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Abstract 

INTRODUCTION: In the world of cloud computing (CC), security is the key to success. 

While ease and cost are two important factors in CC, security and technical issues are 

significant problems. The resources such as central processing unit (CPU) cache, network 

Input/Output (I/O) and memory bandwidth in a cloud environment are efficiently 

governed by employing virtualisation technology; the administration of a virtual 

machine (VM) in the datacentre of a cloud service provider (CSP) is a challenging task 

that requires live VM migration techniques. That is, live VM migration is an essential 

technology for cloud management. 

When a VM needs to be moved to another physical machine, this migration can 

be achieved without interruption to the VM’s services, minimising the downtime for the 

services running on the VM. This situation decreases the operating costs of CSPs and 

improves its service quality. Many efforts have been made to enhance the security of 

live VM migration. However, some critical problems still require solutions or 

improvements. Further, the evolution of CC services and the increasing number of 

datacentres from which customers can run their services make it crucial to adhere to as 

many security practices as possible to deal with the new CC security issues, such as the 

compromising of the integrity and confidentiality of the destination host while a live VM 

is migrating VM data. 

OBJECTIVES: This research’s main objective was to design and develop a secure live VM 

migration framework that enables a virtual trusted platform module (vTPM) for multiple 

VMs on a hardware platform for cloud systems integrity. First, a comprehensive review 

of VM migration and the related security challenges was conducted. This was followed 

by the examination of different potential attacks that are possible in live VM job 

migration. The research then focused on using a combination of a hardware-based root 

of trust (e.g. vTPM) and a VM-based system (e.g. Xen open-source hypervisor) to 

improve the integrity of VM job migration. 

While existing live VM migration frameworks have been proven helpful for high-

security environments that rank different security objectives, such as confidentiality, 

integrity and availability, over performance and all the related areas, the framework 

proposed in this thesis aims for commercial security, with near-zero performance 

overheads and usability being of paramount importance. For addressing this gap, this 
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research’s objective was to establish a live VM migration integrity framework (called 

Kororā) to measure, aggregate, and manage integrity-related information from different 

sources that are available and relevant when assessing the trustworthiness of the 

Kororā. Kororā enforces the live VM’s strong isolation, thus providing a robust 

foundation on which the higher level of integrity can enact finer-grained controls. Kororā 

significantly improves the VM’s integrity level during the live migration process. The 

rationale behind the Kororā design phase has been provided and a lightweight prototype 

implementation of Kororā has been evaluated with Microsoft Visual Studio and 

SQLiteStudio tools. 

METHODS: This study has involved developing a new cloud integrity framework and 

ensuring this new framework could be evaluated and refined to a high standard. 

Research methods such as design science (DS) and mixed methods were employed to 

guide the study. The DS method influenced the design of the research and the evaluation 

methodology employed to evaluate the framework. The mixed-method was used to 

mature the design framework and assist with problem identification, evaluation and 

trust. 

RESULTS: The proposed framework describes the role of live VM migration and 

examines the formation, strength and success characteristics of VMs’ relationships in CC 

systems. It explores a secure cloud system live migration and provides an effective 

defence framework when moving jobs into a virtualised environment, from one 

hypervisor to another hypervisor. There were three different scenarios of real-world 

attacks used to evaluate the research objectives and answer the research questions and 

research background, and the summary of analysis results shown that Kororā can 

prevent the attack under vTPM protection. 

CONCLUSION: This study provides a robust foundational explanation of CC, 

virtualisation and the main core goals of security, especially integrity protection. It 

contributes models, processes, workflows, architecture and implementation in this 

area, based on the proposed framework, thus advancing the body of knowledge on the 

secure live migration of virtualised resources in cloud systems. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Cloud computing (CC) is one of today’s exciting technologies that significantly impact 

business thinking. It facilitates a change in the way companies operate by offering 

shared and virtualised infrastructure that is flexible and easily scalable. CC offers 

organisations the advantages of more attractive costs and reduced complexity for 

running network-intensive applications, such as internet servers and cloud-based 

services in a virtual environment, where multiple virtual machines (VMs) run on the 

same machine and share the machine’s physical and network resources (Chaudhary & 

Kumar, 2019; Senyo, Addae, & Boateng, 2018). CC infrastructure services offer elastic 

computing that particularly matches the requirements of transactional web 

applications, such as e-business applications with performing cost/performance trade-

off analysis (Mell & Grance, 2011).  

In CC, the word ‘cloud’ is a metaphor that describes the worldwide web as being 

a space in which computing has been preinstalled and exists as a service (Sadiku, Musa, 

& Momoh, 2014). Many companies, both large and small, are contemplating moving to 

CC to leverage the significant potential of this new paradigm (Bhushan & Gupta, 2017). 

Governments and businesses spend a large amount of money, resources and time to 

achieve security in cloud services (Ali, Khan, & Vasilakos, 2015). 

Security is key to the success of CC, and many surveys have shown that security 

is the main challenge for CC adoption (Agarwal, Kaushal, & Chouhan, 2020; Cloud 

Security Alliance, 2019; Cloud Security Alliance, 2009; Taylor, Dargahi, Dehghantanha, 

Parizi, & Choo, 2020; Zafar et al., 2017). Until relatively recently, organisations have 

managed mainly their business processes on their private infrastructure and outsourcing 

of services has usually been for non-critical data/applications. However, as organisations 

gain more CC experience, they shift more of their core business functions onto the cloud 

platform. They find that cloud adoption is significantly more complex than initially 

imagined, particularly in data management, system integration, and multiple CSPs 

management. The traditional network perimeter has been broken, and organisations 

feel they have lost control over their data and applications. New attacks on CC have 

appeared, and the benefit of being accessible from anywhere has become a significant 

threat. Many CC issues are the same as the old ones but in a new setting. 
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With the support of virtualisation technologies, a physical server can be divided 

into several isolated execution environments by deploying a layer (i.e. Virtual Machine 

Manager – VMM – or hypervisor) on top of the hardware resources or operating system 

(OS). The execution environments on a server (i.e. the VMs) run without mutual 

interruption. Each VM has its own OS and applications.  

In the beginning, virtualisation technologies were not used widely for several 

reasons. For instance, they occupy a portion of hardware resources (e.g. central 

processing unit [CPU] and memory) (Huber, von Quast, Hauck, & Kounev, 2011). Further, 

insufficient network bandwidth has prevented vendors from leasing their unused 

resources to clients. As the related technologies have advanced, such as the utilisation 

of the fibre channel (Develder et al., 2012) and the development of security technology 

(Mather, Kumaraswamy, & Latif, 2009), a new service model in CC (see Chapter 2 for 

more detail) has emerged in virtualisation technology (K. Liang, Zhao, Chu, & Chen, 

2017). 

In CC, large companies can divide up their additional hardware resources and 

rent them to customers in a pay-as-you-go manner. Users can quickly start to work on a 

VM without the considerable expense of hardware purchase and maintenance. Because 

an increasing number of users are choosing cloud data centres to hold their applications, 

it has become a crucial task to efficiently manage the VMs in a data centre. Users request 

and use resources from a cloud provider and leave after their tasks are finished. 

Correspondingly, CSPs constantly create and destroy the VMs in the data centres. 

Therefore, without efficient datacentre management, the enterprise will not be able to 

identify its weaknesses and strengths for each factor. Then build a plan to help them 

make appropriate decisions regarding the successful adoption of CC. 

All the above problems can be solved by a critical technology such as live VM 

migration. Live VM migration means a VM is no longer fixed on the server on which it is 

created. A VM can be moved from one server to another, even from one data centre to 

another, without interrupting the applications running in the VM. Many cloud 

management operations have become feasible with the implementation of live VM 

migration, such as server consolidation (Padala, Zhu, Wang, Singhal, & Shin, 2007), zero-

downtime hardware maintenance (Hoglund & Butler, 2006), energy management 

(Bianchini & Rajamony, 2004) and traffic management (Narayana, Jiang, Rexford, & 

Chiang, 2012) (see Chapter 2 for further detail). 
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Improving the security of live VM migration, such as decreasing the total 

migration time, reducing service interruption during migration and enhancing the level 

of migration security, have all been essential issues since live VM migration was 

proposed. This is because system-level security refers to the architecture, policies and 

processes that ensure data and system security is closely related to the level of cloud 

management. Consequently, the existing live VM migration is still not adequate to meet 

next-generation systems requirements, and some problems still exist. These include 

secure dynamic resource pools, secure virtualisation job migration across data centres 

(i.e. migration over the wide area network [WAN]) and high usability (Luis, Luis Rodero, 

Juan, & Maik A., 2009). 

1.2 Model for an information security system 

The information security (InfoSec) landscape has changed dramatically over the past 20 

years into a maze of complicated and dynamic relationships between information 

technology (IT) specialists, IT users and general management.  

The security of the information assets of an entity has significant economic 

consequences. Therefore, an entity’s management must hold the responsibility for 

security; IT and InfoSec managers have established methods of achieving that objective 

(Parker, 1998). This thesis’s philosophy is that the responsibility for InfoSec must always 

belong to the management team of any organisation. 

An effective security programme is based on many specialised principals that are 

viewed by many as different business goals. In reality, each of these principles works 

together to provide a security net that collectively protects the organisation’s 

information assets (Schneier, 2006). Organisations are required to adopt a 

countermeasures model such as the McCumber Cube (McCumber, 2004) and consider 

an expanding protection model to offer proven processes that do not change their IT 

system’s structure methodology even as the technology evolves. The McCumber Cube 

is a three (3) by three (3) by three (3) cube with 27 cells (see Figure 1.1). 
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Figure 1.1: The McCumber InfoSec cube (McCumber, 2004, p. 9) 

Each of these cells represents an area of interaction among these three 

dimensions to be addressed by any InfoSec system. Using this model ensures that each 

of the 27 cells is treated correctly by each of the three interest groups. For instance, the 

cell that represents the relationships among the areas of technology, integrity, and 

storage must have controls or protections that address the use of technology to 

maintain information integrity when in storage. Such control may consist of a 

monitoring system for host intrusion, which alerts security administrators when a critical 

file is modified. The primary objective of this model is to recognise gaps in an InfoSec 

program’s coverage. While this model covers InfoSec’s three dimensions, it omits any 

discussion of specific guidelines and policies that direct InfoSec controls to be applied. 

This thesis focuses on computer security applied to large-scale distributed 

systems. Thus, it defines security building blocks and how to fulfil them with an 

application to CC environments. Ensuring security means preventing unauthorised 

access and modification of the information while allowing authorised access and 

modification (Schneier, 2006); unauthorised changes are the outcomes of bypassing the 

InfoSec properties. The InfoSec properties define who has access to system information, 

how to access it, and what operations are allowed. These InfoSec properties are part of 

the InfoSec cube and, more specifically, focus on the fundamental principles of InfoSec; 

namely, to ensure the availability of the data for authorised use; to preserve the integrity 

of the data; and to protect the confidentiality of the data (Harris, Shon, 2016). These are 

discussed separately below. 

• Availability is the system’s ability to ensure authorised individuals have 

reliable and appropriate access to the data, information and resources. With 

virtualisation, an attacker can compromise availability with greedy 
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behaviour, such as migrating a machine back and forth infinitely (Garg, 

Versteeg, & Buyya, 2011); this means the virtualisation layer wastes 

resources, and the service is down most of the time. Accidents can occur 

through physical servers or from a person unplugging a cable and disabling 

server access. 

• Integrity involves maintaining the consistency, accuracy and trustworthiness

of the data over its entire life cycle, as well as preventing information

corruption. In other words, the systems and computer network must be

protected from an unauthorised user trying to rewrite or erase the

information. An attacker could intercept the network traffic and introduce a

small change into the data, and then send it on to the destination, creating

what is known as a ‘man-in-the-middle (MiTM) attack’ (Chowdary, Challa, &

Mukkamala, 2019).

Cloud infrastructures provide new mechanisms for the manipulation of

information by attackers. A compromised hypervisor can threaten data

integrity during the migration process (Elhage, 2011). More specifically, if a

VM is able to escape from isolation and compromise the VM, it can access

the memory locations belonging to other users while having the required

privileges to write or delete their content, thus performing a VM hopping

attack (Dong & Lei, 2019).

• Confidentiality means that the required degree of prevention is applied at

each data-processing junction to avoid information disclosure. This secrecy

level needs to prevail as data persists when transmitted on system and

devices within the network and as it reaches its destination. An attacker

could thwart confidentiality mechanisms by stealing password files, network

monitoring, shoulder surfing, breaking encryption schemes, and social

engineering. For example, User A could be mainly idle, and User B could be

consuming all the resources. User B could benchmark and profile interrupt

while he/she is the only CPU user. If User A sends an interruption, User B

could detect a period of difficult access, as the processor cannot handle more

interrupts. User B could build the actively of User A and break the

confidentiality of the data.
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1.3 Statement of the research problem 

Although some of the common security issues that are defined in Chapter 2 are critical, 

this thesis tackles the problem of the integrity of the live migrating process from one 

VM to another under the same platform. Thus, this study addresses hypervisor security, 

live VM migration and related security concerns. In addition, this thesis discusses end-

to-end security, defining a framework called Kororā. This framework was designed and 

developed on the cloud ‘infrastructure-as-a-service’ (IaaS) (see Section 1.4) 

environment, and it runs concurrently on the same hardware components (I/O, CUP, 

Memory) and the same hypervisor’s platform (Xen’s open-source hypervisor); however, 

the different combinations of parameters need to be evaluated before implementing 

Kororā. 

The reason for the very limited testing of existing network mobility solutions is 

very simple: lack of tools. At this stage, the implementation and prototyping of Kororā 

is only feasible for small-scale computing scenarios, not for large-scale scenarios. Once 

the different InfoSec objectives (availability, integrity and confidentiality) with regard to 

all areas of CC have been identified, such as securing networks and allied infrastructure, 

securing applications and databases, security testing and digital forensics, the threats 

and vulnerabilities that could be used to compromise the cloud system are identified in 

this research. In addition, this study adds an appropriate hardware security component, 

the vTPM, in order to run Kororā with a secure boot mode. The following paragraphs 

give an overview of the problem statements of this research in more in detail. 

Migrating VMs from a source host to a destination host across data centres for 

reasons such as maintaining the source host improves cloud management and makes 

cooperation among CSPs possible. For example, CSPs that run several data centres can 

carry out load balancing between data centres instead of only within one data centre. 

When facing a sudden peak workload, a private cloud data centre can migrate some 

VMs that do not run confidential workloads to a public cloud data centre. Therefore, 

private CSPs do not need to maintain many servers to align with the possible peak 

workload. VM migration could occur in two ways: live and offline. VMs are transferred 

from a source host to a destination host while running in a time of live VM migration. 

This live migration’s security is a major factor, as potential security threats could be on 

the data plane, control plane, and migration plane. An attacker could carry out both 
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passive and active attacks that stress the live migration and lead to performance 

degradation. 

There are security risks to the live VMs’ migration data integrity and 

confidentiality. After a successful VM migration, the source host removes the memory 

pages of the migrated VM. However, there should be a framework for the VM owner to 

ensure the live VM’s migration memory data are removed from the source host’s 

physical memory. However, the destination host’s memory portion must be clear of 

previously used VM data and possibly malicious codes. This thesis investigated the 

possibility of using migrating VM’s data either during transit or present at the source 

and destination during the live VM migration process. Based on these investigations, 

this thesis has proposed a novel framework for a secure live VM migration by using a 

vTPM agent and six other agents, namely Input/Output (I/O), data plane, integrity 

analyser and data organisation (see Chapters 4 and 6). 

1.4 Statement of the security properties 

IaaS architecture (see Chapter 2) incorporates three key features of cloud environments 

to tackle the problems that are the focus of this thesis.  

Table 1.1 shows the mapping between cloud security properties and cloud 

security infrastructure. The properties are described in the text following the table. 

Table 1.1: Mapping cloud security properties to infrastructure 

  Cloud security infrastructure 

  Hypervisor 
Security 

End-to-end 
Security 

Network 
Security 

Elastic 
Security 

C
lo

u
d

 s
ec

u
ri

ty
 

p
ro

p
er

ti
es

 

Extensibility  ✓ ✓ ✓ 

Multi-
Laterality 

✓  ✓ ✓ 

Multi-
Layering 

 ✓ ✓ ✓ 

 

• Extensibility: A cloud system can extend services that include the ability to 

scale elastically and the level of effort required to implement the extension. 

An extension could be through the addition of new functionality or 

modification of the existing functionality. Therefore, the integration of new 

security components must be both easy and transparent.  
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• Multi-laterality: A CC infrastructure may include many entities, all with their 

priorities, requiring flexible policies. Such policies need high-level clarity to 

abstract real-equipment relations. 

• Multi-layering: By using solid, multi-layered security, exposure to data 

breaches is minimised. When such protection features are available for all 

cloud environments offered by a CSP, all tenants on a multi-tenant network 

are similarly secure, which means fewer hacker entry points. 

1.5 Research aims and intentions 

This research’s main objective was to design and develop a secure live VM migration 

framework by using a vTPM to improve the integrity of migration process from one VM 

to another in the same platform (same hardware and same hypervisor – Xen open-

source hypervisor). Two essential terms that facilitate an understanding of the secure 

live VM migration framework (Kororā) that was built for this research were identified: 

crucial framework components (CFCs), which represent the attributes and features of 

the proposed framework; and crucial framework elements (CFEs), which represent the 

most relevant security system elements for the scope of this study. In addition, the 

research included a comprehensive review of the evaluation system architecture and 

the proposed framework state machine. 

Therefore, the central goals of this thesis were as follows: 

• Identify the requirements for the framework, including those related to VM 

live migration among different hypervisors. 

• Describe the model, processes and architectural features of the proposed 

live VM migration framework. 

• Design and implement a framework to improve the integrity of live VM 

migration using virtualised environments. 

• Analyse the performance of the framework using simulation models and 

experiments running in a virtualised computing environment. 

• Evaluate the framework on a hypervisor, including support for integrity 

attestation of the complete system. 
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1.6 Research questions 

Research Background (RB): 

• What are the opportunities and challenges for live VM migration in CC,

with respect to the CFCs and CFEs?

Research Question 1 (RQ1): 

• How do we design, implement the establishment of and evaluate a live

VM migration framework to protect the integrity of cloud systems?

Research Question 2 (RQ2): 

• How might the information revealed by the above questions affect the

level of integrity of the framework and help the CSPs and cloud systems

users in their decision making?

1.7 Research objectives 

To investigate the factors that may account for secure live VMs migration in cloud 

systems, this research focused on the following three interrelated research objectives: 

• To understand the security issues associated with CC, virtual trusted platform

modules (vTPMs), virtualisation, live VM migration and hypervisor.

• To identify the proposed framework requirements, including those related

to VM live migration among different hypervisors.

• To design and validate the model, processes and architectural features of the

proposed framework.

• To propose and implement an end-to-end security architectural blueprint for

cloud environments, provide an integrated view of protection mechanisms,

and then validate the proposed framework to improve live VM migration

integrity.

1.8 Contribution of the thesis 

This thesis explores agent-based designs to orchestrate and dynamically compose 

different security building blocks such as hypervisors (e.g. Xen open-source), hardware 

security elements (e.g. vTPM), VM, secure storage and integrity management 

mechanisms. Each agent declares its guaranteed security properties using contracts, 

which are composed to derive the overall cloud security objectives. This end-to-end 
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security framework is validated by realising a prototype of a secure cloud and several 

use cases. 

By addressing the preliminary problems in live VM migration, this thesis strives 

to make the following contributions: 

• Conduct a comprehensive literature review of CC, virtualisation, hypervisors,

vTPM and live VM migration’s latest technology with a comprehensive

analysis of the existing attack scenarios and potential solutions.

• Define key aspects of the live VM migration process (e.g. memory content

and disk storage) that affect total migration time and understanding the type

of memory and storage content that need to be migrated.

• Discuss different VM migration security threats and their categories in live

VM migration and discuss the requirements and existing solutions to mitigate

possible attacks.

• Classify the existing migration mechanisms into one of the basic categories

of type of live VM migration and discuss the various metrics that affect this

category, based on the objective and techniques used.

• Identify live VM migration using a vTPM among two different physical hosts

in the same hypervisor layer (Xen hypervisor) and the proposed live VM

migration framework, and briefly explain the various metrics and agents

involved in the framework.

• Define and validate the proposed framework mechanisms enabling the self-

protection of the cloud infrastructure.

1.9 Organisation of the thesis 

The remainder of this thesis is organised into eight chapters, as follows: 

• Chapter 2 provides a wide-ranging review of the studies related to the

research topics, such as CC, virtualisation, hypervisor, vTPM and live VM

migration, including a possible attack scenario in the cloud system.

• Chapter 3 presents a comprehensive review of the research methodology

and further detailed discussion about multi-methodology research in the

field of computer science. A brief background is provided for each topic,

along with a detailed definition of multi-methodology research.



11 

• Chapter 4 describes the framework’s design and discusses its various design

steps, such as developing a system model of live VM job migration, migration

scenarios, migration attack scenarios, proposed framework assumptions and

the integrity verification process.

• Chapter 5 elaborates on the evaluation theory, system development, and

experimentation regarding the research framework, such as the check

system against success criteria. This chapter focuses on the details of the

proposed framework’s integrity protection, the data-gathering steps, and the

ethical considerations.

• Chapter 6 discusses the implementation steps of the framework. In addition,

this chapter contains five related works of research that facilitate a better

understanding of the framework’s different parts, which includes seven

agents. Each agent is explained briefly, from mapping the system (see Section

6.3.4 for further details) to the architecture of the proposed framework and

code architecture, as well as some implementation considerations.

• Chapter 7 briefly describes the thesis findings, including the details of the

evaluation of RB and RQs.

• Chapter 8 outlines the work’s conclusions in this thesis and suggests future

work based on this thesis’s contents. Besides, this chapter highlights the

limitations of this research.
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Figure 1.2: Stages of this research 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the existing literature to examine the underlying reasons for VM 

live migration security being so essential than before. It provides a general overview of 

VM migration security and considers the fundamental definition of Information Security, 

often referred to as InfoSec in CC, based on live VM migration in particular. In addition, 

this chapter discusses CC principles, models and paradigms and provides background to 

the support of this study to answers RB and RQs posed in Chapter 1 in the following 

chapters. A selection of academic literature is used to introduce the basics of CC, 

virtualisation, VM live migration, the current VM migration schemes addressing various 

issues, vTPM and correlated security issues. This literature’s overall aims and objectives 

were identifying the most critical InfoSec challenges and possible attacks and their key 

features. 

2.2 Literature selection method 

Once the RQs noted in the previous chapter had been identified, the literature review 

could begin. This section outlines the steps that were required to conduct this literature 

review. As illustrated in Figure 2.1, the first two steps involved identifying the plan, 

scope, appropriate search terms (using search tools available in most libraries), and the 

literature review’s goals. As noted by (Peffers, Tuunanen, Rothenberger, & Chatterjee, 

2007), a literature review must focus on information from existing legitimate sources of 

knowledge and identify which information is appropriate for the purposes of the study 

and which information needs to be removed without undergoing further analysis. 

Therefore, the next steps involved collecting the primary sources, evaluating them, and 

summarising and synthesising the selected contents. After identifying the approach and 

strategy for establishing the initial draft of the literature review (March & Smith, 1995), 

the final step was to edit and polish the last version. 
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Figure 2.1: Steps in conducting this literature review 

The process shown in Figure 2.1 involved considering the various research 

methods (e.g. qualitative, quantitative) to answer a specific RQ by selecting and 

summarising all the actual evidence about the pre-determined eligibility criteria. Once 

all the studies involved in the review had been identified, each study’s helpful 

information was extracted systematically, using appropriate techniques: quantitative, 

qualitative or both. The literature review process needed to be reported in enough detail 

to allow its outcomes to be independently reproduced (A. R. Hevner, March, Park, & 

Ram, 2004). 

2.3 Systematic literature review steps 

This thesis used the systematic literature review (SLR) method to focus on the most 

significant issues enterprises face with CC and VM live migration security. The SLR 

method was chosen to facilitate identifying the RB and RQs associated with the research 

topic. It was conducted in the following four stages (Tranfield, Denyer, & Smart, 2003): 

• Stage 1 – Define 

o Identification of the need for a literature review. 

o Development of a literature review protocol. 

• Stage 2 – Collect and select 

o Identification of documents. 

o Selection of relevant documents. 

• Stage 3 – Analyse 

o Categorisation of documents. 

Identify literature 

review plan and 

scope, develop 

search terms 

Propose goal for 

literature review, 

conduct 

information 

search 

Collect primary 

sources, describe 

how to 

summarise their 

contents 

Identify final 

sources and 

synthesise the 

contents 

Develop approach 

and strategy, 

critically evaluate 

final draft 

Review final draft 
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o Data extraction.

• Stage 4 – Result

o Document findings and results.

The primary value of using the SLR method was to allow the researcher to focus 

specifically on the research problems and gather the latest scholarly papers (Kitchenham 

et al., 2009; Okoli & Schabram, 2010). 

While there is a lack of empirical evidence and knowledge regarding which issues 

are most important for the SLR areas (Vaishnavi & Kuechler, 2015). The SLR method is 

one of the best ways to identify and prioritise issues for decision-making and sort large 

volumes of references (Kitchenham et al., 2009). This method systematically seeks the 

most reliable opinion from the scope of the research. While it is a qualitative research 

technique that includes quantitative elements (Okoli & Schabram, 2010), this thesis 

used the SLR method to process the massive amount of general literature related to the 

research topic and select the relevant literature illustrated in Figure 2.2. 
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Figure 2.2: Identify a method for selecting the literature 

2.4 Define method applications 

This section outlines how the SLR method was used to identify the gaps in previous 

research on this thesis’s subject. The RB in the first step was, “What are the 

opportunities and challenges for live VM migration in CC, with respect to the CFC and 

CFE?” A search of digital library databases such as IEEE, Google Scholar, Science Direct, 

Elsevier, Springer, ACM and Hindawi was undertaken to identify the issues and define 

each problem and justify its significance and consequences, and if possible, add 

comments for elaboration. In this step, the SLR helped to identify the most relevant 

academic paper(s) to address the RB question and RQs. Keywords such as ‘cloud 

computing’, ‘cloud virtualisation’, ‘cloud migration’, ‘live VM migration’ and ‘live VM 

migration integrity framework’ were used to search the titles on the seven selected 

digital library databases. 
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The next step was to check the value of the academic paper(s) based on their 

abstracts, conclusions and relevance to the RB question and RQs. The final stage of the 

process was selecting the academic paper(s) to be used in this literature review. 

2.5 Cloud computing 

The concept of CC emerged during the many changes that occurred in the IT area in the 

early 2000s. First, there was the provision of new technologies such as Web 2.0 and 

distributed computing, followed by the emergence of the cloud-based offering of 

‘software-as-a-service’ (SaaS). In addition, virtualisation enabled the pooling of servers, 

offering a more straightforward start-up of development and a better resource 

utilisation ratio. In effect, CC was the fusion of previous innovations that are now 

provided through the cloud. Amazon, an e-business leader, introduced the CC model in 

2002 to handle the heavy load of orders placed on their website at Christmas time. Many 

other companies, such as Google and Microsoft, have gone on to offer similar products. 

The rise of CC as evolving technology has given rise to many opportunities and 

challenges (Baudoin et al., 2017). CC is hard to define because it is constantly evolving, 

adapting to many different techniques and approaches to computing. At its core, CC is 

more of a philosophy than technology. According to (Cloud Security Alliance, 2019), CC 

is the journey of trying to separate an application from the OS and hardware rather than 

the destination. 

The National Institute of Standards and Technology (NIST) defines CC as follows 

(Mell & Grance, 2011): 

Cloud computing is a model for enabling convenient, on-demand 

network access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications, and services) that can be 

rapidly provisioned and released with minimal management effort or 

service provider interaction. (p. 6) 

The ability to provide these services rapidly and allocate the resources needed 

for the moment and its on-demand capability gives CC its potential to help organisations 

achieve a significant reduction in their operational and administrative costs. CC services 

are not unitary products but rather a continuum of services that businesses can access 

on an as-needed basis. It provides the capabilities of rapid elasticity, lower costs, on-

demand self-service, broad network access, resource pooling, pay-per-use measured 
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service, ease of utilisation, quality of service and reliability of services on the internet 

(Cloud Security Alliance, 2019; Senyo et al., 2018). 

Before discussing the CC ecosystem in more detail, it is essential to distinguish 

between the term ‘cloud’ and the ‘cloud symbol’ on the internet. The internet allows 

users to access web-based IT resources; however, a ‘cloud’ is a finite boundary for using 

IT resources ‘on the fly’ via the internet. Definitions for the term ‘cloud’ vary, but for this 

thesis’s purposes, a description provided by NIST (Mell & Grance, 2011) has been used 

because it is well recognised and accepted worldwide, as well as allowing the possibility 

of adding new service and deployments models. 

The NIST (Mell & Grance 2011) definition lists five essential CC characteristics: 

on-demand self-service, broad network access, resource pooling, rapid elasticity or 

expansion, and measured services. In addition, it contains three ‘service models’ 

(software, platform and infrastructure) and four ‘deployment models’ (private, 

community, public and hybrid) that together categorise ways of delivering cloud services 

(see Figure 2.3). 

 

Figure 2.3: The NIST visual model of CC definition (Mell & Grance, 2011) 

This visual model shows the subscription-based services available to customers 

(software, platform and infrastructure) in a pay-as-you-go model. 
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The above paragraphs have noted the major CC traits of design, implementation 

and operation, as well as some key concepts, such as the different types of CC, the 

characteristics of CC and the service models of CC. This discussion has raised the 

following three questions: “What are the essential characteristics of CC?”; “What are 

the service models for CC?”; and “What are the deployment models for CC?”. The 

simplest way to address these three questions is through a standard InfoSec framework 

that helps to make clear the definitions are intended to serve as a means for broad 

comparisons of cloud services and deployment strategies, as well as providing a baseline 

for a discussion ranging from what CC is to how best to use CC. The InfoSec standard by 

NIST computer scientist Peter Mell (Mell & Grance, 2011) was chosen to address these 

three questions. 

2.5.1 Essential characteristics of cloud computing 

According to Mell and Grance (2011, p. 10), the essential characteristics of using a CC 

model are as follows: 

• Rapid elasticity: CC supports the elastic nature of storage and memory 

devices (e.g. memory, storage, network bandwidth and processing), which 

can rapidly allocate and de-allocate resources according to the user’s 

demand. 

• Resource pooling: A multi-tenant architecture serves the many consumers 

who request resources from a pool of computing resources. The CC user has 

no control over, or knowledge of, the exact location of the provided 

resources but may be able to specify the location at a higher level of 

abstraction (e.g. country, state or datacentre). 

