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BAIRE SPACES AND VIETORIS HYPERSPACES

JILING CAO, SALVADOR GARCÍA-FERREIRA, AND VALENTIN GUTEV

(Communicated by Jonathan M. Borwein)

Abstract. We prove that if the Vietoris hyperspace CL(X) of all nonempty
closed subsets of a space X is Baire, then all finite powers of X must be Baire
spaces. In particular, there exists a metrizable Baire space X whose Vietoris
hyperspace CL(X) is not Baire. This settles an open problem of R. A. McCoy
stated in 1975.

1. Introduction

In this paper, all topological spaces are assumed to be infinite and at least Haus-
dorff. Also, all product spaces are endowed with the Tychonoff product topology. A
topological space X is called Baire [HM] if the intersection of any sequence of dense
open subsets of X is dense in X, or equivalently, if all nonempty open subsets of
X are of second category. Baire spaces have numerous applications in analysis and
topology, such as the open mapping and closed graph theorems, and the Banach-
Steinhaus theorem [Con]. For some other applications, see [E, Za1] or [Za2]. A
fundamental treatise on Baire spaces in general topology is [HM], and several open
problems on Baire and related spaces are discussed in [AL].

For a space X, let CL(X) be the collection of all nonempty closed subsets of X
endowed with the Vietoris topology τV . Recall that a canonical base for τV is given
by all subsets of CL(X) of the form

〈V〉 =
{

F ∈ CL(X) : F ⊂
⋃

V , F ∩ V �= ∅ for any V ∈ V
}

,

where V runs over the finite families of nonempty open subsets of X. In the sequel,
any subset D ⊂ CL(X) will carry the relative Vietoris topology τV as a subspace
of (CL(X), τV ). McCoy [Mc] has studied Baire Vietoris hyperspaces and obtained
various sufficient and necessary conditions: for example, if X is a second countable,
regular Baire space, then CL(X) is Baire, too; on the other side, if CL(X) is a
Baire space, then so is X. Moreover, if K(X) (the hyperspace of all nonempty
compact subsets of X) is a Baire space, then X2 is also Baire and hence, if X is
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a Baire space with a non-Baire square, then K(X) is not Baire. In this context,
McCoy posed the following natural problem (see page 140 of [Mc]).

Problem 1.1. Let X be a metrizable Baire space such that X2 is not Baire. Must
CL(X) be Baire?

For the proper understanding of the above problem, let us explicitly mention that
there exists a Baire space X whose square X2 is not Baire. The first space with
such properties, constructed under the Continuum Hypothesis, is due to Oxtoby
[O]. Then, the example was improved to an absolute one by Cohen [Coh] relying
on forcing. Finally, Fleissner and Kunen [FK] constructed a metrizable Baire space
X whose square X2 is not Baire in ZFC by direct combinatorial arguments.

There are several recent results concerning hyperspaces of Baire spaces (see,
for instance, [BHZ, CG], or [Zs]), but we were unable to find any reference about
possible progress in the solution of Problem 1.1. The main purpose of the present
paper is to provide the negative solution of this problem by proving the following
theorem.

Theorem 1.2. If CL(X) is a Baire space, then all finite powers of X must be
Baire spaces.

By Theorem 1.2 and the previous remarks, we have the following consequence.

Corollary 1.3. There exists a metrizable Baire space X such that CL(X) is not
Baire.

Another possible application of Theorem 1.2 regards Volterra spaces. Recall that
a space X is Volterra if the intersection of any two dense Gδ-subsets of X is dense
in X [GP]. Clearly, any Baire space is Volterra. In fact, a space X which contains
a dense metrizable subspace is Baire if and only if it is Volterra [GL].

Corollary 1.4. If X is a metrizable space such that CL(X) is Volterra, then all
finite powers of X must be Baire.

Proof. Note that K(X) forms a metrizable subspace of CL(X) ([Mi]), which is also
dense in CL(X), so the above-mentioned result of [GL] and Theorem 1.2 apply. �

The proof of Theorem 1.2 along with some auxiliary material shall be given in
the next section. Also, Theorem 2.1 may be of some independent interest.

