
A Secure Live Virtual Machine Job Migration

Framework for Cloud Systems Integrity

Hanif Deylami

A thesis submitted to Auckland University of Technology in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy of Computer and Information Sciences

2020

Supervisors:

Professor Jairo Gutierrez

Associate Professor Roopak Sinha

School of Engineering, Computer and Mathematical Sciences

ii

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the qualification

of any other degree or diploma of a university or other institution of higher learning.

Signature of candidate

iii

Acknowledgements

This research has been completed at the Faculty of Design and Creative

Technology for the Auckland University of Technology, New Zealand. Throughout the

research duration, the researcher received valuable support from primary supervisor

Professor Jairo Gutierrez, co-supervisor Associate Professor Roopak Sinha, for constant

mentoring and endless encouragement. The researcher would like to thank family and

friends whose motivation were crucial for overcoming many hurdles.

iv

Tag cloud

Created using http://tagcrowd.com/

v

Abstract

INTRODUCTION: In the world of cloud computing (CC), security is the key to success.

While ease and cost are two important factors in CC, security and technical issues are

significant problems. The resources such as central processing unit (CPU) cache, network

Input/Output (I/O) and memory bandwidth in a cloud environment are efficiently

governed by employing virtualisation technology; the administration of a virtual

machine (VM) in the datacentre of a cloud service provider (CSP) is a challenging task

that requires live VM migration techniques. That is, live VM migration is an essential

technology for cloud management.

When a VM needs to be moved to another physical machine, this migration can

be achieved without interruption to the VM’s services, minimising the downtime for the

services running on the VM. This situation decreases the operating costs of CSPs and

improves its service quality. Many efforts have been made to enhance the security of

live VM migration. However, some critical problems still require solutions or

improvements. Further, the evolution of CC services and the increasing number of

datacentres from which customers can run their services make it crucial to adhere to as

many security practices as possible to deal with the new CC security issues, such as the

compromising of the integrity and confidentiality of the destination host while a live VM

is migrating VM data.

OBJECTIVES: This research’s main objective was to design and develop a secure live VM

migration framework that enables a virtual trusted platform module (vTPM) for multiple

VMs on a hardware platform for cloud systems integrity. First, a comprehensive review

of VM migration and the related security challenges was conducted. This was followed

by the examination of different potential attacks that are possible in live VM job

migration. The research then focused on using a combination of a hardware-based root

of trust (e.g. vTPM) and a VM-based system (e.g. Xen open-source hypervisor) to

improve the integrity of VM job migration.

While existing live VM migration frameworks have been proven helpful for high-

security environments that rank different security objectives, such as confidentiality,

integrity and availability, over performance and all the related areas, the framework

proposed in this thesis aims for commercial security, with near-zero performance

overheads and usability being of paramount importance. For addressing this gap, this

vi

research’s objective was to establish a live VM migration integrity framework (called

Kororā) to measure, aggregate, and manage integrity-related information from different

sources that are available and relevant when assessing the trustworthiness of the

Kororā. Kororā enforces the live VM’s strong isolation, thus providing a robust

foundation on which the higher level of integrity can enact finer-grained controls. Kororā

significantly improves the VM’s integrity level during the live migration process. The

rationale behind the Kororā design phase has been provided and a lightweight prototype

implementation of Kororā has been evaluated with Microsoft Visual Studio and

SQLiteStudio tools.

METHODS: This study has involved developing a new cloud integrity framework and

ensuring this new framework could be evaluated and refined to a high standard.

Research methods such as design science (DS) and mixed methods were employed to

guide the study. The DS method influenced the design of the research and the evaluation

methodology employed to evaluate the framework. The mixed-method was used to

mature the design framework and assist with problem identification, evaluation and

trust.

RESULTS: The proposed framework describes the role of live VM migration and

examines the formation, strength and success characteristics of VMs’ relationships in CC

systems. It explores a secure cloud system live migration and provides an effective

defence framework when moving jobs into a virtualised environment, from one

hypervisor to another hypervisor. There were three different scenarios of real-world

attacks used to evaluate the research objectives and answer the research questions and

research background, and the summary of analysis results shown that Kororā can

prevent the attack under vTPM protection.

CONCLUSION: This study provides a robust foundational explanation of CC,

virtualisation and the main core goals of security, especially integrity protection. It

contributes models, processes, workflows, architecture and implementation in this

area, based on the proposed framework, thus advancing the body of knowledge on the

secure live migration of virtualised resources in cloud systems.

vii

Publications

Deylami, H., Gutiérrez, J., and Sinha, R. Auckland University of Technology Research
Symposium. (2018). Postgraduate Research Best Poster Award for More than old
wine in new bottles: A secure live virtual machine job migration framework for
cloud system integrity (award presented August 17, 2018).

Deylami, H., Gutiérrez, J., and Sinha, R. (2018). More than old wine in new bottles: A
secure live virtual machine job migration framework for cloud systems integrity.
Paper presented at the Eleventh International Conference on Mobile Computing
and Ubiquitous Network.

Deylami, H., Gutiérrez, J., and Sinha, R. (2020a). Kororā: Building the blueprint for live
virtual machine migration. Paper under review by ICCBN, the 8th International
Conference on Communications and Broadband Networking, Auckland, New
Zealand.

Deylami, H., Gutiérrez, J., and Sinha, R. (2020b). Tailoring the cybersecurity framework:
How to overcome the complexities of secure live virtual machine migration in
cloud computing. Paper presented at Conf-IRM the International Conference on
Information Resources Management, Miami, FL.

For further information and details about the publications, see the links below or scan
QR codes.

• https://scholar.google.com/citations?user=ery7DssAAAAJ&hl=en

• https://www.researchgate.net/profile/Hanif_Deylami

 Google Scholar Research Gate

https://scholar.google.com/citations?user=ery7DssAAAAJ&hl=en
https://www.researchgate.net/profile/Hanif_Deylami

viii

Contents
Declaration .. ii

Acknowledgements .. iii

Tag cloud .. iv

Abstract ... v

Publications ... vii

List of tables .. xii

List of figures ...xiii

List of abbreviations ...xv

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Model for an information security system ... 3

1.3 Statement of the research problem.. 6

1.4 Statement of the security properties .. 7

1.5 Research aims and intentions ... 8

1.6 Research questions ... 9

1.7 Research objectives ... 9

1.8 Contribution of the thesis ... 9

1.9 Organisation of the thesis ... 10

CHAPTER 2: LITERATURE REVIEW ... 13

2.1 Introduction .. 13

2.2 Literature selection method ... 13

2.3 Systematic literature review steps .. 14

2.4 Define method applications .. 16

2.5 Cloud computing ... 17

2.5.1 Essential characteristics of cloud computing .. 19

2.5.2 Service models for cloud computing ... 20

2.5.3 Cloud computing deployment models .. 21

2.5.4 Cloud computing general security issues .. 23

2.5.4.1 Cloud load balancing ... 24

2.5.4.2 Single Sign-On.. 25

2.5.4.3 Availability ... 25

2.5.4.4 Privacy ... 26

2.5.4.5 Risk assessment ... 27

2.6 Virtualisation ... 28

2.6.1 Virtualisation security issues ... 31

2.7 VM migration .. 33

2.7.1 Pre-copy memory migration ... 36

2.7.2 Post-copy memory migration .. 37

2.7.3 VM Security Issues... 38

2.7.3.1 Cross VM Side-Channel Attacks .. 38

2.7.3.2 VM Isolation .. 39

ix

2.7.3.3 VM Escape ... 39

2.7.3.4 VM Rollback Attack ... 39

2.8 Live VM migration ... 40

2.8.1 Live VM Migration Strategy ... 42

2.8.1.1 Memory Data Migration.. 43

2.8.1.2 Storage Data Migration ... 44

2.8.1.3 Database Migration ... 46

2.8.1.4 Network State Migration... 47

2.8.1.5 Application Migration.. 47

2.8.1.6 Business Process Migration ... 47

2.8.2 Live VM Migration Security Issues .. 47

2.8.2.1 Return Oriented Programming Attack 48

2.8.2.2 Live VM Image Sharing .. 48

2.9 Hypervisor ... 49

2.9.1 Xen project hypervisor .. 50

2.9.2 Why this study used Xen hypervisor ... 50

2.10 Trusted computing .. 51

2.10.1 Virtual Trusted Platform Module migration.. 52

2.10.2 Set Up the Standard Encryption Key Provider .. 53

2.11 Network Block Device Protocol ... 54

2.11.1 Protocol Phases ... 54

CHAPTER 3: METHODOLOGY .. 56

3.1 Introduction... 56

3.2 Research system methodology theory ... 57

3.2.1 Design Science ... 58

3.2.1.1 Design Science Research Method ... 58

3.2.2 Multi-methodology model .. 60

3.2.2.1 Systems development ... 63

3.2.2.2 Theory building.. 63

3.2.2.3 Observation ... 64

3.2.2.4 Experimentation .. 65

3.3 The conceptual research system methodology .. 66

3.4 Data gathering ... 67

3.5 Data analysis .. 69

3.6 Ethical considerations ... 70

CHAPTER 4: DESIGN OF THE FRAMEWORK ... 71

4.1 Introduction... 71

4.2 Background and motivation .. 72

4.3 Integrity verification .. 74

4.4 Integrity protection in the proposed framework .. 75

4.4.1 Clark-Wilson security model.. 76

4.5 Design framework system requirements of Kororā .. 76

4.6 Design framework system assumptions ... 79

x

4.7 Design framework system architecture .. 79

4.7.1 Virtual Trusted Platform Module Agent .. 82

4.7.2 Input/Output Agent ... 82

4.7.3 Data Plane Agent ... 83

4.7.4 Integrity Analyser Agent .. 83

4.7.5 Data Organisation Agent ... 84

4.7.6 Go Agent .. 85

4.7.7 Libvirt Agent .. 85

CHAPTER 5: EVALUATION SYSTEM ARCHITECTURE .. 87

5.1 Introduction .. 87

5.2 Kororā evaluation system architecture ... 87

5.3 Security terminology ... 90

5.4 Kororā state machine framework ... 92

5.5 The system model of live virtual machine job migration 96

5.6 Migration scenario .. 98

CHAPTER 6: IMPLEMENTATION .. 100

6.1 Introduction .. 100

6.2 Related work ... 100

6.3 Implementation considerations .. 102

6.3.1 Resource and security plans .. 102

6.3.2 Agent plan ... 102

6.3.3 Implementation setup plan ... 103

6.3.4 Mapping... 103

6.3.5 Transport layer security and secure sockets layer protocols 104

6.4 Kororā implementation ... 104

6.5 Kororā in C# ... 105

6.6 Kororā code architecture .. 106

6.6.1 Kororā Virtual Trusted Platform Module Agent 108

6.6.2 Kororā Input/Output Agent ... 109

6.6.3 Kororā Data Plane Agent ... 111

6.6.4 Kororā Integrity Analyser Agent .. 111

6.6.5 Kororā Data Organisation Agent ... 113

6.6.6 Kororā Go Agent .. 114

6.6.7 Kororā Libvirt Agent .. 115

CHAPTER 7: FINDINGS ... 117

7.1 Introduction .. 117

7.2 Evaluation of the research objectives ... 117

7.2.1 Objectives 1 and 2 ... 117

7.2.1.1 For ... 117

7.2.1.2 Goals .. 118

7.2.1.3 Verdict: Accepted .. 118

7.2.1.4 Against ... 118

7.2.2 Objective 3... 118

xi

7.2.2.1 For.. 118

7.2.2.2 Goals .. 119

7.2.2.3 Verdict: Accepted .. 119

7.2.2.4 Against ... 119

7.2.3 Objective 4 ... 119

7.2.3.1 For.. 119

7.2.3.2 Goals .. 119

7.2.3.3 Verdict: Accepted .. 120

7.2.3.4 Against ... 120

7.3 Evaluation of research questions and research background 120

7.4 Migration attack scenarios .. 122

7.4.1 How the Kororā system resists those threats 123

7.5 Threat Modelling ... 126

7.6 Experiments with specific attack scenarios .. 130

7.6.1 Background .. 131

7.6.2 Attack Scenario 1 ... 133

7.6.3 Attack Scenario 2 ... 139

7.6.4 Attack Scenario 3 ... 142

7.6.5 Summary of results.. 143

CHAPTER 8: CONCLUSION AND FUTURE RESEARCH ... 147

8.1 Summary of the research process ... 147

8.2 Limitations ... 150

8.3 Future study .. 150

References ... 152

Appendix A: Code for the Kororā framework agents ... 164

Appendix B: Kororā threat modelling diagram summary .. 170

xii

List of tables

Table 1.1: Mapping cloud security properties to infrastructure 7

Table 2.1: CC general security issues and challenges ... 23

Table 2.2: Categorisation of threats in CC .. 33

Table 2.3: Types of VM migration ... 35

Table 7.1: Template for analysis results for scenarios of attacks on communication
among VMs... 126

Table 7.2: Determined threat category, description, justification, and prevention 129

Table 7.3: Analysis results for Attack Scenario 1 .. 139

Table 7.4: Analysis results for Attack Scenario 2 .. 142

Table 7.5: Analysis results for Attack Scenario 3 .. 143

Table 7.6: Summary of analysis results for the three attack scenarios 144

Table 7.7: Comparing Kororā and existing schemes ... 146

xiii

List of figures

Figure 1.1: The McCumber InfoSec cube (McCumber, 2004, p. 9) 4

Figure 1.2: Stages of this research .. 12

Figure 2.1: Steps in conducting this literature review .. 14

Figure 2.2: Identify a method for selecting the literature .. 16

Figure 2.3: The NIST visual model of CC definition (Mell & Grance, 2011) 18

Figure 2.4: Types of CC service providers ... 21

Figure 2.5: Properties of types of CC deployment models ... 22

Figure 2.6: Virtualisation process in CC... 28

Figure 2.7: Virtualisation approaches (Sabahi, 2012) ... 30

Figure 2.8: CC security aspects and challenges ... 32

Figure 2.9: Pre-copy memory migration processes .. 36

Figure 2.10: Post-copy memory migration processes .. 37

Figure 2.11: VM live migration processes ... 41

Figure 2.12: Live migration strategy of VM... 43

Figure 2.13: The classification of memory data migration patterns............................... 44

Figure 2.14: An overview on share disk configuration ... 44

Figure 2.15: An overview on replicated disk configuration .. 45

Figure 2.16: An overview on remote referencing configuration 45

Figure 2.17: An overview of a shared-nothing configuration ... 46

Figure 2.18: The generic database migration architecture... 46

Figure 2.19: Types of hypervisor in CC .. 49

Figure 2.20: Diagram of the Xen project architecture .. 50

Figure 3.1: Research methodology adopted for this research 57

Figure 3.2: A DSRM process model (Peffers et al., 2007, p. 54) 59

Figure 3.3: Research method proposed by Peffers et al. (2007) 60

Figure 3.4: A multi-methodological approach to IS research (Nunamaker Jr. et al.,
1990, p. 94). .. 62

Figure 3.5: Steps of the multi-methodological approach undertaken in this thesis 62

Figure 3.6: Steps of Nunamaker et al.’s (1991) research process 63

Figure 3.7: Multi-Design Science Research Methodology .. 67

Figure 3.8: This research data plan ... 68

Figure 4.1: Workflow of the research study design development model 72

Figure 4.2: The ecosystem of live VM migration .. 73

Figure 4.3: Flowchart of the Kororā integrity verification process 75

Figure 4.4: System architecture of the proposed framework .. 78

Figure 4.5: Components of the integrity analyser agent .. 84

Figure 5.1: Components of evaluation and the interrelationships between them
(Lopez, 2000, p. 6) .. 88

Figure 5.2: The concepts of evaluation theory in this study’s development of the
Kororā framework .. 88

Figure 5.3: The relationships between the objects and subjects 93

xiv

Figure 5.4: Security level, subject and object of the proposed model 95

Figure 5.5: Migration attack scenarios within CC ... 97

Figure 6.1: The Kororā C# object hierarchy .. 106

Figure 6.2: The Kororā prototype on Windows x64 ... 107

Figure 6.3: The Kororā prototype on Linux x64 .. 107

Figure 6.4: The Kororā prototype database - SQLiteStudio .. 108

Figure 7.1: Migration communication scenarios among VMs 124

Figure 7.2: The Kororā live migration communications process 125

Figure 7.3: The Kororā Threat Modelling .. 128

Figure 7.4: An attack on migration communication among VMs 132

Figure 7.5: An attack on a virtual machine host ... 133

Figure 7.6: Enumeration phase of the attack on a virtual machine host 135

Figure 7.7: Scanning phase of attack on virtual machine host 136

Figure 7.8: Exploit Unreal3281 backdoor on virtual machine host 137

Figure 7.9: Exploit the Metasploit module on a virtual machine host 137

Figure 7.10: Enumeration of the system to escalate privileges on a virtual machine
host ... 138

Figure 7.11: Privileges escalation using Netcat on virtual machine host 138

Figure 7.12: Create VM1 by using the ‘virt-manager’ tool ... 140

Figure 7.13: List of all running VMs .. 140

Figure 7.14: Shared memory of VM1 creation – Linux command lines 141

Figure 7.15: Enable and run the Kororā agents .. 141

Figure 7.16: Enable the Kororā agents and reinsert shared memory in VM2 141

Figure 7.17: Without Kororā, the VM6 uses privileged Dom0 to view the partition of
VM8 .. 142

Figure 7.18: With Kororā, the VM6 views the ‘/boot’ partition of VM8 143

Figure 7.19: Time with and without Kororā .. 144

xv

List of abbreviations

ACK Acknowledgement (data networks)

API Application Programming Interface

ARP Address Resolution Protocol

CC Cloud Computing

CFC Crucial Framework Component

CFE Crucial Framework Element

CHA Challenge Attester

CI Claimed Identifier

CLVM Correlated Live VM Migration

CPU Central Processing Unit

CSP Cloud Service Provider

CSU Cloud Service User

CVSS Common Vulnerability Scoring System

CVE Common Vulnerability and Exposure

CW Clark-Wilson

CWE Common Weakness Enumeration

DBT Dirty Block Tracking

DNS Domain Name System

DoS Denial of Service

DS Design Science

DSRM Design Science Research Method

G Generate vTPM Identifier

GI Generated Identifier

I Identifier

I/O Input/Output

IA Integrity Authority

IaaS Infrastructure-as-a-Service

IDPEC IDP Endpoint Channel

IDPI IDP Identifier

IDPLI IDP-Local Identifier

IEU IDP Endpoint URL

InfoSec Information Security

IP Internet Protocol

xvi

IS Information System

IT Information Technology

KDC Key Distribution Center

KMIP Key Management Interoperability Protocol

LAN Local Area Network

MDSRM Multi-Design Science Research Methodology

MiTM Man-in-the-Middle

MMU Memory Management Unit

NaaS Network-as-a-Service

NBD Network Block Device

NIST National Institute of Standards and Technology

OCTAVE Operationally Critical threat, Asset, and Vulnerability Evaluation

OS Operating System

PaaS Platform-as-a-Service

PV Para-virtualisation

RAM Random-Access Memory

RB Research Background

ROP Return-oriented Programming

RP Relying Party

RQ Research Question

SaaS Software-as-a-Service

SLR Systematic Literature Review

SM Single Migration

SSO Single Sign-On

SSP Simple-Security Property

TA Trust Authority

TC Trusted Computing

TCB Trusted Computing Base

TCP Transmission Control Protocol

TGS Ticket Granting Service

TLS Transport Layer Security

UA User Agent

URL Uniform Resource Locator

USI User-Supplied Identifier

VM Virtual Machine

xvii

VMM Virtual Machine Manager

vTPM Virtual Trusted Platform Module

WAN Wide Area Network

XaaS Anything-as-a-Service

WinGA Windows Guest Agent

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Cloud computing (CC) is one of today’s exciting technologies that significantly impact

business thinking. It facilitates a change in the way companies operate by offering

shared and virtualised infrastructure that is flexible and easily scalable. CC offers

organisations the advantages of more attractive costs and reduced complexity for

running network-intensive applications, such as internet servers and cloud-based

services in a virtual environment, where multiple virtual machines (VMs) run on the

same machine and share the machine’s physical and network resources (Chaudhary &

Kumar, 2019; Senyo, Addae, & Boateng, 2018). CC infrastructure services offer elastic

computing that particularly matches the requirements of transactional web

applications, such as e-business applications with performing cost/performance trade-

off analysis (Mell & Grance, 2011).

In CC, the word ‘cloud’ is a metaphor that describes the worldwide web as being

a space in which computing has been preinstalled and exists as a service (Sadiku, Musa,

& Momoh, 2014). Many companies, both large and small, are contemplating moving to

CC to leverage the significant potential of this new paradigm (Bhushan & Gupta, 2017).

Governments and businesses spend a large amount of money, resources and time to

achieve security in cloud services (Ali, Khan, & Vasilakos, 2015).

Security is key to the success of CC, and many surveys have shown that security

is the main challenge for CC adoption (Agarwal, Kaushal, & Chouhan, 2020; Cloud

Security Alliance, 2019; Cloud Security Alliance, 2009; Taylor, Dargahi, Dehghantanha,

Parizi, & Choo, 2020; Zafar et al., 2017). Until relatively recently, organisations have

managed mainly their business processes on their private infrastructure and outsourcing

of services has usually been for non-critical data/applications. However, as organisations

gain more CC experience, they shift more of their core business functions onto the cloud

platform. They find that cloud adoption is significantly more complex than initially

imagined, particularly in data management, system integration, and multiple CSPs

management. The traditional network perimeter has been broken, and organisations

feel they have lost control over their data and applications. New attacks on CC have

appeared, and the benefit of being accessible from anywhere has become a significant

threat. Many CC issues are the same as the old ones but in a new setting.

2

With the support of virtualisation technologies, a physical server can be divided

into several isolated execution environments by deploying a layer (i.e. Virtual Machine

Manager – VMM – or hypervisor) on top of the hardware resources or operating system

(OS). The execution environments on a server (i.e. the VMs) run without mutual

interruption. Each VM has its own OS and applications.

In the beginning, virtualisation technologies were not used widely for several

reasons. For instance, they occupy a portion of hardware resources (e.g. central

processing unit [CPU] and memory) (Huber, von Quast, Hauck, & Kounev, 2011). Further,

insufficient network bandwidth has prevented vendors from leasing their unused

resources to clients. As the related technologies have advanced, such as the utilisation

of the fibre channel (Develder et al., 2012) and the development of security technology

(Mather, Kumaraswamy, & Latif, 2009), a new service model in CC (see Chapter 2 for

more detail) has emerged in virtualisation technology (K. Liang, Zhao, Chu, & Chen,

2017).

In CC, large companies can divide up their additional hardware resources and

rent them to customers in a pay-as-you-go manner. Users can quickly start to work on a

VM without the considerable expense of hardware purchase and maintenance. Because

an increasing number of users are choosing cloud data centres to hold their applications,

it has become a crucial task to efficiently manage the VMs in a data centre. Users request

and use resources from a cloud provider and leave after their tasks are finished.

Correspondingly, CSPs constantly create and destroy the VMs in the data centres.

Therefore, without efficient datacentre management, the enterprise will not be able to

identify its weaknesses and strengths for each factor. Then build a plan to help them

make appropriate decisions regarding the successful adoption of CC.

All the above problems can be solved by a critical technology such as live VM

migration. Live VM migration means a VM is no longer fixed on the server on which it is

created. A VM can be moved from one server to another, even from one data centre to

another, without interrupting the applications running in the VM. Many cloud

management operations have become feasible with the implementation of live VM

migration, such as server consolidation (Padala, Zhu, Wang, Singhal, & Shin, 2007), zero-

downtime hardware maintenance (Hoglund & Butler, 2006), energy management

(Bianchini & Rajamony, 2004) and traffic management (Narayana, Jiang, Rexford, &

Chiang, 2012) (see Chapter 2 for further detail).

3

Improving the security of live VM migration, such as decreasing the total

migration time, reducing service interruption during migration and enhancing the level

of migration security, have all been essential issues since live VM migration was

proposed. This is because system-level security refers to the architecture, policies and

processes that ensure data and system security is closely related to the level of cloud

management. Consequently, the existing live VM migration is still not adequate to meet

next-generation systems requirements, and some problems still exist. These include

secure dynamic resource pools, secure virtualisation job migration across data centres

(i.e. migration over the wide area network [WAN]) and high usability (Luis, Luis Rodero,

Juan, & Maik A., 2009).

1.2 Model for an information security system

The information security (InfoSec) landscape has changed dramatically over the past 20

years into a maze of complicated and dynamic relationships between information

technology (IT) specialists, IT users and general management.

The security of the information assets of an entity has significant economic

consequences. Therefore, an entity’s management must hold the responsibility for

security; IT and InfoSec managers have established methods of achieving that objective

(Parker, 1998). This thesis’s philosophy is that the responsibility for InfoSec must always

belong to the management team of any organisation.

An effective security programme is based on many specialised principals that are

viewed by many as different business goals. In reality, each of these principles works

together to provide a security net that collectively protects the organisation’s

information assets (Schneier, 2006). Organisations are required to adopt a

countermeasures model such as the McCumber Cube (McCumber, 2004) and consider

an expanding protection model to offer proven processes that do not change their IT

system’s structure methodology even as the technology evolves. The McCumber Cube

is a three (3) by three (3) by three (3) cube with 27 cells (see Figure 1.1).

4

Figure 1.1: The McCumber InfoSec cube (McCumber, 2004, p. 9)

Each of these cells represents an area of interaction among these three

dimensions to be addressed by any InfoSec system. Using this model ensures that each

of the 27 cells is treated correctly by each of the three interest groups. For instance, the

cell that represents the relationships among the areas of technology, integrity, and

storage must have controls or protections that address the use of technology to

maintain information integrity when in storage. Such control may consist of a

monitoring system for host intrusion, which alerts security administrators when a critical

file is modified. The primary objective of this model is to recognise gaps in an InfoSec

program’s coverage. While this model covers InfoSec’s three dimensions, it omits any

discussion of specific guidelines and policies that direct InfoSec controls to be applied.

This thesis focuses on computer security applied to large-scale distributed

systems. Thus, it defines security building blocks and how to fulfil them with an

application to CC environments. Ensuring security means preventing unauthorised

access and modification of the information while allowing authorised access and

modification (Schneier, 2006); unauthorised changes are the outcomes of bypassing the

InfoSec properties. The InfoSec properties define who has access to system information,

how to access it, and what operations are allowed. These InfoSec properties are part of

the InfoSec cube and, more specifically, focus on the fundamental principles of InfoSec;

namely, to ensure the availability of the data for authorised use; to preserve the integrity

of the data; and to protect the confidentiality of the data (Harris, Shon, 2016). These are

discussed separately below.

• Availability is the system’s ability to ensure authorised individuals have

reliable and appropriate access to the data, information and resources. With

virtualisation, an attacker can compromise availability with greedy

5

behaviour, such as migrating a machine back and forth infinitely (Garg,

Versteeg, & Buyya, 2011); this means the virtualisation layer wastes

resources, and the service is down most of the time. Accidents can occur

through physical servers or from a person unplugging a cable and disabling

server access.

• Integrity involves maintaining the consistency, accuracy and trustworthiness

of the data over its entire life cycle, as well as preventing information

corruption. In other words, the systems and computer network must be

protected from an unauthorised user trying to rewrite or erase the

information. An attacker could intercept the network traffic and introduce a

small change into the data, and then send it on to the destination, creating

what is known as a ‘man-in-the-middle (MiTM) attack’ (Chowdary, Challa, &

Mukkamala, 2019).

Cloud infrastructures provide new mechanisms for the manipulation of

information by attackers. A compromised hypervisor can threaten data

integrity during the migration process (Elhage, 2011). More specifically, if a

VM is able to escape from isolation and compromise the VM, it can access

the memory locations belonging to other users while having the required

privileges to write or delete their content, thus performing a VM hopping

attack (Dong & Lei, 2019).

• Confidentiality means that the required degree of prevention is applied at

each data-processing junction to avoid information disclosure. This secrecy

level needs to prevail as data persists when transmitted on system and

devices within the network and as it reaches its destination. An attacker

could thwart confidentiality mechanisms by stealing password files, network

monitoring, shoulder surfing, breaking encryption schemes, and social

engineering. For example, User A could be mainly idle, and User B could be

consuming all the resources. User B could benchmark and profile interrupt

while he/she is the only CPU user. If User A sends an interruption, User B

could detect a period of difficult access, as the processor cannot handle more

interrupts. User B could build the actively of User A and break the

confidentiality of the data.

6

1.3 Statement of the research problem

Although some of the common security issues that are defined in Chapter 2 are critical,

this thesis tackles the problem of the integrity of the live migrating process from one

VM to another under the same platform. Thus, this study addresses hypervisor security,

live VM migration and related security concerns. In addition, this thesis discusses end-

to-end security, defining a framework called Kororā. This framework was designed and

developed on the cloud ‘infrastructure-as-a-service’ (IaaS) (see Section 1.4)

environment, and it runs concurrently on the same hardware components (I/O, CUP,

Memory) and the same hypervisor’s platform (Xen’s open-source hypervisor); however,

the different combinations of parameters need to be evaluated before implementing

Kororā.

The reason for the very limited testing of existing network mobility solutions is

very simple: lack of tools. At this stage, the implementation and prototyping of Kororā

is only feasible for small-scale computing scenarios, not for large-scale scenarios. Once

the different InfoSec objectives (availability, integrity and confidentiality) with regard to

all areas of CC have been identified, such as securing networks and allied infrastructure,

securing applications and databases, security testing and digital forensics, the threats

and vulnerabilities that could be used to compromise the cloud system are identified in

this research. In addition, this study adds an appropriate hardware security component,

the vTPM, in order to run Kororā with a secure boot mode. The following paragraphs

give an overview of the problem statements of this research in more in detail.

Migrating VMs from a source host to a destination host across data centres for

reasons such as maintaining the source host improves cloud management and makes

cooperation among CSPs possible. For example, CSPs that run several data centres can

carry out load balancing between data centres instead of only within one data centre.

When facing a sudden peak workload, a private cloud data centre can migrate some

VMs that do not run confidential workloads to a public cloud data centre. Therefore,

private CSPs do not need to maintain many servers to align with the possible peak

workload. VM migration could occur in two ways: live and offline. VMs are transferred

from a source host to a destination host while running in a time of live VM migration.

This live migration’s security is a major factor, as potential security threats could be on

the data plane, control plane, and migration plane. An attacker could carry out both

7

passive and active attacks that stress the live migration and lead to performance

degradation.

There are security risks to the live VMs’ migration data integrity and

confidentiality. After a successful VM migration, the source host removes the memory

pages of the migrated VM. However, there should be a framework for the VM owner to

ensure the live VM’s migration memory data are removed from the source host’s

physical memory. However, the destination host’s memory portion must be clear of

previously used VM data and possibly malicious codes. This thesis investigated the

possibility of using migrating VM’s data either during transit or present at the source

and destination during the live VM migration process. Based on these investigations,

this thesis has proposed a novel framework for a secure live VM migration by using a

vTPM agent and six other agents, namely Input/Output (I/O), data plane, integrity

analyser and data organisation (see Chapters 4 and 6).

1.4 Statement of the security properties

IaaS architecture (see Chapter 2) incorporates three key features of cloud environments

to tackle the problems that are the focus of this thesis.

Table 1.1 shows the mapping between cloud security properties and cloud

security infrastructure. The properties are described in the text following the table.

Table 1.1: Mapping cloud security properties to infrastructure

 Cloud security infrastructure

 Hypervisor
Security

End-to-end
Security

Network
Security

Elastic
Security

C
lo

u
d

 s
ec

u
ri

ty

p
ro

p
er

ti
es

Extensibility  ✓ ✓ ✓

Multi-
Laterality

✓  ✓ ✓

Multi-
Layering

 ✓ ✓ ✓

• Extensibility: A cloud system can extend services that include the ability to

scale elastically and the level of effort required to implement the extension.

An extension could be through the addition of new functionality or

modification of the existing functionality. Therefore, the integration of new

security components must be both easy and transparent.

8

• Multi-laterality: A CC infrastructure may include many entities, all with their

priorities, requiring flexible policies. Such policies need high-level clarity to

abstract real-equipment relations.

• Multi-layering: By using solid, multi-layered security, exposure to data

breaches is minimised. When such protection features are available for all

cloud environments offered by a CSP, all tenants on a multi-tenant network

are similarly secure, which means fewer hacker entry points.

1.5 Research aims and intentions

This research’s main objective was to design and develop a secure live VM migration

framework by using a vTPM to improve the integrity of migration process from one VM

to another in the same platform (same hardware and same hypervisor – Xen open-

source hypervisor). Two essential terms that facilitate an understanding of the secure

live VM migration framework (Kororā) that was built for this research were identified:

crucial framework components (CFCs), which represent the attributes and features of

the proposed framework; and crucial framework elements (CFEs), which represent the

most relevant security system elements for the scope of this study. In addition, the

research included a comprehensive review of the evaluation system architecture and

the proposed framework state machine.

Therefore, the central goals of this thesis were as follows:

• Identify the requirements for the framework, including those related to VM

live migration among different hypervisors.

• Describe the model, processes and architectural features of the proposed

live VM migration framework.

• Design and implement a framework to improve the integrity of live VM

migration using virtualised environments.

• Analyse the performance of the framework using simulation models and

experiments running in a virtualised computing environment.

• Evaluate the framework on a hypervisor, including support for integrity

attestation of the complete system.

9

1.6 Research questions

Research Background (RB):

• What are the opportunities and challenges for live VM migration in CC,

with respect to the CFCs and CFEs?

Research Question 1 (RQ1):

• How do we design, implement the establishment of and evaluate a live

VM migration framework to protect the integrity of cloud systems?

Research Question 2 (RQ2):

• How might the information revealed by the above questions affect the

level of integrity of the framework and help the CSPs and cloud systems

users in their decision making?

1.7 Research objectives

To investigate the factors that may account for secure live VMs migration in cloud

systems, this research focused on the following three interrelated research objectives:

• To understand the security issues associated with CC, virtual trusted platform

modules (vTPMs), virtualisation, live VM migration and hypervisor.

• To identify the proposed framework requirements, including those related

to VM live migration among different hypervisors.

• To design and validate the model, processes and architectural features of the

proposed framework.

• To propose and implement an end-to-end security architectural blueprint for

cloud environments, provide an integrated view of protection mechanisms,

and then validate the proposed framework to improve live VM migration

integrity.

1.8 Contribution of the thesis

This thesis explores agent-based designs to orchestrate and dynamically compose

different security building blocks such as hypervisors (e.g. Xen open-source), hardware

security elements (e.g. vTPM), VM, secure storage and integrity management

mechanisms. Each agent declares its guaranteed security properties using contracts,

which are composed to derive the overall cloud security objectives. This end-to-end

10

security framework is validated by realising a prototype of a secure cloud and several

use cases.

By addressing the preliminary problems in live VM migration, this thesis strives

to make the following contributions:

• Conduct a comprehensive literature review of CC, virtualisation, hypervisors,

vTPM and live VM migration’s latest technology with a comprehensive

analysis of the existing attack scenarios and potential solutions.

• Define key aspects of the live VM migration process (e.g. memory content

and disk storage) that affect total migration time and understanding the type

of memory and storage content that need to be migrated.

• Discuss different VM migration security threats and their categories in live

VM migration and discuss the requirements and existing solutions to mitigate

possible attacks.

• Classify the existing migration mechanisms into one of the basic categories

of type of live VM migration and discuss the various metrics that affect this

category, based on the objective and techniques used.

• Identify live VM migration using a vTPM among two different physical hosts

in the same hypervisor layer (Xen hypervisor) and the proposed live VM

migration framework, and briefly explain the various metrics and agents

involved in the framework.

• Define and validate the proposed framework mechanisms enabling the self-

protection of the cloud infrastructure.

1.9 Organisation of the thesis

The remainder of this thesis is organised into eight chapters, as follows:

• Chapter 2 provides a wide-ranging review of the studies related to the

research topics, such as CC, virtualisation, hypervisor, vTPM and live VM

migration, including a possible attack scenario in the cloud system.

• Chapter 3 presents a comprehensive review of the research methodology

and further detailed discussion about multi-methodology research in the

field of computer science. A brief background is provided for each topic,

along with a detailed definition of multi-methodology research.

11

• Chapter 4 describes the framework’s design and discusses its various design

steps, such as developing a system model of live VM job migration, migration

scenarios, migration attack scenarios, proposed framework assumptions and

the integrity verification process.

• Chapter 5 elaborates on the evaluation theory, system development, and

experimentation regarding the research framework, such as the check

system against success criteria. This chapter focuses on the details of the

proposed framework’s integrity protection, the data-gathering steps, and the

ethical considerations.

• Chapter 6 discusses the implementation steps of the framework. In addition,

this chapter contains five related works of research that facilitate a better

understanding of the framework’s different parts, which includes seven

agents. Each agent is explained briefly, from mapping the system (see Section

6.3.4 for further details) to the architecture of the proposed framework and

code architecture, as well as some implementation considerations.

• Chapter 7 briefly describes the thesis findings, including the details of the

evaluation of RB and RQs.

• Chapter 8 outlines the work’s conclusions in this thesis and suggests future

work based on this thesis’s contents. Besides, this chapter highlights the

limitations of this research.

