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Abstract 
 

A new speech enhancement method based on Maximum A-Posteriori (MAP) estimation 

on Gaussian Mixture Models (GMMs) of speech and different noise types is introduced. 

The GMMs model the distribution of speech and noise periodograms in a high 

dimensional space and hence decrease the complexity of estimation procedure. Using 

the GMMs the Probability Density Functions (PDFs) of clean speech and noise can be 

calculated and by applying MAP on these PDFs, the estimates of speech and noise 

periodograms that form the noisy speech periodogram of the observed noisy speech 

frame can be estimated. These estimates are then used in a Wiener filter to enhance the 

noisy speech and recover the speech signal as close as possible to the original one. Since 

the PDFs are complicated and hence the realization of a MAP criterion can become 

even more complicated, some approximations are used to find the MAP criterion. Some 

improvements on this MAP estimation based on the characteristics of periodograms are 

also introduced in which the approximations are improved in a way which leads to more 

accurate estimates of speech and noise periodograms. Since the accuracy of the 

introduced MAP estimate is highly dependent on the accuracy of speech and noise 

power estimation in the noisy frame, a new power estimation method using Gamma 

modelling is introduced to replace the older methods like Minimum Statistics. The 

results of all the estimation methods are used in a classic Wiener filter to be applied on 

the noisy frame to enhance it. Since all the estimation algorithms can have some errors, 

we introduce an improvement of Wiener filter in which we can attenuate the effect of 

these errors on the enhanced speech signal. The performance of all the introduced 

methods are analyzed in terms of quality and intelligibility and reported thus.
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Contribution to knowledge 
 

 A new Gaussian Mixture Model is introduced to model the distribution of 

periodograms in vector space. To do so, the normalized periodograms are 

considered as vectors in a multi-dimensional space that can form colonies of 

periodograms with similar shapes. The Gaussian Mixture Model can model the 

number of periodograms in each colony based on the mean vector and the 

covariance matrix of that colony. Also a method introduced for finding a proper 

number of Gaussians when dealing with high dimensional spaces.  

 Using these models, a Maximum A-Posteriori criterion is calculated on the 

Probability Density Functions of clean speech and noise periodograms to 

estimate the speech and noise periodograms from the observed noisy speech 

periodogram.  

 A new Gamma model is introduced for modelling the distribution of speech and 

noise periodogram powers. Using this model, a Maximum A-Posteriori criterion 

is calculated on the Probability Density Functions of clean speech and noise 

powers to estimate the speech and noise periodogram powers from the observed 

noisy speech periodogram power. 

 A parameter is added to the classic Wiener filter formula with which a higher 

level of noise reduction is attained. This parameter will help to decrease the 

effect of the resulted error from the periodogram estimation algorithms.  
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Their element-wise multiplication is shown as 

ܹሺ߱ሻܺሺ߱ሻ = ሾ ଴ܹܺ଴, ଵܹܺଵ, … , ఆܹܺఆሿ 

The element-wise division is shown as 

ܹሺ߱ሻ

ܺሺ߱ሻ
= ൤ ଴ܹ

ܺ଴
, ଵܹ

ܺଵ
, … , ఆܹ

ܺఆ
൨ 

More explanation is give in Appendix A. 
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1 Introduction 

Speech is the simplest communication method among human beings. Starting with 

simple fixed-line telephone networks for limited distances to the use of improved 

mobile communication networks, there have been numerous improvements to improve 

communication among people. Using mobile communications, it has become possible 

to communicate everywhere and in different environments. Such flexibilities in mobile 

communication have some challenges. The subscribers of mobile communication 

communicate in different environments with different background noises and different 

levels such as traffic noise, car engine noise, interference of multiple speakers in a café 

and etc. Another application of the speech signal is in hearing aids which can be carried 

with the user in different environments of different noises and levels and can lead to the 

same challenges of mobile communication. In other applications there might be a 

recorded version of a speech signal which is corrupted by some noise which might not 

even be known to the listener. The reduction of all these mentioned noise is always of 

great importance and sometimes complicated. Noise reduction will reduce hearing 

difficulties and will increase the quality and intelligibility of the enhanced signals for 

the listener. The enhancement process will improve the performance of coding 

algorithms which are the basis of mobile communication. The resistance to 

environmental noise is a limiting factor for the comprehensive use of communication 

systems. Although the mentioned algorithms have a good performance in the noiseless 

and controlled environments, their performance will highly degrade in noisy conditions.  

