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Abstract This paper describes a numerical develop-
ment of image converters and intensifiers which incor-

porate an inverting electron optical system (EOS) and
a microchannel plate (MCP) as an amplifier. The nu-
merical design of the system includes calculation of

the electrostatic field in the device, trajectories of elec-
trons emitted from a photocathode, and determination
of the modulation-transfer-function (MTF) which gives

the objective estimation for the image quality.

Results of the numerical experiments are shown, and
the EOS with optimized characteristics is developed. It

provides the nearly flat image surface, determines the
position of the surface of the best focus, minimizes the
image distortion and reduces a noise factor of the MCP.

Keywords Electron optical system · Microchannel
plate · Electrostatic field · Electron trajectories ·
Modulation-transfer-function · Numerical analysis

1 Introduction

Within its physical limitations the human eye is an ef-

ficient and flexible photon detector which provides the
observer with information about the surrounding world.
Physical limitations include wavelength limitation and

sensitivity limitation [15]. These limitations can be im-
proved by using image converters and intensifiers. Im-
age converters give access to a larger spectral domain

of electromagnetic radiation than the human eye, and
image intensifiers amplify low light images and increase
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the eye sensitivity. Gains of up to 106 in image con-
verters and intensifiers are achieved in a single tube by

placing a microchannel plate (MCP) close to a phos-
phor screen [4], [8], [18], [19], [22]. Such devices have
found wide applications in different areas of science,

engineering, medicine etc.

The process of image conversion and intensification
in systems with rotational symmetry is as follows: (a)
electromagnetic radiation from a certain part of the

spectrum is absorbed by a photocathode; (b) an optical
image is converted into an electron image by means of
photoemission; (c) the photoelectrons of this electron

image are accelerated and focused by an electron op-
tical system (EOS), and intensified by the MCP; (d)
the intensified electron image is converted into a visi-

ble image by a luminescent process on a screen. Figure
1 shows a cross section of such a device and its im-
portant elements: a photocathode, an electron-optical

system, MCP and a luminescent screen.

A microchannel amplifier is a thin plate made up of
a large number of single channels, each of which acts
as an electron multiplier [16], [22]. For each primary

electron entering a channel, a large pulse of electrons
will exit as a result of multiple collisions of both pri-
mary and secondary electrons with the inner secondary-

emission layer as they traverse the length of the channel.
It is a compact, efficient amplifier of two-dimensional
electron-images and provides several advantages such

as very high gain, good resolution and small size.

However, the inverter tube with MCP has one major
design restraint on the electron lens: the image plane
must be flat to match the microchannel plate. Also,

to provide the best image quality, the plate position
should coincide with the surface of the best focus. Pa-
rameters of the system should be chosen to minimize a

noise factor of the MCP [16] which is most important at



2

low levels of illuminance. The resolution and the noise

factor of the system affect its major parameter, the vi-
sual acuity of an imaging device [14]. Moreover, in the
inverter tube the EOS transfers the image from photo-

cathode to the plate with some distortion which should
be minimized.

The fundamental problem in an electron-optical sys-

tem is to devise an arrangement of electrodes and ap-
plied potentials which will cause electrons to travel along
predetermined paths to focus in a point or plane. There

are different techniques for designing of charged particle
optical system [9], [10], [11], [13] which can be split into
two major groups: analysis and synthesis. The analysis

of an electrostatic field distribution and trajectories of
electrons for given geometry and fixed potentials of the
electrons is used here for the investigation of an inverter

tube with MCP. The analysis includes numerical calcu-
lation of the field distribution, trajectories of electrons
emitted from a photocathode, and determination of the

modulation-transfer-function (MTF). The modulation
transfer function defines a visual acuity of the image
intensification devices [14], and the resolving power of
the device can be improved by improving its modula-

tion transfer function. It is especially important for the
devices which are designed for conditions of low illumi-
nation, for example, for the night vision.

