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Thesis Abstract 

Numerous studies have identified the importance of regular physical activity, limited sitting 

time and adequate sleep for the prevention and management of obesity and other lifestyle 

diseases. Researchers have tended to examine the health impact of these different physical 

behaviours in isolation; an emerging field in health research – Time Use epidemiology – has 

recently prompted researchers to measure these behaviours and evaluate their interactions 

across complete (24 hour) days. However, there are various problems associated with 

accurately measuring these behaviours across 24-hours using traditional measurement tools 

and protocols (such as insufficient wear-time compliance, and the inability to detect and 

differentiate postures). Advancements in technology and accelerometery have allowed 

researchers to utilise raw accelerometer data and develop predictive models using machine-

leaning techniques. With growing interest in this field, this thesis aims to explore the utility 

of machine learning techniques for the accurate measurement of various human movement 

behaviours. 

To begin, a systematic scoping review was completed to summarise the current application of 

machine learning techniques for the accurate measurement of various physical activity 

behaviours. The review included studies that estimated components of physical behaviour by 

the combined application of supervised machine learning techniques and raw accelerometer 

data. Several key data points were extracted and synthesised from each study (e.g., the type 

of physical activity component classified, study environment, population description, device 

(i.e., accelerometer) specification, device placement position, ground truth method, machine 

learning classifier used, performance results). The review highlighted the increasing 

application of machine learning for predicting physical behaviours, with promising results, 

but their application in free-living settings was limited.  
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To address the limited testing of machine learning with free-living accelerometer data, a 

validation experiment was conducted. This study investigated the performance of various 

dual-accelerometer placements under free-living conditions. Thirty participants (15 children, 

15 adults) were equipped with three AX3 accelerometers—one to their thigh, one to their 

dominant wrist, and one to their lower back—alongside an automated clip camera (clipped to 

the lapel) that captured video of their free-living environment (criterion measure of physical 

activity). Participants completed several activities to represent the most common types of 

physical behaviours (e.g., sitting, lying, walking, running) at their private residence over a 2-

hour period. A random forest machine learning classifier was then trained on features 

generated from raw accelerometer data. The results from the study show that the machine 

learning model developed using the thigh and back accelerometer performed the best and has 

potential to facilitate uninterrupted 24-hour monitoring of various physical behaviours 

This thesis revealed that accelerometery in combination with machine learning offers promise 

for measuring various free-living physical behaviours. However, it is essential for future 

studies to expand the scope of this work, by developing and validating a reliable 

measurement system that facilitates the continuous measurement of both intensity and type of 

physical behaviour in diverse free-living populations.  
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Chapter 1 - Introduction 

 

 

 

Background 

The growing incidence of premature mortality due to non-communicable diseases (NCDs) 

such as cardiovascular disease, cancer, diabetes is a major public health concern around the 

world. In 2016, NCDs were responsible for nearly 71% (41 million) of the world’s 57 million 

deaths, of which more than 35% (15 million) were premature (occurring between ages 30 and 

70 years) [1]. In New Zealand, around 89% of the total deaths (in 2016) were attributed to 

NCDs [1]. Being overweight or obese is directly linked to an increased risk of many NCDs 

[2]. Particularly, childhood obesity is one of the most critical public health challenges of the 

21st century. Children who are either overweight or obese are likely to remain so into 

adulthood and more likely to develop NCDs at a younger age [2]. With one in three New 

Zealand children being either overweight or obese [3], it is clearly a priority to promote 

public health initiatives that help the prevention and management of these lifestyle diseases. 

The World Health Organisation (WHO) has identified physical inactivity as one of the major 

contributing factors to NCDs and obesity [1].  

 

Any bodily movement produced by skeletal muscles that results in energy expenditure is 

generally referred to as physical activity (PA) [4]. The energy expended is quantified as 

either kilocalories or the metabolic equivalent (MET); one MET value represents the energy 

expended during resting state [5]. Physical activities can be further classified based on their 

intensity: light intensity physical activity (1.5 to 3.0 METs), moderate intensity physical 

activity (3.0 to 6.0 METs), and vigorous intensity physical activity (≥6.0 METs); and type: 
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such as sitting, standing, and walking. These activities are either planned (e.g., running, 

cycling) or incidental (e.g., tasks of daily-living such as vacuuming and gardening) [5].  

The link between physical activity and health was initially established in the 1950’s where a 

seminal study showed that bus conductors (who are physically active during their job) were 

less likely to die from heart disease compared to bus drivers (who were mostly sedentary). 

Similarly, the study also showed that sedentary postal office workers had a higher incidence 

of cardiovascular diseases compared to active postal delivery men [6]. Subsequently, 

numerous studies have examined this relationship and have confirmed the positive link 

between regular physical activity and overall health; including, reduced risk of type 2 

diabetes [7], improved bone mineral density [8], healthy body-weight maintenance [9], and 

overall mental wellbeing [10]. This evidence has led to the development of national physical 

activity guidelines in various countries. These guidelines outline the minimum level of 

physical activity required for overall health benefit. In New Zealand, the physical activity 

guidelines (from 2007) recommend 60 minutes of moderate-or-vigorous intensity physical 

activity (MVPA) each day for children aged 5–17, and at least 2.5 hours of MVPA spread 

throughout the week for adults [11]. 

Aside from the link between physical activity and health, researchers have also investigated 

the effects of sedentary behaviour on health. Sedentary behaviour is defined as any waking 

activity (such as sitting, reclined-sitting) that results in low energy expenditure (< 1.5 METs). 

It is now well established that prolonged and uninterrupted periods of sitting is a direct risk 

factor for obesity, metabolic syndrome, type 2 diabetes, and heart diseases [12,13]. 

Importantly, these effects seem to be independent and irrespective of the beneficial effects of 

regular physical activity [14]. For instance, a person achieving regular physical activity (e.g., 

half-hour of running each day) may still be at risk of many NCDs if they indulge in excessive 



3 
 

and prolonged periods of sitting. However, health researchers have tended to monitor and 

examine the health impact of these distinct physical behaviours independently.  

Although physical activity and sedentary behaviours may have independent effects on health, 

accumulating evidence suggests that these behaviours also interact in ways that may not be 

well understood if studied independently [15]. Most studies have examined the effects of 

physical activity and sedentary behaviour in isolation [16]. However, this approach is flawed 

when considering these behaviours occur within a finite 24-hour day; time spent in each 

behaviour is mutually exclusive. For instance, if one behaviour (e.g., sedentary) increases, 

then another behaviour within the same 24-hour period must decrease (e.g., LPA, or MVPA). 

Acknowledging the composition of these physical behaviours within a 24-hour period shapes 

a fast-emerging field in health research called time-use epidemiology [17]. As this paradigm 

gains traction, the recently published physical activity guidelines in Canada [18], and New 

Zealand [19] also highlight the importance of having a balance between various physical 

behaviours within a 24-hour day.  

Traditional statistical models are incapable of analysing these compositions, and recent 

methodological advances have introduced the application of Compositional Data Analysis 

(CoDA) [17].  Ensuring validity of these compositions is crucial for accurate evaluation of 

time-use behaviour change interventions. Therefore, to understand the collective impact of 

various physical behaviours on heath, it is crucial to conduct compositional analyses on 

quality time-use data obtained from reliable and valid measurement tools.   

Thesis Rationale 

To progress the time-use epidemiology field, and to obtain valid physical behaviour 

compositions across full (24-hour) days, researchers are presented with two key challenges in 

monitoring these behaviours: (1) achieve 24-hour wear time compliance, and (2) objectively 
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discerning different physical behaviours that comprise a 24-hour day. Traditional 

measurement approaches (such as self-report questionnaires, pedometers) have shown limited 

scope in addressing these challenges [20]. Accelerometers are the most common device in 

physical activity measurement and researchers have relied on hip-mounted accelerometers for 

the last decade, but this method has critical restrictions (e.g., low participant compliance 

[21]). Furthermore, current accelerometer data-processing methods were not found suitable 

for 24-hour monitoring [22], as physical behaviour estimates obtained using these techniques 

vary widely due to subjective decisions made during data treatment (such as intensity 

threshold/cut-points, and proprietary algorithms). It has also been suggested that these 

variations may have over or understated the relationship between these behaviours and health 

[23,24].  

 

To elucidate the actual health outcomes of these physical behaviours, it is essential to obtain 

estimates using reliable and generalisable techniques. Therefore, there is a definite need to 

reconsider some of these methods and processing techniques to: (1) accurately evaluate 

physical behaviour interventions, and (2) facilitate 24-hour measurement. Advanced 

processing techniques such as machine learning algorithms that build predictive models by 

learning patterns in raw accelerometer data are becoming more popular to classify physical 

behaviours, however the extent and utility of their application has not been reviewed. 

 

An advantage of machine learning techniques is the ability to collate raw data from multiple 

sensors which may improve behaviour classification. Recently, a study has shown promise 

using a dual-accelerometer protocol by achieving high 24-hour wear time compliance results 

in both adult and child populations [25]. Subsequently, another study conducted in a 

controlled laboratory environment used the same dual-accelerometer protocol and employed 
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a random forest machine learning classifier and achieved exceptional accuracy (> 99%) in 

classifying six physical activity behaviours in both adults and children [26]. Although these 

results show considerable potential, studies in the past have noted that predictive models that 

show high-performance accuracy on controlled datasets drop significantly when applied to 

data collected in the free-living environment [27]. In a free-living environment, participants 

perform activities without any rules or controlled protocols; therefore, to improve the 

ecological validity, it is crucial to validate these accelerometer-based measures in a free-

living environment.  

Therefore, the primary objectives of this thesis are  

1. To review the existing literature (Chapter 2), with a focus on: 

a. Examining traditional physical behaviour measurement tools and procedures, 

b. The emergence of newer measurement techniques in physical activity 

research.  

2. To undertake a systematic scoping review (Chapter 3) of the application of machine 

learning techniques with a focus on:  

a.  Examining their current application in identifying human behaviours from 

raw accelerometer data, 

b. Discuss the implications of these developments for physical activity research. 

3. To investigate the validity of a measurement system for capturing various human 

movement behaviours in free-living conditions (Chapter 4): 

a. Using a dual-accelerometer system and a random forest machine learning 

classifier.  
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Thesis Structure 

This thesis includes two distinct publications adapted in chapter format (see Figure 1-1). 

Chapter 2 establishes the thesis context by briefly reviewing the historical development of 

physical behaviour measurement tools and procedures and the development of newer 

measurement techniques such as machine learning. Consequently, Chapter 3 summarises the 

current state of knowledge in the rapidly developing field of machine learning, by conducting 

a systematic scoping review that examines if these techniques offer an effective mechanism 

for identifying human movement behaviours. Chapter 4 investigates the free-living criterion 

validity of a dual-accelerometer system for classifying various physical activity behaviours in 

children and adults using machine learning. Chapters 3 and 4 are either published in a peer-

reviewed journal or under review. As these chapters were written as separate articles, 

repetition of some information (e.g., Introduction) was unavoidable. Lastly, Chapter 5 

provides a summary of key findings in each study and discusses study limitations and 

implications for future research. 
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Figure 1-1. Structure of the thesis 
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Chapter 2 - Literature review 

 

 

Preface  

Years of research in public health has identified that a balance between various physical 

behaviours (sedentary behaviour, physical activity) is vital for overall health and wellbeing 

across the lifespan. To understand the collective impact of these different physical behaviours 

on health, it is essential to accurately measure them using reliable and practical methods. 

Various measurement tools have been employed in the past, and they have continually 

evolved with advances in research and technology. The aim of this chapter is to establish the 

thesis context in preparation of the research chapters, by conducting a brief review on (1) the 

historical development of physical behaviour measurement tools and procedures, and (2) the 

development of newer measurement techniques in physical activity research.  
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Background 

Obesity and the prevalence of non-communicable diseases (e.g., diabetes, heart disease, and 

cancer) are among the biggest public health problems of our time. For the prevention and 

management of these diseases it is essential to have limited time in sedentary behaviour (SB) 

and achieve regular physical activity (PA) [28]. Accurately measuring these physical 

behaviours (SB and PA) using reliable and practical tools is important for evaluating the 

efficacy of behaviour change interventions and advancing our understanding of the link 

between behavioural patterns and health. The tools and methods that have been used to 

facilitate this measurement have continually evolved. However, current methods have several 

limitations which has led to the development of newer processing techniques. The aim of this 

chapter is to provide a brief review of (1) the historical development of physical behaviour 

measurement tools, and (2) the advancements of newer measurement procedures in physical 

activity research.  

 

Components of physical behaviour 

Physical behaviour comprises four key components: frequency, intensity, time and type 

(FITT). The frequency component provides information on regularity of a physical 

behaviour, while the time component represents both duration and timing (e.g., time of the 

day) of each physical behaviour. The intensity of a performed physical behaviour is directly 

related to the rate of energy that is expended, which is generally quantified as either 

kilocalories or the metabolic equivalent (MET); one MET value represents the energy 

expended during resting state [5]. Type denotes the specific physical behaviour (e.g., 

sedentary or physical activity) with varying degree of specificity (e.g., posture, activity, and 

context). All four components provide distinct and important information about physical 

behaviour. The frequency and duration components are vital for understanding and assessing 
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patterns of physical behaviour, while the intensity and type are essential for evaluating the 

physiological response. For instance, intensity estimates can clearly distinguish between 

sedentary and physical activity behaviours; however, the type of sedentary behaviour (e.g., 

differentiating sedentary as either sitting or quiet standing) is also important, as different 

postural behaviours may have discrete pathways to health [29]. Therefore, to advance our 

understanding of the influence of physical behaviour on health and wellbeing, and to 

precisely evaluate behaviour change initiatives, it is essential to accurately capture all four 

components using valid and reliable measurement methods.  

 

Different criterion-methods are used to obtain valid measures of various physical behaviour 

components. The doubly labelled water (DLW) method is the most valid and reliable tool to 

measure energy expenditure [30,31]. Using DLW, the rate of energy expenditure is 

determined as the rate of carbon dioxide produced; which is calculated based on the kinetics 

of two stable isotopes of water (deuterium-labelled water and oxygen-18-labeled water). A 

detailed description of this process is available elsewhere [20]. For type of physical 

behaviour, direct observation is considered the criterion method; whereby an independent 

observer monitors and records the activities performed [32]. Frequency and duration of 

physical behaviour must be combined with measures of intensity and type. Although these 

measurement methods are considered “gold-standard”, there are several practical limitations 

that constrain the use of these techniques in field-based research and interventions. For 

instance, the DLW method of assessing energy expenditure is expensive and burdensome due 

to multiple laboratory visits and specialised equipment; confining the scope of this technique 

to laboratory-based studies [33,34]. Likewise, direct-observation is resource-intensive and 

ethical constraints can limit the use of this methodology in free-living studies [20]. To 
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overcome these hindrances, researchers have relied on various other measurement tools and 

techniques to capture the various components of physical behaviour in free-living studies.  

These measurement tools can be grouped into two main categories: report-based and device-

based measures. Report-based measures are subjective and include self-report recalls, diaries, 

and logs. Device-based measures are more objective and include wearable sensors that record 

human movement.  

 

Report-based measures 

Physical behaviour estimates were traditionally obtained through self-reported methods. The 

main types of report-based measures include questionnaires and activity diaries (or logs). 

Participants are generally required to complete questionnaires by recalling their activity over 

a given timeframe (e.g., weekly or monthly). Self-report tools range from very detailed and 

comprehensive (i.e., estimates of frequency and duration of many specific activities) to very 

brief (i.e., single estimate of behaviour duration). Some of the most common tools are Recent 

Physical Activity Questionnaire (RPAQ) [35], and the International Physical Activity 

Questionnaire (IPAQ) [36]. Although self-report tools are simple and cost-effective to use for 

data collection, they are subjective and unreliable due to their susceptibility to recall-errors 

[37]. Furthermore, they fail to accurately capture the frequency and duration of physical 

behaviour (particularly lower intensity movements) [38] which are essential for 

understanding movement patterns.  

 

On the other hand, time-use diaries require participants to record their activities in real-time, 

and hence do not rely on participants’ recall ability [39,40]. This is facilitated by having 

participants record their activities in short intervals (e.g., every 15 or 30 mins). For example, 

the Bouchard Physical Activity Record (BPAR) is a commonly used dairy that requires 
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participants to log their physical activity behaviour every 15 minutes over a three-day period. 

A total energy expenditure score is then obtained for every participant by rating each of their 

recorded activities with a score between 1 and 9 (1 = sedentary activity, 9 = intense activity) 

[41]. Although diaries provide detailed information about physical behaviour, they are 

burdensome and may result in low participant compliance [20]. Furthermore, their 

measurement resolution (e.g., 15-minute intervals) may limit our understanding of 

fine-grained behavioural patterns. 

 

Significant correlations (r = 0.47, p < 0.05) have been observed in studies that validated self-

reported measures of vigorous-intensity physical activity against doubly labelled water 

(criterion measure); however, they were not found suitable (r = 0.20, p < 0.05) for measuring 

light or moderate intensity physical activities (e.g., standing for household tasks, vacuuming), 

which constitute a major part of a 24-hour day [42,43]. This is likely because people tend to 

overlook the unstructured and incidental activities that occur during their day. Studies using 

self-report tools have also shown good participant compliance in 24-hour recall of physical 

behaviour [34]; yet, their utility to obtain habitual physical activity behaviour across multiple 

days is inconsistent [44]. Given the validity and reliability limitations of self-reported data, 

report-based measures may not be a feasible approach for accurate and uninterrupted 

assessment of physical activity behaviours.  

 

Device-based measures 

Pedometers 

Pedometers are small and low-cost hip-mounted sensors that objectively capture human 

movement as the number of steps taken [45]. Most pedometers detect steps using a 

horizontal, spring-suspended lever arm which moves up and down when the subject’s hip 
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accelerates vertically with a force beyond a manufacturer-defined threshold [46]. As these 

thresholds vary with different brands of pedometers, the total number of steps detected from 

these devices are brand-specific. Nonetheless, pedometers provide high participant 

compliance, and are effective for capturing ambulatory activities such as running and walking 

that occur in the forward direction [47]. Several studies have established the validity of 

pedometers for estimating gross physical activity in youth [31,48]. However, their ability to 

predict energy expenditure is reportedly constrained [49]. Despite these advantages, 

pedometers have several limitations; a critical one is their inability to measure the magnitude 

of movement that occurs during physical activity [33,50]. For instance, pedometers would not 

be able to differentiate movement behaviours like running, walking or jumping, as these 

activities are recorded as step-counts. Likewise, behaviours such as sitting, lying or quiet 

standing may not produce any step count; however, studies have shown the importance of 

distinguishing these sedentary postural behaviours to better understand their impact on health 

[29]. Furthermore, pedometers do not record other key components such as intensity, 

frequency, and duration of physical behaviour [33,51]. More recent pedometers estimate 

activity time (e.g., total stepping time), and time spent in MVPA (based on stepping cadence) 

[52]. However, the validity and reliability of these devices remain uncertain [20]. 

Considering these limitations, pedometers are not a viable mechanism for monitoring all 

components of physical behaviour. 

 

Accelerometers 

Accelerometers are widely used motion sensors that objectively capture acceleration when 

attached to the human body (e.g., hip, wrist, thigh, back). These devices can measure 

acceleration along one, two or three orthogonal planes (anteroposterior, mediolateral, and 

vertical). Advancements in microelectromechanical technology have introduced new 
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accelerometers that can continuously record high-resolution (e.g., 100 samples per second) 

acceleration data for several weeks. These output data are often referred to as raw data and 

are stored in values of G-force (g); where a single G-force is equivalent to 9.8 m/s2 

(gravitational force in the earth). The intensity or type of physical behaviour are generally 

obtained by processing and analysing these raw data. Accelerometers usually incorporate an 

internal clock which enables the measurement of duration (and frequency) of physical 

behaviour. One of the key opportunities of accelerometers is the ability to differentiate 

various sedentary behaviours; this is possible because accelerometers measure orientation 

across three-axes, and can be used to identify bodily postures. For instance, an accelerometer 

attached to the back could effectively distinguish upper-body postures (e.g., sitting vs. lying), 

whereas an accelerometer attached to the thigh could effectively distinguish lower-body 

postures (e.g., sitting vs standing). Furthermore, using two or more accelerometers 

simultaneously can make recognising different types of activity and postures easier. 

Considering these robust attributes, the use of accelerometers in physical activity research has 

grown exponentially over the recent decade [53]. 