Most of speech enhancement algorithms are classified into two main groups, single-

channel and multi-channel. The single-channel algorithms are applied on the resulting 
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input signal of one microphone and since they are less complicated, are of more interest 

in mobile communications. In return, the multi-channel algorithms use an array of two 

or more microphones to input the noisy signal to capture the spatial variety of the signal. 

These two methods are not necessarily separated and to have better performance they 

might be combined [1, 2].   

In speech enhancement it is considered that the noisy speech is the summation of the 

clean or pure speech and the pure noise and hence the noise is additive. In speech 

enhancement algorithms, either single-channel or multi-channel, only the noisy signal is 

available as an observations and the aim is to extract the forming clean speech signal as 

close as possible to the original one that was combined with the noise.  

In multi-channel methods, there are multiple microphones in different locations with 

respect to the speech source and hence they all receive almost the same clean speech 

signal but with different noises or different levels of the same noise based on their 

location. In this way, always multiple versions of noisy speech with different noises 

and/or different levels of Signal to Noise Ratio (SNR) are available and hence the clean 

speech can be considered as the common signal between these noisy observations. In 

single-channel methods, only one noisy observation is available and there is no other 

separate information source about the interfering noise or noises and their levels and 

hence all the information about the clean speech and noise should be extracted from that 

single noisy speech observation. In this way the single-channel algorithms are more 

challenging and can become mathematically more complicated. Moreover the single-

channel methods can be expanded to be used in multi-channel applications and hence in 

this research we are going to concentrate more on single-channel methods.  

As discussed in [3], speech enhancement algorithms can be classified into two main 

categories: unsupervised and supervised algorithms. The simplest and most famous 

speech enhancement method is spectral subtraction [4] in which the spectral amplitude 
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of noise is estimated from the spectral amplitude of noisy speech and subtracted from it 

to get to the spectral amplitude of clean speech. Since there are no considerations of the 

speech spectrum in spectral subtraction, it results in an artificial noise called musical 

noise. To reduce this musical noise some methods discussed in [5] can be used which 

are simple but require an efficient Voice Activity Detector (VAD) to estimate the noise 

spectrum. In these methods the amplitude of the spectrum is used, but in [6] the 

complex spectrum is considered. In Wiener filtering [7], speech and noise probabilistic 

properties are used and hence the enhanced speech suffers from less musical noise with 

respect to spectral subtraction methods. A method called Short Time Spectral 

Amplitude (STSA) is discussed in [8], which is based on Minimum Mean Square Error 

(MMSE) estimation with the assumption that the speech and noise spectral components 

are statistically independent and Gaussian random variables. The MMSE-STSA method 

is derived by minimizing a conditional mean square value of the short time spectral 

amplitude. As discussed in [9], when Probability Density Functions (PDF) of speech 

and noise spectrums are assumed to be Gaussian, the spectral gain will become the 

Wiener filter gain. This method is based on the a priori SNR estimation on a frame-by-

frame basis by a decision directed approach and Maximum Likelihood (ML) estimator 

with the assumption that the noise variance is known or can be estimated during the 

silence intervals. There are different methods to calculate the a priori SNR. A decision 

directed method is discussed in [10]. A data driven approach to calculating a priori  

SNR is discussed in [11] in which two trained artificial neural networks, one for speech 

and one for noise, is used. As confirmed in the literature, the MMSE spectral gain is 

superior to the spectral subtraction method but is computationally complicated to 

implement. To overcome this issue, a method discussed in [9] called the Maximum a 

posteriori (MAP) method, which can result in relatively good enhancement results if 

used.  
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In supervised speech enhancement algorithms we use some additional information about 

noise and speech such as noise type, speaker identity etc. to improve the enhancement. 