Section 2 describes a numerical algorithm for calcu-
lating a potential distribution inside systems with ro-
tational symmetry and complicated boundaries.

Section 3 provides an algorithm for finding the elec-
tron trajectories.

Section 4 describes numerical experiments which have

been conducted to optimize the electron optical system
in terms of the image quality.

Section 5 describes the algorithm for calculating the

modulation transfer function of EOS with rotational
symmetry, and the MTF of the channel amplifier.

Section 6 provides some results of numerical calcu-

lations of MTFs. The MTFs of the EOS, the MTF of
microchannel amplifier, and the total MTF of the imag-
ine system are calculated.

2 Determination of the Potential Field.

To analyze the potential distribution inside EOS, the
essential first stage is to determine the position of the

equipotential surfaces in the space under investigation.
Due to the rotational symmetry of the system (Fig.1)
the electrostatic field has been calculated here in half

of the cross-section of the device.
Formally this is a matter of finding a solution to

the Laplace’s partial differential equation expressed in

cylindrical coordinates as follows:

Fig. 1 Electron - optical system

Fig. 2 Grid and finite difference star

∂2U

∂z2
+

1

r

∂U

∂r
+

∂2U

∂r2
= 0, (1)

where U(z, r) is the potential at any point (z, r), z is

the coordinate along the axis of symmetry and r is the
off-axis radius.

This problem relates to the classical mixed prob-

lem for the equation of Laplace in some region with
Dirichlet and Neumann boundary conditions. The func-
tion U=f (z,r) is defined on the most of the boundaries,

and the homogeneous Neumann boundary conditions
are imposed on the symmetry axis [10], [11].

The finite difference method is used to obtain the
field distribution [13]. The simulation domain is discre-
tised using a regular grid (Fig.2).

The resulting set of finite difference equations is ob-
tained using the Taylor’s expansion about the centre

node U0 with z = z0 and r = r0. The partial derivatives
in (1) are replaced by corresponding difference approxi-
mations which are expressed in terms of local potential

values.
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For complicated and curved boundaries the Laplace’s

difference equation is obtained in terms of four different
steps h from the central node:

2
h1(h1+h2)

U1 +
2

h2(h1+h2)
U2 +

2r0−h4

r0h3(h3+h4)
U3+

+ 2r0+h3

r0h4(h3+h4)
U4 −

[
2

h1h2
+ 2r0−h4+h3

r0h3h4

]
U0 = 0.

(2)

For the interior equidistant points, where hk ≡ h, the
difference equation is:

1

h2

[
U1 + U2 + (1− h

2r0
)U3 + (1 +

h

2r0
)U4

]
− 4U0 = 0.

(3)

On the axis of symmetry ∂U
∂r = 0 and Laplace’s differ-

ence equation can be written in the following form:

1

h2
(U1 + U2 + 4U4 − 6U0) = 0. (4)

Therefore, one of the Laplacian computational for-

mulae (2), (3) or (4) is applied at each of the interior
mesh points, and the result is the system of simultane-
ous linear algebraic equations.

The solution of this system of simultaneous equa-
tions is obtained by the iterative successive overrelax-
ation (SOR) method [23]. For this method the Lapla-

cian difference equation is rewritten in the following
form:

Uij = Uij + ωrij , (5)

where rij is the residual term, and ω is the relaxation

parameter which lies in the range 1 ≤ ω ≤ 2. It has been
found that for the system described here the optimal
value of ω is 1.99.

Figure 3 shows the potential distribution (given by
the equipotential lines) in the cross-section of the EOS
shown in 1 with the following dimensions: the cathode

radius = 0.8, the length of the system = 2.6, the cath-
ode potential = 0, and the anode potential = 1. All
dimensions here and further are normalized by the ra-

dius of the cathode cylinder.
As shown in [5], [6], and [17] an electrostatic lens,

formed by MCP-screen field penetration into channels,

at the output of a channel has a significant influence
on the electron trajectories and the spatial resolution
(quality of the image). The potential distribution in the

field of the lens depends on the field intensity in the
MCP-screen gap, the channel diameter, and the sput-
tering depth of the contact layer at the channel output

(”end spoiling” [6]).