 

In most cases researchers do not interface with the raw data, as they are voluminous and hard 

to manage. Proprietary software is usually used to summarise raw data into user-defined time 

intervals called epochs. The treatment of raw accelerometer data (in epochs) to obtain 

physical behaviour measures has evolved over the years. The most common method of data 

treatment focusses on capturing the intensity component of physical behaviour, where the raw 

data for every epoch is first converted into dimensionless units called “accelerometer counts”. 

Accelerometer counts are brand specific and are derived using the manufacturer’s own 

proprietary algorithms [54]. Subsequently, these accelerometer counts are mapped through 

pre-defined thresholds or ‘cut points’ to various intensity levels: sedentary, light intensity 
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physical activity (LPA), moderate intensity physical activity (MPA), and vigorous intensity 

physical activity (VPA) [55]. The time spent within each intensity category and periods of 

sustained activity at a given intensity (i.e., bouts) are most commonly calculated. On the other 

hand, there are other commercially available accelerometers (e.g., activPAL) that can classify 

the type of behaviour (such as sitting, standing, stepping) by feeding the raw data through the 

manufacturer’s own proprietary algorithms. However, these algorithms have shown reduced 

accuracy and reliability over full 24-hour monitoring [22]. 

 

Despite being recognised as an objective method to estimate physical behaviour, this 

processing methodology is critically limited by two factors: (1) non-transparency during raw 

data treatment (2) subjective decisions made during processing and analysis (selection of 

intensity cut-points, non-wear criteria, and valid day criteria). Furthermore, these factors vary 

between devices (e.g., device-specific acceleormeter counts, algorithms), placement 

locations, and epoch length; therefore, hindering data pooling and the direct comparability 

between studies [24]. For instance, Kerr et al. illustrated significant variations (up to 52%) in 

physical behaviour estimates obtained from various processing techniques, and (up to 41%) 

across different wear locations [56]. Studies have also shown that these processing techniques 

are not suitable for evaluating physical behaviour interventions. For example, a study 

observed large differences (up to 85%) when comparing physical activity estimates obtained 

from two sets of cut points to evaluate adherence to daily physical activity (PA) 

recommendations (60 minutes of MVPA) [23]. Similarly, another recent study that examined 

adherence to the physical activity guidelines using various published cut points revealed that 

8–96% of the study sample meet the guidelines depending on what cut points were used [24]. 

Considering these enormous variations, it is almost impossible to use these measurement 
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techniques to accurately evaluate the prevalence of physical activity and its subsequent 

impact on health and wellbeing. 

 

These discrepancies are likely because most intensity cut points have been developed in 

controlled laboratory settings with specific types of activities in specific population groups. 

Therefore, their validity in free-living populations is uncertain [57,58]. To overcome these 

challenges, some studies have relied on generating their own population-specific cut points 

(e.g., children aged 10 to 12 years). For instance, Mackintosh, et al conducted a study to 

evaluate the effectiveness of a school-based intervention program using cut points that were 

generated from a sub-study analysis (which used the same study sample) [59]. Although these 

methods may be promising, they are highly time consuming and resource intensive which 

questions their practical feasibility. 

 

 With these limitations becoming more publicised, the availability of raw accelerometer data 

has become more prevalent in recent years. Studies have obtained physical behaviour 

estimates from raw accelerometer data and open source processing (such as the GGIR R 

package [60]) [61]. Although these methods improve transparency (due to elimination of 

count-based calculations) and allow comparability between studies [62], they are still 

restricted by the use of cut points. Recent developments have led to a new generation of data 

processing techniques that show considerable potential in addressing these challenges by 

making use of raw data accelerometer data and machine learning.  

 

Advances in technology 

 Recent growth in technology has introduced some advanced computational methods to 

physical behaviour assessment, such as machine learning. Machine learning is primarily 

https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html
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focused on creating prediction models. These models are developed (or trained), using 

algorithms that learn to map a set of input data to an outcome measure. In this context, 

different physical behaviours can be classified using a machine learning model that has been 

trained to map patterns in raw accelerometer data to different physical behaviours. With no 

explicit programming, the model building process is automated through recursive learning of 

the input data. 

 

In the context of accelerometer data, this model training process occurs in four steps. Firstly, 

the acquired raw accelerometer data is segmented into intervals called epochs (or windows). 

Secondly, for every epoch, various signal features are calculated from the x, y, and z axis 

data. These features can be extracted from either the time or frequency domain of the raw 

signal. Time-domain features provide information about the change in signal properties over 

time (generally based on statistical calculations such as mean, standard deviation, 

correlation), while frequency-domain features exhibit how much of the signal lies within 

different frequency bands. Next, each epoch is labelled with a ground truth measure of 

physical behaviour that is being predicted. Ideally, these labels are obtained from a gold-

standard criterion method (e.g., direct observation, doubly labelled water) [63]. Lastly, the 

ground truth data along with accelerometer features are used to train a machine learning 

model. This methodology is called supervised learning due to the use of a ground truth 

measure.  

 

Once these models have been trained, they can be used to predict various physical behaviours 

from features extracted from new accelerometer data (for each epoch). There are numerous 

machine learning algorithms available (e.g., support vector machine, random forest), and 

although the model training workflow is similar regardless of algorithm choice, their working 
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procedures are different. For instance, in the support vector machine (SVM) algorithm, each 

data item is plotted as a point in n-dimensional space (n = number of features) with the value 

of each feature being the value of a coordinate. Hyper-planes are then constructed to 

differentiate the classes of activities. On the other hand, random forest is an ensemble 

machine learning model which is collection of many individual decision trees. Although there 

are several machine learning algorithms, their use in physical activity research is now gaining 

traction [64] due to their promising results in recent studies [65,66]. 

 

Machine learning techniques have clear advantages over traditional data processing methods. 

The ability to integrate data from multiple accelerometers to improve classification of human 

physical behaviour is a notable advantage. This has opened new avenues for researchers to 

evaluate model performance by varying accelerometer placement positions (e.g., hip, thigh, 

back, wrist) [67], and the number of accelerometers used concurrently (e.g., two [26], more 

than two [67]). Machine learning approach offers more transparency over traditional methods 

and, therefore, allows better comparability between studies. However, the accuracy of these 

machine learning models also varies depending on factors such as the types of physical 

behaviour under study, the machine learning techniques employed, and the raw-data 

treatment process (such as segmentation and feature generation). For example, a model 

developed to classify physical behaviours in ten-second intervals (epochs) may display 

different performance results to a model that has been trained with data organised into five-

second intervals. Rapidly growing interest in this field has spurred researchers to evaluate the 

efficacy of several combinations of these factors for enhanced model performance [68,69] ; 

yet a cohesive summary of these techniques and the current practices is currently unavailable.  
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Conclusion 

Traditional measurement tools (report-based measures, pedometers) are highly inconsistent in 

methodology and may not be suitable to accurately capture various components of physical 

behaviour. To this end, accelerometers have become the most prefered device-based 

measures; however, current data treatment techniques have several limitations. Recent studies 

have shown promising results using increasingly available accelerometer data and advanced 

techniques such as machine learning. Despite these advances, the application of these 

techniques for monitoring physical behaviour is uncertain. Therefore, there is a clear need to 

summarise the current state of knowledge to further our understanding in this field of 

research  
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Chapter 3 - Application of raw accelerometer data and machine learning 

techniques to characterise human movement behaviour: A systematic scoping 

review 

 

 

Preface  

 

The review of existing literature revealed the inefficacies associated with traditional 

measurement procedures and techniques. Recent developments in technology have 

encouraged researchers to utilise raw accelerometer data and advanced computational 

methods such as machine learning. However, the application of these techniques in health 

research is still in their infancy; therefore, this chapter aimed to examine the current 

application of machine learning techniques in physical behaviour measurement by 

undertaking a systematic scoping review of current practices, and discussing the implications 

of these advancements for future researchers. 
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Abstract 

Purpose 

Measurement of physical activity is a continually evolving field. The application of machine 

learning as a method for facilitating physical activity measurement is becoming increasingly 

common as access to raw accelerometer data improves. The aims of this scoping review are 

(1) to examine if machine learning techniques offer an effective mechanism for identifying 

human behaviours from raw accelerometer data, and (2) to discuss the implications of these 

developments for physical activity research. 

Methods 

This review was conducted by searching the Scopus, Web of Science, and EBSCO databases 

up to June 30th, 2018. The primary inclusion criteria were studies that applied supervised 

machine learning techniques to raw accelerometer data and estimated components of physical 

activity. The following information was extracted from each study: total number and types of 

activities classified, study environment, sample size, population description, device (i.e., 

accelerometer) name, number of devices, number of device axes, device sampling frequency, 

device placement position, ‘ground truth’ method, features generated from raw accelerometer 

data, epoch length, machine learning algorithm used, validation method used, and key study 

findings. 

Results 

Fifty-three studies were included in the review, of which 75% were published in the last five 

years. Most studies predicted postures and activity type (as opposed to intensity) and (~ 65%) 

were conducted in controlled environments using one or two devices. The support vector 

machine (SVM), random forest (RF), and artificial neural network (ANN) were the most 

common classifiers (more than 80% of studies). The overall classification accuracy achieved 
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across the studies ranged from 62% to 99.8%, although nearly 80% of the studies achieved an 

overall accuracy above 85%.  

Conclusions 

Machine learning algorithms demonstrate a high level of accuracy when predicting physical 

activity components; however, their application to free-living settings is currently uncertain. 

It is essential that future machine learning studies focus on developing models from free-

living data that can accurately and reliably predict a wide range of physical activity 

behaviours. 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Introduction 

The importance of regular physical activity, limited sedentary time, and adequate sleep for 

the prevention and management of non-communicable diseases (e.g., diabetes, heart disease, 

and cancer) are well established [28,70,71]. Researchers have tended to study how these 

different behaviours impact health separately, but an emerging paradigm—time use 

epidemiology—has prompted researchers to examine the interactions among these behaviours 

across complete (24-hour) days [17]. For this to occur, uninterrupted measurement of human 

movement behaviour is required. Advancements in both wearable measurement technology 

and methods for processing and analysing large volumes of quantitative data may provide 

new insights into the health impacts of time use behaviour patterns. 

Physical activity is a multi-faceted construct which comprises four major components: 

frequency, intensity, time, and type (FITT)[72]. To accurately capture all of these components 

using one measurement tool is challenging. The first commercially-available wearable 

sensors for human activity measurement were available in the early 1980s [73]. These 

devices—known as accelerometers—measure gravitational acceleration (g-force) across one 

or more orthogonal planes [54]. The application of accelerometers in health research have 

increased exponentially [53,74], and they are now the preferred device-based measure of 

human activity in free-living populations [55].  

The traditional methods of analysing these data focussed on capturing the intensity and time 

(and to a lesser extent, frequency) components of physical activity, whereby raw data are 

reduced into dimensionless units called “accelerometer counts” using the manufacturer’s own 

proprietary algorithms [54]. These counts are then mapped to various intensity levels (e.g., 

sedentary, light, moderate, and vigorous intensity physical activity) using a set of pre-defined 

thresholds or ‘cut-points’ [55]. The time spent within each intensity category and periods of 

sustained activity at a given intensity (i.e., bouts) are often calculated. However, despite 
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being recognised as an objective measure of physical activity, the data treatment decisions 

(e.g., intensity cut-points, non-wear criteria, valid day criteria) are subjective, vary between 

devices, and can influence physical activity estimates [54,75]. In light of these limitations, 

manufacturers were urged to promote transparency by providing access to raw unfiltered 

accelerometer data [76]. However, raw data are voluminous (usually between 30 and 100 

samples per second), making the data hard to manage and interpret.  

Manually defined algorithms have been used to classify raw data into activity types with 

varying levels of success (e.g., Stemland et al. [77]). More recently, researchers have 

employed machine learning techniques to accurately capture all components (frequency, 

intensity, time and type) of physical activity. Machine learning algorithms generate a 

predictive model by learning how patterns in the raw accelerometer data are related to an 

activity type or intensity. This is done by training a model with ‘features’ of the 

accelerometer signal (e.g., mean, standard deviation, correlations) that are extracted from the 

raw data. Trained models can then be used to predict activity type and/or intensity from 

features extracted from new accelerometer data. This method is referred to as supervised 

learning as it requires a ‘ground truth’ measure (e.g., direct observation) on which the model 

can be trained. Although machine learning has been used in this field for over a decade, it is 

gaining traction due to its increased accessibility [53]. 

Researchers have begun to evaluate the performance of machine learning algorithms under 

various conditions [64]. These conditions include variations in types of activities or postures, 

accelerometer placement positions, number of accelerometers, features extracted from the 

data, and machine learning algorithms. Recent studies have demonstrated promising results 

for predicting various physical activity types and postures [65] and intensities [78,79], and 

yet a cohesive summary of this emerging evidence is not currently available. By summarising 

the current state of knowledge in this rapidly developing field, this scoping review aims to (1) 
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examine if machine learning techniques offer an effective mechanism for identifying human 

behaviours from raw accelerometer data, and to (2) discuss the implications of these 

developments for physical activity researchers. 

 

Methods 

This scoping review was conducted by searching the Scopus, Web of Science and EBSCO 

databases up to and including June 30th, 2018. The following terms were searched for in 

abstracts, titles, and keywords: [("physical activity" OR "posture" OR "activity classification" 

OR "sedentary" OR "sleep" OR "energy expenditure") AND ("machine learning" OR "pattern 

recognition" OR "neural network" OR "classifier") AND ("acceleromet*" OR "wearable" OR 

"IMU")]. After screening the preliminary search results, the following terms were added in 

the search filter to exclude several irrelevant articles: [NOT ("animal" OR "driver" OR 

"robot" OR "hand" OR "arm" OR "fall")]. The search was confined to peer-reviewed, 

English-language journal articles; conference abstracts and grey literature were excluded. The 

primary inclusion criteria for the review were studies that applied supervised, machine 

learning techniques to raw accelerometer data (in ± g) and estimated physical activity 

components or sleep in any population (except infants under three years). Studies that used 

data from non-body worn accelerometers (e.g., mobile/smartphone sensors, shoe-based 

sensor) or non-accelerometer devices (e.g., heart rate monitor, ambient sensors, gyroscope, 

magnetometer) were also excluded.  

 

The scoping review was conducted according to the Preferred Reporting Items for Systematic 

Review and Meta-Analyses (PRISMA) protocol [80]. Firstly, all identified study abstracts 

and titles were screened independently for eligibility by the first and second reviewer (AN 
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and FD). Secondly, the full-text of all eligible articles were assessed, and any disagreements 

were discussed, and (if necessary) resolved through a discussion with a third and fourth 

reviewer (LM and TS). Finally, the following information was extracted from all eligible 

studies: predicted physical activity component(s) (e.g., intensity, or activity type), total 

number and types of activities classified, study environment (e.g., lab setting), sample size, 

population description, device name, number of devices, number of device axes, device 

sampling frequency, device placement position, ground truth method, features generated from 

raw accelerometer data, epoch length, machine learning algorithm, validation method, and 

the model performance results. In cases where studies ran multiple experiments, results for 

the best performing method were retained. 

 

Results 

A total of 712 articles (Scopus: 311, Web of Science: 291, EBSCO: 110) were identified 

through the database search, and two additional articles were included from the reference list 

of the identified articles. Of the 714 articles, 263 duplicates were removed, leading to 451 

potentially eligible articles whose abstracts and titles were screened. From these, 209 were 

excluded as they were deemed irrelevant and the full text of the remaining 242 articles were 

assessed for inclusion. A total of 189 studies were excluded with reasons: non-accelerometer 

data (e.g., heart rate monitor, EMG, gyroscope; n = 79), smartphone/mobile phone sensor 

(n = 39), did not use raw accelerometer data (i.e., used activity counts; n = 13), outside the 

scope of this review (e.g., non-physical activity related, sports specific movements, custom 

algorithms or unsupervised machine learning techniques; n = 53), study in infants (n = 1), no 

full text available (n = 3). Only one article examined sleep using machine learning and was 

thus excluded, resulting in a final list of 53 studies [26,65-69,81-127] that were included in 
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the review (see Figure 3-1). A detailed description of the included studies is provided in 

Table 3-1. 

 

 

--

 

Figure 3-1. Description of the results 
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 Table 3-1. Description of the studies 

 

 

 

Ref 

 

Component of 

physical activity; 

Total number of 

classified activities;  

Activity types 

 

Study environment; 

Sample size; 

Population 

description 

 

 

Device name;  

Number of devices; 

 Axis, Sampling 

frequency;  

Placement position 

 

 

 

Ground truth 

method 

 

Features 

generated 

from raw 

acceleromet

er data 

 

 

Epoch 

length 

 

Machine learning 

classifier used; 

Validation method 

 

 

 

Result summary 

[26] 

 

 

 

 

 

Activity type; 

6;  

Sitting, Standing, 

Lying, Slow walk, Fast 

walk, Run 

Semi-structured 

controlled; 

 

75 (42 children); 

 

Healthy population,  

Children age = 11.0 ± 

4.80 years 

Adults age = 42.4 ± 

9.89 years  

Axivity AX3, Axivity 

Ltd., York, UK; 

 

2; 

 

3-axis accelerometer, 

100 Hz; 

 

Lower back, Dominant 

thigh 

Direct 

observation, 

activity trial 

videotaped and 

exact start/end 

times of each 

activity were 

annotated based 

on the collected 

video recordings. 

142 total 

time and 

frequency 

domain 

features. 

5 secs Random forest; 

 

Leave one subject 

out cross validation 

The random forest 

classifier achieved 

an overall 

classification 

accuracy of 

97.3% (child 

sample) and 

99.3% (adult 

sample). 

 

[81] Activity type; 

7 

Lying, Sitting, 

Standing, Dynamic 

standing (DS), Walk, 

Run, Cycle 

 

  

Controlled; 

 

20 (13 males, 7 

females); 

 

Healthy population, 

age: 29 ± 6 years 

Tracmor; Philips 

Research, 

Eindhoven, The 

Netherlands; 

 

1; 

 

3-axis accelerometer, 20 

Hz; 

 

Lower back 

Direct 

observation, 

activity stop/start 

recorded using a 

stopwatch. 

27 time and 

frequency 

domain 

features. 

0.4 secs 

0.8 secs 

1.6 secs 

3.2 secs 

6.4 secs 

12.8 secs 

 

 

Decision tree; 

 

Leave one subject 

out cross validation 

Maximal accuracy 

for the 

classification of 

activity type 

(93%) was 

reached when the 

segment size of 

analysis was 6.4 

or 12.8 s. The 

smaller the 

segment size, the 

lower the 

classification 

accuracy 

achieved. 
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[82] Activity type; 

10; 

Sitting, Lying, 

Standing, Walking, 

Sit-to-stand, Stand-to-

sit, Lie-to-sit, Sit-to-

lie, Lie-to-stand, 

Stand-to-lie 

Controlled; 

 

30;  

 

10 with moderate to 

severe Rheumatoid 

Arthritis and 20 

healthy volunteers 

 

Axivity AX3, Axivity 

Ltd., York, UK; 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Lower back 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Several time 

and 

frequency 

domain 

features. 

3 secs 

sliding 

window, 

Overlap 

= 1 sec 

Dichotomy mapped 

forest-Deep 

Learning (DMF-

DL), 

Dichotomy mapped 

forest-Metric 

Learning (DMF-

Metric), 

Convolutional Deep 

Belief Networks 

(CDBN), 

Random Forest, 

Support 

Vector Machine 

(SVM), 

Continuous Hidden 

Markov 

Models(cHMM); 

 

 

 

 

 

Leave one subject 

out cross validation 

 

 

 

 

Performance tests 

showed that the 

DMF-DL method 

was able to 

achieve around 

95% accuracy and 

81% F-score. 

[83] Activity type; 

12; 

Sitting, Standing, 

Walking, Running, 

Cycling, Nordic 

walking, Ascending 

stairs, Descending 

stairs, Vacuum 

Controlled; 

 

9 (1 female); 

 

Healthy population, 

age = 27.2 ± 3.3 

years 

 

Colibri wireless IMUs; 

 

3; 

 

3-axis accelerometer, 

100 Hz; 

 

Wrist, Chest, Ankle 

 

Direct 

observation, 

Manual labelling 

of recorded data 

done in Viliv S5 

ultra-mobile 

personal computer 

(UMPC). 