In supervised methods we create some offline models for speech and noise which are 

trained using large observed samples of each signal. Some examples of this class of 

algorithms include the codebook based approaches as discussed in [12], where LPC 

codebooks of speech are used and in [13], AR coefficient codebooks of speech and 

noise are used which leads to ML estimates of clean speech. Another well-known and 

high performance supervised speech enhancement methods are Hidden Markov Model 

(HMM) based systems and the state-of-the-art approaches are discussed in references 

[14-16]. In these methods, the waveform signal is modeled as an autoregressive (AR) 

process, and hence the waveforms of speech and noise signals are modeled by HMMs. 

In recent HMM based methods as discussed in [17-19], distribution of the power 

spectral coefficients of speech and noise are modelled using HMMs using Gamma 

distribution. There are also other methods that are based on modelling the spectral 

amplitude of speech using Gaussian Mixture Modelling (GMM) in which estimates of 

speech are attained using a MAP criterion as discussed in [20-22] and a minimum 

mean-square error (MMSE) criterion as discussed in [23]. The advantage of the 

supervised approaches such as the HMM based denoising algorithm is that it produces 

high quality enhanced speech signals. The reason for this is that for each noise type, a 

system is trained a priori. This is a tedious task in practice and is addressed in [3]. 

In most supervised model based algorithms, GMM is used for the modelling of spectral 

amplitudes, log spectral amplitudes or periodograms with their true power and some of 

these methods give excellent enhancement results. In this research we are going to use 

normalized periodograms (with power equal to one) as the vectors to be modelled. In 

most Bayesian estimation criterions especially MAP estimation, due to the complexity 

of the estimation criterion formula, some mathematical distributions like Laplacian or 
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Gamma are used to simplify the formula. Here we aim to use GMM to generate a model 

for the distribution of speech and noise periodograms in a multi-dimensional space and 

then using MAP on these GMMs to estimate the speech and noise periodograms that 

form the noisy speech periodograms [9, 24]. Using these estimated periodograms we 

will construct Wiener filters to enhance the noisy speech and recover the clean speech. 

In the next chapter we are going to discuss different speech enhancement methods and 

their pros and cons.  
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2 Speech enhancement methods review  

We are going to introduce some well-known speech enhancement methods that have 

been introduced in the past decade. There are different methods to remove or suppress 

the additive noise for the observations. These methods are called speech enhancement 

techniques. From the additive assumption for the noise in the time domain we have  

ሺ݉ሻݔ  = ሺ݉ሻݏ + ݊ሺ݉ሻ (2.1)

where ݏ ,ݔ and ݊ are the noisy speech, clean speech and noise respectively and the 

index ݉ represents the discrete time index. In single channel speech enhancement 

methods only the noisy speech observation ݔሺ݉ሻ are available and through this 

observation an estimate of ݏሺ݉ሻ should be extracted. This procedure is called speech 

enhancement and is classified into some main groups. These main groups are 

conventional methods, binary time-frequency masks and subspace methods.  

2.1 Conventional speech enhancement methods 

A large group of speech enhancement methods is called conventional methods in which 

a filter is used to remove an estimate of noise from the noisy speech to generate an 

estimate of the clean speech. These methods focus on the enhancement of the spectral 

amplitude of the speech signal and are also known as Short-Time-Spectral-Amplitude 

(STSA) methods.  

 Basics of conventional speech enhancement methods 

These methods contain three steps which are analysis, enhancement and synthesis. 
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Analysis 

The noisy speech signal is processed on a frame-by-frame basis. To preserve the 

stationarity assumption for the analyzed signal, it is divided into equal frames of length 

10-30ms [25]. Applying a square window that sharply extracts the frame can cause 

frequency overshoots after the Fourier transform of the frame. Since the analysis is 

performed in the frequency domain and there are limitations in the use of Discrete 

Fourier Transform (DFT), the frames are windowed using Hanning or Hamming 

windows. To avoid data loss and aliasing in the modulation domain and to compensate 

for the window effect which is like weighting in the time domain, these frames are 

overlapped. An overlap of 75% can completely compensate the time domain weighting 

of the signal components.  