• On-demand self-service: A customer can individually provision its computing 

capabilities as needed automatically, without requiring human interaction. 

• Broad network access: Capabilities are available over the network, allowing 

services to be accessed over the computer network via different client’s 

standard platforms. 

• Measured service: CC offers a metering infrastructure to customers and cloud 

service providers (CSPs), which allows them to pay for their consumed 

resources only. In other words, CC provides transparency to clients and 

providers. 
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Note that while virtualisation usually enables CC, this is not an essential 

requirement, according to Mell and Grance (2011). Similarly, while multi-tenancy (as 

distinct from resource pooling) is not a vital cloud characteristic, it is often discussed as 

such (Brunette & Mogull, 2009). 

2.5.2 Service models for cloud computing 

CC is dynamically scalable because users only have to consume the number of online 

computing services or resources they want; the infrastructure owner is responsible for 

managing every piece of hardware and software s/he uses. Typically, it takes some time 

for a user to access a new resource, but it can be configured precisely as needed. 

Sometimes strict security and country rules and regulations force service users to have 

data located nearby and/or under total management control. In that case, the 

management of a company starts the OS layer, and the CSP ensures the infrastructure’s 

availability and reliability. Thus, there can be no ‘one-size-fits-all’ solutions for cloud 

adoption. Companies have to consider their own cost: benefit equation in this area and 

then decide on the best mode for achieving this. 

In CC, the required software does not operate on desktops but rather on web 

servers’ bases with shared virtual resources. According to the NIST (Mell & Grance, 2011, 

p. 12), CC can be broken up into three primary service models:

• Software-as-a-Service (SaaS): The CSP offers applications running on their

clouds. The responsibility for managing the underlying infrastructure falls on

the CSP, including the control of the applications. The consumer is

responsible for managing specific applications settings (see Figure 2.4).

• Platform-as-a-Service (PaaS): The CSP offers an infrastructure to deploy

applications developed using specific programming languages (e.g. Python,

PHP or another code) supported by the CSP. Managing the underlying

infrastructure falls on the CSP without any control over the consumer’s

applications. The consumer is responsible for maintaining the applications

and some environment configurations (see Figure 2.4).

• Infrastructure-as-a-Service (IaaS): The CSP offers the necessary resources

pool to deploy the consumer’s systems and applications. The consumer is

responsible for managing the OSs, storage and applications and has some

control over the network components (see Figure 2.4).
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SaaS

• On-demand CRM (e.g. Salesforce.com)
• On-demand email (e.g. hosted Exchange, Google Mail)
• On-demand ERP (e.g. NetSuite)
• Web conferencing (e.g. WebEx, Citrix On-demand)
• Many other ISV offerings

Services Service providers

PaaS

• Microsoft Azure
• Rackspace Cloud Sites
• Salesforce.com – force.com, VMforce
• Google App Engine
• Other offerings from hosted service providers

IaaS

• Amazon EC2
• Rackspace Cloud Servers
• Attenda RTI
• Other offerings from hosted service providers

Figure 2.4: Types of CC service providers 

Some argument related to the NIST framework remains. Duan and Wang (2017) 

claimed that along with the NIST service models, ‘network-as-a-service’ (NaaS) should 

be listed as a separate service model. NaaS can include the most common features of 

the network, such as flexible and extended custom routing, intrusion detection or 

prevention system, virtual private network, security firewall and network content 

monitoring and filtering. Further, Ali et al. (Ali et al., 2015) offered a new term in cloud 

service – ‘anything-as-a-service’ (XaaS). They noted that this ‘anything’ could be like 

‘routing-as-a-service’, ‘data-as-a-service’ and ‘security-as-a-service’, all of which are 

common in the communication area. 

2.5.3 Cloud computing deployment models 

According to NIST (Mell & Grance, 2011), most companies opt for one of four main cloud 

deployment models, which differ significantly: public, private, hybrid and community 

(see Figure 2.5). Other web-based organisation systems, which are not so widespread, 

include virtual private and intercloud systems. 
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Figure 2.5: Properties of types of CC deployment models 

• Private cloud: The cloud infrastructure is provisioned for exclusive use by a 

single organisation comprising multiple consumers (e.g. business units). It 

may be owned, managed and operated by the organisation, a third party or 

some combination of these, and it may exist on- or off-premises. 

• Community cloud: The cloud infrastructure is provisioned for exclusive use 

by a specific community of consumers from organisations with shared 

concerns (e.g. mission, security requirements, policy and compliance 

considerations). It may be owned, managed and operated by one or more of 

the community’s organisations, a third party or some combination of these, 

and it may exist on- or off-premises. 

• Public cloud: The cloud infrastructure is provisioned for open use by the 

general public. It may be owned, managed and operated by a business, 

academic or government organisation, or some combination. It exists on the 

premises of the cloud provider. 

• Hybrid cloud: The cloud infrastructure is a composition of two or more 

distinct cloud infrastructures (private, community or public) that remain 

unique entities but are bound together by standardised or proprietary 

technology that enables data and application portability (e.g. cloud bursting 

for load-balancing between clouds). 
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2.5.4 Cloud computing general security issues 

In general, the significant concerns regarding CC fall under five categories, as shown in 

Table 2.1. 

Table 2.1: CC general security issues and challenges 

# Category Description 

1 Load Balancing 
The service provider should ensure the services’ elasticity and 
scalability, even during peak hours or when the user initiates an 
unusually high demand on the resources. 

2 
Single Sign-On 
(SSO) 

SSO access to multiple web-based cloud applications with a single ID 
and password. It includes an approach to manage identity and access 
security code for both traditional and cloud-based users and 
applications.  

3 Availability 

Ensure reliability and timely access to data and resources to 
authorised clients. It means that all the CC resources and applications 
must provide adequate functionality to perform in a predictable 
manner with an acceptable performance level.  

4 Privacy 

Privacy in CC is about the accountability of organisations to data 
subjects and the transparency to an organisation’s practice around 
personal information. The new concepts that clouds introduce, such 
as virtualisation, live VM migration and trusted computing, create 
new challenges to the security and privacy community.  

5 Risk Assessment 
The risks of using CC should compare to the risks of staying with 
traditional solutions such as desktop-based models. 

 

When it comes to outsourcing critical workloads and applications to the cloud, 

organisations must provide the right people with timely access to the tool(s) and 

information they need to do their job(s) or perform tasks. Balancing, scalability, 

usability, and provisioning mean that a user should ensure the services’ elasticity and 

scalability, even during peak hours or when users suddenly place an unusually high 

demand on the resources. It can be challenging to strike the right balance between 

security and usability. When millions of users need access to cloud-based resources, user 

provisioning (and de-provisioning) must be simple, efficient and scalable (Botta, Donato, 

Persico, & Pescapé, 2016; Vaquero, Luis, & Buyya, 2011). 

In addition, organisations need to tie cloud-based applications together with 

internal applications and enable users to easily access them with an SSO authentication 

(Matloob, 2019). This helps streamline life cycle management and restrict authorised 

internal and external user access to CC services components, authorised by 

management, including software, data and output. The complete life cycle of a cloud 
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service includes internal and external cloud resources, through self-service provisioning 

to decommissioning. This life cycle tailoring is necessary for the flexibility to deliver the 

full required software stacks and the management rigour needed to ensure the CC 

services’ operational integrity. 

Perhaps the most significant concerns with regard to CC are security and privacy 

(Domingo-Ferrer, Farras, Ribes-González, & Sánchez, 2019). The idea of handing over 

relevant data to another company worries many clients and corporate executives might 

hesitate to take advantage of a CC system because they cannot keep their company’s 

information under lock and key. Security and privacy concerns appear to be the essential 

block to the wide adoption of CC systems. As noted in Table 2.1, the concepts that CC 

introduces, such as virtualisation, live VM migration, hypervisor, and vTPM, create new 

security challenges. 

Another point of concern in cloud systems is risk assessment (Oberheide, Cooke, 

& Jahanian, 2008). A risk assessment methodology in a cloud system becomes much 

more complicated when a service operator(s) migrate workloads from one VM to 

another, exposing the company to a threat source, increasing its vulnerability. For 

instance, if a VM is suspended during a live migration, this leads to extended migration 

downtime. Even in some cases, total migration time and server downtime are still 

extended to some degree. The transfer rate problem poses a high risk of continuing 

service operation (Choudhary et al., 2017). 

In many cases, the level of risk changes significantly according to the type of 

cloud architecture used. The cloud customer can transfer risk to the CSP and these risks 

should be considered against the cost-benefit received from the services. However, not 

all risks can be transferred. 

The following sections focus on the details of the significant security concerns 

discussed above.  

2.5.4.1 Cloud load balancing 

According to Volkova et al. (Volkova et al., 2018), CSPs have continued to lack services 

to guarantee data and access control policy consistency across multiple data centres. 

They identified several consistency problems that can arise during cloud-hosted 

transaction processing that are using weak consistency models. 

A study by (N. Zhang, Lou, Jiang, & Hou, 2014) presented trusted data-intensive 

execution, a trusted execution environment optimised to provide close-to-bare middle 
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performance for data-intensive implementation in the cloud. They proposed to perform 

computation on decrypted user data inside a trusted execution environment. In their 

model, the load-balancing server was responsible for resource allocation. 

Mathew et al. (Mathew, Sebastian, Sabu, & Joseph, 2015) proposed an efficient 

load-balancing mechanism in the mobile ad-hoc network, which was designed using 

trust-based malicious node detection. In this study, load balancing was performed by 

rejecting the malicious nodes below a specific trust cut-off.  

In line with Xu, Tian and Buyya (Xu, Tian, & Buyya, 2017), the common thread 

among Amazon’s Dynamo database, Google’s BigTable storage system, Facebook’s 

Cassandra and Yahoo!’s PNUTS is the relaxed notion of consistency provided to support 

massively parallel environments. Such a comfortable consistency model adds a new 

dimension to large-scale applications’ complexity and introduces a new set of 

consistency problems. 

2.5.4.2 Single Sign-On 

Trusted computing (see Section 2.9 for further information) can enable platforms to 

provide trusted services such as cryptographic erasure of data, negotiations for the 

supply of services, SSO and digital signatures. Trusted platforms improve on this concept 

further because users can use attestation identities and measurements to prove to the 

network that user authentication is being done correctly and that any network 

authentication method is being executed as expected. 

A study by Wilson and Hingnikar (Wilson & Hingnikar, 2019) proposed a method 

and apparatus for solving identity management in modern applications and SSO access 

based on TC technology. Their method implemented the vTPM, using a randomly 

generated password, different from the login password, by sending a one-time 

password to the user over some other trusted communication network. 

J. Han et al. (Han et al., 2019) believed that SSO and OpenID had been released

to solve security and privacy problems for cloud identity. They proposed using TC, 

federated identity management and OpenID web SSO to address identity theft in the 

cloud. 

2.5.4.3 Availability 

A study by Liu, Zhang, Liu, & Zhang (2015) proposed an improved model based on the 

Biba integrity model (Biba, 1977). Their study first described subjects’ infection level by 
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separating the subjects into uninfected and infected subjects and introducing a 

confidence interval. Further, they reduced the subject’s integrity level and prolonged 

the life cycle by adopting TC to adjust the subject tags. 

A whitelist security management system based on TC ensures that the operating 

conditions are secure in its full life cycle. This system provides security in the whole life 

cycle, covering system loading, ruling and data availability in CC (Guo et al., 2020).  

Ramamoorthi and Sarkar (2020) proposed a solution that could be implemented 

on the browser to ensure a secure sign-out process. Their primary aim was to analyse 

the way SSO works in a browsing envirounment and the policies necessary to ensure the 

physical protection of the product during its entire lifecycle. Their proposed model 

integrated a protection strategy intending to maximise the availability of a system 

serving multiple demands. 

P. C. Clark, Irvine and Nguyen (2014) believed that life cycle activities ensure that 

a high-assurance product reflects the intention to ensure that the product is 

trustworthy. Its users have a high level of confidence that vigorous efforts have been 

made to ensure the absence of unspecified functionality, whether accidental or 

intentional. Their purpose is to provide the personnel policy necessary to protect the 

confidentiality and integrity of a product during the development and maintenance 

phases of its life cycle. Integrity and security policies are the primary concern of this 

plan, although confidentiality is not disregarded. 

An earlier study, (Nguyen, Levin, & Irvine, 2005) described the policy and high-

level processes involved in distributing the TC exemplar product to external users. Their 

document was driven by the TC exemplar lifecycle management plan, the configuration 

management plan and the quality assurance plan. This multifactor research and 

development initiative’s focus was to transfer knowledge and techniques for high-

assurance trusted system development to new developers, evaluators, and educators. 

2.5.4.4 Privacy 

A recent study conducted by Fuhry and Kerschbaum (Fuhry & Kerschbaum, 2020) 

showed a novel approach for client-controlled encryption – fully homomorphic 

encryption, CryptDB. In addition, hardware-anchored in-memory databases allow range 

searches using an enclave. 

A study by Mowbray, Pearson and Shen (Mowbray, Pearson, & Shen, 2012) 

found that TC mechanisms could be used to enhance privacy management; the vTPM 
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could provide encryption services and allow integrity checking of the software privacy 

manager. They described different possible architectures for such privacy management 

in CC, gave an algebraic description of obfuscation features provided by the privacy 

manager and explained the way policies might be defined to control such obfuscation. 

By these means, CC users could reduce the risk of their private data being stolen or 

misused, and in addition, assistance could be given to CSPs to help them conform to 

privacy law. 

Agrawal, Kaushal and Chouhan (Agarwhal et al., 2020) examined the data 

encryption and query on encrypted data with TC from the three angles of security, 

performance and databases. Their research focused on security and privacy issues in 

cloud service models and cloud deployment models, along with various cryptography 

mechanisms of data protection such as symmetric and asymmetric cryptography. 

2.5.4.5 Risk assessment 

A study by Jouini and Rabai (2019) dealt with security problems in CC systems and 

showed a user-oriented TC system based on a vTPM. In addition, they proposed a 

generic framework by using a quantitative security assessment model named multi-

dimensional mean failure cost, which uses a remote attestation incorporated into the 

transport layer security handshake process (Dierks & Rescorla, 2008) by using a vTPM. 

At the time of their study, this framework had resisted common attacks and had 

effectively achieved trust in the computing system to the end-user. 

A paper by Y. Zhang et al. (2017) proposed a novel public verification scheme for 

cloud storage using TC security mechanisms. They further extended the passive defence 

scheme to support batch verification and turn the dynamic operation into an active one, 

combining the terminal platform’s integrity and the trustworthiness of the platform’s 

identity. As a result, their study showed a measuring mechanism that could effectively 

resist the security threats from a malicious or risky terminal. 

Wu, Zhan, Zhao, Hu and Li (2016) introduced a trusted third party and proposed 

a trusted evidence collection method based on TC’s technology. Security features 

provided by a trusted platform control module were used to introduce a cloud platform 

authorised evidence collection agent in each layer of the cloud platform. 

By considering certificate-less public key cryptography and the TC technologies, 

Zhuo, Fenghua, Jianfeng, & Wenjiang  (Zhuo, Fenghua, Jianfeng, & Wenjiang, 2014) 

proposed a certificate-less-based trusted access protocol for wireless local area 
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networks. The new contract’s security properties were examined using the extended 

Canetti-Krawczyk security model (Canetti & Krawczyk, 2001). 

2.6 Virtualisation 

In a traditional environment consisting of physical servers connected by a physical 

switch, IT organisations can obtain detailed management information about the traffic 

that travels among the servers from that switch. Unfortunately, that information 

management level is not typically provided from a virtual switch via the physical network 

interface controller that attaches to VMs. Therefore, the concept of virtualisation needs 

to be understood and implemented in CC systems to allow both the users and owners 

better and robust management and usage of the cloud (see Figure 2.6). 
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Figure 2.6: Virtualisation process in CC 

CC is a network-based environment that focuses on sharing computations and 

resources. It is characterised as a pool of virtualised computer resources. In addition, 

cloud suppliers utilise virtualisation technologies combined with self-service abilities for 

processing resources through network frameworks; the internet and various VMs are 

facilitated on the same physical server. Because of this virtualisation, CC enables 

workloads to be sent and scaled rapidly through VMs or physical machines’ fast 

provisioning. 

Virtualisation is enabling technology for VM migration since it decouples a VM 

from a physical server. Using virtualisation, two or more OS’s might run in a single 

machine with each having its resources. There are several conventional approaches to 

virtualisation, with differences in how each of them controls the VMs. Figure 2.7 shows 

the following three main virtualisation approaches, as outlined by Sabahi (2011, 2012): 
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a) OS-based virtualisation, in which the virtualisation is enabled by a host OS

that supports multiple isolated and virtualised guest OSs on a single physical

server in such a way that all are on the same OS kernel with exclusive control

over the hardware infrastructure.

b) Application-based virtualisation, in which the virtualisation hosted on top of

the OS. This virtualisation application then emulates each VM that contains

its guest OS and related applications. This virtualisation architecture is not

commonly used in commercial environments.

c) Hybrid-based virtualisation, in which the hypervisor is available at the boot

time of the machine to control the sharing of system resources across

multiple VMs. In this architecture, the privileged partitions (also called the

parent partitions) managed the virtualisation platform and hosted VMs. In

this architecture, the privileged partitions view and control the VMs.
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Figure 2.7: Virtualisation approaches (Sabahi, 2012) 

In CC, VM migration is the method for moving a considerable amount of data and 

applications into a cloud; the cloud type can be public, private or hybrid (Coyne et al., 

2018). A VM migration is required when customers change their computer systems or 

move up to new systems or when systems merge and require load balancing. Likewise, 

it is required when the customers move their data from one place to another inside the 

same cloud or from one cloud to another for some personal or business reason (Nelson, 

2018). 
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There are two kinds of VMs: 

• Full virtualisation: This requires processor support for virtualisation. The 

unmodified guest OS can run in the VM. All operations that are privileged or 

depend on the privileged state are intercepted by the hypervisor and 

simulated to provide an impression of having full control over the machine 

(Chisnall, 2008). 

• Para-virtualisation (PV): The guest OS must be aware that it runs under a 

hypervisor’s (Xen’s hypervisor) control and instead of performing privileged 

operations directly, it requests the hypervisor (Xen hypervisor) to conduct 

them. XenServer makes use of PV for I/O virtualisation; I/O requests from any 

other non-domain 0 VM (called domU) are sent to dom0. Dom0 is a specially 

privileged VM which has access to the physical hardware (Chisnall, 2008). 

In support of many of the most established virtualisation organisations, the 

distributed management task force provides an open virtualisation format for packaging 

and distributing virtual appliances to achieve a standard. 

2.6.1 Virtualisation security issues 

CC is usually thought to be the computing infrastructure for future generations. It is an 

efficient method that enables users to utilise giant volumes of resources and it provides 

a practical, delay-free and accessible on-demand service. With the adoption of a cloud 

model, users lose control over physical security. Users raise concerns about whether 

unauthorised parties can access their data since many users share these resources over 

the cloud (Almorsy, Grundy, & Müller, 2016). 

In the cloud model, security involves three dominant considerations (see Figure 

2.8): confidentiality, integrity and availability (Harris, S., 2016). Confidentiality consists 

in protecting the data and information from disclosure to an unauthorised person. 

Integrity involves protecting the data and information from being modified by an 

unauthorised person. Availability includes authorised people being able to access and 

use the data and information whenever they require. 



32 

Figure 2.8: CC security aspects and challenges 

Securing access to protected data and information is restricted to the particular 

level of the user who is authorised to access it. This requires mechanisms to be in place 

to control access to protected data. The sophistication of the access control mechanisms 

should be on par with the value of the information being protected; the more sensitive 

or valuable the information, the stronger the control mechanisms need to be. The 

foundation on which access control mechanisms are built starts with authentication, 

authorisation and encryption (Novak, Ben-Zvi, & Ferguson, 2017). 

The VM can be migrated to multiple hypervisors, from any hypervisor to a target, 

or beginning with one cloud then on to the next hypervisor. It is a challenging task to 

migrate VM and it involves different security issues, such as trust, confidentiality, 

privacy, integrity and availability, as described in Table 2.2 (Tchernykh, Schwiegelsohn, 

Talbi, & Babenko, 2019). 
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Table 2.2: Categorisation of threats in CC 

Category Description 

Trust 

The idea of trust, adjusted to the case of two parties 
involved in a transaction, can be elaborated as follows: 
‘Entity A is considered to trust Entity B when Entity A 
believes that Entity B will behave exactly as expected and 
required’.  

Security 
identification 

of threats 

Confidentiality 

Confidentiality means that only approved parties or 
systems can access the ensured data. The threat of data 
compromise increases in the cloud because of the 
increasing number of parties, devices and applications 
involved, which leads to an increase in the number of 
points of access.  

Integrity 

A crucial part of InfoSec is integrity. Integrity means that 
resources can be changed only by authorized parties or in 
approved ways and refers to data, software and 
hardware. Data integrity refers to protecting data from 
unapproved deletion or adjustment. Software integrity 
refers to protecting software from unauthorised deletion, 
theft or modification.  

Availability 

Availability refers to the data, software and hardware of a 
system being accessible and usable for approved clients 
upon request. System availability means that a system can 
carry on with operations even if some authorities 
misbehave. 

 

2.7 VM migration 

Virtualisation is a technology that is applied for sharing the capability of physical 

computers by dividing the resources among the OSs. VM migration is one of the 

advantages of virtualisation, which helps to migrate an OS across multiple physical 

machines. In other words, virtualisation technology aims to achieve different resource-

management objectives, such as load balancing (e.g. move VMs to a less busy host and 

make use of the newly added capability), fault management, low-level system 

maintenance (e.g. move VMs off a host before it is shut down), recovery from host 

failure (e.g. restart VM on a different host) and resource sharing through VM migration 

(Choudhary et al., 2017). 

Multiple hosts can become overloaded, and this can require a VM to dynamically 

transfer a certain amount of its load to another machine with minimal interruption to 

the users. This process of moving a VM from one physical host or storage location to 
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another is called migration (C. Clark et al., 2005). From the perspective of migration, a 

VM can be divided into three parts: 

• Running state – Ex. Memory data, CPU states, and all external device 

states 

• Storage data – Ex. Disk data 

• The network connections between VM and its users 

In particular, VM migration is a powerful management technique that gives data 

centre operators the ability to adapt the placement of VMs to satisfy security objectives 

better, improve resources utilisation and communication locality, mitigate performance 

hotspots, achieve fault tolerance, reduce energy consumption, and facilitate system 

maintenance activities. Despite these potential benefits, VM migration also poses new 

requirements on the secure design of the underlying communication infrastructure 

between VMs, such as secure migration of a VM from one host system to another. 

To perform a basic VM migration configuration includes a source machine and a 

target machine. Both must be running integrity VM and must be able to run the guests. 

Both machines must conform to their operating system requirements and restrictions, 

and both must be able to provide the allocated resources to the guest. If the guest uses 

2 GB of memory on one machine, it must use that amount on the other machine. 

Similarly, if the source machine can provide a guest with four virtual CPUs, the target 

machine must also be able to provide them.  

There are three types of VM migration: cold, warm, and live. 

• Cold migration occurs when the VM is shut down. To migrate a VM, it is 

first stopped, at which point the memory content of the VM is written 

into a directory. This file, the definition file of the VM and its disk images, 

is then transferred to the new host, where the VM's execution is 

resumed. The data can be transferred either over the network or by using 

some storage medium. This form of VM migration is known as cold 

migration. 

• Warm migration occurs once both source and target hosts are available 

within minutes as data copy continues to stream to the target until 

completion. In other words, the VM on Host 1 is suspended, and the RAM 

and CPU registers are copied across to Host 2, which then continues some 

seconds later. 
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• Live migration occurs while the VM is running. In live migration, the VM

is kept running during the transfer and the migration can be performed

without perceivable interruption in service for the connected peers. This

involves copying across the RAM while the VM continues to run, marking

‘dirty’ (changed) RAM pages and re-copying them, and then briefly

suspending the process for the final copy (C. Clark et al., 2005).

In non-live (i.e. cold or warm) migration, all applications running on the VM are 

stopped or suspended during the VM migration, while in live migration, all applications 

continue running without any interruption. To clarify the differences between these 

three migration types, Table 2.3 illustrates their features and requirements (Choudhary 

et al., 2017; C. Clark et al., 2005; Ferris, 2019).  

Table 2.3: Types of VM migration 

VM type 
VM power 

state 
Change host 
or datastore 

Shared storage 
required 

CPU 
compatibility 

Cloud migration Off 
Either or 

both 
No 

Different CPU 
families allowed 

Warm migration Suspended 
Either or 

both 
No 

Must meet CPU 
compatibility 
requirements 

Live 
migration 

vMotion On Host Yes 
Must meet CPU 

compatibility 
requirements 

Storage 
vMotion 

On Datastore No N/A 

Enhanced 
vMotion 

On Both No 
Must meet CPU 

compatibility 
requirements 

Moving a VM from one inventory folder/ resource pool to another folder/ 

resource pool in the same data centre is not a form of migration. Unlike migration, 

cloning a VM or copying its virtual disks and configuration files are procedures that 

create a new VM—copying a VMs is also not a form of migration. By using migration, 

the system admin can change the compute resource that the VM runs on. For instance, 

the system admin can move a VM from one host to another host or cluster. Depending 

on the power state of the VM that system admin migrates, migration can be one of the 

VM types, as discussed in Table 2.3. 
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To perform VM migration, the source and destination hosts must be configured 

systematically. That is, all the network and storage resources must be configured the 

same on both hosts. A systematic configuration includes a shared local area network, 

identical network interfaces configurations, storage area network-based boot disks and 

identical fibre channel port configurations. 

There are two techniques for moving the VM’s memory state from the source to 

the destination are ‘pre-copy memory migration’ and ‘post-copy memory migration’. 

Memory migration, in general, can be classified into three phases: 

• Push phase. The source VM continues running while certain pages are

pushed across the network to the new destination. To ensure

consistency, the pages modified during the transmission process must be

re-sent.

• Stop-and-copy phase. The source VM is stopped, pages are copied across

to the destination VM, and then the new VM is started.

• Pull phase. The new VM starts its execution, and if it accesses a page that

has not yet been copied, this page is faulted in, across the network from

the source VM.

2.7.1 Pre-copy memory migration 

In pre-copy memory migration, the first step called the warm-up phase; the hypervisor 

typically copies all the memory pages from source to destination while the VM is still 

running on the source. After the system has completed the first step successfully, then 

the VM will be stopped on the original host. The remaining dirty pages will be copied to 

the destination, and the VM will be resumed on the destination host. The time between 

stopping the VM on the original host and resuming it on a destination is called ‘down-

time’. It ranges from a few milliseconds to seconds according to the size of memory and 

applications running on the VM (see Figure 2.9). 

Figure 2.9: Pre-copy memory migration processes 
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There are a few steps to use this technology as below: 

• Do not freeze VM at source; let the VM continue to run 

• Copy VM’s pseudo-physical memory contents to target over multiple iterations 

o The first iteration ---> copy all pages 

o Each subsequent iteration ---> copy pages that VM dirtied during the 

previous iteration 

• Do a short stop-and-copy when a member of dirty pages is ‘small enough’ 

• However, what if several dirty pages never converge to a small enough number? 

o After a fixed number of iterations, give up and stop-and-copy. 

2.7.2 Post-copy memory migration 

Post-copy VM migration is initiated by suspending the VM at the source. With the VM 

suspended, a minimal subset of the execution state of the VM (CPU state, registers and, 

optionally, non-pageable memory) is transferred to the target. The VM is then resumed 

at the target. Concurrently, the source actively pushes the remaining memory pages of 

the VM to the target – an activity known as pre-paging. At the target, if the VM tries to 

access a page that has not yet been transferred, it generates a page-fault. These faults, 

known as network faults, are trapped at the target and redirected to the source, which 

responded with the faulted page. 

Post-copy migration sends the page exactly once over the network. In contrast, 

pre-copy can transfer the same page multiple times if the page is dirtied repeatedly at 

the source during migration. On the other hand, pre-copy retains an up-to-date state of 

the VM at the source during migration, whereas with post-copy, the VM’s state is 

distributed over both source and destination. If the destination fails during migration, 

pre-copy can recover the VM, whereas post-copy cannot (see Figure 2.10). 

 

Figure 2.10: Post-copy memory migration processes 

• Freeze the VM first 

• Migrate CPU state and minimum state to a destination 
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• Start VM at the target, but without its memory! 

• Transfer memory by concurrently doing the following 

o Demand paging over a network 

o Actively pushing from source 

o Hopefully, most pages will be pushed before they are demand paged 

• Advantage: 

o Each page transferred over the network only once 

o Deterministic total migration time 

• Disadvantage: 

o Could start penalty at the destination 

o If the migration fails, then VM is lost. 

2.7.3 VM Security Issues 

The security of contemporary has become more critical as data have become more 

widely distributed. Cloud computing is usually thought to be the computing 

infrastructure for future generations. Sharing the cloud with other users possesses risks 

and concerns over security. Security overall covers mainly three aspects: Confidentiality, 

Integrity and Availability. These aspects are the topmost considerations in designing a 

security measure to ensure maximum protection. Below are just a few examples of 

some VMs attacks. 

2.7.3.1 Cross VM Side-Channel Attacks 

This attack requires the attacker to be in another VM on the same physical hardware as 

the victim. In this attack, the attacker and victim are using the same processor and same 

cache. When the attacker alternates with the victim’s VM execution, the attacker can 

attain some information about the victim’s behaviour (Gruss D. et al., 2018). 

A side-channel attack makes an open door for a co-resident VM to obtain 

entrance data of other VM without their intermediation. It creates a bypassing method 

to access data. CPU cache, memory, power consumption and network used in the 

extraction of data inside channel attack. Software happenings will be followed by 

watching behaviour in hardware. 

The literature on Van Bulck, J. (Van Bulk J., 2020) paper highlight the needs for 

CPU cache reaction time to check whether the target VM co-resident or not. Cache 

behaviour is analysed utilising direct regression of the values gathered by load pre-
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process with a cubic spline and load indicator. A malicious VM occupies the central part 

of the CPU cache that targets co-resident by primary data demand.  

At this point, it executes a load-measuring program over malicious VM for 

measuring access time of cache. This study observes and demonstrates that higher 

cache access to time implies more activities by co-resident. The examination proposition 

additionally verified with three VMs sharing a resource. Vulnerable VM investigations 

CPU cache access to time as well as can get data of the objective machine. 

The studies of Lyu, Y., & Mishra, P. (2018) highlights the different strategies for 

defending side-channel attacks (e.g. Xenpump). This technique limits the effectiveness 

of timing channels. The transmission capacity of the synchronisation channel is 

restricted by including some irregular latency by Xenpump. Subsequently, confusion is 

made to vulnerable VM that gets channel transmission capacity. That unpredictability 

set up in the receiver VM in the generated latency information is a direct result of VM 

or hypervisor. This proposed model also decreases system performance. 