Fig. 3 Equipotential lines and central meridional trajectories of

electron beams

Fig. 4 Electrostatic field at the exit of the channel

Figure 4 shows the electrostatic lens at the exit of
a single channel (the fringe field), calculated here using

the algorithm described above. Computational results
were obtained for the channel diameter d = 10µm, the
voltage on the channel Uc = 800 V , the strength of the

electrostatic field between MCP and the screen E = 5
kV/mm, and the sputtering depth of the contact layer
at the channel output h = 1.5d.

3 Motion of Electrons in the Potential Field

The equation of the motion of charged particles through

the electric field is the Lorentz force:

F = qE, (6)

where F is the force on the charged particle, q is the
charge, E is the electric field. In the cylindrical coor-
dinate system, equations of motion of electrons can be

written as:

d2z
dt2 = e

mEz,

d2r
dt2 = e

mEr +
r20V

2
φ0

r3 ,
dφ
dt = r0

r2Vφ0 ,

(7)
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Fig. 5 The grid for calculating the strength of the electrostatic
field in the channel

where t is time, Er = ∂U
∂r and Ez = ∂U

∂z are the radial

and axial components of the strength of the electro-
static field respectively, U = U(z, r) is the potential
distribution, r0 is the initial electron coordinate, Vφ0 is

the initial azimuthal component of the electron velocity,
e and m are electron charge and mass respectively.

The system of equations (7) is solved by the use of

the Runge-Kutta method.

The strength of the electrostatic field at the exit of
a single channel and inside the EOS is calculated using

different interpolating polynomials.

a). For the fringe field at the exit of a channel the
harmonic polynomial via potentials at four mesh points
(Fig.5) have been used [7]:

U(ς, r) = a00 + a10ς + a20
(
ς2 − 1

2r
2
)
+ a30

(
ς3 − 3

2 ςr
2
)
,

∂U
∂ς = a10 + 2a20ς + 3a30

(
ς2 − 1

2r
2
)
,

∂U
∂r = −a20r − a30ςr,

(8)

where ς lies in the interval bounded by zi and zi+1 (z1
and z2 in Fig.5), and the coefficients can be defined as:

a00 = 1
h(2R0+h)

[
(R0 + h)2U1 −R2

0U4

]
,

a10 = 1
3h2(2R0+h)

{
−
[
3 (R0 + h)

2
+ 4h2

]
U1+

+
[
3 (R0 + h)

2 − 2h2
]
U2 +

(
2h2 − 3R2

0

)
U3+

+
(
4h2 + 3R2

0

)
U4},

a20 = 2
h(2R0+h) (U1 − U4),

a30 = 2
3h2(2R0+h) (U2 − U1 + U4 − U3).

(9)

Special care is needed for the electron trajectories
which are close to the axis of symmetry where r → 0
and the radial component of the electrostatic field Er =

0. Then the system of equations (7) can be written as:

d2z
dt2 = e

mEz0,
d2r
dt2 =

r20Vφ0

r3 ,
dφ
dt = r0

r2Vφ0 ,

z(0) = z0, dz/dt|t=0 = Vz0,

r(0) = r0, dr/dt|t=0 = Vr0,

(10)

where Ez0 is the initial axial component of the strength
of the electrostatic field, Vr0 and Vz0 are the initial ra-
dial and axial components of the electron velocity re-

spectively. .

The solution of the system of equations (10) is ([21]):

z = z0 + Vz0t− ηEz0t
2/2,

r =
√(

V 2
φ0 + V 2

r0

)
t2 + 2r0Vr0t+ r20.