  

Several time 

domain 

features and 

segregated 

into 3 

different 

feature sets 

respective to 

5 secs 

sliding 

window, 

Overlap 

= 1 sec 

k-Nearest 

Neighbour 

(k-NN) classifier, 

Rotation forest, 

Neural network; 

 

Validation method: 

70% training dataset 

30% test dataset 

The rotation 

forest classifier 

achieved the 

highest average 

classification 

accuracy of 98% 

using all 

accelerometers. 
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cleaning, Ironing-

clothes, Jumping 

rope, and Lying down 

(resting state) 

 

 each sensor 

location. 

 

. 

[84] Activity type; 

8; 

Lying, Slouching, 

Sitting, Standing, SUM 

(for small utilitarian 

movements), Walking, 

Running, Cycling 

 

 

 

Controlled; 

59; 

Healthy population 

aged 19–55 years 

 

 

Semi free-living; 

20; 

Healthy population 

aged 18–39 years 

 

MotionLogs (Movea, 

Grenoble, France); 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Hip; 

 

 

 

Direct 

observation, 

activity stop/start 

recorded by an 

observer. 

9 time and 

frequency 

domain 

features. 

6 secs Bayesian classifier; 

 

Leave one subject 

out cross validation 

The performance 

of the laboratory-

trained 

machine learning 

model decreased 

for several 

activities when 

applied to free-

living data. 

Therefore, the 

model was 

recalibrated with 

free living data 

and thereby 

showed 

improvements in 

overall 

performance 

accuracies, 

specifically the 

detection of 

sedentary 

activities- Overall 

sitting 

(sensitivity: 

laboratory model 

= 24.9%; 

recalibrated 

model = 95.7%). 
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[85] Activity type; 

6; 

Getting up starting 

from lying down, 

Lying down starting 

from stance, 

Reaching up as far as 

possible, 

Picking up a pen from 

the ground five times, 

Touching-a mark five 

times, Performing a 

sit-to-stand movement 

five times 

Controlled; 

 

28 (16 males, 12 

females); 

 

Patients diagnosed 

with axial 

spondylarthrosis, 

age = 43.7±10.45 

years 

SenseWear Pro 3 

Armband, 

Bodymedia Inc., 

Pittsburgh, PA, USA; 

 

1; 

 

2-axis accelerometer, 32 

Hz; 

 

Biceps of the dominant 

arm; 

 

 

 

 

Direct observation 

by physical 

therapists. 

39 (18 signal 

pattern-based 

features and 

21-time 

domain 

features) 

1 sec 

sliding 

window, 

Overlap 

= 0.5 sec 

Three stage 

classifiers. 

(Stage 1- Random 

forest with 

rejection, 

Stage 2- Linear 

discriminant model, 

Stage 3 – Binary 

classifiers) 

 

 

Leave one subject 

out cross validation 

The classifier 

achieved an 

overall accuracy 

of 93.5% in 

detection of all 

performed 

activities across 

all participants. 

[87] Dataset 1: 

 

Activity type; 

8; 

Lying, Sitting, 

Standing, Walking, 

Running, Cycling, 

Ascending stairs, 

Descending stairs 

 

Dataset 2: 

 

Activity type; 

12; 

Standing still, Sitting 

and relaxing, lying 

down, Walking, 

Walking-upstairs, 

Waist bends forward, 

Frontal elevation of 

arms, Knees bending 

(crouching), Cycling, 

Dataset 1: 

 

Controlled; 

9 (8 males, 1 female); 

Healthy population, 

age = 27.2 ± 3.3 

years 

 

 

Dataset 2: 

 

Semi-free-living; 

10; 

Healthy population, 

age = 29.9 ± 4.2 

years 

 

Dataset 1: 

 

Colibri wireless IMU 

sensor; 

3; 

3-axis accelerometer, 

100 Hz; 

Dominant-side wrist, 

Ankle, Chest 

 

Dataset 2: 

 

Shimmer 2R, 

Realtime Technologies, 

Dublin, Ireland; 

3; 

3-axis accelerometer, 50 

Hz; 

Chest, Right wrist, Left 

ankle 

 

Already available 

datasets with fully 

labelled activity 

data. (Ground 

truth method 

N/M). 

45 features 

from both 

time domain 

and 

frequency 

domain.  

2 secs Binary decision tree 

(BDT), Support 

vector machine 

(SVM), Deep neural 

network (DNN), 

Random forest (RF) 

and Adaboost. 

 

 

Leave one subject 

out cross validation 

 

 

 

The SVM and RF 

classifier 

outperformed 

other classifier 

models and had 

very similar 

overall accuracy 

(82.3% & 82.2% 

respectively), 

across both 

datasets and all 

sensor locations. 

 

The SVM 

classifier model 

was also 

evaluated with 

different fusion 

techniques where 

the posterior-

adapted class-

based decision 
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Jogging, Running, and 

Jumping front & back 

 

fusion achieved 

the highest overall 

accuracy of 

92.3% (for 

Dataset 1) when 3 

sensor locations 

were combined 

and 91.6% (for 

Dataset 2) when 

ankle and wrist 

sensor were 

combined. 

 

 

[68] Activity type; 

6 

Walking, Running, 

Sitting, Lying, 

Standing, Walking up 

and down stairs 

Controlled; 

 

8; 

 

Healthy population, 

aged 24 – 33 years 

 

Shimmer 2R, 

Realtime Technologies, 

Dublin, Ireland; 

 

6; 

 

3-axis accelerometer, 

51.2 Hz; 

 

Chest, Wrist, Lower 

back, Hip, Thigh, Foot 

Direct 

observation,  

manually labelled 

offline by a 

human observer. 

26 features 

from both 

time domain 

and 

frequency 

domain. 

10 secs 

sliding 

window, 

Overlap 

= 5 secs 

Decision tree (J48), 

Naïve Bayes (NB), 

Neural Network 

(NN) (Multilayer 

Perceptron) and 

Support 

Vector Machine 

(SVM); 

 

 

10-fold cross 

validation 

 

The SVM 

provided the most 

accurate detection 

(97.8%) when 

applied to data 

collected from the 

hip worn 

accelerometer.  

 

Increasing the 

number of sensing 

locations from 

one to two or 

more 

statistically 

increased the 

accuracy of 

classification 

(from 96% to over 

97.4% 

respectively).  
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[88] Activity type; 

 

19; 

 

Basic activities: 

Stand, Lie-supine, Lie 

left side, Lie right side, 

Walk on level ground 

at normal speed, Jog, 

Ascend stairs, Descend 

stairs 

 

Transitional activities: 

Lie-to-stand, Stand-to-

lie, Sit-to-stand, Stand-

to-sit 

 

Instrumental activities 

of daily living: 

Make a sandwich/drink 

a glass of water, Clean 

windows, Dress 

(shoes, shorts jumper), 

Stretch (arms, legs, 

torso), Vacuum floor, 

Computer work, Read 

newspaper 

 

 

Phase 1 Controlled; 

Phase 2: Semi-free-

living; 

Phase 3: Controlled 

(repeat of phase 1); 

 

 

25 (10 males, 15 

females); 

 

Healthy population, 

age = 23.6 ± 2.41 

years 

 

 

Witilt v2.5, Sparkfun 

Electronics; 

 

5; 

 

3-axis accelerometer, 

135 Hz; 

 

 

Just below the 

suprasternal notch, Left 

side of 

the chest over the lower 

ribs, Directly above the 

right hip, Wrist of the 

dominant hand and 

Ankle of the dominant 

leg 

Controlled: 

Direct 

observation, 

activities 

manually labelled 

by a human 

observer; 

 

Semi-free-living: 

Activities self-

annotated by the 

subjects. 

 

 

 

 

 

 

160 features 

from both 

time domain 

and 

frequency 

domain. 

128-

sample 

sliding 

window, 

Overlap 

= 50%. 

C4.5 Graft, Naïve 

Bayes, BayesNET, 

IBI, IBK, KStar, 

JRip, SVM, Multi 

Perception, 

AdaBoost, 

AdaBoostM1, 

Bagging, 

MultiBoost, Vote; 

 

Leave one subject 

out cross validation 

The meta-level 

classifier 

AdaBoostM1 with 

C4.5 Graft as its 

base- 

level classifier 

achieved an 

overall accuracy 

of 95% when data 

from all sensors 

were combined 

and 88% accuracy 

with data from 

wrist and ankle 

sensors only. 

 

 

[89] Activity type; 

 

4; 

 

Sitting, Standing, 

Walking/running, 

Riding in a vehicle 

Free-living; 

 

40; 

 

Overweight or obese 

women, age = 55.2 ± 

15.3 years 

ActiGraph, 

Pensacola, FL; 

 

2; 

 

3-axis accelerometer, 30 

Hz; 

 

Direct 

observation, 

images captured 

every 20 secs 

using wearable 

SenseCam and 

annotated to 

activity labels by 

researchers. 

40 total 

features from 

both time 

domain and 

frequency 

domain. 

1 min Random forest 

coupled with  

hidden Markov 

model (HMM); 

 

Leave one subject 

out cross validation 

The random forest 

classifier 

(combined with 

HMM) obtained 

an average 

balanced accuracy 

of 89.4% and 

84.6% over the 

four predicted 
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Right hip and Non-

dominant wrist. 

 

 activities using 

the hip and wrist 

accelerometer 

respectively. 

 

[69] Activity type; 

 

6; 

 

Sitting, Standing, 

Transitions 

between activities, 

Walking, Stair 

descending, Stair 

ascending 

Controlled; 

 

9 (5 females, 4 

males); 

 

Healthy population, 

aged 22 – 34  

 

Internally developed 

Inertial Measurement 

Unit; 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Waist 

 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

22 features 

from time 

domain. 

0.5 s,  

1 s,  

1.5 s, 

2 s,  

2.5 s and  

3 s 

Decision tree 

classifier, 

Naive Bayes 

classifier, 

k-Nearest 

Neighbour (k-NN) 

classifier, 

support vector 

machine (SVM), 

neural networks 

(NN); 

 

 

Leave one subject 

out cross validation, 

70% training dataset 

30% test dataset 

 

 

 

Among the five 

different 

classifiers that 

were tested SVM 

performed best. A 

window size of 

1.5 s was the best, 

with an accuracy 

well above 90%. 

 

 

 

[67] Activity type; 

 

8; 

 

Self-conditioning, 

Cycling, Home 

activities, Running, 

Self-care, Transport, 

Walking, Inactive 

Free-living; 

 

10 (7 males, 3 

females); 

 

Healthy population, 

age = 23.1 ± 1.7 

years 

 

runscribe™ inertial 

sensors (Scribe Labs, 

CA, USA); 

 

9; 

 

3-axis accelerometer, 10 

Hz; 

 

 

Direct 

observation, 

images captured 

every 30 secs 

using wearable 

SnapCam and 

annotated to 

activity labels by 

researchers. 

 

Several time 

and 

frequency 

domain 

features. 

6 secs 

sliding 

window, 

Overlap 

= 3 secs 

Complex decision 

tree, 

Support vector 

machine (SVM), 

Fine k-Nearest 

Neighbour (k-NN) 

classifier, 

Ensemble-Bagged 

trees 

 

Overall accuracy 

of k-NN classifier 

was 97.6%. 
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Left and right lateral 

ankle, Left and right hip,  

Left and right wrist, 

Left and right upper arm, 

Spine (T10) 

Validation method- 

80% of the data was 

used for training 

and 20% was tested 

[90] Activity type; 

 

5; 

 

Standing, Sitting, 

Lying, Walking (flat 

walking and up & 

down stairs),  

Transition (Lie-to-

stand, Stand-to-lie, Sit-

to-stand, Stand-to-sit 

 

Free-living; 

 

8; 

 

Older adults having 

various conditions 

such as osteoporosis, 

COPD, leg ulcer and 

knee replacement,  

aged 70 – 83 years 

 

ShimmerTM 

wireless sensor platform; 

 

4; 

 

3-axis accelerometer, 

200 Hz; 

 

Chest, Left under-arm, 

Waist, Thigh  

Direct 

observation, 

activities 

automatically 

annotated during 

data acquisition 

on the computer. 

Several time, 

frequency 

domain and 

heuristic 

features.  

1s Decision tree 

classifier, 

Naive Bayes 

classifier, 

k-Nearest 

Neighbour (k-NN) 

classifier, 

support vector 

machine (SVM), 

artificial neural 

networks (ANN); 

 

 

10-fold cross 

validation 

 

 

The experimental 

results illustrate 

that the proposed 

multi-sensor 

system (Chest, 

waist, thigh, arm), 

can achieve an 

overall 

recognition 

accuracy of 

96.4% by 

adopting the mean 

and variance 

features, using the 

Decision Tree 

classifier. 

[92] Activity type; 

 

5; 

 

Jump, Run, Walk, Sit, 

Sit-stand/stand-sit, 

Stand-kneel-stand 

 

 

 

 

Controlled; 

 

7; 

 

Healthy population, 

aged 22 – 28 years 

 

MEMS- Freescale 

MMA7260 

accelerometer 

 

1; 

 

3-axis accelerometer, 

126 Hz; 

 

Waist 

 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Several time 

domain 

features. 

6 secs 

sliding 

window, 

Overlap 

= 3 secs 

Naive Bayes 

classifier, k- Nearest 

Neighbour (k-NN) 

classifier 

 

 

Leave one subject 

out cross validation, 

 

Overall accuracy 

of ~98% for both 

(k-NN and NB) 

classifiers. 

Accuracy for each 

of the individual 

activity greater 

than 95%. 
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[93] Activity type; 

 

6; 

 

Lying, 

Sitting/standing, 

Dynamic/transitions, 

Walking, Running, 

Cycling 

Dataset 1- (Used for 

training) 

Controlled; 

52 (29 males, 23 

females); 

Healthy population, 

aged 23 – 43 years 

 

Dataset 2- (Used for 

testing) 

Controlled; 

20 (10 males, 10 

females); 

Healthy population, 

aged 22 – 51 years 

 

Dataset 3- (Used for 

testing) 

Semi free-living; 

20 (10 males, 10 

females); 

Healthy population, 

aged 22 – 51 years 

 

 

 

 

 

 

Tracmor; Philips 

Research, 

Eindhoven, The 

Netherlands; 

1; 

3-axis accelerometer, 20 

Hz; 

Waist; 

 

IDEEA monitor 

(MiniSun, Fresno CA); 

5; 

N/M, 32 Hz; 

Soles of the feet, Thighs, 

upper sternum 

Dataset 1: 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

 

Dataset 2 and 3: 

Activity labelling 

was done based 

on activity 

recognition 

performed using 

IDEEA monitors, 

Self-reported 

activity diary. 

 

113 features 

from both 

time domain 

and 

frequency 

domain. 

6.4 secs Support vector 

machine (SVM), 

Feed-forward 

neural network 

(NN), Decision tree 

(DT), 

Majority Voting 

(Combining all of 

the above 3 

classifiers) 

 

Leave one subject 

out cross validation, 

Validation testing 

on Dataset 2 and 

Dataset 3. 

The SVM 

classifier and 

Majority voting 

showed the 

highest overall 

accuracy of 

95.1% using 

Leave one subject 

out cross 

validation 

(Dataset 1). 

 

Majority voting 

technique 

achieved the 

highest overall 

accuracy of 

95.98% and 

75.7% when 

tested on Dataset 

2 (Laboratory) 

and Dataset 3 

(Semi Free-living) 

respectively. 

[94] Activity type; 

 

4; 

 

Walking, Running, 

Squatting, Sitting 

Controlled; 

 

5 (3 males, 2 

females); 

 

Healthy population, 

age N/M 

VG350 

acceleration sensor; 

 

1; 

 

3-axis accelerometer,100 

Hz; 

 

Waist 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

120 total 

input 

features per 

axes. 

N/A Back propagation 

neural network; 

 

 

10- fold cross 

validation. 

The neural 

network achieved 

an overall posture 

recognition rate of 

91.6%. 
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[95] Activity type; 

 

4; 

 

Walking, Standing, 

Lying, Sitting 

Dataset 1 & 2 were 

collected on two 

separate days from 

the same participants. 

 

Controlled; 

 

9(4 males and 5 

females); 

 

Healthy adult 

population age N/M 

Shimmer3 IMUs; 

 

6; 

 

3-axis accelerometer, 

512 Hz; 

 

Dominant ankle, Non-

dominant thigh, 

Dominant wrist, Non-

dominant arm, Hip and 

Neck 

Direct 

observation, 

activity trial 

videotaped and 

exact start/end 

times of each 

activity were 

annotated based 

on the collected 

video recordings. 

108 features 

from the time 

domain. 

7 secs, 

Overlap

= 3.5 

secs 

Random forest; 

 

Validation method 

1- 

Training data: 

Dataset1 

Testing data: 

Dataset 2  

 

Validation method 

2- 

Training data: 

Dataset 2 

Testing data: 

Dataset 1 

The random 

Forest (RF) 

classifier obtained 

an overall 

accuracy of  

88.7% and 88.0% 

on Validation 

methods 1 and 2 

respectively. 

 

An overall 

classification 

accuracy of 

84.6% was 

achieved when 

data from only 

two 

accelerometers 

positioned at the 

neck and thigh of 

the subject’s body 

were used. 

[96] Activity type; 

 

6; 

 

Seated computer-work, 

Vacuuming, Cleaning 

the room, Throwing-a-

ball, Walking, Running 

Controlled; 

 

8; 

 

Healthy population, 

age = 23.8 ± 5.4 

years 

GENEA 

(Unilever Discover, 

Colworth, UK); 

1; 

3-axis accelerometer, 80 

Hz; 

Wrist; 

 

 

ActiGraph™ GT3X+ 

(ActiGraph™ Inc., 

Pensacola, FL, USA); 

1; 

3-axis accelerometer, 80 

Hz; 

Wrist; 

Direct 

observation, 

activity stop/start 

recorded by an 

observer. 

8-time 

domain and 6 

frequency 

domain 

features. 

20 secs Random forest 

classifier; 

 

 

Leave one subject 

out cross validation, 

Overall accuracy 

achieved by the 

RF using only 

time domain 

features: 

GENEA = 94.3% 

GT3X+= 91.7% 

 

Frequency 

domain features: 

GENEA = 94.3% 

GT3X+= 95.8% 
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[97] Activity type; 

 

5; 

 

Stepping, Standing, 

Sitting, Sit-to-stand 

transition, Stand-to-sit 

transition 

Free-living; 

 

30 females; 

 

Breast cancer 

survivors aged under 

85 years 

Actigraph GT3X+; 

1; 

3-axis accelerometer, 30 

Hz; 

Hip 

 

activPAL (PAL 

Technologies, Glasgow, 

Scotland); 

1; 

1-axis-accelerometer, 

Thigh 

 

Activity output 

acquired through 

processing in the 

activPAL 

software 

41 time and 

frequency 

domain 

features. 

5 secs Random forest 

classifier; 

 

Leave one subject 

out cross validation 

The random forest 

classifier 

predicted postures 

with moderate 

accuracy 

(stepping, 77%; 

standing, 63%; 

sitting, 67%; sit-

to-stand, 52%; 

and stand-to-sit, 

51%). 

[98] Activity type; 

 

6; 

 

Sitting, Standing, 

Standing & moving, 

Walking/running, 

Sitting in a vehicle, 

Cycling 

Free-living; 

 

78; 

 

Healthy adult 

population, age N/M. 

Actigraph GT3X+; 

 

1; 

 

3-axis accelerometer, 30 

Hz; 

 

Hip 

 

Direct 

observation, 

images captured 

every 20 secs 

using wearable 

SenseCam and 

annotated to 

activity labels by 

researchers.. 

 

43 time and 

frequency 

domain 

features. 

1 min k-nearest neighbor, 

Support vector 

machine, Naive 

Bayes, Decision 

trees, Random 

forest, hidden 

Markov model 

(HMM); 

 

Leave one subject 

out cross validation 

 

The random forest 

classifier achieved 

an accuracy of 

over 80% in 

classifying all 

behaviours. 
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[99] Activity type; 

 

15; 

 

Lying, Sitting, 

Standing,  

Lie-to-stand, Stand-to-

lie, Lie-to-sit, Sit-to-

lie, Sit-to-stand, Stand-

to-sit, Walk-to-stand, 

Stand-to-walk, 

Walking, Walking-

upstairs, Walking-

downstairs, Running 

Semi-Free-living; 

 

6 (3 males, 3 

females); 

 

Healthy population 

with the mean age of 

27 

Witilt v2.5, Sparkfun 

Electronics; 

 

1; 

 

3-axis accelerometer, 20 

Hz; 

 

Chest 

 

Voice annotations 

of activities done 

by subjects 

themselves during 

data collection 

using a Bluetooth 

headset combined 

with a speech-

recognition 

software 

 

Time domain 

and 

augmented 

features. 