12

Figure 1.2: Stages of this research

13

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter reviews the existing literature to examine the underlying reasons for VM

live migration security being so essential than before. It provides a general overview of

VM migration security and considers the fundamental definition of Information Security,

often referred to as InfoSec in CC, based on live VM migration in particular. In addition,

this chapter discusses CC principles, models and paradigms and provides background to

the support of this study to answers RB and RQs posed in Chapter 1 in the following

chapters. A selection of academic literature is used to introduce the basics of CC,

virtualisation, VM live migration, the current VM migration schemes addressing various

issues, vTPM and correlated security issues. This literature’s overall aims and objectives

were identifying the most critical InfoSec challenges and possible attacks and their key

features.

2.2 Literature selection method

Once the RQs noted in the previous chapter had been identified, the literature review

could begin. This section outlines the steps that were required to conduct this literature

review. As illustrated in Figure 2.1, the first two steps involved identifying the plan,

scope, appropriate search terms (using search tools available in most libraries), and the

literature review’s goals. As noted by (Peffers, Tuunanen, Rothenberger, & Chatterjee,

2007), a literature review must focus on information from existing legitimate sources of

knowledge and identify which information is appropriate for the purposes of the study

and which information needs to be removed without undergoing further analysis.

Therefore, the next steps involved collecting the primary sources, evaluating them, and

summarising and synthesising the selected contents. After identifying the approach and

strategy for establishing the initial draft of the literature review (March & Smith, 1995),

the final step was to edit and polish the last version.

14

Figure 2.1: Steps in conducting this literature review

The process shown in Figure 2.1 involved considering the various research

methods (e.g. qualitative, quantitative) to answer a specific RQ by selecting and

summarising all the actual evidence about the pre-determined eligibility criteria. Once

all the studies involved in the review had been identified, each study’s helpful

information was extracted systematically, using appropriate techniques: quantitative,

qualitative or both. The literature review process needed to be reported in enough detail

to allow its outcomes to be independently reproduced (A. R. Hevner, March, Park, &

Ram, 2004).

2.3 Systematic literature review steps

This thesis used the systematic literature review (SLR) method to focus on the most

significant issues enterprises face with CC and VM live migration security. The SLR

method was chosen to facilitate identifying the RB and RQs associated with the research

topic. It was conducted in the following four stages (Tranfield, Denyer, & Smart, 2003):

• Stage 1 – Define

o Identification of the need for a literature review.

o Development of a literature review protocol.

• Stage 2 – Collect and select

o Identification of documents.

o Selection of relevant documents.

• Stage 3 – Analyse

o Categorisation of documents.

Identify literature

review plan and

scope, develop

search terms

Propose goal for

literature review,

conduct

information

search

Collect primary

sources, describe

how to

summarise their

contents

Identify final

sources and

synthesise the

contents

Develop approach

and strategy,

critically evaluate

final draft

Review final draft

15

o Data extraction.

• Stage 4 – Result

o Document findings and results.

The primary value of using the SLR method was to allow the researcher to focus

specifically on the research problems and gather the latest scholarly papers (Kitchenham

et al., 2009; Okoli & Schabram, 2010).

While there is a lack of empirical evidence and knowledge regarding which issues

are most important for the SLR areas (Vaishnavi & Kuechler, 2015). The SLR method is

one of the best ways to identify and prioritise issues for decision-making and sort large

volumes of references (Kitchenham et al., 2009). This method systematically seeks the

most reliable opinion from the scope of the research. While it is a qualitative research

technique that includes quantitative elements (Okoli & Schabram, 2010), this thesis

used the SLR method to process the massive amount of general literature related to the

research topic and select the relevant literature illustrated in Figure 2.2.

16

Figure 2.2: Identify a method for selecting the literature

2.4 Define method applications

This section outlines how the SLR method was used to identify the gaps in previous

research on this thesis’s subject. The RB in the first step was, “What are the

opportunities and challenges for live VM migration in CC, with respect to the CFC and

CFE?” A search of digital library databases such as IEEE, Google Scholar, Science Direct,

Elsevier, Springer, ACM and Hindawi was undertaken to identify the issues and define

each problem and justify its significance and consequences, and if possible, add

comments for elaboration. In this step, the SLR helped to identify the most relevant

academic paper(s) to address the RB question and RQs. Keywords such as ‘cloud

computing’, ‘cloud virtualisation’, ‘cloud migration’, ‘live VM migration’ and ‘live VM

migration integrity framework’ were used to search the titles on the seven selected

digital library databases.

Relevant
Check the content,

method, data
analysis and findings

Remove this
article from the

database

Relevant
Retain the article
for this research

Yes

Yes

Brainstorm
“Keywords”

Google Scholar,
ACM, Springer,

Elsevier, Science
Direct, Hindawi, IEEE,

etc.

Check the title and
keywords section based

on four keywords: ‘Cloud
Computing’, ‘Live Virtual

Machine migration’,
‘vTPM’ and ‘Integrity’

Relevant Check the abstract
and the conclusion

Yes No

No

No

Step 1

Step 2

Step 3

Step 4

17

The next step was to check the value of the academic paper(s) based on their

abstracts, conclusions and relevance to the RB question and RQs. The final stage of the

process was selecting the academic paper(s) to be used in this literature review.

2.5 Cloud computing

The concept of CC emerged during the many changes that occurred in the IT area in the

early 2000s. First, there was the provision of new technologies such as Web 2.0 and

distributed computing, followed by the emergence of the cloud-based offering of

‘software-as-a-service’ (SaaS). In addition, virtualisation enabled the pooling of servers,

offering a more straightforward start-up of development and a better resource

utilisation ratio. In effect, CC was the fusion of previous innovations that are now

provided through the cloud. Amazon, an e-business leader, introduced the CC model in

2002 to handle the heavy load of orders placed on their website at Christmas time. Many

other companies, such as Google and Microsoft, have gone on to offer similar products.

The rise of CC as evolving technology has given rise to many opportunities and

challenges (Baudoin et al., 2017). CC is hard to define because it is constantly evolving,

adapting to many different techniques and approaches to computing. At its core, CC is

more of a philosophy than technology. According to (Cloud Security Alliance, 2019), CC

is the journey of trying to separate an application from the OS and hardware rather than

the destination.

The National Institute of Standards and Technology (NIST) defines CC as follows

(Mell & Grance, 2011):

Cloud computing is a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or

service provider interaction. (p. 6)

The ability to provide these services rapidly and allocate the resources needed

for the moment and its on-demand capability gives CC its potential to help organisations

achieve a significant reduction in their operational and administrative costs. CC services

are not unitary products but rather a continuum of services that businesses can access

on an as-needed basis. It provides the capabilities of rapid elasticity, lower costs, on-

demand self-service, broad network access, resource pooling, pay-per-use measured

18

service, ease of utilisation, quality of service and reliability of services on the internet

(Cloud Security Alliance, 2019; Senyo et al., 2018).

Before discussing the CC ecosystem in more detail, it is essential to distinguish

between the term ‘cloud’ and the ‘cloud symbol’ on the internet. The internet allows

users to access web-based IT resources; however, a ‘cloud’ is a finite boundary for using

IT resources ‘on the fly’ via the internet. Definitions for the term ‘cloud’ vary, but for this

thesis’s purposes, a description provided by NIST (Mell & Grance, 2011) has been used

because it is well recognised and accepted worldwide, as well as allowing the possibility

of adding new service and deployments models.

The NIST (Mell & Grance 2011) definition lists five essential CC characteristics:

on-demand self-service, broad network access, resource pooling, rapid elasticity or

expansion, and measured services. In addition, it contains three ‘service models’

(software, platform and infrastructure) and four ‘deployment models’ (private,

community, public and hybrid) that together categorise ways of delivering cloud services

(see Figure 2.3).

Figure 2.3: The NIST visual model of CC definition (Mell & Grance, 2011)

This visual model shows the subscription-based services available to customers

(software, platform and infrastructure) in a pay-as-you-go model.

19

The above paragraphs have noted the major CC traits of design, implementation

and operation, as well as some key concepts, such as the different types of CC, the

characteristics of CC and the service models of CC. This discussion has raised the

following three questions: “What are the essential characteristics of CC?”; “What are

the service models for CC?”; and “What are the deployment models for CC?”. The

simplest way to address these three questions is through a standard InfoSec framework

that helps to make clear the definitions are intended to serve as a means for broad

comparisons of cloud services and deployment strategies, as well as providing a baseline

for a discussion ranging from what CC is to how best to use CC. The InfoSec standard by

NIST computer scientist Peter Mell (Mell & Grance, 2011) was chosen to address these

three questions.

2.5.1 Essential characteristics of cloud computing

According to Mell and Grance (2011, p. 10), the essential characteristics of using a CC

model are as follows:

• Rapid elasticity: CC supports the elastic nature of storage and memory

devices (e.g. memory, storage, network bandwidth and processing), which

can rapidly allocate and de-allocate resources according to the user’s

demand.

• Resource pooling: A multi-tenant architecture serves the many consumers

who request resources from a pool of computing resources. The CC user has

no control over, or knowledge of, the exact location of the provided

resources but may be able to specify the location at a higher level of

abstraction (e.g. country, state or datacentre).

• On-demand self-service: A customer can individually provision its computing

capabilities as needed automatically, without requiring human interaction.

• Broad network access: Capabilities are available over the network, allowing

services to be accessed over the computer network via different client’s

standard platforms.

• Measured service: CC offers a metering infrastructure to customers and cloud

service providers (CSPs), which allows them to pay for their consumed

resources only. In other words, CC provides transparency to clients and

providers.

20

Note that while virtualisation usually enables CC, this is not an essential

requirement, according to Mell and Grance (2011). Similarly, while multi-tenancy (as

distinct from resource pooling) is not a vital cloud characteristic, it is often discussed as

such (Brunette & Mogull, 2009).

2.5.2 Service models for cloud computing

CC is dynamically scalable because users only have to consume the number of online

computing services or resources they want; the infrastructure owner is responsible for

managing every piece of hardware and software s/he uses. Typically, it takes some time

for a user to access a new resource, but it can be configured precisely as needed.

Sometimes strict security and country rules and regulations force service users to have

data located nearby and/or under total management control. In that case, the

management of a company starts the OS layer, and the CSP ensures the infrastructure’s

availability and reliability. Thus, there can be no ‘one-size-fits-all’ solutions for cloud

adoption. Companies have to consider their own cost: benefit equation in this area and

then decide on the best mode for achieving this.

In CC, the required software does not operate on desktops but rather on web

servers’ bases with shared virtual resources. According to the NIST (Mell & Grance, 2011,

p. 12), CC can be broken up into three primary service models:

• Software-as-a-Service (SaaS): The CSP offers applications running on their

clouds. The responsibility for managing the underlying infrastructure falls on

the CSP, including the control of the applications. The consumer is

responsible for managing specific applications settings (see Figure 2.4).

• Platform-as-a-Service (PaaS): The CSP offers an infrastructure to deploy

applications developed using specific programming languages (e.g. Python,

PHP or another code) supported by the CSP. Managing the underlying

infrastructure falls on the CSP without any control over the consumer’s

applications. The consumer is responsible for maintaining the applications

and some environment configurations (see Figure 2.4).

• Infrastructure-as-a-Service (IaaS): The CSP offers the necessary resources

pool to deploy the consumer’s systems and applications. The consumer is

responsible for managing the OSs, storage and applications and has some

control over the network components (see Figure 2.4).

21

SaaS

• On-demand CRM (e.g. Salesforce.com)
• On-demand email (e.g. hosted Exchange, Google Mail)
• On-demand ERP (e.g. NetSuite)
• Web conferencing (e.g. WebEx, Citrix On-demand)
• Many other ISV offerings

Services Service providers

PaaS

• Microsoft Azure
• Rackspace Cloud Sites
• Salesforce.com – force.com, VMforce
• Google App Engine
• Other offerings from hosted service providers

IaaS

• Amazon EC2
• Rackspace Cloud Servers
• Attenda RTI
• Other offerings from hosted service providers

Figure 2.4: Types of CC service providers

Some argument related to the NIST framework remains. Duan and Wang (2017)

claimed that along with the NIST service models, ‘network-as-a-service’ (NaaS) should

be listed as a separate service model. NaaS can include the most common features of

the network, such as flexible and extended custom routing, intrusion detection or

prevention system, virtual private network, security firewall and network content

monitoring and filtering. Further, Ali et al. (Ali et al., 2015) offered a new term in cloud

service – ‘anything-as-a-service’ (XaaS). They noted that this ‘anything’ could be like

‘routing-as-a-service’, ‘data-as-a-service’ and ‘security-as-a-service’, all of which are

common in the communication area.

2.5.3 Cloud computing deployment models

According to NIST (Mell & Grance, 2011), most companies opt for one of four main cloud

deployment models, which differ significantly: public, private, hybrid and community

(see Figure 2.5). Other web-based organisation systems, which are not so widespread,

include virtual private and intercloud systems.

22

Figure 2.5: Properties of types of CC deployment models

• Private cloud: The cloud infrastructure is provisioned for exclusive use by a

single organisation comprising multiple consumers (e.g. business units). It

may be owned, managed and operated by the organisation, a third party or

some combination of these, and it may exist on- or off-premises.

• Community cloud: The cloud infrastructure is provisioned for exclusive use

by a specific community of consumers from organisations with shared

concerns (e.g. mission, security requirements, policy and compliance

considerations). It may be owned, managed and operated by one or more of

the community’s organisations, a third party or some combination of these,

and it may exist on- or off-premises.

• Public cloud: The cloud infrastructure is provisioned for open use by the

general public. It may be owned, managed and operated by a business,

academic or government organisation, or some combination. It exists on the

premises of the cloud provider.

• Hybrid cloud: The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community or public) that remain

unique entities but are bound together by standardised or proprietary

technology that enables data and application portability (e.g. cloud bursting

for load-balancing between clouds).

23

2.5.4 Cloud computing general security issues

In general, the significant concerns regarding CC fall under five categories, as shown in

Table 2.1.

Table 2.1: CC general security issues and challenges

Category Description

1 Load Balancing
The service provider should ensure the services’ elasticity and
scalability, even during peak hours or when the user initiates an
unusually high demand on the resources.

2
Single Sign-On
(SSO)

SSO access to multiple web-based cloud applications with a single ID
and password. It includes an approach to manage identity and access
security code for both traditional and cloud-based users and
applications.

3 Availability

Ensure reliability and timely access to data and resources to
authorised clients. It means that all the CC resources and applications
must provide adequate functionality to perform in a predictable
manner with an acceptable performance level.

4 Privacy

Privacy in CC is about the accountability of organisations to data
subjects and the transparency to an organisation’s practice around
personal information. The new concepts that clouds introduce, such
as virtualisation, live VM migration and trusted computing, create
new challenges to the security and privacy community.

5 Risk Assessment
The risks of using CC should compare to the risks of staying with
traditional solutions such as desktop-based models.

When it comes to outsourcing critical workloads and applications to the cloud,

organisations must provide the right people with timely access to the tool(s) and

information they need to do their job(s) or perform tasks. Balancing, scalability,

usability, and provisioning mean that a user should ensure the services’ elasticity and

scalability, even during peak hours or when users suddenly place an unusually high

demand on the resources. It can be challenging to strike the right balance between

security and usability. When millions of users need access to cloud-based resources, user

provisioning (and de-provisioning) must be simple, efficient and scalable (Botta, Donato,

Persico, & Pescapé, 2016; Vaquero, Luis, & Buyya, 2011).

In addition, organisations need to tie cloud-based applications together with

internal applications and enable users to easily access them with an SSO authentication

(Matloob, 2019). This helps streamline life cycle management and restrict authorised

internal and external user access to CC services components, authorised by

management, including software, data and output. The complete life cycle of a cloud

24

service includes internal and external cloud resources, through self-service provisioning

to decommissioning. This life cycle tailoring is necessary for the flexibility to deliver the

full required software stacks and the management rigour needed to ensure the CC

services’ operational integrity.

Perhaps the most significant concerns with regard to CC are security and privacy

(Domingo-Ferrer, Farras, Ribes-González, & Sánchez, 2019). The idea of handing over

relevant data to another company worries many clients and corporate executives might

hesitate to take advantage of a CC system because they cannot keep their company’s

information under lock and key. Security and privacy concerns appear to be the essential

block to the wide adoption of CC systems. As noted in Table 2.1, the concepts that CC

introduces, such as virtualisation, live VM migration, hypervisor, and vTPM, create new

security challenges.

Another point of concern in cloud systems is risk assessment (Oberheide, Cooke,

& Jahanian, 2008). A risk assessment methodology in a cloud system becomes much

more complicated when a service operator(s) migrate workloads from one VM to

another, exposing the company to a threat source, increasing its vulnerability. For

instance, if a VM is suspended during a live migration, this leads to extended migration

downtime. Even in some cases, total migration time and server downtime are still

extended to some degree. The transfer rate problem poses a high risk of continuing

service operation (Choudhary et al., 2017).

In many cases, the level of risk changes significantly according to the type of

cloud architecture used. The cloud customer can transfer risk to the CSP and these risks

should be considered against the cost-benefit received from the services. However, not

all risks can be transferred.

The following sections focus on the details of the significant security concerns

discussed above.

2.5.4.1 Cloud load balancing

According to Volkova et al. (Volkova et al., 2018), CSPs have continued to lack services

to guarantee data and access control policy consistency across multiple data centres.

They identified several consistency problems that can arise during cloud-hosted

transaction processing that are using weak consistency models.

A study by (N. Zhang, Lou, Jiang, & Hou, 2014) presented trusted data-intensive

execution, a trusted execution environment optimised to provide close-to-bare middle

25

performance for data-intensive implementation in the cloud. They proposed to perform

computation on decrypted user data inside a trusted execution environment. In their

model, the load-balancing server was responsible for resource allocation.

Mathew et al. (Mathew, Sebastian, Sabu, & Joseph, 2015) proposed an efficient

load-balancing mechanism in the mobile ad-hoc network, which was designed using

trust-based malicious node detection. In this study, load balancing was performed by

rejecting the malicious nodes below a specific trust cut-off.

In line with Xu, Tian and Buyya (Xu, Tian, & Buyya, 2017), the common thread

among Amazon’s Dynamo database, Google’s BigTable storage system, Facebook’s

Cassandra and Yahoo!’s PNUTS is the relaxed notion of consistency provided to support

massively parallel environments. Such a comfortable consistency model adds a new

dimension to large-scale applications’ complexity and introduces a new set of

consistency problems.

2.5.4.2 Single Sign-On

Trusted computing (see Section 2.9 for further information) can enable platforms to

provide trusted services such as cryptographic erasure of data, negotiations for the

supply of services, SSO and digital signatures. Trusted platforms improve on this concept

further because users can use attestation identities and measurements to prove to the

network that user authentication is being done correctly and that any network

authentication method is being executed as expected.

A study by Wilson and Hingnikar (Wilson & Hingnikar, 2019) proposed a method

and apparatus for solving identity management in modern applications and SSO access

based on TC technology. Their method implemented the vTPM, using a randomly

generated password, different from the login password, by sending a one-time

password to the user over some other trusted communication network.

J. Han et al. (Han et al., 2019) believed that SSO and OpenID had been released

to solve security and privacy problems for cloud identity. They proposed using TC,

federated identity management and OpenID web SSO to address identity theft in the

cloud.

2.5.4.3 Availability

A study by Liu, Zhang, Liu, & Zhang (2015) proposed an improved model based on the

Biba integrity model (Biba, 1977). Their study first described subjects’ infection level by

26

separating the subjects into uninfected and infected subjects and introducing a

confidence interval. Further, they reduced the subject’s integrity level and prolonged

the life cycle by adopting TC to adjust the subject tags.

A whitelist security management system based on TC ensures that the operating

conditions are secure in its full life cycle. This system provides security in the whole life

cycle, covering system loading, ruling and data availability in CC (Guo et al., 2020).

Ramamoorthi and Sarkar (2020) proposed a solution that could be implemented

on the browser to ensure a secure sign-out process. Their primary aim was to analyse

the way SSO works in a browsing envirounment and the policies necessary to ensure the

physical protection of the product during its entire lifecycle. Their proposed model

integrated a protection strategy intending to maximise the availability of a system

serving multiple demands.

P. C. Clark, Irvine and Nguyen (2014) believed that life cycle activities ensure that

a high-assurance product reflects the intention to ensure that the product is

trustworthy. Its users have a high level of confidence that vigorous efforts have been

made to ensure the absence of unspecified functionality, whether accidental or

intentional. Their purpose is to provide the personnel policy necessary to protect the

confidentiality and integrity of a product during the development and maintenance

phases of its life cycle. Integrity and security policies are the primary concern of this

plan, although confidentiality is not disregarded.

An earlier study, (Nguyen, Levin, & Irvine, 2005) described the policy and high-

level processes involved in distributing the TC exemplar product to external users. Their

document was driven by the TC exemplar lifecycle management plan, the configuration

management plan and the quality assurance plan. This multifactor research and

development initiative’s focus was to transfer knowledge and techniques for high-

assurance trusted system development to new developers, evaluators, and educators.

2.5.4.4 Privacy

A recent study conducted by Fuhry and Kerschbaum (Fuhry & Kerschbaum, 2020)

showed a novel approach for client-controlled encryption – fully homomorphic

encryption, CryptDB. In addition, hardware-anchored in-memory databases allow range

searches using an enclave.

A study by Mowbray, Pearson and Shen (Mowbray, Pearson, & Shen, 2012)

found that TC mechanisms could be used to enhance privacy management; the vTPM

27

could provide encryption services and allow integrity checking of the software privacy

manager. They described different possible architectures for such privacy management

in CC, gave an algebraic description of obfuscation features provided by the privacy

manager and explained the way policies might be defined to control such obfuscation.

By these means, CC users could reduce the risk of their private data being stolen or

misused, and in addition, assistance could be given to CSPs to help them conform to

privacy law.

Agrawal, Kaushal and Chouhan (Agarwhal et al., 2020) examined the data

encryption and query on encrypted data with TC from the three angles of security,

performance and databases. Their research focused on security and privacy issues in

cloud service models and cloud deployment models, along with various cryptography

mechanisms of data protection such as symmetric and asymmetric cryptography.

2.5.4.5 Risk assessment

A study by Jouini and Rabai (2019) dealt with security problems in CC systems and

showed a user-oriented TC system based on a vTPM. In addition, they proposed a

generic framework by using a quantitative security assessment model named multi-

dimensional mean failure cost, which uses a remote attestation incorporated into the

transport layer security handshake process (Dierks & Rescorla, 2008) by using a vTPM.

At the time of their study, this framework had resisted common attacks and had

effectively achieved trust in the computing system to the end-user.

A paper by Y. Zhang et al. (2017) proposed a novel public verification scheme for

cloud storage using TC security mechanisms. They further extended the passive defence

scheme to support batch verification and turn the dynamic operation into an active one,

combining the terminal platform’s integrity and the trustworthiness of the platform’s

identity. As a result, their study showed a measuring mechanism that could effectively

resist the security threats from a malicious or risky terminal.

Wu, Zhan, Zhao, Hu and Li (2016) introduced a trusted third party and proposed

a trusted evidence collection method based on TC’s technology. Security features

provided by a trusted platform control module were used to introduce a cloud platform

authorised evidence collection agent in each layer of the cloud platform.

By considering certificate-less public key cryptography and the TC technologies,

Zhuo, Fenghua, Jianfeng, & Wenjiang (Zhuo, Fenghua, Jianfeng, & Wenjiang, 2014)

proposed a certificate-less-based trusted access protocol for wireless local area

28

networks. The new contract’s security properties were examined using the extended

Canetti-Krawczyk security model (Canetti & Krawczyk, 2001).

2.6 Virtualisation

In a traditional environment consisting of physical servers connected by a physical

switch, IT organisations can obtain detailed management information about the traffic

that travels among the servers from that switch. Unfortunately, that information

management level is not typically provided from a virtual switch via the physical network

interface controller that attaches to VMs. Therefore, the concept of virtualisation needs

to be understood and implemented in CC systems to allow both the users and owners

better and robust management and usage of the cloud (see Figure 2.6).

Hardware

Hypervisor/ VM Monitor

Application

Operating
system

VM

Application

Operating
system

VM

Application

Operating
system

VM

Figure 2.6: Virtualisation process in CC

CC is a network-based environment that focuses on sharing computations and

resources. It is characterised as a pool of virtualised computer resources. In addition,

cloud suppliers utilise virtualisation technologies combined with self-service abilities for

processing resources through network frameworks; the internet and various VMs are

facilitated on the same physical server. Because of this virtualisation, CC enables

workloads to be sent and scaled rapidly through VMs or physical machines’ fast

provisioning.

Virtualisation is enabling technology for VM migration since it decouples a VM

from a physical server. Using virtualisation, two or more OS’s might run in a single

machine with each having its resources. There are several conventional approaches to

virtualisation, with differences in how each of them controls the VMs. Figure 2.7 shows

the following three main virtualisation approaches, as outlined by Sabahi (2011, 2012):

29

a) OS-based virtualisation, in which the virtualisation is enabled by a host OS

that supports multiple isolated and virtualised guest OSs on a single physical

server in such a way that all are on the same OS kernel with exclusive control

over the hardware infrastructure.

b) Application-based virtualisation, in which the virtualisation hosted on top of

the OS. This virtualisation application then emulates each VM that contains

its guest OS and related applications. This virtualisation architecture is not

commonly used in commercial environments.

c) Hybrid-based virtualisation, in which the hypervisor is available at the boot

time of the machine to control the sharing of system resources across

multiple VMs. In this architecture, the privileged partitions (also called the

parent partitions) managed the virtualisation platform and hosted VMs. In

this architecture, the privileged partitions view and control the VMs.

30

Figure 2.7: Virtualisation approaches (Sabahi, 2012)

In CC, VM migration is the method for moving a considerable amount of data and

applications into a cloud; the cloud type can be public, private or hybrid (Coyne et al.,

2018). A VM migration is required when customers change their computer systems or

move up to new systems or when systems merge and require load balancing. Likewise,

it is required when the customers move their data from one place to another inside the

same cloud or from one cloud to another for some personal or business reason (Nelson,

2018).

31

There are two kinds of VMs:

• Full virtualisation: This requires processor support for virtualisation. The

unmodified guest OS can run in the VM. All operations that are privileged or

depend on the privileged state are intercepted by the hypervisor and

simulated to provide an impression of having full control over the machine

(Chisnall, 2008).

• Para-virtualisation (PV): The guest OS must be aware that it runs under a

hypervisor’s (Xen’s hypervisor) control and instead of performing privileged

operations directly, it requests the hypervisor (Xen hypervisor) to conduct

them. XenServer makes use of PV for I/O virtualisation; I/O requests from any

other non-domain 0 VM (called domU) are sent to dom0. Dom0 is a specially

privileged VM which has access to the physical hardware (Chisnall, 2008).

In support of many of the most established virtualisation organisations, the

distributed management task force provides an open virtualisation format for packaging

and distributing virtual appliances to achieve a standard.

2.6.1 Virtualisation security issues

CC is usually thought to be the computing infrastructure for future generations. It is an

efficient method that enables users to utilise giant volumes of resources and it provides

a practical, delay-free and accessible on-demand service. With the adoption of a cloud

model, users lose control over physical security. Users raise concerns about whether

unauthorised parties can access their data since many users share these resources over

the cloud (Almorsy, Grundy, & Müller, 2016).

In the cloud model, security involves three dominant considerations (see Figure

2.8): confidentiality, integrity and availability (Harris, S., 2016). Confidentiality consists

in protecting the data and information from disclosure to an unauthorised person.

Integrity involves protecting the data and information from being modified by an

unauthorised person. Availability includes authorised people being able to access and

use the data and information whenever they require.

32

Figure 2.8: CC security aspects and challenges

Securing access to protected data and information is restricted to the particular

level of the user who is authorised to access it. This requires mechanisms to be in place

to control access to protected data. The sophistication of the access control mechanisms

should be on par with the value of the information being protected; the more sensitive

or valuable the information, the stronger the control mechanisms need to be. The

foundation on which access control mechanisms are built starts with authentication,

authorisation and encryption (Novak, Ben-Zvi, & Ferguson, 2017).

The VM can be migrated to multiple hypervisors, from any hypervisor to a target,

or beginning with one cloud then on to the next hypervisor. It is a challenging task to

migrate VM and it involves different security issues, such as trust, confidentiality,

privacy, integrity and availability, as described in Table 2.2 (Tchernykh, Schwiegelsohn,

Talbi, & Babenko, 2019).

33

Table 2.2: Categorisation of threats in CC

Category Description

Trust

The idea of trust, adjusted to the case of two parties
involved in a transaction, can be elaborated as follows:
‘Entity A is considered to trust Entity B when Entity A
believes that Entity B will behave exactly as expected and
required’.

Security
identification

of threats

Confidentiality

Confidentiality means that only approved parties or
systems can access the ensured data. The threat of data
compromise increases in the cloud because of the
increasing number of parties, devices and applications
involved, which leads to an increase in the number of
points of access.

Integrity

A crucial part of InfoSec is integrity. Integrity means that
resources can be changed only by authorized parties or in
approved ways and refers to data, software and
hardware. Data integrity refers to protecting data from
unapproved deletion or adjustment. Software integrity
refers to protecting software from unauthorised deletion,
theft or modification.

Availability

Availability refers to the data, software and hardware of a
system being accessible and usable for approved clients
upon request. System availability means that a system can
carry on with operations even if some authorities
misbehave.

2.7 VM migration

Virtualisation is a technology that is applied for sharing the capability of physical

computers by dividing the resources among the OSs. VM migration is one of the

advantages of virtualisation, which helps to migrate an OS across multiple physical

machines. In other words, virtualisation technology aims to achieve different resource-

management objectives, such as load balancing (e.g. move VMs to a less busy host and

make use of the newly added capability), fault management, low-level system

maintenance (e.g. move VMs off a host before it is shut down), recovery from host

failure (e.g. restart VM on a different host) and resource sharing through VM migration

(Choudhary et al., 2017).

Multiple hosts can become overloaded, and this can require a VM to dynamically

transfer a certain amount of its load to another machine with minimal interruption to

the users. This process of moving a VM from one physical host or storage location to

34

another is called migration (C. Clark et al., 2005). From the perspective of migration, a

VM can be divided into three parts:

• Running state – Ex. Memory data, CPU states, and all external device

states

• Storage data – Ex. Disk data

• The network connections between VM and its users

In particular, VM migration is a powerful management technique that gives data

centre operators the ability to adapt the placement of VMs to satisfy security objectives

better, improve resources utilisation and communication locality, mitigate performance

hotspots, achieve fault tolerance, reduce energy consumption, and facilitate system

maintenance activities. Despite these potential benefits, VM migration also poses new

requirements on the secure design of the underlying communication infrastructure

between VMs, such as secure migration of a VM from one host system to another.

To perform a basic VM migration configuration includes a source machine and a

target machine. Both must be running integrity VM and must be able to run the guests.

Both machines must conform to their operating system requirements and restrictions,

and both must be able to provide the allocated resources to the guest. If the guest uses

2 GB of memory on one machine, it must use that amount on the other machine.

Similarly, if the source machine can provide a guest with four virtual CPUs, the target

machine must also be able to provide them.

There are three types of VM migration: cold, warm, and live.

• Cold migration occurs when the VM is shut down. To migrate a VM, it is

first stopped, at which point the memory content of the VM is written

into a directory. This file, the definition file of the VM and its disk images,

is then transferred to the new host, where the VM's execution is

resumed. The data can be transferred either over the network or by using

some storage medium. This form of VM migration is known as cold

migration.

• Warm migration occurs once both source and target hosts are available

within minutes as data copy continues to stream to the target until

completion. In other words, the VM on Host 1 is suspended, and the RAM

and CPU registers are copied across to Host 2, which then continues some

seconds later.

35

• Live migration occurs while the VM is running. In live migration, the VM

is kept running during the transfer and the migration can be performed

without perceivable interruption in service for the connected peers. This

involves copying across the RAM while the VM continues to run, marking

‘dirty’ (changed) RAM pages and re-copying them, and then briefly

suspending the process for the final copy (C. Clark et al., 2005).

In non-live (i.e. cold or warm) migration, all applications running on the VM are

stopped or suspended during the VM migration, while in live migration, all applications

continue running without any interruption. To clarify the differences between these

three migration types, Table 2.3 illustrates their features and requirements (Choudhary

et al., 2017; C. Clark et al., 2005; Ferris, 2019).

Table 2.3: Types of VM migration

VM type
VM power

state
Change host
or datastore

Shared storage
required

CPU
compatibility

Cloud migration Off
Either or

both
No

Different CPU
families allowed

Warm migration Suspended
Either or

both
No

Must meet CPU
compatibility
requirements

Live
migration

vMotion On Host Yes
Must meet CPU

compatibility
requirements

Storage
vMotion

On Datastore No N/A

Enhanced
vMotion

On Both No
Must meet CPU

compatibility
requirements

Moving a VM from one inventory folder/ resource pool to another folder/

resource pool in the same data centre is not a form of migration. Unlike migration,

cloning a VM or copying its virtual disks and configuration files are procedures that

create a new VM—copying a VMs is also not a form of migration. By using migration,

the system admin can change the compute resource that the VM runs on. For instance,

the system admin can move a VM from one host to another host or cluster. Depending

on the power state of the VM that system admin migrates, migration can be one of the

VM types, as discussed in Table 2.3.

36

To perform VM migration, the source and destination hosts must be configured

systematically. That is, all the network and storage resources must be configured the

same on both hosts. A systematic configuration includes a shared local area network,

identical network interfaces configurations, storage area network-based boot disks and

identical fibre channel port configurations.

There are two techniques for moving the VM’s memory state from the source to

the destination are ‘pre-copy memory migration’ and ‘post-copy memory migration’.

Memory migration, in general, can be classified into three phases:

• Push phase. The source VM continues running while certain pages are

pushed across the network to the new destination. To ensure

consistency, the pages modified during the transmission process must be

re-sent.

• Stop-and-copy phase. The source VM is stopped, pages are copied across

to the destination VM, and then the new VM is started.

• Pull phase. The new VM starts its execution, and if it accesses a page that

has not yet been copied, this page is faulted in, across the network from

the source VM.

2.7.1 Pre-copy memory migration

In pre-copy memory migration, the first step called the warm-up phase; the hypervisor

typically copies all the memory pages from source to destination while the VM is still

running on the source. After the system has completed the first step successfully, then

the VM will be stopped on the original host. The remaining dirty pages will be copied to

the destination, and the VM will be resumed on the destination host. The time between

stopping the VM on the original host and resuming it on a destination is called ‘down-

time’. It ranges from a few milliseconds to seconds according to the size of memory and

applications running on the VM (see Figure 2.9).

Figure 2.9: Pre-copy memory migration processes

37

There are a few steps to use this technology as below:

• Do not freeze VM at source; let the VM continue to run

• Copy VM’s pseudo-physical memory contents to target over multiple iterations

o The first iteration ---> copy all pages

o Each subsequent iteration ---> copy pages that VM dirtied during the

previous iteration

• Do a short stop-and-copy when a member of dirty pages is ‘small enough’

• However, what if several dirty pages never converge to a small enough number?

o After a fixed number of iterations, give up and stop-and-copy.

2.7.2 Post-copy memory migration

Post-copy VM migration is initiated by suspending the VM at the source. With the VM

suspended, a minimal subset of the execution state of the VM (CPU state, registers and,

optionally, non-pageable memory) is transferred to the target. The VM is then resumed

at the target. Concurrently, the source actively pushes the remaining memory pages of

the VM to the target – an activity known as pre-paging. At the target, if the VM tries to

access a page that has not yet been transferred, it generates a page-fault. These faults,

known as network faults, are trapped at the target and redirected to the source, which

responded with the faulted page.

Post-copy migration sends the page exactly once over the network. In contrast,

pre-copy can transfer the same page multiple times if the page is dirtied repeatedly at

the source during migration. On the other hand, pre-copy retains an up-to-date state of

the VM at the source during migration, whereas with post-copy, the VM’s state is

distributed over both source and destination. If the destination fails during migration,

pre-copy can recover the VM, whereas post-copy cannot (see Figure 2.10).

Figure 2.10: Post-copy memory migration processes

• Freeze the VM first

• Migrate CPU state and minimum state to a destination

38

• Start VM at the target, but without its memory!

• Transfer memory by concurrently doing the following

o Demand paging over a network

o Actively pushing from source

o Hopefully, most pages will be pushed before they are demand paged

• Advantage:

o Each page transferred over the network only once

o Deterministic total migration time

• Disadvantage:

o Could start penalty at the destination

o If the migration fails, then VM is lost.

2.7.3 VM Security Issues

The security of contemporary has become more critical as data have become more

widely distributed. Cloud computing is usually thought to be the computing

infrastructure for future generations. Sharing the cloud with other users possesses risks

and concerns over security. Security overall covers mainly three aspects: Confidentiality,

Integrity and Availability. These aspects are the topmost considerations in designing a

security measure to ensure maximum protection. Below are just a few examples of

some VMs attacks.

2.7.3.1 Cross VM Side-Channel Attacks

This attack requires the attacker to be in another VM on the same physical hardware as

the victim. In this attack, the attacker and victim are using the same processor and same

cache. When the attacker alternates with the victim’s VM execution, the attacker can

attain some information about the victim’s behaviour (Gruss D. et al., 2018).