(11)

b). Calculations of the electrons emitted from a pho-

tocathode require a higher degree of accuracy, and the
interpolating polynomial is expressed via potentials at
twenty five mesh points (Fig.6). It has been used to cal-

culate the meridional trajectories (Vφ0 = 0) of the elec-
tron beams. Calculations of the radial and axial compo-
nents of the strength of the electrostatic field are based

on Stirling’s difference formula [21]. The potential at
any point between the mesh nodes is found using the
formula:

Uk = Uj = Ui,k + s
(
f1
i+1/2,k + f1

i−1/2,k

)
/2 + s2f2

i,k+

+s
(
s2 − h2

) (
f3
i+1/2,k + f3

i−1/2,k

)
/2 + s2

(
s2 − h2

)
f4
i,k,

(12)

where f1
m,n ; f2

m,n ; f3
m,n ; f4

m,n are central differences

of the first, second, third and fourth order respectively:

f1
i−3/2,k = (Ui−1,k − Ui−2,k) /h,

f1
i−1/2,k = (Ui,k − Ui−1,k) /h,

f1
i+1/2,k = (Ui+1,k − Ui,k) /h,

f1
i+3/2,k = (Ui+2,k − Ui+1,k) /h,

f2
i−1,k =

(
f1
i−1/2,k − f1

i−3/2,k

)
/ (2h),

f2
i,k =

(
f1
i+1/2,k − f1

i−1/2,k

)
/ (2h),

f2
i+1,k =

(
f1
i+3/2,k − f1

i+1/2,k

)
/ (2h),

f3
i−1/2,k =

(
f2
i,k − f2

i−1,k

)
/ (3h),

f3
i+1/2,k =

(
f2
i+1,k − f2

i,k

)
/ (3h),

f4
i,k =

(
f3
i+1/2,k − f3

i−1/2,k

)
/ (4h).

(13)

The potential Um at some point m (Fig.6) can be

defined as:
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Fig. 6 The grid for calculating the strength of the electrostatic
field in EOS

Um = Uj + p
(
f1
j+1/2 + f1

j−1/2

)
/2 + p2f2

j +

+p
(
p2 − h2

) (
f3
j+1/2 + f3

j−1/2

)
/2 + p2

(
p2 − h2

)
f4
j ,

(14)

where the central differences are found using formulae
similar to (13).

Differentiating with respect to p we obtain the ra-
dial component of the strength of the electrostatic field
at the point m:

−Er =
(
f1
j+1/2 + f1

j−1/2

)
/2 + 2pf2

j +

+
(
3p2 − h2

) (
f3
j+1/2 + f3

j−1/2

)
/2 + 2p

(
2p2 − h2

)
f4
j .

(15)

The axial component of the strength of the electrostatic
field can be found using the similar approach, and is
defined by the formula:

Ez =
(
f1
i+1/2,k + f1

i−1/2,k

)
/2 + 2sf2+

+
(
3s2 − h2

) (
f3
i+1/2,k + f3

i−1/2,k

)
/2 + 2

(
2s3 − sh2

)
f4
i,k.

(16)

Figure 3 shows central meridional trajectories of the
electron beams emitted from the photocathode. The
trajectories have been calculated using the algorithm

described here.

Fig. 7 The curvature of the image surfaces for different radii of
the photocathode

4 Computational Results of EOS

The major problems which arise in the process of the

development of the EOS can be identified as follows:
- the image surface is not flat,
- the quality of the image is nonuniform along the screen,

- the electron magnification along the image surface is
nonuniform .

To provide high image quality, numerical experi-

ments based on the algorithms described in Sections 2
and 3 have been conducted. The curvature of the image
surface has been calculated as a total combination of

minimal cross sections of the electron beams (cross-over
positions), emitted from different points of the photo-
cathode with the initial energy ε0 and the initial angle

−π
2 ≤ θ0 ≤ π

2 .

Figure 3 shows the central trajectories of some elec-
tron beams where coordinates of the minimal cross sec-

tions show the curvature of the image surface. It is seen
that the image surface is not flat, and does not coin-
cide with the channel plate. It leads to the nonuniform

quality of the image on the screen.