3.2 secs Artificial neural 

networks; 

 

Six-fold cross 

validation 

The artificial 

neural network 

recognized 15 

activities with an 

overall average 

accuracy 

of 97.9%. 

[100] Activity type; 

 

6; 

 

Lying, Standing, 

Walking, 

Walking-upstairs, 

Walking-downstairs, 

Driving 

Semi-free-living; 

 

20 (Split into Group1 

=10, Group 2=10); 

 

Healthy population, 

aged 22 – 30 years 

SerAccel v5, Sparkfun 

Electronics; 

 

1; 

 

3-axis accelerometer, 20 

Hz; 

 

Chest 

 

Voice annotations 

of activities done 

by subjects 

themselves during 

data collection 

using a Bluetooth 

headset combined 

with a speech-

recognition 

software. 

Time domain 

and 

augmented 

features. 

10 secs 

sliding 

window, 

Overlap 

= 5 secs 

Artificial neural 

networks 

 

 

Subject independent 

validation: 

Training data from 

10 subjects 

(Group1), tested on 

the remaining 10 

subjects (Group 2) 

 

Subject dependent 

validation: 

Training data from 

20 subjects, tested 

on 10 subjects 

(Group 1) 

 

 

  

The overall 

average 

recognition 

accuracy achieved 

through subject-

independent and 

subject-dependent 

validation 

methods were 

94.4% and 96.6%, 

respectively. 
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[102] Activity type; 

 

4; 

 

Ambulation, Cycling, 

Sedentary, Other 

activities 

 

 

Controlled; 

 

33 (11 males, 22 

females); 

 

Healthy population, 

aged between 18 – 75 

years 

Wockets; 

 

2; 

 

3-axis accelerometer, 90 

Hz; 

 

Wrist, Ankle; 

 

 

Activities 

annotation was 

performed during 

the execution of 

tasks using a 

voice recorder, 

and then timings 

on the voice 

recording were 

used to annotate 

start/stop times 

for specific 

activities being 

observed. 

Several time 

and 

frequency 

domain 

feature sets.  

12.8 secs Support vector 

machine (SVM)  

 

 

Leave one subject 

out cross validation 

 

High 

classification 

accuracies for 

activities were 

achieved for data 

collected from 

ankle 

accelerometer 

(95.0%) when 

compared to wrist 

accelerometer 

(84.7%). 

[103] Activity type; 

 

7; 

 

Sitting, Lying, 

Standing, Walking 

Stair climbing, 

Running, Cycling 

 

Controlled; 

 

13; 

 

Healthy adult 

population, age N/M 

 

ADXL210E 

accelerometers; 

 

5; 

 

2-axis accelerometer, 

76.25 Hz; 

 

Right hip, 

Dominant-wrist, Non-

dominant arm, Dominant 

ankle, Non-dominant 

thigh. 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M) 

Several time 

and 

frequency 

domain 

features. 

6.7 secs 

sliding 

window, 

Overlap 

= 3.35 

secs 

Naive Bayesian 

(NB), 

Gaussian Mixture 

Model (GMM), 

Logistic classifier, 

Parzen classifier 

Support vector 

machine (SVM), 

Binary decision tree 

(C4. 5), 

Nearest mean (NM), 

k-Nearest 

Neighbour,  

Artificial Neural 

Network (multilayer 

perceptron) 

&  

cHMM-based 

sequential classifier 

 

 

 

Validation method: 

 

Among all tested 

classifiers, the 

cHMM-based 

sequential 

classifier achieved 

the highest overall 

classification 

accuracy of 

99.1%. 

 



41 
 

Training data: 7 

windows/activity 

class/subject 

Testing data: 

Remaining 

windows/activity 

class/subject 

[104] Activity intensity; 

 

1; 

 

Energy expenditure 

(EE) 

Controlled; 

 

30; 

 

Healthy population, 

aged 18 – 30 years 

MICA2 motes 

(Crossbow Inc., Milpitas, 

CA, USA); 

3; 

2-axis accelerometer, 10 

Hz; 

Right wrist, Right thigh, 

Right ankle; 

 

 

 

ActiGraph (LLC, 

Fort Walton Beach, FL, 

USA); 

1; 

3-axis accelerometer, 30 

Hz; 

Waist 

 

 

Energy 

expenditure 

measured using 

Oxycon Mobile 

portable 

metabolic 

analyzer 

(CareFusion, 

Hoechberg, 

Germany). 

14 total input 

features (12-

time domain 

from raw 

acceleromete

r data, 

height, 

weight of 

participant); 

 

8 total input 

features (6- 

time domain 

from raw 

acceleromete

r data, 

height, 

weight of 

participant); 

 

 

 

  

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

Overall, the 

wireless network 

(WN) of 3 

MICA2-motes 

achieved higher 

accuracy than 

Actigraphy (AG) 

in prediction of 

EE. The 

correlations were 

higher (r = 

0.95 vs. r = 

0.88, p < 0.0001) 

and RMSE was 

lower 

(1.34 vs. 1.97 

metabolic 

equivalents 

(METs), p < 

0.0001) for the 

WN than the AG. 

[105] Activity intensity; 

 

1; 

 

Energy expenditure 

(EE) 

Controlled (Trial 1); 

30; 

Healthy population, 

aged 18 – 80 years 

 

 

Semi-structured 

controlled; 

ActiGraph GT9X Link 

(ActiGraph LLC, 

Pensacola, FL, USA); 

 

4; 

 

3-axis accelerometer, 60 

Hz; 

Energy 

expenditure 

measured using  

COSMEDK4B2 

(COSMED, 

Rome, Italy) 

18 features 

from the time 

domain. 

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

Optimal EE 

prediction 

accuracy was 

obtained using an 

accelerometer 

mounted on the 

right ankle and 

the ANN models 
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(Trial 2); 

30; 

Healthy population, 

aged 18 – 80 years 

 

Right ankle, Hip, Right 

wrist and Left wrist 

 

 

portable 

metabolic 

analyser. 

developed using 

data from both 

controlled and 

semi-structured 

settings. 

 

[106] Activity intensity; 

 

1; 

 

Energy expenditure 

(EE) 

Semi-structured 

controlled; 

 

30; 

 

Healthy population, 

aged 18 – 30 years 

MICA2 motes 

(Crossbow Inc., Milpitas, 

CA, USA); 

3; 

2-axis accelerometer, 10 

Hz; 

Right wrist, Right thigh, 

Right ankle; 

 

 

 

ActiGraph (LLC, 

Fort Walton Beach, FL, 

USA); 

1; 

3-axis accelerometer, 30 

Hz; 

Hip 

 

 

Energy 

expenditure 

measured using 

Oxycon Mobile 

portable 

metabolic 

analyzer 

(CareFusion, 

Hoechberg, 

Germany). 

14 input 

features (12-

time domain 

from raw 

acceleromete

r data, 

height, 

weight of 

participant); 

 

8 total input 

features (6- 

time domain 

from raw 

acceleromete

r data, 

height, 

weight of 

participant); 

 

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

Overall, the 

wireless network 

(WN) of 3 

MICA2-motes 

achieved higher 

accuracy with 

higher 

correlations (r = 

0.79 vs. r = 0.72, 

P < 0.01) but 

similar RMSE 

(2.16 vs. 2.09 

METs, P > 0.05) 

in prediction of 

EE compared to 

the hip 

accelerometer. 
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[107] Activity intensity; 

 

1; 

 

Energy expenditure 

(EE) 

Semi-structured 

controlled; 

 

44 (22 males, 22 

females) 

 

Healthy population, 

aged 18 – 44 years 

GENEActiv 

(Activinsights 

Ltd., Kimbolton, 

Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 20 

Hz; 

Right wrist and Left 

wrist 

 

 

ActiGraph (LLC, 

Fort Walton Beach, FL, 

USA); 

2; 

3-axis accelerometer, 40 

Hz; 

Right thigh, Right hip 

Energy 

expenditure 

measured using 

Oxycon Mobile 

portable 

metabolic 

analyzer 

(CareFusion, 

Hoechberg, 

Germany). 

39 input 

features (36 

features from 

raw 

acceleromete

r data, 

height, 

weight and 

sex of 

participant); 

; 

 

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

A single 

accelerometer 

placed on the 

thigh provided the 

highest overall 

accuracy (r = 

0.90) and lowest 

root mean square 

error (1.04 METs) 

for EE prediction. 

[108] Activity intensity; 

 

3; 

 

Sedentary behaviour 

[SB], light-intensity  
physical activity 

[LPA], and moderate- 

to vigorous-intensity  
physical activity 

[MVPA]; 

Semi-structured 

controlled; 

 

40 (19 males, 21 

females) 

 

Healthy population, 

aged 18 – 44 years 

GENEActiv 

(Activinsights 

Ltd., Kimbolton, 

Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 20 

Hz; 

Right wrist, Left wrist 

 

 

ActiGraph (LLC, 

Fort Walton Beach, FL, 

USA); 

2; 

3-axis accelerometer, 40 

Hz; 

Right thigh, Right hip 

 

Direct 

observation,  

performed 

activities were 

manually 

classified into one 

of three intensity 

categories (SB, 

LPA, or MVPA). 

 

15 input 

features. 

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

The thigh-worn 

accelerometer had 

a higher overall 

accuracy (> 99%) 

in prediction of all 

physical activity 

intensity 

categories 

compared to the 

wrist- or hip-worn 

accelerometers.  
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[109] Activity type; 

 

9; 

 

Sedentary (Lying, 

Reading 

Computer use), 

Standing, Lifestyle 

(Laundry, Sweeping), 

Walk slow,  

Walk fast, Jogging, 

Cycling, Exercise 

(Biceps curls, Squats) 

Stair use 

 

Semi-structured 

controlled; 

 

44 (22 males, 22 

females) 

 

Healthy population, 

aged 18 – 44 years 

GENEActiv 

(Activinsights 

Ltd., Kimbolton, 

Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 20 

Hz; 

Right wrist, Left wrist 

 

 

ActiGraph (LLC, 

Fort Walton Beach, FL, 

USA); 

2; 

3-axis accelerometer, 40 

Hz; 

Right thigh, Right hip 

 

Direct 

observation, 

performed 

activities were 

manually 

annotated into one 

of the activity 

classes by 

research 

assistants. 

Multiple 

features sets 

were 

extracted 

from each 

acceleromete

r. 

 

Set 1 (36 

features), 

Set 2 (6 

features), 

Set 3 (12 

features), 

Set 4 (15 

features), 

 

 

 

 

5 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

ANNs developed 

using feature set 1 

for 

accelerometers 

worn on the wrists 

achieved the 

highest accuracy 

for activity 

classification 

(86.6%–86.7%) 

whereas the hip-

mounted 

accelerometer had 

the lowest 

accuracy of 

72.5%. 

 

[110] Activity intensity; 

 

3; 

 

Sedentary behaviour 

(SB)], light-intensity  
physical activity 

(LPA), and moderate- 

to vigorous-intensity  
physical activity 

(MVPA) 

Semi-structured 

controlled; 

 

44 (22 males and 22 

females) 

 

Healthy population, 

aged 18 – 35 years 

activPAL3 accelerometer 

(PAL Technologies Ltd., 

Glasgow, UK); 

 

1; 

 

3-axis accelerometer, 20 

Hz; 

 

Right thigh 

 

Energy 

expenditure 

measured using 

Oxycon Mobile 

portable 

metabolic 

analyzer 

(Cardinal Health, 

Yorba Linda, CA) 

and classified into 

the 3 intensity 

classes. 

6 total 

features. 

30 secs Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

The ANN 

achieved a higher 

overall accuracy 

for estimation of 

energy 

expenditure and 

physical activity. 
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[111] Activity intensity; 

 

3; 

 

Sedentary behaviour 

(SB), Light-intensity  
physical activity 

(LPA), and moderate- 

to vigorous-intensity  
physical activity 

(MVPA) 

Dataset 1: 

Semi-structured 

controlled; 

 

39 (19 males, 20 

females) 

 

Healthy population, 

aged 18 – 35 years 

 

 

Dataset 2: 

Semi-structured 

controlled; 

 

24 (12 males,12 

females) 

 

Healthy population 

aged between 18 and 

79 years 

 

 

 

GENEActiv 

(Activinsights 

Ltd., Kimbolton, 

Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 20 

Hz; 

Left wrist 

 

 

 

 

 

 

GENEActiv 

(Activinsights 

Ltd., Kimbolton, 

Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 60 

Hz; 

Left wrist 

 

Direct 

observation,  

Performed 

activities were 

manually 

classified into one 

of three intensity 

categories (SB, 

LPA, or MVPA). 

 

Feature set 1: 

27-time 

domain 

features, 

 

Feature set 1: 

21-time 

domain 

features, 

 

Feature set 3: 

12-time 

domain 

features, 

 

Feature set 4: 

6-time 

domain 

features, 

 

Feature set 5: 

39-both time 

domain & 

frequency 

domain 

features, 

 

Feature set 6: 

33-both time 

domain & 

frequency 

domain 

features, 

 

 

 

 

30 secs Decision trees with 

boosting, Random 

forest, Artificial 

neural networks, 

and Support vector 

machines 

 

In-sample leave one 

subject out cross 

validation 

performed 

separately on 

Dataset 1 and 2, 

 

Out of sample 

validation: 

Training data – 

Dataset 1, Testing 

data - Dataset 2 

(vice versa) 

 

Out of sample 

validation: 

Random forest 

models using 

feature sets with 

only time-domain 

features provided 

the best accuracy 

(77.3–78.5%) for 

activity intensity 

prediction. 

 

Leave one out 

cross validation: 

Random forest 

models using 

feature sets that 

include both time 

and frequency 

domain features 

provided the best 

accuracy (92.6-

92.8% for Dataset 

1 and 79.3-80.2% 

for Dataset 2) for 

activity intensity 

prediction. 
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[112] Activity type; 

 

3; 

 

Walking, Walking-

upstairs, 

Walking-downstairs 

 

 

Controlled; 

 

Group 1: 

12; 

Healthy population,  

age = 31.7 ± 3.4 

years 

 

Group 2: 

12; 

Healthy population,  

age = 70.3 ± 5.0 

years 

 

ADXL202, by Analog 

Devices, Inc; 

 

1; 

 

2-axis accelerometer, 

100 Hz; 

 

Dominant leg at the shin 

level 

Direct 

observation, 

activity stop/start 

recorded by a 

researcher. 

32 features 

(16-time 

domain and 

frequency 

domain 

features were 

extracted for 

each axis). 

Epoch 

length is 

determin

ed by an 

integrati

on-and-

threshold 

algorith

m 

Naïve 2D-Bayes 

classifier; 

 

Model tested on the 

whole dataset. 

The overall 

classification 

accuracy achieved 

by the classifier is 

higher than 90% 

(for young adults 

- Group 1) and 

higher than 92% 

(for elderly adults 

- Group 2). 

[113] Activity type; 

 

4; 

 

Walking, Running, 

Biking,  

Other (standing, lying, 

sitting, going up and 

down the stairs, 

playing with a ball, 

etc) 

Controlled; 

 

24 (15 males, 9 

females); 

 

Healthy population, 

aged 19 – 54 years 

MotionPod by MOVEA; 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Shin  

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Various 

frequency 

domain 

features. 

10.24 

secs 

sliding 

window, 

Overlap 

= 7.68 

secs 

Non-negative 

matrix factorization 

(NMF) using 

Wasserstein 

Distance, 

Support vector 

machine (SVM),  

Decision tree 

classifier (DT); 

 

 

Leave one subject 

out cross validation 

 

All classifiers 

performed equally 

by achieving high 

overall 

classification 

accuracies. 

NMF using 

Wasserstein 

Distance - 97.2% 

SVM- 95.5% 

DT- 96.72% 

 

 

 

[65] Controlled: 

Activity type; 

4; 

Sedentary (lying, 

sitting still), 

Stationary+ (sitting 

active, standing still, 

standing active), 

Walking, Running 

 

Controlled; 

21; 

Healthy population, 

aged above 18 years; 

 

 

Free-living; 

16; 

Healthy population, 

aged above 18 years; 

GENEActiv 

(Activinsights 

Ltd., Cambridgeshire, 

United Kingdom); 

1; 

3-axis accelerometer, 30 

Hz; 

Non-dominant wrist; 

 

 

Controlled: Direct 

observation, 

activity stop/start 

recorded by a 

researcher. 

 

Free-living: 

Activities 

classified by 

activPAL using 

Several time 

and 

frequency 

domain 

features. 

10 secs Random forest 

classifier; 

 

Leave one subject 

out cross validation 

 

Controlled: 

The random forest 

classifier achieved 

an overall 

classification 

accuracy of 

92.7% with 

sedentary, 

stationary+, 

walking, and 
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Free-living: 

Activity type; 

2; 

Stepping, Non-

stepping; 

 

 

 

 

 

activPAL (Version 3, Pal 

Technologies Ltd., 

Glasgow, 

UK); 

1; 

3-axis accelerometer, 

N/M; 

Right thigh 

 

 

 

the activPAL 

software. 

running achieving 

80.1%, 95.7%, 

91.7%, and 

93.7%, 

respectively. 

 

 

Free living: 

The random forest 

classifier achieved 

an average overall 

accuracy above 

90% in predicting 

step vs non-step 

with 

high specificity 

for non-stepping 

(96.3%), but 

modest sensitivity 

(53.8%). 

 

[114] Activity type; 

 

8; 

 

Walking, Walking-

upstairs and 

downstairs, Jogging, 

Running, 

Hopping on the left 

and right leg, Jumping 

Controlled; 

 

20 (10 males, 10 

females); 

 

Healthy population,  

age = 31.0 ±7.0 years 

Pegasus activity 

monitors (developed by 

ETB, U.K); 

 

3; 

 

3-axis accelerometer, 64 

Hz; 

 

Waist, Thigh, Ankle 

 

Direct 

observation, 

activity trial 

videotaped, and 

exact start/end 

times of each 

activity were 

annotated based 

on the collected 

video recordings. 

Several 

feature sets 

were 

generated 

comprising 

of features 

from the time 

domain 

frequency 

domain and 

wavelet 

transformatio

n 

2 secs 

sliding 

window, 

Overlap 

= 1 secs 

k-Nearst Neighbour 

classifier(k-NN); 

 

 

Leave one subject 

out cross validation 

 

The k-NN 

classifier achieved 

an overall 

classification 

accuracy of over 

95% using the 

feature set that 

comprised 

frequency domain 

features. 

. 
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[115] Activity type; 

5; 

Sitting, Riding in a 

vehicle, Standing-still, 

Standing-moving, and 

Walking/running 

Free-living; 

 

39 (females); 

 

Healthy population 

aged between 56 and 

94 years 

 

 

 

ActiGraph GT3X+ 

(ActiGraph, Pensacola, 

FL); 

 

1; 

 

3-axis accelerometer, 

N/M; 

 

Right hip 

 

Direct 

observation, 

images captured 

every 20 secs 

using wearable 

SenseCam and 

annotated to 

activity labels by 

researchers. 

 

41 features 

from both 

time domain 

and 

frequency 

domain. 

1 min Random forest 

combined with 

hidden Markov 

model (HMM); 

 

Leave one subject 

out cross validation 

 

The classifier 

achieved an 

overall balanced 

accuracy of 

82.2% in activity 

classification. 

[116] Activity intensity; 

 

1; 

 

Energy expenditure 

(EE) 

Controlled; 

 

102 (46 males, 55 

females); 

 

Healthy population, 

aged 18 – 70 years 

 

IDEEA monitor 

(MiniSun, Fresno CA); 

 

3; 

 

2-axis accelerometer, 32 

Hz; 

 

Hip (at anterior, 

posterior, and medial/ 

lateral locations)  

Energy 

expenditure 

measured using 

room calorimeter 

present at the 

Vanderbilt 

General Clinical 

Research 

Center. 

30 features 

from both 

time domain 

and 

frequency 

domain. 

1 min Artificial neural 

networks (ANN); 

 

Leave one subject 

out cross validation 

The ANN 

classifier is a 

promising 

approach to 

predict EE with 

reduced mean 

absolute errors 

(0.29 ± 0.10 

kcal/min), mean 

squared errors 

(0.23 ± 0.14 

kcal2/min2), and 

difference in total 

EE (21 ± 115 

kcal/day). 