2.7.3.2 VM Isolation 

VMs run in the same hardware; they share all components such as processor, memory, 

and storage.  Isolating VM logically to prevent one from intervening with another is not 

enough since they share computation, memory, and storage. Therefore, the data may 

leak when it is in computation, memory, or storage. This is a severe issue. Hence, 

isolation should be at the VM and hardware-level, such as processor, memory, and 

storage (Bazm, M. M., Lacoste, M., Südholt, M., & Menaud, J. M., 2019). 

2.7.3.3 VM Escape 

The VMs or a malicious user escapes from the virtual machine manager supervision. 

VMM controls all VMs, and it is the layer that controls how the VM, or a user uses the 

underlying resources such as hardware. One of the most serious scenarios is that 

malicious code can go through unnoticed from the VMM and interfere with the 

hypervisor or other guests (Wu, J., Lei, Z., Chen, S., & Shen, W., 2017). 

2.7.3.4 VM Rollback Attack 

A study conducted by Pothuganti, S. (2020) showed that a VM rollback attack. It accepts 

hypervisor is compromised already. This compromised hypervisor tries to execute VM 

from its older snapshot without the owner’s awareness. This attack damages the target 
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VM’s execution history and undoes security patches, and updates make it vulnerable 

target VM. This lets an attacker bypass the security framework. 

     By rollback VM state that attacks an attacker gets an opportunity to execute 

a brute force password attack. This will happen when a brute force attack happened 

target VM raises a security alert, yet bargained hypervisor brings its past depiction by 

rollback and allows brute force attack to be possible. However, it creates a more 

complex solution because it cannot recognise the typical suspend/resume and rollback 

attack. 

Securely logging all rollback activities and evaluating them can prevent rollback 

attack. Indeed, even TPM can be utilised as a part of the security of log integrity. VM 

boot, VM suspend, VM resume, and VM resume is four hyper calls utilized to log 

information. Isolating and encrypting the VM’S memory hypervisor helps protect 

memory, hence creating a solution to the rollback attack. This solution additionally 

prevents hypervisor from altering or reading memory pages. 

2.8 Live VM migration 

Live migration helps decrease the machine (e.g. VM) migration service downtime due to 

large amount of storage, maintaining disk storage consistency and integrity, and 

improving reliability, business continuity, and disaster recovery. Live migration can 

simplify the movement of VMs across hosts and make it easier to manage a data centre. 

It can also help ensure better hardware utilisation in CC systems, optimising the 

distribution of VMs across the infrastructure. The VMs memory and network storage 

contents can be moved to stand-alone servers without interrupting availability. Power 

consumption is reduced, as when VMs are moved across hosts, the unused hosts can 

then be powered down to save energy (Hsieh, S., Liu C., Buyya, R., & Zomaya, A., 2020). 

In the past, moving a VM between two physical hosts required shutting down 

the VM, allocating the needed resources to the new physical host, moving the VM files 

and starting the VM in the new host. Now, live migration makes it possible for VMs to 

be migrated without considerable downtime. The transfer of a VM refers to the transfer 

of its state; the memory, storage and network connectivity of the VM are transferred 

from the original guest machine to the destination machine. Thus, the process of 

migrating VM without any perceptible downtime is known as live VM migration (C. Clark 

et al., 2005). 
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The live VM migration process includes several stages, as shown in Figure 2.11. 

Two physical servers, each with a virtualisation layer, host four OSs, with one being 

migrated between Physical Servers 1 and 2 in the same hypervisor (both VMs run on 

Xen hypervisor). This takes a conservative approach to the management of migration 

concerning safety and failure handling. 

Figure 2.11: VM live migration processes 

According to Clark et al. (2005), the actual migration procedure involves six main 

stages (Stages 0–5), which are briefly described below:  

• Stage 0 (Pre-Migration): Collect all the resources needed, such as memory,

CPU, disk usage, network bandwidth and the total number of processes from

both active running VMs that will be migrating between two different hosts.

• Stage 1 (Reservation): A request is issued to migrate a live VM migration from

one physical host to another by considering that all the necessary resources

are available on the receiver physical host. In addition, the VM migration

system initially confirms there is an appropriate size of the container is

available.

• Stage 2 (Iterative Pre-Copy): During the first iteration, the memory state of

the VM is pre-copied to the destination while the VM is running on the

source, transferring all pages from Physical Server 1 to Physical Server 2.
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After this, the virtualisation layer checks the VM memory to copy all the 

uncopied or ‘dirtied’ pages during the previous transfer phase. This means 

that subsequent iterations copy only those pages that were ‘dirtied’ during 

the previous stage. 

• Stage 3 (Stop-and-Copy): The process is suspended for about five 

milliseconds in the running OS instance (Toutov, Vorozhtsov, & Toutova, 

2019); that is, the VM at Physical Host 1 redirects its network traffic to 

Physical Host 2. During this interruption, the CPU state and all memory pages 

are transferred from the source host (Host 1) to the destination host (Host 

2). At the end of this stage, two copies of the VM memory are available in the 

two physical hosts. The copy of the source host will be resumed in case of 

any failure. 

• Stage 4 (Commitment): An acknowledgement of having successfully received 

a consistent OS image is sent to the destination physical host. After the 

destination physical host confirms receiving this acknowledgement message, 

the source physical host commits to the migration transaction, releasing all 

the migrated VM's resources and removing the original VM. 

• Stage 5 (Activation): The hypervisor issues a request to run the migrated VM 

on the destination physical host, and VM is activated. In this stage, the 

hypervisor organises the network management and keeps the same IP 

address. 

2.8.1 Live VM Migration Strategy 

From the perspective of live migration, a VM can be divided into three parts: Memory 

data migration, storage data migration, and network connection continuity. To avoid 

interrupting the services running in the migrated VM, all real-time states of a VM must 

be migrated to the new host. These data contain CPU states, memory data, and the 

buffer data of external devices. Generally, the transfer of the running state is called a 

memory data migration. Live VM migration hands over these three parts from the 

source site to the destination site (Choudhary et al., 2017). Therefore, it consists of three 

tasks, as shown in Figure 2.12. 
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Figure 2.12: Live migration strategy of VM 

There are a few types of memory data migrations, each of which requires sufficient 

planning beforehand and validation afterwards. 

2.8.1.1 Memory Data Migration 

To avoid interrupting the services running in the migrated VM, all real-time 

states of a VM must be migrated to the new host. These data contain CPU states, 

memory data and the buffer data of the external devices. Generally, the transfer of the 

running states is called memory data migration. 

Migrating the memory data of VM consists of moving the VM’s memory pages 

from the source hardware cluster to the destination hardware while the VM is all active 

and running. There are three primary phases to perform the memory page migration 

when it comes to the integrity (in-transit data cannot be modified without the other end 

being aware of it) of memory data migration (see Figure 2.13). 

• Push phase – the memory pages are pushed to the destination host while the 

VM is active and running. Modified pages are required to be re-sent for 

maintaining consistency. 

• Stop and copy phase – The VM is stopped on the source host, memory pages are 

copied to the destination host, and then on the destination host, the VM is 

started. 
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• Pull phase – The VM executes on the destination. When a memory page is

accessed which is not yet copied to the destination, it is faulted in (pulled) from

the source VM across the network.

Figure 2.13: The classification of memory data migration patterns 

2.8.1.2 Storage Data Migration 

This task of migrating the disk image of a VM to the new location is needed when 

the source host and the destination host do not share a storage pool. 

The type of migration undertaken determines how much system admin can be 

freed to work on other objectives. In storage migration, the data moving off 

existing arrays into more modern ones that enable other systems to access them. 

Offers significantly faster performance and more cost-effective scaling while 

enabling expected data management features such as cloning, snapshots, and 

backup and disaster recovery plan. Typically there are four basic types of 

different storage configurations are existing as below: 

The most common type is shared disk where VM images are stored on 

centralised network storage, and in that case, when there is a migration occurs, 

the actual image does not have to go anywhere physically; all it passed between 

server A and server B, as shown in Figure 2.14, in this case in the metadata and 

when the protocol that is used on the shared disk. 

Figure 2.14: An overview on share disk configuration 

Server A Server B 

VM 
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Another type of storage configuration is replicated disk. In this situation, the 

migration system uses an underlying hardware technology to provide that 

replication through the VMs. In this case, it is not a software solution; it is more of a 

hardware solution (see Figure 2.15). 

 

 

 

 

 

Figure 2.15: An overview on replicated disk configuration 

Remote referencing is another type of storage configuration which is using 

underlying network protocol like Network Block Device (NBD) (see section 2.11); 

when migration takes place, the disk image is not past; it is physically still in the same 

server originated in, but then destination server points back to the original image 

(see Figure 2.16). 

 

 

 

 

Figure 2.16: An overview on remote referencing configuration 

Finally, the last type of storage migration, called the shared-nothing 

situation, where there are no networked shared resources all in the storage, is the 

migration process with a local copy of VM server A and full copy on to the destination 

server (server B). There is not any sharing involved at all; it has to fully copy that 

entire image iteratively without disruption of the operation of the VM itself (see 

Figure 2.17). 
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Figure 2.17: An overview of a shared-nothing configuration 

2.8.1.3 Database Migration 

The database migrates data from one or more source databases to one or more 

target databases by using a database migration service. When the migration is 

finished, the source databases' dataset resides entirely, though possibly 

restructured, in the target databases. Clients that accessed the source databases 

are then switched over to the target databases, and the source databases are 

turned down. The following diagram illustrates this database migration process 

(see Figure 2.18). 

 

 

 

 

Figure 2.18: The generic database migration architecture 

After the data is completely migrated, the source databases are deleted and 

redirect client access to the target databases. Sometimes the migration process 

keeps the source databases as a fallback measure when encountering unforeseen 

issues with the target databases. However, after the target databases are reliably 

operating, the migration process eventually deletes the source databases. 

With database replication, in contrast, the migration process continuously 

transfers data from the source databases to the target databases without deleting 

the source databases. Sometimes databases replication is referred to as database 

streaming. While there is a defined starting time, there is typically no defined 

completion time. The replication might be stopped or become a migration. 
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2.8.1.4 Network State Migration 

After a VM is moved to a new location, a strategy is required to redirect its users' 

network connections to the new location, and with that, the network states need to 

be maintained to achieve a live migration. This can be achieved in a local area 

network (LAN) quite easily. One way is to send a gratuitous address resolution 

protocol (ARP) packet to the nodes in LAN and another way to send a reverse ARP. 

These ways cannot be implemented in a WAN as the VM’s IP address space would 

change.  

A few of the current live migration implementations use a gratuitous ARP 

packet such as the Xen facility, while others such as VMware use reverse ARP to 

maintain the network connectivity during LAN based live migration. ARP tables of 

the ARP packets are updated by mapping the VM’s IP address to the advertised link-

layer address. Correspondingly, the LAN switches update their content addressable 

memory tables when they receive ARP packets. 

2.8.1.5 Application Migration 

Similar to database migration, application migrations take place when companies 

switch vendors or platforms. This can include migrating applications from one data 

centre to another, such as from a public to a private cloud, or from a company’s on-

premises server to a CSP’s envirounment. CSP’s migrating applications must make 

sure their data can be communicated between the two applications. Each 

application may have a unique data model, so attention must be paid to how data is 

formatted. After all, an application is only as good as the data within it. 

2.8.1.6 Business Process Migration 

Business process migration is the complex transfer of applications and databases 

containing information about customers, products, and operations. Data migrations 

can be easy, but they must be planned for and validated once they are finished on 

time and within budget. 

2.8.2 Live VM Migration Security Issues 

Live VM migration includes a great deal of state transfer through the network. During 

this procedure, protecting the VM state files' contents is an important consideration, as 

the volatile state being transferred may contain highly-sensitive information such as 
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passwords and encryption keys. A secure channel is, at times, not enough for protection. 

Mutual validation among the hosts involved in the migration might be an even more 

critical issue to consider (Ahmed & Litchfield, 2018; Choudhary et al., 2017; Murray, 

Milos, & Hand, 2008). 

Like any other network-bound process, live VM migration is susceptible to 

network attacks such as ARP spoofing, ‘domain name system’ (DNS) poisoning and route 

hijacking. If an attacker somehow manages to place himself between the source and the 

destination host, he or she can then conduct passive (sniffing) or active MiTM attacks 

(Murray et al., 2008). The fact that the live migration procedure is usually carried out 

inside a LAN makes it even more likely that a network attack will be successful, especially 

in situations where different third parties run their VMs inside the same network subnet, 

which is the case in CC. 

2.8.2.1 Return Oriented Programming Attack 

Return-oriented programming (ROP) is one of the common attacks in live VM migration, 

which is a very effective attack. It utilizes existing code for an attack. A sequence made 

the Turing language of chaining which closes articulation consequently. This is an 

extension of data execution prevention, a security measure implemented in most 

systems today. ROP attack modifies the hypervisor data, which are usable for the control 

level of VM privilege level. 

An attacker can change their VM level from an average level to privileged. 

Literature (Jia, X., Wang, R., Jiang, J., Zhang, S., & Liu, P., 2013) proposes a defence 

strategy for the ROP issue. In this solution, the stack is analysed continuously for 

potential outcomes in the event of an ROP attack and isolated for further examinations. 

As ROP requires many addresses that are ranged in the program, this essential 

component is designed to look for ROP attacks utilizing libraries. 

2.8.2.2 Live VM Image Sharing 

VM can be instantiated from a VM image.  A shared image repository can be used to 

share VM images, or a user can have his own VM image. Since there is a repository for 

sharing VM images, some malicious users could take advantage of this feature to inject 

a code inside a VM. This will lead to a serious problem (Hashizume, K., Rosado, D. G., 

Fernández-Medina, E., & Fernandez, E. B., 2013). For example, a VM image may contain 
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malware. This malware is coming from the user who used it before. If the image is 

returned without properly cleaning it, sensitive data could be leaked. 

2.9 Hypervisor 

The hypervisor is a component of CC. A low-level program allows multiple OSs to run 

synchronously on a single host computer. There are (Mather et al., 2009) identified two 

types of hypervisors in CC: 

• Type 1 hypervisors are bare-metal hypervisors, which means the hypervisor 

is installed directly onto the server (e.g. Xen, ESXi and KVM), and different 

types of OSs (e.g. Windows 10, UNIX and Linux) can be installed on it (see 

Figure 2.19). The OSs are managed on a different hypervisor by a 

management console, which allows the hypervisors to automatically move 

the OSs between the physical servers based on their current resource needs. 

It is crucial to managing the resources on different servers in an efficient way 

to save energy, improve fault tolerance and prevent over-allocation, 

especially when the enterprise wants to provide services to a vast number of 

clients. 

• Type 2 hypervisors are hosted hypervisors that run on a host OS. This type of 

hypervisor is installed as a software application on an existing OS (e.g. 

Microsoft Virtual PC, Oracle VM for x86 and VMware Workstation). This is 

the most accessible type of hypervisor for an end-user to use on a personal 

computing device (see Figure 2.19). 

 

 

 

 

 

 

 

Figure 2.19: Types of hypervisor in CC 
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2.9.1 Xen project hypervisor 

The Xen hypervisor is an open-source hypervisor (Type 1) that allows end-users to run 

many instances of an OS or indeed, different OSs at the same time in a single host (or 

machine) (XenProject, 2018). It uses distinct features such as microkernel design, 

agnostic OS, drive isolation and PV as a basis for different commercial and open-source 

applications (e.g. IaaS, embedded and hardware appliances and security applications). 

The Xen hypervisor is installed directly on the server's hardware layer to run a 

different type of OS (e.g. Windows server 2012). It is responsible for handling a CPU, 

memory and interrupts. Each type is called a domain (guest). Domain0 in Xen hypervisor 

is a specific VM with the unique ability to access the hardware directly, communicate 

with another VM and manage all I/O functions of the systems. As shown in Figure 2.20, 

it is impossible to run the hypervisor without Domain0  (Xenproject, 2018). 

 

Figure 2.20: Diagram of the Xen project architecture 

2.9.2 Why this study used Xen hypervisor 

Virtualisation includes many types of commercial and open-source hypervisors. As a 

type of virtualisation technology, Xen hypervisor (bare-metal hypervisor) is preferred for 

many reasons, such as safety and stability, and is a well-tested choice for virtualisation 

technology (e.g. Amazon, Rackspace and Verizon). Studies have identified several 

additional reasons for using Xen hypervisor, as listed below (Ferroni, Colmenares, 

Hofmeyr, Kubiatowicz, & Santambrogio, 2018; Jeffers, Reinders, & Sodani, 2016): 

• Disaggregation: The ability to segment individual device drivers into small, 

nimble driver domains might be subject to hackers' attack. Further, an 
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unstable device driver can be isolated via disaggregation and quickly 

rebooted if it should fail. 

• Flexible virtualisation modes: The hypervisor provides different virtualisation 

modes that allow the administrator to adapt to the specifics in the 

hardware's workload and capabilities. 

• Multiple architectures: The software can run on traditional x86 32-bit and 64-

bit hardware. 

• Availability: The Xen cloud platform's availability ensures the user can control 

their VMs the way they want to, using whatever tool stack they choose. 

• Manageability: XenCenter provides all VM monitoring, management and 

general administration function through a single, intuitive interface, and it 

allows live running VMs to be moved from one host to another within a 

resources pool with no application or server outage.  

Thus, the Xen security model makes it an excellent choice for many research 

projects in different organisations' academic and commercial environments (Coker, 

2006). 

2.10 Trusted computing 

The meaning of the word ‘trust’ varies among people and contexts. As with the word 

‘security’, it has been so overused that it is almost meaningless without a specific 

definition. This section defines the meaning of Trusted Computing (TC) in the context of 

this thesis. This theme is returned to in the other chapters in this thesis as well. 

For this thesis, TC refers to a computer system for which an entity (whether the 

human user of a personal device or a program running on a remote machine) has some 

level of assurance that (part or all of) the computer system will behave as expected. The 

degree of this assurance depends on factors such as where the system is and in what 

environment the computer system is being used.  

Bodies such as the Trusted Computing Group (TCG, 2017) standardise specific 

functionality to be incorporated into end systems, which are known as ‘trusted 

platforms’. Depending on the way the specified functionality is implemented, such a 

platform is then able to provide a degree of assurance about some aspect of its 

operations. Thus, in this thesis, TC or Trusted Computing Base (TCB) refers to a set of 
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technologies that provides hardware and software support for secure storage and 

software integrity protection. 

TCB is the entire complement of protection mechanisms within a computer 

system (including hardware, firmware, and software) responsible for enforcing a 

security policy as the security perimeter is the boundary that separates the TCB from 

the rest of the system. TCB is integrated into virtualised computing platforms to enable 

the hardware-based protection of information and detect malicious software that aims 

to subvert the operation of virtualised environments. While these enhancements add a 

layer of security to the underlying data and applications, the use of TC in virtual 

platforms raises several challenges concerning the virtualisation of its hardware root of 

trust, the vTPM, which provides secure storage and cryptographic operations (Berger et 

al., 2006; Gollmann, 2010; Pfleeger & Pfleeger, 2002). 

The vTPM supports suspended and resumed operations and the migration of 

vTPM instances along with its VM across the platform. The vTPM is a potential security 

layer that provides grade-system protection, such as high add-in availability, scale 

security operations and accelerated network agility and incident response, for managing 

challenging situations to maintain the effectiveness of the security strategy between 

CSPs and Cloud Service Users (CSUs) (Berger et al., 2006). 

2.10.1 Virtual Trusted Platform Module migration 

In vTPM, migration is one of the essential features enabled through the command set 

extension. This study enabled vTPM instance migration using both symmetric and 

asymmetric keys to encrypt and package the TPM state on the source vTPM and decrypt 

the destination vTPM. 

This research is based on the vTPM migration on migratable TPM storage keys, a 

procedure supported by the existing TPM standard. The first step in this vTPM instance 

migration protocol is to create an empty destination vTPM instance for the migrating 

state. The virtual destination TPM generates and exports a unique identifier. The source 

vTPM is locked to the same nonce; an arbitrary number used just once in a cryptographic 

communication. All of the TPM states is exported with the nonce and the nonce is 

validated before import. This enforces the uniqueness of the vTPM and prevents the 

TPM state from being migrated to multiple destinations. The next step involves 

marshalling the encrypted state of the source vTPM. This step is initiated by sending to 

the source vTPM a command to create a symmetric key. The key is encrypted with a 
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parent TPM instance storage key and the asymmetric key is then retrieved from the 

source vTPM. This includes non-volatile data objects representing areas of flash storage, 

keys, authorisation and transport sessions, delegation rows, counters, owner evict keys 

and permanent flags and data. While the state is collected, the TPM instance is locked, 

so the state cannot be changed by regular usage. 

After this stage, the information is serialised, an internal migration process is 

updated with the data’s hash, and the piece of state information becomes inaccessible. 

The migration process is embedded into the last piece of state information and serves 

as validation on the target side. To recreate the virtual TPM state on the destination 

platform, the storage key of the vTPM parent instance (used to encrypt the symmetric 

key used to protect the vTPM instance state) must be migrated to the destination vTPM 

parent instance. After the symmetric key decryption, the migrating vTPM’s state is 

recreated, and the migration process is recalculated. 

The vTPM instance's operation can resume only if the calculated migration 

process matches the transmitted one in order to detect possible Denial of Service (DoS) 

attacks, where untrusted software involved in the migration alters the state. Live 

migration tries to reduce the downtime by replicating the running system’s image on a 

destination machine and switching execution to that machine once all pages have been 

replicated. The new vTPM migration protocol developed in this study can support live 

migration, but in the worst case, it can increase the downtime for the migrated system 

because of the time it takes to complete a special TPM operation, transfer the vTPM 

state and recreate it on the destination platform. 

2.10.2 Set Up the Standard Encryption Key Provider  

There are many security solutions today that are hardware-based; however, some are 

software-based. The others that exist in the virtual world, such as vTPM, Key 

Management Interoperability Protocol (KMIP), security certificates, are emulating 

hardware-based security devices. Today’s hypervisors are able to emulate many of these 

modern hardware-driven security devices to deliver these capabilities inside the VM. 

As part of the digital transformation reshaping modern IT, organisations can 

easily delegate key management to third parties such as their cloud platform providers. 

However, this effectively sacrifices integrity and confidentiality for convenience to 

satisfy their essential management needs. Leaving key management to third parties 
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means the organisation information could be exposed and accessed without the 

company’s consent. 

To address this, many organisations turn to virtual hardware security modules, 

hardened, on-premises physical devices that protect encryption keys and perform 

various cryptographic operations spanning key creation, rotation, destruction, and 

more. Before choosing vTPM as hardware-based protection, this research takes a closer 

look at KMIP. 

KMIP is not an encryption standard. However, rather an interoperability and 

transport standard. In general, it is a cryptographic standard that enables secure key 

exchange for encryption/ decryption without requiring direct access to the key. It 

enables secure key exchanges between servers and clients to support encryption and 

decryption operations, and then those keys and certificates are assigned values, and 

clients can use KMIP to conduct key management operation commands. 

KMIP server stores and controls managed objects such as Symmetric and 

Asymmetric keys, Certificates, and user-defined objects. The client then uses the 

protocol to access these objects to a security model implemented by the servers. The 

types of a managed object that KMIP manages include: Symmetric keys, public and 

private keys, certificates keys, split keys, and secret data (passwords). 

2.11 Network Block Device Protocol 

The Network Block Device (NBD) protocol was written and developed by Paval 

Machek in 1998. It is a standard protocol for Linux for exporting a block device over a 

network. NBDs are device nodes whose content is offered by a remote system. 

Technically, a network block device is realized by three components: the server 

part, the client part, and the network between them. On the client machine, on which 

is the device node, a kernel driver controls the device. Whenever a program tries to 

access the device, the kernel driver forwards the request (if the client part is not fully 

implemented in the kernel, it can be done with a userspace program) to the server 

machine, which the data resides physically. On the server machine, requests from the 

client are handled by a userspace program. 

2.11.1 Protocol Phases 

The NBD protocol has two phases: the handshake and the transmission. During 

the handshake, a connection is established, and an exported NBD device along other 
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protocol parameters are negotiated between the client and the server. After a 

successful handshake, the client and the server proceed to the transmission phase in 

which the export is read from and written to. The handshake is implemented in 

userspace on the client-side under Linux, while the transmission phase is implemented 

in kernel space. To get from the handshake to the transmission phase, the client 

performs 

ioctl(nbd, NBD_SET_SOCK, sock) 

ioctl(nbd, NBD_DO_IT) 

with nbd in the above being a file descriptor for an open /dev/nbdX device node 

and sock being the socket to the server. The second of the above two calls do not 

return until the client disconnects. Note that there are other ioctl calls available that 

the client uses to communicate the options to the kernel that were negotiated with the 

server during the handshake. This thesis does not describe those. 

When handling the client-side transmission phase with the Linux kernel, the socket 

between the client and server can use either Unix or Transmission Control Protocol (TCP) 

sockets. For other implementations, the client and server can use any agreeable 

communication channel. If TCP sockets are used, both the client and server should 

use setsockopt to set the TCP_NODELAY option to non-zero to eliminate artificial 

delays caused by waiting for an acknowledgement (ACK) response when a large message 

payload spans multiple network packets. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

Research is the art of scientific investigation (Kothari, 2004). In common idiom, the word 

‘research’ refers to a search for knowledge. This could be added to Kothari’s definition 

to call research a scientific and systematic search for relevant information on a specific 

topic (March & Smith, 1995; Redman & Mory, 1923).  

A research methodology is a systematic approach used to collect and evaluate 

data in the research process (Blagojević et al., 2017). The process involves defining 

guidelines for finding appropriate ways to manage problems, establishing an in-depth 

understanding of the topic, and searching for the solution space. These guidelines could 

be a formal process (e.g. mathematical algorithms), an informal process (e.g. textual 

descriptions) or a combination of these (Kothari, 2004). Research methodologies 

provide guidelines for justifying or evaluating phases in various science types, such as 

behavioural and design science (DS). For behavioural science, research methodologies 

are usually rooted in data collection and analysis techniques; in DS, they are used to 

evaluate artefacts' quality and effectiveness by using computational and mathematical 

methods (Senyo et al., 2018). 

In general, this chapter aims to expound the research strategy and describe a 

new research methodology that is a combination of the mixed-methods approach and 

DS research method, called Multi-Design Science Research Methodology (MDSRM), 

which was chosen to guide the study. This thesis aimed to create a new live VM 

migration framework for the CC system's integrity; this MDSRM approach was suitable 

because it allowed this research to produce a new solution and critically evaluate this 

study’s overall validity and reliability. An overview of the research methodology parts 

was shown earlier in Chapter 1, Figure 1.2. 

Selecting an appropriate research methodology to conduct a research process is 

not easy because of the wide range of methods available and the increasingly complex 

research subjects. Further, the way a research project is conducted depends on the 

research paradigms that are held and employed and the research tools utilised to pursue 

the research goals, objectives, RB and the RQs. Therefore, to select the most appropriate 

research methodology, it is necessary to understand the different research paradigms. 
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3.2 Research system methodology theory 

The term ‘research methodology’ refers to the theories on which researchers build their 

work (Snyder, 2019). In general, the research methodology was chosen for this thesis 

required exploring the issues in migration security for users and CSPs by considering the 

design of a practical integrity model and understanding the elements required to create 

a trusted cloud environment. This thesis adopted the methodological research process 

(Nunamaker Jr., Chen, & Purdin, 1990) and the Design Science Research Method (DSRM) 

(Offermann, Levina, Schönherr, & Bub, 2009) to create a suitable research methodology, 

as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Research methodology adopted for this research 
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3.2.1 Design Science 

DS is an outcome-based IT/ Information System (IS) research methodology that creates 

an artefact to address the problem and fulfil the defined requirements. This method is 

relevant to IS research, and it has been applied to IS security in this study. This 

approach's advantage is that the artefact can be examined in context, and continuous 

iterations and testing can improve the artefact. DS research should be able to answer 

the following questions (A. Hevner & Chatterjee, 2010): 

• What is the research question (design requirements)?

• What is the artefact? How is the artefact represented?

• What design processes (search heuristics) will be used to build the

artefact?

• How are the artefact and the design processes grounded by the

knowledge base? What, if any, theories support the artefact design and

the design process?

• What evaluations are performed during the internal design cycles?

• What design improvements are identified during each design cycle?

• How is the artefact introduced into the application environment and

how is it field tested?

• What metrics are used to demonstrate artefact utility and

improvement over the previous artefact?

• What new knowledge is added to the knowledge base and in what form

(e.g., peer-reviewed literature, meta-artefacts, new theory, new

method)?

• Has the research question been satisfactorily addressed? (p. 20)

The main aims of the DSRM approach are not only to develop an artefact but 

also to answer the RQs (Offermann et al., 2009). This meant that for this research, 

according to the above checklist, the DSRM needed to provide sufficient detail to 

determine whether CSPs should be constructing and using the artefact within their 

specific organisational context. In addition, it was essential to find a balance between 

the effort spent in creating and evaluating the evolving design artefact during the 

performance of the design cycle. 

3.2.1.1 Design Science Research Method 

DSRM was one of the research methodologies selected for this thesis because it is not 

problem-oriented; it is solution-oriented and focuses on solving real-world problems by 

creating and refining the artefact to get a good-quality solution. This was appropriate in 

this research since the situation required intervention in real-world operations. This 

thesis focused on all six steps of the above DSRM model. 
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The DSRM model aims to produce artefacts (Peffers et al., 2007). The artefacts 

can be in the form of a construct, model, method or an instantiation and some 

researchers understand artefacts as ‘things’; that is, entities with a separate existence 

(Goldkuhl & Mikael, 2010).  

DSRM is motivated by the desire to improve the environment by introducing 

these artefacts (Peffers et al., 2007). Peffers et al. developed the DSRM, a robust 

framework for researching DS's area in IS, based on Hevner et al.’s (2004) DS research 

model. Their model offers principles, practices and procedures to help carry out such 

research (depicted in Figure 3.2). DSRM involves six primary phases: 

1) identifying the problem and motivation; 

2) defining the objectives of a solution; 

3) design and development of the solution; 

4) demonstration of the solution working; 

5) evaluation of the solution; 

6) and communication with other researchers via publication.  

In other words, the DSRM consists of the research process and the methods used 

in that process, as well as the tools that can be used. The method sets out the rules of 

the process according to the IS development process used. Once the design process is 

defined, it is easier to compare studies and their results. 

 

Figure 3.2: A DSRM process model (Peffers et al., 2007, p. 54) 

Peffers et al. (2007) consolidate a method for researching the DS paradigm (see 

Figure 3.3), with their thesis reviewing a range of scholarly papers that have prescribed 
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solutions for problem-solving and artefact construction (Goldkuhl & Mikael, 2010; A. 