2. Proof of Theorem 1.2

For a space X and n ≥ 1, let Fn(X) = {S ∈ CL(X) : |S| ≤ n}. Note that
Fn(X) is always a closed subset of CL(X) and F1(X) is naturally homeomorphic
to X (which means that the Vietoris topology is admissible [Mi]). We may look at
Fn(X) as an “unordered” version of Xn, so the following first step towards proving
Theorem 1.2 is not surprising.

Theorem 2.1. For each n ≥ 1, Fn(X) is a Baire space if and only if Xn is a
Baire space.

The proof of this theorem is based on the following observation (see [HM] and
[N] for generalizations).

Proposition 2.2. Let f : X → Y be a finite-to-one open continuous surjection.
Then X is a Baire space if and only if Y is a Baire space.



BAIRE SPACES AND VIETORIS HYPERSPACES 301

Proof. If X is a Baire space, then so is Y because f is an open and continuous
surjection. Conversely, suppose that Y is a Baire space and G =

⋂
{Vk : k < ω}

for some decreasing sequence of open dense subsets Vk ⊂ X, k < ω. Also, let
W ⊂ X be a nonempty open set. Then, each Uk = f(Vk ∩ W ), k < ω, is open
and dense in H = f(W ) because g = f � W : W → H is open and continuous.
Hence, D =

⋂
{Uk : k < ω} is dense in H, because H is open in Y , so there

exists some y ∈ D. Now, let us observe that {g−1(y) ∩ Vk : k < ω} is a decreasing
sequence of nonempty finite subsets of X, since g is finite-to-one, and therefore it
has a nonempty intersection. This implies that W ∩ G �= ∅. �

Proof of Theorem 2.1. The map f : Xn → Fn(X), defined as

f((x1, ..., xn)) = {x1, ..., xn},
is clearly finite-to-one. Further, f is open, since if U1, ..., Un are open subsets of
X, then f(U1 × · · · × Un) = 〈{U1, ..., Un}〉. To show that f is continuous, take an
(x1, ..., xn) ∈ Xn and a finite collection σ of nonempty open subsets of X such that
f((x1, ..., xn)) ∈ 〈σ〉. Next, define Ui =

⋂
{V ∈ σ : xi ∈ V } for each 1 ≤ i ≤ n.

Then (x1, ..., xn) ∈ U1 × · · · ×Un and f(U1 × · · · ×Un) = 〈{U1, ..., Un}〉 ⊂ 〈σ〉. The
theorem now follows from Proposition 2.2. �

If σ and γ are families of nonempty subsets of X, then σ is called a refinement
of γ if any element of σ is a subset of some element of γ; furthermore, σ is a strong
refinement of γ if in addition to being a refinement of γ, each element of γ contains
some element of σ. Observe that if σ and γ are finite families of nonempty open
subsets of X and σ is a strong refinement of γ, then 〈σ〉 ⊂ 〈γ〉. Motivated by
this, to any finite family γ of nonempty open subsets of X we will associate the
set SR(γ) of all strong refinements σ of γ such that σ consists of nonempty open
subsets of X and |σ| = |γ|. Note that if γ is pairwise disjoint, then any σ ∈ SR(γ)
is also pairwise disjoint, while 〈γ〉 �= ∅ implies ∅ �= 〈σ〉 ⊂ 〈γ〉 for every σ ∈ SR(γ).
Finally, if n ≥ 1, the symbol [S]n will stand for the collection of all n-element
subsets of the set S. The next lemma will be our main tool in working with strong
refinements.

Lemma 2.3. Let γ be a finite family of pairwise disjoint nonempty open subsets
of X with |γ| ≥ n ≥ 1, and let V ∈ τV be dense in [X]n. Then there exists a
σ ∈ SR(γ) such that 〈τ 〉 ⊂ V for every τ ∈ [σ]n.

Proof. Let [γ]n = {γ1, ..., γm} for some m < ω. Also, for convenience, let γ0 = γ.
For each 0 ≤ k ≤ m and each V ∈ γ, define by induction a nonempty open subset
Vk ⊂ V such that

(i) Vk ⊂ V�, whenever 0 ≤ � ≤ k;
(ii) 〈{Vk : V ∈ γk}〉 ⊂ V , if k ≥ 1.