 

[117] Activity type; 

 

5; 

 

Standing, Sedentary, 

Locomotion, 

Household, 

Recreational, 

Controlled; 

35 (14 males, 21 

females); 

Healthy population, 

aged 65 – 85 years 

 

Free-living; 

15; 

Healthy population, 

aged 65 – 85 years 

 

ActiGraph GT3X+ 

(ActiGraph, Pensacola, 

FL); 

 

3; 

 

3-axis accelerometer, 80 

Hz; 

 

Hip, Wrist, Ankle 

 

Direct 

observation, 

activity stop/start 

recorded by a 

researcher using a 

personal digital 

assistant (PDA). 

Several time 

and 

frequency 

domain 

features. 

20 secs Random forest 

classifier (RF), 

Support vector 

machine (SVM) 

 

Leave one subject 

out cross validation 

Classification 

accuracies 

achieved in 

controlled setting 

for the RF 

classifier were 

between 49% 

(wrist) to 54% 

(ankle) and SVM 

were between 
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 49% (wrist) and 

55% (ankle). 

 

Classification 

accuracies 

achieved in free-

living setting for 

the RF classifier 

were between 

61% (wrist) to 

67%(ankle) and 

SVM were 

between 58% 

(wrist) and 69% 

(ankle). 

  

[118] Activity type/Intensity; 

 

6; 

 

Energy expenditure 

(EE in METs), 

Light-intensity PA 

(LPA), Moderate-

intensity (MPA), 

Vigorous-intensity PA 

(VPA), Sedentary, 

Locomotion 

Controlled; 

 

20 (10 males, 10 

females); 

 

Healthy population, 

aged 20 – 39 years 

 

 

ActiGraph GT3X+ 

(ActiGraph, Pensacola, 

FL); 

 

1; 

 

3-axis accelerometer, 80 

Hz; 

 

Dominant wrist 

Energy 

expenditure 

measured using 

Oxycon Mobile 

portable 

metabolic 

analyzer 

(CareFusion, 

Hoechberg, 

Germany). 

Several time 

and 

frequency 

domain 

features. 

15 secs Random forest 

classifier (RF); 

 

 

Leave one subject 

out cross validation 

 

 

The random forest 

classifier 

estimated EE with 

RMSE = 1.21 

METs), activity 

intensities (light, 

moderate and 

vigorous) with 

75% accuracy, 

sedentary time 

and locomotion 

time with  

96% and 99% 

respectively. 
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[119] Activity type; 

 

5; 

 

Sedentary, Light 

activity games, 

Moderate-to-vigorous 

games, Walking, 

Running 

Controlled; 

 

11 (5 males, 6 

females); 

 

Healthy population, 

aged 3 – 6 years 

 

ActiGraph GT3X+ 

(ActiGraph, Pensacola, 

FL); 

 

2; 

 

3-axis accelerometer, 

100 Hz; 

 

Right hip, Non-dominant 

wrist 

Direct 

observation, 

activity stop/start 

times annotated 

manually. 

36 time and 

frequency 

domain 

features 

(18/sensor). 

15 secs Random forest 

classifier (RF), 

Support vector 

machine (SVM) 

 

 

Leave one subject 

out cross validation 

 

The performance 

accuracies of the 

SVM classifier 

using 

accelerometer at 

the hip (81.3%), 

wrist (80.4%), 

and combined hip 

and wrist (85.2%) 

were higher than 

that of the RF 

classifier hip 

(80.2%), wrist 

(78.1%), and 

combined hip and 

wrist (81.8%). 

 

 

[66] Activity type; 

 

7; 

 

Lying, Sitting, 

Standing with upper 

body movements, 

Walking, Running, 

Basketball, and Dance 

Controlled; 

 

52 (28 males, 24 

females); 

 

Healthy population, 

age = 13.7 ± 3.1 year 

ActiGraph GT3X+ 

(ActiGraph, Pensacola, 

FL); 

 

2; 

 

3-axis accelerometer, 30 

Hz; 

 

Right hip, Non-dominant 

wrist 

Direct 

observation, 

activity stop/start 

times annotated 

manually. 

Several time 

domain 

features 

(number 

N/M). 

10 secs Regularized logistic 

regression classifier; 

 

Modified 10-fold 

cross validation. 

 

 

The classifier 

achieved an 

overall 

classification 

accuracy of 

91.0% ± 3.1% for 

the hip 

accelerometer and 

88.4% ± 3.0%, for 

the wrist 

accelerometer.  

[120] Activity type; 

 

9; 

 

Sitting, Lying, Stand-

to-lie, Lying, Standing, 

Walking, Running, 

Bicycling (50 watt), 

Controlled; 

 

5; 

 

Healthy adult 

population, age N/M  

 

IMU, N/M; 

 

2; 

 

3-axis accelerometer, 

100 Hz; 

 

Waist, Left ankle 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Several 

features were 

extracted 

based on 

Ensemble 

Empirical 

Mode 

Decompositi

on (EEMD) 

1 sec 

sliding 

window, 

Overlap 

= 0.5 sec 

Support vector 

machine (SVM), 

k-Nearst Neighbour 

classifier(k-NN); 

 

 

Leave one subject 

out cross validation 

 

The SVM and 

k-NN classifier 

achieved an 

overall accuracy 

of 78.12%, 

75.11% (using 

ankle 

accelerometer) 

and 81.21%, 
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Bicycling (100 watt), 

Jumping 

method and 

Game-

Theory-

Based 

Feature 

Selection 

method. 

 

 

 79.70% (using 

waist 

accelerometer) 

respectively. 

[121] Activity type; 

 

6; 

 

Bicycling, Sit/stand, 

Walking, Vehicle, 

Mixed activity, Sleep 

Free-living; 

 

132 (48 males, 84 

females); 

 

Healthy population, 

aged 18 – 91 years 

 

Axivity AX3, Axivity 

Ltd., York, UK; 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Wrist 

Direct 

observation, 

images captured 

every 20 secs 

using wearable 

camera Vicon 

Autographer and 

annotated to 

activity labels 

(except sleep) by 

researchers. Sleep 

information was 

obtained from a 

simple sleep diary 

filled out by 

participants. 

126 features 

extracted 

from both 

time domain 

and 

frequency 

domain. 

30 secs Random forest and 

hidden Markov 

model (HMM); 

 

Leave one subject 

out cross validation 

 

 

The random forest 

classifier achieved 

an overall 

accuracy of 87% 

in classifying 6 

different physical 

activity states. 

[122] Activity type; 

 

6; 

 

Falling, Jumping, 

Running, Sitting-down, 

Standing, Walking 

Trial1: 

Controlled; 

7; 

Healthy population, 

aged 26 – 50 years 

 

Trial2: 

Controlled; 

13 (includes 7 from 

trial 1); 

Healthy population, 

aged 26 – 50 years 

 

MMA7260, Sparkfun 

Electronics, Boulder, 

CO, USA; 

 

1; 

 

3-axis accelerometer, 50 

Hz; 

 

Waist 

 

 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

48 features 

were 

extracted 

based on 

discrete 

wavelet 

transform 

(DWT) and 

principle 

component 

analysis 

(PCA). 

N/A, 

Raw 

Signal 

segment

ed into 

280 

samples/

activity 

by either 

interpola

tion or 

smoothin

g 

Support vector 

machine (SVM), 

 

 

Trial 1: 

Four-fold cross 

validation: 

 

Trial 2: 

Out of sample 

validation, 

Classifier trained in 

trial 1 tested on data 

The SVM 

classifier achieved 

an overall activity 

classification 

accuracy of 

95.2% in trial 

1(four-fold cross 

validation) and 

94.8%, in trial 2 

(out of sample 

validation). 
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set collected in trial 

2. 

[123] Activity type/Intensity; 

 

4; 

 

Sedentary, Standing, 

Light intensity PA 

(LPA), Moderate-

vigorous PA (MVPA) 

Controlled; 

 

40 (20 males, 20 

females); 

 

Healthy population, 

aged over 60 years 

 

GENEActiv 

(Activinsights Ltd., 

Kimbolton, UK); 

 

2; 

 

3-axis accelerometer, 60 

Hz; 

 

Right thigh, Left thigh 

 

 

 

Energy 

expenditure 

measured using 

indirect 

calorimetry and 

observation, 

activity trial 

videotaped and 

exact start/end 

times of 

performed 

activities were 

annotated based 

on the collected 

video recordings. 

 

55 features 

extracted 

from both 

time domain 

and 

frequency 

domain. 

10 secs Random forest 

classifier; 

 

 

Leave one subject 

out cross validation 

 

The random forest 

classifier achieved 

an overall 

balanced accuracy 

of 92.7% with 

high individual 

accuracies in 

classifying 

Sedentary 

(99.6%), Standing 

(95.5%), MVPA 

(95.1%) and LIPA 

(80.6%). 

[124] Activity type; 

 

6; 

 

Running, Sitting, 

Standing, Walking, 

Walking-upstairs, 

Walking-downstairs. 

N/M; 

 

10 (5 males, 5 

females); 

 

Healthy adult 

population, age N/M. 

 

MPU-6000 sensor; 

 

1; 

 

3-axis accelerometer, 50 

Hz; 

 

Thigh 

 

N/M. Several time 

domain and 

frequency 

domain 

features. 

Some 

features were 

also 

extracted 

using Kernel 

discriminant 

analysis 

(KDA). 

 

 

2.56 secs 

sliding 

window, 

Overlap 

= 1.28 

secs 

Extreme learning 

machine (ELM), 

Neural network 

(NN), 

Support vector 

machine (SVM); 

 

Data randomly split 

into training and test 

datasets (split% 

N/M) 

ELM classifier 

achieved a high-

performance 

accuracy of 

99.8% when 

compared to 

neural network 

(98%) and 

support vector 

machine (99%). 
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[125] Activity type; 

 

8; 

 

Standing, Sitting, 

Walking, Running, 

Vacuuming, 

Scrubbing, 

Brushing-teeth, and 

Working at a computer 

Controlled; 

 

7 (3 males, 4 

females); 

 

Healthy population, 

age = 24.1 ± 1.8 

years 

 

MMA7260Q, Freescale 

Semiconductor; 

 

1; 

 

3-axis accelerometer, 

100 Hz; 

 

Dominant wrist 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

24 features 

extracted 

from both 

time domain 

and 

frequency 

domain. 

5.12 secs 

sliding 

window, 

Overlap 

= 2.56 

secs 

Neural classifier,  

k-Nearest 

Neighbour (k-NN); 

 

 

Leave one subject 

out cross validation 

 

The proposed 

neural classifier 

and k-NN 

classifier achieved 

an average overall 

performance 

accuracy of 

95.2% and 87.2% 

respectively. 

 

[126] Activity type; 

 

4; 

 

Sedentary, Household 

(window washing, 

washing up, shelf 

stacking, and 

sweeping), Walking (at 

different speeds, stair 

climbing), Running;  

Controlled,  

Semi-free-living; 

 

60 (23 males, 37 

females); 

 

 

Healthy population, 

aged 40 – 65 years 

 

 

GENEA, Colworth, 

United Kingdom; 

 

1; 

 

3-axis accelerometer, 80 

Hz; 

(Multiple data sets were 

created from original 

data by modifying 

number of axes (1, 2 & 

3) and sampling 

frequencies- 5,10 ,20, 40 

Hz) 

 

Wrist; 

 

 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Several time 

domain and 

frequency 

domain 

features 

(number 

N/M), 

 

12.8 secs Logistic regression, 

Decision 

Tree (DT), Support 

vector machine 

(SVM), Bayesian 

belief network; 

 

 

10-fold cross 

validation, 

Split validation 

(Training data - 

Randomly selected 

2/3rd of the samples 

from each activity. 

Test data - 

remaining 1/3rd 

samples)  

 

Classification 

accuracies of all 

classifiers were 

high (> 95%) 

irrespective of the 

number of axes 

and sampling 

frequency (except 

5 Hz) used for 

data collection, 

but a relatively 

low classification 

accuracy (94%) 

for data collected 

with sampling 

frequency 5 Hz. 

[127] Activity type; 

 

4; 

 

Sedentary, Household 

(window washing, 

washing up, shelf 

stacking, and 

sweeping), Walking (at 

Controlled,  

Semi-free-living; 

 

60 (23 males, 37 

females); 

 

 

Healthy population, 

aged 40 – 65 years 

GENEA, Colworth, 

United Kingdom; 

 

3; 

 

3-axis accelerometer, 80 

Hz; 

 

Wrists, Waist; 

Considered to be 

direct observation 

as this is a 

controlled setting 

(N/M). 

Several time 

domain and 

frequency 

domain 

features 

number 

N/M), 

 

12.8 secs Logistic regression, 

Decision 

Tree (DT), Support 

vector machine 

(SVM), Bayesian 

belief network, 

Neural network; 

 

 

Support vector 

machine achieved 

the highest overall 

classification 

accuracy of 

96.4% using the 

left wrist worn 

accelerometer 

whereas the 
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different speeds, stair 

climbing), Running; 

 

 

 

 

10-fold cross 

validation, 

Split validation 

(Training data - 

Randomly selected 

2/3rd of the samples 

from each activity. 

Test data - 

remaining 1/3rd 

samples)  

 

Decision tree 

classifier achieved 

the highest overall 

classification 

accuracy of 

96.9% using the 

right wrist worn 

accelerometer. On 

the other hand, 

Neural network 

achieved the 

highest overall 

accuracy of 

99.6% when using 

only the waist 

worn 

accelerometer. 

[86] Dataset 1: 

 

Activity type; 

8; 

Lying, Sitting, 

Standing, Walking, 

Running, Cycling, 

Walking-upstairs, 

Walking-downstairs 

 

Dataset 2: 

 

Activity type; 

8; 

Stationary (sit and 

stand), Comfortable 

walking, Fast walking, 

Jogging, Running 

Dataset 1: 

 

Controlled; 

9 (8 males, 1 female); 

Healthy population, 

age = 27.2 ± 3.3 

years 

 

 

Dataset 2: 

 

Semi-free-living; 

8 (4 males, 4 

females); 

Healthy population, 

age = 29.9 ± 4.2 

years 

 

Dataset 1: 

 

Colibri wireless IMU 

sensor; 

1; 

3-axis accelerometer, 

100 Hz; 

Wrist 

 

Dataset 2: 

 

Empatica E4 sensor; 

1; 

3-axis accelerometer, 32 

Hz; 

Wrist 

 

N/M, utilized full 

annotated publicly 

available dataset. 

45 features 

extracted 

from both 

time domain 

and 

frequency 

domain. 

10 secs 

sliding 

window, 

Overlap 

= 5 secs 

Boosted decision 

tree; 

Bagging decision 

tree, 

Random forest, 

BDT, k-Nearest 

Neighbour, Support 

vector machine, 

Artificial neural 

network, 

 

Custom ensemble 

classifiers 

(Weighted majority 

voting, Naïve Bayes 

combiner, 

Behaviour 

knowledge space) 

 

 

 

Dataset 1: 

Weighted 

majority voting 

classifier achieved 

an overall higher 

classification 

accuracy of 

85.6% compared 

to other 

classifiers. 

 

Dataset 2: 

The Random 

forest classifier 

achieved an 

overall higher 

classification 

accuracy of 

79.6% compared 

to other 

classifiers. 
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Leave one subject 

out cross validation 

 

 

 

 

 

[91] Dataset 1: 

 

Activity type; 

7; 

Working at computer, 

Standing, Walking and 

going up/down stairs, 

Standing, Walking, 

Walking-up/down 

stairs, Walking and 

talking with someone. 

 

Dataset 2: 

 

Activity type; 

14; 

Brush teeth, Walking-

upstairs, Comb hair, 

Walking-downstairs, 

Drink glass, Eat meat, 

Eat soup, Getup bed, 

Lying, Pour water, Sit-

down chair, Stand-up 

chair, Use telephone, 

Walk 

Dataset 1- 

N/M; 

15; 

Healthy adult 

population, age N/M. 

 

Dataset 2- 

N/M; 

16; 

Healthy adult 

population, age N/M. 

 

Uses publicly available 

datasets: 

Dataset 1: 

 

N/M; 

1; 

3-axis accelerometer, 52 

HZ; 

Chest 

 

Dataset 2: 

 

N/M; 

1; 

3-axis accelerometer, 32 

Hz; 

Wrist 

 

 

N/M, utilized 

fully annotated 

publicly available 

dataset. 

16 total 

features 

extracted 

from time 

domain. 

4 secs Three stage 

classifiers of each of 

the below single 

classifier model 

 

Recursive 

Partitioning (rpart), 

Decision tree (DT), 

Bagging with DTs, 

Support Vector 

Machine (SVM), 

Naive Bayes, Linear 

Discriminant 

Analysis (LDA), 

and Random Forest; 

 

10-fold cross 

validation, 

Leave one subject 

out cross validation 

(LOOCV) 

 

 

 

Dataset 1: 

A three-stage 

random forest 

classifier achieved 

an overall 

accuracy of 

85.9% using 10-

fold cross 

validation with no 

statistically 

significant 

difference in 

accuracies 

between 

classifiers using 

LOOCV. 

 

Dataset 2: 

A three-stage 

LDA classifier 

achieved an 

overall accuracy 

of 78% using 10-

fold cross 

validation with no 

statistically 

significant 

difference in 

accuracies 

between 
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N/M - Not mentioned 

N/A - Not applicable 

LOOCV - Leave one subject out cross validation 

                                           

classifiers on 

LOOCV. 

 

[101] Activity type; 

 

3; 

 

Sitting, Walking, 

Falling 

Dataset 1: 

Controlled; 

 

10 (5 males, 5 

females); 

 

Healthy population, 

age =21.3 ± 1.1 years 

 

 

Dataset 2: 

Controlled; 

 

7 (5 males, 2 

females); 

 

Healthy population, 

aged 68 - 86 years. 

Dataset 1: 

KXM52-L20, Dallas, 

TX; 

3; 

3-axis accelerometer, 

250 Hz; 

Chest, Waist, Thigh 

 

Dataset 2 

KXM52-L20, Dallas, 

TX; 

1; 

3-axis accelerometer, 

250 Hz; 

Waist 

Direct 

observation, 

activity stop/start 

recorded using a 

stopwatch. 

Features 

comprise 

parameters 

of the auto 

regression 

model of the 

raw signal. 

4 secs Self-constructing 

neural fuzzy 

inference network 

(SONFIN), 

 

 

Validation method: 

Training data- 50% 

of the data set for 

each activity from 

each subject,  

Testing data: The 

remaining 50% of 

the data set for each 

activity from each 

subject. 

 

 

The SONFIN 

classifier achieved 

an overall 

classification 

accuracy of 

88.7% (for dataset 

1) and 80.4% (for 

dataset 2) using 

the waist 

accelerometer.  
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Key findings and Discussion 

All 53 studies included in this review were published between 2007 and 2018 with almost 

75% of these studies (n = 39) [26,65-69,82-92,94-98,102,104-111,115,117-121,123,124] 

published in the last five years. Evidently, the application of machine learning in physical 

activity research is growing rapidly. This scoping review aims to explore the current 

applications of machine learning in physical activity research and provide insights for future 

work predicting human movement behaviours from raw accelerometer data. The following 

section is modelled to discuss key findings for various study parameters. 

 

Components of physical activity 

Almost 80% of studies (n = 43) [26,65-69,81-103,109,112-115,117,119-122,124-127] 

predicted activity type (e.g., sitting, standing, lying, walking). The total number of activity 

types predicted in each study ranged from two to 19 (Figure 3-2), but all studies predicted at 

least one sedentary and one ambulatory activity. Sitting, lying and standing were the most 

common sedentary postures while walking, running, cycling, and stair climbing 

(up/downstairs) were the most common ambulatory movements. Ten studies 

[66,67,83,88,91,96,109,125-127] predicted a variety of daily living activities (e.g., 

vacuuming, ironing clothes, cleaning windows, self-conditioning, dancing, playing games, 

computer work), while nine studies [69,82,88,90,92,93,97,99,120] predicted transitions 

between postures (e.g., sit-to-stand, stand-to-sit, sit-to-lie). Ten studies [104-

108,110,111,116,118,123] predicted activity intensity either as energy expenditure (i.e., 

METS) or intensity categories (e.g., sedentary, LPA, MVPA).  