Hevner & Chatterjee, 2010; Mullarkey & Hevner, 2019). 

 

Figure 3.3: Research method proposed by Peffers et al. (2007) 

Iivari (Iivari, 2007) noted that the critical features of the DSRM model – ontology, 

epistemology, methodology and ethics – help to enhance the level of understanding 

created in high-quality DS research in IS. The DS paradigm provides structural guidance 

throughout the defined process, ensuring fidelity to best industry knowledge and 

changing user contexts. Further, it improves artefact design knowledge, which is an 

essential component of DS research (A. Hevner & Chatterjee, 2010). 

3.2.2 Multi-methodology model 

The multi-methodology research method was chosen for this thesis to provide a useful 

theoretical model for the research outputs' characteristics. Brewer and Hunter (1989) 

first mentioned the term ‘multi-methodology’. In the 1990s, the term ‘multi-

methodology’ became more prevalent in the behavioural, social, business and health 

sciences, and this expanded approach has become well known (Onwuegbuzie & Leech, 

2005). The multi-methodology approach (or multi-method research) utilises more than 

one method for data collection or includes a set of related studies. Mixed-methods 

research is consists of qualitative and quantitative data, strategies, approaches, or 

sample models in a research study (Johnson & Onwuegbuzie, 2004). 

Thus, these approaches are ways to deal with a professional and scholarly 

research focus that proposes research can be enhanced using different data types, 

techniques, methods, philosophies and standards (Morse & Niehaus, 2016). Multi-
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methodology research is an exploration approach that combines different methods with 

an end goal of managing the ‘richness’ of this present reality. The mixed methods in this 

research are ‘quantitative’ and ‘qualitative’ approaches (Mingers & Brocklesby, 1997). 

This methodology's primary benefit is that it adopts a practical approach to 

quantifying each problem's impact. It can be readily integrated with any other 

consolidation techniques to understand the research solution, frequently representing 

the connection between the problem and solution components. Additionally, this 

method helps explore the effects of design decisions and changes in the real world 

(Goldkuhl & Mikael, 2010). 

The focus of this part of the study was to answer RQ1, “How do we design, 

implement the establishment of and evaluate a live VM migration framework to protect 

the integrity of cloud systems?” The resulting proposed framework for a live VM 

migration framework was based on this multi-methodology research method, as 

illustrated in Figure 3.4 and Figure 3.5. 

According to Nunamaker et al.’s (1990) proposed framework (see Figure 3.4), the 

multi-methodology for IS research includes four main steps: theory building, 

experimentation, observation and system development. Theory building consists of 

developing new ideas and concepts, constructing a conceptual framework or new 

methods or models. The experiment involves selecting research strategies and is 

concerned with validating the underlying theories or issues of acceptance and 

technology transfer. Observation includes utilising research methodologies that are 

efficient in collecting the necessary data. System development involves five phases 

representing theory testing and permits a realistic evaluation of the added information 

technologies and their potential for acceptance. For this thesis, the multi-

methodological steps were systems development (Framework), theory building 

(Architecture analysis, dynamic analysis), observation (Scenario) and experimentation 

(Simulation, experimental), as represented in Figure 3.5. These steps are described in 

further detail in the following sections. 
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Figure 3.4: A multi-methodological approach to IS research 

(Nunamaker Jr. et al., 1990, p. 94). 

 

Figure 3.5: Steps of the multi-methodological approach undertaken in this thesis 
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This research was prepared to go back and forth within these steps if findings in a later 

stage required revising results obtained in an earlier stage (see Figure 3.6). 

 

Figure 3.6: Steps of Nunamaker et al.’s (1991) research process 

3.2.2.1 Systems development 

Research systems development is a crucial aspect of any research methodology. These 

integrated research efforts (often referred to as ‘projects’) can be recognised by their 

relatively long lifespan and the stages through which they grow. As a result, systems 

development can be seen as a legitimate approach to IS research and a critical 

contributor to the available methodologies (Nunamaker Jr. et al., 1990). 

Systems development consists of five stages: concept design, system 

architecture construction, prototyping, product development and technology transfer. 

Concept design is the adaptation of technological and theoretical advances to potential 

practical applications. Prototyping is used as a proof of concept to demonstrate 

feasibility. Systems development research often stops at this stage because the project 

has failed to meet the initial expectations. Projects that are judged successful are 

extended to become fully articulated production systems. This process allows a realistic 

assessment of the impacts of the information technologies included and their potential 

for being accepted. The transfer of technology represents the ultimate success of those 

theories, concepts and systems that complete the process. 

The development of a research system is configured to cover the research and 

development cycle that forms the system's conceptual framework (see Figure 3.3). Each 

development within the research system is connected with all five components of the 

cycle. Work in each part of the cycle is an essential and compelling foundation for 

transitioning to the next part of the cycle. 

3.2.2.2 Theory building 

A theory is a declaration of what causes what, why, and under what conditions (Wacker, 

1998). A theory can be an unexpected declaration or a demonstrated declaration (Glaser 
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& Strauss, 2017). According to Wacker (1998), a theory must have four fundamental 

criteria: conceptual definitions, domain limitations, relationship building and 

predictions. 

As noted earlier, theory building in any research involves the development of 

new ideas and concepts, as well as the construction of conceptual frameworks, new 

methods or models, as it creates a structure for the investigation and encourages 

advancement in a range of fields of research. A theory must be based on some main 

criteria that are common to all research methods, such as uniqueness, parsimony, 

conservation, generalisation, fecundity, internal consistency, empirical riskiness, and 

abstraction. Theories are generally concerned with generic system behaviours and the 

subject of rigorous analysis. 

In this research, the development of a system architecture helped the main 

scope of this research present the artefacts' components and defined the system 

requirements that would enable the performance of the proposed framework to be 

tested in the evaluation stage. In developing a system architecture phase, the desired 

functionalities of the artefact, its proposed framework and its development were 

defined. In this study, the proposed framework used existing theoretical knowledge to 

introduce artefacts that would support problem-solving. 

3.2.2.3 Observation 

Observation is a methodological data collection approach that researchers utilise to 

examine individuals in specific settings or realistic situations. The reasons for gathering 

observational data can include the following: 

• when the nature of the RQ to be answered is focused on solving a ‘how’ or 

‘what’ type of question 

• when the topic is relatively unexplored and little is known about the 

behaviour of people in a particular setting 

• when understanding the meaning of a setting in a particular way is valuable 

• when it is essential to study a phenomenon in its natural setting 

• when self-reported data is likely to be different from actual behaviour (i.e. 

what people do) 

• when implementing an intervention in a natural setting, and observation can 

be used in conjunction with other quantitative data collection techniques. 
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Observational data can help researchers to gain a deep and rich understanding 

of a phenomenon, situation and setting, as well as the behaviour of the individuals in 

that setting. It is an essential part of gaining an understanding of a naturalistic setting 

and its members’ perceptions. In addition, it can provide the foundation for theory and 

hypothesis development (Nunamaker Jr. et al., 1990). 

A scenario is a deliverable investigation into an event (or set of circumstances) 

that deeply explores and describes the context of interest. Rather than using a sweeping 

statistical survey to gather information, it thoroughly examines a contemporary 

phenomenon within its genuine setting, mainly when the limits between the event and 

context are not clear (Bartlett & Vavrus, 2016). 

The scenario is the most flexible of all research designs, allowing the researcher 

to retain real-life events' holistic characteristics while investigating empirical events. 

Using a scenario as an observation method in this research provided more realistic 

responses than other methods would have (Yin, 2017). 

3.2.2.4 Experimentation 

Experimentation is the utilisation and investigation of controlled perceptions and 

estimations to test the research theories (Rogers & Révész, 2020). The researcher 

designs the examination with at least one factor under the control condition to examine 

its impacts. Full explanations of the experimental research method have been provided 

by Campbell and Stanley (2015).  

A simulation model is a simplified representation of a real-life situation, which 

allows the understanding of the process under investigation over time. Simulation 

enabled this research to assume the inherent complexity of organisational systems as a 

given (Grix, 2018). Using different simulation methods in this study to answer the 

question, ‘What happened, how and why?’ helped to answer the question, ‘What if?’ 

Initially, a simulation technique is not precise; it does not yield an answer but merely 

provides a set of the system’s responses to different operating conditions. 

Further, simulation enables studies of more complex systems because it creates 

observations by ‘moving forward’ into the future and provides a way of evaluating a 

model by considering the key characteristics, behaviour and functions of a conceptual 

framework or process. In contrast, other research methods attempt to look back across 

history to determine what happened and how. In other words, while the model 

represents the framework itself, the simulation represents the operations of the 
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framework during a selected period. This can be costly because it often requires a 

significant amount of computer time. 

3.3 The conceptual research system methodology 

This thesis's research was based on an integration of the DSRM and multi-methodology 

research method, which was named MDSRM (see Figure 3.7). The main concern of the 

MDSRM was to help to meet the RB, RQs and research objectives of this study by reliably 

identifying integrated live VM migrations. This conceptual research system methodology 

provided the means to identify the integrated live VM migration regarding different 

attributes assessed by multiple sources and roots. The scope of this research was 

narrowed down to cover CC integrated migration systems with respect to CSPs. As Figure 

3.7 shows, each step in the MDSRM is divided into different phases, with the arrows 

indicating the transitions between the steps. 
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Figure 3.7: Multi-Design Science Research Methodology 

3.4 Data gathering 

If an organisation’s data is stored in their premises behind their firewall or an identifiable 

press, they can ‘point at it’ and collect it with their favourite software tools. However, 

the cloud is a challenging environment for e-discovery because the searcher does not 

have a ‘line of sight’ to their data; they can no longer point at it, harvest it quickly and 

drop it effortlessly into their database. There are some common obstacles for cloud 
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users when collecting their data in the cloud environment, such as difficulties with 

getting the data back out when they need to or international policies and regulations 

(e.g. the European Union general data protection regulation). However, this section 

focuses on the process of data collection and extraction rather than the challenges of 

collecting data in the cloud environment (see Figure 3.8). 
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Figure 3.8: This research data plan 

The traditional data sources of a historical research strategy, such as primary and 

secondary documents, as well as cultural or physical artefacts, were used for this 

research, as well as direct observation of the studied events and reviewing relevant 

expert reports.  

The two main methods of data collection used in this study were the literature 

review and a scenario. The literature analysis provided a theoretical basis for exploring 

and clarifying various research concepts. This information was gathered by defining 

relevant CC articles from sources such as academic papers, newspapers, books and 

technical reports, as well as security standard documents (e.g. Sysadmin, audit, network 

and security, Information Systems Audit and Control Association and NIST). The 
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qualitative approach used in this analysis was a scenario that was conducted to 

understand the context and help to answer the study’s RB and RQs. 

3.5 Data analysis 

The most commonly used method for studying qualitative observations is content 

analysis (Krippendorff, 1989; Mirkin, 2019). This consists of transcribing the qualitative 

data to create an analytical framework, encrypting and processing the information 

collected, and analysing it. For this study, the content analysis technique was the process 

of identifying the common patterns and selection criteria before starting to process 

them to achieve research aims and objectives critically. For example, while studying the 

data collected from VM migration in a cloud system to understand the most pressing 

issues faced by the cloud user and CSPs, researchers might find that ‘live VM’ and 

‘integrity of migration’ are the most commonly used technical terms and will highlight 

them for further analysis. 

According to Mirkin (2019, p. 5), a content analysis technique's objective is to 

provide knowledge and understanding of the phenomenon being studied. The analysis 

describes the material gathered for the investigation and examines its meaning. In the 

present study, a conventional content analysis technique served as the data analysis 

method to try to perceive what was said by the study participants as objectively and 

reliably as possible. 

The first step of this qualitative analysis was to arrange and prepare the data: 

that is, to transcribe the researcher’s interviews. The researcher then went through all 

the data to create an overall idea of the content, make sense of the data, and plan a 

finite number of categories to organise the data systematically. 

The second step involved data coding, in which the researcher held the 

information in coding units by connecting them to a particular category of the coding 

system before giving meaning to these units. This process, also referred to as ‘content 

analysis’, consists of classifying the material elements examined to enable the 

researcher to understand its characteristics and context better. This was achieved in two 

stages: segmentation and then grouping by category. 

The step of selecting the coding units is vital in the processing of qualitative data, 

as it determines the granularity of the analysis and guides the interpretation of the 

analysed content elements. At this point, two strategies can be envisaged: either to 
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appeal to type parameters (e.g. word, expression, sentence and message) or to establish 

coding units by giving them specific meanings that have arisen from the content 

components, such as the ideas expressed by the participants, as well as perhaps their 

way of speaking. The first approach allows for the study of a consistent segmentation of 

the text. In contrast, the second approach offers more flexibility and prepares the coding 

according to semantics categories. Combining the two methods allows both the rigour 

of formal segmentation and the richness of semantic segmentation. In this thesis, both 

of these approaches were used. 

3.6 Ethical considerations 

For any research effort, the researcher must consider the ethical values that can support 

the study process. As this analysis focused only on designing and implementing a 

framework, permission from the Auckland University of Technology Ethics Committee 

to start the study was not required. 
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CHAPTER 4: DESIGN OF THE FRAMEWORK 

4.1 Introduction 

A framework is a basic structure, system or concept (Choudhary et al., 2017). It is a broad 

overview or a skeleton of interlinked items that support a particular approach to a 

specific objective. It is considered that frameworks have the potential to deliver more 

natural, creative and intuitive methods for communicating with system design. The 

InfoSec security framework can help address many CC areas, such as application 

security, encryption, or data integrity. The challenge for this thesis was to find a way to 

understand this technique's scope from a theoretical perspective and its role in 

developing the research framework. Basically, the framework is a blueprint for building 

an InfoSec programme to manage risks and reduce vulnerabilities. For this thesis, the 

framework's design is customised to solve specific live VM migration problems to ensure 

the migration process's integrity. 

An examination of the existing research revealed a lack of empirical evidence and 

knowledge about some of the cloud system's critical issues, live VM migration processes, 

and the security challenges associated with the different systems and interactions 

(Choudhary et al., 2017). This chapter about designs presents a theoretical framework 

to support a systematic approach to designing a system framework and answering RB 

and RQs. The research framework assumptions are discussed, and the ways their 

parameters can be used to examine CC systems from a security requirement engineering 

perspective are highlighted. An overview of the research study design development 

model is shown in Figure 4.1. 
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Figure 4.1: Workflow of the research study design development model 

This chapter presents the background and motivation for this study and 

highlights this research topic's existing research. This is followed by a discussion of the 

design framework system requirements, assumptions and architecture. A design 

overview of the research framework phases and steps was given earlier in Figure 1.2. 

4.2 Background and motivation 

The use of a framework for IT governance and control provides a toolset that allows 

managers to bridge the gaps among the areas of control requirements, technical issues 

and business risks. In addition, the framework serves as a means of measuring the level 

of trust that has been achieved between the client and the vendor, as it shows which 

information or data can be shared and the responsibilities of each party in the 

relationship (Gray, 2019; Jouini & Rabai, 2019). 

In the production environment, live VM migration may encounter different 

failure types, such as system crash, network connectivity issues, memory, and storage 

data loss. As discussed in the previous chapters, this research aimed to examine the 

ecosystem of each type of migration's live VM migration-related tasks, as shown in 

Figure 4.2. 
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Figure 4.2: The ecosystem of live VM migration 

In Figure 4.2, SM and CLVM refer to a single migration and a correlated live VM 

migration, respectively. This chapter reviews only the technologies related to this 

research topic, shown in the figure's grey boxes. 

VM self-migrations have a two-stage stop-and-copy phase to guarantee 

migration consistency: the first stage stops all processes except the migration process. 

It scans the spoiled pages and the second stage transfers all the spoiled pages together 

in the final scan. Self-migration is rarely used for the cloud management system because 

of the complexity of its implementation and the intrusive deployment required for each 

VM. Migrations with different conditions have different challenges. A VM live migration 

framework over LAN, from one hypervisor to another, was proposed to mitigate the 

challenges related to this thesis topic, focusing on memory data migration's integrity. 

In this thesis, migration schemes have been classified according to three 

perspectives, as explained below: migration manner, migration distance and migration 

granularity: 

• Migration manner: VM migration can be conducted in two ways: non-live 

migration and live migration. Live migration is carried out under the 

prerequisite of no interruption to the running services, while non-live 

migration does not have this limitation. 
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• Migration distance: VM migration is divided into two categories: migration 

in LAN and migration over WAN. Migrating a VM in LAN means the source 

and the destination servers are in the same data centre. However, with the 

development of network technologies, the differences and boundaries 

between a metropolitan area network and WAN have disappeared (Borky & 

Bradley, 2019). In this thesis, migration over WAN refers to migration across 

data centres, focusing on live VM migration over the WAN network. 

• Migration granularity: VM migration comprises both SM and CLVM. SM 

migrates one VM when the VM is running independently; CLVM 

simultaneously moves several VMs that communicate with each other. 

In terms of the above three migration schemes, the main idea is to temporarily 

capture the target VM's working set data and outsource this working set data to a 

surrogate device during the migration period. This allows the framework process to 

access the backup device during the migration, while the migration I/O process accesses 

the original disk most of the time. 

4.3 Integrity verification 

A TPM-based integrity verification policy is used to verify the integrity of all migration 

participating entities: source platform, destination platform, the vTPM-VM to be 

migrated and the empty vTPM-VM container (Peiru, F., Bo, Z., Yuan, S., Zhihong, C., & 

Mingtao, N., 2015). In this research, the communication process of integrity verification 

in the live VM migration framework consisted of the following steps:  

• manual authentication and secure migration construction 

• integrity measurement request of the destination platform and integrity 

measurement process of the destination platform 

• integrity measurement request of the source platform and integrity 

measurement process of the source platform 

• reply to the integrity measurement requests of the source platform, vTPM-

VM to be migrated and the vTPM-VM container, and the integrity 

measurement process of the vTPM-VM container 

• verify the integrity verification process, the codes, data and configuration 

information of the source platform, the destination platform, the vTPM-VM 
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to be migrated, and the vTPM-VM container to prevent an untrusted entity 

participating in the migration of the vTPM-VM process (see Figure 4.3). 

Figure 4.3: Flowchart of the Kororā integrity verification process 

4.4 Integrity protection in the proposed framework 

Integrity is the provider's ability to detect changes or modifications to an original status 

of remote data stored in cloud storage. Some techniques implement integrity across a 

packet header and/or data filed by creating a hash across the packet contents 

(Tchernykh et al., 2019). Availability and confidentiality are also significant requirements 

for a secure working environment within the commercial sector. However, most 

approaches ensuring confidentiality are concerned about the integrity of the data as 

well; unauthorised access to the data automatically harms the data integrity. Therefore, 

Clark and Wilson (1987) proposed a security model that focused on integrity in 

recognised mathematical terms via a set of constraints or a valid state that had to be 
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satisfied. Since much of the research and development attention in the security arena 

has been devoted to developing sophisticated models (e.g. the Bell-LaPadula model) and 

mechanisms for confidentiality, capabilities in this area are considerably more advanced 

than those providing integrity. More recent NIST efforts (Nieles, Dempsey, & Pillitteri, 

2017) have been focused on the integrity issue. 

The next section examines the nature and scope of the Clark-Wilson (CW) model. 

It is then used as a fundamental theory for specifying and analysing an integrity policy 

for the proposed framework, Kororā. This focuses on the integrity of live VM job 

migration and adopts the CW model to live VM migration, focusing on the subjects, 

objects, and data exchange of users’ applications to enhance the security level of the 

live VM migration mechanism and provide more user convenience. 

4.4.1 Clark-Wilson security model 

The CW model's primary focuses are the security of the proposed system and the 

proposed design system framework's access matrix. In this model, the policies prevent 

information from flowing upward from a low-security level to a high-security level and 

accept information flowing downwards from a high-security level to a low-security level. 

Users have access to the programs rather than to the data. Data objects can only be 

manipulated by a specific set of programs defining the user role. Users might have to 

collaborate to secure some operations, which helps the organisations to assign different 

roles to different users (separation of duties). This model tries to address the 

relationship between the system and the acceptance of information from the outside 

world by insisting on auditing the transactions. This does not help with 

security/integrity, but it can prevent breaches. 

In summary, subjects or users are identified and authenticated, objects or data 

can only be accessed by authorised programs (ensuring integrity), subjects or users can 

only access specific programs, an audit log is maintained over external transactions, and 

the system must be certified in order for it to work. 

4.5 Design framework system requirements of Kororā 

As noted earlier, the use of an IT security framework is supported by tools that enable 

service providers to bridge the gaps among control requirements, technical issues and 

business risks (Jouini & Rabai, 2019). Kororā is capable of measuring and preserving the 

integrity of live VM migration in the cloud system. The expected benefits of using this 
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framework include increasing the level of integrity among different physical hosts. 

Consequently, within these security disciplines, the proposed framework system 

architecture aims to provide a straightforward mapping of the framework requirements 

and the framework requirements' validation tests. Ideally, this mapping should cover 

every element, specification and analysis. 

As discussed earlier, the proposed framework system requirements and the 

exact approach taken in developing solutions often depend on whether the system is an 

evolution of an already-understood product. In other words, the Kororā system 

architecture aims to meet the system elements noted below and the system 

architecture requirements and then to draw the system architecture diagram (shown in 

Figure 4.4). 

The system elements are as follows: 

• System Element 1: Integrity of configuration files: In this case, the VM image 

structure can represent a complete file system for given platform integrity 

(e.g. ‘vbox’ files in virtual box or ‘.vmx’ files in VMware). Both of these files 

can be edited by a third party to make changes in the configuration of the 

VMs. 

• System Element 2: Virtual hard disk integrity: The VM image's life cycle 

consists of different states. For instance, a VM image can be created, started, 

suspended, stopped, migrated or destroyed. Essentially, the VM images are 

loaded from a storage location like a hard disk drive and run directly from a 

VMM that does not understand the quality of integrity (e.g. ‘.vmdk’, ‘.vdi’, 

‘.ova’ files). The third-party can make changes to these files after running 

them in their environment; since it is the actual OS holding file, it would be 

easy to place a Trojan or any malicious program in the file. 

• System Element 3: The integrity of data files on the VM, including all 

confidential and system files: The VM is loaded from the storage location; the 

VM image may not comply with the intended settings and the configurations 

needed for proper implementation of each environment. The VM image itself 

could be distorted (perhaps by an insider) or even maliciously modified. This 

research found two ways to analyse these files before migration – ‘supply the 

data files’ and ‘system files hashsum’ – and then check them after migration.
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Figure 4.4: System architecture of the proposed framework
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4.6 Design framework system assumptions 

Many researchers have investigated cloud security problems in distributed 

environments; however, most of them have emphasised the implementation challenges 

of specific defence algorithms while overlooking various factors and the outcomes of 

considering each element on their proposed system developments. Therefore, it is 

essential here to propose a comprehensive process for preventing and detecting 

abnormal behaviour in cloud environments' current state to achieve multiple goals from 

both users and CSPs. 

This thesis is based on the following assumptions to improve the level of integrity 

in public cloud environments: 

• Assumption 1: An attacker does not have physical access to any server in LAN,

but it can exploit the software or system vulnerabilities of the VMs. Thus, the

VMs and the network are untrusted.

• Assumption 2: An attacker cannot spy on, damage, insert or delete messages

in the VM. Attackers are interested in abusing the VM migration to increase

their network benefits (e.g. starting their malicious VMs, acquiring

information about the transferred VM, migrating a malicious VM to a

trustworthy platform).

• Assumption 3: TPMs embedded in platforms can be trusted. The trust can

extend to the software tool that computes an object state for integrity

measurement using a root of trust.

• Assumption 4: VMs communicate with other VMs running on the same

platform, with similar hardware components and using the same hypervisor

(Xen).

4.7 Design framework system architecture 

The proposed framework system architecture involves a context-aware security model 

and the necessary components of enforcement mechanisms, integrity verification, and 

query middleware. This study has also introduced seven different agents to turn the 

proposed framework into a reality in the marketplace of secure live VM migration 

systems during the overall system design. Usually, the migration threads are added to 

the origin server if the live VM memory data migration is invoked. It is essential to 

eliminate unnecessary traffic to the source server to achieve adequate VM quality for 
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all the migrating/co-located VMs in the source server and rapidly migrate the VMs to 

the destination servers. Motivated by the above observation and analysis of idle 

snapshots in the backup server(s), this research proposed a system of exploiting these 

idle snapshots in backup servers to achieve these goals. 

The proposed framework provides a hypervisor-based VM migration protection 

system. In this system, the metadata should be marshalled in this migration without 

suffering any attacks. The VMM includes three different modules: The ‘data protector’, 

the ‘metadata administrator’ and the ‘security guard’. The data protector has the 

authority to encrypt and decrypt content that resides within the migrating VM in the 

protected migration. The metadata administrator organises the metadata for 

transmission and recovery in the migration destination machine. The security guard 

protects the live migration system from different threats. 

The approach of live migration is usually divided into three different sections: 1) 

migration of the process, 2) migration of memory and 3) suspend/resume migration. 

The proposed framework system architecture focused on a hypervisor that preserves 

metadata using cryptography and hashing algorithms. The protected live VM migration 

framework based on the hypervisor was designed to identify the different attacks and 

perform an independent secure migration process. The process of live VM migration in 

this research meant migrating a VM from a source host to a destination host without 

suffering any breaches. These requirements must be incorporated into the process of a 

secure live VM migration platform. 

Before the migration starts, it is essential to integrate the origin with the 

destination and verify whether the target is correct. Cryptographically, the destination 

network shows its identity as an origin of integrity establishment. To protect the process 

of live VM migration, effective access control policies must be provided. An 

unauthorised user/role can begin the live VM process and initiate the migration. The use 

of access control lists in the hypervisor prevents unauthorised activities (authorisation). 

In this research, the rights to perform these operations belong to the application server, 

which acts as the control manager.  

In such a context, the application of an access control policy requires different 

data to be encrypted with other keys to allow the external server to enforce access 

control and support selective dissemination and access directly. This research is 

assumed that access controls by users to the outsources data to be read-only. Therefore, 
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the data owner defines a discretionary access control policy to regulate read operations 

on the outsourced resources. This thesis uses a component in an access control system 

called the key distribution centre (KDC) to service user requests to access resources by 

supplying access tickets and session keys. The KDC will use cryptographic techniques to 

authenticate requesting users, lookup their permissions, and grant them a ticket 

permitting access. 

This research also considers the distributions of different encryption keys by 

using partitions KDC functionality between two different agents: the authentication 

server and the ticket-granting service (TGS). The authentication server issues ticket-

granting tickets following successful authentication of the user. Using the ticket-

granting-ticket, the user can access to the TGS and request a ticket to access a specific 

resources/ system. The TGS issues tickets for connection to resources in its domain 

based on a valid ticket-granting ticket presented by the user. 

An attacker may use route hijacking or ARP poisoning techniques in the 

migration process to initiate a MiTM attack. During live VM migration, the source and 

destination platforms need to perform mutual authentication to avoid MITM attacks 

(authentication). An encrypted network must be set up so that no data can be accessed 

from the VM content by an intruder and software alteration can be detected correctly. 

This helps prevent active attacks on live migration, such as memory manipulation, and 

passive attacks, such as sensitive information leakage (confidentiality and integrity of 

VM during migration). An intruder may intercept traffic and later replay it for 

authentication in the process of the VM migration. Therefore, the method of live VM 

migration should be immune to replay. Nonces can be used in migration to prevent 

playback attack (reply resistance). The source host cannot deny the VM migration 

activity, but public-key certificates can be used (source non-repudiation). 

Throughout the VM live memory data migration, the source server is quite busy 

with tasks such as executing the scheduled maintenance task, running many co-located 

VMs or waiting to shut down soon. In general, whenever VM live memory data migration 

is invoked, migration threads are introduced to the source server. It is vital to eliminate 

any unnecessary traffic to the source server to quickly achieve satisfactory VM 

performances for all the migrating/co-located VMs in the source server and migrate VMs 

to the destination servers. Motivated by the above observation and analysis of idle 
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snapshots in the backup server(s), this thesis proposed a framework that could achieve 

these goals by leveraging these idle snapshots in the backup servers. 

The next sections elaborate on the seven agents considered part of the design 

framework system architecture in the proposed framework (see Figure 4.4). 

4.7.1 Virtual Trusted Platform Module Agent 

A vTPM provides TC for multiple VM migration on a single platform (Berger et al., 2006). 

It is essential to move the vTPM instance data along with its corresponding VM data to 

keep the VM security status in synch before and after a live vTPM-VM migration process. 

The key to this process is creating ways to safely store and restore the vTPM instance 

data encrypted in the source system and destination platform. In addition, it needs to 

protect the integrity of the transferred information in the process of live vTPM-VM 

migration, as the migration of a VM over the internet is vulnerable to all the threats of 

data exchange over a public network. Current live VM migration schemes only check the 

hosts’ reliability and integrity, neglecting the verification process for the vTPM-VM to be 

moved and the vTPM-VM container. This poses a considerable security risk for vTPM-

VM migration. To solve this problem, the proposed framework uses vTPM to secure boot 

the VM(s) over the hypervisor (Xen hypervisor) (see Figure 4.4, Label 1). 

4.7.2 Input/Output Agent 

The I/O agent redirects the necessary I/O requests to the replacement device from the 

operating VM itself. To minimise I/O traffic to the original replacement device, it 

redirects all write requests on the replacement device (Zhou, Liu, Li, & Li, 2013). 

Meanwhile, the I/O redirects all the popular read requests identified by the data plane 

module to the replacement device. Suppose the replacement device has only partial 

data for a request. In that case, the I/O issues read requests to the original replacement 

device and merge the original device's data into the replacement device. Either the 

original storage device (Zhou et al., 2013) or the replacement device can be redirected 

to the read requests from the migration module. While the original storage device 

generates most of the virtual disk images, the replacement device provides the modified 

chunks (units of information containing either control information or user data). 

Because of the VM workload locality, most of the requests will be routed to the original 

storage device (see Figure 4.4, Label 2). 
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4.7.3 Data Plane Agent 

Different memory contents are moved from one host to another host in this module 

(e.g. kernel states and application data). The transmission channel must, therefore, be 

secured and protected from any attack. All migrated data are transferred as precise data 

without encryption in the live VM migration protocol. Therefore, an attacker may use 

one of the following techniques to position himself in the transmission channel to 

execute a MiTM attack: ARP spoofing, DNS poisoning, or route hijacking (Oberheide, 

Cooke, & Jahanian, 2008; Ver, 2011). These attacks are not theoretical. Tools such as 

Xensploit work against Xen and VMware migration (Perez-Botero, 2011) (see Figure 4.4, 

Label 3). 

