with 

loops? 

 

This thesis has developed a robot that computes a fuzzy map of ASRs. Each ASR 

consists of a rough description of the shape of the local space traversed and possible 

exits. ASRs are identified from the environment explored using two criteria:  

 

1. Similarity in the path traversed; and  

2. Similarity in the bounded space. 

 

However, due to the use of sonar sensors and odometer, the shape of each ASR 

computed is unreliable and its exits could be walls that the robot has failed to detect. 
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The robot also could not recognize objects and the use of landmarks cannot be 

investigated. The robot does not forget and so none of the ASR computed is forgotten.  

 

The map computed is thus not loosely-coupled. However, it has one of the key 

properties of a cognitive map i.e. it is a fuzzy representation of each local environment 

visited. Furthermore, the representation computed is shown to be dependent on the 

direction of travel. With such a map, I have demonstrated how it could be used by the 

robot to find its way back home. Much is made use of following the direct path 

between exits of ASRs (but see next section for further discussion on the role of 

direction and distance information) to get back to home. The lack of accurate 

measurements is both unimportant and unnecessary. One only needs to travel close to 

a point of interest and then switches to a different strategy to locate the place 

accurately. 

 

It is tempting to investigate how one could merge the map computed in the return 

journey with the map computed during the outward journey; thus allowing us to 

explore questions 2 and 4 above. However, without understanding the nature of why 

certain ASRs are not remembered, developing an algorithm to do so appears to be 

premature. To develop an algorithm to merge two representations is a straightforward 

task from a computational standpoint. It is important to know why. Furthermore, many 

of the above questions are beginning to probe deeper into the nature of cognitive map 

and its processes and it might not be appropriate to answer all of them using our 

current robot equipped with very poor sensors. After all, one does not expect, say, the 

ants to swim. The current robot provides us a demonstration as to how one might 

compute an initial cognitive map and use it to find one’s way home. To investigate 

other questions, we will need to introduce a robot with more powerful sensors. 

 

 

6.2 The Robot and Its Journey Home 

Although the map computed by the robot bears an important characteristic of a 

cognitive map, it would not be very interesting if the robot could not use it to solve 

any cognitive mapping related problems. The returning home problem is identified and 

inspired by the foraging behavior of animals. It is a nice problem to investigate since 
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one could begin studying the problem using a very simple environment. The lessons 

learned could help us develop more sophisticated algorithms for wandering further 

away from home and for dealing with more complex environments.  

 

Prior to developing an algorithm for the robot to find its way home, the following has 

been observed: 

 

1. Animals make much use of distance and orientation information to find their 

way home. 

2. Animals develop ingenious algorithms using such information, and others, to 

find their way home. 

 

What is implicitly available in a network of ASRs is precisely, distance and orientation 

information but, how one could utilize the information to find one’s way home is 

unclear. Nonetheless, from observation (2) above, if animals could develop several 

ingenious algorithms then it is likely that one could develop an interesting algorithm 

for the robot. The robot could be treated as a species of its own kind. From that 

perspective, it is a species which is, perhaps, at the level of sophistication of the ant. 

Unlike the ant, it can compute ASRs but unlike higher species, it cannot recognize 

them from a distance. It could measure distances traveled in a crude way and could 

orient, very roughly, towards the end of an ASR. The robot thus created an interesting 

micro-world to study the kind of algorithms one could develop for the robot to find its 

way home and from the algorithms developed what could one say about cognitive 

mapping for simple animals? 

 

The algorithm developed makes much use of distance information. Note that the type 

of orientation information being used is proven to be ineffective. With hindsight, I 

have used orientation information as an additional piece of information for identifying 

which ASR the robot is in and developed a general algorithm for combining 

information from different sources. The orientation information used is not the kind 

that helps the robot to orient itself towards home. With hindsight, the robot’s ability to 

orient towards the end of the ASR, no matter how crudely; turns out to be crucial for 

the robot’s success in finding its way home. In the earlier version of the navigation 
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algorithm, the times when the robot failed to find its way home is because it failed to 

orient properly towards the end of the ASR. In the latest version, the inability to orient 

also shows up to be problematic for the robot finding its way home in the middle of 

the room. 

 

There is no doubt that distance and orientation information are important for all 

cognitive mobile agents and this has been noted many times in many psychological 

experiments on animals’ way-finding behavior. However, experimenting with a robot 

with such limited sensors has highlighted the significance is on the sensing ability of 

any mobile agents to orient themselves, be they cognitive or not. It is not just the 

ability to compute orientation information from the map but that the agent must have 

the appropriate sensor to orient. Our robot could compute the orientation of the exits 

but it does not have the ability to orient towards it, except for the initial entry into the 

ASR.  

 

With this new emphasis, it is interesting to note how lower species (such as ants, bees 

and birds), who need to travel far in their foraging behavior, have evolved fascinating 

mechanisms to orient themselves. Furthermore, it is interesting to note that the 

evolution to more powerful sensors (such as vision) actually produce sensors which 

combine the ability to orient with other capabilities (such as recognition). Researchers 

interested in finding out how a new species find their way home would do well in 

searching for how that species orient themselves. 

  

 

6.3 Conclusion and Future Work 

This research has successfully developed a robot to compute a fuzzy cognitive map 

and uses it to find its way home. It has developed four new algorithms for use by a 

robot exploring an environment using sonar sensors. From the experiments, the 

significant lessons learned are: 

 

1. The importance of paths between exits of an ASR; 

2. The importance of having accurate sensors to orient towards a goal; 
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3. Distance information need not be very accurate as long as one knows roughly 

how far to travel; 

4. A simple but useful navigation strategy is to find oneself close to home and 

when there, search for its exact location. 

 

From an algorithm point of view, it would be interesting to add new algorithms to 

compute more information about the environment for the robot to localize itself. One 

such piece of information is the rough extent of ASRs. However, improving the 

performance of the robot in this way does not, in my view, add much to our 

understanding of cognitive mapping. That is, the current robot species with its very 

limited sensors is too primitive to be used for further investigations into the nature of 

cognitive mapping. In particular, sonar sensing failed to enable the robot to orient 

itself towards a target. This capability is found to be extremely important for the study 

of cognitive mapping.  

 

A more interesting and useful extension is to incorporate more powerful sensors (such 

as the use of compass, laser, and vision) into the robot. This will enable us to 

investigate other interesting questions about the cognitive mapping process such as:  

 

1. The use of short-cuts – could the robot return home via short-cuts? How are 

short-cuts computed from a cognitive map? 

2. The use of landmarks – what is a landmark? Why are they computed 

sporadically rather than in, say, every ASR? 

3. The use of different environments – How easy is it to implement a similar 

algorithm to learn a large environment with loops?  

4. Could the algorithm be extended to take the robot out onto the streets or into a 

non-office like environment (ignoring problems related to mobility issues)? 

 

The last 2 questions posed are interesting also from a robot mapping point of view. If 

the answer is yes for an office-like environment (i.e. one could use similar algorithms 

to learn a large office-like environment with loops in a straightforward manner), then 

we would have a different approach for robots to learn an office-like environment. 

That is, an approach that does not depend heavily upon the accuracy of the sensors and 
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is not about computing a mathematically precise map of the environment. This new 

approach might turn out to be more powerful and simpler to implement. 
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