To improve the image quality, the numerical exper-

iments have been conducted for different radii of the
spherical photocathode and distances from the pho-
tocathode to the anode. The numerical experiments

show (Fig.7) that the radius of the photocathode affects
the curvature and the position of the image surface. It
is seen that the relative radius of the photocathode,

R=0.625, provides the nearly flat image surface, and
determines the position of the MCP in the device.

The nonuniform electron magnification along the

image surface causes the image aberration called distor-
tion. The distortion D is calculated as D = G−G0

G0
×100,

where G0 and G are coefficients of the electron magni-

fication at the centre and other points on the image
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Fig. 8 The distortion of the image for different radii of the pho-
tocathode

surface respectively. D < 0 corresponds to the barrel-
shaped distortion, and D > 0 is the case of the pin-
cushion distortion.

The numerical experiments show that the electron
magnification also depends on the radius of the pho-
tocathode. Figure 8 demonstrates the distortion along

the image surface for the different radii of the photo-
cathode. It is seen that the system with relative ra-
dius R=0.7 is practically without the distortion with

G = 1 along the the image surface. The relative radius
R=0.625 provides flat image surface with G0 = 0.95
and G ≤ 1.05 what is relevant to D ≤ 10% .

The numerical experiments, as shown in Figure 9,
demonstrate that the distance between the photocath-

ode and anode (Lc) affects the position of the image
surface and practically does not affect its shape. Precise
determination of the image position defines the position

of the channel plate and the length of the device.

5 Modulation Transfer Function of the Image
System

The usual method of describing the resolution over the
image area of an image device is by the modulation
transfer function [1], [3], [4]. The MTF gives the depen-

dence of the output contrast on the spatial frequency.
As it gives an objective estimation of the image quality,
it is used to approximate the position of best focus of an

imaging system [8]. The MTF of the overall system, at
a given spatial frequency, is the product of the MTFs of
the elements. Consequently, to evaluate the total MTF

of the imaging system with a micro-channel plate, the

Fig. 9 The image surfaces for different distances from the pho-
tocathode to the anode

Fig. 10 The trajectories of the electron beam near the screen

MTFs of the electron-optical system and MCP-screen
system should be determined.

5.1 MTF of the electron-optical system

Figure 10 represents the meridional trajectories of the

electron beam near the screen calculated as described
in Section 3. It is seen that the image contrast at the
point of the best focus zf will be higher than the image

contrast at the cross-over position zm.

To evaluate the image contrast and precisely define

the position of the surface of the best focus in the de-
vice, the MTF in the image plane for the point on the
axis of the symmetry is calculated using the formula

[12]:
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Fig. 11 Emission angles of photoelectrons

T =

∫∞
0

A(r)J0(2πνr)rdr∫∞
0

A(r)rdr
, (17)

where J0 is Bessel’s function, ν is a spatial frequency,

and A(r) is an electron density distribution in the cross
section of the axial electron beam on the image surface.

To find the electron density functionA(r) let assume
[2] that dN(ε, θ, φ) electrons are emitted from the axial

point of the photocathode in a time unit with initial
energies in the interval [ε, ε+ dε], initial angles [θ, θ+
dθ] and [φ, φ+ dφ], where θ and φ are meridional and

asimuthal angles respectively (Fig. 11).

The number of electrons dN(ε, θ, φ) depends on the
total number of the electronsN0 emitted from one point
of the photocathode and the probability of the emission

P (ε, θ, φ). Therefore, it can be written:

dN(ε, θ, φ) = N0dP (ε, θ, φ) = N0p(ε, θ, φ)dεdΩ, (18)

where p(ε, θ, φ) is the probability density, and dΩ =
sin θdθ.