4.7.4 Integrity Analyser Agent 

This agent aims to determine standard migration processes and decompose them into 

operational-level activities to make the migration process more transparent. This agent 

provides the core mechanism of integrity verification to assist Kororā, particularly with 

the migration of live VM data to the cloud (see Figure 4.5). 
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Figure 4.5: Components of the integrity analyser agent 

This agent uses the CW model as a fundamental theory for specifying and 

analysing an integrity policy for the proposed Kororā. It adopts the CW model to live VM 

migration, focusing on the subjects, objects (see Chapter 5), and their data exchange of 

users’ applications to enhance the live VM migration mechanism's security level and 

provide user convenience (see Figure 4.4, Label 4). 

4.7.5 Data Organisation Agent 

In the virtual disk images, the data organisation monitors reading requests' popularity 

from the live VM itself. Only the popular data blocks that will be read are outsourced to 

the replacement device. Since the replacement device serves all write requests, the 

popularity of write requests is not required. Each virtual disk image of the running VM 

is divided into chunks of fixed size, and the data organisation agent records each chunk’s 

access frequency. If the access frequency exceeds a predefined threshold for a particular 
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chunk, the entire chunk will be outsourced to the replacement device. All the 

subsequent accesses to this chunk will be served by the replacement device, which 

removes their I/O involvement with the migration process. By submitting read-only 

requests, the migration module usually scans the entire virtual disk files. Most of these 

requests will only be issued once, except for requests that read dirty blocks of data (see 

Figure 4.4, Label 5). 

4.7.6 Go Agent 

The Go Agent is a secure, lightweight process that manages the VM interaction with the 

hypervisor controller. It has a primary role in enabling and executing hypervisor VM 

extensions, which allow the post-deployment configuration of the VM, such as installing 

and configuring software. In addition, VM extensions enable recovery features such as 

resetting the administrative password of a VM. Without the Go Agent, VM extensions 

cannot be run in Kororā. Go Agent in Kororā is like the Azure VM Agent's role, which is 

to install by default on any Windows- or Linux-based systems and provides valuable 

features, such as local administrator password reset and script pushing (see Figure 4.4, 

Label 6). 

4.7.7 Libvirt Agent 

Kororā uses Libvirt Agent as its application programming interface (API). This package 

adds support for virtualised systems to automatically install and manage large numbers 

of Unix systems configurations. It is particularly suitable for sites with very diverse and 

rapidly changing configurations. Further, the Kororā system includes synchronisation 

markers that allow the host physical machine to force a guest VM back into synch when 

issuing a command; as Libvirt Agent already uses these markers, guest VMs are able to 

discard any earlier pending undelivered responses safely (see Figure 4.4, Label 7). 

To conclude, several secure, small, and innovative live migration framework designs 

such as TrustVisor and CloudVisor have been proposed to solve migration security. 

However, these designs either have reduced functionalities or pose substantial 

restrictions to the VMs. However, Kororā relies on a trusted hypervisor to deliver the 

security guarantee (integrity) and contributes a few specific characteristics. 

• Korora has not reduced functionalities or pose substantial restrictions to the VMs 

• Korora is addressing the threats from a complex hypervisor to VM data 

• Korora reduce VM’s and hypervisor TCB based on a microkernel approach 
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• It is not required to reimplement the VM’s and hypervisor from scratch, which is 

not easy to maintain. 

• Korora save VM’s migration features and not allows the migration features are 

lacking 

• Korora like some other framework, is supporting encryption-based protection 

• Korora also supporting features like Paravirtual I/O  

• Korora framework is based on seven software agents running on the Xen 

privileged ‘dom0’ and communicating with the Xen-hypervisor. 



 

87 

CHAPTER 5: EVALUATION SYSTEM ARCHITECTURE 

5.1 Introduction 

This chapter discusses the evaluation system architecture, defines the Kororā state 

machine framework, explains the proposed model state machine and the relationship 

between objects and subjects, the system model of live VM migration and the migration 

scenario. This chapter focuses on how evaluation system architecture can be adopted 

to define the research system state machine and, consequently, to identify how to apply 

the integrity model in the designed research framework, Kororā. 

Chapter 4 explained how the integrity model acts as a security strength evaluator 

and supports the live VM migration process. It can also be used as a benchmark to set 

up the cloud migration service security and find the weaknesses and strengths in the 

cloud infrastructure. The evaluation system architecture and a critical literature review 

have been adopted to answer the following two questions: 

• What are the essential system attributes of integrity established between the 

cloud provider and cloud consumer? 

• Regarding the cloud service security provider and cloud user services, what 

are the essential system characteristics of the published integrity established 

method? 

The following section discusses the evaluation system architecture, which is 

aligned with the solution design steps. 

5.2 Kororā evaluation system architecture 

One of the proposed integrity framework's primary aims was to consider the entire 

cloud integrity environment and capture all potential integrity attributes and elements 

as evidence, including functional and non-functional elements. Evaluation is a key 

analytical process for all intellectual disciplines. It is possible to apply different 

evaluation methods to provide information regarding the CSPs' complexity and ubiquity 

(Alabool & Mahmood, 2016). This research aimed to obtain a set of necessary evaluation 

components. In particular, the evaluation of the Kororā migration framework method 

was applied to review the secure establishment framework using the identification of 

these evaluation components and analysing their weaknesses and strengths. 
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Evaluation of the Kororā system architecture is considered a theoretical 

foundation for developing a secure live VM migration framework (Lopez, 2000). Its 

processes are shown in Figure 5.1, representing an overview of the evaluation 

components and their interrelations, helping to establish a clear pathway for this study. 
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Figure 5.1: Components of evaluation and the interrelationships between them (Lopez, 

2000, p. 6) 

Achieving a comprehensive and reliable integrity level in live VM migration 

processes was the main reason for using the evaluation theory in this study. Further, 

this theory offered a clear, formal description of the evaluation components depicted in 

Figure 5.2. 

 

Figure 5.2: The concepts of evaluation theory in this study’s development of the Kororā 

framework 
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These concepts are discussed in detail below: 

• Target – integrity between CSPs and CSUs: The level of integrity of CSPs and 

CSUs was chosen as the first step of the Kororā evaluation because the CSPs 

have not yet adopted a comprehensive security partnership to provide not 

only SSO but also responsive access controls between the internal and 

external services. In addition, both CSPs and CSUs are required to apply these 

features of cloud migration to enable a secure live VM migration process 

across the Xen hypervisor. This is why Kororā was developed to support CSUs 

in making more efficient decisions based on the system elements’ 

requirements. 

• Criteria – integrity elements of the CSPs and CSUs that are to be evaluated: 

This identifies the most suitable area and characteristics for defining the 

target evaluation. These criteria can be appropriate for a range of elements, 

and each element can be divided into several sub-elements (Tchernykh et al., 

2019). The absence of defined evaluation criteria and system design 

requirements makes it difficult for CSPs and CSUs to plan live VM migrations 

and implement sustainable, secure migration solutions. In general, the well-

known criteria for the cloud migration progress of cloud services, as 

discussed in the literature review, are security (confidentiality, integrity and 

availability), performance, accessibility and usability, scalability and 

adaptability. Of these, the focus of this thesis was security and integrity. Once 

the main research criteria had been identified, the CSPs or CSUs needed to 

evaluate the integrity elements. 

• Yardstick/standard – the ideal secure live VM migration framework measured 

against the current secure live VM migration framework: This study focused 

on the security requirements for the integrity of migration from one VM to 

another in PaaS cloud environments as a yardstick for measuring and 

verifying the Kororā framework when running over a Xen hypervisor. This 

step allowed the integrity verification of live VM migration by running parallel 

testing, testing multiple topologies, injecting fault and testing case studies. 

• Data-gathering techniques – critical or SLR needed to obtain data to analyse 

each criterion: Data-gathering techniques are required to obtain data and 

analyse each criterion. Based on the standard IT evaluation, three primary 
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strategies – measurement, opinion and assignation – were identified as being 

practical here. Observation techniques were used for gathering subjective 

criteria for the opinion step. Measurement was used to extract the 

requirements from the appropriate documentation and guidelines. This 

study used the proposed framework and a checklist to refer to a series of 

commands and instructions to verify that the Kororā was operating correctly. 

• Synthesis techniques – techniques used to access each criterion and, 

therefore, to access the target, obtaining the evaluation result: Evaluation 

theory synthesis techniques are a procedure for combining several empirical 

studies (Barnett-Page & Thomas, 2009). This research and the proposed 

framework relied heavily on a practical synthesis of the literature obtained 

from the guidelines and the documents reviewed. Further, a quantitative 

method was applied by counting the primary studies classified in each 

answer to the RQs and counting the numbers of scholarly papers found in 

each bibliographic source per year; qualitative methods included several 

representative studies for each criterion. 

• Evaluation process – a series of tasks and activities used to perform the 

evaluation: The evaluation process was used to examine InfoSec products' 

characteristics, which is the initial process in describing the essential parts of 

Kororā integrity verification. According to Lopez (2000), the preparation and 

examination processes are critical in research evaluation theory. In this step, 

the evaluation target, evaluation criteria and decision-makers were 

identified as follows: 

o a set of A crucial framework elements, called: A = (A1, A2, …, Ai) 

o a set of C essential framework components, called: C = (C1, C2, …, Cj) 

o a set of integrity elements called: I = (I1, I2, …, In) 

o a set of K cloud service user, Kororā framework, called: K = (K1, K2, …, Km). 

5.3 Security terminology 

A brief description of the specific security terms used is a useful background for 

discussing the CW model. The following terminology emerged from the literature review 

analysis of various sources on this subject: 
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• Integrity: There has been much debate in the InfoSec community over the 

meaning of integrity. For this study, integrity was defined as the quality, 

correctness, authenticity and accuracy of the information stored within an IS 

(Biba, 1977). 

• Security policy: The IS's goal is to control or manage subjects' access (users, 

processes) to objects (data, programs). This control is governed by a set of 

rules and objectives called a security policy. Security policies are governing 

principles adopted by organisations (Mayfield, Roskos, Welke, Boone, & 

McDonald, 1991). 

• Identifier (I): An identifier is either an ‘HTTP’ or ‘HTTPS’ uniform resource 

identifier or an extensible resource identifier. This research defined various 

kinds of identifiers designed for use in different contexts. 

• User Agent (UA): The end-user that runs a VM migration process is called a 

UA, with a node on the client network (the client agent) forwarding packets 

destined for the CSPs (the provider node) to a care-of address on the foreign 

network. 

• Relying Party (RP): A CSP that wants proof that the end-user controls an 

identifier. 

• OpenID Provider (IDP): An IDP authentication server on which an RP relies, 

assuming that the end-user controls an identifier. 

• IDP Endpoint Channel (IDPEC): A back-secured channel that accepts OpenID 

authentication protocol messages, obtained by performing discovery on the 

User-Supplied Identifier (USI). This value must be an absolute ‘HTTP’ or 

‘HTTPS’ Uniform Resource Locator (URL). 

• IDP Identifier (IDPI): An object for provider OpenID, which provides a way to 

prove that an end-user is managing an object. It does this without the RP 

needing access to end-user credentials (e.g. a password) or other sensitive 

information (e.g. live migration metadata). 

• User-Supplied Identifier (USI): An identifier that has been presented by the 

end-user to the RP or selected by the user at the IDP. During the initiation 

phase of the protocol, an end-user may enter either their identifier or an IDPI. 

If an IDPI is used, the IDP may help the end-user select an identifier to share 

with the RP. 
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• Claimed Identifier (CI): An identifier that the end-user claims to own; the 

overall aim of the protocol is verifying this claim (Siriwardena, 2020). 

• IDP-Local Identifier (IDPLI): A different possibility identifier for an end-user 

that is local to an ID and thus not necessarily under the end-user’s control. 

• Integrity Authority (IA): An organisation used to verify the mutual attestation 

process using the vTPM-enabled platforms. 

• Generated Identifier (GI): An identifier that has been developed by a TPM or 

vTPM. 

• Challenge Attester (CHA): CHA is an attester that sends the challenge for the 

attester (IDP, USER and RP) to check their integrity. By default, CHA uses 

binary remote attestation to check the system integrity, but in this scenario, 

it uses a direct anonymous attestation technique (Brickell, Camenisch, & 

Chen, 2004) for integrity checking. 

5.4 Kororā state machine framework 

This research's proposed framework is a state machine framework, with the state 

expressed in Figure 5.3 and Figure 5.4. This consists of subjects, objects, access 

attributes, access matrix, subject functions and object functions. 

The subjects of the proposed model are defined as follows: Generate vTPM 

Identifier (G), User-Supplied Identifier (USI), IDP Endpoint URL (IEU), Identifier (I), Claim 

Identifier (CI) and IDP-Local Identifier (IDPLI). The objects of the proposed model are 

Relying Party (RP), OpenID Provider (IDP), User Agent (UA), Trust Authority (TA) and 

vTPM. Access attributes are defined as follows: Read, Write, Read/Write and Execute. 

In the access matrix, each member represents the access authority of the subject to 

object. 
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Figure 5.3: The relationships between the objects and subjects 

The proposed model state machine is as follows: 

1) t∈T, where T has sorted Quaternion, each member of T is t 

2) T = (a, B, c, D), where, 

3) a ⊆ (S ×O× A) 

4) B is an access matrix, where 𝐵𝑖𝑗⊆ A signifies the access authority of 𝑠𝑖  to 𝑜𝑖 

5) c ∈ C is the access class function, denoted as c= (𝑐𝑠, 𝑐𝑜 ) 

6) D signifies the existing hierarchy on the proposed framework 

7) S is a set of Subjects 

8) O is a set of Objects 

9) A = [r, w, a, e] is the set of access attributes 

10) ee: R×T → I×T shows all the roles in the proposed framework, in which e is 

the system response and the next state, R is the requests set, and I is the 

arbitrary set of requests, which is ‘yes/no/error/question’. In this study, the 

question is important because if the response is equal to the question, it 

means that the current rule cannot deal with this request. 

11) ω = [𝑒1, 𝑒2, ..., 𝑒𝑠 ], ω is the list of exchange data between objects: 

W (ω) ⊆ R× I×T ×T 

(𝑅𝑘, 𝐼𝑚, T*, T) ∈ W (w) 

if I𝑚 ≠ Question and exit a unique J, 1≤ j≤s. It means that the current rule is 

valid; subject and object are also valid because the object verifies the vTPM 

of the other object (attestee) by request (challenge) integrity checking. 
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Consequently, the result is, 

(I𝑚 , 𝑡 ∗ ) = 𝑒𝑖(R𝑘 , 𝑡), which shows for all the requests in the t there is a 

unique response, which is valid 

Where, a ⊆ (S×O×A) where S is a set of Subjects, O is a set of Objects, and 

A = [r, w, a, e] is the set of access attributes 

12) 𝑐𝑠 is the security level of the subject, including the integrity level 𝑐1(𝑆) and 

category level 𝑐4(𝑆). Figure 5.3 shows the security level in the proposed 

framework and the relationships between the subjects and objects. 

𝑐𝑜 signifies the security function of objects. Figure 5.3 illustrates the 

relationships among the entire subjects, objects, security functions, and the 

proposed framework's security level. 

13) The integrity of the vTPM is highest in the state machine and lowest in the 

UA. Therefore, the integrity level is 𝑐1(𝑇𝑃𝑀), 𝑐2(𝑇𝐴), 𝑐3(𝐼𝐷𝑃),  𝑐4(𝑅𝑃) and 

level 𝑐5(𝑈𝐴); this study should prove that each state of the proposed 

framework is secure. It has been assumed that each state is secure in Kororā 

except for State 3, called Data Plane (see Figure 4.4). Therefore, if State 3 is 

secure, all the states are secure. 

14) Σ (R, I, W, z0) ⊂ X×Y×Z 

15) (x, y, z) ∈Σ (R, I, W, z0), if (z𝑡 , y𝑡 , z𝑡 , z𝑡−1) ∈ W for each t ∈T, where z0 is the 

initial state. Based on the above definition, Σ (R, I, W, z0) is secure in all states 

of the system; for example, (z0, z1, … , z𝑛) is a secure state. 

16) The CW model has several axioms (properties) that can be used to limit and 

restrict the state transformation. If the arbitrary state of the system is 

secure, then the system is secure. In this study, the simple-security property 

(SSP) is adopted (McLean, 1985). This property states that an object at one 

level of integrity is not permitted to read an object of lower integrity. 

17) t = (a, B, c, D) 

18) Satisfies SSP if, for all s∈S, s∈S ⇒ [(o∈ a (s: r, w)) ⇒ (𝑐𝑠 (𝑠), > 𝑐𝑜(𝑜))], 

i.e., 𝑐1(𝑠) ≥ 𝑐2(𝑜), 𝑐3(𝑠) ⊇ 𝑐4(𝑜). 

𝑐1(𝐺) ≥ 𝑐2(v𝑇𝑃𝑀), 𝑐1(𝐼𝐸𝑈) ≥ 𝑐2(𝑅𝑃). 

Based on Figure 5.3, Figure 5.4 and the SSP axiom, all the objects of Kororā use 

two primary concepts to ensure the security policy is enforced: well-informed 
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transactions and separation of duties. The integrity axiom is ‘no read down’ and ‘no 

write up’, which means a subject at a specific classification level cannot read and write 

to data at a lower or higher classification, respectively. The star property, discretionary 

security, and compatibility property are other models that can limit and restrict the state 

transformation and be used in future work. 

 

Figure 5.4: Security level, subject and object of the proposed model 

Using the Kororā state machine framework showed that there was a need to 

consider the following questions about the integrity level of any live VM migration 

process: 

• Which attributes and characteristics must be chosen for integrity level 

measurement? 

• How is the value of each attribute determined? 

• Which algorithm should be applied for determining the integrity level? 

• How can the required result be achieved? 

• How can it be disseminated to the CSPs and CSUs? 

The evaluation theory found three system elements (see Section 4.5) that 

represented the Kororā as a state machine to answer these questions. Based on this part 

of the study results, this research implemented the Kororā, as presented in the next 

chapter. 
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5.5 The system model of live virtual machine job migration 

Virtual TPM provides TC for multiple VMs running on a single platform (Berger et al., 

2006). It is necessary to transfer the vTPM instance data along with its corresponding 

VM data to keep the VM security status synched before and after a live vTPM-VM 

migration process. The key to this process is finding a way to store vTPM data encrypted 

in the source platform and restoring them safely in the destination platform. It also 

requires finding a way to protect the integrity of the transferred data in the process of 

live vTPM-VM migration, where it is vulnerable to all the threats of data exchange over 

a public network. These include leakage, falsification and loss of sensitive information 

contained in the VM and vTPM instances. 

Many types of research have focused on the issues of a secure vTPM-VM 

migration process (Danev, Masti, Karame, & Capkun, 2011; X. Liang, Jiang, & Kong, 2013; 

Peiru, Bo, Yuan, Zhihong, & Mingtao, 2015; Wan, Zhang, Chen, & Zhu, 2012). An 

implementation of vTPM was first reported by Berger et al. (2006). 

In this research, a kind of data integrity protection mechanism was added to 

enhance security. However, the job migration framework was based on an important 

assumption: that the destination is truthful. Many kinds of vTPM key hierarchies have 

been proposed in this study to make non-migratable vTPM keys migratable. In addition, 

based on these new hierarchies, a secure live vTPM-VM migration has been designed. 

An enhanced VM migration adds a nonce to the authentication process between 

the source and destination platform so that a malicious user cannot intercept the 

transmission and execute replay attacks. Through the vTPM realised on Xen hypervisor, 

Huang (Huang, 2014) applied an identity encryption mechanism and secure channel 

technology to implement secure data transmission. In addition, a vTPM-VM migration 

(Sadeghi, Stüble, & Winandy, 2008) was presented to solve the timing problem of 

running vTPM in an independent domain. An improved vTPM migration protocol (Peiru 

et al., 2015; Wan et al., 2012) based on the trusted channel was promoted before as 

well, but it only gave an outline of the secure migration without specifying whether it 

applied to VM migration or not. 

Four participating entities are involved in one vTPM-VM migration process: 

source platform, destination platform, the VM that remains to be transferred with its 

corresponding vTPM instance and the empty vTPM-VM container for accepting the 

incoming data. Current VM migration schemes only verify the hosts' authenticity and 
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integrity but ignore the verification process for the vTPM-VM to be transferred and the 

vTPM-VM container. This poses a considerable security hazard in vTPM-VM migration. 

This research designed an improved vTPM-VM migration framework containing 

a novel TPM-based integrity verification policy and a specific encryption scheme to solve 

this problem. The verification policy could be used to verify the authenticity and integrity 

of all participating entities. The particular encryption scheme had a key associated with 

a certain platform status, which could protect the VM and vTPM instances' key data. 

With this framework, the confidentiality, integrity, and freshness of the transmitted data 

in the VM migration process were under TPM hardware protection, so VM migration 

could not be exploited by attackers or intruders (Oberheide, Cooke, & Jahanian, 2008). 

As shown in Figure 5.5, the VM migration is vulnerable to security threats. An 

attack can occur in different VM migration situations, such as between the system 

administration and the VM, the VM and the hypervisor, the VM from one hypervisor to 

another VM in the other hypervisor, and between VMs in the same hypervisor. 

 

Figure 5.5: Migration attack scenarios within CC 

A vTPM does not have a hardware-based component, so instead, when the data 

to be secured is written to the ‘non-volatile secure storage’ by the guest OS, which is 

encrypted using VM encryption. From the migration security standpoint, the use of the 
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described vTPM and live VM migration provides several potential threats in the cloud 

system, as follows: 

• Control panel: The system administration controls the operation of the server 

through the control panel. Usually, system administration is authorised to 

perform all functions, such as creating a VM, deleting a VM, migrating a VM 

and altering a VM configuration. Thus, attackers who obtain access to this 

interface can harm the system. Configuration errors made by the system 

administrator can increase the security risk by compromising the whole 

system. 

• Communication attacks between the host OS and guest VM: A VM can 

communicate with its host and vice versa because all its resources are 

assigned by the host OS. The host OS has complete control over all guest VMs 

running on it. A compromised host can harm the guest VM. Similarly, a 

malicious guest VM can compromise the host OS. 

• Transmission channel: The VM migration protocol does not encrypt the 

migration data by default. The migration data appear as explicit texts over 

the network. They are vulnerable to MiTM attacks. The attacks that can occur 

in the transmission channel include manipulating authentication services, 

manipulating kernel memory, eavesdropping on messages for sensitive data, 

passwords and keys, and capturing authenticated packets and replaying 

them later. 

• Communication attacks among VMs: Although each VM is isolated, it can 

communicate with others. This increases the potential for malicious VM 

attacks on other VMs running on the same platform. 

This research specifically focused on the last situation of communication attacks 

among VMs in the same hypervisor. Figure 5.5 represents the migration attack 

scenario's overall view, showing the hypervisor's hardware and hypervisor, excluding its 

live migration module. 

5.6 Migration scenario 

It is assumed that vTPM-VM migration occurs in a LAN, the system administrator is 

trusted, and the attacker cannot obtain administrative privileges. Both source and 

destination platforms are equipped with a TPM chip. Permanent files are stored in a 
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shared storage server. When a VM with its vTPM instance is moved from one physical 

platform to another, the permanent files do not need to be moved simultaneously. Thus, 

the migrated vTPM-VM running on the destination platform can still access its files. 

The system administrator wishes to migrate the first VM from a source platform 

to a destination platform. Since this VM is equipped with a vTPM to implement TC, its 

vTPM instance should be moved to the destination platform as well. This study assumes 

that an attacker can only compromise or alter the software's state on the source and 

destination platforms before or after the vTPM-VM migration. Once the migration 

begins, the attacker cannot compromise nor alter the state of the software. 
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CHAPTER 6: IMPLEMENTATION 

6.1 Introduction 

Critical concerns for cloud users are protecting workloads and data and ensuring security 

and integrity for VM images launched on CSPs. For live VM and workload data 

protection, cloud user organisations need a framework for placing and using their 

workloads and data in the cloud securely. Current provisioning and deployment 

frameworks include either storing the VM and application images and data in the clear 

(i.e. unencrypted) or having these images and data encrypted by the keys controlled by 

the service provider, usually applied uniformly to all the tenants. 

VM images, which are effectively containers for OS and application images, 

configuration files, data and other entities, need confidentiality protection in a multi-

tenant cloud environment. These images need to be encrypted and decrypted by keys 

under tenant control in a transparent way to the CSP. 

6.2 Related work 

Scientists have formulated various algorithms and techniques for the migration of VMs, 

to reduce the downtime the migration requires. Some of the research relevant to this 

field is described below: 

• Data Deduplication is a live VM migration technique that prevents large 

chunks of data from migrating, thereby reducing migration time (Takahashi, 

Sasada, & Hirofuchi, 2012). This operates on the idea that only selected 

memory material that has been altered on the source server is transferred. 

Thus, this phase of migration involves only those parts of the VM updated at 

the source end. 

Dirty Block Tracking (DBT) and Diff format are the two major components 

that work behind data deduplication. The role of DBT is to record all the 

operations that cause changes in the image of the VM disk, while the Diff 

format is used to store the reported data. DBT monitors and labels each 

changed disk page as a dirty file. 

Only the pages identified by the DBT are migrated to the storage; the rest are 

left behind. Data deduplication is beneficial for VMs undergoing multiple 

migrations, resulting in multiple destination servers. As it reduces the 



 

101 

migration time by a factor of 10, it is one of the most effective techniques for 

live VM migration. 

• Shrinker (Riteau, Morin, & Priol, 2011) is a live VM migration system that 

allows VM clusters to migrate between data centres linked via a network. 

Throughout integrating data duplication and cryptography hash functions, 

Shrinker reduces the data to be migrated. 

This operates on the principle of handling distributed information, allowing 

chunks of VMs to be migrated in multiple data centres across different 

servers. Shrinker is different from traditional live VM migration methods as 

it provides source and destination server hypervisors to interact with each 

other during the migration. The cryptographic hash function maps these data 

blocks and assigns unique hash values accordingly. 

Shrinker has a coordinating service that runs at the origin end when indexing 

at the destination. The coordination service’s work is to receive the hash 

values and migrate the source server's data accordingly. Conversely, the 

indexing service registers every data block according to its hash value, which 

is then assigned to a specific destination server. To assemble different data 

blocks into a VM, the destination server coordinates with the indexing 

service. 

• Live VM migration in the intercloud (Buyya, Ranjan, & Calheiros, 2010) allows 

the migration of VMs not only among data centres of the same cloud 

environment but also among servers on different cloud environments. Live 

VM migration among clouds aims to decrease the workload on a particular 

cloud and reduce network congestion. 

This operates on the idea of creating snapshots of the VM to be migrated. 

The snapshot is then migrated to the destination cloud, where the hypervisor 

creates a new VM with the same configuration as the snapshot. The source 

cloud redirects the VM's incoming traffic to the destination VM soon after 

the target VM is up and running. Techniques such as effective fault tolerance 

are the advantages of live VM migration among cloud systems. 
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• Work on opportunistic replay (Surie, Lagar-Cavilla, de Lara, & 

Satyanarayanan, 2008) aims to reduce the amount of data in low-bandwidth 

environments that are migrated. This approach keeps a record of all types of 

user events that occur during the execution of VM. This information is then 

transferred to an identical manufactured VM and put into effect to produce 

almost the same state as the VM source. In addition, the changes that were 

made after the reply are transferred and applied, resulting in an identical 

surrogate VM. 

6.3 Implementation considerations 

Kororā allows users to check malware files against three different malware providers’ 

engines, and it can check indicator of comparison details of hashes, URLs, IPs and 

domains from various resources. 

6.3.1 Resource and security plans 

Resources are treated as black-box entities by Kororā. Likewise, protection plane 

components are standard and are therefore considered ‘as is’. They can only be 

accessed through vendor-specific APIs to send alerts from protected resources to the 

security manager and submit commands to alter the protected resources' actions or 

internal state. The system manager is directly connected to Kororā agents to translate 

their APIs to Kororā APIs.  

6.3.2 Agent plan 

The agent layer's core objective structure is applied differently, depending on whether 

agents are referring to Kororā APIs, other agents or a particular system manager. The 

detection and reaction system hierarchy is based on root agents that construct slave 

objects recursively (Wooldridge, 2009). Different functions are defined for enforcing 

multiple agent-related functionalities as described in the framework (see Figure 4.4) by 

1) applying the alert aggregation policy to alerts received; and 2) refining the reaction 

policies, as follows: 

1. The Kororā’s alert aggregation policy is implemented by the handler's alert 

handling (alert) feature. This callback is made any time a slave object sends a 

warning message. Many activities are possible, such as ‘raw warning’ 
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forwarding to the parent entity or ‘correlating warnings’ before notifying the 

parent.  

2. The refinement of policy (defined in the policy agent function) is 

implemented whenever an agent receives an alert from its parent.  

Therefore, the agent may be able to interact with a system manager or other 

agent. Interactions with the security plane depend entirely on its components’ 

commodity API. Thus, there is a one-to-one mapping between the system manager APIs 

and agent callbacks. In addition, the interactions among the agents are generally 

described as depending on time, and this brings about the synchronisation aspects that 

are vital to ensure the safety of systems. The agents are independent, but they may 

require the results of other agents' computations, collaboratively or competitively, to 

reach the outputs, such as transforming the policy into sub-policies for slave objects to 

follow. 

6.3.3 Implementation setup plan 

Kororā has a detector agent; any failure of a detector agent directly impacts the 

framework's security. In the dispatcher case, the warnings issued are aggregated and 

combined and then forwarded to the Kororā. Similarly, the Kororā can refine the 

reaction policy chosen by an agent, using the callback function as a decision-making 

handler to enforce the framework security management strategy. 

6.3.4 Mapping 

The security system is mapped to the hypervisor model by putting all individuals directly 

into the management and orchestration planes' hypervisor. Specific hooks connect 

agents to the Kororā interfaces. This model restricts the attack scope, as all frame 

entities are in the hypervisor itself, with no external interfaces (i.e. no backdoor attacks 

are possible). The application code is interfaced with the Kororā by using simple function 

calls and a static list of timers. 

In addition, this research tested a compiled application system with a strong 

address space layout and randomisation settings. This offers another critical layer of 

protection from state-of-the-art exploitation, as ROP attacks require some position 

knowledge to find the devices, as all addresses are randomised (Farchi, Jarrous, & 

Salman, 2019). 
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6.3.5 Transport layer security and secure sockets layer protocols 

Secure VM communication begins with a transport layer security (TLS) handshake, in 

which the two communicating parties open a secure connection and exchange the 

public key. During the TLS handshake, the two parties generate session keys, and the 

session keys encrypt and decrypt all communication after the TLS handshake. Different 

session keys are used to encrypt VM communications in each new session. Transport 

layer security (TLS) ensures that the party on the server-side is actually who they claim 

to be, and also TLS ensures that data has not been altered since a message 

authentication code is included with transmissions. 