A side-channel attack makes an open door for a co-resident VM to obtain

entrance data of other VM without their intermediation. It creates a bypassing method

to access data. CPU cache, memory, power consumption and network used in the

extraction of data inside channel attack. Software happenings will be followed by

watching behaviour in hardware.

The literature on Van Bulck, J. (Van Bulk J., 2020) paper highlight the needs for

CPU cache reaction time to check whether the target VM co-resident or not. Cache

behaviour is analysed utilising direct regression of the values gathered by load pre-

39

process with a cubic spline and load indicator. A malicious VM occupies the central part

of the CPU cache that targets co-resident by primary data demand.

At this point, it executes a load-measuring program over malicious VM for

measuring access time of cache. This study observes and demonstrates that higher

cache access to time implies more activities by co-resident. The examination proposition

additionally verified with three VMs sharing a resource. Vulnerable VM investigations

CPU cache access to time as well as can get data of the objective machine.

The studies of Lyu, Y., & Mishra, P. (2018) highlights the different strategies for

defending side-channel attacks (e.g. Xenpump). This technique limits the effectiveness

of timing channels. The transmission capacity of the synchronisation channel is

restricted by including some irregular latency by Xenpump. Subsequently, confusion is

made to vulnerable VM that gets channel transmission capacity. That unpredictability

set up in the receiver VM in the generated latency information is a direct result of VM

or hypervisor. This proposed model also decreases system performance.

2.7.3.2 VM Isolation

VMs run in the same hardware; they share all components such as processor, memory,

and storage. Isolating VM logically to prevent one from intervening with another is not

enough since they share computation, memory, and storage. Therefore, the data may

leak when it is in computation, memory, or storage. This is a severe issue. Hence,

isolation should be at the VM and hardware-level, such as processor, memory, and

storage (Bazm, M. M., Lacoste, M., Südholt, M., & Menaud, J. M., 2019).

2.7.3.3 VM Escape

The VMs or a malicious user escapes from the virtual machine manager supervision.

VMM controls all VMs, and it is the layer that controls how the VM, or a user uses the

underlying resources such as hardware. One of the most serious scenarios is that

malicious code can go through unnoticed from the VMM and interfere with the

hypervisor or other guests (Wu, J., Lei, Z., Chen, S., & Shen, W., 2017).

2.7.3.4 VM Rollback Attack

A study conducted by Pothuganti, S. (2020) showed that a VM rollback attack. It accepts

hypervisor is compromised already. This compromised hypervisor tries to execute VM

from its older snapshot without the owner’s awareness. This attack damages the target

40

VM’s execution history and undoes security patches, and updates make it vulnerable

target VM. This lets an attacker bypass the security framework.

 By rollback VM state that attacks an attacker gets an opportunity to execute

a brute force password attack. This will happen when a brute force attack happened

target VM raises a security alert, yet bargained hypervisor brings its past depiction by

rollback and allows brute force attack to be possible. However, it creates a more

complex solution because it cannot recognise the typical suspend/resume and rollback

attack.

Securely logging all rollback activities and evaluating them can prevent rollback

attack. Indeed, even TPM can be utilised as a part of the security of log integrity. VM

boot, VM suspend, VM resume, and VM resume is four hyper calls utilized to log

information. Isolating and encrypting the VM’S memory hypervisor helps protect

memory, hence creating a solution to the rollback attack. This solution additionally

prevents hypervisor from altering or reading memory pages.

2.8 Live VM migration

Live migration helps decrease the machine (e.g. VM) migration service downtime due to

large amount of storage, maintaining disk storage consistency and integrity, and

improving reliability, business continuity, and disaster recovery. Live migration can

simplify the movement of VMs across hosts and make it easier to manage a data centre.

It can also help ensure better hardware utilisation in CC systems, optimising the

distribution of VMs across the infrastructure. The VMs memory and network storage

contents can be moved to stand-alone servers without interrupting availability. Power

consumption is reduced, as when VMs are moved across hosts, the unused hosts can

then be powered down to save energy (Hsieh, S., Liu C., Buyya, R., & Zomaya, A., 2020).

In the past, moving a VM between two physical hosts required shutting down

the VM, allocating the needed resources to the new physical host, moving the VM files

and starting the VM in the new host. Now, live migration makes it possible for VMs to

be migrated without considerable downtime. The transfer of a VM refers to the transfer

of its state; the memory, storage and network connectivity of the VM are transferred

from the original guest machine to the destination machine. Thus, the process of

migrating VM without any perceptible downtime is known as live VM migration (C. Clark

et al., 2005).

41

The live VM migration process includes several stages, as shown in Figure 2.11.

Two physical servers, each with a virtualisation layer, host four OSs, with one being

migrated between Physical Servers 1 and 2 in the same hypervisor (both VMs run on

Xen hypervisor). This takes a conservative approach to the management of migration

concerning safety and failure handling.

Figure 2.11: VM live migration processes

According to Clark et al. (2005), the actual migration procedure involves six main

stages (Stages 0–5), which are briefly described below:

• Stage 0 (Pre-Migration): Collect all the resources needed, such as memory,

CPU, disk usage, network bandwidth and the total number of processes from

both active running VMs that will be migrating between two different hosts.

• Stage 1 (Reservation): A request is issued to migrate a live VM migration from

one physical host to another by considering that all the necessary resources

are available on the receiver physical host. In addition, the VM migration

system initially confirms there is an appropriate size of the container is

available.

• Stage 2 (Iterative Pre-Copy): During the first iteration, the memory state of

the VM is pre-copied to the destination while the VM is running on the

source, transferring all pages from Physical Server 1 to Physical Server 2.

42

After this, the virtualisation layer checks the VM memory to copy all the

uncopied or ‘dirtied’ pages during the previous transfer phase. This means

that subsequent iterations copy only those pages that were ‘dirtied’ during

the previous stage.

• Stage 3 (Stop-and-Copy): The process is suspended for about five

milliseconds in the running OS instance (Toutov, Vorozhtsov, & Toutova,

2019); that is, the VM at Physical Host 1 redirects its network traffic to

Physical Host 2. During this interruption, the CPU state and all memory pages

are transferred from the source host (Host 1) to the destination host (Host

2). At the end of this stage, two copies of the VM memory are available in the

two physical hosts. The copy of the source host will be resumed in case of

any failure.

• Stage 4 (Commitment): An acknowledgement of having successfully received

a consistent OS image is sent to the destination physical host. After the

destination physical host confirms receiving this acknowledgement message,

the source physical host commits to the migration transaction, releasing all

the migrated VM's resources and removing the original VM.

• Stage 5 (Activation): The hypervisor issues a request to run the migrated VM

on the destination physical host, and VM is activated. In this stage, the

hypervisor organises the network management and keeps the same IP

address.

2.8.1 Live VM Migration Strategy

From the perspective of live migration, a VM can be divided into three parts: Memory

data migration, storage data migration, and network connection continuity. To avoid

interrupting the services running in the migrated VM, all real-time states of a VM must

be migrated to the new host. These data contain CPU states, memory data, and the

buffer data of external devices. Generally, the transfer of the running state is called a

memory data migration. Live VM migration hands over these three parts from the

source site to the destination site (Choudhary et al., 2017). Therefore, it consists of three

tasks, as shown in Figure 2.12.

43

Figure 2.12: Live migration strategy of VM

There are a few types of memory data migrations, each of which requires sufficient

planning beforehand and validation afterwards.

2.8.1.1 Memory Data Migration

To avoid interrupting the services running in the migrated VM, all real-time

states of a VM must be migrated to the new host. These data contain CPU states,

memory data and the buffer data of the external devices. Generally, the transfer of the

running states is called memory data migration.

Migrating the memory data of VM consists of moving the VM’s memory pages

from the source hardware cluster to the destination hardware while the VM is all active

and running. There are three primary phases to perform the memory page migration

when it comes to the integrity (in-transit data cannot be modified without the other end

being aware of it) of memory data migration (see Figure 2.13).

• Push phase – the memory pages are pushed to the destination host while the

VM is active and running. Modified pages are required to be re-sent for

maintaining consistency.

• Stop and copy phase – The VM is stopped on the source host, memory pages are

copied to the destination host, and then on the destination host, the VM is

started.

44

• Pull phase – The VM executes on the destination. When a memory page is

accessed which is not yet copied to the destination, it is faulted in (pulled) from

the source VM across the network.

Figure 2.13: The classification of memory data migration patterns

2.8.1.2 Storage Data Migration

This task of migrating the disk image of a VM to the new location is needed when

the source host and the destination host do not share a storage pool.

The type of migration undertaken determines how much system admin can be

freed to work on other objectives. In storage migration, the data moving off

existing arrays into more modern ones that enable other systems to access them.

Offers significantly faster performance and more cost-effective scaling while

enabling expected data management features such as cloning, snapshots, and

backup and disaster recovery plan. Typically there are four basic types of

different storage configurations are existing as below:

The most common type is shared disk where VM images are stored on

centralised network storage, and in that case, when there is a migration occurs,

the actual image does not have to go anywhere physically; all it passed between

server A and server B, as shown in Figure 2.14, in this case in the metadata and

when the protocol that is used on the shared disk.

Figure 2.14: An overview on share disk configuration

Server A Server B

VM

45

Another type of storage configuration is replicated disk. In this situation, the

migration system uses an underlying hardware technology to provide that

replication through the VMs. In this case, it is not a software solution; it is more of a

hardware solution (see Figure 2.15).

Figure 2.15: An overview on replicated disk configuration

Remote referencing is another type of storage configuration which is using

underlying network protocol like Network Block Device (NBD) (see section 2.11);

when migration takes place, the disk image is not past; it is physically still in the same

server originated in, but then destination server points back to the original image

(see Figure 2.16).

Figure 2.16: An overview on remote referencing configuration

Finally, the last type of storage migration, called the shared-nothing

situation, where there are no networked shared resources all in the storage, is the

migration process with a local copy of VM server A and full copy on to the destination

server (server B). There is not any sharing involved at all; it has to fully copy that

entire image iteratively without disruption of the operation of the VM itself (see

Figure 2.17).

Server A Server B

VM VM
Copy

VM

Server A Server B

NBD

46

Figure 2.17: An overview of a shared-nothing configuration

2.8.1.3 Database Migration

The database migrates data from one or more source databases to one or more

target databases by using a database migration service. When the migration is

finished, the source databases' dataset resides entirely, though possibly

restructured, in the target databases. Clients that accessed the source databases

are then switched over to the target databases, and the source databases are

turned down. The following diagram illustrates this database migration process

(see Figure 2.18).

Figure 2.18: The generic database migration architecture

After the data is completely migrated, the source databases are deleted and

redirect client access to the target databases. Sometimes the migration process

keeps the source databases as a fallback measure when encountering unforeseen

issues with the target databases. However, after the target databases are reliably

operating, the migration process eventually deletes the source databases.

With database replication, in contrast, the migration process continuously

transfers data from the source databases to the target databases without deleting

the source databases. Sometimes databases replication is referred to as database

streaming. While there is a defined starting time, there is typically no defined

completion time. The replication might be stopped or become a migration.

VM

Server A Server B

Database server
(source)

Database server
(source)

Database server
(source)

Database
migration service

Database server
(target)

Database server
(target)

47

2.8.1.4 Network State Migration

After a VM is moved to a new location, a strategy is required to redirect its users'

network connections to the new location, and with that, the network states need to

be maintained to achieve a live migration. This can be achieved in a local area

network (LAN) quite easily. One way is to send a gratuitous address resolution

protocol (ARP) packet to the nodes in LAN and another way to send a reverse ARP.

These ways cannot be implemented in a WAN as the VM’s IP address space would

change.

A few of the current live migration implementations use a gratuitous ARP

packet such as the Xen facility, while others such as VMware use reverse ARP to

maintain the network connectivity during LAN based live migration. ARP tables of

the ARP packets are updated by mapping the VM’s IP address to the advertised link-

layer address. Correspondingly, the LAN switches update their content addressable

memory tables when they receive ARP packets.

2.8.1.5 Application Migration

Similar to database migration, application migrations take place when companies

switch vendors or platforms. This can include migrating applications from one data

centre to another, such as from a public to a private cloud, or from a company’s on-

premises server to a CSP’s envirounment. CSP’s migrating applications must make

sure their data can be communicated between the two applications. Each

application may have a unique data model, so attention must be paid to how data is

formatted. After all, an application is only as good as the data within it.

2.8.1.6 Business Process Migration

Business process migration is the complex transfer of applications and databases

containing information about customers, products, and operations. Data migrations

can be easy, but they must be planned for and validated once they are finished on

time and within budget.

2.8.2 Live VM Migration Security Issues

Live VM migration includes a great deal of state transfer through the network. During

this procedure, protecting the VM state files' contents is an important consideration, as

the volatile state being transferred may contain highly-sensitive information such as

48

passwords and encryption keys. A secure channel is, at times, not enough for protection.

Mutual validation among the hosts involved in the migration might be an even more

critical issue to consider (Ahmed & Litchfield, 2018; Choudhary et al., 2017; Murray,

Milos, & Hand, 2008).

Like any other network-bound process, live VM migration is susceptible to

network attacks such as ARP spoofing, ‘domain name system’ (DNS) poisoning and route

hijacking. If an attacker somehow manages to place himself between the source and the

destination host, he or she can then conduct passive (sniffing) or active MiTM attacks

(Murray et al., 2008). The fact that the live migration procedure is usually carried out

inside a LAN makes it even more likely that a network attack will be successful, especially

in situations where different third parties run their VMs inside the same network subnet,

which is the case in CC.

2.8.2.1 Return Oriented Programming Attack

Return-oriented programming (ROP) is one of the common attacks in live VM migration,

which is a very effective attack. It utilizes existing code for an attack. A sequence made

the Turing language of chaining which closes articulation consequently. This is an

extension of data execution prevention, a security measure implemented in most

systems today. ROP attack modifies the hypervisor data, which are usable for the control

level of VM privilege level.

An attacker can change their VM level from an average level to privileged.

Literature (Jia, X., Wang, R., Jiang, J., Zhang, S., & Liu, P., 2013) proposes a defence

strategy for the ROP issue. In this solution, the stack is analysed continuously for

potential outcomes in the event of an ROP attack and isolated for further examinations.

As ROP requires many addresses that are ranged in the program, this essential

component is designed to look for ROP attacks utilizing libraries.

2.8.2.2 Live VM Image Sharing

VM can be instantiated from a VM image. A shared image repository can be used to

share VM images, or a user can have his own VM image. Since there is a repository for

sharing VM images, some malicious users could take advantage of this feature to inject

a code inside a VM. This will lead to a serious problem (Hashizume, K., Rosado, D. G.,

Fernández-Medina, E., & Fernandez, E. B., 2013). For example, a VM image may contain

49

malware. This malware is coming from the user who used it before. If the image is

returned without properly cleaning it, sensitive data could be leaked.

2.9 Hypervisor

The hypervisor is a component of CC. A low-level program allows multiple OSs to run

synchronously on a single host computer. There are (Mather et al., 2009) identified two

types of hypervisors in CC:

• Type 1 hypervisors are bare-metal hypervisors, which means the hypervisor

is installed directly onto the server (e.g. Xen, ESXi and KVM), and different

types of OSs (e.g. Windows 10, UNIX and Linux) can be installed on it (see

Figure 2.19). The OSs are managed on a different hypervisor by a

management console, which allows the hypervisors to automatically move

the OSs between the physical servers based on their current resource needs.

It is crucial to managing the resources on different servers in an efficient way

to save energy, improve fault tolerance and prevent over-allocation,

especially when the enterprise wants to provide services to a vast number of

clients.

• Type 2 hypervisors are hosted hypervisors that run on a host OS. This type of

hypervisor is installed as a software application on an existing OS (e.g.

Microsoft Virtual PC, Oracle VM for x86 and VMware Workstation). This is

the most accessible type of hypervisor for an end-user to use on a personal

computing device (see Figure 2.19).

Figure 2.19: Types of hypervisor in CC

OS OS OS OS OS OS OS OS

Hypervisor Hypervisor Hypervisor

Hardware Hardware

OS OS

50

2.9.1 Xen project hypervisor

The Xen hypervisor is an open-source hypervisor (Type 1) that allows end-users to run

many instances of an OS or indeed, different OSs at the same time in a single host (or

machine) (XenProject, 2018). It uses distinct features such as microkernel design,

agnostic OS, drive isolation and PV as a basis for different commercial and open-source

applications (e.g. IaaS, embedded and hardware appliances and security applications).

The Xen hypervisor is installed directly on the server's hardware layer to run a

different type of OS (e.g. Windows server 2012). It is responsible for handling a CPU,

memory and interrupts. Each type is called a domain (guest). Domain0 in Xen hypervisor

is a specific VM with the unique ability to access the hardware directly, communicate

with another VM and manage all I/O functions of the systems. As shown in Figure 2.20,

it is impossible to run the hypervisor without Domain0 (Xenproject, 2018).

Figure 2.20: Diagram of the Xen project architecture

2.9.2 Why this study used Xen hypervisor

Virtualisation includes many types of commercial and open-source hypervisors. As a

type of virtualisation technology, Xen hypervisor (bare-metal hypervisor) is preferred for

many reasons, such as safety and stability, and is a well-tested choice for virtualisation

technology (e.g. Amazon, Rackspace and Verizon). Studies have identified several

additional reasons for using Xen hypervisor, as listed below (Ferroni, Colmenares,

Hofmeyr, Kubiatowicz, & Santambrogio, 2018; Jeffers, Reinders, & Sodani, 2016):

• Disaggregation: The ability to segment individual device drivers into small,

nimble driver domains might be subject to hackers' attack. Further, an

51

unstable device driver can be isolated via disaggregation and quickly

rebooted if it should fail.

• Flexible virtualisation modes: The hypervisor provides different virtualisation

modes that allow the administrator to adapt to the specifics in the

hardware's workload and capabilities.

• Multiple architectures: The software can run on traditional x86 32-bit and 64-

bit hardware.

• Availability: The Xen cloud platform's availability ensures the user can control

their VMs the way they want to, using whatever tool stack they choose.

• Manageability: XenCenter provides all VM monitoring, management and

general administration function through a single, intuitive interface, and it

allows live running VMs to be moved from one host to another within a

resources pool with no application or server outage.

Thus, the Xen security model makes it an excellent choice for many research

projects in different organisations' academic and commercial environments (Coker,

2006).

2.10 Trusted computing

The meaning of the word ‘trust’ varies among people and contexts. As with the word

‘security’, it has been so overused that it is almost meaningless without a specific

definition. This section defines the meaning of Trusted Computing (TC) in the context of

this thesis. This theme is returned to in the other chapters in this thesis as well.

For this thesis, TC refers to a computer system for which an entity (whether the

human user of a personal device or a program running on a remote machine) has some

level of assurance that (part or all of) the computer system will behave as expected. The

degree of this assurance depends on factors such as where the system is and in what

environment the computer system is being used.

Bodies such as the Trusted Computing Group (TCG, 2017) standardise specific

functionality to be incorporated into end systems, which are known as ‘trusted

platforms’. Depending on the way the specified functionality is implemented, such a

platform is then able to provide a degree of assurance about some aspect of its

operations. Thus, in this thesis, TC or Trusted Computing Base (TCB) refers to a set of

52

technologies that provides hardware and software support for secure storage and

software integrity protection.

TCB is the entire complement of protection mechanisms within a computer

system (including hardware, firmware, and software) responsible for enforcing a

security policy as the security perimeter is the boundary that separates the TCB from

the rest of the system. TCB is integrated into virtualised computing platforms to enable

the hardware-based protection of information and detect malicious software that aims

to subvert the operation of virtualised environments. While these enhancements add a

layer of security to the underlying data and applications, the use of TC in virtual

platforms raises several challenges concerning the virtualisation of its hardware root of

trust, the vTPM, which provides secure storage and cryptographic operations (Berger et

al., 2006; Gollmann, 2010; Pfleeger & Pfleeger, 2002).

The vTPM supports suspended and resumed operations and the migration of

vTPM instances along with its VM across the platform. The vTPM is a potential security

layer that provides grade-system protection, such as high add-in availability, scale

security operations and accelerated network agility and incident response, for managing

challenging situations to maintain the effectiveness of the security strategy between

CSPs and Cloud Service Users (CSUs) (Berger et al., 2006).

2.10.1 Virtual Trusted Platform Module migration

In vTPM, migration is one of the essential features enabled through the command set

extension. This study enabled vTPM instance migration using both symmetric and

asymmetric keys to encrypt and package the TPM state on the source vTPM and decrypt

the destination vTPM.

This research is based on the vTPM migration on migratable TPM storage keys, a

procedure supported by the existing TPM standard. The first step in this vTPM instance

migration protocol is to create an empty destination vTPM instance for the migrating

state. The virtual destination TPM generates and exports a unique identifier. The source

vTPM is locked to the same nonce; an arbitrary number used just once in a cryptographic

communication. All of the TPM states is exported with the nonce and the nonce is

validated before import. This enforces the uniqueness of the vTPM and prevents the

TPM state from being migrated to multiple destinations. The next step involves

marshalling the encrypted state of the source vTPM. This step is initiated by sending to

the source vTPM a command to create a symmetric key. The key is encrypted with a

53

parent TPM instance storage key and the asymmetric key is then retrieved from the

source vTPM. This includes non-volatile data objects representing areas of flash storage,

keys, authorisation and transport sessions, delegation rows, counters, owner evict keys

and permanent flags and data. While the state is collected, the TPM instance is locked,

so the state cannot be changed by regular usage.

After this stage, the information is serialised, an internal migration process is

updated with the data’s hash, and the piece of state information becomes inaccessible.

The migration process is embedded into the last piece of state information and serves

as validation on the target side. To recreate the virtual TPM state on the destination

platform, the storage key of the vTPM parent instance (used to encrypt the symmetric

key used to protect the vTPM instance state) must be migrated to the destination vTPM

parent instance. After the symmetric key decryption, the migrating vTPM’s state is

recreated, and the migration process is recalculated.

The vTPM instance's operation can resume only if the calculated migration

process matches the transmitted one in order to detect possible Denial of Service (DoS)

attacks, where untrusted software involved in the migration alters the state. Live

migration tries to reduce the downtime by replicating the running system’s image on a

destination machine and switching execution to that machine once all pages have been

replicated. The new vTPM migration protocol developed in this study can support live

migration, but in the worst case, it can increase the downtime for the migrated system

because of the time it takes to complete a special TPM operation, transfer the vTPM

state and recreate it on the destination platform.

2.10.2 Set Up the Standard Encryption Key Provider

There are many security solutions today that are hardware-based; however, some are

software-based. The others that exist in the virtual world, such as vTPM, Key

Management Interoperability Protocol (KMIP), security certificates, are emulating

hardware-based security devices. Today’s hypervisors are able to emulate many of these

modern hardware-driven security devices to deliver these capabilities inside the VM.

As part of the digital transformation reshaping modern IT, organisations can

easily delegate key management to third parties such as their cloud platform providers.

However, this effectively sacrifices integrity and confidentiality for convenience to

satisfy their essential management needs. Leaving key management to third parties

54

means the organisation information could be exposed and accessed without the

company’s consent.

To address this, many organisations turn to virtual hardware security modules,

hardened, on-premises physical devices that protect encryption keys and perform

various cryptographic operations spanning key creation, rotation, destruction, and

more. Before choosing vTPM as hardware-based protection, this research takes a closer

look at KMIP.

KMIP is not an encryption standard. However, rather an interoperability and

transport standard. In general, it is a cryptographic standard that enables secure key

exchange for encryption/ decryption without requiring direct access to the key. It

enables secure key exchanges between servers and clients to support encryption and

decryption operations, and then those keys and certificates are assigned values, and

clients can use KMIP to conduct key management operation commands.

KMIP server stores and controls managed objects such as Symmetric and

Asymmetric keys, Certificates, and user-defined objects. The client then uses the

protocol to access these objects to a security model implemented by the servers. The

types of a managed object that KMIP manages include: Symmetric keys, public and

private keys, certificates keys, split keys, and secret data (passwords).

2.11 Network Block Device Protocol

The Network Block Device (NBD) protocol was written and developed by Paval

Machek in 1998. It is a standard protocol for Linux for exporting a block device over a

network. NBDs are device nodes whose content is offered by a remote system.

Technically, a network block device is realized by three components: the server

part, the client part, and the network between them. On the client machine, on which

is the device node, a kernel driver controls the device. Whenever a program tries to

access the device, the kernel driver forwards the request (if the client part is not fully

implemented in the kernel, it can be done with a userspace program) to the server

machine, which the data resides physically. On the server machine, requests from the

client are handled by a userspace program.

2.11.1 Protocol Phases

The NBD protocol has two phases: the handshake and the transmission. During

the handshake, a connection is established, and an exported NBD device along other

55

protocol parameters are negotiated between the client and the server. After a

successful handshake, the client and the server proceed to the transmission phase in

which the export is read from and written to. The handshake is implemented in

userspace on the client-side under Linux, while the transmission phase is implemented

in kernel space. To get from the handshake to the transmission phase, the client

performs

ioctl(nbd, NBD_SET_SOCK, sock)

ioctl(nbd, NBD_DO_IT)

with nbd in the above being a file descriptor for an open /dev/nbdX device node

and sock being the socket to the server. The second of the above two calls do not

return until the client disconnects. Note that there are other ioctl calls available that

the client uses to communicate the options to the kernel that were negotiated with the

server during the handshake. This thesis does not describe those.

When handling the client-side transmission phase with the Linux kernel, the socket

between the client and server can use either Unix or Transmission Control Protocol (TCP)

sockets. For other implementations, the client and server can use any agreeable

communication channel. If TCP sockets are used, both the client and server should

use setsockopt to set the TCP_NODELAY option to non-zero to eliminate artificial

delays caused by waiting for an acknowledgement (ACK) response when a large message

payload spans multiple network packets.

56

CHAPTER 3: METHODOLOGY

3.1 Introduction

Research is the art of scientific investigation (Kothari, 2004). In common idiom, the word

‘research’ refers to a search for knowledge. This could be added to Kothari’s definition

to call research a scientific and systematic search for relevant information on a specific

topic (March & Smith, 1995; Redman & Mory, 1923).

A research methodology is a systematic approach used to collect and evaluate

data in the research process (Blagojević et al., 2017). The process involves defining

guidelines for finding appropriate ways to manage problems, establishing an in-depth

understanding of the topic, and searching for the solution space. These guidelines could

be a formal process (e.g. mathematical algorithms), an informal process (e.g. textual

descriptions) or a combination of these (Kothari, 2004). Research methodologies

provide guidelines for justifying or evaluating phases in various science types, such as

behavioural and design science (DS). For behavioural science, research methodologies

are usually rooted in data collection and analysis techniques; in DS, they are used to

evaluate artefacts' quality and effectiveness by using computational and mathematical

methods (Senyo et al., 2018).

In general, this chapter aims to expound the research strategy and describe a

new research methodology that is a combination of the mixed-methods approach and

DS research method, called Multi-Design Science Research Methodology (MDSRM),

which was chosen to guide the study. This thesis aimed to create a new live VM

migration framework for the CC system's integrity; this MDSRM approach was suitable

because it allowed this research to produce a new solution and critically evaluate this

study’s overall validity and reliability. An overview of the research methodology parts

was shown earlier in Chapter 1, Figure 1.2.

Selecting an appropriate research methodology to conduct a research process is

not easy because of the wide range of methods available and the increasingly complex

research subjects. Further, the way a research project is conducted depends on the

research paradigms that are held and employed and the research tools utilised to pursue

the research goals, objectives, RB and the RQs. Therefore, to select the most appropriate

research methodology, it is necessary to understand the different research paradigms.

57

3.2 Research system methodology theory

The term ‘research methodology’ refers to the theories on which researchers build their

work (Snyder, 2019). In general, the research methodology was chosen for this thesis

required exploring the issues in migration security for users and CSPs by considering the

design of a practical integrity model and understanding the elements required to create

a trusted cloud environment. This thesis adopted the methodological research process

(Nunamaker Jr., Chen, & Purdin, 1990) and the Design Science Research Method (DSRM)

(Offermann, Levina, Schönherr, & Bub, 2009) to create a suitable research methodology,

as shown in Figure 3.1.

Figure 3.1: Research methodology adopted for this research

Several methodologies were adopted to help resolve the research problems of

this thesis and answer the RQs. These are discussed in detail in the following sections.

Observation:
• Scenario

Design Research
System

Methodology

Design Science
Method

Problem identification:
• Literature

• Identify problem

• Pre-evaluate relevance

Solution design:
• Literature

• Design artefact

Evaluation:
• Refine objectives

• Expert survey

• Laboratory experiment

• Scenario

• Case study

• Action research

Communication:
• Scholarly publication

• Professional publication

Reputation

• Evidence collection

• Reputation aggregation

• Reputation dissemination

Formulation
Calculation

Dissemination

Formulation:
• Source of information

• Information type

• Temporal aspect

• Integrity metric

Dissemination:
• Distribution

• Determinism

• Storage durability

• Redundancy

Calculation:
• Distribution

• Determinism

• Efficiency

Theory building:
• Architecture analysis

• Dynamic analysis

System development:
• Framework

Experimentation:
• Simulation

• Experiment

Multi-
methodological

Method

58

3.2.1 Design Science

DS is an outcome-based IT/ Information System (IS) research methodology that creates

an artefact to address the problem and fulfil the defined requirements. This method is

relevant to IS research, and it has been applied to IS security in this study. This

approach's advantage is that the artefact can be examined in context, and continuous

iterations and testing can improve the artefact. DS research should be able to answer

the following questions (A. Hevner & Chatterjee, 2010):

• What is the research question (design requirements)?

• What is the artefact? How is the artefact represented?

• What design processes (search heuristics) will be used to build the

artefact?

• How are the artefact and the design processes grounded by the

knowledge base? What, if any, theories support the artefact design and

the design process?

• What evaluations are performed during the internal design cycles?

• What design improvements are identified during each design cycle?

• How is the artefact introduced into the application environment and

how is it field tested?

• What metrics are used to demonstrate artefact utility and

improvement over the previous artefact?

• What new knowledge is added to the knowledge base and in what form

(e.g., peer-reviewed literature, meta-artefacts, new theory, new

method)?

• Has the research question been satisfactorily addressed? (p. 20)

The main aims of the DSRM approach are not only to develop an artefact but

also to answer the RQs (Offermann et al., 2009). This meant that for this research,

according to the above checklist, the DSRM needed to provide sufficient detail to

determine whether CSPs should be constructing and using the artefact within their

specific organisational context. In addition, it was essential to find a balance between

the effort spent in creating and evaluating the evolving design artefact during the

performance of the design cycle.

3.2.1.1 Design Science Research Method

DSRM was one of the research methodologies selected for this thesis because it is not

problem-oriented; it is solution-oriented and focuses on solving real-world problems by

creating and refining the artefact to get a good-quality solution. This was appropriate in

this research since the situation required intervention in real-world operations. This

thesis focused on all six steps of the above DSRM model.

59

The DSRM model aims to produce artefacts (Peffers et al., 2007). The artefacts

can be in the form of a construct, model, method or an instantiation and some

researchers understand artefacts as ‘things’; that is, entities with a separate existence

(Goldkuhl & Mikael, 2010).

DSRM is motivated by the desire to improve the environment by introducing

these artefacts (Peffers et al., 2007). Peffers et al. developed the DSRM, a robust

framework for researching DS's area in IS, based on Hevner et al.’s (2004) DS research

model. Their model offers principles, practices and procedures to help carry out such

research (depicted in Figure 3.2). DSRM involves six primary phases:

1) identifying the problem and motivation;

2) defining the objectives of a solution;

3) design and development of the solution;

4) demonstration of the solution working;

5) evaluation of the solution;

6) and communication with other researchers via publication.

In other words, the DSRM consists of the research process and the methods used

in that process, as well as the tools that can be used. The method sets out the rules of

the process according to the IS development process used. Once the design process is

defined, it is easier to compare studies and their results.

Figure 3.2: A DSRM process model (Peffers et al., 2007, p. 54)

Peffers et al. (2007) consolidate a method for researching the DS paradigm (see

Figure 3.3), with their thesis reviewing a range of scholarly papers that have prescribed

60

solutions for problem-solving and artefact construction (Goldkuhl & Mikael, 2010; A.

Hevner & Chatterjee, 2010; Mullarkey & Hevner, 2019).

Figure 3.3: Research method proposed by Peffers et al. (2007)

Iivari (Iivari, 2007) noted that the critical features of the DSRM model – ontology,

epistemology, methodology and ethics – help to enhance the level of understanding

created in high-quality DS research in IS. The DS paradigm provides structural guidance

throughout the defined process, ensuring fidelity to best industry knowledge and

changing user contexts. Further, it improves artefact design knowledge, which is an

essential component of DS research (A. Hevner & Chatterjee, 2010).

3.2.2 Multi-methodology model

The multi-methodology research method was chosen for this thesis to provide a useful

theoretical model for the research outputs' characteristics. Brewer and Hunter (1989)

first mentioned the term ‘multi-methodology’. In the 1990s, the term ‘multi-

methodology’ became more prevalent in the behavioural, social, business and health

sciences, and this expanded approach has become well known (Onwuegbuzie & Leech,

2005). The multi-methodology approach (or multi-method research) utilises more than

one method for data collection or includes a set of related studies. Mixed-methods

research is consists of qualitative and quantitative data, strategies, approaches, or

sample models in a research study (Johnson & Onwuegbuzie, 2004).

Thus, these approaches are ways to deal with a professional and scholarly

research focus that proposes research can be enhanced using different data types,

techniques, methods, philosophies and standards (Morse & Niehaus, 2016). Multi-

61

methodology research is an exploration approach that combines different methods with

an end goal of managing the ‘richness’ of this present reality. The mixed methods in this

research are ‘quantitative’ and ‘qualitative’ approaches (Mingers & Brocklesby, 1997).

This methodology's primary benefit is that it adopts a practical approach to

quantifying each problem's impact. It can be readily integrated with any other

consolidation techniques to understand the research solution, frequently representing

the connection between the problem and solution components. Additionally, this

method helps explore the effects of design decisions and changes in the real world

(Goldkuhl & Mikael, 2010).

The focus of this part of the study was to answer RQ1, “How do we design,

implement the establishment of and evaluate a live VM migration framework to protect

the integrity of cloud systems?” The resulting proposed framework for a live VM

migration framework was based on this multi-methodology research method, as

illustrated in Figure 3.4 and Figure 3.5.

According to Nunamaker et al.’s (1990) proposed framework (see Figure 3.4), the

multi-methodology for IS research includes four main steps: theory building,

experimentation, observation and system development. Theory building consists of

developing new ideas and concepts, constructing a conceptual framework or new

methods or models. The experiment involves selecting research strategies and is

concerned with validating the underlying theories or issues of acceptance and

technology transfer. Observation includes utilising research methodologies that are

efficient in collecting the necessary data. System development involves five phases

representing theory testing and permits a realistic evaluation of the added information

technologies and their potential for acceptance. For this thesis, the multi-

methodological steps were systems development (Framework), theory building

(Architecture analysis, dynamic analysis), observation (Scenario) and experimentation

(Simulation, experimental), as represented in Figure 3.5. These steps are described in

further detail in the following sections.

62

Figure 3.4: A multi-methodological approach to IS research

(Nunamaker Jr. et al., 1990, p. 94).

Figure 3.5: Steps of the multi-methodological approach undertaken in this thesis

63

This research was prepared to go back and forth within these steps if findings in a later

stage required revising results obtained in an earlier stage (see Figure 3.6).

Figure 3.6: Steps of Nunamaker et al.’s (1991) research process

3.2.2.1 Systems development

Research systems development is a crucial aspect of any research methodology. These

integrated research efforts (often referred to as ‘projects’) can be recognised by their

relatively long lifespan and the stages through which they grow. As a result, systems

development can be seen as a legitimate approach to IS research and a critical

contributor to the available methodologies (Nunamaker Jr. et al., 1990).

Systems development consists of five stages: concept design, system

architecture construction, prototyping, product development and technology transfer.

Concept design is the adaptation of technological and theoretical advances to potential

practical applications. Prototyping is used as a proof of concept to demonstrate

feasibility. Systems development research often stops at this stage because the project

has failed to meet the initial expectations. Projects that are judged successful are

extended to become fully articulated production systems. This process allows a realistic

assessment of the impacts of the information technologies included and their potential

for being accepted. The transfer of technology represents the ultimate success of those

theories, concepts and systems that complete the process.

The development of a research system is configured to cover the research and

development cycle that forms the system's conceptual framework (see Figure 3.3). Each

development within the research system is connected with all five components of the

cycle. Work in each part of the cycle is an essential and compelling foundation for

transitioning to the next part of the cycle.

3.2.2.2 Theory building

A theory is a declaration of what causes what, why, and under what conditions (Wacker,

1998). A theory can be an unexpected declaration or a demonstrated declaration (Glaser

Construct a
conceptual
framework

Develop a
system

architecture

Analyse and
design the

system

Build the
prototypical

system

Observe
and

evaluate
the system

64

& Strauss, 2017). According to Wacker (1998), a theory must have four fundamental

criteria: conceptual definitions, domain limitations, relationship building and

predictions.