 

Both activity type and intensity are key components of physical activity, and yet the 

application of machine learning in physical activity research is clearly dominated by the 
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prediction of activity type. A major limitation of the count-based cut-point methodology is 

the inability to accurately assess the type of activity being performed. For example, sitting 

and standing may output similar accelerometer counts, yet the resulting energy expenditure 

and physiological response may be significantly different [29]. On the other hand, the 

intensity of each activity (i.e., different walking speeds) is an important component related to 

health, which most machine learning studies have overlooked. A small number of studies 

have assessed both activity type and the intensity of each activity; one study predicted energy 

expenditure after classifying the type of activity as either sedentary or locomotion [118], 

while another predicted activity type and intensity as (sedentary, standing, LPA, and MVPA) 

after examining both the posture of activity and its corresponding energy expenditure [123]. 

Although these are progressive steps in physical activity measurement, it is essential for 

researchers to expand the scope of activity prediction by including activity types that closely 

represent daily living activities (e.g., standing with movement or dynamic standing), and 

develop a methodology for the concurrent measurement of activity intensity and activity type.  

 

 

Figure 3-2. Number of activity types studied 
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Study environment 

The environment within which a study takes place is an important consideration when 

interpreting study findings. This is because laboratory settings are controlled environments 

and may not be sensitive to the intricacies of movement in free-living settings [27]. Most 

studies (n = 34/53) [26,66,68,69,81-83,85,86,92,94-96,101-114,116,118-120,122,123,125] 

were conducted in either a controlled laboratory setting or semi-structured environments (a 

variation of the traditional laboratory setting where participants can perform each activity in 

their desired order, without any strict rules). Twenty-six of these studies [26,66,68,69,81-

83,85,91,92,94-96,101-103,109,112-114,119,120,122,124,125,127] predicted activity type 

while ten [66,67,83,88,91,96,109,125-127] predicted activity intensities. A further nine 

studies [67,89,90,97-100,115,121] were carried out in free-living or semi-free-living 

environments, all of which predicted activity type. In a semi-free-living setting, participants 

perform activities in their free-living environment but with certain rules and protocols (e.g., a 

predefined list of activities with a specific duration). Eight studies took place in both 

controlled and free-living settings [65,84,87,88,93,117,126,127], while the study environment 

of two studies [91,124] was not specified.  

 

More than 60% of studies that predicted activity type, and all of the studies that predicted 

activity intensities, were conducted in a controlled environment. This is likely due to the 

challenges in obtaining valid ground truth measures in free-living conditions. Machine 

learning models developed in controlled settings can demonstrate poor performance in free-

living settings [27]; in fact, a 20% drop in overall accuracy has been observed previously 

[93]. One study that reported similar declines in free-living accuracy later achieved improved 

classification performance (e.g., sensitivity for predicting sitting increased from 24.9% to 

95.7%) by re-calibrating the laboratory-trained classifier with additional data from the free-
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living environment [84]. To ensure that models are generalisable beyond the lab, it is 

important that future studies consider activities in free-living conditions.  

 

Sample description 

The number of study participants ranged between 5 and 132 with a median (25th, 75th 

percentile) of 25 (11.2, 40). The median sample size was 25 (11, 40) in controlled settings 

and 20 (15, 40) in free-living settings. No studies reported sample size calculations. It is 

generally considered that machine learning models developed from larger heterogeneous 

samples are more robust and generalisable; however, their performance also depends on other 

factors such as the complexity of each activity, the machine learning algorithm used, the 

similarity of participants, and the volume of data collected for each activity of interest [128]. 

Forty-nine studies recruited participants from a healthy population, while four studies 

[82,85,90,97] were designed for patients diagnosed with health conditions. Fifty-one studies 

recruited adults (aged over 18 years), and only three studies [26,66,119] recruited children 

(3–18 years). One study [26] examined both adults and children but trained a separate model 

for each group (overall accuracy was 99.1% in adults, and 97.3% in children). Due to limited 

studies, it is unclear if accuracy differs between adults and children, or if models are 

interchangeable between these groups. Children tend to show greater postural variability 

(e.g., sitting on the floor, different standing patterns) than adults [129], and gait patterns 

change as they grow [130]. More work is needed to understand model performance in groups 

other than healthy adults (e.g., children and older adults).  

 

Device specification 

Thirty different accelerometer models were used; 29 of these are branded devices. The 

Actigraph GT3X+ (Pensacola, FL, USA) was the most commonly used accelerometer (n = 
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13), followed by GENEActiv (Activinsights Limited, UK) (n = 7). The number of devices 

used in each study ranged from one to nine, with 33 studies using either one or two devices 

(24 used one [65,69,81,82,84,85,92-94,96-100,110,112,113,115,118,121,122,124-126]; nine 

used two [66,89,103,107-109,111,119,120]). Although some studies used more than one 

device [89,101,102,105,107-109,111,117,119,120,127]; the machine-leanring classifier was 

trained on data acquired from each device separately. One study showed that increasing the 

number of sensing locations from one to two increased classification accuracy from 96% to 

97.4%; however, there was no further improvement when using three or more sensors [68].  

 Both the number of device axes and the sampling frequency are crucial components that 

dictate the volume of raw data that are collected, and therefore the amount of data used to 

train the machine learning models. Ninety-percent of studies (n = 47) [26,65-69,81-84,86-

102,105,107-111,113-115,117-127] collected tri-axial raw acceleration data with the 

remaining six studies [85,103,104,106,112,116] collecting bi-axial acceleration data. More 

axes of raw data enable a greater range signal ‘features’ to be calculated (see feature 

generation below). Nonetheless, one study showed that classification accuracy was high 

(> 95%) irrespective of the number of axes used [126]. The sampling frequency of devices 

(number of samples recorded in 1 second) ranged between 10 Hz and 512 Hz (under or equal 

80 Hz, n = 32 [65-68,81,85,89,91,93,96-100,103-111,114,116-118,122-124,126,127]; 80 to 

100 Hz, n = 15 [26,69,82-84,86,87,94,102,112,113,119-121,125]; above 100 Hz, n = 5 

[88,90,92,95,101]) with 100 Hz being the most common (n = 14 studies) [26,69,82-

84,86,87,94,112,113,119-121,125]. The sampling frequency is an important determinant of 

an accelerometer’s battery life and storage capacity, although many modern accelerometers 

(e.g., Actigraph, GENEactiv, Axivity) can record over one week of acceleration data at 100 

Hz. A sampling frequency of ~20 Hz is generally considered adequate for capturing a variety 

of daily living activities [131], while higher sampling rates may be useful for capturing 
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specific high-intensity sports movements such as a tennis swing [132]. Researchers should 

maximise the number of device axes and select the highest sampling rate that is practical 

(given battery life, storage, and processing capacity).  

 

Device placement 

A total of 13 different attachment sites were used; almost 50% of studies (n= 24) included an 

accelerometer placed on the waist/hip [66-69,84,88-90,92,94,95,97,98,101,103,105,114-

117,119,120,122,127]. The other most common attachment site was dominant wrist (n= 23) 

[67,68,83,86-88,91,95,96,102-109,117,118,121,125-127]; refer to Figure 3-3 for more 

details. Of the 24 studies that used only one accelerometer, placement at the waist (n = 9) 

[69,84,92,94,97,98,115,116,122] or wrist (n = 9) [65,86,91,96,111,118,121,125,126] were 

most common. This could be because the wrist and waist are less intrusive sites which 

facilitate participant compliance; however, it is essential to investigate the performance of 

different activity classifiers and their ability to accurately identify different activities. A 

single hip-worn accelerometer achieved the highest overall accuracy of 97.8% in detecting 

six different sedentary and ambulatory activities, when compared to five other placement 

positions [68]. Similar results were achieved in other studies which showed that hip-worn 

accelerometers demonstrate better classification performance compared to wrist-worn 

accelerometers [66,89,119]. In contrast, a study showed that wrist-worn accelerometers 

achieved ~14% higher accuracy than hip-worn accelerometers [109]. Another study [65] that 

achieved high overall accuracy (92.7%) using a wrist-accelerometer showed much lower 

accuracy for specific activities (i.e., sedentary = 80.1%). Clearly, there is scope for future 

studies to investigate how placement sites (and their various combinations) impact model 

performance.  

     



63 
 

 

Figure 3-3. Accelerometer placement positions 

 

Ground truth 

Reliable ground truth data is a crucial component of validation studies. All supervised 

machine learning models are limited by the quality and accuracy of the ground truth labels 

used to train and test the model. Therefore, it is essential that researchers design a suitable 

and accurate method for obtaining ground truth data. Direct observation is considered the 

gold standard measure of physical activity type [133], where activities are either annotated in 

real time, or later via video recording. The most common method used for labelling activity 

types in a controlled environment was direct observation (n = 29 studies) [26,65,66,68,69,81-

85,88,92-96,101-103,109,112,114,117,119,120,122,125-127]. In free-living studies, a variety 

of methods were used, including photo (n = 5) [67,89,98,115,121], in-person observation 

(n = 1) [90], self-annotated audio recording (n = 2) [99,100], and another accelerometer (i.e. 

convergent validity, n = 2) [65,97]. 
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Photos captured in intervals (every ~15–30 seconds) are a form of direct observation; 

however, missed transitions between activities, and difficulties in coding ambiguous images 

(e.g., walking vs. running) can introduce error into the activity labels. The extent to which 

labelling errors contribute to reduced model performance is unclear, particularly among free 

living studies. Wearable cameras that capture continuous video of the free-living environment 

may overcome these problems, but their feasibility must be tested (and ethical constraints 

considered). Self-annotation by participants is burdensome over longer periods, and the 

reliability of these methods are questionable. Using another accelerometer’s proprietary 

classification algorithms may also introduce error, as these proprietary algorithms have only 

shown moderate accuracy in classifying various activity types [22]. A portable metabolic 

analyser (n = 6) [104-107,110,118], calorimetery (n = 2) [116,123]was the criterion measure 

of energy expenditure for studies predicting activity intensities. However, direct observation 

was used for studies (n = 3) [108,111,123] that classified intensity into categories (sedentary, 

LPA, MVPA), either based on MET values published in the Compendium of Physical 

Activities [134] or estimated from previous metabolic analysis findings. Obtaining valid 

ground truth labels in a free-living setting (particularly for activity intensity) is an important 

consideration for future work. 

 

Data segmentation 

Segmentation of the data – partitioning the data into smaller segments – is performed so the 

features of the accelerometer signal (see next section) can be calculated within each of these 

smaller segments. Of the 43 studies that examined activity type, 24 segmented their raw data 

into non-overlapping windows (epochs) ranging between 1 second and 1 minute 

[26,65,66,69,81,84,87,89-91,93,96-99,101,102,109,115,117,119,121,126,127]. Sixteen 

studies [67,68,82,83,85,86,88,92,95,100,103,113,114,120,124,125] segmented data into 
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overlapping windows; most with a 50% overlap (n = 13) 

[67,68,85,86,88,92,95,100,103,114,120,124,125]. Finally, one study determined its epoch 

length by an integration-and-threshold algorithm [112]. In contrast, all studies detecting 

activity intensities (n = 10) segmented data into non-overlapping windows ranging between 

10 seconds and 1 minute, with 30 seconds being the most common (n = 7) [104-

108,110,111]. One study found that epoch lengths of 6.4 seconds or 12.8 seconds maximised 

classification accuracy when using a decision tree classifier [81], although another study 

found 1.5 seconds performed the best [69]. While these are contrasting results, it is important 

to consider the types of activities under study. It is almost certain that transitional activities 

such as sit-to-stand can be better identified in shorter epochs, but shorter epochs might be 

insufficient to capture ambulatory activities such as walking that occur in longer recurrent 

cycles. It is possible that optimal window/epoch length differs by activity type, but the 

optimal combinations of epoch length and activity (and device placement location) are 

currently unknown.  

 

Feature generation 

Feature generation is an important phase in machine learning, where features (i.e., variables) 

are calculated on segmented raw accelerometer data. As most supervised machine learning 

algorithms do not create their own features, their performance is dependent on the quality of 

the features that are used for model training. Features that contain clear predictive properties 

(i.e., are observably different for different activity types) can lead to better classification 

performance. Features can be extracted from either the time or frequency domain of the 

signal. Time domain features capture the variation of the signal over time and are generally 

based on statistical properties (e.g., mean, standard deviation, correlation), whereas 

frequency-domain features illustrate how much of the signal lies within different frequency 
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bands, by applying transform functions (e.g., Fast Fourier transform). Detailed descriptions of 

these features and how they are calculated are available elsewhere [135]. 

  

More than 60% of studies (n = 32) [26,65-68,81,82,84,86-90,93,96-98,102,103,111,112,114-

119,121,123-127] calculated a range of time and frequency domain features. Seventeen 

studies extracted only time domain features [66,69,83,85,91,92,94,95,99,100,104-110], three 

of which also included the participant’s height and weight as non-accelerometer features 

[89,104,106,107]. Finally, one study extracted features only from the frequency domain of 

the signal [113]. Generally, classifiers achieve better performance accuracy when trained on 

features that comprise both time domain and frequency-domain components [111,114], 

although high accuracy has been achieved using simple time-domain features (e.g., mean and 

variance of the signal) [67,90]. A feature (such as vector magnitude) may clearly differentiate 

between ambulatory and sedentary activities but may not be useful to separate cycling and 

running. Likewise, features concurrently generated from more than one accelerometer may 

also improve model performance [26,95].  

 

Machine learning classifiers 

Thirty-one different machine learning classifiers were used among studies, with many studies 

comparing several classifiers (range: 1–14). The most common classifier was the support 

vector machine (SVM) (n = 22 studies) [67-69,81,86-

88,90,91,93,98,102,103,111,113,117,119,120,122,124,126,127] followed by random forest 

(RF) [26,65,82,85-87,89,91,95-98,111,115,117-119,121,123], and neural network (NN) 

[68,69,83,86,90,93,94,99,100,103-111,116] (n = 19 studies each). Refer to Figure 3-4 for a 

list of other classifiers used (n >= 3). Detailed descriptions of how these algorithms work are 

published elsewhere [136]. It is extremely challenging to compare algorithm performance 
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across studies, as several factors influence model performance (e.g., study environment, 

features generated, different activity types, ground truth measure used). In general, no one 

method clearly outperforms all others. It is advisable to evaluate various machine learning 

classifiers on a given condition to allow comparison.  

 

    Figure 3-4. Types of machine learning classifiers 

Evaluation of model performance 

Cross-validating a machine learning model is crucial for evaluating its true predictive 

performance on new data and highlighting problems such as overfitting. Testing the model on 

a completely independent dataset is ideal, but in many cases, a separate dataset is not 

available. There were several cross-validation techniques used in the reviewed studies. Nine 

[66,68,90,91,94,99,122,126,127] used k-fold cross-validation (six of which used k = 10 

[68,90,91,94,126,127]) where the dataset is divided into k subsets and the model is trained on 

k-1 subsets and tested on the remaining subset. This process is repeated k times so each 
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subset acts as the test set, and the results are then averaged. Thirty-seven studies (70%) used a 

variation of k-fold called leave-one-out cross-validation (LOOCV) [26,65,69,81,82,84-89,91-

93,96-98,102,104-111,113-121,123,125], where k is equal to the number of participants. Each 

participant, in turn, acts as the test set, while the model is trained on the remaining 

participants. The results are then averaged. The advantage of these methods is that data from 

every participant is utilised for model training. Five studies randomly split the data into two 

separate datasets (a 70/30% train/test split was used by 2 studies [69,83], one study used a 

50/50% split [101], and 80/20% split [67] respectively). However, randomly partitioning data 

may inflate model accuracy, as the training and testing datasets may not be completely 

independent (i.e. both may contain data from the same person). Therefore, researchers are 

encouraged to use out of sample techniques such as LOOCV.  

 

Results summary 

The overall classification accuracy achieved in the studies ranged between 62% and 99.8%; 

nearly 80% of studies (n = 41) [26,65-69,81-83,85-96,99-103,107-109,112-114,118,119,121-

127] achieved an accuracy above 85%. Figure 3-5 demonstrates how the accuracy of activity 

type prediction varies across different study parameters. Given the heterogeneity in study 

characteristics and machine learning classifies used, Panel A is modelled on the results 

achieved by three most common (~84 % of studies) classifiers: support vector machine 

(SVM), random forest (RF), and artificial neural network (NN). Nearly 45% of the studies 

[67,68,93,102,103,113,122,126,127] using a SVM achieved an overall accuracy above 95%, 

and while ~40% of these studies [82,86,87,91,117,120] showed 85% accuracy or less. Almost 

half of the studies [82,86,87,97,98,115,117,119] that used a RF achieved an accuracy under 

85% with a very few studies [26,69,96,103,118] achieving above 95%. The NN classifier 

showed more mixed results across studies. Lastly, of the ten studies that identified activity 
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intensities, eight used a neural networks; six out of which illustrated high correlations or 

lower root mean square error (e.g., r = 0.95 , RMSE = 0.29 ± 0.10 kcal/min) in estimating 

energy expenditure [104-107,110,116,118]. Three studies [111,118,123] used a random forest 

classifier to predict activity intensity and demonstrated performance accuracies ranging 

between 75% and 92%.  

 

Panel B demonstrates overall model performance by study settings. Almost 85% of the 

studies conducted in a controlled environment acheived an accuracy above 90% 

[26,66,68,69,81-83,85,92,94,96,102,103,112-114,122,125], with more than half of them 

above 95% [26,68,82,83,92,96,102,103,113,114,122,125] . However, most studies that 

acheived under 85% accuracy were evaluated in free-living conditions [84,97,98,115,117]. 

  

Panel C indicates that classification performance was above 95% when evaluated using 

random split and k-fold cross-validation techniques. However, most studies that reported 

under 85% accuracy used leave-one-subject-out cross-validation [84,91,97,98,115,117,120] .  

 

Finally, Panel D shows that most studies evaluating three or more accelerometers achieved 

accuracy above 90% [67,68,83,87,88,90,103,114], with ~75% of them above 95% 

[67,68,83,88,90,103,114]. Studies that achieved under 85% accuracy mostly used single 

accelerometers [86,91,97,98,115,117,120]. The small number of studies [26,119] that 

evaluated dual-accelerometers offers promise by achieving above 85% accuracy.  
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Figure 3-5. Model performance (represented as percentage of classification accuracy) under 

various study parameters 

 

Although these findings display some preliminary patterns, researchers must be aware that 

other crucial study factors such as the complexity of the activities detected, the features 

generated, sensor placement location, and window/epoch size also determine model 

performance. A more focused review would be well-suited to investigate these interactions. 
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Limitations 

The aim of this review was to obtain an overall cohesive summary of the current use of 

machine learning for classification of human movement behaviour. As such, many 

heterogeneous studies were included which limits the precision of the review. This has meant 

that the accuracy of individual activities (e.g., sitting, standing, walking) in each study were 

not reported (in some cases up to 19 per study), and classifiers were not directly compared. 

The duration of each experiment (including the duration of each specific activity performed) 

was also not reported.  

Conclusion 

Machine learning techniques offer a viable mechanism for detecting all components of 

physical activity (frequency, intensity, time and type). With rapidly growing interest in this 

field of research, there is potential scope for future studies to investigate several machine 

learning classifiers and evaluate various influential factors (e.g., number of devices, 

placement, types of features) that determine model performance. However, the application of 

these techniques to free-living conditions is currently limited. To achieve measurement 

reliability, it is essential that future machine learning studies focus on developing models 

from free-living data across all populations (both adults and children) that can predict activity 

types and intensity. Nevertheless, machine learning certainly offers considerable promise in 

physical activity research, and may hold the key to advancing our understanding of physical 

activity and health. 
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Chapter 4 - A dual-accelerometer system for detecting human movement in a 

free-living environment 

 

 

Preface  

The preceding chapter systematically reviewed the application of machine learning in 

classifying human movement behaviours. Despite the potential of these techniques for 

furthering our understanding of physical behaviours and health, their current application is 

currently uncertain in field-based conditions. Therefore, the aim of this chapter is to examine 

the free-living criterion validity of a measurement system (comprising dual-accelerometers) 

that employs a supervised machine learning classifier to predict various human movement 

behaviours in children and adults. 
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Abstract  

Purpose 

Accurate measurement of various human movement behaviours is essential in developing 

24-hour movement profiles. A dual accelerometer system recently showed promising results 

for accurately classifying a broad range of behaviours in a controlled laboratory environment. 

As a progressive step, the aim of this study is to validate the same dual-accelerometer system 

in free-living conditions in children and adults. The efficacy of several placement sites (e.g., 

wrist, thigh, back) were evaluated for comparison. 