Kororā uses object storage from the cloud server vendor to store image 

templates of the cloud server if Kororā needs to re-provision the server. Kororā is 

transferred via an API to another vendor to provide additional security should something 

happen to the primary vendor. Both vendors provide encryption for the store image 

templates in object storage at rest, but there is a concern that the data should also be 

encrypted during transit. The Kororā API uses HTTPS protocol, but Kororā depends on 

the size of store image template file, so it is taken time to transfer. That is why Kororā is 

encrypted the data itself before it is sent. 

Kororā is also considered where the encryption keys are to develop a threat 

model. Are the servers which have the data the same servers that are establishing the 

TLS connection? If so, then encrypting it before being sent would provide no benefits 

since a compromise of those would simultaneously provide both encryption keys. 

Kororā is assuming the network topology is such that TLS end-to-end encryption not 

sufficient because of the following reasons: 

• there is a weakness in the design or implementation of TLS 

• a feature system admin require is not present in TLS 

• and there is a situation where an attacker can obtain the TLS key without 

obtaining the other key. 

6.4 Kororā implementation 

Close to the live VM self-examination, this research wraps the Kororā function closest 

to the IN and OUT instruction-processing interrupts cpu_in* and cpu_out*. The ‘tiny 

code generator’ then decodes the instructions for emulating, say, ‘outb’. The 

instructions' architecture specifies the execution handler to convert the instruction into 
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the ‘intermediate language’ of Kororā. For example, there is a set of instructions for Intel 

x86, which is called the CPU x86 exec. The instructions are converted into a ‘translation 

block’ storing the current basic block’s further translation. The function code gen buffer 

feeds the ‘translation block’ structure with the output of the function helper outb. The 

latter construct the outb instruction’s ‘intermediate language’ representation. 

Moreover, this research connected the functions of the helper and transferred the flow 

of power to the agents of Kororā. 

Virtualisation supported by hardware conceals many essential interactions, as 

the actual CPU executes the commands/tasks. This requires semantic learning of the 

instructions executed by a VM. This research compared the requested I/O with the list 

obtained by fuzzing and public attacks. If one of them was called, Kororā sent an alert to 

the Kororā API and applied a broad range of reactions such as ignoring, pausing or 

restarting the VM. 

6.5 Kororā in C# 

An initial version of Kororā was implemented in C# to demonstrate its integrity and 

feasibility. This object-oriented language allows for rapid development at a slower 

execution rate. The aim was to integrate new agents into the Kororā architecture, such 

as applying the Bell-LaPadula model to a set of access control rules that use security 

labels on objects and clearances for subjects. Figure 6.1 depicts the Kororā in C# 

hierarchy. 



 

106 

 

Figure 6.1: The Kororā C# object hierarchy 

6.6 Kororā code architecture 

This section provides the preliminary results for Kororā for the concepts outlined in the 

previous section. In the following sub-sections, seven agents are introduced to 

demonstrate the roles included in Kororā. Then the potential of multiple loops for 

improving the integrity of the proposed framework is explained. Kororā is implemented 

using C# on Visual Studio 2019, with SQLiteStudio (SQLite tool) as a database manager. 

Kororā runs on both Windows x64 (see Figure 6.2) and Linux x64 (see Figure 6.3), but it 

has a better latency if run on Linux x64. 
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Figure 6.2: The Kororā prototype on Windows x64 

 

Figure 6.3: The Kororā prototype on Linux x64 

Once the comparison is completed - the utility will display a table with all the differences 

that were found and allow the user to drill down and show the specific differences (see 

Figure 6.4). 
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Figure 6.4: The Kororā prototype database - SQLiteStudio 

6.6.1 Kororā Virtual Trusted Platform Module Agent 

 

The secure boot guarantees that the Kororā shows legitimate programming by checking 

all boot elements and halting the boot cycle if the signature confirmation comes up with 

a failure. The Kororā vTPM agent runs hardware that is signed and validated, using a 

certificate authority to ensure the instance's hardware is unmodified and the root of 

confidence for the secure boot is created. The Kororā vTPM uses vTPM instances to 

protect objects, such as keys and certificates, which are used to authenticate access to 

the Kororā system. 

The Kororā vTPM enables booting via the estimates needed to make a known 

proper boot, referred to as the integrity policy. The integrity policy is utilised for 
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correlation with estimations from the subsequent VM boots, to identify whether 

something has changed. In addition, Kororā uses the Kororā vTPM to secure privileged 

insights through protecting or ‘shielding’. 

Further, the Kororā vTPM agent performs cryptographic coprocessors' functions 

and helps the guest OS to build and store private keys when connected to a VM. Hence, 

the area of the VM that is exposed to attack is diminished. Typically, compromising the 

guest OS compromises its privileged insights, allowing a vTPM to significantly decreases 

this risk. The guest OS can utilise these keys for encryption or authentication. A third 

party can remotely verify (validate) the hardware's identity and the guest OS with an 

attached vTPM. The Kororā vTPM does not require a physical TPM chip to be available 

on the Xen hypervisor host. By default, a VM enabled with a vTPM is not aligned with 

any storage policy. Only the VM files are encoded. 

Depending on the physical machine's emulation, it may be necessary to modify 

its OS to run on a vTPM. If modifications are required, the environment is said to be a 

PV; otherwise, the vTPM is stated to provide a fully virtualised environment (see 

Appendix A). 

6.6.2 Kororā Input/Output Agent 

According to the Xen project (2013), three different techniques such as PV split driver 

model, device emulation based I/O and pass-through for I/O virtualisation are supported 

by Xen. This research uses the PV split driver model. In this technique, a virtual front-

end device driver interacts with a virtual back-end device driver, communicating with 

the physical device over the native device driver. This allows several VMs to use the 

same hardware resources while being able to reuse native hardware support. In a 

standard Xen configuration, native device drivers and the virtual back-end device drivers 

reside in dom0. 

Kororā I/O uses PV-based I/O, which is the primary type of I/O virtualisation 

method for disk and network. The Kororā I/O is independent of Xen's virtualisation mode 

and merely depends on the relevant drivers' existence. It is directly communicated (the 

PV front-end driver with the PV back-end driver) in the dom0 kernel. In addition, it works 

for plain networking and storage virtualisation with ‘local volume manager’, ‘small 

computer systems interface’ and ‘distributed replicated block device’ (see Appendix A). 
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1 using System.Security.Cryptography; 

 

namespace FileHash 

{ 

    public interface IOutput 

    { 

        void Write(string path); 

    } 

} 

2 
3 
4 
5 
6 
7 
8 
9 

 

1 using System; 

using System.IO; 

namespace FileHash 

{ 

    public abstract class Output: IOutput 

    { 

        public virtual void Write(string path) 

        { 

     var sha1 = System.Security.Cryptography.SHA1.Create(); 

 

            if (Directory.Exists(path)) 

            { 

             var directoryInfo = new DirectoryInfo(path); 

             foreach (var file in directoryInfo.GetFiles()) 

                { 

                    Write(sha1, file); 

                } 

  foreach (var directory in directoryInfo.GetDirectories()) 

                { 

                    Write(sha1, directory); 

                } 

            } 

            else if (File.Exists(path)) 

            { 

               var fileInfo = new FileInfo(path); 

                Write(sha1, fileInfo); 

            } 

        } 

       protected virtual void 

Write(System.Security.Cryptography.SHA1 sha1, DirectoryInfo 

directoryInfo) 

        { 

            foreach (var file in directoryInfo.GetFiles()) 

            { 

                Write(sha1, file); 

            } 

  foreach (var directory in directoryInfo.GetDirectories()) 

            { 

                Write(sha1, directory); 

            } 

        } 

        protected virtual void 

Write(System.Security.Cryptography.SHA1 sha1, FileInfo 

fileInfo) 

        { throw new NotImplementedException(); 

        } 

    } 

} 

2 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
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23 
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27 
28 
29 
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31 
32 
33 
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6.6.3 Kororā Data Plane Agent 

In Kororā, the data plane is the agent of the proposed framework. The data plane agent’s 

functionality in the framework is provided by hardware and I/O devices. This agent 

functionality is decoupled from the hardware in software-defined networks and 

distributed by software-based network components. These include modules of the 

software-defined networks data path that replace the physical machines. 

The Kororā data plane agent consists of the VM hardware specifications built on 

those of Xen, with additional components for device enabling. Kororā kernel modules, 

userspace agents, configuration files and update scripts are contained in the Xen-tools 

package (which allows the easy creation of new guest Xen domains) and run within the 

Xen kernel to deliver services such as distributed routing and logical firewall, as well as 

allowing virtual extensible local area network-bridging capabilities. The Xen-tools 

package creates configuration files that work with XM (Xen project management user 

interface) and XL (based on the xenlight library, libxl). In some cases, scripts with Xen-

tools can invoke the toolstack in certain conditions, such as ‘xt-create-xen-config’ and 

‘xm-create-image’ (see Appendix A). 

6.6.4 Kororā Integrity Analyser Agent 

Live VM migration integrity analysis is a confirmation procedure for moving the legacy 

VM to the new VM situation with minimal interruption/downtime, with data integrity 

and no loss/ change of data, while ensuring that all the specific functional and non-

functional aspects of data are met after migration. 

The Kororā Integrity Analyser Agent has to verify the existing integrity 

functionality of the live VM migration. Live migration integrity testing, therefore, 

includes testing with old data, new data or a combination of the two, as well as old 

features (stable features) and new features. Old data is usually referred to as a migration 

for ‘legacy’. It is also required to continue testing the legacy VM migration data and the 

new migration until the new migration becomes stable and reliable. A wide range of live 

VM migration integrity checking on the Kororā framework can uncover new migration 

data issues that cannot be found in the old data. Consequently, while the VM is being 

moved to another Xen hypervisor, it is essential to: 

• avoid/minimise any form of disruption to the live VM migration, such as the 

loss/change of data or downtime 



 

112 

• ensure the VMs can keep using all the features of the migration by causing 

minimal (or no) damage during migration, such as the change/removal of a 

particular functionality 

• anticipate all the potential migration problems that may happen during the 

real live VM. 

To ensure a secure live migration of the VMs by removing these defects, it is 

crucial to complete a live VM migration analysis in the laboratory/simulated 

environment. Each integrity test has a value, and when the data comes into the image, 

it plays a vital role. The integrity analysis must be run both before and after the live VM 

migration. The different VM migration integrity testing steps to be carried out in the 

simulation environment are pre-migration, migration, and post-migration integrity 

analysis. (In addition, backward compatibility verification and rollback testing are critical 

during live VM migration; however, this research did not focus on these). 

Before migrating the VM, the set of testing exercises proceeds as part of the pre-

migration integrity analysis. This is not required in a simple one-time live VM migration 

related to a Xen host, which may want to consider using the simple credential security 

support provider method (Ferris, 2019). However, when complex VMs are to be 

migrated, this pre-migration integrity checking is required. For instance, if the VM runs 

on cold migration when a VM contains a complex data migration setup, the capability 

checks during vMotion may prevent the VM from migrating to another host. 

Migration integrity analysis begins with the data backup on the disk tape, 

allowing the VM migration to be re-established. This ‘time taken to migrate the VM’ 

should be recorded in the final analysis filesystem, which will be transported as part of 

the live VM migration analysis results and valuable during the Kororā process. During 

the Kororā integrity agent analysis, all the Xen components can be brought down 

frequently and eliminated from the migration environment to carry out the VM 

migration correctly. Therefore, in a perfect world, the ‘downtime’ needed for the 

migration integrity analysis would be the same as the VM migration time. 

When the VM has migrated effectively, the Kororā post-migration integrity 

analysis occurs, meaning end-to-end VM migration integrity checking has been 

performed (see Appendix A). 
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1 using Microsoft.Data.Sqlite; 

using PowerArgs; 

using System; 

using System.IO; 

using System.Runtime.InteropServices; 

using System.Text; 

 

namespace FileHash 

{ 

[ArgExceptionBehavior(ArgExceptionPolicy.StandardExceptionH

andling)] 

    public class FileHashProgram 

    { 

        private HashArgs args; 

 

        [HelpHook, ArgShortcut("-?"), ArgDescription("Shows 

the help")] 

        public bool Help { get; set; } 

 

        [ArgActionMethod, ArgDescription("Computes file 

hashes for the specified path")] 

        public void Hash(HashArgs args) 

        { 

            this.args = args; 

 

if (!Directory.Exists(args.Path) && !File.Exists(args.Path) 

            { 

                Console.WriteLine("Path is invalid"); 

                return; 

            } 

            IOutput output; 

 

            if (!string.IsNullOrEmpty(args.File)) 

            { 

                output = new FileOutput(args.File); 

            } 

            else if (!string.IsNullOrEmpty(args.SqlLite)) 

            { 

                output = new SqlLiteOutput(args.SqlLite); 

            } 

            else 

            { 

                output = new ConsoleOutput(); 

            } 

            output.Write(args.Path); 

        } 

2 
3 
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5 
6 
7 
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21 
22 
23 
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6.6.5 Kororā Data Organisation Agent 

As far as the Kororā data organisation agent is concerned, a VM disk image is merely a 

file (or, in some cases, a series of files). Therefore, the easiest way to monitor the status 

of reading requests from the live VM itself is to ensure that Kororā copies all the file, 

along with the rest of migration metadata, and creates a duplicate of the popular data 

ensure its integrity. The VM disk image is usually quite large, often in the tens of 
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gigabytes. Simply running a Kororā-modified image would create a problem for any 

virtual disk image of the running VM, divided into chunks of fixed size, because it would 

consider the whole migration file to have been changed each time. This would use up 

the disk image space rapidly and make the live migration process take extra time. This 

agent helps Kororā to take snapshots of the VM’s migration state so that Kororā can 

return to that state at a future time if the need arises. Taking snapshots saves the most 

considerable portion of the Kororā virtual disk in a read-only state. By submitting read-

only requests, Kororā can continue to use the VM in the future, the changes stored in 

similar chunks that are quick to run (see Appendix A). 

6.6.6 Kororā Go Agent 

In the execution environment, the generic run agent enables code to be executed. For 

example, the agent may wrap VM migration data for regular administration shell scripts 

or the default loader for executable reading. The agent offers EXEC access to the current 

execution environment. 

To boot the VM, the Kororā must install a provisioning agent, such as Kororā Go 

Agent, on the VM. However, the Windows guest agent (WinGA) cannot be installed at 

the VM deployment time. The following codes illustrate the way Kororā implements the 

Kororā Go Agent with the administrator interface: 

 

The Kororā uses this agent to run the framework over a Windows-based VM and 

deploys a VM without the WinGA. In addition, Kororā uses the following codes to find 

whether the Kororā_Go_Agent property has been added inside the OS profile. This 
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property could be used to find the VM migration data that has been deployed to the 

VM: 

 

6.6.7 Kororā Libvirt Agent 

The Kororā Libvirt Agent is communicates with the Kororā guest agent or shared 

memory (identical pages) to confirm that snapshots of both the guest VM and the shared 

memory file systems are consistent internally and ready for use as needed. It can start, 

stop, kill and migrate VMs with a one-to-one abstraction of the original APIs. In addition, 

the system administrator(s) could write and install a hook script unique to the 

application. It might require different ‘SELinux’ (Smalley, Vance, & Salamon, 2001) 

permissions to run correctly, as is the case when a script needs to be connected to a 

socket to communicate to a database. 

The snapshot process goes through the following steps: 

• The file system applications/databases are working buffers to the virtual disk 

and avoid accepting client connections. 

• The applications are compatible with their data files. 

• The key script of the hook returns. 

• The management stack takes a Kororā guest agent or shared memory file 

systems snapshot. 

• The snapshot is confirmed. 

• The work of the file system resumes. 

Thawing occurs in the opposite order. 

Kororā_Libvirt_Agent is using the NBD way of migrating non-shared storage. This allows 

Kororā to carry on under a heavy workload the agent might be deal with. That is, Kororā 

can send a disk over a stream either to a local file or remote host. Moreover, this is what 

Kororā Libvirt Agent adopted and referred to as NBD storage migration. How it works: 

• Destination. In the prepare phase, the NBD server is started. This will handle 

incoming NBD requests and multiple data from the stream into several disks. 
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Then all disks in domain are marked to transfer. In other words, the NBD 

server is told which disks are to be transferred. 

• Source. In the perform phase, the migration source initialises the NBD stream 

to the destination. The mirroring phase can take very long, which hurts 

performance because the system cannot start the migrated guest on the 

destination until all disks are transferred. Libvirt agent tells Kororā to start 

NBD transfer to the destination and waits for it to quiesce with the current 

implementation. Since guest may be running during migration and hence 

write something onto any transferred disk, such write must be mirrored to 

the destination. Then, after Kororā told Libvirt NBD is quiesced, the actual 

migration starts. 

• Destination. In the finishing phase, the destination resumes the freshly 

migrated domain and kills the NBD server, as it is no longer needed. 
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CHAPTER 7: FINDINGS 

7.1 Introduction 

The following sections elaborate on the findings related to the research objectives for 

this study. The main result was the value of using evaluation theory and its sub-

components to derive the Kororā integrity element of the cloud migration framework. 

In Chapter 5, Figure 5.1 showed the components of evaluation theory, and Figure 5.2 

showed the concepts of evaluation theory that were adopted for the Kororā framework. 

This chapter summarises the findings regarding the essential system attributes and the 

most relevant integrity characteristics of a secure cloud migration framework. In 

addition, it presents the way the Kororā framework protects against a range of migration 

attacks, followed by three different scenarios of an attack. 

7.2 Evaluation of the research objectives 

A mixed research methodology was used for this study, involving four steps: problem 

identification, solution design, evaluation and innovation. In this section, the findings 

from Chapters 2 to 6 that are related to the RB and RQs and research objectives are 

summarised. In addition, the results from evaluation theory application, expert 

feedback and threat modelling are discussed. This section's methodology is based on 

the quasi-judicial method (Cardozo & Kaufman, 2010), where a rational argument is 

utilised to prove or refute the research objectives. The argument regarding the objective 

relies on the ‘for’ weight of the judgement. 

7.2.1 Objectives 1 and 2 

1. To understand the security issues associated with CC, vTPMs, virtualisation, 

live VMM and hypervisors. 

2. To identify the requirements for the proposed framework. 

7.2.1.1 For 

In Chapter 2, it was concluded that security, privacy, monitoring and trust are the main 

issues of any CSP. Therefore, the cloud migration user decision is based on these criteria. 

In Chapter 3, the related literature showed that cloud users base their selection of a 

service provider on the security level of the service, approval of the security by experts, 

mitigation of the risk and reputation. 
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In Chapter 5, the evaluation theory discussion indicated that CFC and CFE are 

crucial in the cloud migration user’s selection of a CSP. It showed that to have a higher 

chance of being selected by users, CSPs should improve their level of security, privacy 

and reputation (feedback, standard, self-assessment, benchmarking and service level 

agreement) along with the main cloud migration characteristics (load balancing, SSO, 

privacy, standard and risk mitigation). 

7.2.1.2 Goals 

• Verification from the literature – RB 

• Verification from the methodology – RB 

• Verification from CSPs – RB 

• Element validation – RB 

7.2.1.3 Verdict: Accepted 

The SLR supported objectives 1 and 2, and evaluation system architecture (see Chapter 

5), consistency ratio, and different scale method and identity standard overlap (see 

Chapter 6); therefore, they were accepted. 

7.2.1.4 Against 

The SLR supported these objectives and even after refining them in the other chapters, 

they were not refuted by all attestation methods, which aimed to detect and prevent 

integrity attacks by extending secure boot and trusted boot technologies into the host. 

However, other attestation methods approved security, risk and reputation as being 

crucial criteria for any cloud migration user’s decision making. They can also show a third 

party the files’ access to a system (creating a hash of a file’s contents), allowing the third 

party to detect whether any unauthorised files have been run. 

7.2.2 Objective 3 

3. To design and validate the model, processes and architectural features of the 

proposed framework. 

7.2.2.1 For 

Chapter 5 noted that the proposed framework's integrity protection – specifically, 

integrity verification, CW security model and SSP. Trust establishment needs to 

incorporate the CFC and CFE to produce a measurable trust relationship. Chapter 3 
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provided strong literature evidence that a live VM migration integrity framework is 

dependent on CFC and CFE. In Chapter 6, the migration framework was implemented by 

applying the proper security methods to improve its integrity level. 

7.2.2.2 Goals 

• Verification from the literature – RQ1 

• Verification from the methodology – RQ1 

• Verification from CSPs and cloud migration users – RQ1 

• Element validation – RQ1 

7.2.2.3 Verdict: Accepted 

Objective 3 was supported by integrity verification, evaluation system architecture (see 

Chapters 4 and 5), consistency ratio and different scale methods; therefore, it was 

accepted. 

7.2.2.4 Against 

The SLR supported this objective and even when it was refined in other chapters, it was 

not refuted in all attestation methods. Other attestation methods approved security, 

risk and reputation as being crucial criteria for any cloud migration user’s decision 

making. 

7.2.3 Objective 4 

4. To propose and implement an end-to-end security architectural blueprint for 

cloud environments, provide an integrated view of protection mechanisms, 

and then validate the proposed framework to improve live VM migration 

integrity. 

7.2.3.1 For 

In Chapter 5, the CFC and CFE elements were discussed and Chapter 4 illustrated the 

implementation of the Kororā framework, showing how to measure the integrity 

elements derived. Chapter 5 demonstrated the usability of the prototype derived from 

the framework. Further, the feasibility of the framework was shown by mitigating all 

possible threats. 

7.2.3.2 Goals 

• Verification from the literature – RQ2 
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• Usability assessment – RQ2 

• Feasibility assessment – RQ2 

7.2.3.3 Verdict: Accepted 

The usability of the prototype was discussed in Chapter 6 and the threat-modelling 

results supported this objective; therefore, it was accepted. 

7.2.3.4 Against 

The assessments of the framework's feasibility and usability were added late in this 

research, after the discussion of evaluation in Chapter 5. As per the research 

methodology for this thesis, refining the objectives was essential to ensure their validity. 

However, Objective 4 was not refuted in all attestation methods, as explained in Chapter 

6. 

7.3 Evaluation of research questions and research background 

The RB and RQs, as stated in Chapter 2 are noted here prior to their evaluation. 

• RB: What are the opportunities and challenges for live VM migration in CC, 

with respect to the CFCs and CFEs? 

• RQ1: How do we design, implement and evaluate the establishment of a live 

VM migration framework to protect the integrity of cloud systems? 

• RQ2: How might the background from the first question by using the 

evaluation method of RB affect the level of integrity of the framework and 

help CSPs and cloud systems users in their decision making? 

Here, the relationships between the previous chapters' results and these 

questions are discussed to evaluate them according to two main criteria: the question’s 

relevance and the feasibility of answering it. In this context, ‘relevance’ refers to several 

questions: 

• How does insecurity in CC affect cloud users’ use of cloud services? 

• Is live VM migration more likely to be used these days? 

• How do CSPs make the live VM migration process secure? 

• What are the benefits and risks of moving data to the cloud? 

It would be a simple matter to design a study and collect data to answer these 

questions. However, this research wanted to know whether the RB and RQs would be 

of interest to CSPs and cloud users generally, as well as from the CC security point of 
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view. The three main factors that affect the interestingness of such questions are 

whether the answer to the question is in doubt, fills a gap in the literature or has 

important practical implications, as follows 

• Doubt: If the answer to a question is obvious, it is not an interesting question. 

In new empirical research, questions that have already been addressed are 

no longer of interest. However, even if scientific research has not answered 

a question, it is not automatically interesting. There has to be a reasonable 

chance that the answer will be something that was not already known. 

• Fills a gap in the literature: If scientific research has not already addressed 

the problem, then the answer to the question might either fill a gap in the 

related literature or already be obvious. For instance, it may be apparent to 

anyone who is familiar with the field of local governance how councils 

distribute money for infrastructure; therefore, a question about that topic 

would not be of interest. 

• Important practical implications: The answer to a question may have 

significant practical implications. For example, the issue of whether the 

design of a CSP allows cloud users to remember their cloud migration 

encounters has significant implications for the way the cloud users are 

questioned in cloud migration situations. 

In terms of the RB question, the problem statement in Chapter 1 identified that 

the framework developed in this research needed to enhance the level of migration 

integrity between a VM on one Xen open-source hypervisor to another and allow them 

to run simultaneously on the same hardware components. Using the mixed 

methodology and DS research methodology (see Chapter 3), this research created a 

secure migration framework between two VMs on the same platform. By utilising 

evaluation theory in the synthesis techniques, Chapters 2 and 3 presented the various 

current cloud migration frameworks and their strengths and weaknesses. Section 6.2 

discussed the most relevant frameworks that had the essential system architecture to 

design the Kororā framework's blueprint. 

In terms of Objectives 1 and 2, it was found that cloud users' decision-making is 

based on three main criteria – security, risk and reputation – supporting and confirming 

the answer to the RB. Objective 3, which was examined in Chapter 2 and refined in the 
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other chapters (3–6), was validated against other attestation methods. Objective 4 was 

validated by measuring the three criteria above. 

7.4 Migration attack scenarios 

The security threats in the system model of live VM job migration were described in 

Section 5.5. This section describes four possible attack scenarios for each of these 

threats (omitting the control panel because it is assumed that the system administration 

in Kororā is trusted). Since the system administration in Kororā was trusted, the first 

attack situation (control panel) has not been included here. The remaining three attack 

scenarios are discussed in detail below and analysed according to whether the Kororā 

framework could resist those threats. 

1. Communication attacks between the host OS and guest VM: When a 

malicious VM exists, the possible attack scenarios are as follows: 

• An attacker tries to fake his/her/its computer as the source platform to 

migrate a malicious VM to a reliable destination platform. 

• The source platform has been compromised, so it is no longer 

trustworthy. 

• An attacker attempts to fake his/her/its computer as the destination 

platform to accept an authentic incoming VM. 

• The destination platform has been compromised, so it is no longer 

trustworthy. 

2. Attacks on the transmission channel: When the network is untrusted, the 

possible attack scenarios are as follows: 

• An attacker attempts to intercept the VM and vTPM instance data 

transferred via the network (confidentiality). 

• An attacker attempts to manipulate the data transferred via the network 

(integrity). 

• An attacker attempts to replay an old session to trick the source or 

destination platform. 

• An attacker attempts to intercept and manipulate a normal data 

transmission to trick both the source and destination platforms (MiTM 

attack). 
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3. Communication attacks among VMs: When malicious VMs exist, possible 

attack scenarios are as follows: 

• There is a malicious VM running on the source platform. This does not 

damage the host's hypervisor codes and data, but it is interested in 

checking and intercepting the communication data of other VMs and the 

host OS. 

• The VM with vTPM instance that is selected to be migrated has been 

compromised. An attacker attempts to migrate a malicious VM to a 

reliable physical platform to spread his/her/its malicious codes. 

• There is a malicious VM running on the destination platform. This does 

not damage the host's hypervisor codes and data, but it is interested in 

checking and intercepting the communication data of other VMs and the 

host OS. 

• The newly created VM with vTPM instance container has been 

compromised. An attacker tries to inject malicious codes into the valid 

incoming VM. 

7.4.1 How the Kororā system resists those threats 

When the system administrator tries to migrate the VM from the source hypervisor to 

the destination hypervisor, the vTPM instance needs to migrate to the destination 

hypervisor as well (see Figure 7.1). There is an assumption that an attacker can only 

compromise the state of the software on the source and destination hypervisors before 

or after the live VM with vTPM instance migration. This means the attacker cannot 

compromise the state of the software once the migration has started. 
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Figure 7.1: Migration communication scenarios among VMs 

In addition, both source and destination hypervisors are run in LAN; permanent 

files are stored in a shared storage server. Once a VM with its vTPM instance is moved 

from one Xen hypervisor to another, the permanent files are not required to move 

simultaneously. In other words, the migrated VM with vTPM instance still has access to 

its files in the destination Xen hypervisor. 

As discussed in Chapter 4, this study's live migration included seven agents that 

helped the Kororā framework achieve two main steps: 1) integrity verification and 2) 

VM physical memory data transfer. A summary of these two steps is shown in Figure 

7.2. 

Shared storage 
 

Hardware 

Source 
Xen Hypervisor 

System 
Administrator 

Destination 
Xen Hypervisor 

VM1 
vTPM1 

VM2 
vTPM2 

VM2 
vTPM2 

VM1 
vTPM1 

----- 

VM2 
vTPM2 

VM physical memory 
data transfer 

vTPM memory data transfer 

Migrate 
VM2 

Local Area 
Network 



 

125 

 

Figure 7.2: The Kororā live migration communications process 

In Step 1, integrity verification involves exchanging credentials between the 

source and destination platforms for mutual identity authentication. A session key to 

construct a vTPM-based secure channel is negotiated. All participating entities are then 

checked for trustworthiness in the source and destination platforms' integrity 

verification process and the VM. Step 2 involves the physical memory data transfer. The 

destination platform receives a specific systematic key associated with its current 

platform status. A systematic key is created on the vTPM source platform in order to 

encrypt the key data for the VM and vTPM instance. Then the pre-copy process of VM 

physical memory data contents starts. The VM with vTPM instance, the physical data 

memory is copied iteratively to the destination platform. The source platform suspends 

the VM and its vTPM instance once the remains of the dirty block data of VM physical 

memory and the key data of VM with vTPM instance can be moved in one transmission. 

Finally, the VM with vTPM instance resumes and sends a notification to the destination 

platform; the key data is encrypted with a symmetric key. The cypher text is loaded into 

the VM with a vTPM instance container. 
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Thus, all of the above attack scenarios on communication among VMs can be 

prevented by Kororā. Three different real-world attacks scenarios were analysed to test 

the research objectives and answer the RB and RQs. The results for each scenario were 

entered into the template table shown in Table 7.1. 

Table 7.1: Template for analysis results for scenarios of attacks on communication 

among VMs 

Real-world 
attack 

scenario 
Can Kororā prevent the attack? 

Is this process 
under vTPM 
protection? 

Does this process 
increase the 
integrity level of 
live VM migration? 

Attack 
scenario 1 

Yes/No (e.g. Yes, Kororā helps) Yes/No Yes/No 

Attack 
scenario 2 

Yes/No (e.g. Yes, verifying the integrity 
of the VM with vTPM instance to be 
migrated on the secure platform 
helps) 

Yes/No Yes/No 

Attack 
scenario 3 

Yes/No (e.g. Yes, verifying the integrity 
of the VM with vTPM instance 
container on destination platform 
helps) 

Yes/No Yes/No 

 

7.5 Threat Modelling 

The tremendous number of new threats added daily to cyber ecosystems have moved 

threat modelling from a theoretically exciting concept into a current information 

security standard. Threat modelling can be defined as a structured process to detect 

likely security vulnerabilities and threats, measure each potential impact's severity and 

prioritise methods to protect IT infrastructure and mitigate attacks. After implementing 

the proposed framework and running three different attack scenarios, the framework's 

feasibility is challenging by applying threat modelling. Therefore, to measure the 

feasibility checking in this thesis, the qualitative data obtained from threat modelling 

methods aligned with the security development lifecycle are used. 