As noted earlier, theory building in any research involves the development of

new ideas and concepts, as well as the construction of conceptual frameworks, new

methods or models, as it creates a structure for the investigation and encourages

advancement in a range of fields of research. A theory must be based on some main

criteria that are common to all research methods, such as uniqueness, parsimony,

conservation, generalisation, fecundity, internal consistency, empirical riskiness, and

abstraction. Theories are generally concerned with generic system behaviours and the

subject of rigorous analysis.

In this research, the development of a system architecture helped the main

scope of this research present the artefacts' components and defined the system

requirements that would enable the performance of the proposed framework to be

tested in the evaluation stage. In developing a system architecture phase, the desired

functionalities of the artefact, its proposed framework and its development were

defined. In this study, the proposed framework used existing theoretical knowledge to

introduce artefacts that would support problem-solving.

3.2.2.3 Observation

Observation is a methodological data collection approach that researchers utilise to

examine individuals in specific settings or realistic situations. The reasons for gathering

observational data can include the following:

• when the nature of the RQ to be answered is focused on solving a ‘how’ or

‘what’ type of question

• when the topic is relatively unexplored and little is known about the

behaviour of people in a particular setting

• when understanding the meaning of a setting in a particular way is valuable

• when it is essential to study a phenomenon in its natural setting

• when self-reported data is likely to be different from actual behaviour (i.e.

what people do)

• when implementing an intervention in a natural setting, and observation can

be used in conjunction with other quantitative data collection techniques.

65

Observational data can help researchers to gain a deep and rich understanding

of a phenomenon, situation and setting, as well as the behaviour of the individuals in

that setting. It is an essential part of gaining an understanding of a naturalistic setting

and its members’ perceptions. In addition, it can provide the foundation for theory and

hypothesis development (Nunamaker Jr. et al., 1990).

A scenario is a deliverable investigation into an event (or set of circumstances)

that deeply explores and describes the context of interest. Rather than using a sweeping

statistical survey to gather information, it thoroughly examines a contemporary

phenomenon within its genuine setting, mainly when the limits between the event and

context are not clear (Bartlett & Vavrus, 2016).

The scenario is the most flexible of all research designs, allowing the researcher

to retain real-life events' holistic characteristics while investigating empirical events.

Using a scenario as an observation method in this research provided more realistic

responses than other methods would have (Yin, 2017).

3.2.2.4 Experimentation

Experimentation is the utilisation and investigation of controlled perceptions and

estimations to test the research theories (Rogers & Révész, 2020). The researcher

designs the examination with at least one factor under the control condition to examine

its impacts. Full explanations of the experimental research method have been provided

by Campbell and Stanley (2015).

A simulation model is a simplified representation of a real-life situation, which

allows the understanding of the process under investigation over time. Simulation

enabled this research to assume the inherent complexity of organisational systems as a

given (Grix, 2018). Using different simulation methods in this study to answer the

question, ‘What happened, how and why?’ helped to answer the question, ‘What if?’

Initially, a simulation technique is not precise; it does not yield an answer but merely

provides a set of the system’s responses to different operating conditions.

Further, simulation enables studies of more complex systems because it creates

observations by ‘moving forward’ into the future and provides a way of evaluating a

model by considering the key characteristics, behaviour and functions of a conceptual

framework or process. In contrast, other research methods attempt to look back across

history to determine what happened and how. In other words, while the model

represents the framework itself, the simulation represents the operations of the

66

framework during a selected period. This can be costly because it often requires a

significant amount of computer time.

3.3 The conceptual research system methodology

This thesis's research was based on an integration of the DSRM and multi-methodology

research method, which was named MDSRM (see Figure 3.7). The main concern of the

MDSRM was to help to meet the RB, RQs and research objectives of this study by reliably

identifying integrated live VM migrations. This conceptual research system methodology

provided the means to identify the integrated live VM migration regarding different

attributes assessed by multiple sources and roots. The scope of this research was

narrowed down to cover CC integrated migration systems with respect to CSPs. As Figure

3.7 shows, each step in the MDSRM is divided into different phases, with the arrows

indicating the transitions between the steps.

67

Figure 3.7: Multi-Design Science Research Methodology

3.4 Data gathering

If an organisation’s data is stored in their premises behind their firewall or an identifiable

press, they can ‘point at it’ and collect it with their favourite software tools. However,

the cloud is a challenging environment for e-discovery because the searcher does not

have a ‘line of sight’ to their data; they can no longer point at it, harvest it quickly and

drop it effortlessly into their database. There are some common obstacles for cloud

68

RB RQ1 RQ2

Literature
Guidelines

Attack
scenarios

Implementation

Evaluation
theory

Framework
evaluation

CFC and CFE
Secure live VM migration

establishment

Enhance the proposed secure live VM migration
establishment framework and generalisation

users when collecting their data in the cloud environment, such as difficulties with

getting the data back out when they need to or international policies and regulations

(e.g. the European Union general data protection regulation). However, this section

focuses on the process of data collection and extraction rather than the challenges of

collecting data in the cloud environment (see Figure 3.8).

RB and RQs

Data sources

Data analysis

Research
finding

Further
research

Figure 3.8: This research data plan

The traditional data sources of a historical research strategy, such as primary and

secondary documents, as well as cultural or physical artefacts, were used for this

research, as well as direct observation of the studied events and reviewing relevant

expert reports.

The two main methods of data collection used in this study were the literature

review and a scenario. The literature analysis provided a theoretical basis for exploring

and clarifying various research concepts. This information was gathered by defining

relevant CC articles from sources such as academic papers, newspapers, books and

technical reports, as well as security standard documents (e.g. Sysadmin, audit, network

and security, Information Systems Audit and Control Association and NIST). The

69

qualitative approach used in this analysis was a scenario that was conducted to

understand the context and help to answer the study’s RB and RQs.

3.5 Data analysis

The most commonly used method for studying qualitative observations is content

analysis (Krippendorff, 1989; Mirkin, 2019). This consists of transcribing the qualitative

data to create an analytical framework, encrypting and processing the information

collected, and analysing it. For this study, the content analysis technique was the process

of identifying the common patterns and selection criteria before starting to process

them to achieve research aims and objectives critically. For example, while studying the

data collected from VM migration in a cloud system to understand the most pressing

issues faced by the cloud user and CSPs, researchers might find that ‘live VM’ and

‘integrity of migration’ are the most commonly used technical terms and will highlight

them for further analysis.

According to Mirkin (2019, p. 5), a content analysis technique's objective is to

provide knowledge and understanding of the phenomenon being studied. The analysis

describes the material gathered for the investigation and examines its meaning. In the

present study, a conventional content analysis technique served as the data analysis

method to try to perceive what was said by the study participants as objectively and

reliably as possible.

The first step of this qualitative analysis was to arrange and prepare the data:

that is, to transcribe the researcher’s interviews. The researcher then went through all

the data to create an overall idea of the content, make sense of the data, and plan a

finite number of categories to organise the data systematically.

The second step involved data coding, in which the researcher held the

information in coding units by connecting them to a particular category of the coding

system before giving meaning to these units. This process, also referred to as ‘content

analysis’, consists of classifying the material elements examined to enable the

researcher to understand its characteristics and context better. This was achieved in two

stages: segmentation and then grouping by category.

The step of selecting the coding units is vital in the processing of qualitative data,

as it determines the granularity of the analysis and guides the interpretation of the

analysed content elements. At this point, two strategies can be envisaged: either to

70

appeal to type parameters (e.g. word, expression, sentence and message) or to establish

coding units by giving them specific meanings that have arisen from the content

components, such as the ideas expressed by the participants, as well as perhaps their

way of speaking. The first approach allows for the study of a consistent segmentation of

the text. In contrast, the second approach offers more flexibility and prepares the coding

according to semantics categories. Combining the two methods allows both the rigour

of formal segmentation and the richness of semantic segmentation. In this thesis, both

of these approaches were used.

3.6 Ethical considerations

For any research effort, the researcher must consider the ethical values that can support

the study process. As this analysis focused only on designing and implementing a

framework, permission from the Auckland University of Technology Ethics Committee

to start the study was not required.

71

CHAPTER 4: DESIGN OF THE FRAMEWORK

4.1 Introduction

A framework is a basic structure, system or concept (Choudhary et al., 2017). It is a broad

overview or a skeleton of interlinked items that support a particular approach to a

specific objective. It is considered that frameworks have the potential to deliver more

natural, creative and intuitive methods for communicating with system design. The

InfoSec security framework can help address many CC areas, such as application

security, encryption, or data integrity. The challenge for this thesis was to find a way to

understand this technique's scope from a theoretical perspective and its role in

developing the research framework. Basically, the framework is a blueprint for building

an InfoSec programme to manage risks and reduce vulnerabilities. For this thesis, the

framework's design is customised to solve specific live VM migration problems to ensure

the migration process's integrity.

An examination of the existing research revealed a lack of empirical evidence and

knowledge about some of the cloud system's critical issues, live VM migration processes,

and the security challenges associated with the different systems and interactions

(Choudhary et al., 2017). This chapter about designs presents a theoretical framework

to support a systematic approach to designing a system framework and answering RB

and RQs. The research framework assumptions are discussed, and the ways their

parameters can be used to examine CC systems from a security requirement engineering

perspective are highlighted. An overview of the research study design development

model is shown in Figure 4.1.

72

Figure 4.1: Workflow of the research study design development model

This chapter presents the background and motivation for this study and

highlights this research topic's existing research. This is followed by a discussion of the

design framework system requirements, assumptions and architecture. A design

overview of the research framework phases and steps was given earlier in Figure 1.2.

4.2 Background and motivation

The use of a framework for IT governance and control provides a toolset that allows

managers to bridge the gaps among the areas of control requirements, technical issues

and business risks. In addition, the framework serves as a means of measuring the level

of trust that has been achieved between the client and the vendor, as it shows which

information or data can be shared and the responsibilities of each party in the

relationship (Gray, 2019; Jouini & Rabai, 2019).

In the production environment, live VM migration may encounter different

failure types, such as system crash, network connectivity issues, memory, and storage

data loss. As discussed in the previous chapters, this research aimed to examine the

ecosystem of each type of migration's live VM migration-related tasks, as shown in

Figure 4.2.

Pilot study,
literature search
and selection of

core papers

Identify research
scope, questions

and objectives

Research
methodology and

strategies

Design framework
system

architecture

Not answered

Design framework
requirements and

assumptions

Design framework
state machine

Implementation
and evaluation

Analysis, synthesis
and validation

Results and
communication

Evaluate results

Evaluate
methodology and

strategy

Answered

73

Figure 4.2: The ecosystem of live VM migration

In Figure 4.2, SM and CLVM refer to a single migration and a correlated live VM

migration, respectively. This chapter reviews only the technologies related to this

research topic, shown in the figure's grey boxes.

VM self-migrations have a two-stage stop-and-copy phase to guarantee

migration consistency: the first stage stops all processes except the migration process.

It scans the spoiled pages and the second stage transfers all the spoiled pages together

in the final scan. Self-migration is rarely used for the cloud management system because

of the complexity of its implementation and the intrusive deployment required for each

VM. Migrations with different conditions have different challenges. A VM live migration

framework over LAN, from one hypervisor to another, was proposed to mitigate the

challenges related to this thesis topic, focusing on memory data migration's integrity.

In this thesis, migration schemes have been classified according to three

perspectives, as explained below: migration manner, migration distance and migration

granularity:

• Migration manner: VM migration can be conducted in two ways: non-live

migration and live migration. Live migration is carried out under the

prerequisite of no interruption to the running services, while non-live

migration does not have this limitation.

SM &
CLVM

WAN

Network
migration

Storage
migration

Memory
migration

LAN

Memory
migration

Storage
migration

Network
migration

Live
migration

SM &
CLVM

74

• Migration distance: VM migration is divided into two categories: migration

in LAN and migration over WAN. Migrating a VM in LAN means the source

and the destination servers are in the same data centre. However, with the

development of network technologies, the differences and boundaries

between a metropolitan area network and WAN have disappeared (Borky &

Bradley, 2019). In this thesis, migration over WAN refers to migration across

data centres, focusing on live VM migration over the WAN network.

• Migration granularity: VM migration comprises both SM and CLVM. SM

migrates one VM when the VM is running independently; CLVM

simultaneously moves several VMs that communicate with each other.

In terms of the above three migration schemes, the main idea is to temporarily

capture the target VM's working set data and outsource this working set data to a

surrogate device during the migration period. This allows the framework process to

access the backup device during the migration, while the migration I/O process accesses

the original disk most of the time.

4.3 Integrity verification

A TPM-based integrity verification policy is used to verify the integrity of all migration

participating entities: source platform, destination platform, the vTPM-VM to be

migrated and the empty vTPM-VM container (Peiru, F., Bo, Z., Yuan, S., Zhihong, C., &

Mingtao, N., 2015). In this research, the communication process of integrity verification

in the live VM migration framework consisted of the following steps:

• manual authentication and secure migration construction

• integrity measurement request of the destination platform and integrity

measurement process of the destination platform

• integrity measurement request of the source platform and integrity

measurement process of the source platform

• reply to the integrity measurement requests of the source platform, vTPM-

VM to be migrated and the vTPM-VM container, and the integrity

measurement process of the vTPM-VM container

• verify the integrity verification process, the codes, data and configuration

information of the source platform, the destination platform, the vTPM-VM

75

to be migrated, and the vTPM-VM container to prevent an untrusted entity

participating in the migration of the vTPM-VM process (see Figure 4.3).

Figure 4.3: Flowchart of the Kororā integrity verification process

4.4 Integrity protection in the proposed framework

Integrity is the provider's ability to detect changes or modifications to an original status

of remote data stored in cloud storage. Some techniques implement integrity across a

packet header and/or data filed by creating a hash across the packet contents

(Tchernykh et al., 2019). Availability and confidentiality are also significant requirements

for a secure working environment within the commercial sector. However, most

approaches ensuring confidentiality are concerned about the integrity of the data as

well; unauthorised access to the data automatically harms the data integrity. Therefore,

Clark and Wilson (1987) proposed a security model that focused on integrity in

recognised mathematical terms via a set of constraints or a valid state that had to be

True

False

True

False

Create and launch
instance

Get instance key

Generate
metadata

Launch VM

Launch vTPM

Set up user

Check for
authentication

Start

False

True

Stop

Integrity
check

Generate
encryption key

True

Check key

Set and match key
(decryption)

Unlock and
unpack message

If message
received

False

76

satisfied. Since much of the research and development attention in the security arena

has been devoted to developing sophisticated models (e.g. the Bell-LaPadula model) and

mechanisms for confidentiality, capabilities in this area are considerably more advanced

than those providing integrity. More recent NIST efforts (Nieles, Dempsey, & Pillitteri,

2017) have been focused on the integrity issue.

The next section examines the nature and scope of the Clark-Wilson (CW) model.

It is then used as a fundamental theory for specifying and analysing an integrity policy

for the proposed framework, Kororā. This focuses on the integrity of live VM job

migration and adopts the CW model to live VM migration, focusing on the subjects,

objects, and data exchange of users’ applications to enhance the security level of the

live VM migration mechanism and provide more user convenience.

4.4.1 Clark-Wilson security model

The CW model's primary focuses are the security of the proposed system and the

proposed design system framework's access matrix. In this model, the policies prevent

information from flowing upward from a low-security level to a high-security level and

accept information flowing downwards from a high-security level to a low-security level.

Users have access to the programs rather than to the data. Data objects can only be

manipulated by a specific set of programs defining the user role. Users might have to

collaborate to secure some operations, which helps the organisations to assign different

roles to different users (separation of duties). This model tries to address the

relationship between the system and the acceptance of information from the outside

world by insisting on auditing the transactions. This does not help with

security/integrity, but it can prevent breaches.

In summary, subjects or users are identified and authenticated, objects or data

can only be accessed by authorised programs (ensuring integrity), subjects or users can

only access specific programs, an audit log is maintained over external transactions, and

the system must be certified in order for it to work.

4.5 Design framework system requirements of Kororā

As noted earlier, the use of an IT security framework is supported by tools that enable

service providers to bridge the gaps among control requirements, technical issues and

business risks (Jouini & Rabai, 2019). Kororā is capable of measuring and preserving the

integrity of live VM migration in the cloud system. The expected benefits of using this

77

framework include increasing the level of integrity among different physical hosts.

Consequently, within these security disciplines, the proposed framework system

architecture aims to provide a straightforward mapping of the framework requirements

and the framework requirements' validation tests. Ideally, this mapping should cover

every element, specification and analysis.

As discussed earlier, the proposed framework system requirements and the

exact approach taken in developing solutions often depend on whether the system is an

evolution of an already-understood product. In other words, the Kororā system

architecture aims to meet the system elements noted below and the system

architecture requirements and then to draw the system architecture diagram (shown in

Figure 4.4).

The system elements are as follows:

• System Element 1: Integrity of configuration files: In this case, the VM image

structure can represent a complete file system for given platform integrity

(e.g. ‘vbox’ files in virtual box or ‘.vmx’ files in VMware). Both of these files

can be edited by a third party to make changes in the configuration of the

VMs.

• System Element 2: Virtual hard disk integrity: The VM image's life cycle

consists of different states. For instance, a VM image can be created, started,

suspended, stopped, migrated or destroyed. Essentially, the VM images are

loaded from a storage location like a hard disk drive and run directly from a

VMM that does not understand the quality of integrity (e.g. ‘.vmdk’, ‘.vdi’,

‘.ova’ files). The third-party can make changes to these files after running

them in their environment; since it is the actual OS holding file, it would be

easy to place a Trojan or any malicious program in the file.

• System Element 3: The integrity of data files on the VM, including all

confidential and system files: The VM is loaded from the storage location; the

VM image may not comply with the intended settings and the configurations

needed for proper implementation of each environment. The VM image itself

could be distorted (perhaps by an insider) or even maliciously modified. This

research found two ways to analyse these files before migration – ‘supply the

data files’ and ‘system files hashsum’ – and then check them after migration.

78

Figure 4.4: System architecture of the proposed framework

79

4.6 Design framework system assumptions

Many researchers have investigated cloud security problems in distributed

environments; however, most of them have emphasised the implementation challenges

of specific defence algorithms while overlooking various factors and the outcomes of

considering each element on their proposed system developments. Therefore, it is

essential here to propose a comprehensive process for preventing and detecting

abnormal behaviour in cloud environments' current state to achieve multiple goals from

both users and CSPs.

This thesis is based on the following assumptions to improve the level of integrity

in public cloud environments:

• Assumption 1: An attacker does not have physical access to any server in LAN,

but it can exploit the software or system vulnerabilities of the VMs. Thus, the

VMs and the network are untrusted.

• Assumption 2: An attacker cannot spy on, damage, insert or delete messages

in the VM. Attackers are interested in abusing the VM migration to increase

their network benefits (e.g. starting their malicious VMs, acquiring

information about the transferred VM, migrating a malicious VM to a

trustworthy platform).

• Assumption 3: TPMs embedded in platforms can be trusted. The trust can

extend to the software tool that computes an object state for integrity

measurement using a root of trust.

• Assumption 4: VMs communicate with other VMs running on the same

platform, with similar hardware components and using the same hypervisor

(Xen).

4.7 Design framework system architecture

The proposed framework system architecture involves a context-aware security model

and the necessary components of enforcement mechanisms, integrity verification, and

query middleware. This study has also introduced seven different agents to turn the

proposed framework into a reality in the marketplace of secure live VM migration

systems during the overall system design. Usually, the migration threads are added to

the origin server if the live VM memory data migration is invoked. It is essential to

eliminate unnecessary traffic to the source server to achieve adequate VM quality for

80

all the migrating/co-located VMs in the source server and rapidly migrate the VMs to

the destination servers. Motivated by the above observation and analysis of idle

snapshots in the backup server(s), this research proposed a system of exploiting these

idle snapshots in backup servers to achieve these goals.

The proposed framework provides a hypervisor-based VM migration protection

system. In this system, the metadata should be marshalled in this migration without

suffering any attacks. The VMM includes three different modules: The ‘data protector’,

the ‘metadata administrator’ and the ‘security guard’. The data protector has the

authority to encrypt and decrypt content that resides within the migrating VM in the

protected migration. The metadata administrator organises the metadata for

transmission and recovery in the migration destination machine. The security guard

protects the live migration system from different threats.

The approach of live migration is usually divided into three different sections: 1)

migration of the process, 2) migration of memory and 3) suspend/resume migration.

The proposed framework system architecture focused on a hypervisor that preserves

metadata using cryptography and hashing algorithms. The protected live VM migration

framework based on the hypervisor was designed to identify the different attacks and

perform an independent secure migration process. The process of live VM migration in

this research meant migrating a VM from a source host to a destination host without

suffering any breaches. These requirements must be incorporated into the process of a

secure live VM migration platform.

Before the migration starts, it is essential to integrate the origin with the

destination and verify whether the target is correct. Cryptographically, the destination

network shows its identity as an origin of integrity establishment. To protect the process

of live VM migration, effective access control policies must be provided. An

unauthorised user/role can begin the live VM process and initiate the migration. The use

of access control lists in the hypervisor prevents unauthorised activities (authorisation).

In this research, the rights to perform these operations belong to the application server,

which acts as the control manager.

In such a context, the application of an access control policy requires different

data to be encrypted with other keys to allow the external server to enforce access

control and support selective dissemination and access directly. This research is

assumed that access controls by users to the outsources data to be read-only. Therefore,

81

the data owner defines a discretionary access control policy to regulate read operations

on the outsourced resources. This thesis uses a component in an access control system

called the key distribution centre (KDC) to service user requests to access resources by

supplying access tickets and session keys. The KDC will use cryptographic techniques to

authenticate requesting users, lookup their permissions, and grant them a ticket

permitting access.

This research also considers the distributions of different encryption keys by

using partitions KDC functionality between two different agents: the authentication

server and the ticket-granting service (TGS). The authentication server issues ticket-

granting tickets following successful authentication of the user. Using the ticket-

granting-ticket, the user can access to the TGS and request a ticket to access a specific

resources/ system. The TGS issues tickets for connection to resources in its domain

based on a valid ticket-granting ticket presented by the user.

An attacker may use route hijacking or ARP poisoning techniques in the

migration process to initiate a MiTM attack. During live VM migration, the source and

destination platforms need to perform mutual authentication to avoid MITM attacks

(authentication). An encrypted network must be set up so that no data can be accessed

from the VM content by an intruder and software alteration can be detected correctly.

This helps prevent active attacks on live migration, such as memory manipulation, and

passive attacks, such as sensitive information leakage (confidentiality and integrity of

VM during migration). An intruder may intercept traffic and later replay it for

authentication in the process of the VM migration. Therefore, the method of live VM

migration should be immune to replay. Nonces can be used in migration to prevent

playback attack (reply resistance). The source host cannot deny the VM migration

activity, but public-key certificates can be used (source non-repudiation).

Throughout the VM live memory data migration, the source server is quite busy

with tasks such as executing the scheduled maintenance task, running many co-located

VMs or waiting to shut down soon. In general, whenever VM live memory data migration

is invoked, migration threads are introduced to the source server. It is vital to eliminate

any unnecessary traffic to the source server to quickly achieve satisfactory VM

performances for all the migrating/co-located VMs in the source server and migrate VMs

to the destination servers. Motivated by the above observation and analysis of idle

82

snapshots in the backup server(s), this thesis proposed a framework that could achieve

these goals by leveraging these idle snapshots in the backup servers.

The next sections elaborate on the seven agents considered part of the design

framework system architecture in the proposed framework (see Figure 4.4).

4.7.1 Virtual Trusted Platform Module Agent

A vTPM provides TC for multiple VM migration on a single platform (Berger et al., 2006).

It is essential to move the vTPM instance data along with its corresponding VM data to

keep the VM security status in synch before and after a live vTPM-VM migration process.

The key to this process is creating ways to safely store and restore the vTPM instance

data encrypted in the source system and destination platform. In addition, it needs to

protect the integrity of the transferred information in the process of live vTPM-VM

migration, as the migration of a VM over the internet is vulnerable to all the threats of

data exchange over a public network. Current live VM migration schemes only check the

hosts’ reliability and integrity, neglecting the verification process for the vTPM-VM to be

moved and the vTPM-VM container. This poses a considerable security risk for vTPM-

VM migration. To solve this problem, the proposed framework uses vTPM to secure boot

the VM(s) over the hypervisor (Xen hypervisor) (see Figure 4.4, Label 1).

4.7.2 Input/Output Agent

The I/O agent redirects the necessary I/O requests to the replacement device from the

operating VM itself. To minimise I/O traffic to the original replacement device, it

redirects all write requests on the replacement device (Zhou, Liu, Li, & Li, 2013).

Meanwhile, the I/O redirects all the popular read requests identified by the data plane

module to the replacement device. Suppose the replacement device has only partial

data for a request. In that case, the I/O issues read requests to the original replacement

device and merge the original device's data into the replacement device. Either the

original storage device (Zhou et al., 2013) or the replacement device can be redirected

to the read requests from the migration module. While the original storage device

generates most of the virtual disk images, the replacement device provides the modified

chunks (units of information containing either control information or user data).

Because of the VM workload locality, most of the requests will be routed to the original

storage device (see Figure 4.4, Label 2).

83

4.7.3 Data Plane Agent

Different memory contents are moved from one host to another host in this module

(e.g. kernel states and application data). The transmission channel must, therefore, be

secured and protected from any attack. All migrated data are transferred as precise data

without encryption in the live VM migration protocol. Therefore, an attacker may use

one of the following techniques to position himself in the transmission channel to

execute a MiTM attack: ARP spoofing, DNS poisoning, or route hijacking (Oberheide,

Cooke, & Jahanian, 2008; Ver, 2011). These attacks are not theoretical. Tools such as

Xensploit work against Xen and VMware migration (Perez-Botero, 2011) (see Figure 4.4,

Label 3).

4.7.4 Integrity Analyser Agent

This agent aims to determine standard migration processes and decompose them into

operational-level activities to make the migration process more transparent. This agent

provides the core mechanism of integrity verification to assist Kororā, particularly with

the migration of live VM data to the cloud (see Figure 4.5).

84

Figure 4.5: Components of the integrity analyser agent

This agent uses the CW model as a fundamental theory for specifying and

analysing an integrity policy for the proposed Kororā. It adopts the CW model to live VM

migration, focusing on the subjects, objects (see Chapter 5), and their data exchange of

users’ applications to enhance the live VM migration mechanism's security level and

provide user convenience (see Figure 4.4, Label 4).

4.7.5 Data Organisation Agent

In the virtual disk images, the data organisation monitors reading requests' popularity

from the live VM itself. Only the popular data blocks that will be read are outsourced to

the replacement device. Since the replacement device serves all write requests, the

popularity of write requests is not required. Each virtual disk image of the running VM

is divided into chunks of fixed size, and the data organisation agent records each chunk’s

access frequency. If the access frequency exceeds a predefined threshold for a particular

Original
content

Decrypt the
agent

provenance

Get agent
provenance

Provenance
storage

Calculate
the agent
hash value

Read the hash
value of

destination
agent Temporary

local storage

Compare the
hash value

proof

Deliver
results and
then load

agent

Metadata

Output
Hash
value
check

Check for
authentication

Hash value
match Hash value

not match

85

chunk, the entire chunk will be outsourced to the replacement device. All the

subsequent accesses to this chunk will be served by the replacement device, which

removes their I/O involvement with the migration process. By submitting read-only

requests, the migration module usually scans the entire virtual disk files. Most of these

requests will only be issued once, except for requests that read dirty blocks of data (see

Figure 4.4, Label 5).

4.7.6 Go Agent

The Go Agent is a secure, lightweight process that manages the VM interaction with the

hypervisor controller. It has a primary role in enabling and executing hypervisor VM

extensions, which allow the post-deployment configuration of the VM, such as installing

and configuring software. In addition, VM extensions enable recovery features such as

resetting the administrative password of a VM. Without the Go Agent, VM extensions

cannot be run in Kororā. Go Agent in Kororā is like the Azure VM Agent's role, which is

to install by default on any Windows- or Linux-based systems and provides valuable

features, such as local administrator password reset and script pushing (see Figure 4.4,

Label 6).

4.7.7 Libvirt Agent

Kororā uses Libvirt Agent as its application programming interface (API). This package

adds support for virtualised systems to automatically install and manage large numbers

of Unix systems configurations. It is particularly suitable for sites with very diverse and

rapidly changing configurations. Further, the Kororā system includes synchronisation

markers that allow the host physical machine to force a guest VM back into synch when

issuing a command; as Libvirt Agent already uses these markers, guest VMs are able to

discard any earlier pending undelivered responses safely (see Figure 4.4, Label 7).

To conclude, several secure, small, and innovative live migration framework designs

such as TrustVisor and CloudVisor have been proposed to solve migration security.

However, these designs either have reduced functionalities or pose substantial

restrictions to the VMs. However, Kororā relies on a trusted hypervisor to deliver the

security guarantee (integrity) and contributes a few specific characteristics.

• Korora has not reduced functionalities or pose substantial restrictions to the VMs

• Korora is addressing the threats from a complex hypervisor to VM data

• Korora reduce VM’s and hypervisor TCB based on a microkernel approach

86

• It is not required to reimplement the VM’s and hypervisor from scratch, which is

not easy to maintain.

• Korora save VM’s migration features and not allows the migration features are

lacking

• Korora like some other framework, is supporting encryption-based protection

• Korora also supporting features like Paravirtual I/O

• Korora framework is based on seven software agents running on the Xen

privileged ‘dom0’ and communicating with the Xen-hypervisor.

87

CHAPTER 5: EVALUATION SYSTEM ARCHITECTURE

5.1 Introduction

This chapter discusses the evaluation system architecture, defines the Kororā state

machine framework, explains the proposed model state machine and the relationship

between objects and subjects, the system model of live VM migration and the migration

scenario. This chapter focuses on how evaluation system architecture can be adopted

to define the research system state machine and, consequently, to identify how to apply

the integrity model in the designed research framework, Kororā.

Chapter 4 explained how the integrity model acts as a security strength evaluator

and supports the live VM migration process. It can also be used as a benchmark to set

up the cloud migration service security and find the weaknesses and strengths in the

cloud infrastructure. The evaluation system architecture and a critical literature review

have been adopted to answer the following two questions:

• What are the essential system attributes of integrity established between the

cloud provider and cloud consumer?

• Regarding the cloud service security provider and cloud user services, what

are the essential system characteristics of the published integrity established

method?

The following section discusses the evaluation system architecture, which is

aligned with the solution design steps.

5.2 Kororā evaluation system architecture

One of the proposed integrity framework's primary aims was to consider the entire

cloud integrity environment and capture all potential integrity attributes and elements

as evidence, including functional and non-functional elements. Evaluation is a key

analytical process for all intellectual disciplines. It is possible to apply different

evaluation methods to provide information regarding the CSPs' complexity and ubiquity

(Alabool & Mahmood, 2016). This research aimed to obtain a set of necessary evaluation

components. In particular, the evaluation of the Kororā migration framework method

was applied to review the secure establishment framework using the identification of

these evaluation components and analysing their weaknesses and strengths.

88

Evaluation of the Kororā system architecture is considered a theoretical

foundation for developing a secure live VM migration framework (Lopez, 2000). Its

processes are shown in Figure 5.1, representing an overview of the evaluation

components and their interrelations, helping to establish a clear pathway for this study.

Target

Evaluation
process

Criteria

Yardstick

Data-gathering
techniques

Synthesis techniques

Target
delamination

Evaluation
criteria

definition

Evaluation
process

development

Yardstick
development

Synthesis
techniques

development
Data-gathering

techniques
development

Figure 5.1: Components of evaluation and the interrelationships between them (Lopez,

2000, p. 6)

Achieving a comprehensive and reliable integrity level in live VM migration

processes was the main reason for using the evaluation theory in this study. Further,

this theory offered a clear, formal description of the evaluation components depicted in

Figure 5.2.

Figure 5.2: The concepts of evaluation theory in this study’s development of the Kororā

framework

89

These concepts are discussed in detail below:

• Target – integrity between CSPs and CSUs: The level of integrity of CSPs and

CSUs was chosen as the first step of the Kororā evaluation because the CSPs

have not yet adopted a comprehensive security partnership to provide not

only SSO but also responsive access controls between the internal and

external services. In addition, both CSPs and CSUs are required to apply these

features of cloud migration to enable a secure live VM migration process

across the Xen hypervisor. This is why Kororā was developed to support CSUs

in making more efficient decisions based on the system elements’

requirements.

• Criteria – integrity elements of the CSPs and CSUs that are to be evaluated:

This identifies the most suitable area and characteristics for defining the

target evaluation. These criteria can be appropriate for a range of elements,

and each element can be divided into several sub-elements (Tchernykh et al.,

2019). The absence of defined evaluation criteria and system design

requirements makes it difficult for CSPs and CSUs to plan live VM migrations

and implement sustainable, secure migration solutions. In general, the well-

known criteria for the cloud migration progress of cloud services, as

discussed in the literature review, are security (confidentiality, integrity and

availability), performance, accessibility and usability, scalability and

adaptability. Of these, the focus of this thesis was security and integrity. Once

the main research criteria had been identified, the CSPs or CSUs needed to

evaluate the integrity elements.

• Yardstick/standard – the ideal secure live VM migration framework measured

against the current secure live VM migration framework: This study focused

on the security requirements for the integrity of migration from one VM to

another in PaaS cloud environments as a yardstick for measuring and

verifying the Kororā framework when running over a Xen hypervisor. This

step allowed the integrity verification of live VM migration by running parallel

testing, testing multiple topologies, injecting fault and testing case studies.

• Data-gathering techniques – critical or SLR needed to obtain data to analyse

each criterion: Data-gathering techniques are required to obtain data and

analyse each criterion. Based on the standard IT evaluation, three primary

90

strategies – measurement, opinion and assignation – were identified as being

practical here. Observation techniques were used for gathering subjective

criteria for the opinion step. Measurement was used to extract the

requirements from the appropriate documentation and guidelines. This

study used the proposed framework and a checklist to refer to a series of

commands and instructions to verify that the Kororā was operating correctly.

• Synthesis techniques – techniques used to access each criterion and,

therefore, to access the target, obtaining the evaluation result: Evaluation

theory synthesis techniques are a procedure for combining several empirical

studies (Barnett-Page & Thomas, 2009). This research and the proposed

framework relied heavily on a practical synthesis of the literature obtained

from the guidelines and the documents reviewed. Further, a quantitative

method was applied by counting the primary studies classified in each

answer to the RQs and counting the numbers of scholarly papers found in

each bibliographic source per year; qualitative methods included several

representative studies for each criterion.

• Evaluation process – a series of tasks and activities used to perform the

evaluation: The evaluation process was used to examine InfoSec products'

characteristics, which is the initial process in describing the essential parts of

Kororā integrity verification. According to Lopez (2000), the preparation and

examination processes are critical in research evaluation theory. In this step,

the evaluation target, evaluation criteria and decision-makers were

identified as follows:

o a set of A crucial framework elements, called: A = (A1, A2, …, Ai)

o a set of C essential framework components, called: C = (C1, C2, …, Cj)

o a set of integrity elements called: I = (I1, I2, …, In)

o a set of K cloud service user, Kororā framework, called: K = (K1, K2, …, Km).

5.3 Security terminology

A brief description of the specific security terms used is a useful background for

discussing the CW model. The following terminology emerged from the literature review

analysis of various sources on this subject:

91

• Integrity: There has been much debate in the InfoSec community over the

meaning of integrity. For this study, integrity was defined as the quality,

correctness, authenticity and accuracy of the information stored within an IS

(Biba, 1977).

• Security policy: The IS's goal is to control or manage subjects' access (users,

processes) to objects (data, programs). This control is governed by a set of

rules and objectives called a security policy. Security policies are governing

principles adopted by organisations (Mayfield, Roskos, Welke, Boone, &

McDonald, 1991).

• Identifier (I): An identifier is either an ‘HTTP’ or ‘HTTPS’ uniform resource

identifier or an extensible resource identifier. This research defined various

kinds of identifiers designed for use in different contexts.

• User Agent (UA): The end-user that runs a VM migration process is called a

UA, with a node on the client network (the client agent) forwarding packets

destined for the CSPs (the provider node) to a care-of address on the foreign

network.

• Relying Party (RP): A CSP that wants proof that the end-user controls an

identifier.

• OpenID Provider (IDP): An IDP authentication server on which an RP relies,

assuming that the end-user controls an identifier.

• IDP Endpoint Channel (IDPEC): A back-secured channel that accepts OpenID

authentication protocol messages, obtained by performing discovery on the

User-Supplied Identifier (USI). This value must be an absolute ‘HTTP’ or

‘HTTPS’ Uniform Resource Locator (URL).

• IDP Identifier (IDPI): An object for provider OpenID, which provides a way to

prove that an end-user is managing an object. It does this without the RP

needing access to end-user credentials (e.g. a password) or other sensitive

information (e.g. live migration metadata).

• User-Supplied Identifier (USI): An identifier that has been presented by the

end-user to the RP or selected by the user at the IDP. During the initiation

phase of the protocol, an end-user may enter either their identifier or an IDPI.

If an IDPI is used, the IDP may help the end-user select an identifier to share

with the RP.

92

• Claimed Identifier (CI): An identifier that the end-user claims to own; the

overall aim of the protocol is verifying this claim (Siriwardena, 2020).

• IDP-Local Identifier (IDPLI): A different possibility identifier for an end-user

that is local to an ID and thus not necessarily under the end-user’s control.