 

Figure 2.1: Hamming windows with 75% overlap (solid line) and their sum (dashed line) 

 

Applying the Hamming window on the signals denoted in (2.1) will lead to  

௞ሺ݉ሻݔ  = ௞ሺ݉ሻݏ + ݊௞ሺ݉ሻ (2.2)
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where the ݇ index shows the ݇-th frame of each signal. For simplicity and to avoid the ݇ 

index in the equations, in this document (2.2) will be replaced by (2.1) but we know that 

it is actually written on the frames of these signals and not the whole signal. To find the 

spectrum of one frame of a windowed noisy speech, the DFT will be applied 

accordingly 

  
ܺሺ߱ሻ = ෍ ሺ݉ሻ݁ି௝ݔሺ݉ሻݓ

ଶగఠ௠
ஐ

ஐିଵ

௠ୀ଴

0   ݎ݋݂    ≤ ߱ ≤ Ω − 1 (2.3) 

where ݔሺ݉ሻ and ݓሺ݉ሻ are the ݉-th samples of the noisy speech and window (for 

example Hamming) respectively with total Ω time samples in the frame and ܺሺ߱ሻ is the 

߱-th frequency bin of the complex spectrum on Ω bins. In the same way discussed in 

(2.3) the (2.1) can be rewritten in frequency domain as:  

 ܺሺ߱ሻ = ܵሺ߱ሻ + ܰሺ߱ሻ (2.4)

where ܵ and ܰ are the spectrums of clean speech and noise respectively. The spectrum 

of noisy speech ܺሺ߱ሻ is a vector of complex values and hence the spectral amplitude of 

noisy speech is defined as |ܺሺ߱ሻ|  which represents the amplitude of each frequency 

component. In the same way we can define |ܵሺ߱ሻ| and |ܰሺ߱ሻ| as the spectral amplitude 

of clean speech and noise, respectively.  

Enhancement  

For the enhancement methods which are based on STSA, the focus is on removing the 

noise frequency components from the noisy speech spectral amplitude. The effect of 

noise on phase is assumed to be inaudible [26] and in this case the enhancement is only 

applied on the spectral amplitude and the phase of clean speech spectrum is taken the 

same as noisy speech phase [27]. The noisy speech spectral amplitude is considered to 

be a function of the clean speech and noise spectral amplitudes as in |ܺሺ߱ሻ| =
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݂ሺ|ܵሺ߱ሻ|, |ܰሺ߱ሻ|ሻ and hence the enhancement step is to find a function that by 

applying it to the noisy speech spectral amplitude, an estimate of clean speech spectral 

amplitude will be attained as ห መܵሺ߱ሻห = ݂ିଵ൫|ܺሺ߱ሻ|, ห ෡ܰሺ߱ሻห൯ in which ห መܵሺ߱ሻห and 

ห ෡ܰሺ߱ሻห represent an estimate of clean speech and noise spectral amplitude. The 

implementation of this step is highly dependent to these approaches:  

1) An accurate estimate of noise spectral amplitude ห ෡ܰሺ߱ሻห 

2) An appropriate and accurate noise removal function ݂ିଵ 

The noise removal function ݂ିଵ൫|ܺሺ߱ሻ|, ห ෡ܰሺ߱ሻห൯ is mostly considered as a gain 

function as ܪሺ߱ሻ in which 

 ห መܵሺ߱ሻห =  ሺ߱ሻ|ܺሺ߱ሻ| (2.5)ܪ

The gain function or the filter is computed using a-priori and a-posteriori SNRs.  

Synthesis  

After the noisy speech frames were divided into some overlapping frames and 

transferred to frequency domain using DFT as discussed in “Analysis” section and went 

through the enhancement and filtering process as discussed in “Enhancement” section, 

now it is the time that all the enhanced frames being transferred back to time domain 

and being re-arranged as the whole signal and this procedure is called synthesis. In this 

way, the spectrum of clean speech could be formed using the estimated spectral 

amplitude of clean speech ห መܵሺ߱ሻห and the phase of noisy speech as  

 መܵሺ߱ሻ = ห መܵሺ߱ሻห݁௝∠௑ሺఠሻ (2.6) 

where ∠ܺሺ߱ሻ represents the phase of noisy speech. By applying inverse DFT on the 

estimated clean speech frame in time domain is calculated as:  
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ሺ݉ሻݏ̂ =

1
Ω

෍ መܵሺ߱ሻ݁௝
ଶగఠ௠

ஐ

ஐିଵ

ఠୀ଴

0   ݎ݋݂    ≤ ݉ ≤ ܯ − 1 (2.7)

Since the resulted ̂ݏሺݐሻ is just one frame of the enhanced speech, using Overlap-Add 

method, all the enhanced frames could be put together to form the whole enhanced 

speech signal. In this way if the noisy speech was divided to frames with 75% overlap 

then the recovered ̂ݏሺ݉ሻ frames should be added with their neighboring frames with 

75% overlap.  