To see how this can be done, if k = 0, then we merely let V0 = V for each V ∈ γ0.
Suppose that the construction has been done up to some 0 ≤ k < m. Then
|γk+1| = n, while V is open (in CL(X)) and dense in [X]n, so for each V ∈ γk+1,
there exists a nonempty open subset Vk+1 ⊂ Vk such that 〈{Vk+1 : V ∈ γk+1}〉 ⊂ V .
To complete the construction, let Vk+1 = Vk for every V ∈ γ � γk+1. Clearly, (i)
and (ii) hold for this particular k + 1, which completes the induction.

Finally, let us show that σ = {Vm : V ∈ γ} is as required. Suppose that τ ∈ [σ]n.
According to (i), σ is a strong refinement of γ, hence we can define γτ ∈ [γ]n by
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letting γτ = {V ∈ γ : Vm ∈ τ}. Now, on the one hand, γτ = γk for some k ≤ m,
with k ≥ 1, so, by (ii), 〈{Vk : V ∈ γτ}〉 ⊂ V . On the other hand, by (i), τ is a
strong refinement of {Vk : V ∈ γτ}, therefore 〈τ 〉 ⊂ 〈{Vk : V ∈ γτ}〉 ⊂ V . This
completes the proof. �

Proof of Theorem 1.2. According to Theorem 2.1, it suffices to show that Fn(X)
is a Baire space for each n ≥ 1. Take a countable family {Vk : k < ω} of τV -open
subsets of CL(X) which are dense in Fn(X), and let us show that

G =
⋂

{Vk : k < ω}

is dense in Fn(X). To this end, let λ be a finite family of nonempty open subsets of
X such that 〈λ〉 ∩ Fn(X) �= ∅. In case that

⋃
λ is finite, then 〈λ〉 consists only of

isolated points of F(X), hence there exists an S ∈ 〈λ〉∩Fn(X) which is an isolated
point of F(X). Clearly, in this case S ∈ G. If

⋃
λ is infinite, then 〈λ〉 ∩ [X]n �= ∅,

and there is a finite family µ consisting of pairwise disjoint nonempty open subsets
of X such that |µ| = n and 〈µ〉 ⊂ 〈λ〉. For every k < ω, consider the collection Σk

of all finite families σ consisting of pairwise disjoint nonempty open subsets of X
such that

(2.1) σ is a strong refiniment of µ and 〈τ 〉 ⊂ Vk for every τ ∈ [σ]n.

Next, we consider the τV -open sets

Uk =
⋃

{〈σ〉 : σ ∈ Σk}, k < ω,

in CL(X), and we are going to show that they are dense in 〈µ〉. Take k < ω and a
finite family ν of open subsets of X such that 〈ν〉 ∩ 〈µ〉 �= ∅. Since ν is finite and
|µ| = n, there now exists a finite family γ consisting of pairwise disjoint nonempty
open subsets of X such that |γ| ≥ n, and 〈γ〉 ⊂ 〈ν〉 ∩ 〈µ〉. Since Vk is dense in
[X]n, Lemma 2.3 implies the existence of a σ ∈ SR(γ) such that 〈τ 〉 ⊂ Vk for every
τ ∈ [σ]n; thus, σ ∈ Σk and ∅ �= 〈σ〉 ⊂ 〈γ〉 ∩ Uk, so Uk is dense in 〈µ〉. As a result,
we get that D =

⋂
{Uk : k < ω} is a τV -dense subset of 〈µ〉 because 〈µ〉 is itself a

Baire space, being a τV -open subset of CL(X), so there exists an F ∈ 〈µ〉 ∩D. For
every W ∈ µ, fix a point xW ∈ F ∩ W and define T = {xW : W ∈ µ}. Note that
|T | = |µ| = n, and, in particular, T ∈ Fn(X). Now, on the one hand, for every
k < ω we can find a σk ∈ Σk with F ∈ 〈σk〉; on the other hand, we can define a
special subfamily of σk by letting τk = {S ∈ σk : S ∩ T �= ∅}. Then |τk| = |T | = n
because σk is a pairwise disjoint strong refinement of µ, while |T ∩W | = 1 for every
W ∈ µ. According to (2.1), this implies that T ∈ 〈τk〉 ⊂ Vk for every k < ω, so
T ∈ 〈µ〉 ∩ G ⊂ 〈λ〉 ∩ G, which completes the proof. �
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