• Integrity Authority (IA): An organisation used to verify the mutual attestation

process using the vTPM-enabled platforms.

• Generated Identifier (GI): An identifier that has been developed by a TPM or

vTPM.

• Challenge Attester (CHA): CHA is an attester that sends the challenge for the

attester (IDP, USER and RP) to check their integrity. By default, CHA uses

binary remote attestation to check the system integrity, but in this scenario,

it uses a direct anonymous attestation technique (Brickell, Camenisch, &

Chen, 2004) for integrity checking.

5.4 Kororā state machine framework

This research's proposed framework is a state machine framework, with the state

expressed in Figure 5.3 and Figure 5.4. This consists of subjects, objects, access

attributes, access matrix, subject functions and object functions.

The subjects of the proposed model are defined as follows: Generate vTPM

Identifier (G), User-Supplied Identifier (USI), IDP Endpoint URL (IEU), Identifier (I), Claim

Identifier (CI) and IDP-Local Identifier (IDPLI). The objects of the proposed model are

Relying Party (RP), OpenID Provider (IDP), User Agent (UA), Trust Authority (TA) and

vTPM. Access attributes are defined as follows: Read, Write, Read/Write and Execute.

In the access matrix, each member represents the access authority of the subject to

object.

93

Figure 5.3: The relationships between the objects and subjects

The proposed model state machine is as follows:

1) t∈T, where T has sorted Quaternion, each member of T is t

2) T = (a, B, c, D), where,

3) a ⊆ (S ×O× A)

4) B is an access matrix, where 𝐵𝑖𝑗⊆ A signifies the access authority of 𝑠𝑖 to 𝑜𝑖

5) c ∈ C is the access class function, denoted as c= (𝑐𝑠, 𝑐𝑜)

6) D signifies the existing hierarchy on the proposed framework

7) S is a set of Subjects

8) O is a set of Objects

9) A = [r, w, a, e] is the set of access attributes

10) ee: R×T → I×T shows all the roles in the proposed framework, in which e is

the system response and the next state, R is the requests set, and I is the

arbitrary set of requests, which is ‘yes/no/error/question’. In this study, the

question is important because if the response is equal to the question, it

means that the current rule cannot deal with this request.

11) ω = [𝑒1, 𝑒2, ..., 𝑒𝑠], ω is the list of exchange data between objects:

W (ω) ⊆ R× I×T ×T

(𝑅𝑘, 𝐼𝑚, T*, T) ∈ W (w)

if I𝑚 ≠ Question and exit a unique J, 1≤ j≤s. It means that the current rule is

valid; subject and object are also valid because the object verifies the vTPM

of the other object (attestee) by request (challenge) integrity checking.

TOP SECRET SUBJECT A

SUBJECT B

SUBJECT C

SUBJECT D

SECRET

INTEGRATED

UNCLASSIFIED

OBJECT
SECRET

READ ONLY

READ/ WRITE

WRITE ONLY

WRITE ONLY

94

Consequently, the result is,

(I𝑚 , 𝑡 ∗) = 𝑒𝑖(R𝑘 , 𝑡), which shows for all the requests in the t there is a

unique response, which is valid

Where, a ⊆ (S×O×A) where S is a set of Subjects, O is a set of Objects, and

A = [r, w, a, e] is the set of access attributes

12) 𝑐𝑠 is the security level of the subject, including the integrity level 𝑐1(𝑆) and

category level 𝑐4(𝑆). Figure 5.3 shows the security level in the proposed

framework and the relationships between the subjects and objects.

𝑐𝑜 signifies the security function of objects. Figure 5.3 illustrates the

relationships among the entire subjects, objects, security functions, and the

proposed framework's security level.

13) The integrity of the vTPM is highest in the state machine and lowest in the

UA. Therefore, the integrity level is 𝑐1(𝑇𝑃𝑀), 𝑐2(𝑇𝐴), 𝑐3(𝐼𝐷𝑃), 𝑐4(𝑅𝑃) and

level 𝑐5(𝑈𝐴); this study should prove that each state of the proposed

framework is secure. It has been assumed that each state is secure in Kororā

except for State 3, called Data Plane (see Figure 4.4). Therefore, if State 3 is

secure, all the states are secure.

14) Σ (R, I, W, z0) ⊂ X×Y×Z

15) (x, y, z) ∈Σ (R, I, W, z0), if (z𝑡 , y𝑡 , z𝑡 , z𝑡−1) ∈ W for each t ∈T, where z0 is the

initial state. Based on the above definition, Σ (R, I, W, z0) is secure in all states

of the system; for example, (z0, z1, … , z𝑛) is a secure state.

16) The CW model has several axioms (properties) that can be used to limit and

restrict the state transformation. If the arbitrary state of the system is

secure, then the system is secure. In this study, the simple-security property

(SSP) is adopted (McLean, 1985). This property states that an object at one

level of integrity is not permitted to read an object of lower integrity.

17) t = (a, B, c, D)

18) Satisfies SSP if, for all s∈S, s∈S ⇒ [(o∈ a (s: r, w)) ⇒ (𝑐𝑠 (𝑠), > 𝑐𝑜(𝑜))],

i.e., 𝑐1(𝑠) ≥ 𝑐2(𝑜), 𝑐3(𝑠) ⊇ 𝑐4(𝑜).

𝑐1(𝐺) ≥ 𝑐2(v𝑇𝑃𝑀), 𝑐1(𝐼𝐸𝑈) ≥ 𝑐2(𝑅𝑃).

Based on Figure 5.3, Figure 5.4 and the SSP axiom, all the objects of Kororā use

two primary concepts to ensure the security policy is enforced: well-informed

95

transactions and separation of duties. The integrity axiom is ‘no read down’ and ‘no

write up’, which means a subject at a specific classification level cannot read and write

to data at a lower or higher classification, respectively. The star property, discretionary

security, and compatibility property are other models that can limit and restrict the state

transformation and be used in future work.

Figure 5.4: Security level, subject and object of the proposed model

Using the Kororā state machine framework showed that there was a need to

consider the following questions about the integrity level of any live VM migration

process:

• Which attributes and characteristics must be chosen for integrity level

measurement?

• How is the value of each attribute determined?

• Which algorithm should be applied for determining the integrity level?

• How can the required result be achieved?

• How can it be disseminated to the CSPs and CSUs?

The evaluation theory found three system elements (see Section 4.5) that

represented the Kororā as a state machine to answer these questions. Based on this part

of the study results, this research implemented the Kororā, as presented in the next

chapter.

96

5.5 The system model of live virtual machine job migration

Virtual TPM provides TC for multiple VMs running on a single platform (Berger et al.,

2006). It is necessary to transfer the vTPM instance data along with its corresponding

VM data to keep the VM security status synched before and after a live vTPM-VM

migration process. The key to this process is finding a way to store vTPM data encrypted

in the source platform and restoring them safely in the destination platform. It also

requires finding a way to protect the integrity of the transferred data in the process of

live vTPM-VM migration, where it is vulnerable to all the threats of data exchange over

a public network. These include leakage, falsification and loss of sensitive information

contained in the VM and vTPM instances.

Many types of research have focused on the issues of a secure vTPM-VM

migration process (Danev, Masti, Karame, & Capkun, 2011; X. Liang, Jiang, & Kong, 2013;

Peiru, Bo, Yuan, Zhihong, & Mingtao, 2015; Wan, Zhang, Chen, & Zhu, 2012). An

implementation of vTPM was first reported by Berger et al. (2006).

In this research, a kind of data integrity protection mechanism was added to

enhance security. However, the job migration framework was based on an important

assumption: that the destination is truthful. Many kinds of vTPM key hierarchies have

been proposed in this study to make non-migratable vTPM keys migratable. In addition,

based on these new hierarchies, a secure live vTPM-VM migration has been designed.

An enhanced VM migration adds a nonce to the authentication process between

the source and destination platform so that a malicious user cannot intercept the

transmission and execute replay attacks. Through the vTPM realised on Xen hypervisor,

Huang (Huang, 2014) applied an identity encryption mechanism and secure channel

technology to implement secure data transmission. In addition, a vTPM-VM migration

(Sadeghi, Stüble, & Winandy, 2008) was presented to solve the timing problem of

running vTPM in an independent domain. An improved vTPM migration protocol (Peiru

et al., 2015; Wan et al., 2012) based on the trusted channel was promoted before as

well, but it only gave an outline of the secure migration without specifying whether it

applied to VM migration or not.

Four participating entities are involved in one vTPM-VM migration process:

source platform, destination platform, the VM that remains to be transferred with its

corresponding vTPM instance and the empty vTPM-VM container for accepting the

incoming data. Current VM migration schemes only verify the hosts' authenticity and

97

integrity but ignore the verification process for the vTPM-VM to be transferred and the

vTPM-VM container. This poses a considerable security hazard in vTPM-VM migration.

This research designed an improved vTPM-VM migration framework containing

a novel TPM-based integrity verification policy and a specific encryption scheme to solve

this problem. The verification policy could be used to verify the authenticity and integrity

of all participating entities. The particular encryption scheme had a key associated with

a certain platform status, which could protect the VM and vTPM instances' key data.

With this framework, the confidentiality, integrity, and freshness of the transmitted data

in the VM migration process were under TPM hardware protection, so VM migration

could not be exploited by attackers or intruders (Oberheide, Cooke, & Jahanian, 2008).

As shown in Figure 5.5, the VM migration is vulnerable to security threats. An

attack can occur in different VM migration situations, such as between the system

administration and the VM, the VM and the hypervisor, the VM from one hypervisor to

another VM in the other hypervisor, and between VMs in the same hypervisor.

Figure 5.5: Migration attack scenarios within CC

A vTPM does not have a hardware-based component, so instead, when the data

to be secured is written to the ‘non-volatile secure storage’ by the guest OS, which is

encrypted using VM encryption. From the migration security standpoint, the use of the

98

described vTPM and live VM migration provides several potential threats in the cloud

system, as follows:

• Control panel: The system administration controls the operation of the server

through the control panel. Usually, system administration is authorised to

perform all functions, such as creating a VM, deleting a VM, migrating a VM

and altering a VM configuration. Thus, attackers who obtain access to this

interface can harm the system. Configuration errors made by the system

administrator can increase the security risk by compromising the whole

system.

• Communication attacks between the host OS and guest VM: A VM can

communicate with its host and vice versa because all its resources are

assigned by the host OS. The host OS has complete control over all guest VMs

running on it. A compromised host can harm the guest VM. Similarly, a

malicious guest VM can compromise the host OS.

• Transmission channel: The VM migration protocol does not encrypt the

migration data by default. The migration data appear as explicit texts over

the network. They are vulnerable to MiTM attacks. The attacks that can occur

in the transmission channel include manipulating authentication services,

manipulating kernel memory, eavesdropping on messages for sensitive data,

passwords and keys, and capturing authenticated packets and replaying

them later.

• Communication attacks among VMs: Although each VM is isolated, it can

communicate with others. This increases the potential for malicious VM

attacks on other VMs running on the same platform.

This research specifically focused on the last situation of communication attacks

among VMs in the same hypervisor. Figure 5.5 represents the migration attack

scenario's overall view, showing the hypervisor's hardware and hypervisor, excluding its

live migration module.

5.6 Migration scenario

It is assumed that vTPM-VM migration occurs in a LAN, the system administrator is

trusted, and the attacker cannot obtain administrative privileges. Both source and

destination platforms are equipped with a TPM chip. Permanent files are stored in a

99

shared storage server. When a VM with its vTPM instance is moved from one physical

platform to another, the permanent files do not need to be moved simultaneously. Thus,

the migrated vTPM-VM running on the destination platform can still access its files.

The system administrator wishes to migrate the first VM from a source platform

to a destination platform. Since this VM is equipped with a vTPM to implement TC, its

vTPM instance should be moved to the destination platform as well. This study assumes

that an attacker can only compromise or alter the software's state on the source and

destination platforms before or after the vTPM-VM migration. Once the migration

begins, the attacker cannot compromise nor alter the state of the software.

100

CHAPTER 6: IMPLEMENTATION

6.1 Introduction

Critical concerns for cloud users are protecting workloads and data and ensuring security

and integrity for VM images launched on CSPs. For live VM and workload data

protection, cloud user organisations need a framework for placing and using their

workloads and data in the cloud securely. Current provisioning and deployment

frameworks include either storing the VM and application images and data in the clear

(i.e. unencrypted) or having these images and data encrypted by the keys controlled by

the service provider, usually applied uniformly to all the tenants.

VM images, which are effectively containers for OS and application images,

configuration files, data and other entities, need confidentiality protection in a multi-

tenant cloud environment. These images need to be encrypted and decrypted by keys

under tenant control in a transparent way to the CSP.

6.2 Related work

Scientists have formulated various algorithms and techniques for the migration of VMs,

to reduce the downtime the migration requires. Some of the research relevant to this

field is described below:

• Data Deduplication is a live VM migration technique that prevents large

chunks of data from migrating, thereby reducing migration time (Takahashi,

Sasada, & Hirofuchi, 2012). This operates on the idea that only selected

memory material that has been altered on the source server is transferred.

Thus, this phase of migration involves only those parts of the VM updated at

the source end.

Dirty Block Tracking (DBT) and Diff format are the two major components

that work behind data deduplication. The role of DBT is to record all the

operations that cause changes in the image of the VM disk, while the Diff

format is used to store the reported data. DBT monitors and labels each

changed disk page as a dirty file.

Only the pages identified by the DBT are migrated to the storage; the rest are

left behind. Data deduplication is beneficial for VMs undergoing multiple

migrations, resulting in multiple destination servers. As it reduces the

101

migration time by a factor of 10, it is one of the most effective techniques for

live VM migration.

• Shrinker (Riteau, Morin, & Priol, 2011) is a live VM migration system that

allows VM clusters to migrate between data centres linked via a network.

Throughout integrating data duplication and cryptography hash functions,

Shrinker reduces the data to be migrated.

This operates on the principle of handling distributed information, allowing

chunks of VMs to be migrated in multiple data centres across different

servers. Shrinker is different from traditional live VM migration methods as

it provides source and destination server hypervisors to interact with each

other during the migration. The cryptographic hash function maps these data

blocks and assigns unique hash values accordingly.

Shrinker has a coordinating service that runs at the origin end when indexing

at the destination. The coordination service’s work is to receive the hash

values and migrate the source server's data accordingly. Conversely, the

indexing service registers every data block according to its hash value, which

is then assigned to a specific destination server. To assemble different data

blocks into a VM, the destination server coordinates with the indexing

service.

• Live VM migration in the intercloud (Buyya, Ranjan, & Calheiros, 2010) allows

the migration of VMs not only among data centres of the same cloud

environment but also among servers on different cloud environments. Live

VM migration among clouds aims to decrease the workload on a particular

cloud and reduce network congestion.

This operates on the idea of creating snapshots of the VM to be migrated.

The snapshot is then migrated to the destination cloud, where the hypervisor

creates a new VM with the same configuration as the snapshot. The source

cloud redirects the VM's incoming traffic to the destination VM soon after

the target VM is up and running. Techniques such as effective fault tolerance

are the advantages of live VM migration among cloud systems.

102

• Work on opportunistic replay (Surie, Lagar-Cavilla, de Lara, &

Satyanarayanan, 2008) aims to reduce the amount of data in low-bandwidth

environments that are migrated. This approach keeps a record of all types of

user events that occur during the execution of VM. This information is then

transferred to an identical manufactured VM and put into effect to produce

almost the same state as the VM source. In addition, the changes that were

made after the reply are transferred and applied, resulting in an identical

surrogate VM.

6.3 Implementation considerations

Kororā allows users to check malware files against three different malware providers’

engines, and it can check indicator of comparison details of hashes, URLs, IPs and

domains from various resources.

6.3.1 Resource and security plans

Resources are treated as black-box entities by Kororā. Likewise, protection plane

components are standard and are therefore considered ‘as is’. They can only be

accessed through vendor-specific APIs to send alerts from protected resources to the

security manager and submit commands to alter the protected resources' actions or

internal state. The system manager is directly connected to Kororā agents to translate

their APIs to Kororā APIs.

6.3.2 Agent plan

The agent layer's core objective structure is applied differently, depending on whether

agents are referring to Kororā APIs, other agents or a particular system manager. The

detection and reaction system hierarchy is based on root agents that construct slave

objects recursively (Wooldridge, 2009). Different functions are defined for enforcing

multiple agent-related functionalities as described in the framework (see Figure 4.4) by

1) applying the alert aggregation policy to alerts received; and 2) refining the reaction

policies, as follows:

1. The Kororā’s alert aggregation policy is implemented by the handler's alert

handling (alert) feature. This callback is made any time a slave object sends a

warning message. Many activities are possible, such as ‘raw warning’

103

forwarding to the parent entity or ‘correlating warnings’ before notifying the

parent.

2. The refinement of policy (defined in the policy agent function) is

implemented whenever an agent receives an alert from its parent.

Therefore, the agent may be able to interact with a system manager or other

agent. Interactions with the security plane depend entirely on its components’

commodity API. Thus, there is a one-to-one mapping between the system manager APIs

and agent callbacks. In addition, the interactions among the agents are generally

described as depending on time, and this brings about the synchronisation aspects that

are vital to ensure the safety of systems. The agents are independent, but they may

require the results of other agents' computations, collaboratively or competitively, to

reach the outputs, such as transforming the policy into sub-policies for slave objects to

follow.

6.3.3 Implementation setup plan

Kororā has a detector agent; any failure of a detector agent directly impacts the

framework's security. In the dispatcher case, the warnings issued are aggregated and

combined and then forwarded to the Kororā. Similarly, the Kororā can refine the

reaction policy chosen by an agent, using the callback function as a decision-making

handler to enforce the framework security management strategy.

6.3.4 Mapping

The security system is mapped to the hypervisor model by putting all individuals directly

into the management and orchestration planes' hypervisor. Specific hooks connect

agents to the Kororā interfaces. This model restricts the attack scope, as all frame

entities are in the hypervisor itself, with no external interfaces (i.e. no backdoor attacks

are possible). The application code is interfaced with the Kororā by using simple function

calls and a static list of timers.

In addition, this research tested a compiled application system with a strong

address space layout and randomisation settings. This offers another critical layer of

protection from state-of-the-art exploitation, as ROP attacks require some position

knowledge to find the devices, as all addresses are randomised (Farchi, Jarrous, &

Salman, 2019).

104

6.3.5 Transport layer security and secure sockets layer protocols

Secure VM communication begins with a transport layer security (TLS) handshake, in

which the two communicating parties open a secure connection and exchange the

public key. During the TLS handshake, the two parties generate session keys, and the

session keys encrypt and decrypt all communication after the TLS handshake. Different

session keys are used to encrypt VM communications in each new session. Transport

layer security (TLS) ensures that the party on the server-side is actually who they claim

to be, and also TLS ensures that data has not been altered since a message

authentication code is included with transmissions.

Kororā uses object storage from the cloud server vendor to store image

templates of the cloud server if Kororā needs to re-provision the server. Kororā is

transferred via an API to another vendor to provide additional security should something

happen to the primary vendor. Both vendors provide encryption for the store image

templates in object storage at rest, but there is a concern that the data should also be

encrypted during transit. The Kororā API uses HTTPS protocol, but Kororā depends on

the size of store image template file, so it is taken time to transfer. That is why Kororā is

encrypted the data itself before it is sent.

Kororā is also considered where the encryption keys are to develop a threat

model. Are the servers which have the data the same servers that are establishing the

TLS connection? If so, then encrypting it before being sent would provide no benefits

since a compromise of those would simultaneously provide both encryption keys.

Kororā is assuming the network topology is such that TLS end-to-end encryption not

sufficient because of the following reasons:

• there is a weakness in the design or implementation of TLS

• a feature system admin require is not present in TLS

• and there is a situation where an attacker can obtain the TLS key without

obtaining the other key.

6.4 Kororā implementation

Close to the live VM self-examination, this research wraps the Kororā function closest

to the IN and OUT instruction-processing interrupts cpu_in* and cpu_out*. The ‘tiny

code generator’ then decodes the instructions for emulating, say, ‘outb’. The

instructions' architecture specifies the execution handler to convert the instruction into

105

the ‘intermediate language’ of Kororā. For example, there is a set of instructions for Intel

x86, which is called the CPU x86 exec. The instructions are converted into a ‘translation

block’ storing the current basic block’s further translation. The function code gen buffer

feeds the ‘translation block’ structure with the output of the function helper outb. The

latter construct the outb instruction’s ‘intermediate language’ representation.

Moreover, this research connected the functions of the helper and transferred the flow

of power to the agents of Kororā.

Virtualisation supported by hardware conceals many essential interactions, as

the actual CPU executes the commands/tasks. This requires semantic learning of the

instructions executed by a VM. This research compared the requested I/O with the list

obtained by fuzzing and public attacks. If one of them was called, Kororā sent an alert to

the Kororā API and applied a broad range of reactions such as ignoring, pausing or

restarting the VM.

6.5 Kororā in C#

An initial version of Kororā was implemented in C# to demonstrate its integrity and

feasibility. This object-oriented language allows for rapid development at a slower

execution rate. The aim was to integrate new agents into the Kororā architecture, such

as applying the Bell-LaPadula model to a set of access control rules that use security

labels on objects and clearances for subjects. Figure 6.1 depicts the Kororā in C#

hierarchy.

106

Figure 6.1: The Kororā C# object hierarchy

6.6 Kororā code architecture

This section provides the preliminary results for Kororā for the concepts outlined in the

previous section. In the following sub-sections, seven agents are introduced to

demonstrate the roles included in Kororā. Then the potential of multiple loops for

improving the integrity of the proposed framework is explained. Kororā is implemented

using C# on Visual Studio 2019, with SQLiteStudio (SQLite tool) as a database manager.

Kororā runs on both Windows x64 (see Figure 6.2) and Linux x64 (see Figure 6.3), but it

has a better latency if run on Linux x64.

107

Figure 6.2: The Kororā prototype on Windows x64

Figure 6.3: The Kororā prototype on Linux x64

Once the comparison is completed - the utility will display a table with all the differences

that were found and allow the user to drill down and show the specific differences (see

Figure 6.4).

108

Figure 6.4: The Kororā prototype database - SQLiteStudio

6.6.1 Kororā Virtual Trusted Platform Module Agent

The secure boot guarantees that the Kororā shows legitimate programming by checking

all boot elements and halting the boot cycle if the signature confirmation comes up with

a failure. The Kororā vTPM agent runs hardware that is signed and validated, using a

certificate authority to ensure the instance's hardware is unmodified and the root of

confidence for the secure boot is created. The Kororā vTPM uses vTPM instances to

protect objects, such as keys and certificates, which are used to authenticate access to

the Kororā system.

The Kororā vTPM enables booting via the estimates needed to make a known

proper boot, referred to as the integrity policy. The integrity policy is utilised for

109

correlation with estimations from the subsequent VM boots, to identify whether

something has changed. In addition, Kororā uses the Kororā vTPM to secure privileged

insights through protecting or ‘shielding’.

Further, the Kororā vTPM agent performs cryptographic coprocessors' functions

and helps the guest OS to build and store private keys when connected to a VM. Hence,

the area of the VM that is exposed to attack is diminished. Typically, compromising the

guest OS compromises its privileged insights, allowing a vTPM to significantly decreases

this risk. The guest OS can utilise these keys for encryption or authentication. A third

party can remotely verify (validate) the hardware's identity and the guest OS with an

attached vTPM. The Kororā vTPM does not require a physical TPM chip to be available

on the Xen hypervisor host. By default, a VM enabled with a vTPM is not aligned with

any storage policy. Only the VM files are encoded.

Depending on the physical machine's emulation, it may be necessary to modify

its OS to run on a vTPM. If modifications are required, the environment is said to be a

PV; otherwise, the vTPM is stated to provide a fully virtualised environment (see

Appendix A).

6.6.2 Kororā Input/Output Agent

According to the Xen project (2013), three different techniques such as PV split driver

model, device emulation based I/O and pass-through for I/O virtualisation are supported

by Xen. This research uses the PV split driver model. In this technique, a virtual front-

end device driver interacts with a virtual back-end device driver, communicating with

the physical device over the native device driver. This allows several VMs to use the

same hardware resources while being able to reuse native hardware support. In a

standard Xen configuration, native device drivers and the virtual back-end device drivers

reside in dom0.

Kororā I/O uses PV-based I/O, which is the primary type of I/O virtualisation

method for disk and network. The Kororā I/O is independent of Xen's virtualisation mode

and merely depends on the relevant drivers' existence. It is directly communicated (the

PV front-end driver with the PV back-end driver) in the dom0 kernel. In addition, it works

for plain networking and storage virtualisation with ‘local volume manager’, ‘small

computer systems interface’ and ‘distributed replicated block device’ (see Appendix A).

110

1 using System.Security.Cryptography;

namespace FileHash

{

 public interface IOutput

 {

 void Write(string path);

 }

}

2
3
4
5
6
7
8
9

1 using System;

using System.IO;

namespace FileHash

{

 public abstract class Output: IOutput

 {

 public virtual void Write(string path)

 {

 var sha1 = System.Security.Cryptography.SHA1.Create();

 if (Directory.Exists(path))

 {

 var directoryInfo = new DirectoryInfo(path);

 foreach (var file in directoryInfo.GetFiles())

 {

 Write(sha1, file);

 }

 foreach (var directory in directoryInfo.GetDirectories())

 {

 Write(sha1, directory);

 }

 }

 else if (File.Exists(path))

 {

 var fileInfo = new FileInfo(path);

 Write(sha1, fileInfo);

 }

 }

 protected virtual void

Write(System.Security.Cryptography.SHA1 sha1, DirectoryInfo

directoryInfo)

 {

 foreach (var file in directoryInfo.GetFiles())

 {

 Write(sha1, file);

 }

 foreach (var directory in directoryInfo.GetDirectories())

 {

 Write(sha1, directory);

 }

 }

 protected virtual void

Write(System.Security.Cryptography.SHA1 sha1, FileInfo

fileInfo)

 { throw new NotImplementedException();

 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

111

6.6.3 Kororā Data Plane Agent

In Kororā, the data plane is the agent of the proposed framework. The data plane agent’s

functionality in the framework is provided by hardware and I/O devices. This agent

functionality is decoupled from the hardware in software-defined networks and

distributed by software-based network components. These include modules of the

software-defined networks data path that replace the physical machines.

The Kororā data plane agent consists of the VM hardware specifications built on

those of Xen, with additional components for device enabling. Kororā kernel modules,

userspace agents, configuration files and update scripts are contained in the Xen-tools

package (which allows the easy creation of new guest Xen domains) and run within the

Xen kernel to deliver services such as distributed routing and logical firewall, as well as

allowing virtual extensible local area network-bridging capabilities. The Xen-tools

package creates configuration files that work with XM (Xen project management user

interface) and XL (based on the xenlight library, libxl). In some cases, scripts with Xen-

tools can invoke the toolstack in certain conditions, such as ‘xt-create-xen-config’ and

‘xm-create-image’ (see Appendix A).

6.6.4 Kororā Integrity Analyser Agent

Live VM migration integrity analysis is a confirmation procedure for moving the legacy

VM to the new VM situation with minimal interruption/downtime, with data integrity

and no loss/ change of data, while ensuring that all the specific functional and non-

functional aspects of data are met after migration.

The Kororā Integrity Analyser Agent has to verify the existing integrity

functionality of the live VM migration. Live migration integrity testing, therefore,

includes testing with old data, new data or a combination of the two, as well as old

features (stable features) and new features. Old data is usually referred to as a migration

for ‘legacy’. It is also required to continue testing the legacy VM migration data and the

new migration until the new migration becomes stable and reliable. A wide range of live

VM migration integrity checking on the Kororā framework can uncover new migration

data issues that cannot be found in the old data. Consequently, while the VM is being

moved to another Xen hypervisor, it is essential to:

• avoid/minimise any form of disruption to the live VM migration, such as the

loss/change of data or downtime

112

• ensure the VMs can keep using all the features of the migration by causing

minimal (or no) damage during migration, such as the change/removal of a

particular functionality

• anticipate all the potential migration problems that may happen during the

real live VM.

To ensure a secure live migration of the VMs by removing these defects, it is

crucial to complete a live VM migration analysis in the laboratory/simulated

environment. Each integrity test has a value, and when the data comes into the image,

it plays a vital role. The integrity analysis must be run both before and after the live VM

migration. The different VM migration integrity testing steps to be carried out in the

simulation environment are pre-migration, migration, and post-migration integrity

analysis. (In addition, backward compatibility verification and rollback testing are critical

during live VM migration; however, this research did not focus on these).

Before migrating the VM, the set of testing exercises proceeds as part of the pre-

migration integrity analysis. This is not required in a simple one-time live VM migration

related to a Xen host, which may want to consider using the simple credential security

support provider method (Ferris, 2019). However, when complex VMs are to be

migrated, this pre-migration integrity checking is required. For instance, if the VM runs

on cold migration when a VM contains a complex data migration setup, the capability

checks during vMotion may prevent the VM from migrating to another host.

Migration integrity analysis begins with the data backup on the disk tape,

allowing the VM migration to be re-established. This ‘time taken to migrate the VM’

should be recorded in the final analysis filesystem, which will be transported as part of

the live VM migration analysis results and valuable during the Kororā process. During

the Kororā integrity agent analysis, all the Xen components can be brought down

frequently and eliminated from the migration environment to carry out the VM

migration correctly. Therefore, in a perfect world, the ‘downtime’ needed for the

migration integrity analysis would be the same as the VM migration time.

When the VM has migrated effectively, the Kororā post-migration integrity

analysis occurs, meaning end-to-end VM migration integrity checking has been

performed (see Appendix A).

113

1 using Microsoft.Data.Sqlite;

using PowerArgs;

using System;

using System.IO;

using System.Runtime.InteropServices;

using System.Text;

namespace FileHash

{

[ArgExceptionBehavior(ArgExceptionPolicy.StandardExceptionH

andling)]

 public class FileHashProgram

 {

 private HashArgs args;

 [HelpHook, ArgShortcut("-?"), ArgDescription("Shows

the help")]

 public bool Help { get; set; }

 [ArgActionMethod, ArgDescription("Computes file

hashes for the specified path")]

 public void Hash(HashArgs args)

 {

 this.args = args;

if (!Directory.Exists(args.Path) && !File.Exists(args.Path)

 {

 Console.WriteLine("Path is invalid");

 return;

 }

 IOutput output;

 if (!string.IsNullOrEmpty(args.File))

 {

 output = new FileOutput(args.File);

 }

 else if (!string.IsNullOrEmpty(args.SqlLite))

 {

 output = new SqlLiteOutput(args.SqlLite);

 }

 else

 {

 output = new ConsoleOutput();

 }

 output.Write(args.Path);

 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

6.6.5 Kororā Data Organisation Agent

As far as the Kororā data organisation agent is concerned, a VM disk image is merely a

file (or, in some cases, a series of files). Therefore, the easiest way to monitor the status

of reading requests from the live VM itself is to ensure that Kororā copies all the file,

along with the rest of migration metadata, and creates a duplicate of the popular data

ensure its integrity. The VM disk image is usually quite large, often in the tens of

114

gigabytes. Simply running a Kororā-modified image would create a problem for any

virtual disk image of the running VM, divided into chunks of fixed size, because it would

consider the whole migration file to have been changed each time. This would use up

the disk image space rapidly and make the live migration process take extra time. This

agent helps Kororā to take snapshots of the VM’s migration state so that Kororā can

return to that state at a future time if the need arises. Taking snapshots saves the most

considerable portion of the Kororā virtual disk in a read-only state. By submitting read-

only requests, Kororā can continue to use the VM in the future, the changes stored in

similar chunks that are quick to run (see Appendix A).

6.6.6 Kororā Go Agent

In the execution environment, the generic run agent enables code to be executed. For

example, the agent may wrap VM migration data for regular administration shell scripts

or the default loader for executable reading. The agent offers EXEC access to the current

execution environment.

To boot the VM, the Kororā must install a provisioning agent, such as Kororā Go

Agent, on the VM. However, the Windows guest agent (WinGA) cannot be installed at

the VM deployment time. The following codes illustrate the way Kororā implements the

Kororā Go Agent with the administrator interface:

The Kororā uses this agent to run the framework over a Windows-based VM and

deploys a VM without the WinGA. In addition, Kororā uses the following codes to find

whether the Kororā_Go_Agent property has been added inside the OS profile. This

115

property could be used to find the VM migration data that has been deployed to the

VM:

6.6.7 Kororā Libvirt Agent

The Kororā Libvirt Agent is communicates with the Kororā guest agent or shared

memory (identical pages) to confirm that snapshots of both the guest VM and the shared

memory file systems are consistent internally and ready for use as needed. It can start,

stop, kill and migrate VMs with a one-to-one abstraction of the original APIs. In addition,

the system administrator(s) could write and install a hook script unique to the

application. It might require different ‘SELinux’ (Smalley, Vance, & Salamon, 2001)

permissions to run correctly, as is the case when a script needs to be connected to a

socket to communicate to a database.

The snapshot process goes through the following steps:

• The file system applications/databases are working buffers to the virtual disk

and avoid accepting client connections.

• The applications are compatible with their data files.

• The key script of the hook returns.

• The management stack takes a Kororā guest agent or shared memory file

systems snapshot.

• The snapshot is confirmed.

• The work of the file system resumes.

Thawing occurs in the opposite order.

Kororā_Libvirt_Agent is using the NBD way of migrating non-shared storage. This allows

Kororā to carry on under a heavy workload the agent might be deal with. That is, Kororā

can send a disk over a stream either to a local file or remote host. Moreover, this is what

Kororā Libvirt Agent adopted and referred to as NBD storage migration. How it works:

• Destination. In the prepare phase, the NBD server is started. This will handle

incoming NBD requests and multiple data from the stream into several disks.

116

Then all disks in domain are marked to transfer. In other words, the NBD

server is told which disks are to be transferred.

• Source. In the perform phase, the migration source initialises the NBD stream

to the destination. The mirroring phase can take very long, which hurts

performance because the system cannot start the migrated guest on the

destination until all disks are transferred. Libvirt agent tells Kororā to start

NBD transfer to the destination and waits for it to quiesce with the current

implementation. Since guest may be running during migration and hence

write something onto any transferred disk, such write must be mirrored to

the destination. Then, after Kororā told Libvirt NBD is quiesced, the actual

migration starts.

• Destination. In the finishing phase, the destination resumes the freshly

migrated domain and kills the NBD server, as it is no longer needed.

117

CHAPTER 7: FINDINGS

7.1 Introduction

The following sections elaborate on the findings related to the research objectives for

this study. The main result was the value of using evaluation theory and its sub-

components to derive the Kororā integrity element of the cloud migration framework.

In Chapter 5, Figure 5.1 showed the components of evaluation theory, and Figure 5.2

showed the concepts of evaluation theory that were adopted for the Kororā framework.

This chapter summarises the findings regarding the essential system attributes and the

most relevant integrity characteristics of a secure cloud migration framework. In

addition, it presents the way the Kororā framework protects against a range of migration

attacks, followed by three different scenarios of an attack.

7.2 Evaluation of the research objectives

A mixed research methodology was used for this study, involving four steps: problem

identification, solution design, evaluation and innovation. In this section, the findings

from Chapters 2 to 6 that are related to the RB and RQs and research objectives are

summarised. In addition, the results from evaluation theory application, expert

feedback and threat modelling are discussed. This section's methodology is based on

the quasi-judicial method (Cardozo & Kaufman, 2010), where a rational argument is

utilised to prove or refute the research objectives. The argument regarding the objective

relies on the ‘for’ weight of the judgement.

7.2.1 Objectives 1 and 2

1. To understand the security issues associated with CC, vTPMs, virtualisation,

live VMM and hypervisors.

2. To identify the requirements for the proposed framework.

7.2.1.1 For

In Chapter 2, it was concluded that security, privacy, monitoring and trust are the main

issues of any CSP. Therefore, the cloud migration user decision is based on these criteria.

In Chapter 3, the related literature showed that cloud users base their selection of a

service provider on the security level of the service, approval of the security by experts,

mitigation of the risk and reputation.

118

In Chapter 5, the evaluation theory discussion indicated that CFC and CFE are

crucial in the cloud migration user’s selection of a CSP. It showed that to have a higher

chance of being selected by users, CSPs should improve their level of security, privacy

and reputation (feedback, standard, self-assessment, benchmarking and service level

agreement) along with the main cloud migration characteristics (load balancing, SSO,

privacy, standard and risk mitigation).

7.2.1.2 Goals

• Verification from the literature – RB

• Verification from the methodology – RB

• Verification from CSPs – RB

• Element validation – RB

7.2.1.3 Verdict: Accepted

The SLR supported objectives 1 and 2, and evaluation system architecture (see Chapter

5), consistency ratio, and different scale method and identity standard overlap (see

Chapter 6); therefore, they were accepted.

7.2.1.4 Against

The SLR supported these objectives and even after refining them in the other chapters,

they were not refuted by all attestation methods, which aimed to detect and prevent

integrity attacks by extending secure boot and trusted boot technologies into the host.

However, other attestation methods approved security, risk and reputation as being

crucial criteria for any cloud migration user’s decision making. They can also show a third

party the files’ access to a system (creating a hash of a file’s contents), allowing the third

party to detect whether any unauthorised files have been run.

7.2.2 Objective 3

3. To design and validate the model, processes and architectural features of the

proposed framework.