From a theoretical perspective, each threat modelling technique and 

methodology provides security teams and organisations with the means to identify 

threats and may be seen on equal footing. However, on a practical level, threat 
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modelling methodologies vary in quality, consistency, and value received for the 

resources invested. 

There are a few common threat modelling methodologies such as The 

Operationally Critical Threat, Asset, and Vulnerability Evaluation Methodology (OCTAVE) 

(Practice Focused), Trike Threat Modeling (Acceptable Risk Focused), P.A.S.T.A. Threat 

Modeling (Attacker Focused), STRIDE Threat Modelling (Developer Focused), and VAST 

Threat Modeling (Enterprise Focused) available and the challenge, however, is to 

purposefully choose a threat modelling methodology based on the desired outcomes 

rather than to settle for what everyone else is doing. 

Microsoft threat modelling methodology – commonly referred to as STRIDE 

threat modelling, is chosen to consider and identify potential threats to a development 

framework. STRIDE is an acronym that stands for six categories of security risks: 

Spoofing, Tampering, Repudiation, Information Message Disclosure, Denial of Service, 

and Elevation of Privilege, and each category of risk aims to address one aspect of 

security. In this regard, developing a use case (different assumption for the framework) 

helps identify the development framework issues from the attackers' perspective. It also 

allows the researcher to dedicate and document how the framework should react to 

mitigate the issues.  

A conceptual threat model based on the STRIDE threat modelling tool for 

migration attacks scenarios (section 7.4) is presented in the next paragraphs. The set 

dataflow, data flow, external interactor, process, and trust boundary are used to create 

a dataflow diagram of the attached scenarios. The proposed model will be tested to 

mitigate threats and scenarios effectively (see Figure 7.3). 

 

 

 

 

 

 

 

 

 

 



 

128 

 

 

Figure 7.3: The Kororā Threat Modelling 

The main point to analyse and validate the proposed framework is whether this 

proposed model could mitigate identity theft by proposing a solution for all the 

mentioned threats in the STRIDE threat modelling tools, and consequently, in the 

analysing view to get approval by the threat report. Therefore, based on the threat list 

in Figure 7.3, the list of attacks (abuse cases) discussed in the next section (section 7.6) 

can be identified. Accordingly, justification and possible mitigation of the threats have 

been identified and explained (see Table 7.2). 
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Table 7.2: Determined threat category, description, justification, and prevention 

Category Description Justification prevention 

Elevation of 
privileges 

Privilege 
escalation 
happens when a 
malicious user 
exploits a bug, 
design flaw, or 
configuration error 
in an application 
or operating 
system to gain 
elevated access to 
resources that 
should generally 
be unavailable to 
that user. 

Attackers start by exploiting a 
privilege escalation 
vulnerability in a target system 
or application, which lets them 
override the current user 
account's limitations. They can 
then access another user's 
functionality and data or obtain 
elevated privileges, typically of 
a system administrator or other 
power user. Such privilege 
escalation is generally just one 
of the steps performed in 
preparation for the main 
attack. 

Enforce password 
policies, Create 
specialized users and 
groups with minimum 
necessary privileges 
and file access, 
Secure the databases 
and sanitize user 
input, Ensure correct 
permissions for all 
files and directories, 
Keep the systems and 
applications patched 
and updated 

Information 
disclosure 

Information 
disclosure is when 
an application fails 
to adequately 
protect sensitive 
and confidential 
information from 
parties that are 
not supposed to 
access the subject 
matter in normal 
circumstances. 

By applying forceful browsing, 
an attacker can obtain 
confidential data, such as 
source code, binaries, and 
backup files. The involved 
threat actor may use directory 
indexing to expose available 
files on the server. 

Ensure that all the 
services running on 
the server’s open 
ports do not reveal 
information about 
their builds and 
versions. 
Always make sure 
that proper access 
controls and 
authorizations are in 
place to disallow 
access for attackers 
on all web servers, 
services and web 
applications. 

Repudiation 

Attackers often 
want to hide their 
malicious activity, 
to avoid being 
detected and 
blocked. 
Therefore, they 
might try to 
repudiate actions 
they have 
performed, for 
instance, by 
erasing them from 
the logs or by 
spoofing the 
credentials of 
another user. 

This attack can be used to 
change the authoring 
information of actions 
executed by a malicious user to 
log the wrong data to log files. 
Its usage can be extended to 
general data manipulation in 
others' name, in a similar 
manner as spoofing mail 
message. If this attack takes 
place, the data stored on log 
files can be considered invalid 
or misleading. 

Use application 
instrumentation to 
expose behaviour 
that can be 
monitored. Use 
secure audit trails and 
digital signature. 
Know system baseline 
and what good 
network traffic looks 
like. 
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Denial of 
service 

A system is usually 
deployed for a 
particular purpose, 
whether it is a 
banking 
application or 
integrated media 
management on a 
car. In some cases, 
attackers will have 
some interest in 
preventing regular 
users from 
accessing the 
system, for 
instance, to 
blackmail and 
extort money from 
the system owner. 

Denial of service attacks 
typically functions by 
overwhelming or flooding a 
targeted machine with 
requests until regular traffic 
cannot be processed, resulting 
in DoS to additional users. A 
DoS attack is characterized by 
using a single computer to 
launch the attack. These 
techniques can change data 
and functions on behalf of the 
user to mitigate cross-site 
request forgery vulnerabilities.  

Secure network 
infrastructure, 
develop DoS response 
plan, create ad hoc 
policies and patterns 
that allow a web 
property to adapt to 
incoming threats in 
real-time. Maintain 
robust network 
architecture. 

 

As a contribution to this thesis, this method leverages the knowledge base of the STRIDE 

threat modelling attack patterns to validate the proposed framework, develop a 

meaningful and useful migration framework, and mitigate integrity theft. The summary 

represents, the researcher first identified the methods to prevent attacks and 

consequently mitigate the threats (see Appendix B). 

7.6 Experiments with specific attack scenarios 

This section explains the background of attacks in general before describing specific real-

world scenarios of attacks. There are several commonly used vulnerability standards by 

researchers to make vulnerability measurable such as Common Vulnerability and 

Exposure (CVE), Common Weakness Enumeration (CWE) and the Common Vulnerability 

Scoring System (CVSS). In this research, the main idea of three different attacks 

scenarios is inspired by the CVE repository. CVE is a publicly available and free to use list 

or dictionary of standardised identifiers for common vulnerabilities and exposures. 

Currently, CVE is treated as a ‘de facto’ industry standard for vulnerability and exposure 

names. 

There are many places where the CVE process can break down. Since mistakes 

are inevitable, processes to correct them are necessary. This research attack scenario 

borrows many technical contacts from CVE-2020-3999, CVE-2020-17376, CVE-2019-

12491, CVE-2017-17045, CVE-2016-2270, CVE-2013-4497. 
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7.6.1 Background 

Protecting the communication among VMs and VMMs in live migration is difficult in 

targeted attacks against a virtualised environment. The attacker only has to spend time 

attacking one VM, which can compromise other VMs over the network, damaging the 

VMM and accessing the destination VM. It is assumed that the kernels of VMs are 

running in a protected and privilege space on the CPU and in RAM, as well as having to 

be booted securely with a vTPM on the host VM by the Xen hypervisor. Multiple kernels 

have to share access and interact together instead of one kernel running with one CPU 

platform. There is a high chance of hypervisor-based attacks if an attacker plans to target 

multiple VMs (or as many VMs as possible). 

Different types of attacks can come from the protected level access shared 

across several virtual kernels, such as hackers: 

• passing malicious codes through the virtual CPU down to the physical CPU 

• bypassing authentication between the guest and host by using the VMM 

interface itself 

• loading and executing a Trojan attack on a VM to gain access to the users’ 

systems and inject malicious code or software that looks legitimate but can 

take control of the users’ systems and run on the top of the host's hypervisor 

machine. 

While all the above attack situations are possible, the most basic threat imposed 

by any virtualisation system is ‘guest-to-guest’ attacks in VMs communication, with 

attackers using one VM to manipulate or control other VMs on the same hypervisor 

(Xen). Attackers can potentially access other VMs by injecting destructive microcodes 

through the shared memory, network communication and other resources. Figure 7.4 

depicts an attack from VM1 on VM2 and VM3. The attacker may or may not be 

authorised to access VM1, but in this scenario, it has unauthorised access to the VMs. 
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Figure 7.4: An attack on migration communication among VMs 

In some situations, two VMs must be able to communicate, such as when 

monitoring a VM or implementing a network technology that requires multiple peers. 

Instead of creating complete isolation, Kororā is intended to be a secure architecture for 

addressing inter-VM communication in a VM infrastructure. Kororā allows the system 

administrator to apply an appropriate mixture of seven different agents for 

communication between each VM to ensure that only authorised VMs have access to 

communication with each other. 

In a typical attack in the past, an attacker had to focus on one machine at a time, 

regardless of their overall intention. The virtual environment has removed that 

restriction and created the possibility of a one-to-many attack, such as attacking a guest 

VM and possibly controlling all the VMs or attacking the host VM and controlling the 

guest VM. There are many scenarios of live VM attacks. Three of these are described in 

the following sections, illustrating the Kororā framework's role in creating a secure live 

migration environment. 
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7.6.2 Attack Scenario 1 

An attacker aims to compromise a Linux host that is running Xen hypervisor with 10 

virtualised guests. 

The attacker’s ultimate target is to destroy the human resource data stored on 

all the virtual webservers hosted on the single Linux host system. The attacker knows 

that it needs to remove this data from each VM because each virtual guest writes to its 

local storage device and then propagates the data out to each redundant virtual storage 

device. To delete all the critical human resource data traces, the attacker needs to 

eliminate both the shared storage device and the localised virtual storage devices in the 

guests. In a typical single-box scenario, the attacker would have to gain access to each 

box individually, to share the local data partition, which would mean mounting a tedious 

1:1 box attack. Since all the attacker’s targets are virtual and hosted on one physical 

host, the attacker can take advantage of this virtual infrastructure. All the guests use 

virtual hard drives: flat files accessible from each guest and each host (see Figure 7.5). 

 

Figure 7.5: An attack on a virtual machine host 

On this Linux host, the attacker has access to ‘xenent’, which includes the VMM 

interfaces and virtual LANs for the HTTP servers. Therefore, the attacker can quickly 

attack the guest from the virtual host network and intercept the server message block 

administration password as it flows from ‘eth1’ on the host VM to ‘xennet3’ on the guest 
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VM. Because the attacker only intends to remove data, it only needs to find the path of 

least resistance. As the attacker already has root access to the Linux host, it can easily 

schedule a ‘cron job’ – a time-based job scheduler in a Unix-like computer OS – to run 

at 3:30 a.m. for the next two days, as follows: 

> [root@xenhost:/] # for xendisk in `find. –name “*. xendk” `; do dd 

bs=1024 count=10 if=/dev/zero of=$xendisk; done 

Within seconds, the attacker can overwrite the first 10k in each ‘xendk’ file (the 

flat file that Xen uses as a virtual hard disk), rendering them all unreadable. The attacker 

can render the guest VMs unavailable by eliminating the boot sector and the master 

boot record. 

Thus, the attacker can quickly attack the physical data of 10 critical webservers 

by mounting just one attack against the Linux host machine. The attacker does not need 

to work on each machine individually and does not need to know everything about how 

to attack a VM box. 

For Attack Scenario 1, the Kororā framework needs to be initialised before it can 

run. After initialisation, the seven agents of Kororā are started one by one, from the 

Libvirt Agent to the last agent, called Data Organisation Agent (see Figure 4.5). The 

Kororā agents register their initialisation function through the Linux security module 

interface, providing a general kernel framework to support the security modules that 

are called up during the initialisation of Kororā. The initialisation function loads are the 

access matrix. The access matrix is stored as a binary file in the VMM, while backup data 

is stored in the privileged VM as well, in the memory address space of the Xen 

hypervisor. 

This scenario is using the Kali Linux system and three steps such as enumeration, 

gaining access, privilege escalation to attack the VM host. The guest VM run on another 

computer with the same hardware features in the isolation lab; therefore, there are no 

legality issues. After gathering information about the target VM machine and the 

entities they belong to (called footprinting) and identifying live hosts, ports, services and 

discovering OS and architecture of the target VM machine (called scanning the system). 

It is then time to get a clear picture of the target machine and identify vulnerable user 

accounts, establish null sessions and connections, or poorly-protected shared resources 

using active connection to systems. 
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Therefore, by running the below Nmap command, the first step of attack started 

and enable OS detection, version detection and traceroute with the -A argument. The -

p- argument pushes the Nmap to scan all TCP ports, and -V uses for one level of 

verbosity. The -oX argument is used to save results in an XML file called nmap.xml (see 

Figure 7.6). 

> Nmap -A -p- -v victim_VM_IP -oX nmap.xml | tee nmap.out 

 

Figure 7.6: Enumeration phase of the attack on a virtual machine host 

The next step is to establish a connection to the server to gather more details 

about the target VM machine. By running the below comment line, the -e argument in 

echo push the command to interpret escape sequences (see Figure 7.7). 

> echo -e “USER ident 0 *: Gecos\nNICK evilHacker” | nc victim_VM_IP 

6667 

> root@work: ~/targets$ echo -e “USER ident 0 *: Gecos\nNICK 

evilHacker” | nc 172.28.128.3 667 
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Figure 7.7: Scanning phase of attack on virtual machine host 

The scanning of system shows that the server is running version Unreal3.2.8.1. 

This version has a malicious backdoor which is present in the Unreal3.2.8.1.tar.gz. Below 

is Unreal3.2.8.1 backdoor command execution line in the Metasploit console. 

> msf > use exploit/unix/irc/unreal_ircd_3281_backdoor 

> msf exploit(unreal_ircd_3281_backdoor) > show targets 

> ...targets... 

> msf exploit(unreal_ircd_3281_backdoor) > set TARGET < target-id > 

> msf exploit(unreal_ircd_3281_backdoor) > show options 

> ...show and set options... 

> msf exploit(unreal_ircd_3281_backdoor) > exploit 

Now, the vulnerability of VM machine is recognised, and it is a time to target the 

system by fire-up a Metasploit Console (msfconsole) (see Figure 7.8). 

> Use exploit/unix/irc/unreal_ircd_3281_backdoor 

> info 
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Figure 7.8: Exploit Unreal3281 backdoor on virtual machine host 

The next step is to set the required options for victim VM by using the “> set 

rhost victim_VM_IP“ command line and get a low privilege shell by executes the 

Metasploit module (see Figure 7.9). 

 

Figure 7.9: Exploit the Metasploit module on a virtual machine host 

This is a strong foothold, and an attacker has access as an unprivileged user to 

the system; however, the attacker is still keen to be a privileged user and get root access. 

The next step is extracting usernames, machine names, and network resources from the 

system (called enumeration) to escalate privileges. Here, the attacker used automated 

Linux privilege tools called LinEnum. to run in the victim virtual machine by using the 

below command line (see Figure 7.10). 

>wget attackingMachine/LinEnum.sh -o /tmp/lin.sh; chmod 700 

/tmp/lin.sh;/tmp/lin.sh 



 

138 

 

Figure 7.10: Enumeration of the system to escalate privileges on a virtual machine host 

Finally, the attacker runs Netcat to connect to the VM host and execute /bin/sh. 

On the other side of the connection, attacker set up a Netcat listener by entering the 

Netcat -nlv attacking VM 6688 command line, which asks Netcat to listen for an 

incoming connection to the attacking VM on port 6688. Figure 7.11 shows the received 

root sell connection message on exploited VM host. 

 

Figure 7.11: Privileges escalation using Netcat on virtual machine host 

In this experiment, Xen is used as the private cloud platform driven by the 

virtualisation environment and the ‘virt-manager’ tool is a desktop user interface for 

managing VMs through the Libvirt Agent in Kororā (‘virt-manager’ manages the Xen 

Linux containers). Further, in Xen, the privileged VM is denoted as Domain0, the 

ordinary VM is indicated as DomainU and the VMM is denoted as a hypervisor. Domain0 

and hypervisor are the trusted subjects that manage all VMs on the same host. Based 

on Xen characteristics, the read and write operations among the guest VMs are 
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accomplished through communication procedures. The interactions among the guest 

VMs correspond to the access properties of the Kororā framework. 

Event channels can be established in the Kororā framework, and event 

notifications are sent if one guest VM has some access to attribute to another guest VM. 

In the CW model, both subject and object are abstract words, while in the cloud platform 

system, the subject may be hypervisor, Domain0 or DomainU, and the object may be 

hypervisor, DomainU or a specific file memory snip, data unit or so on. Therefore, when 

a live VM migration is hypervisor-related, the migration is at the highest level of 

confidentiality, integrity and availability. 

The Kororā initialisation function provides the Linux security module with 

information about the security hook function to control operations on kernel objects 

and a set of obscure security fields in kernel data structures for maintaining security 

attributes. The security analysis results for Attack Scenario 1 are shown in Table 7.3. 

Table 7.3: Analysis results for Attack Scenario 1 

Attack 
scenario 

Can Kororā prevent the attack? 
Is this process 
under vTPM 
protection? 

Does this process 
increase the 
integrity level of 
live VM migration? 

Attack 
Scenario 1 

Yes, the secure event channel (Libvirt 
Agent with the support of the Linux 
security module) and hash digest 
helps to prevent the attack and 
migrate live VMs with a high level of 
integrity. 

Yes Yes 

 

The analysis shows that the Kororā framework can protect a live migration with 

a vTPM instance from a communication attack among VMs and resist the security 

threats that might take place. 

7.6.3 Attack Scenario 2 

An attacker targets the shared VMs memory communication between VMs during a live 

migration process. 

Normally, shared memory communication occurs according to the following 

steps: 
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• VM1 creates a shared memory and transfers its grant reference tables to 

VM2 and VM3. Xen has to take special measures when the data moves 

between the address spaces of both VM2 and VM3. 

• VM2 and VM3 have mapped the authorised memory pages to their 

respective address spaces. 

• By using address mapping, VM2 and VM3 can read or write the shared page 

as it is precisely in their memory address. 

• VM2 and VM3 revoke the memory page address when both VMs have 

finished accessing this shared memory. 

• VM1 revokes the authorisation and reclaims the grant reference tables. 

For the experimental part of Attack Scenario 2, shared memory communication 

is implemented by a dynamic kernel – the Linux dynamic kernel module loading 

mechanism can be dynamically linked to the kernel space while the kernel is running. 

The shared memory communication is started when the Kororā framework initialisation 

is finished. If VM2 and VM3 do not satisfy the migration integrity procedures, the shared 

memory cannot be used and the dynamic kernel fails and cannot be inserted in VM2 and 

VM3. Figure 7.12 represents the creation of the Linux command line for VMs with the 

’virt-manager’ tool. 

 

Figure 7.12: Create VM1 by using the ‘virt-manager’ tool 

The list of all running VMs is shown in Figure 7.13. 

 

Figure 7.13: List of all running VMs 

Figure 7.14 illustrates the shared memory that is created in VM1 and the ‘Linux 

command lines’. 
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Figure 7.14: Shared memory of VM1 creation – Linux command lines 

To create the function of the kernel in VM1: 

• first, take a page of 4k size and write ‘Hello, by DY in DOM#1’ on this page 

• enter the starting memory address ‘0xdb566000’ in the address space of 

VM1 

• finally, authorise the ID numbers of VM2 and VM3 and return the 

corresponding grant reference tables identifiers, which are ‘797’ and ‘798’, 

respectively. 

To verify the Kororā agents' role, the dynamic kernel must be removed from VM2 

and the Kororā agents enabled, then the dynamic kernel must be reinserted in VM2 and 

run (see Figure 7.15 and Figure 7.16). 

 

Figure 7.15: Enable and run the Kororā agents 

 

Figure 7.16: Enable the Kororā agents and reinsert shared memory in VM2 

After starting Kororā, VM2 loses its permission to access the shared memory, 

which results in the failure of the dynamic kernel insertion. Similar results can be 

observed in VM3 with and without Kororā. This is consistent with Kororā rules because 

VM2 has lower integrity and confidentiality levels than VM1 (see Table 7.4). 
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Table 7.4: Analysis results for Attack Scenario 2 

Attack 
scenario 

Can Kororā prevent the attack? 
Is this process 
under vTPM 
protection? 

Does this process 
increase the 
integrity level of 
live VM migration? 

Attack 
Scenario 2 

Yes, the secure Kororā agents and 
Linux secure dynamic kernel module 
helps to prevent the attack and run a 
secure live VMs migration. 

Yes Yes 

 

7.6.4 Attack Scenario 3 

An attacker compromises the ability of VM6 to mount and change the ‘/boot’ partition 

of VM8 through the Xen hypervisor. 

The consequence of Attack Scenario 3 is that VM8 cannot be started, and the 

hacker breaches the communications betweenVM6 and VM8. After Kororā is started, if 

the authentication process is not satisfied then VM6 cannot access the ‘/boot’ partition 

of VM8, even using privileged VM ‘Dom0’ (without Kororā, VM6 can mount the ‘/boot’ 

partition of VM8 through Dom0). After Kororā is launched, VM6 no longer has access to 

VM8. The disk of VM8 is divided into two partitions. Before Kororā is started, VM6 uses 

the privileged VM Dom0 to view and access the ‘/boot’ partition (start value 2048) of 

VM8 (see Figure 7.17). 

 

Figure 7.17: Without Kororā, the VM6 uses privileged Dom0 to view the partition of 

VM8 

After Kororā is launched, VM6 cannot mount and access the ‘/boot’ partition of 

VM8; Kororā blocks it. The blocking message by Kororā is, ‘No such a file or directory’, 

and in the meantime, notification is sent to the VMM about this activity (see Figure 

7.18). When the VMM receives the notification, the administrator takes proper action 

to mitigate the error and clear the VM6 environment of the malicious codes. 
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Figure 7.18: With Kororā, the VM6 views the ‘/boot’ partition of VM8 

The analysis of this scenario confirms that with Kororā, communications among 

VMs are more secure, with a higher level of integrity than before, enabling Kororā. The 

analysis results of this scenario are shown in Table 7.5. 

Table 7.5: Analysis results for Attack Scenario 3 

Attack 
scenario 

Can Kororā prevent the attack? 
Is this process 
under vTPM 
protection? 

Does this process 
increase the integrity 
level of live VM 
migration? 

Attack 
Scenario 3 

Yes, Kororā helps to block 
communication attacks among 
VMs and improve live VMs 
migration integrity. 

Yes Yes 

 

7.6.5 Summary of results 

This chapter has validated the main aims of this study by running three different real-

world attack scenarios. These scenarios have shown that by introducing Kororā, a vTPM-

based live VM migration framework, secure communication among VMs was 

constructed. In all three attack scenarios, the communications among the VMs through 

the Xen hypervisor were more secure than before, enabling Kororā (see Table 7.6). All 

entities involved in the migration process-based integrity verification policy were proved 

trustworthy. 
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Table 7.6: Summary of analysis results for the three attack scenarios 

Attack 
scenario 

Can Kororā prevent the attack? 
Is this process 
under vTPM 
protection? 

Does this process 
increase the 
integrity level of 
live VM 
migration? 

Attack 
Scenario 1 

Yes, the secure event channel, Libvirt 
Agent, with the Linux security module's 
support and hash digest, helps prevent 
the attack and migrate the live VMs with 
a high level of integrity. 

Yes Yes 

Attack 
Scenario 2 

Yes, the secure Kororā agents and Linux 
secure dynamic kernel module help 
prevent the attack and run a secure live 
VMs migration. 

Yes Yes 

Attack 
Scenario 3 

Yes, Kororā helps prevent 
communication attacks among VMs and 
improve live VMs migration integrity. 

Yes Yes 

 

There are various performance parameters in such a cloud migration process, 

and they are: a) scalability, b) powerful computing capabilities, c) flexibility, d) storage 

capacity, f) quality of assurance. Regardless of the exact purpose of data migration, the 

goal is generally to enhance performance and competitiveness. Less secure successful 

migrations can result in inaccurate data that contains redundancies and unknows. Figure 

7.19 shows that the actual time of the virtualisation platform's function call is less than 

the time taken with Kororā. 

 

Figure 7.19: Time with and without Kororā 
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While the Kororā framework's performance impact on the original virtualisation 

platform was not large, that aspect was beyond the scope of this research. It should be 

considered in a future study. Overall, Kororā effectively reduced the number of attacks 

through the Xen hypervisor in the CC environment without having a significant impact 

on the system’s performance. 

The proposed research framework, Kororā, is in a way the opposite of existing 

security approaches, such as the method used by Mashtizadeh and Koundinya (2019) 

for migrating the contents of a persistent data store from a source object to a 

destination object and that used by Zheng, Jie; Ng, Tze Sing Eugene; & Sripanidkulchai, 

Kunwadee (2011) for live data migration. It is a performance boost layer for most, if not 

all, live VM migration schemes. Further, this framework can be used to improve the 

performance of other VM tasks, such as VM replication, as these tasks encounter the 

same IO interference problem. The empirical evaluation of the proposed system 

(described later in this thesis) showed that Kororā improves live VM IO security when 

compared with the Mashtizadeh approach. In other words, Kororā could live migrate a 

VM at a higher speed, without sacrificing the live VM IO performance significantly. 

While both the Kororā framework and the approach used in the work of Zheng 

et al. (2011) exploit the characteristics of secure live migration, they improve the 

security of live VM migration in different ways. Zheng et al.’s method aims to reduce the 

total amount of data transferred significantly by exploiting the VM’s workload locality. 

By analysing the workload locality, infrequently updated data blocks are distinguished 

from frequently updated data blocks in virtual disk images. The infrequently updated 

data blocks are transferred before the frequently updated data blocks in the migration 

so that the re-transmissions of data blocks are minimised, thus reducing the total 

amount of data transmission. In contrast, Kororā uses workload locality to capture and 

outsource the live VM’s working set data to a backup device during the migration, which 

does not affect the transmission sequence of the data blocks. Importantly, Kororā is 

complementary to the above approaches and can further improve these techniques (see 

Table 7.7). 
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Table 7.7: Comparing Kororā and existing schemes 

Features Mashtizadeh et al. Zheng et al. Kororā 

Live VM migration time 
reduction 

X X - 

Live VM 
security 

level 

Confidentiality - X - 

Integrity - - X 

Availability X X X 

Live VM migration 
workload locality 

X X X 

 

The next chapter describes the study’s conclusions and limitations, as well as 

recommendations for further study. 
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CHAPTER 8: CONCLUSION AND FUTURE RESEARCH 

Figure 1.2 (see Chapter 1) summarised the pathway of this research, which aimed to 

provide a detailed understanding of the area of VM migration in virtualised cloud-based 

systems. The research focused on the sub-area of live migration, a technique that allows 

seamless migration of a VM from one hypervisor to another. This research's main 

contribution has been to propose the Kororā framework, based on seven agents running 

on the Xen privileged dom0 and communicating with the hypervisor. 

This study's cloud scenario was the public cloud environment, which allows the 

tenants the most responsibility and control over their systems but increases the risk 

threats to their information. This study developed a design system architecture for a 

secure live VM migration as a response to this problem. A range of research methods, 

such as an SLR, DS and mixed methods, were employed. A mixed-methods approach was 

used to build from one phase of a study to another, explore qualitatively, develop a 

design framework, and follow-up quantitative research qualitatively to facilitate the 

processes and obtain more detailed information for problem identification and 

evaluation process. 

After the critical analysis presented in this study, the Kororā framework was 

shown to be an efficient form of control-flow integrity, implementing a fine-grained 

security guarantee without negatively affecting the performance of the live migration 

system. 

8.1 Summary of the research process 

This section summarises the steps of this research. Chapter 1 outlined the problem being 

addressed, the research objectives and the contributions it aimed to make. Two 

research problems (see Section 1.3) were identified and assessed. Researching these 

problems and attempting to find solutions by identifying the associated risks to cloud 

security and their corresponding required controls provided a way to develop the Kororā 

system. Three RQs were discussed (see Section 1.6); two of the RQs were answered in 

Chapters 2, 3, 4 and 5, while Chapters 6 and 7 addressed the last RQ. Several specific 

research objectives were outlined in Section 1.7 and these were evaluated in Chapter 7 

through three different real-world scenarios. Section 1.8 described the research 

contribution, which is a critical aspect of this research in communicating the target 
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audience's findings. That work laid the foundation for answering the main RQs and 

presented two audience groups: academia and business. With regard to the academic 

category, the research theorised a solution for the implementation process of Kororā. 

For the business aspect, the way the Kororā system could be implemented by using the 

Visual C# programming language and the feasibility of the research were discussed.  

Chapter 2 provided a literature review of relevant journals and conferences 

papers found through a search using keywords such as ‘cloud computing’, ‘live virtual 

machine migration’, ‘cloud security’ and ‘security integrity’. Later, the keywords ‘design 

research science’ and ‘multi-methodology research method’ were added. Research in 

an academic context is an activity of a systematic inquiry in a specific area to discover 

new knowledge or revising existing knowledge. 

In Chapter 3, an appropriate research methodology for this study was developed, 

being a mixture of DS research methods and a mixed methodology, called MDSRM. 

MDSRM was selected because it could help the study produce a new solution to the 

research problem and then critically evaluate its overall validity and reliability, leading 

to answering the RQs and finding a solution to the research problem. However, the 

MDSRM has limitations, such as the difficulty of proving this was innovative research 

and generalising the research outcomes. In addition, the research outcomes could be 

invalidated by rapidly evolving technologies that could render the Kororā inapplicable 

and/or obsolete; therefore, the worth of the conducted research and resulting 

outcomes could be questionable. 

In Chapter 4, the framework model's design was discussed, including the steps 

of its design, the ecosystem of live VM migration, the Kororā verification process, the 

CW security model, and the Kororā integrity protection process. Then the Kororā design 

system architecture and system elements were expanded to cover the Kororā system 

design requirements. Based on the related research, the seven agents of Kororā were 

discussed in more detail and the proposed model was presented.  

Chapter 5 emphasised that attempting to resolve complex systems' problems 

can require using an evaluation theory to find potential solutions. The framework based 

on the findings in Chapters 2, 3 and 4 was implemented. Innovation in this chapter was 

the critical stage of theory building with a novel method to evaluate the framework’s 

level of integrity. Therefore, this chapter's focus was on the usability and theory-building 

study of the Kororā to answer the RQs and RB. Further, this chapter aimed to ensure the 
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Kororā’s applicability in practice and improve its quality by including solutions to 

problems encountered based on the trust and reputation definitions. Figure 5.1 

described the components of evaluation and the interrelationships between them, and 

Figure 5.2 illustrated the concepts of evaluation theory in this study’s development of 

the Kororā framework. 