Since ε, θ, and φ are independent random variables
then p(ε, θ, φ) = p(ε)p(θ)p(φ), where p(ε), p(θ), and

p(φ) are probability density functions of the electron’s
energy, meridional and azimuthal angles respectively.
Assuming that p(φ) = 2π is the uniform distribution

the expression for the number of the emitted electrons
dN(ε, θ, φ) can be written as:

dN(ε, θ, φ) = N0p(ε)dεp(θ) sin θdθ
∫ 2π

0
p(φ)dφ =

= N0p(ε)p(θ) sin θdθdε.
(19)

The photoelectrons with the initial energy ε would
have a distance r from the axis of the symmetry at the

image surface if their initial angle θ satisfies a condition

r − f(ε, θ) = 0. Using the δ-function the expression for

the electron density at the distance r from the axis of
the symmetry can be written as:

dn(r) = dN(ε,r)
2πr =

= N0p(ε)
2πr

∫ π/2

0
p(θ) sin θδ[r − f(ε, θ)]dθdε.

(20)

Integrating (20) with respect to energy ε the elec-
tron density function A(r) can be expressed as

A(r) =

∫ ε0

0

N0p(ε)

2πr

∫ π/2

0

p(θ) sin θδ[r − f(ε, θ)]dθdε.

(21)

Substituting (21) to (17) the expression for the mod-
ulation transfer functions can be written as:

T (ν) =

=

∫ ∞
0

∫ ε0
0 p(ε)

{∫ π/2
0 p(θ) sin θδ[r−f(θ,ε)]dθ

}
dεJ0(2πνr)dr∫∞

0

∫ ε0
0 p(ε)

{∫ π/2
0 p(θ) sin θδ[r−f(θ,ε)]dθ

}
dεdr

.

(22)

Using the property of the δ-function that
∫∞
0

φ(x)δ(x−
x0)dx = φ(x0) the final formula for the modulation

transfer functions can be obtained:

T (ν) =

∫ ε0
0

p(ε)
∫ π/2

0
p(θ) sin θJ0[2πνf(θ, ε)]dθdε∫ ε0

0
p(ε)

∫ π/2

0
p(θ) sin θdθdε

, (23)

where p(θ), p(ε) are angular and energy distributions

of the electrons respectively (here the angular distribu-
tion is described by Lambert’s law, p(θ) = cos(θ), and
the electron energy is chosen from the parabolic func-

tion p(ε) = 6ε
ε20
(1 − ε

ε0
)); δ is a delta function, ε0 is the

maximal possible initial energy of the photoelectron;

r = f(ε, θ) is the distribution of the electron radial co-
ordinates at the image surface which can be written as
([20]):

r(z) = 2

√
ε

E0
sin θ u1(z)−

2ε

E0
sin θ cos θu2(z),

where E0 is the strength of the electrostatic field near

the photocathode; u1(z) and u2(z) are two particular
solutions of the equation of the motion of paraxial elec-
trons. u1(z) and u2(z) are calculated using the Runge-

Kutta methods as described in the Section 3.
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5.2 MTF of the MCP-screen

The use of MCP as the amplifier in the device has many
advantages, but the discrete structure of MCP and de-

focusing of the electron beam in the space between the
MCP and the screen, restricts the spatial frequency
what can be transferred by the device. A meaningful

MTF can be obtained up to the array frequency [3].
The loss in contrast due to the divergence of the

electrons in the MCP-screen gap can be reduced by

carefully designing the electron lens at the output of
each channel. The lens is formed by the penetration of
the gap field into a channel [5], [6], and [17]. The limit

is set by the smallest gap that will reliably hold of the
voltage necessary to excite the phosphor of the screen.