 Spectral subtraction  

This method is the most basic and the simplest speech enhancement method. Since we 

assumed that the noise is additive, by subtracting the noise estimate from the noisy 

speech, the clean speech estimate can be calculated. As discussed in section 2.1.1 since 

most of the conventional methods are dealing with the spectral amplitude and not caring 

about the spectral phase, the spectral subtraction method could be implemented through 

applying a gain factor to the spectral amplitude of noisy speech as in (2.5) in which the 

gain function ܪሺ߱ሻ could be calculated as: 

 
ሺ߱ሻܪ =

ห መܵሺ߱ሻห

ห መܵሺ߱ሻห + ห ෡ܰሺ߱ሻห
=

ห መܵሺ߱ሻห
|ܺሺ߱ሻ|

= 1 −
ห ෡ܰሺ߱ሻห
|ܺሺ߱ሻ|

 (2.8)

Applying the resulting ܪሺ߱ሻ in (2.5) will give an estimate of the clean speech spectral 

amplitude as: 

 ห መܵሺ߱ሻห = ݂ିଵ൫|ܺሺ߱ሻ|, ห ෡ܰሺ߱ሻห൯ = |ܺሺ߱ሻ| − ห ෡ܰሺ߱ሻห (2.9)

The resulting subtraction can be implemented in different domains with the index ݌ as: 

 
ห መܵሺ߱ሻห = ට݂ିଵ൫|ܺሺ߱ሻ|௣, ห ෡ܰሺ߱ሻห

௣
൯

೛

 (2.10)
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where ݌ = 1 represents the magnitude spectrum (spectral amplitude) and ݌ = 2 

represents power spectrum (periodogram). Since the subtraction of noise spectral 

amplitude from noisy speech spectral amplitude is done individually for each frequency 

bin, by having larger noise spectral amplitude values, it can result in negative values for 

speech spectral amplitude which is not valid (since we cannot have negative values for 

spectral amplitude). In this way (2.9) and (2.10) for ݌ = 2 can be rewritten as: 

 
ห መܵሺ߱ሻห

ଶ
= ቊ|ܺሺ߱ሻ|ଶ − ห ෡ܰሺ߱ሻห

ଶ

0
         if |ܺሺ߱ሻ|ଶ > ห ෡ܰሺ߱ሻห

ଶ

else
 (2.11)

Using this method we can find valid clean speech spectral amplitude for half-wave 

while the zeroing of resulted negative values will expose some random peaks to the 

spectrum which can cause artifacts in the reconstructed speech. Since the locations of 

these peaks are random among the frames, a random structured tone will be added to the 

enhanced speech which is referred to as musical noise. There are some improvements 

on this zeroing process in which any negative spectral bin will be floored spectrally to a 

proportion of noise power spectrum estimate [28]. The noise power spectrum estimate is 

multiplied by an over-subtraction factor ߙ and then subtracted from the noisy speech 

power spectrum. All the negative bins are then replaced by noise power spectrum 

estimate scaled by spectral floor parameter ߚ as: 

 
ห መܵሺ߱ሻห

ଶ
= ൝

|ܺሺ߱ሻ|ଶ − หߙ ෡ܰሺ߱ሻห
ଶ

หߚ ෡ܰሺ߱ሻห
ଶ          if |ܺሺ߱ሻ|ଶ > ሺߙ + ሻหߚ ෡ܰሺ߱ሻห

ଶ

else
 (2.12) 