In Chapter 6, as the research findings were presented and critiqued, the 

identified research limitations were revisited and, to ensure the validity of the research, 

its progress was reviewed and the proper steps for implementing the Kororā framework 

were adopted. In Section 6.3.2, the Kororā agent plan was discussed, describing two 

main functions that impose multiple agent-related functionalities on the Kororā to 

enforce the framework security management strategy. 

In Chapter 7, the research objectives were evaluated and the findings of the 

research discussed. Three different attack scenarios were used to test the research 

objectives and answer the RQs and RB. Based on the selected research problem, the 

research background and research questions have been stated: What are the 

opportunities and challenges for live VM migration in CC, with respect to the CFCs and 

CFEs? As some research contents such as academic journals and books are investigated, 

and related opportunities and challenges are addressed in chapter 1 to 3. Figure 2.1 

showed steps in conducting the literature review, and Figure 2.2 and Figure 3.1. are 

helped to identify an adopted method for selecting the literature to answer the RB. 

There are two research questions: How do we design, implement the 

establishment of and evaluate a live VM migration framework to protect the integrity of 

cloud systems?, and How might the information revealed by the above questions affect 

the level of integrity of the framework and help the CSPs and cloud systems users in their 

decision making? The answers to these two questions are drawn from the framework's 

design (Chapter 4), evaluation system architecture (chapter 5), and implementing the 

proposed framework in chapter 6. To articulate that answers to the raised sub-heading 

in chapters 4 to 6 were formed, and the proposed framework was tested to find 

supportive evidence. That laid the ground to answer the RQs, and the outcomes of the 

research were critiqued and presented in chapter 7. 

Finally, this current chapter summarises this study and the limitations of this 

research and offers recommendations for further research that could enhance the 

adoption of the Kororā framework within the new era of technology. 
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After a critical analysis, this study found that secure live VMs migration is 

essential to the industry, and the security of live VMs migration is still in its infant stage. 

By nature, integrity-based frameworks must be interoperable, and the Kororā 

framework was shown to improve security in terms of both specific attack scenarios and 

other cloud services.  

8.2 Limitations 

This novel research's main limitation is the lack of relevant existing research, which has 

focused mainly on the provider perspective rather than the user perspective. The 

traditional secure VM migration identified in the literature review is difficult to adopt 

for the cloud environment. 

The Kororā system that has been developed in this research helps to migrate live 

VM in an environment that is secure and the framework capabilities present a structured 

and logical flow. This research has theoretically evaluated and tested the Kororā system 

in the virtual environment to confirm its feasibility and reliability. However, the Kororā 

has not yet been run in a commercial cloud environment. 

Another major limitation of this research is the validity and reliability of the 

research methodology, as discussed in Chapter 3. As the research was based on DS and 

multi-methodology, the main concerns were the iteration process and the four main 

steps of the mixed-methods approach. However, evaluation theory supported this 

approach to elaborate on each step of the theory. 

Implementation and validation were further challenges for this research because 

the Kororā framework was being implemented in a cloud-based context, and the main 

contribution of this research needed to be confidential. 

It is clear that CC, VM migration and cloud security are very dynamic areas of IT, 

requiring the use of advanced system features, security characteristics and the most 

updated security controls. The use of CC is likely to extend into areas such as smart cities 

and healthcare. The Kororā framework could be a helpful basis for improving cloud 

security in these areas. Therefore, Kororā is required to adopted new agents to improve 

the security control mechanism. 

8.3 Future study 

Future research could focus on running the Kororā in other kinds of hypervisor platforms 

(e.g. VMware ESXi or Hyper-V) and then comparing the results with the integrity level of 
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Kororā on Xen to demonstrate the robustness and feasibility of the framework. 

However, while VM migration is already established, live VM migration in CC is still an 

immature area. Therefore, future work should aim to increase the security of live VM 

migration in the cloud environment. 

Another approach could be to give the Kororā system periodic updates among 

agents to identify and improve the integrity elements, rather than the current system of 

the VMs communicating with each other reactively as hotspots in the system occur. This 

approach could allow continuous checks to identify the essential integrity attributes and 

characteristics of VM migration, helping CSPs deliver a cloud service with a good security 

level. 

Another possible research line is the development of reliable and efficient live 

VM migration to monitor the communication among VMs that not run in the same 

hardware features. To achieve secure live VM migration, isolation between the different 

VMs is required. Therefore, one of the aims of future study could be to provide an 

updated Kororā framework to stabilise the various resources that are shared among the 

VMs. 

The hypervisor is the most critical component of live VM migration; if it is 

compromised, the host and guest VMs can potentially be compromised too. Hypervisor 

architectures that aim to minimise the programming code and, at the same time, 

maintain its functionalities provide interesting topics of future research related to 

Kororā, especially to prevent hypervisor rootkit injection. 

Finally, it would be interesting to examine different elements related to VM live 

migration. At present, the implementation of Kororā focuses only on memory VM 

migration integrity and does not consider other elements, such as networking or storage 

migration. 
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Appendix A: 

Code for the Kororā framework agents 

Kororā vTPM Agent 

The following directions are tested for Ubuntu 12.4 (as host), Xen 4.3, Dom0's Linux 

Kernel 3.7.1 and DomU Linux Kernel 3.7.9. The following key steps are required to run 

the Kororā vTPM agent: 

• Install a host OS on the machine: This process is straightforward because 

there is an easy step wizard to use. 

• Install Xen hypervisor: The following directions are based on the Xen 

hypervisor guidelines, with several stages changed and some new command 

lines added in order to run the vTPM in the Xen hypervisor environment. All 

the following command lines are run as root with sudo (Run sudo 

<command>). 

a) Install all the required packages: 

 

b) Install the following package: 

 

c) Download the Xen hypervisor source codes: 

 

d) Extract the Xen hypervisor source codes by using the following command 

line: 
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e) Change the line in the open file as follows: 

 

f) Install the Xen hypervisor: 

 

g) As Kororā uses the XSM/Flask security framework in Xen and Xen-policy 

is required, run the following command line in the Xen-Directory: 

 

• Install Xen Dom0 Kernel: To run Kororā, this research needed to install dom0 

kernel after installing the Xen hypervisor. Dom0 kernel is essentially a default 

VM (created by Xen) that deals with different VMs in the framework. Since 

there is no systems administration in dom0, any bugs found in dom0 systems 

agents (e.g. the window administrator) are unlikely to pose a problem for 

running Kororā; none of the third-party tools running in dom0 is available 

from the VMs, and since tools running in dom0 can exert complete control 

over the framework, only the trusted tools in dom0 are required. 

The installation process is divided into two parts: resolve and download, and 

verify and install. The updated VM handles the first part, which is usually 

assigned to the Firewall VM. After the updated VM has downloaded the new 

package successfully, it is sent to dom0, where it is verified and installed. 

Some change to the Linux Kernel installation configuration is needed to 

compile the kernel to support the vTPM to finish the installation, as follows: 
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download the kernel, extract the kernel, configure/customise the kernel and 

configure the kernel. 

a) Conduct the following steps: 
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b) Run the trusted platform module driver in Dom0 kernel to disable access 

of the Dom0 to the TPM. This is a critical step before applying the below 

configurations in ‘.config’ file in the Linux (version 3.7.1) directory: 

 

c) Start the installation of the kernel, reboot the system and start the Xen 

by using the following command lines: 

 

• Configure networking in the Xen hypervisor: This requires setting up Linux 

bridging over Xen. This means that eth0 is both the essential interface to 

Dom0 and the interface to use with VMs. This means that Kororā is using a 

dynamic host configuration protocol, as follows: 
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• Configure the vTPM Manager and vTPM: It is vital to configure the vTPM 

manager properly and require the vTPM manager to create and manage the 

vTPM’s domain itself. This is required if Kororā wants to use the vTPM in the 

guest VMs as well. For this reason, the vTPM manager needs a disk image to 

store its encrypted data and the image does not require a file system and 

could reside anywhere on the host disk. The image is not large; the Xen 

hypervisor ‘vtpmmgr’ is restricted to using the first 2MB of the image but can 

support over 20,000 vTPMs. Conduct the following steps: 
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The source code of all demonstrations is available on the GitHub project ‘Kororā-codes’, 

which is published at https://github.com/HanifDeylami/Korora-codes. This repository 

contains the source codes required for implementing and running Kororā. 
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Appendix B:  

Kororā threat modelling diagram summary 

Interaction: 1. Authorized 

 
 

1. An adversary can perform action on behalf of other user due to lack of controls 
against cross domain requests. 

Priority: 
High 

Category Denial of Service 

Description 
Failure to restrict requests originating from third 

party domains may result in unauthorized actions or 

access of data. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

2. An adversary may bypass critical steps or perform actions on behalf of other 
users (victims) due to improper validation logic. 

Priority: 
High 

Category Elevation of Privileges 

Description 

Failure to restrict the privileges and access rights 

to the application to individuals who require the 

privileges or access rights may result into 

unauthorized use of data due to inappropriate rights 

settings and validation. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

3. An adversary can reverse weakly encrypted or hashed content. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary can reverse weakly encrypted or hashed 

content 

Justification <no mitigation provided> 
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Possible 
Mitigation(s) 

 

 

4. An adversary may gain access to sensitive data from log files. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

log files 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

5. An adversary may gain access to unmasked sensitive data such as credit card 
numbers. 

Priority: 
High 

Category Information Disclosure 

Description 
An adversary may gain access to unmasked sensitive 

data such as credit card numbers 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

6. An adversary can gain access to certain pages or the site as a whole. 
Priority: 
Medium 

Category Information Disclosure 

Description 

Robots.txt is often found in your site's root 

directory and exists to regulate the bots that crawl 

your site. This is where you can grant or deny 

permission to all or some specific search engine 

robots to access certain pages or your site as a 

whole. The standard for this file was developed in 

1994 and is known as the Robots Exclusion Standard or 

Robots Exclusion Protocol. Detailed info about the 

robots.txt protocol can be found at robotstxt.org. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

7. An adversary can gain access to sensitive data by sniffing traffic to Web 
Application. 

Priority: 
High 

Category Information Disclosure 

Description 

An adversary may conduct man in the middle attack and 

downgrade TLS connection to clear text protocol or 

forcing browser communication to pass through a proxy 

server that he controls. This may happen because the 

application may use mixed content or HTTP Strict 

Transport Security policy is not ensured. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

8. An adversary can gain access to sensitive information through error messages. 
Priority: 

High 

Category Information Disclosure 
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Description 

An adversary can gain access to sensitive data such 

as the following, through verbose error messages - 

Server names - Connection strings - Usernames - 

Passwords - SQL procedures - Details of dynamic SQL 

failures - Stack trace and lines of code - Variables 

stored in memory - Drive and folder locations - 

Application install points - Host configuration 

settings - Other internal application details. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

9. An adversary may gain access to sensitive data from uncleared browser cache. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

uncleared browser cache. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

10. Attacker can deny the malicious act and remove the attack footprints leading 
to repudiation issues. 

Priority: 
Medium 

Category Repudiation 

Description 

Proper logging of all security events and user actions 

builds traceability in a system and denies any 

possible repudiation issues. In the absence of proper 

auditing and logging controls, it would become 

impossible to implement any accountability in a 

system. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

11. An adversary can get access to a user's session due to improper logout and 
timeout. 

Priority: 
High 

Category Spoofing 

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker is able to steal 

the user token, he would be able to access all user 

data and perform all actions on behalf of user. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

12. An adversary can get access to a user's session due to insecure coding practices. 
Priority: 

High 

Category Spoofing 

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker is able to steal 

the user token, he would be able to access all user 

data and perform all actions on behalf of user. 
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Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

13. An adversary can spoof the target web application due to insecure TLS 
certificate configuration. 

Priority: 
High 

Category Spoofing 

Description 
Ensure that TLS certificate parameters are configured 

with correct values. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

14. An adversary can steal sensitive data like user credentials. 
Priority: 

High 

Category Spoofing 

Description 

Attackers can exploit weaknesses in system to steal 

user credentials. Downstream and upstream components 

are often accessed by using credentials stored in 

configuration stores. Attackers may steal the 

upstream or downstream component credentials. 

Attackers may steal credentials if, Credentials are 

stored and sent in clear text, Weak input validation 

coupled with dynamic sql queries, Password retrieval 

mechanism are poor. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

15. Attacker can steal user session cookies due to insecure cookie attributes. 
Priority: 

High 

Category Spoofing 

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker is able to steal 

the user token, he would be able to access all user 

data and perform all actions on behalf of user. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

16. An adversary can create a fake website and launch phishing attacks. 
Priority: 

High 

Category Spoofing 

Description 

Phishing is attempted to obtain sensitive information 

such as usernames, passwords, and credit card details 

(and sometimes, indirectly, money), often for 

malicious reasons, by masquerading as a Web Server 

which is a trustworthy entity in electronic 

communication. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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17. An adversary may spoof Kororā Framework and gain access to Web 
Application. 

Priority: 
High 

Category Spoofing 

Description 
If proper authentication is not in place, an adversary 

can spoof a source process or external entity and gain 

unauthorized access to the Web Application. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

18. An adversary can deface the target web application by injecting malicious code 
or uploading dangerous files. 

Priority: 
High 

Category Tampering 

Description 
Website defacement is an attack on a website where 

the attacker changes the visual appearance of the site 

or a webpage. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

19. An attacker steals messages off the network and replays them to steal a user's 
session. 

Priority: 
High 

Category Tampering 

Description 
An attacker steals messages off the network and 

replays them to steal a user's session. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

20. An adversary can gain access to sensitive data by performing SQL injection 
through Web App. 

Priority: 
High 

Category Tampering 

Description 

SQL injection is an attack in which malicious code is 

inserted into strings that are later passed to an 

instance of SQL Server for parsing and execution. The 

primary form of SQL injection consists of direct 

insertion of code into user-input variables that are 

concatenated with SQL commands and executed. A less 

direct attack injects malicious code into strings that 

are destined for storage in a table or as metadata. 

When the stored strings are subsequently concatenated 

into a dynamic SQL command, the malicious code is 

executed. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

21. An adversary can gain access to sensitive data stored in Web App's config files. 
Priority: 

High 

Category Tampering 

Description 
An adversary can gain access to the config files. and 

if sensitive data is stored in it, it would be 

compromised. 



 

175 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

Interaction: 11. Kororā Ge Callback 

 
 

22. An adversary can perform action on behalf of other user due to lack of controls 
against cross domain requests. 

Priority: 
High 

Category Denial of Service 

Description 
Failure to restrict requests originating from third 

party domains may result in unauthorized actions or 

access of data. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

23. An adversary may bypass critical steps or perform actions on behalf of other 
users (victims) due to improper validation logic. 

Priority: 
High 

Category Elevation of Privileges 

Description 

Failure to restrict the privileges and access rights 

to the application to individuals who require the 

privileges or access rights may result into 

unauthorized use of data due to inappropriate rights 

settings and validation. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

24. An adversary can reverse weakly encrypted or hashed content. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary can reverse weakly encrypted or hashed 

content. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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25. An adversary may gain access to sensitive data from log files. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

log files. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

26. An adversary may gain access to unmasked sensitive data such as credit card 
numbers. 

Priority: 
High 

Category Information Disclosure 

Description 
An adversary may gain access to unmasked sensitive 

data such as credit card numbers. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

27. An adversary can gain access to certain pages or the site as a whole. 
Priority: 
Medium 

Category Information Disclosure 

Description 

Robots.txt is often found in your site's root 

directory and exists to regulate the bots that crawl 

your site. This is where you can grant or deny 

permission to all or some specific search engine 

robots to access certain pages or your site as a 

whole. The standard for this file was developed in 

1994 and is known as the Robots Exclusion Standard or 

Robots Exclusion Protocol. Detailed info about the 

robots.txt protocol can be found at robotstxt.org. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

28. An adversary can gain access to sensitive data by sniffing traffic to Web 
Application. 

Priority: 
High 

Category Information Disclosure 

Description 

An adversary may conduct man in the middle attack and 

downgrade TLS connection to clear text protocol or 

forcing browser communication to pass through a proxy 

server that he controls. This may happen because the 

application may use mixed content or HTTP Strict 

Transport Security policy is not ensured. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

29. An adversary can gain access to sensitive information through error messages. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary can gain access to sensitive data such 

as the following, through verbose error messages - 

Server names - Connection strings - Usernames - 
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Passwords - SQL procedures - Details of dynamic SQL 

failures - Stack trace and lines of code - Variables 

stored in memory - Drive and folder locations - 

Application install points - Host configuration 

settings - Other internal application details 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

30. An adversary may gain access to sensitive data from uncleared browser cache. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

uncleared browser cache. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

31. Attacker can deny the malicious act and remove the attack footprints leading 
to repudiation issues. 

Priority: 
Medium 

Category Repudiation 

Description 

Proper logging of all security events and user actions 

builds traceability in a system and denies any 

possible repudiation issues. In the absence of proper 

auditing and logging controls, it would become 

impossible to implement any accountability in a 

system. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

32. An adversary can get access to a user's session due to improper logout and 
timeout. 

Priority: 
High 

Category Spoofing 

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker can steal the user 

token, he would be able to access all user data and 

perform all actions on behalf of user. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

33. An adversary can get access to a user's session due to insecure coding practices. 
Priority: 

High 

Category Spoofing 

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker is able to steal 

the user token, he would be able to access all user 

data and perform all actions on behalf of user. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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34. An adversary can spoof the target web application due to insecure TLS
certificate configuration.

Priority: 
High 

Category Spoofing

Description 
Ensure that TLS certificate parameters are configured 

with correct values. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

35. An adversary can steal sensitive data like user credentials.
Priority: 

High 

Category Spoofing

Description 

Attackers can exploit weaknesses in system to steal 

user credentials. Downstream and upstream components 

are often accessed by using credentials stored in 

configuration stores. Attackers may steal the 

upstream or downstream component credentials. 

Attackers may steal credentials if, Credentials are 

stored and sent in clear text, Weak input validation 

coupled with dynamic sql queries, Password retrieval 

mechanism are poor. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

36. Attacker can steal user session cookies due to insecure cookie attributes.
Priority: 

High 

Category Spoofing

Description 

The session cookies are the identifier by which the 

server knows the identity of current user for each 

incoming request. If the attacker can steal the user 

token, he would be able to access all user data and 

perform all actions on behalf of user. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

37. An adversary can create a fake website and launch phishing attacks.
Priority: 

High 

Category Spoofing

Description 

Phishing is attempted to obtain sensitive information 

such as usernames, passwords, and credit card details 

(and sometimes, indirectly, money), often for 

malicious reasons, by masquerading as a Web Server 

which is a trustworthy entity in electronic 

communication. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

38. An adversary may spoof Kororā Framework and gain access to Web
Application.

Priority: 
High 

Category Spoofing
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Description 
If proper authentication is not in place, an adversary 

can spoof a source process or external entity and gain 

unauthorized access to the Web Application. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

39. An adversary can deface the target web application by injecting malicious code 
or uploading dangerous files. 

Priority: 
High 

Category Tampering 

Description 
Website defacement is an attack on a website where 

the attacker changes the visual appearance of the site 

or a webpage. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

40. An attacker steals messages off the network and replays them to steal a user's 
session. 

Priority: 
High 

Category Tampering 

Description 
An attacker steals messages off the network and 

replays them to steal a user's session. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

41.  An adversary can gain access to sensitive data by performing SQL injection 
through Web App. 

Priority: 
High 

Category Tampering 

Description 

SQL injection is an attack in which malicious code is 

inserted into strings that are later passed to an 

instance of SQL Server for parsing and execution. The 

primary form of SQL injection consists of direct 

insertion of code into user-input variables that are 

concatenated with SQL commands and executed. A less 

direct attack injects malicious code into strings that 

are destined for storage in a table or as metadata. 

When the stored strings are subsequently concatenated 

into a dynamic SQL command, the malicious code is 

executed. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

42. An adversary can gain access to sensitive data stored in Web App's config files. 
Priority: 

High 

Category Tampering 

Description 
An adversary can gain access to the config files. and 

if sensitive data is stored in it, it would be 

compromised. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 12. Request Token 

 
 

43. An adversary can leverage the weak scalability of Identity Server's token cache 
and cause DoS. 

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

44. An adversary may sniff the data sent from Identity Server. 
Priority: 

High 

Category Information Disclosure 
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Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

45. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

46. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

47. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

48. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 13. Respond with Token 

49. An adversary can reverse weakly encrypted or hashed content.
Priority: 

High 

Category Information Disclosure 

Description 
An adversary can reverse weakly encrypted or hashed 

content. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

50. An adversary may gain access to sensitive data from log files.
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

log files. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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51. An adversary can gain access to sensitive information through error messages. 
Priority: 

High 

Category Information Disclosure 

Description 

An adversary can gain access to sensitive data such 

as the following, through verbose error messages - 

Server names - Connection strings - Usernames - 

Passwords - SQL procedures - Details of dynamic SQL 

failures - Stack trace and lines of code - Variables 

stored in memory - Drive and folder locations - 

Application install points - Host configuration 

settings - Other internal application details. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

52. Attacker can deny the malicious act and remove the attack footprints leading 
to repudiation issues. 

Priority: 
Medium 

Category Repudiation 

Description 

Proper logging of all security events and user actions 

builds traceability in a system and denies any 

possible repudiation issues. In the absence of proper 

auditing and logging controls, it would become 

impossible to implement any accountability in a 

system. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

53. An adversary can spoof the target web application due to insecure TLS 
certificate configuration. 

Priority: 
High 

Category Spoofing 

Description 
Ensure that TLS certificate parameters are configured 

with correct values. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

54. An adversary can steal sensitive data like user credentials. 
Priority: 

High 

Category Spoofing 

Description 

Attackers can exploit weaknesses in system to steal 

user credentials. Downstream and upstream components 

are often accessed by using credentials stored in 

configuration stores. Attackers may steal the 

upstream or downstream component credentials. 

Attackers may steal credentials if, Credentials are 

stored and sent in clear text, Weak input validation 

coupled with dynamic sql queries, Password retrieval 

mechanism are poor. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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55. An adversary can create a fake website and launch phishing attacks. 
Priority: 

High 

Category Spoofing 

Description 

Phishing is attempted to obtain sensitive information 

such as usernames, passwords, and credit card details 

(and sometimes, indirectly, money), often for 

malicious reasons, by masquerading as a Web Server 

which is a trustworthy entity in electronic 

communication. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

56. An adversary may spoof Authorization server and gain access to Web 
Application. 

Priority: 
High 

Category Spoofing 

Description 
If proper authentication is not in place, an adversary 

can spoof a source process or external entity and gain 

unauthorized access to the Web Application. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

57. An adversary can gain access to sensitive data by performing SQL injection 
through Web App. 

Priority: 
High 

Category Tampering 

Description 

SQL injection is an attack in which malicious code is 

inserted into strings that are later passed to an 

instance of SQL Server for parsing and execution. The 

primary form of SQL injection consists of direct 

insertion of code into user-input variables that are 

concatenated with SQL commands and executed. A less 

direct attack injects malicious code into strings that 

are destined for storage in a table or as metadata. 

When the stored strings are subsequently concatenated 

into a dynamic SQL command, the malicious code is 

executed. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

58. An adversary can gain access to sensitive data stored in Web App's config files. 
Priority: 

High 

Category Tampering 

Description 
An adversary can gain access to the config files. and 

if sensitive data is stored in it, it would be 

compromised. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 14. GET User Info 

 
 

59. An adversary can leverage the weak scalability of Identity Server's token cache 
and cause DoS. 

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

60. An adversary may sniff the data sent from Identity Server. 
Priority: 

High 

Category Information Disclosure 
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Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

61. An adversary can bypass authentication due to non-standard Identity Server 
authentication schemes. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

62. An adversary can get access to a user's session due to improper logout from 
Identity Server. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

63. An adversary may issue valid tokens if Identity server's signing keys are 
compromised. 

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

64. An adversary may guess the client id and secrets of registered applications and 
impersonate them. 

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 15. Respond User Info 

 
 

65. An adversary can reverse weakly encrypted or hashed content. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary can reverse weakly encrypted or hashed 

content. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

66. An adversary may gain access to sensitive data from log files. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may gain access to sensitive data from 

log files. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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67. An adversary can gain access to sensitive information through error messages. 
Priority: 

High 

Category Information Disclosure 

Description 

An adversary can gain access to sensitive data such 

as the following, through verbose error messages - 

Server names - Connection strings - Usernames - 

Passwords - SQL procedures - Details of dynamic SQL 

failures - Stack trace and lines of code - Variables 

stored in memory - Drive and folder locations - 

Application install points - Host configuration 

settings - Other internal application details. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

68. Attacker can deny the malicious act and remove the attack footprints leading 
to repudiation issues. 

Priority: 
Medium 

Category Repudiation 

Description 

An adversary can gain access to sensitive data such 

as the following, through verbose error messages - 

Server names - Connection strings - Usernames - 

Passwords - SQL procedures - Details of dynamic SQL 

failures - Stack trace and lines of code - Variables 

stored in memory - Drive and folder locations - 

Application install points - Host configuration 

settings - Other internal application details. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

69.  An adversary can spoof the target web application due to insecure TLS 
certificate configuration. 

Priority: 
High 

Category Spoofing 

Description 
Ensure that TLS certificate parameters are configured 

with correct values. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

70. An adversary can steal sensitive data like user credentials. 
Priority: 

High 

Category Spoofing 

Description 

Attackers can exploit weaknesses in system to steal 

user credentials. Downstream and upstream components 

are often accessed by using credentials stored in 

configuration stores. Attackers may steal the 

upstream or downstream component credentials. 

Attackers may steal credentials if, Credentials are 

stored and sent in clear text, Weak input validation 

coupled with dynamic sql queries, Password retrieval 

mechanism are poor. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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71. An adversary can create a fake website and launch phishing attacks. 
Priority: 

High 

Category Spoofing 

Description 

Phishing is attempted to obtain sensitive information 

such as usernames, passwords, and credit card details 

(and sometimes, indirectly, money), often for 

malicious reasons, by masquerading as a Web Server 

which is a trustworthy entity in electronic 

communication. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

72. An adversary may spoof Authorization server and gain access to Web 
Application. 

Priority: 
High 

Category Spoofing 

Description 
If proper authentication is not in place, an adversary 

can spoof a source process or external entity and gain 

unauthorized access to the Web Application. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

73. An adversary can gain access to sensitive data by performing SQL injection 
through Web App. 

Priority: 
High 

Category Tampering 

Description 

SQL injection is an attack in which malicious code is 

inserted into strings that are later passed to an 

instance of SQL Server for parsing and execution. The 

primary form of SQL injection consists of direct 

insertion of code into user-input variables that are 

concatenated with SQL commands and executed. A less 

direct attack injects malicious code into strings that 

are destined for storage in a table or as metadata. 

When the stored strings are subsequently concatenated 

into a dynamic SQL command, the malicious code is 

executed. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

74. An adversary can gain access to sensitive data stored in Web App's config files. 
Priority: 

High 

Category Tampering 

Description 
An adversary can gain access to the config files. and 

if sensitive data is stored in it, it would be 

compromised. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 2. Authorized 

 
 

75. An adversary can leverage the weak scalability of Identity Server's token cache 
and cause DoS. 

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

76. An adversary may sniff the data sent from Identity Server. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

77. An adversary can bypass authentication due to non-standard Identity Server 
authentication schemes. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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78. An adversary can get access to a user's session due to improper logout from 
Identity Server. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

Possible 
Mitigation(s) 

 

 

79. An adversary may issue valid tokens if Identity server's signing keys are 
compromised. 

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

80. An adversary may guess the client id and secrets of registered applications and 
impersonate them. 

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

Interaction: 3. Get Login 
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81. An adversary can leverage the weak scalability of Identity Server's token cache 
and cause DoS. 

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

82. An adversary may sniff the data sent from Identity Server. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

83. An adversary can bypass authentication due to non-standard Identity Server 
authentication schemes. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

84. An adversary can get access to a user's session due to improper logout from 
Identity Server. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

85. An adversary may issue valid tokens if Identity server's signing keys are 
compromised. 

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 
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Possible 
Mitigation(s) 

 

 

86. An adversary may guess the client id and secrets of registered applications and 
impersonate them. 

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

Interaction: 4. Kororā Credential  

 
 

87. An adversary can leverage the weak scalability of Identity Server's token cache 
and cause DoS. 

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

88. An adversary may sniff the data sent from Identity Server. 
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 
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Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

89. An adversary can bypass authentication due to non-standard Identity Server 
authentication schemes. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

90. An adversary can get access to a user's session due to improper logout from 
Identity Server. 

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

91. An adversary may issue valid tokens if Identity server's signing keys are 
compromised. 

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

 

 

92. An adversary may guess the client id and secrets of registered applications and 
impersonate them. 

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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Interaction: 5. Post Consent 

93. An adversary can leverage the weak scalability of Identity Server's token cache
and cause DoS.

Priority: 
High 

Category Denial of Service 

Description 

The default cache that Identity Server uses is an in-

memory cache that relies on a static store, available 

process-wide. While this works for native 

applications, it does not scale for mid-tier and 

backend applications. This can cause availability 

issues and result in denial of service either by the 

influence of an adversary or by the large scale of 

application's users. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

94. An adversary may sniff the data sent from Identity Server.
Priority: 

High 

Category Information Disclosure 

Description 
An adversary may sniff the data sent from Identity 

Server. This can lead to a compromise of the tokens 

issued by the Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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95. An adversary can bypass authentication due to non-standard Identity Server
authentication schemes.

Priority: 
High 

Category Spoofing 

Description 
An adversary can bypass authentication due to non-

standard Identity Server authentication schemes. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

96. An adversary can get access to a user's session due to improper logout from
Identity Server.

Priority: 
High 

Category Spoofing 

Description 
An adversary can get access to a user's session due 

to improper logout from Identity Server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

97. An adversary may issue valid tokens if Identity server's signing keys are
compromised.

Priority: 
High 

Category Spoofing 

Description 

An adversary can abuse poorly managed signing keys of 

Identity Server. In case of key compromise, an 

adversary will be able to create valid auth tokens 

using the stolen keys and gain access to the resources 

protected by Identity server. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 

98. An adversary may guess the client id and secrets of registered applications and
impersonate them.

Priority: 
High 

Category Spoofing 

Description 
An adversary may guess the client id and secrets of 

registered applications and impersonate them. 

Justification <no mitigation provided> 

Possible 
Mitigation(s) 
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