7.2.2.1 For

Chapter 5 noted that the proposed framework's integrity protection – specifically,

integrity verification, CW security model and SSP. Trust establishment needs to

incorporate the CFC and CFE to produce a measurable trust relationship. Chapter 3

119

provided strong literature evidence that a live VM migration integrity framework is

dependent on CFC and CFE. In Chapter 6, the migration framework was implemented by

applying the proper security methods to improve its integrity level.

7.2.2.2 Goals

• Verification from the literature – RQ1

• Verification from the methodology – RQ1

• Verification from CSPs and cloud migration users – RQ1

• Element validation – RQ1

7.2.2.3 Verdict: Accepted

Objective 3 was supported by integrity verification, evaluation system architecture (see

Chapters 4 and 5), consistency ratio and different scale methods; therefore, it was

accepted.

7.2.2.4 Against

The SLR supported this objective and even when it was refined in other chapters, it was

not refuted in all attestation methods. Other attestation methods approved security,

risk and reputation as being crucial criteria for any cloud migration user’s decision

making.

7.2.3 Objective 4

4. To propose and implement an end-to-end security architectural blueprint for

cloud environments, provide an integrated view of protection mechanisms,

and then validate the proposed framework to improve live VM migration

integrity.

7.2.3.1 For

In Chapter 5, the CFC and CFE elements were discussed and Chapter 4 illustrated the

implementation of the Kororā framework, showing how to measure the integrity

elements derived. Chapter 5 demonstrated the usability of the prototype derived from

the framework. Further, the feasibility of the framework was shown by mitigating all

possible threats.

7.2.3.2 Goals

• Verification from the literature – RQ2

120

• Usability assessment – RQ2

• Feasibility assessment – RQ2

7.2.3.3 Verdict: Accepted

The usability of the prototype was discussed in Chapter 6 and the threat-modelling

results supported this objective; therefore, it was accepted.

7.2.3.4 Against

The assessments of the framework's feasibility and usability were added late in this

research, after the discussion of evaluation in Chapter 5. As per the research

methodology for this thesis, refining the objectives was essential to ensure their validity.

However, Objective 4 was not refuted in all attestation methods, as explained in Chapter

6.

7.3 Evaluation of research questions and research background

The RB and RQs, as stated in Chapter 2 are noted here prior to their evaluation.

• RB: What are the opportunities and challenges for live VM migration in CC,

with respect to the CFCs and CFEs?

• RQ1: How do we design, implement and evaluate the establishment of a live

VM migration framework to protect the integrity of cloud systems?

• RQ2: How might the background from the first question by using the

evaluation method of RB affect the level of integrity of the framework and

help CSPs and cloud systems users in their decision making?

Here, the relationships between the previous chapters' results and these

questions are discussed to evaluate them according to two main criteria: the question’s

relevance and the feasibility of answering it. In this context, ‘relevance’ refers to several

questions:

• How does insecurity in CC affect cloud users’ use of cloud services?

• Is live VM migration more likely to be used these days?

• How do CSPs make the live VM migration process secure?

• What are the benefits and risks of moving data to the cloud?

It would be a simple matter to design a study and collect data to answer these

questions. However, this research wanted to know whether the RB and RQs would be

of interest to CSPs and cloud users generally, as well as from the CC security point of

121

view. The three main factors that affect the interestingness of such questions are

whether the answer to the question is in doubt, fills a gap in the literature or has

important practical implications, as follows

• Doubt: If the answer to a question is obvious, it is not an interesting question.

In new empirical research, questions that have already been addressed are

no longer of interest. However, even if scientific research has not answered

a question, it is not automatically interesting. There has to be a reasonable

chance that the answer will be something that was not already known.

• Fills a gap in the literature: If scientific research has not already addressed

the problem, then the answer to the question might either fill a gap in the

related literature or already be obvious. For instance, it may be apparent to

anyone who is familiar with the field of local governance how councils

distribute money for infrastructure; therefore, a question about that topic

would not be of interest.

• Important practical implications: The answer to a question may have

significant practical implications. For example, the issue of whether the

design of a CSP allows cloud users to remember their cloud migration

encounters has significant implications for the way the cloud users are

questioned in cloud migration situations.

In terms of the RB question, the problem statement in Chapter 1 identified that

the framework developed in this research needed to enhance the level of migration

integrity between a VM on one Xen open-source hypervisor to another and allow them

to run simultaneously on the same hardware components. Using the mixed

methodology and DS research methodology (see Chapter 3), this research created a

secure migration framework between two VMs on the same platform. By utilising

evaluation theory in the synthesis techniques, Chapters 2 and 3 presented the various

current cloud migration frameworks and their strengths and weaknesses. Section 6.2

discussed the most relevant frameworks that had the essential system architecture to

design the Kororā framework's blueprint.

In terms of Objectives 1 and 2, it was found that cloud users' decision-making is

based on three main criteria – security, risk and reputation – supporting and confirming

the answer to the RB. Objective 3, which was examined in Chapter 2 and refined in the

122

other chapters (3–6), was validated against other attestation methods. Objective 4 was

validated by measuring the three criteria above.

7.4 Migration attack scenarios

The security threats in the system model of live VM job migration were described in

Section 5.5. This section describes four possible attack scenarios for each of these

threats (omitting the control panel because it is assumed that the system administration

in Kororā is trusted). Since the system administration in Kororā was trusted, the first

attack situation (control panel) has not been included here. The remaining three attack

scenarios are discussed in detail below and analysed according to whether the Kororā

framework could resist those threats.

1. Communication attacks between the host OS and guest VM: When a

malicious VM exists, the possible attack scenarios are as follows:

• An attacker tries to fake his/her/its computer as the source platform to

migrate a malicious VM to a reliable destination platform.

• The source platform has been compromised, so it is no longer

trustworthy.

• An attacker attempts to fake his/her/its computer as the destination

platform to accept an authentic incoming VM.

• The destination platform has been compromised, so it is no longer

trustworthy.

2. Attacks on the transmission channel: When the network is untrusted, the

possible attack scenarios are as follows:

• An attacker attempts to intercept the VM and vTPM instance data

transferred via the network (confidentiality).

• An attacker attempts to manipulate the data transferred via the network

(integrity).

• An attacker attempts to replay an old session to trick the source or

destination platform.

• An attacker attempts to intercept and manipulate a normal data

transmission to trick both the source and destination platforms (MiTM

attack).

123

3. Communication attacks among VMs: When malicious VMs exist, possible

attack scenarios are as follows:

• There is a malicious VM running on the source platform. This does not

damage the host's hypervisor codes and data, but it is interested in

checking and intercepting the communication data of other VMs and the

host OS.

• The VM with vTPM instance that is selected to be migrated has been

compromised. An attacker attempts to migrate a malicious VM to a

reliable physical platform to spread his/her/its malicious codes.

• There is a malicious VM running on the destination platform. This does

not damage the host's hypervisor codes and data, but it is interested in

checking and intercepting the communication data of other VMs and the

host OS.

• The newly created VM with vTPM instance container has been

compromised. An attacker tries to inject malicious codes into the valid

incoming VM.

7.4.1 How the Kororā system resists those threats

When the system administrator tries to migrate the VM from the source hypervisor to

the destination hypervisor, the vTPM instance needs to migrate to the destination

hypervisor as well (see Figure 7.1). There is an assumption that an attacker can only

compromise the state of the software on the source and destination hypervisors before

or after the live VM with vTPM instance migration. This means the attacker cannot

compromise the state of the software once the migration has started.

124

Figure 7.1: Migration communication scenarios among VMs

In addition, both source and destination hypervisors are run in LAN; permanent

files are stored in a shared storage server. Once a VM with its vTPM instance is moved

from one Xen hypervisor to another, the permanent files are not required to move

simultaneously. In other words, the migrated VM with vTPM instance still has access to

its files in the destination Xen hypervisor.

As discussed in Chapter 4, this study's live migration included seven agents that

helped the Kororā framework achieve two main steps: 1) integrity verification and 2)

VM physical memory data transfer. A summary of these two steps is shown in Figure

7.2.

Shared storage

Hardware

Source
Xen Hypervisor

System
Administrator

Destination
Xen Hypervisor

VM1
vTPM1

VM2
vTPM2

VM2
vTPM2

VM1
vTPM1

VM2
vTPM2

VM physical memory
data transfer

vTPM memory data transfer

Migrate
VM2

Local Area
Network

125

Figure 7.2: The Kororā live migration communications process

In Step 1, integrity verification involves exchanging credentials between the

source and destination platforms for mutual identity authentication. A session key to

construct a vTPM-based secure channel is negotiated. All participating entities are then

checked for trustworthiness in the source and destination platforms' integrity

verification process and the VM. Step 2 involves the physical memory data transfer. The

destination platform receives a specific systematic key associated with its current

platform status. A systematic key is created on the vTPM source platform in order to

encrypt the key data for the VM and vTPM instance. Then the pre-copy process of VM

physical memory data contents starts. The VM with vTPM instance, the physical data

memory is copied iteratively to the destination platform. The source platform suspends

the VM and its vTPM instance once the remains of the dirty block data of VM physical

memory and the key data of VM with vTPM instance can be moved in one transmission.

Finally, the VM with vTPM instance resumes and sends a notification to the destination

platform; the key data is encrypted with a symmetric key. The cypher text is loaded into

the VM with a vTPM instance container.

Negotiation communication, mutual authentication
and secure channel construction

Step 1: Integrity verification

Source and destination platform integrity
measurement

VM with vTPM instance migrated integrity verification

VM with vTPM instance container integrity
verification

Step 2: Physical memory data transfer

Pre-copy of VM physical memory contents and
iterative transfer of physical memory contents

Suspension of VM and transfer of the encrypted key
data

Migration result notification (success or failure)

Source
platform

Destination
platform

126

Thus, all of the above attack scenarios on communication among VMs can be

prevented by Kororā. Three different real-world attacks scenarios were analysed to test

the research objectives and answer the RB and RQs. The results for each scenario were

entered into the template table shown in Table 7.1.

Table 7.1: Template for analysis results for scenarios of attacks on communication

among VMs

Real-world
attack

scenario
Can Kororā prevent the attack?

Is this process
under vTPM
protection?

Does this process
increase the
integrity level of
live VM migration?

Attack
scenario 1

Yes/No (e.g. Yes, Kororā helps) Yes/No Yes/No

Attack
scenario 2

Yes/No (e.g. Yes, verifying the integrity
of the VM with vTPM instance to be
migrated on the secure platform
helps)

Yes/No Yes/No

Attack
scenario 3

Yes/No (e.g. Yes, verifying the integrity
of the VM with vTPM instance
container on destination platform
helps)

Yes/No Yes/No

7.5 Threat Modelling

The tremendous number of new threats added daily to cyber ecosystems have moved

threat modelling from a theoretically exciting concept into a current information

security standard. Threat modelling can be defined as a structured process to detect

likely security vulnerabilities and threats, measure each potential impact's severity and

prioritise methods to protect IT infrastructure and mitigate attacks. After implementing

the proposed framework and running three different attack scenarios, the framework's

feasibility is challenging by applying threat modelling. Therefore, to measure the

feasibility checking in this thesis, the qualitative data obtained from threat modelling

methods aligned with the security development lifecycle are used.

From a theoretical perspective, each threat modelling technique and

methodology provides security teams and organisations with the means to identify

threats and may be seen on equal footing. However, on a practical level, threat

127

modelling methodologies vary in quality, consistency, and value received for the

resources invested.

There are a few common threat modelling methodologies such as The

Operationally Critical Threat, Asset, and Vulnerability Evaluation Methodology (OCTAVE)

(Practice Focused), Trike Threat Modeling (Acceptable Risk Focused), P.A.S.T.A. Threat

Modeling (Attacker Focused), STRIDE Threat Modelling (Developer Focused), and VAST

Threat Modeling (Enterprise Focused) available and the challenge, however, is to

purposefully choose a threat modelling methodology based on the desired outcomes

rather than to settle for what everyone else is doing.

Microsoft threat modelling methodology – commonly referred to as STRIDE

threat modelling, is chosen to consider and identify potential threats to a development

framework. STRIDE is an acronym that stands for six categories of security risks:

Spoofing, Tampering, Repudiation, Information Message Disclosure, Denial of Service,

and Elevation of Privilege, and each category of risk aims to address one aspect of

security. In this regard, developing a use case (different assumption for the framework)

helps identify the development framework issues from the attackers' perspective. It also

allows the researcher to dedicate and document how the framework should react to

mitigate the issues.

A conceptual threat model based on the STRIDE threat modelling tool for

migration attacks scenarios (section 7.4) is presented in the next paragraphs. The set

dataflow, data flow, external interactor, process, and trust boundary are used to create

a dataflow diagram of the attached scenarios. The proposed model will be tested to

mitigate threats and scenarios effectively (see Figure 7.3).

128

Figure 7.3: The Kororā Threat Modelling

The main point to analyse and validate the proposed framework is whether this

proposed model could mitigate identity theft by proposing a solution for all the

mentioned threats in the STRIDE threat modelling tools, and consequently, in the

analysing view to get approval by the threat report. Therefore, based on the threat list

in Figure 7.3, the list of attacks (abuse cases) discussed in the next section (section 7.6)

can be identified. Accordingly, justification and possible mitigation of the threats have

been identified and explained (see Table 7.2).

129

Table 7.2: Determined threat category, description, justification, and prevention

Category Description Justification prevention

Elevation of
privileges

Privilege
escalation
happens when a
malicious user
exploits a bug,
design flaw, or
configuration error
in an application
or operating
system to gain
elevated access to
resources that
should generally
be unavailable to
that user.

Attackers start by exploiting a
privilege escalation
vulnerability in a target system
or application, which lets them
override the current user
account's limitations. They can
then access another user's
functionality and data or obtain
elevated privileges, typically of
a system administrator or other
power user. Such privilege
escalation is generally just one
of the steps performed in
preparation for the main
attack.

Enforce password
policies, Create
specialized users and
groups with minimum
necessary privileges
and file access,
Secure the databases
and sanitize user
input, Ensure correct
permissions for all
files and directories,
Keep the systems and
applications patched
and updated

Information
disclosure

Information
disclosure is when
an application fails
to adequately
protect sensitive
and confidential
information from
parties that are
not supposed to
access the subject
matter in normal
circumstances.

By applying forceful browsing,
an attacker can obtain
confidential data, such as
source code, binaries, and
backup files. The involved
threat actor may use directory
indexing to expose available
files on the server.

Ensure that all the
services running on
the server’s open
ports do not reveal
information about
their builds and
versions.
Always make sure
that proper access
controls and
authorizations are in
place to disallow
access for attackers
on all web servers,
services and web
applications.

Repudiation

Attackers often
want to hide their
malicious activity,
to avoid being
detected and
blocked.
Therefore, they
might try to
repudiate actions
they have
performed, for
instance, by
erasing them from
the logs or by
spoofing the
credentials of
another user.

This attack can be used to
change the authoring
information of actions
executed by a malicious user to
log the wrong data to log files.
Its usage can be extended to
general data manipulation in
others' name, in a similar
manner as spoofing mail
message. If this attack takes
place, the data stored on log
files can be considered invalid
or misleading.

Use application
instrumentation to
expose behaviour
that can be
monitored. Use
secure audit trails and
digital signature.
Know system baseline
and what good
network traffic looks
like.

130

Denial of
service

A system is usually
deployed for a
particular purpose,
whether it is a
banking
application or
integrated media
management on a
car. In some cases,
attackers will have
some interest in
preventing regular
users from
accessing the
system, for
instance, to
blackmail and
extort money from
the system owner.

Denial of service attacks
typically functions by
overwhelming or flooding a
targeted machine with
requests until regular traffic
cannot be processed, resulting
in DoS to additional users. A
DoS attack is characterized by
using a single computer to
launch the attack. These
techniques can change data
and functions on behalf of the
user to mitigate cross-site
request forgery vulnerabilities.

Secure network
infrastructure,
develop DoS response
plan, create ad hoc
policies and patterns
that allow a web
property to adapt to
incoming threats in
real-time. Maintain
robust network
architecture.

As a contribution to this thesis, this method leverages the knowledge base of the STRIDE

threat modelling attack patterns to validate the proposed framework, develop a

meaningful and useful migration framework, and mitigate integrity theft. The summary

represents, the researcher first identified the methods to prevent attacks and

consequently mitigate the threats (see Appendix B).

7.6 Experiments with specific attack scenarios

This section explains the background of attacks in general before describing specific real-

world scenarios of attacks. There are several commonly used vulnerability standards by

researchers to make vulnerability measurable such as Common Vulnerability and

Exposure (CVE), Common Weakness Enumeration (CWE) and the Common Vulnerability

Scoring System (CVSS). In this research, the main idea of three different attacks

scenarios is inspired by the CVE repository. CVE is a publicly available and free to use list

or dictionary of standardised identifiers for common vulnerabilities and exposures.

Currently, CVE is treated as a ‘de facto’ industry standard for vulnerability and exposure

names.

There are many places where the CVE process can break down. Since mistakes

are inevitable, processes to correct them are necessary. This research attack scenario

borrows many technical contacts from CVE-2020-3999, CVE-2020-17376, CVE-2019-

12491, CVE-2017-17045, CVE-2016-2270, CVE-2013-4497.

131

7.6.1 Background

Protecting the communication among VMs and VMMs in live migration is difficult in

targeted attacks against a virtualised environment. The attacker only has to spend time

attacking one VM, which can compromise other VMs over the network, damaging the

VMM and accessing the destination VM. It is assumed that the kernels of VMs are

running in a protected and privilege space on the CPU and in RAM, as well as having to

be booted securely with a vTPM on the host VM by the Xen hypervisor. Multiple kernels

have to share access and interact together instead of one kernel running with one CPU

platform. There is a high chance of hypervisor-based attacks if an attacker plans to target

multiple VMs (or as many VMs as possible).

Different types of attacks can come from the protected level access shared

across several virtual kernels, such as hackers:

• passing malicious codes through the virtual CPU down to the physical CPU

• bypassing authentication between the guest and host by using the VMM

interface itself

• loading and executing a Trojan attack on a VM to gain access to the users’

systems and inject malicious code or software that looks legitimate but can

take control of the users’ systems and run on the top of the host's hypervisor

machine.

While all the above attack situations are possible, the most basic threat imposed

by any virtualisation system is ‘guest-to-guest’ attacks in VMs communication, with

attackers using one VM to manipulate or control other VMs on the same hypervisor

(Xen). Attackers can potentially access other VMs by injecting destructive microcodes

through the shared memory, network communication and other resources. Figure 7.4

depicts an attack from VM1 on VM2 and VM3. The attacker may or may not be

authorised to access VM1, but in this scenario, it has unauthorised access to the VMs.

132

Figure 7.4: An attack on migration communication among VMs

In some situations, two VMs must be able to communicate, such as when

monitoring a VM or implementing a network technology that requires multiple peers.

Instead of creating complete isolation, Kororā is intended to be a secure architecture for

addressing inter-VM communication in a VM infrastructure. Kororā allows the system

administrator to apply an appropriate mixture of seven different agents for

communication between each VM to ensure that only authorised VMs have access to

communication with each other.

In a typical attack in the past, an attacker had to focus on one machine at a time,

regardless of their overall intention. The virtual environment has removed that

restriction and created the possibility of a one-to-many attack, such as attacking a guest

VM and possibly controlling all the VMs or attacking the host VM and controlling the

guest VM. There are many scenarios of live VM attacks. Three of these are described in

the following sections, illustrating the Kororā framework's role in creating a secure live

migration environment.

Shared storage

Hardware

Source
Xen Hypervisor

Destination
Xen Hypervisor

VM1
vTPM1

VM2
vTPM2

VMn
vTPMn

VM1
vTPM1

VM2
vTPM2

VMn
vTPMn

VM physical memory
data transfer

vTPM memory data transfer

Local Area
Network

Attacker

133

7.6.2 Attack Scenario 1

An attacker aims to compromise a Linux host that is running Xen hypervisor with 10

virtualised guests.

The attacker’s ultimate target is to destroy the human resource data stored on

all the virtual webservers hosted on the single Linux host system. The attacker knows

that it needs to remove this data from each VM because each virtual guest writes to its

local storage device and then propagates the data out to each redundant virtual storage

device. To delete all the critical human resource data traces, the attacker needs to

eliminate both the shared storage device and the localised virtual storage devices in the

guests. In a typical single-box scenario, the attacker would have to gain access to each

box individually, to share the local data partition, which would mean mounting a tedious

1:1 box attack. Since all the attacker’s targets are virtual and hosted on one physical

host, the attacker can take advantage of this virtual infrastructure. All the guests use

virtual hard drives: flat files accessible from each guest and each host (see Figure 7.5).

Figure 7.5: An attack on a virtual machine host

On this Linux host, the attacker has access to ‘xenent’, which includes the VMM

interfaces and virtual LANs for the HTTP servers. Therefore, the attacker can quickly

attack the guest from the virtual host network and intercept the server message block

administration password as it flows from ‘eth1’ on the host VM to ‘xennet3’ on the guest

134

VM. Because the attacker only intends to remove data, it only needs to find the path of

least resistance. As the attacker already has root access to the Linux host, it can easily

schedule a ‘cron job’ – a time-based job scheduler in a Unix-like computer OS – to run

at 3:30 a.m. for the next two days, as follows:

> [root@xenhost:/] # for xendisk in `find. –name “*. xendk” `; do dd

bs=1024 count=10 if=/dev/zero of=$xendisk; done

Within seconds, the attacker can overwrite the first 10k in each ‘xendk’ file (the

flat file that Xen uses as a virtual hard disk), rendering them all unreadable. The attacker

can render the guest VMs unavailable by eliminating the boot sector and the master

boot record.

Thus, the attacker can quickly attack the physical data of 10 critical webservers

by mounting just one attack against the Linux host machine. The attacker does not need

to work on each machine individually and does not need to know everything about how

to attack a VM box.

For Attack Scenario 1, the Kororā framework needs to be initialised before it can

run. After initialisation, the seven agents of Kororā are started one by one, from the

Libvirt Agent to the last agent, called Data Organisation Agent (see Figure 4.5). The

Kororā agents register their initialisation function through the Linux security module

interface, providing a general kernel framework to support the security modules that

are called up during the initialisation of Kororā. The initialisation function loads are the

access matrix. The access matrix is stored as a binary file in the VMM, while backup data

is stored in the privileged VM as well, in the memory address space of the Xen

hypervisor.

This scenario is using the Kali Linux system and three steps such as enumeration,

gaining access, privilege escalation to attack the VM host. The guest VM run on another

computer with the same hardware features in the isolation lab; therefore, there are no

legality issues. After gathering information about the target VM machine and the

entities they belong to (called footprinting) and identifying live hosts, ports, services and

discovering OS and architecture of the target VM machine (called scanning the system).

It is then time to get a clear picture of the target machine and identify vulnerable user

accounts, establish null sessions and connections, or poorly-protected shared resources

using active connection to systems.

135

Therefore, by running the below Nmap command, the first step of attack started

and enable OS detection, version detection and traceroute with the -A argument. The -

p- argument pushes the Nmap to scan all TCP ports, and -V uses for one level of

verbosity. The -oX argument is used to save results in an XML file called nmap.xml (see

Figure 7.6).

> Nmap -A -p- -v victim_VM_IP -oX nmap.xml | tee nmap.out

Figure 7.6: Enumeration phase of the attack on a virtual machine host

The next step is to establish a connection to the server to gather more details

about the target VM machine. By running the below comment line, the -e argument in

echo push the command to interpret escape sequences (see Figure 7.7).

> echo -e “USER ident 0 *: Gecos\nNICK evilHacker” | nc victim_VM_IP

6667

> root@work: ~/targets$ echo -e “USER ident 0 *: Gecos\nNICK

evilHacker” | nc 172.28.128.3 667

136

Figure 7.7: Scanning phase of attack on virtual machine host

The scanning of system shows that the server is running version Unreal3.2.8.1.

This version has a malicious backdoor which is present in the Unreal3.2.8.1.tar.gz. Below

is Unreal3.2.8.1 backdoor command execution line in the Metasploit console.

> msf > use exploit/unix/irc/unreal_ircd_3281_backdoor

> msf exploit(unreal_ircd_3281_backdoor) > show targets

> ...targets...

> msf exploit(unreal_ircd_3281_backdoor) > set TARGET < target-id >

> msf exploit(unreal_ircd_3281_backdoor) > show options

> ...show and set options...

> msf exploit(unreal_ircd_3281_backdoor) > exploit

Now, the vulnerability of VM machine is recognised, and it is a time to target the

system by fire-up a Metasploit Console (msfconsole) (see Figure 7.8).

> Use exploit/unix/irc/unreal_ircd_3281_backdoor

> info

137

Figure 7.8: Exploit Unreal3281 backdoor on virtual machine host

The next step is to set the required options for victim VM by using the “> set

rhost victim_VM_IP“ command line and get a low privilege shell by executes the

Metasploit module (see Figure 7.9).

Figure 7.9: Exploit the Metasploit module on a virtual machine host

This is a strong foothold, and an attacker has access as an unprivileged user to

the system; however, the attacker is still keen to be a privileged user and get root access.

The next step is extracting usernames, machine names, and network resources from the

system (called enumeration) to escalate privileges. Here, the attacker used automated

Linux privilege tools called LinEnum. to run in the victim virtual machine by using the

below command line (see Figure 7.10).

>wget attackingMachine/LinEnum.sh -o /tmp/lin.sh; chmod 700

/tmp/lin.sh;/tmp/lin.sh

138

Figure 7.10: Enumeration of the system to escalate privileges on a virtual machine host

Finally, the attacker runs Netcat to connect to the VM host and execute /bin/sh.

On the other side of the connection, attacker set up a Netcat listener by entering the

Netcat -nlv attacking VM 6688 command line, which asks Netcat to listen for an

incoming connection to the attacking VM on port 6688. Figure 7.11 shows the received

root sell connection message on exploited VM host.

Figure 7.11: Privileges escalation using Netcat on virtual machine host

In this experiment, Xen is used as the private cloud platform driven by the

virtualisation environment and the ‘virt-manager’ tool is a desktop user interface for

managing VMs through the Libvirt Agent in Kororā (‘virt-manager’ manages the Xen

Linux containers). Further, in Xen, the privileged VM is denoted as Domain0, the

ordinary VM is indicated as DomainU and the VMM is denoted as a hypervisor. Domain0

and hypervisor are the trusted subjects that manage all VMs on the same host. Based

on Xen characteristics, the read and write operations among the guest VMs are

139

accomplished through communication procedures. The interactions among the guest

VMs correspond to the access properties of the Kororā framework.

Event channels can be established in the Kororā framework, and event

notifications are sent if one guest VM has some access to attribute to another guest VM.

In the CW model, both subject and object are abstract words, while in the cloud platform

system, the subject may be hypervisor, Domain0 or DomainU, and the object may be

hypervisor, DomainU or a specific file memory snip, data unit or so on. Therefore, when

a live VM migration is hypervisor-related, the migration is at the highest level of

confidentiality, integrity and availability.

The Kororā initialisation function provides the Linux security module with

information about the security hook function to control operations on kernel objects

and a set of obscure security fields in kernel data structures for maintaining security

attributes. The security analysis results for Attack Scenario 1 are shown in Table 7.3.

Table 7.3: Analysis results for Attack Scenario 1

Attack
scenario

Can Kororā prevent the attack?
Is this process
under vTPM
protection?

Does this process
increase the
integrity level of
live VM migration?

Attack
Scenario 1

Yes, the secure event channel (Libvirt
Agent with the support of the Linux
security module) and hash digest
helps to prevent the attack and
migrate live VMs with a high level of
integrity.

Yes Yes

The analysis shows that the Kororā framework can protect a live migration with

a vTPM instance from a communication attack among VMs and resist the security

threats that might take place.

7.6.3 Attack Scenario 2

An attacker targets the shared VMs memory communication between VMs during a live

migration process.

Normally, shared memory communication occurs according to the following

steps:

140

• VM1 creates a shared memory and transfers its grant reference tables to

VM2 and VM3. Xen has to take special measures when the data moves

between the address spaces of both VM2 and VM3.

• VM2 and VM3 have mapped the authorised memory pages to their

respective address spaces.

• By using address mapping, VM2 and VM3 can read or write the shared page

as it is precisely in their memory address.

• VM2 and VM3 revoke the memory page address when both VMs have

finished accessing this shared memory.

• VM1 revokes the authorisation and reclaims the grant reference tables.

For the experimental part of Attack Scenario 2, shared memory communication

is implemented by a dynamic kernel – the Linux dynamic kernel module loading

mechanism can be dynamically linked to the kernel space while the kernel is running.

The shared memory communication is started when the Kororā framework initialisation

is finished. If VM2 and VM3 do not satisfy the migration integrity procedures, the shared

memory cannot be used and the dynamic kernel fails and cannot be inserted in VM2 and

VM3. Figure 7.12 represents the creation of the Linux command line for VMs with the

’virt-manager’ tool.

Figure 7.12: Create VM1 by using the ‘virt-manager’ tool

The list of all running VMs is shown in Figure 7.13.

Figure 7.13: List of all running VMs

Figure 7.14 illustrates the shared memory that is created in VM1 and the ‘Linux

command lines’.

141

Figure 7.14: Shared memory of VM1 creation – Linux command lines

To create the function of the kernel in VM1:

• first, take a page of 4k size and write ‘Hello, by DY in DOM#1’ on this page

• enter the starting memory address ‘0xdb566000’ in the address space of

VM1

• finally, authorise the ID numbers of VM2 and VM3 and return the

corresponding grant reference tables identifiers, which are ‘797’ and ‘798’,

respectively.

To verify the Kororā agents' role, the dynamic kernel must be removed from VM2

and the Kororā agents enabled, then the dynamic kernel must be reinserted in VM2 and

run (see Figure 7.15 and Figure 7.16).

Figure 7.15: Enable and run the Kororā agents

Figure 7.16: Enable the Kororā agents and reinsert shared memory in VM2

After starting Kororā, VM2 loses its permission to access the shared memory,

which results in the failure of the dynamic kernel insertion. Similar results can be

observed in VM3 with and without Kororā. This is consistent with Kororā rules because

VM2 has lower integrity and confidentiality levels than VM1 (see Table 7.4).

142

Table 7.4: Analysis results for Attack Scenario 2

Attack
scenario

Can Kororā prevent the attack?
Is this process
under vTPM
protection?

Does this process
increase the
integrity level of
live VM migration?

Attack
Scenario 2

Yes, the secure Kororā agents and
Linux secure dynamic kernel module
helps to prevent the attack and run a
secure live VMs migration.

Yes Yes

7.6.4 Attack Scenario 3

An attacker compromises the ability of VM6 to mount and change the ‘/boot’ partition

of VM8 through the Xen hypervisor.

The consequence of Attack Scenario 3 is that VM8 cannot be started, and the

hacker breaches the communications betweenVM6 and VM8. After Kororā is started, if

the authentication process is not satisfied then VM6 cannot access the ‘/boot’ partition

of VM8, even using privileged VM ‘Dom0’ (without Kororā, VM6 can mount the ‘/boot’

partition of VM8 through Dom0). After Kororā is launched, VM6 no longer has access to

VM8. The disk of VM8 is divided into two partitions. Before Kororā is started, VM6 uses

the privileged VM Dom0 to view and access the ‘/boot’ partition (start value 2048) of

VM8 (see Figure 7.17).

Figure 7.17: Without Kororā, the VM6 uses privileged Dom0 to view the partition of

VM8

After Kororā is launched, VM6 cannot mount and access the ‘/boot’ partition of

VM8; Kororā blocks it. The blocking message by Kororā is, ‘No such a file or directory’,

and in the meantime, notification is sent to the VMM about this activity (see Figure

7.18). When the VMM receives the notification, the administrator takes proper action

to mitigate the error and clear the VM6 environment of the malicious codes.

143

Figure 7.18: With Kororā, the VM6 views the ‘/boot’ partition of VM8

The analysis of this scenario confirms that with Kororā, communications among

VMs are more secure, with a higher level of integrity than before, enabling Kororā. The

analysis results of this scenario are shown in Table 7.5.

Table 7.5: Analysis results for Attack Scenario 3

Attack
scenario

Can Kororā prevent the attack?
Is this process
under vTPM
protection?

Does this process
increase the integrity
level of live VM
migration?

Attack
Scenario 3

Yes, Kororā helps to block
communication attacks among
VMs and improve live VMs
migration integrity.

Yes Yes

7.6.5 Summary of results

This chapter has validated the main aims of this study by running three different real-

world attack scenarios. These scenarios have shown that by introducing Kororā, a vTPM-

based live VM migration framework, secure communication among VMs was

constructed. In all three attack scenarios, the communications among the VMs through

the Xen hypervisor were more secure than before, enabling Kororā (see Table 7.6). All

entities involved in the migration process-based integrity verification policy were proved

trustworthy.

144

Table 7.6: Summary of analysis results for the three attack scenarios

Attack
scenario

Can Kororā prevent the attack?
Is this process
under vTPM
protection?

Does this process
increase the
integrity level of
live VM
migration?

Attack
Scenario 1

Yes, the secure event channel, Libvirt
Agent, with the Linux security module's
support and hash digest, helps prevent
the attack and migrate the live VMs with
a high level of integrity.

Yes Yes

Attack
Scenario 2

Yes, the secure Kororā agents and Linux
secure dynamic kernel module help
prevent the attack and run a secure live
VMs migration.

Yes Yes

Attack
Scenario 3

Yes, Kororā helps prevent
communication attacks among VMs and
improve live VMs migration integrity.

Yes Yes

There are various performance parameters in such a cloud migration process,

and they are: a) scalability, b) powerful computing capabilities, c) flexibility, d) storage

capacity, f) quality of assurance. Regardless of the exact purpose of data migration, the

goal is generally to enhance performance and competitiveness. Less secure successful

migrations can result in inaccurate data that contains redundancies and unknows. Figure

7.19 shows that the actual time of the virtualisation platform's function call is less than

the time taken with Kororā.

Figure 7.19: Time with and without Kororā

145

While the Kororā framework's performance impact on the original virtualisation

platform was not large, that aspect was beyond the scope of this research. It should be

considered in a future study. Overall, Kororā effectively reduced the number of attacks

through the Xen hypervisor in the CC environment without having a significant impact

on the system’s performance.

The proposed research framework, Kororā, is in a way the opposite of existing

security approaches, such as the method used by Mashtizadeh and Koundinya (2019)

for migrating the contents of a persistent data store from a source object to a

destination object and that used by Zheng, Jie; Ng, Tze Sing Eugene; & Sripanidkulchai,

Kunwadee (2011) for live data migration. It is a performance boost layer for most, if not

all, live VM migration schemes. Further, this framework can be used to improve the

performance of other VM tasks, such as VM replication, as these tasks encounter the

same IO interference problem. The empirical evaluation of the proposed system

(described later in this thesis) showed that Kororā improves live VM IO security when

compared with the Mashtizadeh approach. In other words, Kororā could live migrate a

VM at a higher speed, without sacrificing the live VM IO performance significantly.

While both the Kororā framework and the approach used in the work of Zheng

et al. (2011) exploit the characteristics of secure live migration, they improve the

security of live VM migration in different ways. Zheng et al.’s method aims to reduce the

total amount of data transferred significantly by exploiting the VM’s workload locality.

By analysing the workload locality, infrequently updated data blocks are distinguished

from frequently updated data blocks in virtual disk images. The infrequently updated

data blocks are transferred before the frequently updated data blocks in the migration

so that the re-transmissions of data blocks are minimised, thus reducing the total

amount of data transmission. In contrast, Kororā uses workload locality to capture and

outsource the live VM’s working set data to a backup device during the migration, which

does not affect the transmission sequence of the data blocks. Importantly, Kororā is

complementary to the above approaches and can further improve these techniques (see

Table 7.7).

146

Table 7.7: Comparing Kororā and existing schemes

Features Mashtizadeh et al. Zheng et al. Kororā

Live VM migration time
reduction

X X -

Live VM
security

level

Confidentiality - X -

Integrity - - X

Availability X X X

Live VM migration
workload locality

X X X

The next chapter describes the study’s conclusions and limitations, as well as

recommendations for further study.

147

CHAPTER 8: CONCLUSION AND FUTURE RESEARCH

Figure 1.2 (see Chapter 1) summarised the pathway of this research, which aimed to

provide a detailed understanding of the area of VM migration in virtualised cloud-based

systems. The research focused on the sub-area of live migration, a technique that allows

seamless migration of a VM from one hypervisor to another. This research's main

contribution has been to propose the Kororā framework, based on seven agents running

on the Xen privileged dom0 and communicating with the hypervisor.

This study's cloud scenario was the public cloud environment, which allows the

tenants the most responsibility and control over their systems but increases the risk

threats to their information. This study developed a design system architecture for a

secure live VM migration as a response to this problem. A range of research methods,

such as an SLR, DS and mixed methods, were employed. A mixed-methods approach was

used to build from one phase of a study to another, explore qualitatively, develop a

design framework, and follow-up quantitative research qualitatively to facilitate the

processes and obtain more detailed information for problem identification and

evaluation process.

After the critical analysis presented in this study, the Kororā framework was

shown to be an efficient form of control-flow integrity, implementing a fine-grained

security guarantee without negatively affecting the performance of the live migration

system.