Methods 

Thirty participants (15 children) wore three Axivity AX3 accelerometers alongside an 

automated clip camera (clipped to the lapel) that recorded video of their free-living 

environment (ground truth criterion measure of physical activity). Participants were 

encouraged to complete a range of daily-living activities within a two-hour timeframe. A 

random forest machine learning classifier was trained using features generated from the raw 

accelerometer data. Three different placement combinations were examined (thigh-back, 

thigh-wrist, back-wrist), and their performance was evaluated using leave-one-out cross-

validation for the child and adult samples separately. 

Results 

 Machine learning models developed using the thigh-back accelerometer combination 

performed the best in distinguishing seven distinct activity classes with an overall accuracy of 

95.6% in the adult sample, and eight activity classes with an overall accuracy of 92.0% in the 

child sample. There was a decline in accuracy (at least 11.0%) when other placement 

combinations were evaluated. 
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Conclusions 

This validation study demonstrated that a dual accelerometer system previously validated in a 

laboratory setting also performs well in free-living conditions. Although these results are 

promising and progressive, further work is needed to expand the scope of this measurement 

system to detect other components of behaviour (e.g., activity intensity and sleep) that are 

related to health. 
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Introduction 

Accurate and uninterrupted measurement of various human movement behaviours across 

complete (24-hour) days is essential in understanding the interactions between these 

behaviours and their impact on health and wellbeing [17]. Over the last decade, 

accelerometers have been the most preferred device-based measure to assess these behaviours 

[53,74]. However, traditional methods for processing raw accelerometer data have several 

limitations including ambiguous intensity threshold decisions, proprietary algorithms, and 

lack of activity type measures [75]. Furthermore, these approaches may not be suitable to 

assess 24-hour movement patterns [22]. To overcome these challenges and facilitate accurate 

estimates of physical activity, researchers have moved towards advanced processing methods 

involving the combined application of raw accelerometer data and various machine learning 

algorithms [64]. 

 

Rapidly growing interest in this field has spurred researchers to evaluate the performance of 

several machine learning algorithms for predicting physical activity components (activity 

type and intensity) under various study conditions (e.g., accelerometer placement positions, 

and the number of accelerometers used concurrently). One of the key opportunities of 

machine learning is the ability to use multiple sensors to improve the detection of human 

movement. Traditional processing methods do not allow for integration of raw accelerometer 

data from multiple units. Several machine learning studies have evaluated the efficacy of 

more than one accelerometer (up to nine sensors [67]), and various accelerometer placement 

combinations (e.g., wrist, waist, back, and thigh) for classification of physical activity 

behaviours. However, increasing the number of sensors may affect compliance due to 

increased participant burden. Single wrist-worn devices are becoming popular due to 

improvements in device wear time [137], yet the optimal placement site (or combination of 
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placement sites) that offers high compliance and can effectively discern various movement 

behaviours is currently unknown. 

 

Although machine learning techniques offer considerable promise in detecting various 

physical activity behaviours, their application is currently limited in free-living conditions. 

Most machine learning studies have been conducted in laboratory settings [64]; which are 

controlled environments and may not be sensitive to the intricacies of movement in free-

living settings. In fact, several studies have revealed that machine learning models developed 

in laboratory conditions demonstrate poor performance when tested in free-living settings 

[27,93]. A recent validation study conducted in a controlled laboratory environment used a 

random forest machine learning classifier to achieve exceptional accuracy (> 99%) in 

classifying six physical activity types in both adults and children using a thigh and back 

accelerometer [26]. Although these results are promising, their validity in free-living 

conditions remains unknown. Therefore, the purpose of this study is (1) to investigate the 

criterion validity of this dual-accelerometer system (back-thigh) in free-living conditions, and 

(2) examine the efficacy of other accelerometer placement combinations (e.g., back-wrist, 

thigh-wrist) for classifying physical activity and sedentary behaviours in children and adults. 

 

Methods 

Participants 

Children (aged 6–15) and their parents were invited to participate in this study through 

advertisements at a local school and on the university campus. The children’s parents 

contacted the research team if they were interested in participating. Participants were deemed 

eligible if they were free from disability and were able to perform a range of physical 
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activities in their free-living environment. Prior to participation, each parent and child gave 

their written informed consent and assent respectively (see Appendix C). All participants 

received a gift voucher to reimburse them for their time. Ethical approval was obtained from 

the AUT University Ethics Committee (#18/99) (see Appendix A).  

 

Free-living protocol 

Data collection initially involved a visit to the university campus for approximately 10–15 

minutes. Upon arrival, the study protocol was explained to each participant, before they were 

equipped with three Axivity AX3 accelerometers (Axivity, York, UK) and a wearable camera 

(SnapcamLite, iON Ltd, UK)). One accelerometer was positioned on the anterior aspect of 

their thigh (midway between knee and hip), one was positioned on their lower back, and the 

third one on their dominant wrist. These were placed on the same side as the participant’s 

handedness (left or right). Both the back and thigh sensors were attached using purpose-made 

hypoallergenic adhesive foam pouches (Herpa Tech, Stockholm, Sweden) [25], while the 

wrist sensor was attached using an Axivity silicon wrist band. Finally, the wearable camera 

was clipped to the participant’s clothing lapel. After being equipped with the instruments, 

participants left the facility and were encouraged to perform a variety of physical activities in 

their free-living environment for a period of two hours (duration limited by battery life of 

wearable camera). To obtain a variety of human movement behaviours within a limited 

timeframe, participants were provided with a list of activities (Table 4-1) to guide them. 

However, these were not strictly enforced, and participants were generally encouraged to 

carry out their everyday free-living activities. Participants later returned to the university 

campus where the instruments were collected. 
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Table 4-1. List of activities 

Activity guide 

Sitting on the floor 

 
Sitting on a chair 

 
Sitting on a high stool 

Sitting/Lying on a couch 

Lying on a bed with different orientations (on your tummy, on your back, on each side) 

 

 
Standing doing household tasks (e.g., vacuuming) 

 Standing while cooking/gardening 

 Walking 

Travelling in a car 

 
Playing a game 

Bicycling 

 
Jogging/running  

 

 
 

Instrumentation 

The Axivity AX3 is a small (23 x 32.5 x 8.9 mm; 11 g) waterproof triaxial accelerometer 

with a configurable sampling frequency between 12.5 Hz and 3200 Hz, and a bandwidth 

range between ±2G and ±16G. The accelerometer has an internal memory of 512 MB that 

can store 14 days of continuous acceleration data sampled at 100 Hz. It also incorporates a 

real-time quartz clock and a skin temperature sensor (range 0–40° C) which can be used for 

accurate wear time detection [25]. The accelerometers used in this study were configured to 

record at 100 Hz with ±8G of bandwidth. A total of 12 individual sensors were used in this 

study, of which three (for the back, thigh, and wrist placements) were randomly assigned to 

each participant. All sensors were configured and downloaded using OmGui (version 

1.0.0.30; Open Movement, Newcastle University, UK).  

The SnapCam Lite is a small (42 x 42 x 13.4 mm, 25.6g) wearable clip-camera that can 

record both photos (in intervals of 30 seconds) and videos at 720p (30 frames per second). 

The camera has a MicroSD storage (up to 32 GB) and battery capacity to record continuous 
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video for ~2 hours. In this study, the cameras were configured to record videos of the free-

living environment as the direct observation criterion measure. Video recordings were then 

used to generate ground truth activity labels used in the model training process.  

 

Data pre-processing and feature generation 

The accelerometer data and the concurrent video footage was time synchronised using a 

marker in the sensor data. This was achieved by identifying a clear postural transition (e.g., 

sit to stand) in every participant’s recorded video, and visually inspecting the concurrent 

accelerometer data for a resultant change in signal. This process enabled the exact alignment 

of sensor timestamp with video frame during data processing.  

 

The raw data from AX3s were downloaded and imported into MATLAB (release 2017b, The 

MathWorks, Inc., MA, USA). The sensor data were resampled to 100 Hz using a cubic 

interpolation as the sensor sample rate is known to fluctuate [61]. To ensure measurement 

reliability, the sensors were calibrated; and passed through a 25 Hz Butterworth low pass 

filter to eliminate skin and clothing artefact. A detailed description of this process can be 

found in our previously published work [26]. 

 

To generate ground truth activity labels, each participant’s video recording was annotated 

using the ‘Simple Video Coder’ annotation software. Firstly, a configuration file was 

generated where each activity label (to be annotated) was assigned to a hotkey on the 

keyboard (e.g., 1 = Sitting, 2 = Standing). Activities were then annotated by watching the 

video footage and pressing the corresponding hotkey at the start of the activity, and again at 
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the end of the activity. This annotation process was repeated for every participant’s video and 

the start and stop times of all activities were then exported to a spreadsheet. A more detailed 

description of the software is available elsewhere [138]. Activities performed by adults and 

children were grouped into seven distinct activity classes that occur over a 24-hour day. All 

sedentary activities were annotated as either sitting, lying, or standing, while ambulatory 

activities were annotated as either walking, running, or cycling. Any standing activity that 

occured with slight movement (e.g., household tasks, vacuuming, washing) was annotated as 

“dynamic standing”. All ambulatory activities performed by children that were not running, 

walking or cycling (e.g., trampoline jumping, playing in a park, swinging) were grouped into 

a “dynamic movement” activity class, resulting in eight different activity labels for children. 

 

Feature generation is an important phase in machine learning where several predictive 

properties (features) of the raw accelerometer signal are extracted. The data were first 

segmented into 5-second non-overlapping epochs (windows), and various time- and 

frequency-domain features were calculated over each epoch for each accelerometer pair (i.e., 

thigh-back, back-wrist, and thigh-wrist) individually. In line with our past work [26], a total 

of 142 features were generated which comprises both the time-and-frequency components of 

the signal. The time domain features include the mean, median, standard deviation, 

magnitude, coefficient of variation, minimum, maximum, 25th and 75th percentiles, 

skewness, kurtosis, axis correlations (between-axis and between-sensor), and roll, pitch and 

yaw, while the frequency domain features include the dominant frequency, signal power 

(calculated using fast Fourier transform). These features were computed for each sensor 

(across three axes) and between sensors (where applicable).  
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Machine learning 

In line with our past work [26], the machine learning algorithm employed in this study was 

an ensemble learner called the random forest, which is a collection of many individual 

decision trees [139]. Each decision tree is generated using a bootstrap sample of the training 

data. To increase diversity among the trees, a random subset of features (m) are selected from 

the full dataset at each node split in each tree. The feature which maximises information gain 

is selected for the split. This random feature selection also prevents overfitting the training 

data [136]. Each tree outputs a class (activity type) prediction for each observation, which are 

tallied across all trees to select the final class prediction by majority vote.  

 

Model building and analyses were performed separately for the adult and child samples (for 

each accelerometer combination) resulting in six different models. All classifiers were 

trained, tuned, and validated in R version 3.5.1 [140] using the ‘randomForest’ package 

[141]. The optimal random forest tuning parameter (mtry), which is the number of randomly 

selected features eligible for each node split was identified by evaluating model performance 

with several mtry values; mtry = 3 was selected as it maximised classification performance. 

Similarly, the number of trees in each forest (ntree) was set at 350, as there was no 

improvement in model performance beyond this number. 

 

Analysis 

The predictive performance of each model was evaluated using leave-one-out cross-

validation (LOOCV). This is a type of cross-validation where the model is trained on all 

participants’ data except one, which is left out and considered as the test set. Overall model 

performance is estimated by repeating this process for each participant in the dataset, 



82 
 

averaging the results. This validation method was chosen as it determines model performance 

based on independent data, and hence may be less biased. For each of the activity-class 

predictions, the sensitivity, specificity and balanced prediction accuracy were calculated. 

Sensitivity refers to the ability of the model to correctly classify the activity when the activity 

is present (i.e., true positive). Specificity refers to the ability of the classifier to reject the 

activity when it is not present (i.e., true negative). The balanced prediction accuracy for each 

activity is calculated as the mean of sensitivity and specificity The R programming code used 

for analysis in this study is presented in Appendix E.  

 

Results 

A sample of 15 children (mean age = 10.0 ± 2.6 years; 66.6% male) and 15 adults (mean age 

= 31.5 ± 10.8 years; 33.3% male) successfully completed the study. In total, 18,239 5-second 

epochs coded with activity class were obtained from the adult sample, while 15,256 were 

obtained from the child sample. Three different machine learning models were developed 

using different placement combinations (thigh-back, thigh-wrist, and back-wrist) for both 

children and adults (six models in total). The random forest training and validation process 

for each model took, on average, 12.3 minutes and 11.7 minutes to complete for the adult and 

child samples, respectively. Model training took place on a computer system with an Intel 

Xeon E5-1620 v3 CPU, and 32 GB of RAM. 

Tables 4-2 and 4-3 illustrate the accuracy metrics of each activity class for the adult and child 

sample (respectively) when three different placement combinations were evaluated 

(thigh-back, thigh-wrist, and back-wrist).  
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Table 4-2. LOOCV performance for each activity class in the adult sample. 

   Sitting Lying Standing Dynamic 

standing 

Walking Running Cycling 

 

Back 

Thigh 

Sensitivity 98.3 99.8 92.8 87.4 91.6 100 98.1 

Specificity 99.1 99.9 98.4 98.5 99.6 99.6 99.2 

Balanced accuracy 98.7 99.9 95.6 92.9 95.6 99.8 98.7 

 

Back 

Wrist 

Sensitivity 84.3 99.5 53.0 62.9 69.8 100 81.1 

Specificity 86.9 99.9 90.8 97.1 99.5 99.9 93.3 

Balanced accuracy 85.6 99.9 71.9 80.0 84.6 99.9 87.2 

 

Thigh 

Wrist 

Sensitivity 85.4 39.9 94.0 88.3 71.0 100 96.4 

Specificity 94.3 93.5 98.7 98.5 99.5 99.9 96.3 

Balanced accuracy 89.9 66.7 96.4 93.4 85.2 99.9 96.3 

Note: Sensitivity, specificity and balanced accuracy are presented as a percentage (%).  

 

Table 4-3. LOOCV performance for each activity class in the child sample. 

   Sitting Lying Standing Dynamic 

standing 

Walking Running Cycling Dynamic 

movement 

 

Back  

Thigh 

Sensitivity 96.9 98.1 81.1 74.5 88.3 87.3 88.5 62.3 

Specificity 96.3 99.9 98.8 98.9 99.3 99.8 99.1 97.2 

Balanced accuracy 96.6 99.0 90.2 86.7 93.8 93.6 93.8 79.7 

 

Back 

Wrist 

Sensitivity 86.7 98.3 53.9 57.4 80.1 91.1 84.2 63.4 

Specificity 95.5 99.7 94.8 96.6 98.8 99.8 97.8 97.2 

Balanced accuracy 91.0 98.9 74.4 77.0 89.5 95.5 91.0 80.3 

 

Thigh 

Wrist 

Sensitivity 85.0 62.9 81.5 74.9 88.3 92.3 92.0 61.7 

Specificity 89.9 92.4 99.0 99.1 99.4 99.8 98.6 97.1 

Balanced accuracy 87.5 77.7 90.3 87.0 93.9 96.1 95.3 79.4 

Note: Sensitivity, specificity and balanced accuracy are presented as a percentage (%). 
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Figure 4-1 compares the balanced accuracies achieved by the machine learning models in 

detection of each activity in both the adult and child samples. Overall, the back-thigh model 

achieved the highest LOOCV accuracy (across all activity classes) of 95.6% (95% CI = 95.3, 

95.9) for the adult sample, and 92% (91.6, 92.4) for the child sample (see Figure 4-2). The 

lowest performance was observed for the model generated using the back-wrist combination 

in the adult sample (75.4%, 95% CI = 74.9, 76.2). 

 

 

 

 

Figure 4-1. Performance comparison between different accelerometer combinations in prediction of each 

activity class. 
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Table 4-4 presents the confusion matrices of model performance from the back-thigh 

combination. The confusion matrix for this sensor combination is presented only, given it 

performed the best. These matrices present values of the number of 5-second epochs that are 

correctly classified or misclassified for each activity class. Standing and dynamic standing 

were the two main areas of confusion (more than 300 epochs in total) in the adult sample, 

while dynamic movement had the highest number of misclassifications, and was confused 

with most other activities in the child sample. In contrast, running and lying activities had the 

least number of misclassifications in both the adult and child samples. Although, it has to be 

acknowledged that ambulator activities (such as running, dynamic movement) in children had 

relatively fewer epochs of training data, and hence the accuracy of the machine learning 

model in predicting these activities may be reduced when applied to new free-living data. 

 

Figure 4-2. Overall performance comparison between different accelerometer combinations. Error 

bars represent 95% confidence intervals of accuracy. 



86 
 

 

Table 4-4. Confusion matrices for model predictions for both adult and child samples using the back and thigh accelerometer. 

   Predicted    

   Sitting Lying Standing DS Walking Running Cycling DM Total 

O
b

se
rv

ed
 

 A
d
u
lt

 

Sitting 7966 2 62 21 0 0 3 - 8054 

Lying 5 1449 0 2 0 0 0 - 1456 

Standing 45 0 2805 190 0 0 0 - 3040 

DS 26 0 154 2149 35 0 16 - 2380 

Walking 0 0 0 54 1376 0 0 - 1430 

Running 1 0 0 0 61 551 2 - 615 

 Cycling 55 0 1 42 29 0 1137 - 1264 

 C
h
il

d
 

Sitting 8284 9 111 99 2 0 7 18 8530 

Lying 5 1700 0 5 0 0 0 4 1714 

Standing 44 0 694 112 3 0 1 0 854 

DS 45 3 40 1141 20 0 15 20 1284 

Walking 0 0 0 30 1621 7 3 54 1715 

Running 0 0 0 0 13 69 0 6 88 

  Cycling 56 0 0 44 11 0 333 15 459 

  DM 108 20 6 99 165 3 17 194 612 

 

Note: Values represent the number of 5-second epochs correctly classified or misclassified; DS - Dynamic standing,  

DM - Dynamic movement; Bold values represent correct predictions. 
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Discussion 

This study investigated the validity of a thigh-back dual-accelerometer system for classifying 

free-living human movement behaviours in children and adults and evaluated the efficacy of 

other accelerometer placement combinations. This study builds upon previous work which 

illustrated exceptional classification performance in laboratory conditions [26]. Our results 

indicate that the machine learning model developed using the thigh and back accelerometer 

achieved the highest overall accuracy (at least 11% higher than other tested 

dual-accelerometer systems) and was able to discern seven distinct activity classes with 

95.6% accuracy in the adult sample, and eight distinct activity classes with 92% accuracy in 

the child sample. The other placement combinations achieved an overall balanced accuracy 

ranging between 75% and 84.5%. The back-thigh combination clearly outperformed other 

combinations when classifying sedentary activities such as sitting and lying in both samples. 

This is probably because these placement sites simultaneously capture orientation of the 

upper and lower body, and hence can effectively discriminate various upright and non-

upright postures (e.g., sitting vs. standing). Contrastingly, all placement combinations 

performed well in classifying ambulatory activities (cycling, running and walking). The 

thigh-wrist combination performed marginally better for classifying running and cycling 

activities in the child sample. Dynamic standing was also slightly better classified with this 

combination in both samples. This is somewhat expected, as standing with movement (e.g., 

doing household tasks such as washing dishes) may also involve sensitive hand or arm 

movements which are effectively captured by the wrist sensor. Lastly, all three combinations 

performed similarly for classifying dynamic movement in children. 

 

Although several studies in the past have employed various machine learning algorithms to 

classify accelerometer data into activity types, only a few have been conducted in free-living 
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conditions [64]. Furthermore, most of these free-living studies have used data from single or 

many (3+) accelerometers. Single accelerometers may be less intrusive for participants, 

improving compliance; however, there may be a performance trade-off. Ellis et al.[89] 

classified four distinct activities in free-living conditions using a random forest classifier 

(coupled with a Hidden Markov Model) with a performance accuracy of 84.6% using a single 

wrist-worn accelerometer. Similarly, another free-living study in 132 adults achieved an 

overall accuracy of 87% in classifying six distinct activity classes from a single wrist-worn 

sensor [121]. Other free-living studies that used a single hip-worn accelerometer 

demonstrated moderate performance (~80%) in classifying five to six activity classes using a 

random forest classifier [98,115]. The results observed in the present study are seemingly 

higher than previous single-accelerometer studies. The machine learning models developed in 

this study were trained with features extracted from two accelerometers worn simultaneously, 

unlike these studies that have trained their models using features generated from a single 

accelerometer (worn on the hip, wrist, or back).  