In this way some high amplitude peaks associated with the enhanced speech will be 

terminated. The amplitude of the broadband peaks will be reduced by the use of the 

over-subtraction of the noise and in this way only some low amplitude narrowband 

peaks will be left. These narrowband peaks are then masked through the use of a 

fraction of the noise back on to the spectrum. The parameter ߚ controls the amount of 

residual noise and hence the level of musical noise and the parameter ߙ controls the 
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level of speech distortion. These two parameters can be determined by experiment or by 

a Minimum Mean Square Error (MMSE) estimate of the optimal parameters [29]. These 

parameters can also be calculated in spectral band or spectral bin level as ߙሺ߱ሻ and 

 ሺ߱ሻ. The various configurations of spectral subtraction based methods are being testedߚ

in terms of intelligibility and quality of the enhanced speech [30, 31]. This method 

exhibits relatively good quality and intelligibility for the enhanced speech and in terms 

of high suppression of the background noise the intelligibility of the speech might be 

slightly reduced.  

 The Wiener filter 

From (2.5) we know that an estimate of clean speech spectral amplitude can be 

calculated as ห መܵሺ߱ሻห =  ሺ߱ሻ|ܺሺ߱ሻ| and since we can use the noisy speech phase forܪ

the enhanced speech hence for the enhanced speech spectrum we can write: 

 መܵሺ߱ሻ = ሺ߱ሻܺሺ߱ሻ (2.13)ܪ

The Wiener filter is based on minimization of the Mean Square Error (MSE) between 

the estimate of the clean speech spectrum መܵሺ߱ሻ and the real clean speech spectrum 

ܵሺ߱ሻ. To find the MSE between መܵሺ߱ሻ and ܵሺ߱ሻ we can write:  

ܧܵܯ  = ܧ ቂቀܵሺ߱ሻ − መܵሺ߱ሻቁ ቀܵሺ߱ሻ − መܵሺ߱ሻቁ
∗
ቃ (2.14)

where the superscript ∗ represents the complex conjugate and ܧሾ. ሿ represents the 

statistical expectation value which mathematically is the mean of the corresponding 

function. By replacing መܵሺ߱ሻ in (2.14) from (2.13), the ܧܵܯ can be rewritten as: 

ܧܵܯ  = ൫ܵሺ߱ሻൣܧ − ሺ߱ሻܺሺ߱ሻ൯൫ܵሺ߱ሻܪ − ሺ߱ሻܺሺ߱ሻ൯ܪ
∗
൧ (2.15) 

We can also replace ܺሺ߱ሻ with ܵሺ߱ሻ + ܰሺ߱ሻ using (2.4) and rewrite (2.15) as: 
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ܧܵܯ  = ܧ ቂቀܵሺ߱ሻ − ሺ߱ሻ൫ܵሺ߱ሻܪ + ܰሺ߱ሻ൯ቁ ቀܵሺ߱ሻ − ሺ߱ሻ൫ܵሺ߱ሻܪ + ܰሺ߱ሻ൯ቁ
∗
ቃ(2.16)

For simplicity we ignore the index ߱ and show the spectrums just by their names in 

bold representing their vectors as ࡿ = ܵሺ߱ሻ, ࡺ = ܰሺ߱ሻ and ࡴ =  ሺ߱ሻ and expandܪ

(2.16) as:  

ܧܵܯ  = ∗ࡿࡿሾܧ − ∗ࡿࡿሺ∗ࡴ + ሻ∗ࡺࡿ − ∗ࡿࡿሺࡴ + ሻܰ∗ࡿ

+ ∗ࡿࡿሺ∗ࡴࡴ + ∗ࡺࡿ + ܰ∗ࡿ +  ሻሿ∗ࡺࡺ
(2.17)

In the gain function ࡴ =  ሺ߱ሻ in terms of Wiener filter the frequency components areܪ

all real values since they are supposed to either amplify or suppress the noisy speech 

spectral amplitude and hence ࡴ =  Multiplying a spectrum to its complex conjugate .∗ࡴ

is the power spectrum of that signal as ࡿࡿ∗ = ଶ|ࡿ| = |ܵሺ߱ሻ|ଶ and ࡺࡺ∗ = ଶ|ࡺ| =

|ܰሺ߱ሻ|ଶ. Using these definitions we can rewrite (2.17) as: 

ܧܵܯ  = ଶ|ࡿ|ሾܧ − ଶ|ࡿ|ሺࡴ + ሻ∗ࡺࡿ − ଶ|ࡿ|ሺࡴ + ሻܰ∗ࡿ

+ ଶ|ࡿ|ଶሺࡴ + ∗ࡺࡿ + ܰ∗ࡿ +  ଶሻሿ|ࡺ|
(2.18)

Now to find the minimum of the ܧܵܯ which is called Minimum Mean Square Error 

(MMSE), we need to find the first derivative of ܧܵܯ with respect to ࡴ and take it equal 

to zero.  