8.1 Summary of the research process

This section summarises the steps of this research. Chapter 1 outlined the problem being

addressed, the research objectives and the contributions it aimed to make. Two

research problems (see Section 1.3) were identified and assessed. Researching these

problems and attempting to find solutions by identifying the associated risks to cloud

security and their corresponding required controls provided a way to develop the Kororā

system. Three RQs were discussed (see Section 1.6); two of the RQs were answered in

Chapters 2, 3, 4 and 5, while Chapters 6 and 7 addressed the last RQ. Several specific

research objectives were outlined in Section 1.7 and these were evaluated in Chapter 7

through three different real-world scenarios. Section 1.8 described the research

contribution, which is a critical aspect of this research in communicating the target

148

audience's findings. That work laid the foundation for answering the main RQs and

presented two audience groups: academia and business. With regard to the academic

category, the research theorised a solution for the implementation process of Kororā.

For the business aspect, the way the Kororā system could be implemented by using the

Visual C# programming language and the feasibility of the research were discussed.

Chapter 2 provided a literature review of relevant journals and conferences

papers found through a search using keywords such as ‘cloud computing’, ‘live virtual

machine migration’, ‘cloud security’ and ‘security integrity’. Later, the keywords ‘design

research science’ and ‘multi-methodology research method’ were added. Research in

an academic context is an activity of a systematic inquiry in a specific area to discover

new knowledge or revising existing knowledge.

In Chapter 3, an appropriate research methodology for this study was developed,

being a mixture of DS research methods and a mixed methodology, called MDSRM.

MDSRM was selected because it could help the study produce a new solution to the

research problem and then critically evaluate its overall validity and reliability, leading

to answering the RQs and finding a solution to the research problem. However, the

MDSRM has limitations, such as the difficulty of proving this was innovative research

and generalising the research outcomes. In addition, the research outcomes could be

invalidated by rapidly evolving technologies that could render the Kororā inapplicable

and/or obsolete; therefore, the worth of the conducted research and resulting

outcomes could be questionable.

In Chapter 4, the framework model's design was discussed, including the steps

of its design, the ecosystem of live VM migration, the Kororā verification process, the

CW security model, and the Kororā integrity protection process. Then the Kororā design

system architecture and system elements were expanded to cover the Kororā system

design requirements. Based on the related research, the seven agents of Kororā were

discussed in more detail and the proposed model was presented.

Chapter 5 emphasised that attempting to resolve complex systems' problems

can require using an evaluation theory to find potential solutions. The framework based

on the findings in Chapters 2, 3 and 4 was implemented. Innovation in this chapter was

the critical stage of theory building with a novel method to evaluate the framework’s

level of integrity. Therefore, this chapter's focus was on the usability and theory-building

study of the Kororā to answer the RQs and RB. Further, this chapter aimed to ensure the

149

Kororā’s applicability in practice and improve its quality by including solutions to

problems encountered based on the trust and reputation definitions. Figure 5.1

described the components of evaluation and the interrelationships between them, and

Figure 5.2 illustrated the concepts of evaluation theory in this study’s development of

the Kororā framework.

In Chapter 6, as the research findings were presented and critiqued, the

identified research limitations were revisited and, to ensure the validity of the research,

its progress was reviewed and the proper steps for implementing the Kororā framework

were adopted. In Section 6.3.2, the Kororā agent plan was discussed, describing two

main functions that impose multiple agent-related functionalities on the Kororā to

enforce the framework security management strategy.

In Chapter 7, the research objectives were evaluated and the findings of the

research discussed. Three different attack scenarios were used to test the research

objectives and answer the RQs and RB. Based on the selected research problem, the

research background and research questions have been stated: What are the

opportunities and challenges for live VM migration in CC, with respect to the CFCs and

CFEs? As some research contents such as academic journals and books are investigated,

and related opportunities and challenges are addressed in chapter 1 to 3. Figure 2.1

showed steps in conducting the literature review, and Figure 2.2 and Figure 3.1. are

helped to identify an adopted method for selecting the literature to answer the RB.

There are two research questions: How do we design, implement the

establishment of and evaluate a live VM migration framework to protect the integrity of

cloud systems?, and How might the information revealed by the above questions affect

the level of integrity of the framework and help the CSPs and cloud systems users in their

decision making? The answers to these two questions are drawn from the framework's

design (Chapter 4), evaluation system architecture (chapter 5), and implementing the

proposed framework in chapter 6. To articulate that answers to the raised sub-heading

in chapters 4 to 6 were formed, and the proposed framework was tested to find

supportive evidence. That laid the ground to answer the RQs, and the outcomes of the

research were critiqued and presented in chapter 7.

Finally, this current chapter summarises this study and the limitations of this

research and offers recommendations for further research that could enhance the

adoption of the Kororā framework within the new era of technology.

150

After a critical analysis, this study found that secure live VMs migration is

essential to the industry, and the security of live VMs migration is still in its infant stage.

By nature, integrity-based frameworks must be interoperable, and the Kororā

framework was shown to improve security in terms of both specific attack scenarios and

other cloud services.

8.2 Limitations

This novel research's main limitation is the lack of relevant existing research, which has

focused mainly on the provider perspective rather than the user perspective. The

traditional secure VM migration identified in the literature review is difficult to adopt

for the cloud environment.

The Kororā system that has been developed in this research helps to migrate live

VM in an environment that is secure and the framework capabilities present a structured

and logical flow. This research has theoretically evaluated and tested the Kororā system

in the virtual environment to confirm its feasibility and reliability. However, the Kororā

has not yet been run in a commercial cloud environment.

Another major limitation of this research is the validity and reliability of the

research methodology, as discussed in Chapter 3. As the research was based on DS and

multi-methodology, the main concerns were the iteration process and the four main

steps of the mixed-methods approach. However, evaluation theory supported this

approach to elaborate on each step of the theory.

Implementation and validation were further challenges for this research because

the Kororā framework was being implemented in a cloud-based context, and the main

contribution of this research needed to be confidential.

It is clear that CC, VM migration and cloud security are very dynamic areas of IT,

requiring the use of advanced system features, security characteristics and the most

updated security controls. The use of CC is likely to extend into areas such as smart cities

and healthcare. The Kororā framework could be a helpful basis for improving cloud

security in these areas. Therefore, Kororā is required to adopted new agents to improve

the security control mechanism.

8.3 Future study

Future research could focus on running the Kororā in other kinds of hypervisor platforms

(e.g. VMware ESXi or Hyper-V) and then comparing the results with the integrity level of

151

Kororā on Xen to demonstrate the robustness and feasibility of the framework.

However, while VM migration is already established, live VM migration in CC is still an

immature area. Therefore, future work should aim to increase the security of live VM

migration in the cloud environment.

Another approach could be to give the Kororā system periodic updates among

agents to identify and improve the integrity elements, rather than the current system of

the VMs communicating with each other reactively as hotspots in the system occur. This

approach could allow continuous checks to identify the essential integrity attributes and

characteristics of VM migration, helping CSPs deliver a cloud service with a good security

level.

Another possible research line is the development of reliable and efficient live

VM migration to monitor the communication among VMs that not run in the same

hardware features. To achieve secure live VM migration, isolation between the different

VMs is required. Therefore, one of the aims of future study could be to provide an

updated Kororā framework to stabilise the various resources that are shared among the

VMs.

The hypervisor is the most critical component of live VM migration; if it is

compromised, the host and guest VMs can potentially be compromised too. Hypervisor

architectures that aim to minimise the programming code and, at the same time,

maintain its functionalities provide interesting topics of future research related to

Kororā, especially to prevent hypervisor rootkit injection.

Finally, it would be interesting to examine different elements related to VM live

migration. At present, the implementation of Kororā focuses only on memory VM

migration integrity and does not consider other elements, such as networking or storage

migration.

152

References

Agarwal, V., Kaushal, A. K., & Chouhan, L. (2020). A survey on cloud computing security
issues and cryptographic techniques. In R. Shukla, J. Agrawal, S. Sharma, N.
Chaudhari & K. Shukla (Eds.), Social networking and computational intelligence
(pp. 119–134). Singapore: Springer.

Ahmed, M., & Litchfield, A. T. (2018). Taxonomy for identification of security issues in
cloud computing environments. Journal of Computer Information Systems,
58(1), 79–88.

Aikat, J., Akella, A., Chase, J. S., Juels, A., Reiter, M., Ristenpart, T., Swift, M. (2017).
Rethinking security in the era of cloud computing. IEEE Security & Privacy, 15(3),
60–69. https://doi.org/10.1109/MSP.2017.80

Aitchison, M. (2016). Design research in architecture: An overview. The Journal of
Architecture, 21(2), 308–312. https://doi.org/10.1080/13602365.2016.1164543

Alabool, H. M., & Mahmood, A. K. B. (2016). A novel evaluation framework for improving
trust level of infrastructure as a service. Cluster Computing, 19(1), 389–410.

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing: Opportunities
and challenges. Information Sciences, 305, 357–383.
https://doi.org/10.1016/j.ins.2015.01.025

Almorsy, M., Grundy, J., & Müller, I. (2016). An analysis of the cloud computing security
problem. In Proceedings of the APSEC 2016 Cloud Workshop, Sydney, Australia
(pp. 16–23). Australia: Springer.

Barnett-Page, E., & Thomas, J. (2009). Methods for the synthesis of qualitative research:
A critical review. BMC Medical Research Methodology, 9(1), 59.
https://doi.org/10.1186/1471-2288-9-59

Bartlett, L., & Vavrus, F. (2016). Rethinking case study research: A comparative
approach. New York, NY: Taylor & Francis Group.

Baudoin, C., Cohen, E., Dotson, C., Gershater, J., Harris, D., & Iyer, S. (2017). Security for
Cloud Computing Ten Steps to Ensure Success Version 3. Cloud Standards
Customers Council. Retrieved from
https://www.omg.org/cloud/deliverables/CSCC-Security-for-Cloud-Computing-
10-Steps-to-Ensure-Success.pdf

Bazm, M. M., Lacoste, M., Südholt, M., & Menaud, J. M. (2019). Isolation in cloud
computing infrastructures: new security challenges. Annals of
Telecommunications, 74(3), 197-209.

Bell, D. E., & LaPadula, L. J. (1973). Secure computer systems: Mathematical foundations.
Bedford, MA: Mitre Corporation.

Bento, F. M. (2019). Control-flow integrity for the Linux kernel: A security evaluation.
Porto, Portugal: Universidade do Porto. Retrieved from https://repositorio-
aberto.up.pt/bitstream/10216/125357/2/374717.pdf

Berger, S., Caceres, R., Goldman, K. A., Perez, R., Sailer, R., & van Doorn, L. (2006). vTPM:
Virtualizing the trusted platform module. Vancouver, Canada: The 15th
Conference on USENIX Security Symposium, Vol. 15. USENIX.

Bhushan, K., & Gupta, B. B. (2017). Security challenges in cloud computing: State-of-art.
International Journal of Big Data Intelligence, 4(2), 81–107.

https://repositorio-aberto.up.pt/bitstream/10216/125357/2/374717.pdf
https://repositorio-aberto.up.pt/bitstream/10216/125357/2/374717.pdf

153

Bianchini, R., & Rajamony, R. (2004). Power and energy management for server systems.
Computer, 37(11), 68–76.

Biba, K. J. (1977). Integrity considerations for secure computer systems. Bedford, MA:
Mitre Corporation.

Blagojević, V., Bojić, D., Bojović, M., Cvetanović, M., Đorđević, J., Đurđević, Đ., Milićev,
D. (2017). A systematic approach to generation of new ideas for PhD research in
computing. In Advances in computers, Vol. 104 (pp. 1–31).
https://doi.org/10.1016/bs.adcom.2016.09.001

Borky, J. M., & Bradley, T. H. (2019). Developing the network dimension. In Effective
model-based systems engineering (pp. 327–344). Cham, Switzerland: Springer.
https://doi.org/10.1007/978-3-319-95669-5_9

Botta, A., Donato, W. D., Persico, V., & Pescapé, A. (2016). Integration of cloud
computing and internet of things: A survey. Future Generation Computer
Systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021

Brewer, J., & Hunter, A. (1989). Multimethod research: A synthesis of styles (Vol. 175).
Newberry Park, CA: Sage Library of Social Research. Retrieved from
https://books.google.co.nz/books?id=fJK8QgAACAAJ

Brickell, E., Camenisch, J., & Chen, L. (2004). Direct anonymous attestation. In
Proceedings of the 11th ACM Conference on Computer and Communications
Security (pp. 132–145). New York, NY: Association for Computing Machinery.

Buyya, R., Ranjan, R., & Calheiros, R. N. (2010). Intercloud: Utility-oriented federation of
cloud computing environments for scaling of application services. In C. Hsu, L. T.
Lang, J. H. Park & S. S Yeo (Eds.), Algorithms and architectures for parallel
processing (pp. 13–31). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-13119-6_2

Campbell, D. T., & Stanley, J. C. (1968). Experimental and quasiexperimental designs for
research on teaching. Handbook of Research on Teaching, 24(4), 171–246.

Campbell, D. T., & Stanley, J. C. (2015). Experimental and quasi-experimental designs for
research. Cambridge, England: Ravenio Books.

Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for
building secure channels. In B. Pfitzmann (Ed.), Lecture Notes in Computer
Science: Vol. 2045. Advances in Cryptology: EUROCRYPT 2001 (pp. 453–474).
Berlin, Germany: Springer. https://doi.org/10.1007/3-540-44987-6_28

Cardozo, B. N., & Kaufman, A. L. (2010). The nature of the judicial process. New Orleans,
LA: Quid Pro Books.

Casazza, M., Bouet, M., & Secci, S. (2019). Availability-driven NFV orchestration.
Computer Networks, 155, 47–61. https://doi.org/10.1016/j.comnet.2019.02.017

Cash, P., Stanković, T., & Štorga, M. (2016). Design research-approaches, perspectives,
applications. Cham, Switzerland: Springer. Retrieved from
http://www.springer.com/gp/book/9783319337791

Chaudhary, D., & Kumar, B. (2019). Cost optimized hybrid genetic-gravitational search
algorithm for load scheduling in cloud computing. Applied Soft Computing, 83,
105627.

Chisnall, D. (2008). The definitive guide to the Xen hypervisor. Upper Saddle River, NJ:
Prentice Hall. Retrieved from https://www.mobt3ath.com/uplode/book/book-
55475.pdf

154

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., Pilli, E. S., & Kapil, D. (2017). A critical
survey of live virtual machine migration techniques. Journal of Cloud Computing,
6(23), 1–41. https://doi.org/10.1186/s13677-017-0092-1

Chowdary, P. R., Challa, Y., & Jitendra, M. (2019). Identification of MITM attack by
utilizing artificial intelligence mechanism in cloud environments. Journal of
Physics: Conference Series 1228, 012044. https://doi:10.1088/1742-
6596/1228/1/012044

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Warfield, A. (2005). Live
migration of virtual machines. In Proceedings of NSDI ’05: 2nd Symposium on
Networked Systems Design & Implementation: Vol. 2 (pp. 273–286). Berkley, CA:
USENIX.

Clark, D. D., & Wilson, D. R. (1987, April). A comparison of commercial and military
computer security policies. Paper presented at the 1987 IEEE Symposium on
Security and Privacy, Oakland, CA.

Clark, P. C., Irvine, C. E., & Nguyen, T. D. (2014). Trusted computing exemplar: Life cycle
management plan (NPS-CAG-14-002). Monterey, CA: Naval Postgraduate School.

Cloud Security Alliance. (2019). Top threats to cloud computing: Egregious 11. Las Vegas,
NV: Blackhat. Retrieved from https://cloudsecurityalliance.org

Cloud Security Alliance. (2009). Security guidance for critical areas of focus in cloud
computing V2.1. Las Vegas, NV: Blackhat. Retrieved from
https://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf

Cloud Standards Customers Council. (2017). Security for cloud computing: Ten steps to
ensure success – Version 3. Retrieved from
https://www.omg.org/cloud/deliverables/CSCC-Security-for-Cloud-Computing-
10-Steps-to-Ensure-Success.pdf

Coker, G. (2006). Xen security modules (XSM). Retrieved from http://www-
archive.xenproject.org/files/xensummit_4/xsm-summit-041707_Coker.pdf

Coyne, L., Dain, J., Forestier, E., Guaitani, P., Haas, R., Maestas, C. D., Vollmar, C. (2018).
IBM private, public, and hybrid cloud storage solutions. Retrieved from
http://www.redbooks.ibm.com/redpapers/pdfs/redp4873.pdf

Danev, B., Masti, R. J., Karame, G. O., & Capkun, S. (2011). Enabling secure VM-vTPM
migration in private clouds Symposium conducted at the meeting of the
Proceedings of the 27th Annual Computer Security Applications Conference
https://doi.org/10.1145/2076732.2076759f

Develder, C., De Leenheer, M., Dhoedt, B., Pickavet, M., Colle, D., De Turck, F., &
Demeester, P. (2012). Optical networks for grid and cloud computing
applications. Proceedings of the IEEE, 100(5), 1149–1167.
https://doi.org/10.1109/JPROC.2011.2179629

Dierks, T., & Rescorla, E. (2008). The transport layer security (TLS) protocol version 1.2.
Network Working Group. Retrieved from
https://www.hjp.at/doc/rfc/rfc5246.html

Domingo-Ferrer, J., Farras, O., Ribes-González, J., & Sánchez, D. (2019). Privacy-
preserving cloud computing on sensitive data: A survey of methods, products
and challenges. Computer Communications, 140, 38–60.

Dong, Y., & Lei, Z. (2019). An Access Control Model for Preventing Virtual Machine
Hopping Attack. Future Internet, 11(3), 82. https://doi.org/10.3390/fi11030082

https://www.omg.org/cloud/deliverables/CSCC-Security-for-Cloud-Computing-10-Steps-to-Ensure-Success.pdf
https://www.omg.org/cloud/deliverables/CSCC-Security-for-Cloud-Computing-10-Steps-to-Ensure-Success.pdf
http://www-archive.xenproject.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www-archive.xenproject.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4873.pdf
https://www.hjp.at/doc/rfc/rfc5246.html

155

Duan, Q., & Wang, S. (Eds.) (2017). Network as a service for next generation internet.
London, England: Institution of Engineering and Technology.

Elhage, N. (2011). Virtunoid: Breaking out of KVM. Black Hat USA. Retrieved from
https://media.blackhat.com/bh-us-
11/Elhage/BH_US_11_Elhage_Virtunoid_Slides.pdf

Farchi, E., Jarrous, A., & Salman, T. (2019). Protecting computer code against ROP
attacks. U.S. Patent No. 10,223,527. Washington, DC: U.S. Patent and Trademark
Office. Retrieved from https://patents.google.com/patent/US10223527B2/en

Ferris, J. M. (2019). Migration of a virtual machine from a first cloud computing
environment to a second cloud computing environment in response to a
resource or services in the second cloud computing environment becoming
available. U.S. Patent No. 10, 372,490. Washington, DC: U.S. Patent and
Trademark Office. Retrieved from
https://patents.google.com/patent/US10372490B2/en

Ferroni, M., Colmenares, J. A., Hofmeyr, S., Kubiatowicz, J. D., & Santambrogio, M. D.
(2018). Enabling power-awareness for the Xen hypervisor. ACM SIGBED Review,
15(1), 36–42.

Fuhry, B., & Kerschbaum, F. (2020). EncDBDB: Searchable encrypted, fast, compressed,
in-memory database using enclaves. arXiv preprint arXiv:2002.05097.

Garg, S. K., Versteeg, S., & Buyya, R. (2011, Dec). SMICloud: A framework for comparing
and ranking cloud services. In 2011 Fourth IEEE International Conference on
Utility and Cloud Computing (pp. 210–218). IEEE. Retrieved from
https://doi.org/10.1109/UCC.2011.36

Glaser, B. G., & Strauss, A. L. (2017). The discovery of grounded theory: Strategies for
qualitative research. New York, NY: Routledge.

Goldkuhl, G., & Mikael, L. (2010). A multi-grounded design research process. Lecture
Notes in Computer Science: Vol. 6105. Global Perspectives on Design Science
Research in Information Systems, (pp. 45–60). Berlin, Germany: Springer.
https://doi.org/10.1007/978-3-642-13335-0_4

Gollmann, D. (2010). Computer security. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(5), 544–554.

Gray, D. E. (2019). Doing research in the business world (second edition). Los Angeles,
California: Sage Publication Limited.

Grix, J. (2018). The foundations of research (third edition). Macmillan International
Higher Education. London, UK: RED GLOBE PRESS

Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., & Costa, M. (2018). Strong
and efficient cache side-channel protection using hardware transactional
memory. In 26th {USENIX} Security Symposium ({USENIX} Security 17) (pp. 217-
233).

Guo, W., Qin, S., Lu, J., Gao, F., Jin, Z., & Wen, Q. (2020). Improved proofs of retrievability
and replication for data availability in cloud storage. The Computer Journal,
bxz151. https://doi.org/10.1093/comjnl/bxz151

Han, J., Chen, L., Schneider, S., Treharne, H., Wesemeyer, S., & Wilson, N. (2019).
Anonymous single sign-on with proxy re-verification. IEEE Transactions on
Information Forensics and Security, 15, 223–236.

156

Han, Y. (2011). Cloud computing: Case studies and total cost of ownership. Information
Technology and Libraries, 30(4), 198–206.

Harris, S. (2016). CISSP All-in-one exam guide (seventh edition). New York, NY: McGraw-
Hill Education.

Hevner, A., & Chatterjee, S. (2010). Design research in information systems: Theory and
practice. Design Research in Information Systems, 22, 9–22.
https://doi.org/10.1007/978-1-4419-5653-8

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information
systems research. Management Information Systems Quarterly, 28(1), 75–105.
https://doi.org/10.2307/25148625

Hoglund, G., & Butler, J. (2006). Rootkits: Subverting the Windows kernel.
Massachusetts, United States of America: Addison-Wesley Professional.

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis.
Qualitative Health Research, 15(9), 1277–1288.

Huang, J. (2014). On data migration from virtual machine to trusted virtual platform
module in cloud services. Computer Ap- plications and Software, 31(7), 328-333.

Huber, N., von Quast, M., Hauck, M., & Kounev, S. (2011). Evaluating and modeling
virtualization performance overhead for cloud environments. USA: The 1st
International Conference on Cloud Computing and Services Science (pp. 563–
573).

Iivari, J. (2007). A paradigmatic analysis of information systems as a design science.
Scandinavian Journal of Information Systems, 19(2), 39–64.

Jeffers, J., Reinders, J., & Sodani, A. (2016). Intel Xeon Phi processor high performance
programming (Knights Landing Edition). Cambridge, MA 02139, USA: Morgan
Kaufmann.

Jia, X., Wang, R., Jiang, J., Zhang, S., & Liu, P. (2013). Defending return‐oriented
programming based on virtualization techniques. Security and Communication
Networks, 6(10), 1236-1249.

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research
paradigm whose time has come. Sage Journals: Educational Researcher, 33(7),
14–26. https://doi.org/10.3102/0013189X033007014

Jouini, M., & Rabai, L. B. A. (2019). A security framework for secure cloud computing
environments. In Cloud security: Concepts, methodologies, tools, and
applications (pp. 249–263). USA: IGI Global Publisher of Timely Knowledge.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).
Systematic literature reviews in software engineering: A systematic literature
review. Information and Software Technology, 51(1), 7–15.

Kothari, C. R. (2004). Research methodology: methods and techniques (second revised
edtion). New Delhi: New Age International Publishers.

Krippendorff, K. (1989). Content analysis: An introduction to its methodology. In E.
Barnouw, G. Gerbner, W. Schramm, T. L. Worth, & L. Gross (Eds.), International
encyclopedia of communication (Vol. 1, pp. 403-407). New York, NY: Oxford
University Press. Retrieved from http://repository.upenn.edu/asc_papers/226

Kumar, R. (2019). Research methodology: A step-by-step guide for beginners. California
91320: Sage Publication Inc. Retrieved from http://www.sociology.kpi.ua/wp-

157

content/uploads/2014/06/Ranjit_Kumar-Research_Methodology_A_Step-by-
Step_G.pdf

Liang, K., Zhao, L., Chu, X., & Chen, H. (2017). An integrated architecture for software
defined and virtualized radio access networks with fog computing. IEEE Network,
31(1), 80–87.

Liang, X., Jiang, R., & Kong, H. (2013). Secure and reliable VM-vTPM migration in private
cloud. IEEE conducted at the meeting of the 2nd International Symposium on
Instrumentation and Measurement, Sensor Network and Automation (IMSNA)
https://doi.org/10.1109/IMSNA.2013.6743327

Liu, G., Zhang, J., Liu, J., & Zhang, Y. (2015). Improved Biba model based on trusted
computing. Security and Communication Networks, 8(16), 2793-2797.
https://doi.org/10.1002/sec.1201

Lopez, M. (2000). An evaluation theory perspective of the architecture tradeoff analysis
method (ATAM). Pittsburgh, PA: Carnegie-Mellon Software Engineering Institute.
Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a387265.pdf

Luis, V., Luis Rodero, M., Juan, C., & Maik A., L. (2009). A break in the clouds: Towards a
cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50-
55. https://doi.org/10.1145/1496091.1496100

 Lyu, Y., & Mishra, P. (2018). A survey of side-channel attacks on caches and
countermeasures. Journal of Hardware and Systems Security, 2(1), 33-50.

March, S. T., & Smith, G. (1995). Design and natural science research on information
technology. Decision Support Systems, 15(4), 251–266.

Mashtizadeh, A., & Koundinya, S. (2019). Live migration of virtual machine persistent
data using mirrored input-output operations. U.S. Patent No. 10,289,684.
Washington, DC: US Patent and Trademark Office. Retrieved from
https://patents.google.com/patent/US10289684B2/en

Mather, T., Kumaraswamy, S., & Latif, S. (2009). Cloud security and privacy: an enterprise
perspective on risks and compliance. Sebastopol, CA: O’Reilly Media, Inc.
Retrieved from http://oreilly.com/catalog/9780596802769

Mathew, B. A., Sebastian, S., Sabu, V., & Joseph, S. (2015). Trusted load balancing
mechanism for MANET. International Journal of Computer Applications, 975,
8887.

Matloob, S. (2019). Exploring applicability of blockchain to enhance Single Sign-On (SSO)
systems. University of North Florida. School of Computing. Retrieved from
https://digitalcommons.unf.edu/etd/931

Mayfield, T., Roskos, J. E., Welke, S. R., Boone, J. M., & McDonald, C. W. (1991). Integrity
in automated information systems. Alexandria, VA: Institute for Defense
Analyses.

McCumber, J. (2004). Assessing and managing security risk in IT systems: A structured
methodology. Raton, NM: CRC Press.

McLean, J. (1985). A comment on the ‘basic security theorem’ of Bell and LaPadula.
Information Processing Letters, 20(2), 67–70.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Retrieved from
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

https://doi.org/10.1145/1496091.1496100

158

Mingers, J., & Brocklesby, J. (1997). Multimethodology: Towards a framework for mixing
methodologies. Omega International Journal of Management Science, 25(5),
489–509. https://doi.org/10.1016/S0305-0483(97)00018-2

Mirkin, B. (2019). Core data analysis: Summarization, correlation, and visualization:
Springer, Cham. https://doi.org/10.1007/978-3-030-00271-8

Morse, J. M., & Niehaus, L. (2016). Mixed method design: Principles and procedures (Vol.
4). New York, NY: Routledge, Taylor & Francis Group.

Mowbray, M., Pearson, S., & Shen, Y. (2012). Enhancing privacy in cloud computing via
policy-based obfuscation. The Journal of Supercomputing, 61(2), 267–291.
https://doi.org/10.1007/s11227-010-0425-z

Mullarkey, M. T., & Hevner, A. R. (2019). An elaborated action design research process
model. European Journal of Information Systems, 28(1), 6-20.
https://doi.org/10.1080/0960085X.2018.1451811

Murray, D. G., Milos, G., & Hand, S. (2008). Improving Xen security through
disaggregation. Symposium Counducted at the Meeting of the Proceedings of the
Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (pp. 151–160). New York, NY: Association for Computing
Machinery. https://doi.org/10.1145/1346256.1346278f

Narayana, S., Jiang, J. W., Rexford, J., & Chiang, M. (2012). Distributed wide-area traffic
management for cloud services. ACM SIGMETRICS Performance Evaluation
Review, 40(1), 409–410). https://doi.org/10.1145/2318857.2254817

Nelson, M. (2018). Virtual machine migration. U.S. Patent No. 7,484,208. Washington,
DC: U.S. Patent and Trademark Office. Retrieved from
https://patents.google.com/patent/US7484208B1/en

Nguyen, T. D., Levin, T. E., & Irvine, C. E. (2005). TCX project: High assurance for secure
embedded systems. Association for Computing Machinery SIGBED Review, 2(2),
23–26.

Nieles, M., Dempsey, K., & Pillitteri, V. (2017). An introduction to information security
(No. NIST Special Publication (SP) 800-12 Rev. 1 (Draft)). National Institute of
Standards and Technology. Retrieved from
https://csrc.nist.gov/publications/detail/sp/800-12/rev-1/archive/2017-01-23

Novak, M. F., Ben-Zvi, N., & Ferguson, N. T. (2017). Secure transport of encrypted virtual
machines with continuous owner access. U.S. Patent No. 9,652,631. Washington,
DC: U.S. Patent and Trademark Office. Retrieved from
https://patents.google.com/patent/US9652631B2/en

Nunamaker, J. F., Jr., Chen, M., & Purdin, T. D. M. (1990). Systems development in
information systems research. Management Information Systems, 7(3), 89–106.
https://doi.org/10.1080/07421222.1990.11517898

Oberheide, J., Cooke, E., & Jahanian, F. (2008). Exploiting live virtual machine migration.
In BlackHat DC Briefings, Washington DC. Retrieved from
https://www.blackhat.com/presentations/bh-dc-
08/Oberheide/Whitepaper/bh-dc-08-oberheide-WP.pdf

Offermann, P., Levina, O., Schönherr, M., & Bub, U. (2009). Outline of a design science
research process. In DESRIST ’09: Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology (pp. 1–11).
https://doi.org/10.1145/1555619.1555629

https://doi.org/10.1145/1346256.1346278

159

Okoli, C., & Schabram, K. (2010). A guide to conducting a systematic literature review of
information systems research. Sprouts: Working papers on information
systems, 10(26). http://sprouts.aisnet.org/10-26

Onwuegbuzie, A. J., & Leech, N. L. (2005). On becoming a pragmatic researcher: The
importance of combining quantitative and qualitative research methodologies.
International Journal of Social Research Methodology, 8(5), 375–387.
https://doi.org/10.1080/13645570500402447

Padala, P., Zhu, X., Wang, Z., Singhal, S., & Shin, K. G. (2007). Performance evaluation of
virtualization technologies for server consolidation. Retrieved from
https://www.hpl.hp.com/techreports/2007/HPL-2007-59R1.pdf

Parker, D. B. (1998). Fighting computer crime: A new framework for protecting
information (pp. 108-188). New York, NY: Scribner. Retrieved from
http://www.ncjrs.gov/App/publications/abstract.aspx?ID=89349

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of
Management Information Systems, 24(3), 45–77.
https://doi.org/10.2753/MIS0742-1222240302

Peiru, F., Bo, Z., Yuan, S., Zhihong, C., & Mingtao, N. (2015). An improved vTPM-VM live
migration protocol. Wuhan University Journal of Natural Sciences, 20(6), 512-
520. Fan2015. https://doi.org/10.1007/s11859-015-1127-4

Perez-Botero, D. (2011). A brief tutorial on live virtual machine migration from a security
perspective. Princeton, NJ: University of Princetonne.

Pfleeger, C. P., & Pfleeger, S. L. (2012). Analysing computer security: A
threat/vulnerability/countermeasure approach. Prentice Hall Professional.

Popa, R. A., Redfield, C. M., Zeldovich, N., & Balakrishnan, H. (2011). CryptDB: Protecting
confidentiality with encrypted query processing. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (p. 85-93). New York, NY:
Association for Computing Machinery.

Pothuganti, swathi, (2020). Overview on Security Issues in Cloud Computing.
International Journal of Innovative Research in Computer and Communication
Engineering, Volume 8, Issue 10, October 2020, page number 4064-4068,
Available at SSRN: https://ssrn.com/abstract=3733871

Redman, L., & Mory, A. (1923). The romance of research. Baltimore, MD: Williams &
Wilkins.

Riteau, P., Morin, C., & Priol, T. (2011). Shrinker: Improving live migration of virtual
clusters over WANs with distributed data deduplication and content-based
addressing. In E. Jeannot E., R. Namyst, & J. Roman (Eds.), Lecture Notes in
Computer Science: Vol. 6852. Euro-Par 2011 Parallel Processing (pp. 431–442).
Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-23400-2_40

Robison, S. (2008). The next wave: Everything as a service (executive viewpoint).
Retrieved from
http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html

Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (2001). Methodological issues in
the content analysis of computer conference transcripts. International Journal of
Artificial Intelligence in Education, 12, 8–22.

https://ssrn.com/abstract=3733871
https://link.springer.com/book/10.1007/978-3-642-23400-2

160

Rogers, J., & Révész, A. (2020). Experimental and quasi-experimental designs. In J.
McKindly & H. Rose (Eds.), The Routledge handbook of research methods in
applied linguistics. New York: Routledge.

Sabahi, F. (2011). Virtualization-level security in cloud computing. In 2011 IEEE 3rd
International Conference on Communication Software and Networks, Xi'an,
China (pp. 250–254). https://doi.org/10.1109/ICCSN.2011.6014716

Sabahi, F. (2012). Secure virtualization for cloud environment using hypervisor-based
technology. International Journal of Machine Learning and Computing, 2(1), 39-
47.

Sadeghi, A.-R., Stüble, C., & Winandy, M. (2008). Property-Based TPM Virtualization.
Information Security: 11th International Conference, ISC 2008 (pp. 1-16). Taipei,
Taiwan: Springer. https://doi.org/10.1007/978-3-540-85886-7_1

Sadiku, M. N., Musa, S. M., & Momoh, O. D. (2014). Cloud computing: Opportunities and
challenges. IEEE Potentials, 33(1), 34–36.
https://doi.org/10.1109/MPOT.2013.2279684

Schneier, B. (2006). Beyond fear: Thinking sensibly about security in an uncertain world.
New York, NY: Springer Science & Business Media.

Sehgal, N. K., Bhatt, P. C. P., & Acken, J. M. (2020). Migrating to cloud. In Cloud computing
with security (pp. 143–154). Cham, Switzerland: Springer Nature.
https://doi.org/10.1007/978-3-030-24612-9

Senyo, P. K., Addae, E., & Boateng, R. (2018). Cloud computing research: A review of
research themes, frameworks, methods and future research directions.
International Journal of Information Management, 38(1), 128–139.
https://doi.org/10.1016/j.ijinfomgt.2017.07.007

Siriwardena, P. (2020). OpenID Connect (OIDC). In Advanced API Security (pp. 129-155).
Apress, Berkeley, CA: Springer. https://doi.org/10.1007/978-1-4842-2050-4_6

Smalley, S., Vance, C., & Salamon, W. (2001). Implementing SELinux as a Linux security
module. NAI Labs Report, 1(43), 139.

Snyder, H. (2019). Literature review as a research methodology: An overview and
guidelines. Journal of Business Research, 104, 333-339.
https://doi.org/10.1016/j.jbusres.2019.07.039

Hashizume, K., Rosado, D. G., Fernández-Medina, E., & Fernandez, E. B. (2013). An
analysis of security issues for cloud computing. Journal of internet services and
applications, 4(1), 1-13.

Hsieh, S., Liu, C., Buyya, R., & Zomaya, A. (2020). Utilization-prediction-aware virtual
machine consolidation approach for energy-efficient cloud data centers. Journal
of Parallel and Distributed Computing, 139, 99–109.
https://doi.org/10.1016/j.jpdc.2019.12.014

Surie, A., Lagar-Cavilla, H. A., de Lara, E., & Satyanarayanan, M. (2008). Low-bandwidth
VM migration via opportunistic replay. In M. Spasojevic & M. Corner (Eds.),
HotMobile ’08: Proceedings of the 9th Workshop on Mobile Computing Systems
and Applications. New York: NY: Association for Computing Machinery.
https://doi.org/10.1145/1411759.1411779

Takahashi, K., Sasada, K., & Hirofuchi, T. (2012). A fast virtual machine storage migration
technique using data deduplication. The Third International Conference on Cloud
Computing, GRIDs, and Virtualization (pp. 57–64). Retrieved from

https://doi.org/10.1007/978-3-540-85886-7_1
https://doi.org/10.1007/978-1-4842-2050-4_6

161

https://www.semanticscholar.org/paper/A-Fast-Virtual-Machine-Storage-
Migration-Technique-Takahashi-
Sasada/e818e270760b50ae8cf7b85487be57a65df4eaa9

Taylor, P. J., Dargahi, T., Dehghantanha, A., Parizi, R. M., & Choo, K.-K. R. (2020). A
systematic literature review of blockchain cyber security. Digital
Communications and Networks, 6(2), 147-156.
https://doi.org/10.1016/j.dcan.2019.01.005

Tchernykh, A., Schwiegelsohn, U., Talbi, E.-g., & Babenko, M. (2019). Towards
understanding uncertainty in cloud computing with risks of confidentiality,
integrity, and availability. Journal of Computational Science, 36, 8.
https://doi.org/10.1016/j.jocs.2016.11.011

Toutov, A., Vorozhtsov, A., & Toutova, N. (2019). The method of calculation the total
migration time of virtual machines in cloud data centers. In S. Balandin, V. Deart,
& T. Tyutina (Eds.), Proceedings of the 24th Conference of Open Innovations
Association FRUCT (pp. 767–770). Helsinki, Finland: FRUCT Oy.