 

Several studies that have used data from multiple accelerometers have exhibited very high 

classification accuracy. For instance, Fullerton et al.[67] used nine body-worn accelerometers 

to achieve an accuracy of 97.6% in classifying eight different activities of daily living, and 

Gao et al. [90] used four sensors to classify five free-living activities with an accuracy of 

96.4%. Although multiple sensors demonstrate high performance, these protocols are likely 

to be impractical in larger studies. Evidently, the similarly high accuracy achieved in the 

present study using dual sensors represents a promising step, and when combined with 

previous wear time compliance results [25,142], this approach may provide an optimal 

balance between compliance and model performance in monitoring and understanding 24-

hour time-use behaviours. Even so, there are several other factors which contribute to the 
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feasibility of this dual-accelerometer system. The cost of equipment per participant is 

essentially doubled, and generating features from multiple accelerometers (as opposed to one) 

requires more computation time and resources.  

 

A strength of the present study is the inclusion of both children and adults. Most previous 

machine learning models developed from free-living data are specific to adults (inclusive of 

older adults). Children tend to have varied movement patterns when compared to adults 

[129], hence it may be essential to train individualised machine learning models. 

Nonetheless, the current study sample was confined to healthy adults and children of specific 

age ranges and did not include clinical populations. The generalisability and 

interchangeability of machine learning models across different population groups (e.g., young 

children, older adults, clinical groups) is not well understood and is an area for future work. 

 

While most free-living studies have classified distinct sedentary and ambulatory activities, 

not many have identified light intensity activities (standing with movement or dynamic 

standing) that occur during household tasks. The classification of these behaviours is another 

strength of the present study. We were able to capture these light intensity activities due to 

our novel approach for obtaining ground truth video captured by wearable cameras. Most 

free-living studies have obtained ground truth labels by annotating images captured in 

intervals (20 or 30 seconds). Although static images are a form of direct observation, they 

may be captured too infrequently to distinguish activities such as dynamic standing. 

Furthermore, they may miss exact transitions between activities and can introduce error into 

the activity labels. However, the limited battery life of small and portable wearable cameras 

prevents longer periods of video recording. Shorter periods of video recording have also 

limited the scope of the present study for capturing free-living patterns of time-use and 



90 
 

prevents the application of some machine learning algorithms. For example, the Hidden 

Markov Model has been used to improve prediction accuracy by learning the probabilities of 

transitioning from one activity to another [89], but these methods are only applicable with 

longer measurement durations where patterns of time use can be learned. Future 

advancements in wearable camera technology may enable longer periods of recording that 

will allow researchers to better understand and estimate free-living movement patterns. 

 

Although we demonstrated high accuracy in classifying various activity types with two 

sensors in free-living conditions, our study design was limited to activity types. This meant 

that the intensity component of physical activity was not examined. For example, different 

speeds of walking, running and cycling yield different levels of energy expenditure, and can 

be highly variable between individuals. Therefore, it is essential that future work explores an 

integrated measurement system that can concurrently capture both the intensity and type 

components of activity. However, obtaining reliable ground truth criterion measures for 

intensity is challenging in free-living conditions. Finally, accurate estimation of sleep (as 

opposed to lying) is another crucial element in developing 24-hour behavioural profiles and 

there is scope for future studies in this regard.  

 

Conclusion 

To progress the time-use epidemiology field of research, it is vital to accurately capture 24-

hour movement profiles in free-living conditions. Previous work with a dual-sensor system in 

a controlled environment showed great potential for capturing a broad range of physical 

activity behaviours. When validated in free-living conditions, the same dual-sensor system 

demonstrated high accuracy in classifying various human movement behaviours. Considering 
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these findings with recent wear-time compliance results, a dual-sensor protocol may offer the 

optimal trade-off between participant compliance and model classification performance. 

Although our results represent a promising step towards building accurate time-use behaviour 

profiles, further work is needed to expand the scope of this measurement system to detect 

other components of behaviour (e.g., activity intensity and sleep) that are related to health. 
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Chapter 5 - General Discussion 

 

 

Research summary 

The aim of this thesis was to explore the viability of machine learning for facilitating 24-hour 

monitoring of physical activity behaviours. Chapter 2 revealed the inconsistencies in 

traditional measurement tools and highlighted the development of advanced processing 

techniques such as machine learning in physical behaviour measurement. Chapter 3 

systematically reviewed the utility of machine learning for measuring various physical 

behaviour components and summarised the current applications in this growing field. 

Chapter 4 was an original research study that used a random forest machine learning 

classifier to compare the performance of various dual-accelerometer combinations (e.g., 

back-thigh, back-wrist, thigh-wrist) for capturing free-living human movement behaviours in 

children and adults.  

 

The systematic scoping review (Chapter 3) revealed the increasing application of machine 

learning (especially over the last five years) for the prediction of various physical behaviour 

components, using several types of algorithms under various study conditions. Although 

machine learning algorithms offer considerable promise, with nearly 80% of the studies 

demonstrating high performance (classification accuracy >=85%), their application was 

mostly limited to lab-based studies. Hence, the review concluded by outlining the need for 

future machine learning studies to focus on developing predictive models from free-living 

data. 
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Chapter 4 showed that machine learning models developed in free-living conditions using the 

thigh and back accelerometer combination achieved the highest overall accuracy compared to 

other dual accelerometer combinations (back-wrist, thigh-wrist). This model was able to 

differentiate seven distinct activity classes with an overall balanced accuracy above 95% in 

the adult sample, and eight distinct activity classes with an overall balanced accuracy of 92% 

in the child sample. Although these results are progressive, the scope of this measurement 

system was confined to predicting the type component of physical behaviour. This study 

encouraged future work to integrate measurement systems that allows concurrent detection of 

all physical behaviours (including sleep) and its components (e.g., type and intensity) that are 

related to health. 

 

Significance of findings 

Generalisability and validity of machine learning models 

Generalisability and validity are key attributes required for reliable measurement. The extent 

to which a tool can measure accurately in external settings (settings beyond which the tool 

was developed) is termed generalisability, while validity is the extent to which the 

measurement is essentially true. Achieving generalisability and validity are key challenges in 

physical behaviour measurement. Firstly, there are various factors that affect measurement 

generalisability, such as study setting and study sample. Most of the studies employing 

machine learning techniques have been conducted in a controlled laboratory settings. This is 

a critical limitation that hinders generalisability; models developed in controlled 

environments may not be competent to recognise the movement behaviours that occur in 

free-living conditions [27]. This is because lab models are generally trained with datasets that 

mostly encompass well-defined structured activities (e.g., standing still). Considering this 

aspect, studies have conducted experiments in semi-structured controlled environments, 
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where participants are allowed to perform activities without any strict rules (e.g., standing 

doing a task, such as drawing on a board) [26,105,107,110] . Although it is a progressive 

step, the ability to capture dynamic behaviours of daily life is still limited. To address this 

issue, the validation experiment (Chapter 4) was conducted in a free-living environment 

which enabled prediction of real-life dynamic activities such as dynamic standing (e.g., doing 

household tasks, vacuuming, brushing teeth), and dynamic movement (e.g., children playing, 

jumping on a trampoline). Similarly, training a machine learning model with sample data that 

closely represents the free-living population of interest will ensure models are generalisable 

in real life conditions. For instance, a machine learning model developed on data collected 

from adults to predict various physical activity behaviours, may not be generalisable to 

predict activity behaviours in children (age under 15 years). Considering this possible 

discrepancy, two separate machine learning models were developed in Chapter 4 from two 

distinct population groups (adult and children). The variability in participant age within a 

sample group is also an important consideration to ensure models are generalisable. For 

example, given the postural variability in children as they age [129], a machine learning 

model developed on data collected from children (aged 7–8 years) may not be generalisable 

to predict activity behaviours in older children (aged 10–15 years). The participant age range 

within each sample group in Chapter 4 was broad (children aged between 6 – 16 years, and 

adults aged between 18 – 60 years) which may help to improve model generalisability.  

 

Secondly, validity of a measurement system is important to accurately evaluate physical 

behaviour initiatives and adherence to national activity guidelines. Traditional measurement 

techniques have shown various limitations in this aspect [23,24]. In the context of machine 

learning, the validity of a machine learning model is directly linked to the quality and 

accuracy of the ground truth labels obtained to train the model. Direct observation is 
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considered the gold standard criterion-measure of physical activity behaviours. Chapter 3 

revealed that past machine learning studies have employed various methods for obtaining 

ground truth labels in free-living conditions. Some of these methods (e.g., in-person 

observation) are impractical due to ethical constraints and cost, and some (e.g., direct 

observation from static images) may be susceptible to labelling errors. Therefore, to ensure 

validity, Chapter 4 employed a novel approach for obtaining ground truth data from videos 

captured by wearable cameras worn on the lapel. Although videos are the best form of direct 

observation, accurately annotating them to physical behaviour labels can be challenging and 

resource intensive. Prior to video annotation, it is primarily important to finalise the labels 

(activities) that are included in model predictions. Participants in different population groups 

can engage in distinct activities in free-living settings. For instance, in Chapter 4, there were 

seven activity labels identified for prediction in the child and adult sample groups; however, 

an additional activity label “dynamic movement” was added for exclusive prediction of 

dynamic ambulatory activities (e.g., swinging, playing in the park) in the child dataset. 

Notably, the dynamic movement activity label also had the highest number of 

misclassifications, and was confused with most other activities in the child sample. This is 

likely because videos captured from a first-person view can be ambiguous during dynamic 

ambulatory activities (due to unsteadiness of the wearable cameras). Videos captured from a 

third-person view (e.g., cameras placed in a room) may overcome these problems; however, 

the feasibility of this methodology is a likely barrier. 

 

Variations in study parameters 

The rising trend in machine learning has encouraged researchers to test several machine 

learning algorithms under various study conditions. Chapter 3 found that 31 different 

machine learning algorithms have been applied in physical behaviour studies. Each algorithm 
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has several strengths and limitations and there is no single algorithm that is deemed best; 

however, their performance is influenced by other study conditions (such as data 

segmentation, and feature generation). Chapter 3 showed the heterogeneity among studies in 

selection of these study conditions. When considering the various combinations of these 

factors, it is highly challenging to draw comparisons between studies. Furthermore, the 

variations in the types of activities predicted, study setting, sample population, and ground-

truth measure makes it almost impossible to recognise the best decisions (e.g., best epoch 

length) and the best performing algorithm suitable for physical behaviour prediction.  

 

Chapter 3 indicated that most machine learning studies, segmented their raw data into non-

overlapping windows (epochs) ranging between 1 second and 1 minute. However, to enable 

selection of optimal epoch length, it is important to consider the types of activities under 

study. For instance, transitional activities (such as sit-to-stand) can be better identified in 

shorter epochs (e.g., 1 second), while longer epochs (e.g., 5 seconds or 10 seconds) may be 

useful in identifying ambulatory activities such as walking that occur in recurrent patterns. In 

Chapter 4, the epoch length was chosen as 5 seconds as the study was not intended to predict 

any transitional activity.  

 

Feature generation is another important study condition, as features with strong predictive 

properties can lead to better model performance. Chapter 3 showed that most studies 

generated features from both time and frequency domain of the signal, different features 

could be useful in predicting different types of activities. For instance, some features (e.g., 

axis orientation) may be useful for identifying and differentiating sedentary behaviours, while 

others (e.g., signal vector magnitude) may be effective for classifying ambulatory activities. 
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Therefore, it is prudent to choose features that are relevant based on the types of activities 

predicted. Given the wide range of physical behaviours predicted in Chapter 4, several 

features were generated from both the time and frequency domain of the raw data signal. 

However, it has to be acknowledged that increasing the number of features would also result 

in increased computational time; hence, for optimal feature selection, it is also important to 

consider the resources available.  

 

Integration of physical behaviour components 

There is no single measurement tool that has been validated to accurately capture all 

components of free-living physical behaviour (Chapter 2). Researchers have relied on distinct 

measurement tools and processing techniques to identify either intensity or type of physical 

behaviour. Chapter 3 showed that most studies employing machine learning techniques have 

focussed on capturing only the type of physical behaviour such as sitting and walking. This 

disparity is may be because prediction of activity type (unlike activity intensity) is a relatively 

new interest among health researchers, especially given the growing research interest in 

identifying various postural behaviours that constitute a 24-hour day [17]. The emergence of 

machine learning has also prompted researchers to predict various types of activities in each 

experiment (ranging from two to 19 activities) (Chapter 3). On the other hand, prediction of 

activity intensity from accelerometer counts has been a widely used methodology in physical 

activity research for many years. However, the limitations of count-based thresholds, and 

recent success in some machine learning studies [105-107] may encourage researchers to 

shift towards machine learning for prediction of various activity intensity levels.  

 

Distinguishing activity behaviours into types such as sitting, standing and walking is 

important to understand their physiological response; however, different walking or cycling 
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speeds yield different levels of energy expenditure which is a crucial component related to 

health. Furthermore, the energy expended during ambulatory activities can have high 

variability between individuals due to individual factors such as body mass index (BMI), 

body height, and length of the leg. For instance, two children (with different BMIs) walking 

at a similar pace may expend energy at different rates based on their fitness levels. Despite 

walking at similar speeds, one child (e.g., with normal BMI) could be indulging in light 

intensity activity (LPA), whereas the other child (e.g., with an obese BMI) could be indulging 

in moderate or vigorous intensity activity (MVPA). The ability to capture this information is 

crucial to accurately evaluate adherence to physical activity guidelines and behaviour change 

intervention programs. Machine learning techniques certainly provide an opportunity to 

researchers by allowing the inclusion of these individual factors (such as body size) as model 

features that can facilitate accurate and concurrent measurement of both intensity and type of 

physical behaviours. Some studies (reported in Chapter 3) have already attempted these 

methods by conducting experiments in controlled conditions. However, to ensure 

measurement generalisability more field-based work is warranted.  

 

Study (de)limitations and future directions 

A delimitation of this work is that the dual-accelerometer system evaluated in Chapter 4 was 

focussed on predicting activity type; the intensity component of physical behaviour was not 

examined. To build on this research, obtaining ground truth criterion measures of both type 

and intensity of physical behaviour will be important for furthering our understanding of their 

impact on health. Although some studies have attempted to concurrently measure both 

activity intensity and type [118,123], they are confined to laboratory conditions. Obtaining 

ground truth criterion measures for activity intensity is particularly challenging in free-living 
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conditions. Portable metabolic analysers show potential in overcoming these challenges, and 

future studies must investigate the feasibility of these methods in free-living conditions.  

Although none of the studies discussed in Chapter 3 had included power calculations for 

sample size selection, the study sample size in Chapter 4 (despite being lower), was higher 

than the median study sample size reported from other free-living machine learning studies 

(reviewed in Chapter 3). However, an important study limitation is the limited amount of 

ground truth (training) data (~2 hrs) collected for each participant. This is due to the limited 

battery capacity of wearable cameras. A potential avenue to overcome this challenge is to 

recruit a larger sample; however, future advancements in wearable camera technology may 

enable longer periods of video recording that will allow researchers to capture free-living 

patterns of activity over longer periods. Similarly, the broad participant age range in Chapter 

4 may have improved model generalisability, but this may have also lowered overall accuracy 

due to a smaller number of participants of each age. 

The non-transparency in raw data treatment and the presence of various subjective decisions 

during data processing are some major limitations in traditional accelerometer-based 

processing techniques. Although most machine learning algorithms are open source—which 

improves transparency in raw data treatment—they are still hindered by subjective decisions 

made with respect to selection of study parameters (such as epoch selection, feature 

generation, and algorithm choice). Chapter 3 displayed the heterogeneity among studies that 

evaluated various study parameters and machine learning algorithms. This limitation 

restricted comparability of study outcomes. Furthermore, with the application of machine 

learning becoming more popular in health research the variations in these parameters are 

bound to increase. Therefore, conducting a narrow-focussed review to highlight the efficacy 

of these parameters in model performance is warranted. For instance, conducting a review of 

studies that employed random forest machine learning classifier to predict basic physical 
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behaviours (sitting, standing, lying, walking, running) would allow direct comparability and 

enable researchers to understand the efficacy of different epochs lengths, and various 

features. 

One of the aims of this thesis was to develop a measurement system that facilitates 24-hour 

monitoring of physical activity behaviours. The dual-accelerometer protocol (back-thigh) 

evaluated in chapter 4 has previously shown promise and achieved high 24-hour wear time 

compliance results in both adult and child populations [25]. Considering these wear time 

compliance results with the results achieved in Chapter 4, the dual accelerometer protocol 

represents a promising step towards building accurate physical behaviour profiles. However, 

this work is limited by overlooking the identification of sleep. Sleep (as opposed to lying) 

forms a major component in a 24-hour day that has substantial effects on health [16,71], and 

therefore, is an essential element to create complete time-use behaviour profiles. Past studies 

have relied on traditional count-based accelerometer methods to estimate sleep [143,144]. 

However, machine learning techniques offer promise in this regard and future studies should 

examine various sleep metrics against criterion sleep measures such as polysomnography. 

Conclusion 

This body of work has demonstrated that advanced computational techniques such as 

machine learning has strong potential to measure of all components of physical behaviour. 

Furthermore, given the growing interest among researchers in building 24-hour behavioural 

profiles, the novel dual-accelerometer system validated in this thesis may also offer the 

optimal trade-off between participant compliance and classification of various free-living 

physical behaviours in both children and adults. Although, it must be acknowledged that 

further work is needed to expand the scope of this measurement system to detect other 

components of behaviour (e.g., activity intensity and sleep) that are related to health. With the 
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increasing application of machine learning in health research, it is hoped that our findings can 

advance this field of research and contribute to the next generation of studies that capture all 

components of physical behaviour using one valid and reliable tool. The current application 

of machine learning in this field holds significant promise for advancing our understanding of 

behavioural measurement, and ultimately, how these behaviours are related to health. 
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Appendix E. R programming code used for analysis in Chapter 4 

# Source R library packages  

library(tidyverse) 

library(caret) 

library(readr) 

library(doParallel) 

library(purrr) 

library(data.table) 

library(randomForest) 

library(forcats) 

library(readxl) 

 

# Set working directory 

 

setwd("Q:/Human Potential Centre/Legacy/Anantha Narayanan/Mphil/Data analysis/R") 

 

# Load data - features generated across 5-second epochs labelled against a valid activity 

label 

 

df <- read_xlsx("data/Validation_data_child.xlsx") %>% mutate_at(vars(activity_id), 

as.factor) 

write_rds(df, 'data/training-data-child.rds') 

 

# Identify PIDs 

 

pids <- unique(df$id) 

 

 

# Executing parallel pool  

 

cl <- makeCluster(detectCores() - 1) 

registerDoParallel(cl) 

 

 

# Train Random Forest with LOOCV 

 

for (i in pids) { 

   

  cat('Training:', i, " ") 

  t <- proc.time() 

   

  dat <- df %>% filter(id != i) %>%  

    select(-id, -timestamp)  

   

  model.rf <- foreach(ntree = rep(50, 7), .combine = combine, .multicombine = TRUE,  

                      .packages="randomForest") %dopar%  

    randomForest(activity_id ~ ., 
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                 data = dat, 

                 ntree = ntree, 

                 mtry =3 , 

                 importance = TRUE, 

                 trim = TRUE, 

                 returnData = FALSE)   ### mtry = 3, number of trees = 350  

   

  write_rds(model.rf, paste0('models/', i, ".rds"))  ## save each RF model with  

  pred <- filter(df, id == i) 

  res <- data.frame(id =i,timestamp = pred$timestamp, obs = pred$activity_id, pred = 

predict(model.rf, pred)) 

  write_csv(res, paste0('output/',i, "_predicted.csv")) 

   

    cat('(finished in: ', round((proc.time() - t)[[3]]/60, 2), " min)\n", sep = "") 

 

   

} 

 

# Stop parallel pooling 

 

stopCluster(cl) 

varImpPlot(model.rf) 

 

# Combine results to calculate LOO accuracy  

 

files <- list.files("output/", full.names = TRUE, pattern = "_predicted.csv"); 

names(files) <- map_chr(files, ~ substr(.x, 1, 5)) 

 

 

df.res <- map_df(files, read_csv) %>% 

  mutate_at(vars(-id), as.factor) %>%  

  mutate(id = as.character(id)) 

 

confusionMatrix(df.res$obs, df.res$pred) 
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