A computer model of the amplification process and
the formation of an image of an individual channel in

the MCP-screen system has been developed and im-
plemented . The multiplication process of the electron
flux in a channel was modeled using Monte-Carlo meth-

ods [16]. The inhomogeneous field at the output of the
channel (Fig. 4) and the electron trajectories in an in-
homogeneous field have been calculated as described in

Sections 2 and 3.
Formula (17) is used in computations of the MTF

of the MCP-screen system. The electron density dis-

tribution A(r) in the image of an individual channel is
determined from the arrival coordinates of the electrons
at the screen. Taking into account the discret nature of

the determination of A(r) here, and using the relation-
ship

∫
xnJn−1(x)dx = xnJn(x), the calculating formula

for MTF can be written:

T =

∑n
i=1 Ai(ri)[ri+1J1(2πνri+1)− riJ1(2πνri)

πν
∑n

i=1 Ai(ri)(ri+1
2 − ri2)

. (24)

6 Computational Results of MTFs

Figure 12 demonstrates the calculated results of the
EOS’s modulation transfer functions for different initial
energies of the electrons emitted from the photocath-

ode. It shows that the electrons with the lower initial
energy are better focused by the electrostatic lens which
increases the resolution of the device. The initial energy

of the photo-electrons depends on the frequency of the
incident light and the type of the photocathode used in
the device.

Figure 13 shows calculated results of the dependence

of the EOS’s modulation transfer function on the poten-
tial Ua, applied between the cathode and the anode for
ε0 = 0.5 eV . It is seen that the developed EOS provides

high resolution ν ≥ 100 mm−1 for the 10% contrast for

Fig. 12 MTFs of the EOS for the different initial energies of the
photoelectrons

Fig. 13 MTFs of the EOS for the different voltage between the
cathode and the anode

quite low applied voltage (Ua = 1.5− 2 kV ). Such res-
olution enables the human eye to resolve details of an

object in a low level of illumination. The low applied
voltage minimizes a noise factor of the MCP [16] which
affects the visual acuity of an imaging device.

Figure 14 displays the MTFs of the MCP-screen sys-
tem, where the solid curves represent calculations and
dashed curve represents experimental results [5]. Com-

putational and experimental results were obtained for
the channel diameter d = 10µm, the voltage on the
channel Uc = 800 V , the sputtering depth of the con-

tact layer at the channel output h = 1.5d, the strength
of the electrostatic field E = 5 kV/mm. The distance
between MCP and the screen D = 1 mm for the curves

(2) and (3), and D = 0.4 mm for the curve (1).
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Fig. 14 MTF of the MCP-screen (the solid curves represent cal-
culations and dashed curve represents experiment)

Fig. 15 Final MTF of the imaging system (the solid curve rep-

resents calculations and dashed curve represents experiment)

The final MTF of the image system is the prod-
uct of the MTFs of the EOS (Fig. 13) and MCP (Fig.

14). Figure 15 shows the total MTF of such imaging
system where the solid curve represents calculations
(d = 10µm) and dashed curve represents experiment

(d = 12µm [4]) for the MCP-screen gap D = 0.4 mm.

7 Conclusions

A computational algorithm for calculation of an invert-
ing electron optical system with microchannel ampli-

fiers has been developed. It is consists of:
(a) calculation of the potential distribution inside the
imaging systems with rotational symmetry;

(b) calculation of the electron trajectories in the elec-
trostatic field;
(c) determination of the modulation-transfer-function

which defines the resolution of the imaging system.

The effect of the system parameters on the image

quality has been investigated. Dependance of the cur-
vature of the image surface and image distortion on the
radius of the photocathode and the distance between

the photocathode and anode have been calculated.

The modulation-transfer-functions of the EOS for
the different initial energies of the photoelectrons have

been calculated. The dependence of the MTFs of the
EOS on the voltage between the photocathode and an-
ode have been investigated. The modulation-transfer-

function of the microchannel amplifier - screen with an
inhomogeneous field at the output of the channel has
been calculated, and the total MTF of the imagine sys-

tem has been defined.

The electron optical system, developed in this work,
has practically uniform quality of the image on the

screen, low distortion and high resolution. The flat im-
age surface provides a uniform image quality, and there-
fore allows the use of a micro-channel plate as an ampli-

fier. The low applied voltage minimizes a noise factor of
the MCP. All dimensions and parameters of the imag-
ing system have been defined precisely and left outside

this publication.

Acknowledgement. The author wishes to acknowl-
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