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing
evidence‐informed management knowledge by means of systematic review.
British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-
8551.00375

Trusted Computing Group. (2017). TCG guidance for securing network equipment
version 1.0, revision 26b in public review (draft). Retrieved from
https://trustedcomputinggroup.org/wp-
content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r26b_Public-
Review.pdf

Vaishnavi, V. K., & Kuechler, W. (2015). Design science research methods and patterns:
Innovating information and communication technology (2nd ed.). Boca Raton,
FL: CRC Press.

Van Bulck, J. (2020). Side-Channel Attacks for Privileged Software Adversaries. Retrieved
from https://lirias.kuleuven.be/retrieve/585107

Vaquero, L. M., Luis, R.-M., & Buyya, R. (2011). Dynamically scaling applications in the
cloud. ACM SIGCOMM Computer Communication Review, 44(1), 45–52.
https://doi.org/10.1145/1925861.1925869

Ver, M. (2011). Dynamic load balancing based on live migration of virtual machines:
Security threats and effects (Master’s thesis, Rochester Institute of Technology,
Rochester, NY). Retrieved from
https://pdfs.semanticscholar.org/3c91/0fe894d9bb3a87369f7a60922d6df180ff
cc.pdf

Volkova, V. N., Chemenkaya, L. V., Desyatirikova, E. N., Hajali, M., Khodar, A., & Osama,
A. (2018). Load balancing in cloud computing. In S. Shaposhnikov (Ed.),
Proceedings of the 2018 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus) (pp. 387–390). Piscataway, NJ:
IEEE.

Wacker, J. G. (1998). A definition of theory: Research guidelines for different theory-
building research methods in operations management. Journal of Operations
Management, 16(4), 361–385. https://doi.org/10.1016/S0272-6963(98)00019-9

162

Wacker, J. G. (2004). A theory of formal conceptual definitions: Developing theory-
building measurement instruments. Journal of Operations Management, 22(6),
629–650. https://doi.org/10.1016/j.jom.2004.08.002

Wan, X., Zhang, X., Chen, L., & Zhu, J. (2012, 19-20 May). An improved vTPM migration
protocol based trusted channel Symposium conducted at the meeting of the
International Conference on Systems and Informatics (ICSAI2012)
https://doi.org/10.1109/ICSAI.2012.6223146

Welch, I. (1999). Reflective enforcement of the Clark-Wilson integrity model. In 2nd
Workshop on Distributed Object Security, OOPSLA’99, University of Newcastle-
upon-Tyne: ACM (pp. 5–9).

Wilson, Y., & Hingnikar, A. (2019). Single sign-on. In Solving identity management in
modern applications (pp. 151–157). Berkeley, CA: Apress.
https://doi.org/10.1007/978-1-4842-5095-2_11

Wooldridge, M. (2009). An introduction to multiagent systems (2nd edition). John Wiley
& Sons.

Wu, L., Zhan, J., Zhao, Y., Hu, J., & Li, M. (2016). A trusted evidence collection method
based on the trusted third-party for cloud platform. International Journal of
Simulation: Systems, Science & Technology, 17(19). Retrieved from
https://ijssst.info/Vol-17/No-25/paper20.pdf

Wu, J., Lei, Z., Chen, S., & Shen, W. (2017). An access control model for preventing virtual
machine escape attack. Future Internet, 9(2), 20.

Xenproject. (2013). Why Xen project. Retrieved from https://xenproject.org/users/why-
xen/

Xenproject. (2018). Xen project software overview. Retrieved from
https://wiki.xen.org/wiki/Xen_Project_Software_Overview

Xu, M., Tian, W., & Buyya, R. (2017). A survey on load balancing algorithms for virtual
machines placement in cloud computing. Concurrency and Computation:
Practice and Experience, 29(12), e4123.

Yin, R. K. (2017). Case study research and applications: Design and methods (6th edition).
Los Angeles, California: Sage Publication Limited.

Zafar, F., Khan, A., Malik, S. U. R., Ahmed, M., Anjum, A., Khan, M. I., . . . Jamil, F. (2017).
A survey of cloud computing data integrity schemes: Design challenges,
taxonomy and future trends. Computers & Security, 65(Supplement C), 29-49.
https://doi.org/10.1016/j.cose.2016.10.006

Zhang, N., Lou, W., Jiang, X., & Hou, Y. T. (2014). Enabling trusted data-intensive
execution in cloud computing. In 2014 San Francisco, CA: IEEE Conference on
Communications and Network Security, (pp. 355–363).
https://doi.org/10.1109/CNS.2014.6997504

Zhang, Y., Chunxiang, X., Xiaohui, L., Hongwei, L., Yi, M., & Xiaojun, Z. (2017). Efficient
public verification of data integrity for cloud storage systems from
indistinguishability obfuscation. IEEE Transactions on Information Forensics and
Security, 12(3), 676–688. https://doi.org/10.1109/TIFS.2016.2631951

Zheng, J., Ng, T. S. E., & Sripanidkulchai, K. (2011). Workload-aware live storage
migration for clouds. In E. Petrank & D. Lea (Eds.), Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments

163

(pp. 133–144). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/1952682.1952700

Zhou, R., Liu, F., Li, C., & Li, T. (2013). Optimizing virtual machine live storage migration
in heterogeneous storage environment. In VEE ’13: Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(pp. 73–84). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/2451512.2451529

Zhuo, M., Fenghua, L., Jianfeng, M., & Wenjiang, J. (2014). CL-TAP: An efficient
certificateless based trusted access protocol for WLAN. Chinese Journal of
Electronics, 23(1), 142-147.

164

Appendix A:

Code for the Kororā framework agents

Kororā vTPM Agent

The following directions are tested for Ubuntu 12.4 (as host), Xen 4.3, Dom0's Linux

Kernel 3.7.1 and DomU Linux Kernel 3.7.9. The following key steps are required to run

the Kororā vTPM agent:

• Install a host OS on the machine: This process is straightforward because

there is an easy step wizard to use.

• Install Xen hypervisor: The following directions are based on the Xen

hypervisor guidelines, with several stages changed and some new command

lines added in order to run the vTPM in the Xen hypervisor environment. All

the following command lines are run as root with sudo (Run sudo

<command>).

a) Install all the required packages:

b) Install the following package:

c) Download the Xen hypervisor source codes:

d) Extract the Xen hypervisor source codes by using the following command

line:

165

e) Change the line in the open file as follows:

f) Install the Xen hypervisor:

g) As Kororā uses the XSM/Flask security framework in Xen and Xen-policy

is required, run the following command line in the Xen-Directory:

• Install Xen Dom0 Kernel: To run Kororā, this research needed to install dom0

kernel after installing the Xen hypervisor. Dom0 kernel is essentially a default

VM (created by Xen) that deals with different VMs in the framework. Since

there is no systems administration in dom0, any bugs found in dom0 systems

agents (e.g. the window administrator) are unlikely to pose a problem for

running Kororā; none of the third-party tools running in dom0 is available

from the VMs, and since tools running in dom0 can exert complete control

over the framework, only the trusted tools in dom0 are required.

The installation process is divided into two parts: resolve and download, and

verify and install. The updated VM handles the first part, which is usually

assigned to the Firewall VM. After the updated VM has downloaded the new

package successfully, it is sent to dom0, where it is verified and installed.

Some change to the Linux Kernel installation configuration is needed to

compile the kernel to support the vTPM to finish the installation, as follows:

166

download the kernel, extract the kernel, configure/customise the kernel and

configure the kernel.

a) Conduct the following steps:

167

b) Run the trusted platform module driver in Dom0 kernel to disable access

of the Dom0 to the TPM. This is a critical step before applying the below

configurations in ‘.config’ file in the Linux (version 3.7.1) directory:

c) Start the installation of the kernel, reboot the system and start the Xen

by using the following command lines:

• Configure networking in the Xen hypervisor: This requires setting up Linux

bridging over Xen. This means that eth0 is both the essential interface to

Dom0 and the interface to use with VMs. This means that Kororā is using a

dynamic host configuration protocol, as follows:

168

• Configure the vTPM Manager and vTPM: It is vital to configure the vTPM

manager properly and require the vTPM manager to create and manage the

vTPM’s domain itself. This is required if Kororā wants to use the vTPM in the

guest VMs as well. For this reason, the vTPM manager needs a disk image to

store its encrypted data and the image does not require a file system and

could reside anywhere on the host disk. The image is not large; the Xen

hypervisor ‘vtpmmgr’ is restricted to using the first 2MB of the image but can

support over 20,000 vTPMs. Conduct the following steps:

169

The source code of all demonstrations is available on the GitHub project ‘Kororā-codes’,

which is published at https://github.com/HanifDeylami/Korora-codes. This repository

contains the source codes required for implementing and running Kororā.

170

Appendix B:

Kororā threat modelling diagram summary

Interaction: 1. Authorized

1. An adversary can perform action on behalf of other user due to lack of controls
against cross domain requests.

Priority:
High

Category Denial of Service

Description
Failure to restrict requests originating from third

party domains may result in unauthorized actions or

access of data.

Justification <no mitigation provided>

Possible
Mitigation(s)

2. An adversary may bypass critical steps or perform actions on behalf of other
users (victims) due to improper validation logic.

Priority:
High

Category Elevation of Privileges

Description

Failure to restrict the privileges and access rights

to the application to individuals who require the

privileges or access rights may result into

unauthorized use of data due to inappropriate rights

settings and validation.

Justification <no mitigation provided>

Possible
Mitigation(s)

3. An adversary can reverse weakly encrypted or hashed content.
Priority:

High

Category Information Disclosure

Description
An adversary can reverse weakly encrypted or hashed

content

Justification <no mitigation provided>

171

Possible
Mitigation(s)

4. An adversary may gain access to sensitive data from log files.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

log files

Justification <no mitigation provided>

Possible
Mitigation(s)

5. An adversary may gain access to unmasked sensitive data such as credit card
numbers.

Priority:
High

Category Information Disclosure

Description
An adversary may gain access to unmasked sensitive

data such as credit card numbers

Justification <no mitigation provided>

Possible
Mitigation(s)

6. An adversary can gain access to certain pages or the site as a whole.
Priority:
Medium

Category Information Disclosure

Description

Robots.txt is often found in your site's root

directory and exists to regulate the bots that crawl

your site. This is where you can grant or deny

permission to all or some specific search engine

robots to access certain pages or your site as a

whole. The standard for this file was developed in

1994 and is known as the Robots Exclusion Standard or

Robots Exclusion Protocol. Detailed info about the

robots.txt protocol can be found at robotstxt.org.

Justification <no mitigation provided>

Possible
Mitigation(s)

7. An adversary can gain access to sensitive data by sniffing traffic to Web
Application.

Priority:
High

Category Information Disclosure

Description

An adversary may conduct man in the middle attack and

downgrade TLS connection to clear text protocol or

forcing browser communication to pass through a proxy

server that he controls. This may happen because the

application may use mixed content or HTTP Strict

Transport Security policy is not ensured.

Justification <no mitigation provided>

Possible
Mitigation(s)

8. An adversary can gain access to sensitive information through error messages.
Priority:

High

Category Information Disclosure

172

Description

An adversary can gain access to sensitive data such

as the following, through verbose error messages -

Server names - Connection strings - Usernames -

Passwords - SQL procedures - Details of dynamic SQL

failures - Stack trace and lines of code - Variables

stored in memory - Drive and folder locations -

Application install points - Host configuration

settings - Other internal application details.

Justification <no mitigation provided>

Possible
Mitigation(s)

9. An adversary may gain access to sensitive data from uncleared browser cache.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

uncleared browser cache.

Justification <no mitigation provided>

Possible
Mitigation(s)

10. Attacker can deny the malicious act and remove the attack footprints leading
to repudiation issues.

Priority:
Medium

Category Repudiation

Description

Proper logging of all security events and user actions

builds traceability in a system and denies any

possible repudiation issues. In the absence of proper

auditing and logging controls, it would become

impossible to implement any accountability in a

system.

Justification <no mitigation provided>

Possible
Mitigation(s)

11. An adversary can get access to a user's session due to improper logout and
timeout.

Priority:
High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker is able to steal

the user token, he would be able to access all user

data and perform all actions on behalf of user.

Justification <no mitigation provided>

Possible
Mitigation(s)

12. An adversary can get access to a user's session due to insecure coding practices.
Priority:

High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker is able to steal

the user token, he would be able to access all user

data and perform all actions on behalf of user.

173

Justification <no mitigation provided>

Possible
Mitigation(s)

13. An adversary can spoof the target web application due to insecure TLS
certificate configuration.

Priority:
High

Category Spoofing

Description
Ensure that TLS certificate parameters are configured

with correct values.

Justification <no mitigation provided>

Possible
Mitigation(s)

14. An adversary can steal sensitive data like user credentials.
Priority:

High

Category Spoofing

Description

Attackers can exploit weaknesses in system to steal

user credentials. Downstream and upstream components

are often accessed by using credentials stored in

configuration stores. Attackers may steal the

upstream or downstream component credentials.

Attackers may steal credentials if, Credentials are

stored and sent in clear text, Weak input validation

coupled with dynamic sql queries, Password retrieval

mechanism are poor.

Justification <no mitigation provided>

Possible
Mitigation(s)

15. Attacker can steal user session cookies due to insecure cookie attributes.
Priority:

High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker is able to steal

the user token, he would be able to access all user

data and perform all actions on behalf of user.

Justification <no mitigation provided>

Possible
Mitigation(s)

16. An adversary can create a fake website and launch phishing attacks.
Priority:

High

Category Spoofing

Description

Phishing is attempted to obtain sensitive information

such as usernames, passwords, and credit card details

(and sometimes, indirectly, money), often for

malicious reasons, by masquerading as a Web Server

which is a trustworthy entity in electronic

communication.

Justification <no mitigation provided>

Possible
Mitigation(s)

174

17. An adversary may spoof Kororā Framework and gain access to Web
Application.

Priority:
High

Category Spoofing

Description
If proper authentication is not in place, an adversary

can spoof a source process or external entity and gain

unauthorized access to the Web Application.

Justification <no mitigation provided>

Possible
Mitigation(s)

18. An adversary can deface the target web application by injecting malicious code
or uploading dangerous files.

Priority:
High

Category Tampering

Description
Website defacement is an attack on a website where

the attacker changes the visual appearance of the site

or a webpage.

Justification <no mitigation provided>

Possible
Mitigation(s)

19. An attacker steals messages off the network and replays them to steal a user's
session.

Priority:
High

Category Tampering

Description
An attacker steals messages off the network and

replays them to steal a user's session.

Justification <no mitigation provided>

Possible
Mitigation(s)

20. An adversary can gain access to sensitive data by performing SQL injection
through Web App.

Priority:
High

Category Tampering

Description

SQL injection is an attack in which malicious code is

inserted into strings that are later passed to an

instance of SQL Server for parsing and execution. The

primary form of SQL injection consists of direct

insertion of code into user-input variables that are

concatenated with SQL commands and executed. A less

direct attack injects malicious code into strings that

are destined for storage in a table or as metadata.

When the stored strings are subsequently concatenated

into a dynamic SQL command, the malicious code is

executed.

Justification <no mitigation provided>

Possible
Mitigation(s)

21. An adversary can gain access to sensitive data stored in Web App's config files.
Priority:

High

Category Tampering

Description
An adversary can gain access to the config files. and

if sensitive data is stored in it, it would be

compromised.

175

Justification <no mitigation provided>

Possible
Mitigation(s)

Interaction: 11. Kororā Ge Callback

22. An adversary can perform action on behalf of other user due to lack of controls
against cross domain requests.

Priority:
High

Category Denial of Service

Description
Failure to restrict requests originating from third

party domains may result in unauthorized actions or

access of data.

Justification <no mitigation provided>

Possible
Mitigation(s)

23. An adversary may bypass critical steps or perform actions on behalf of other
users (victims) due to improper validation logic.

Priority:
High

Category Elevation of Privileges

Description

Failure to restrict the privileges and access rights

to the application to individuals who require the

privileges or access rights may result into

unauthorized use of data due to inappropriate rights

settings and validation.

Justification <no mitigation provided>

Possible
Mitigation(s)

24. An adversary can reverse weakly encrypted or hashed content.
Priority:

High

Category Information Disclosure

Description
An adversary can reverse weakly encrypted or hashed

content.

Justification <no mitigation provided>

Possible
Mitigation(s)

176

25. An adversary may gain access to sensitive data from log files.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

log files.

Justification <no mitigation provided>

Possible
Mitigation(s)

26. An adversary may gain access to unmasked sensitive data such as credit card
numbers.

Priority:
High

Category Information Disclosure

Description
An adversary may gain access to unmasked sensitive

data such as credit card numbers.

Justification <no mitigation provided>

Possible
Mitigation(s)

27. An adversary can gain access to certain pages or the site as a whole.
Priority:
Medium

Category Information Disclosure

Description

Robots.txt is often found in your site's root

directory and exists to regulate the bots that crawl

your site. This is where you can grant or deny

permission to all or some specific search engine

robots to access certain pages or your site as a

whole. The standard for this file was developed in

1994 and is known as the Robots Exclusion Standard or

Robots Exclusion Protocol. Detailed info about the

robots.txt protocol can be found at robotstxt.org.

Justification <no mitigation provided>

Possible
Mitigation(s)

28. An adversary can gain access to sensitive data by sniffing traffic to Web
Application.

Priority:
High

Category Information Disclosure

Description

An adversary may conduct man in the middle attack and

downgrade TLS connection to clear text protocol or

forcing browser communication to pass through a proxy

server that he controls. This may happen because the

application may use mixed content or HTTP Strict

Transport Security policy is not ensured.

Justification <no mitigation provided>

Possible
Mitigation(s)

29. An adversary can gain access to sensitive information through error messages.
Priority:

High

Category Information Disclosure

Description
An adversary can gain access to sensitive data such

as the following, through verbose error messages -

Server names - Connection strings - Usernames -

177

Passwords - SQL procedures - Details of dynamic SQL

failures - Stack trace and lines of code - Variables

stored in memory - Drive and folder locations -

Application install points - Host configuration

settings - Other internal application details

Justification <no mitigation provided>

Possible
Mitigation(s)

30. An adversary may gain access to sensitive data from uncleared browser cache.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

uncleared browser cache.

Justification <no mitigation provided>

Possible
Mitigation(s)

31. Attacker can deny the malicious act and remove the attack footprints leading
to repudiation issues.

Priority:
Medium

Category Repudiation

Description

Proper logging of all security events and user actions

builds traceability in a system and denies any

possible repudiation issues. In the absence of proper

auditing and logging controls, it would become

impossible to implement any accountability in a

system.

Justification <no mitigation provided>

Possible
Mitigation(s)

32. An adversary can get access to a user's session due to improper logout and
timeout.

Priority:
High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker can steal the user

token, he would be able to access all user data and

perform all actions on behalf of user.

Justification <no mitigation provided>

Possible
Mitigation(s)

33. An adversary can get access to a user's session due to insecure coding practices.
Priority:

High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker is able to steal

the user token, he would be able to access all user

data and perform all actions on behalf of user.

Justification <no mitigation provided>

Possible
Mitigation(s)

178

34. An adversary can spoof the target web application due to insecure TLS
certificate configuration.

Priority:
High

Category Spoofing

Description
Ensure that TLS certificate parameters are configured

with correct values.

Justification <no mitigation provided>

Possible
Mitigation(s)

35. An adversary can steal sensitive data like user credentials.
Priority:

High

Category Spoofing

Description

Attackers can exploit weaknesses in system to steal

user credentials. Downstream and upstream components

are often accessed by using credentials stored in

configuration stores. Attackers may steal the

upstream or downstream component credentials.

Attackers may steal credentials if, Credentials are

stored and sent in clear text, Weak input validation

coupled with dynamic sql queries, Password retrieval

mechanism are poor.

Justification <no mitigation provided>

Possible
Mitigation(s)

36. Attacker can steal user session cookies due to insecure cookie attributes.
Priority:

High

Category Spoofing

Description

The session cookies are the identifier by which the

server knows the identity of current user for each

incoming request. If the attacker can steal the user

token, he would be able to access all user data and

perform all actions on behalf of user.

Justification <no mitigation provided>

Possible
Mitigation(s)

37. An adversary can create a fake website and launch phishing attacks.
Priority:

High

Category Spoofing

Description

Phishing is attempted to obtain sensitive information

such as usernames, passwords, and credit card details

(and sometimes, indirectly, money), often for

malicious reasons, by masquerading as a Web Server

which is a trustworthy entity in electronic

communication.

Justification <no mitigation provided>

Possible
Mitigation(s)

38. An adversary may spoof Kororā Framework and gain access to Web
Application.

Priority:
High

Category Spoofing

179

Description
If proper authentication is not in place, an adversary

can spoof a source process or external entity and gain

unauthorized access to the Web Application.

Justification <no mitigation provided>

Possible
Mitigation(s)

39. An adversary can deface the target web application by injecting malicious code
or uploading dangerous files.

Priority:
High

Category Tampering

Description
Website defacement is an attack on a website where

the attacker changes the visual appearance of the site

or a webpage.

Justification <no mitigation provided>

Possible
Mitigation(s)

40. An attacker steals messages off the network and replays them to steal a user's
session.

Priority:
High

Category Tampering

Description
An attacker steals messages off the network and

replays them to steal a user's session.

Justification <no mitigation provided>

Possible
Mitigation(s)

41. An adversary can gain access to sensitive data by performing SQL injection
through Web App.

Priority:
High

Category Tampering

Description

SQL injection is an attack in which malicious code is

inserted into strings that are later passed to an

instance of SQL Server for parsing and execution. The

primary form of SQL injection consists of direct

insertion of code into user-input variables that are

concatenated with SQL commands and executed. A less

direct attack injects malicious code into strings that

are destined for storage in a table or as metadata.

When the stored strings are subsequently concatenated

into a dynamic SQL command, the malicious code is

executed.

Justification <no mitigation provided>

Possible
Mitigation(s)

42. An adversary can gain access to sensitive data stored in Web App's config files.
Priority:

High

Category Tampering

Description
An adversary can gain access to the config files. and

if sensitive data is stored in it, it would be

compromised.

Justification <no mitigation provided>

Possible
Mitigation(s)

180

Interaction: 12. Request Token

43. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

44. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

181

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

45. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

46. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

47. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

Possible
Mitigation(s)

48. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

182

Interaction: 13. Respond with Token

49. An adversary can reverse weakly encrypted or hashed content.
Priority:

High

Category Information Disclosure

Description
An adversary can reverse weakly encrypted or hashed

content.

Justification <no mitigation provided>

Possible
Mitigation(s)

50. An adversary may gain access to sensitive data from log files.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

log files.

Justification <no mitigation provided>

Possible
Mitigation(s)

183

51. An adversary can gain access to sensitive information through error messages.
Priority:

High

Category Information Disclosure

Description

An adversary can gain access to sensitive data such

as the following, through verbose error messages -

Server names - Connection strings - Usernames -

Passwords - SQL procedures - Details of dynamic SQL

failures - Stack trace and lines of code - Variables

stored in memory - Drive and folder locations -

Application install points - Host configuration

settings - Other internal application details.

Justification <no mitigation provided>

Possible
Mitigation(s)

52. Attacker can deny the malicious act and remove the attack footprints leading
to repudiation issues.

Priority:
Medium

Category Repudiation

Description

Proper logging of all security events and user actions

builds traceability in a system and denies any

possible repudiation issues. In the absence of proper

auditing and logging controls, it would become

impossible to implement any accountability in a

system.

Justification <no mitigation provided>

Possible
Mitigation(s)

53. An adversary can spoof the target web application due to insecure TLS
certificate configuration.

Priority:
High

Category Spoofing

Description
Ensure that TLS certificate parameters are configured

with correct values.

Justification <no mitigation provided>

Possible
Mitigation(s)

54. An adversary can steal sensitive data like user credentials.
Priority:

High

Category Spoofing

Description

Attackers can exploit weaknesses in system to steal

user credentials. Downstream and upstream components

are often accessed by using credentials stored in

configuration stores. Attackers may steal the

upstream or downstream component credentials.

Attackers may steal credentials if, Credentials are

stored and sent in clear text, Weak input validation

coupled with dynamic sql queries, Password retrieval

mechanism are poor.

Justification <no mitigation provided>

Possible
Mitigation(s)

184

55. An adversary can create a fake website and launch phishing attacks.
Priority:

High

Category Spoofing

Description

Phishing is attempted to obtain sensitive information

such as usernames, passwords, and credit card details

(and sometimes, indirectly, money), often for

malicious reasons, by masquerading as a Web Server

which is a trustworthy entity in electronic

communication.

Justification <no mitigation provided>

Possible
Mitigation(s)

56. An adversary may spoof Authorization server and gain access to Web
Application.

Priority:
High

Category Spoofing

Description
If proper authentication is not in place, an adversary

can spoof a source process or external entity and gain

unauthorized access to the Web Application.

Justification <no mitigation provided>

Possible
Mitigation(s)

57. An adversary can gain access to sensitive data by performing SQL injection
through Web App.

Priority:
High

Category Tampering

Description

SQL injection is an attack in which malicious code is

inserted into strings that are later passed to an

instance of SQL Server for parsing and execution. The

primary form of SQL injection consists of direct

insertion of code into user-input variables that are

concatenated with SQL commands and executed. A less

direct attack injects malicious code into strings that

are destined for storage in a table or as metadata.

When the stored strings are subsequently concatenated

into a dynamic SQL command, the malicious code is

executed.

Justification <no mitigation provided>

Possible
Mitigation(s)

58. An adversary can gain access to sensitive data stored in Web App's config files.
Priority:

High

Category Tampering

Description
An adversary can gain access to the config files. and

if sensitive data is stored in it, it would be

compromised.

Justification <no mitigation provided>

Possible
Mitigation(s)

185

Interaction: 14. GET User Info

59. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

60. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

186

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

61. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

62. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

63. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

Possible
Mitigation(s)

64. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

187

Interaction: 15. Respond User Info

65. An adversary can reverse weakly encrypted or hashed content.
Priority:

High

Category Information Disclosure

Description
An adversary can reverse weakly encrypted or hashed

content.

Justification <no mitigation provided>

Possible
Mitigation(s)

66. An adversary may gain access to sensitive data from log files.
Priority:

High

Category Information Disclosure

Description
An adversary may gain access to sensitive data from

log files.

Justification <no mitigation provided>

Possible
Mitigation(s)

188

67. An adversary can gain access to sensitive information through error messages.
Priority:

High

Category Information Disclosure

Description

An adversary can gain access to sensitive data such

as the following, through verbose error messages -

Server names - Connection strings - Usernames -

Passwords - SQL procedures - Details of dynamic SQL

failures - Stack trace and lines of code - Variables

stored in memory - Drive and folder locations -

Application install points - Host configuration

settings - Other internal application details.

Justification <no mitigation provided>

Possible
Mitigation(s)

68. Attacker can deny the malicious act and remove the attack footprints leading
to repudiation issues.

Priority:
Medium

Category Repudiation

Description

An adversary can gain access to sensitive data such

as the following, through verbose error messages -

Server names - Connection strings - Usernames -

Passwords - SQL procedures - Details of dynamic SQL

failures - Stack trace and lines of code - Variables

stored in memory - Drive and folder locations -

Application install points - Host configuration

settings - Other internal application details.

Justification <no mitigation provided>

Possible
Mitigation(s)

69. An adversary can spoof the target web application due to insecure TLS
certificate configuration.

Priority:
High

Category Spoofing

Description
Ensure that TLS certificate parameters are configured

with correct values.

Justification <no mitigation provided>

Possible
Mitigation(s)

70. An adversary can steal sensitive data like user credentials.
Priority:

High

Category Spoofing

Description

Attackers can exploit weaknesses in system to steal

user credentials. Downstream and upstream components

are often accessed by using credentials stored in

configuration stores. Attackers may steal the

upstream or downstream component credentials.

Attackers may steal credentials if, Credentials are

stored and sent in clear text, Weak input validation

coupled with dynamic sql queries, Password retrieval

mechanism are poor.

Justification <no mitigation provided>

Possible
Mitigation(s)

189

71. An adversary can create a fake website and launch phishing attacks.
Priority:

High

Category Spoofing

Description

Phishing is attempted to obtain sensitive information

such as usernames, passwords, and credit card details

(and sometimes, indirectly, money), often for

malicious reasons, by masquerading as a Web Server

which is a trustworthy entity in electronic

communication.

Justification <no mitigation provided>

Possible
Mitigation(s)

72. An adversary may spoof Authorization server and gain access to Web
Application.

Priority:
High

Category Spoofing

Description
If proper authentication is not in place, an adversary

can spoof a source process or external entity and gain

unauthorized access to the Web Application.

Justification <no mitigation provided>

Possible
Mitigation(s)

73. An adversary can gain access to sensitive data by performing SQL injection
through Web App.

Priority:
High

Category Tampering

Description

SQL injection is an attack in which malicious code is

inserted into strings that are later passed to an

instance of SQL Server for parsing and execution. The

primary form of SQL injection consists of direct

insertion of code into user-input variables that are

concatenated with SQL commands and executed. A less

direct attack injects malicious code into strings that

are destined for storage in a table or as metadata.

When the stored strings are subsequently concatenated

into a dynamic SQL command, the malicious code is

executed.

Justification <no mitigation provided>

Possible
Mitigation(s)

74. An adversary can gain access to sensitive data stored in Web App's config files.
Priority:

High

Category Tampering

Description
An adversary can gain access to the config files. and

if sensitive data is stored in it, it would be

compromised.

Justification <no mitigation provided>

Possible
Mitigation(s)

190

Interaction: 2. Authorized

75. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

76. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

77. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

191

78. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

Possible
Mitigation(s)

79. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

Possible
Mitigation(s)

80. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

Interaction: 3. Get Login

192

81. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

82. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

83. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

84. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

85. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

193

Possible
Mitigation(s)

86. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

Interaction: 4. Kororā Credential

87. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

88. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

194

Justification <no mitigation provided>

Possible
Mitigation(s)

89. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

90. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

91. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

Possible
Mitigation(s)

92. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

195

Interaction: 5. Post Consent

93. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority:
High

Category Denial of Service

Description

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available

process-wide. While this works for native

applications, it does not scale for mid-tier and

backend applications. This can cause availability

issues and result in denial of service either by the

influence of an adversary or by the large scale of

application's users.

Justification <no mitigation provided>

Possible
Mitigation(s)

94. An adversary may sniff the data sent from Identity Server.
Priority:

High

Category Information Disclosure

Description
An adversary may sniff the data sent from Identity

Server. This can lead to a compromise of the tokens

issued by the Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

196

95. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority:
High

Category Spoofing

Description
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes.

Justification <no mitigation provided>

Possible
Mitigation(s)

96. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority:
High

Category Spoofing

Description
An adversary can get access to a user's session due

to improper logout from Identity Server.

Justification <no mitigation provided>

Possible
Mitigation(s)

97. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority:
High

Category Spoofing

Description

An adversary can abuse poorly managed signing keys of

Identity Server. In case of key compromise, an

adversary will be able to create valid auth tokens

using the stolen keys and gain access to the resources

protected by Identity server.

Justification <no mitigation provided>

Possible
Mitigation(s)

98. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority:
High

Category Spoofing

Description
An adversary may guess the client id and secrets of

registered applications and impersonate them.

Justification <no mitigation provided>

Possible
Mitigation(s)

	Declaration
	Acknowledgements
	Tag cloud
	Abstract
	Publications
	List of tables
	List of figures
	List of abbreviations
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Model for an information security system
	1.3 Statement of the research problem
	1.4 Statement of the security properties
	1.5 Research aims and intentions
	1.6 Research questions
	1.7 Research objectives
	1.8 Contribution of the thesis
	1.9 Organisation of the thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Literature selection method
	2.3 Systematic literature review steps
	2.4 Define method applications
	2.5 Cloud computing
	2.5.1 Essential characteristics of cloud computing
	2.5.2 Service models for cloud computing
	2.5.3 Cloud computing deployment models
	2.5.4 Cloud computing general security issues
	2.5.4.1 Cloud load balancing
	2.5.4.2 Single Sign-On
	2.5.4.3 Availability
	2.5.4.4 Privacy
	2.5.4.5 Risk assessment

	2.6 Virtualisation
	2.6.1 Virtualisation security issues

	2.7 VM migration
	2.7.1 Pre-copy memory migration
	2.7.2 Post-copy memory migration
	2.7.3 VM Security Issues
	2.7.3.1 Cross VM Side-Channel Attacks
	2.7.3.2 VM Isolation
	2.7.3.3 VM Escape
	2.7.3.4 VM Rollback Attack

	2.8 Live VM migration
	2.8.1 Live VM Migration Strategy
	2.8.1.1 Memory Data Migration
	2.8.1.2 Storage Data Migration
	2.8.1.3 Database Migration
	2.8.1.4 Network State Migration
	2.8.1.5 Application Migration
	2.8.1.6 Business Process Migration

	2.8.2 Live VM Migration Security Issues
	2.8.2.1 Return Oriented Programming Attack
	2.8.2.2 Live VM Image Sharing

	2.9 Hypervisor
	2.9.1 Xen project hypervisor
	2.9.2 Why this study used Xen hypervisor

	2.10 Trusted computing
	2.10.1 Virtual Trusted Platform Module migration
	2.10.2 Set Up the Standard Encryption Key Provider

	2.11 Network Block Device Protocol
	2.11.1 Protocol Phases

	CHAPTER 3: METHODOLOGY
	3.1 Introduction
	3.2 Research system methodology theory
	3.2.1 Design Science
	3.2.1.1 Design Science Research Method

	3.2.2 Multi-methodology model
	3.2.2.1 Systems development
	3.2.2.2 Theory building
	3.2.2.3 Observation
	3.2.2.4 Experimentation

	3.3 The conceptual research system methodology
	3.4 Data gathering
	3.5 Data analysis
	3.6 Ethical considerations

	CHAPTER 4: DESIGN OF THE FRAMEWORK
	4.1 Introduction
	4.2 Background and motivation
	4.3 Integrity verification
	4.4 Integrity protection in the proposed framework
	4.4.1 Clark-Wilson security model

	4.5 Design framework system requirements of Kororā
	4.6 Design framework system assumptions
	4.7 Design framework system architecture
	4.7.1 Virtual Trusted Platform Module Agent
	4.7.2 Input/Output Agent
	4.7.3 Data Plane Agent
	4.7.4 Integrity Analyser Agent
	4.7.5 Data Organisation Agent
	4.7.6 Go Agent
	4.7.7 Libvirt Agent

	CHAPTER 5: EVALUATION SYSTEM ARCHITECTURE
	5.1 Introduction
	5.2 Kororā evaluation system architecture
	5.3 Security terminology
	5.4 Kororā state machine framework
	5.5 The system model of live virtual machine job migration
	5.6 Migration scenario

	CHAPTER 6: IMPLEMENTATION
	6.1 Introduction
	6.2 Related work
	6.3 Implementation considerations
	6.3.1 Resource and security plans
	6.3.2 Agent plan
	6.3.3 Implementation setup plan
	6.3.4 Mapping
	6.3.5 Transport layer security and secure sockets layer protocols

	6.4 Kororā implementation
	6.5 Kororā in C#
	6.6 Kororā code architecture
	6.6.1 Kororā Virtual Trusted Platform Module Agent
	6.6.2 Kororā Input/Output Agent
	6.6.3 Kororā Data Plane Agent
	6.6.4 Kororā Integrity Analyser Agent
	6.6.5 Kororā Data Organisation Agent
	6.6.6 Kororā Go Agent
	6.6.7 Kororā Libvirt Agent

	CHAPTER 7: FINDINGS
	7.1 Introduction
	7.2 Evaluation of the research objectives
	7.2.1 Objectives 1 and 2
	7.2.1.1 For
	7.2.1.2 Goals
	7.2.1.3 Verdict: Accepted
	7.2.1.4 Against

	7.2.2 Objective 3
	7.2.2.1 For
	7.2.2.2 Goals
	7.2.2.3 Verdict: Accepted
	7.2.2.4 Against

	7.2.3 Objective 4
	7.2.3.1 For
	7.2.3.2 Goals
	7.2.3.3 Verdict: Accepted
	7.2.3.4 Against

	7.3 Evaluation of research questions and research background
	7.4 Migration attack scenarios
	7.4.1 How the Kororā system resists those threats

	7.5 Threat Modelling
	7.6 Experiments with specific attack scenarios
	7.6.1 Background
	7.6.2 Attack Scenario 1
	7.6.3 Attack Scenario 2
	7.6.4 Attack Scenario 3
	7.6.5 Summary of results

	CHAPTER 8: CONCLUSION AND FUTURE RESEARCH
	8.1 Summary of the research process
	8.2 Limitations
	8.3 Future study

	References
	Appendix A: Code for the Kororā framework agents
	Appendix B: Kororā threat modelling diagram summary