 
        

߲
ࡴ߲

ܧܵܯ = 0 → 

ଶ|ࡿ|ሾ−2ܧ − ∗ࡺࡿ − ܰ∗ࡿ + ଶ|ࡿ|ሺࡴ2 + ∗ࡺࡿ + ܰ∗ࡿ + ଶሻሿ|ࡺ| = 0 

(2.19)

By solving (2.19) for the resulting two-sided Wiener filter, we have: 

 
ሺ߱ሻܪ =

ሾ|ܵሺ߱ሻ|ଶሿܧ2 + ሾܵሺ߱ሻܰ∗ሺ߱ሻܧ + ܵ∗ሺ߱ሻܰሺ߱ሻሿ

ሾ|ܵሺ߱ሻ|ଶܧ2 + |ܰሺ߱ሻ|ଶሿ + ሾܵሺ߱ሻܰ∗ሺ߱ሻܧ2 + ܵ∗ሺ߱ሻܰሺ߱ሻሿ
 (2.20) 

The |ܵሺ߱ሻ|ଶ and |ܰሺ߱ሻ|ଶ values are all real and positive and hence their expectation 

value is positive. Since ࡺࡿ∗ = ሺࡺ∗ࡿሻ∗, hence ࡺࡿ∗ +  will just contain real values ࡺ∗ࡿ
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which could be either positive and negative. The expectation value of all these positive 

and negative values could be very small with respect to the expectation value of |ࡿ|ଶ 

and |ࡺ|ଶ and hence we can neglect the terms ܧሾࡺࡿ∗ +  ሿ in (2.20). In this way, weࡺ∗ࡿ

can rewrite (2.20) and by neglecting expectation value function to have separate 

frequency components, and define Wiener filter as: 

 
ܹሺ߱ሻ = ሺ߱ሻܪ =

|ܵሺ߱ሻ|ଶ

|ܵሺ߱ሻ|ଶ + |ܰሺ߱ሻ|ଶ (2.21)

where ܹሺ߱ሻ is used everywhere in this thesis as the Wiener filter to not to be confused 

with other filters. We can calculate the power spectrum of noisy speech through 

multiplying the two sides of (2.4) to their complex conjugate as: 

ଶ|ࢄ|   = ∗ࢄࢄ = ሺࡿ + ࡿሻሺࡺ + ∗ሻࡺ = ଶ|ࡿ| + ଶ|ࡺ| + ∗ࡺࡿ + (2.22) ࡺ∗ࡿ

Based on the discussion that we had before about neglecting the effect of ࡺࡿ∗ +  ࡺ∗ࡿ

term, we can say that the noisy speech spectrum is as: 

 |ܺሺ߱ሻ|ଶ = |ܵሺ߱ሻ|ଶ + |ܰሺ߱ሻ|ଶ (2.23)

Using (2.23) and (2.21) we can show Wiener filter as: 

 
ܹሺ߱ሻ =

|ܵሺ߱ሻ|ଶ

|ܵሺ߱ሻ|ଶ + |ܰሺ߱ሻ|ଶ =
|ܵሺ߱ሻ|ଶ

|ܺሺ߱ሻ|ଶ = 1 −
|ܰሺ߱ሻ|ଶ

|ܺሺ߱ሻ|ଶ  (2.24)

An alternative way of constructing Wiener filter is to use an a-priori SNR as: 

 
ܹሺ߱ሻ =

ሺ߱ሻߦ

1 + ሺ߱ሻߦ
ሺ߱ሻߦ     ,      =

|ܵሺ߱ሻ|ଶ

|ܰሺ߱ሻ|ଶ (2.25)

where ߦሺ߱ሻ is the a-priori SNR. We can see that for the frequency bins with high 

SNRs, the corresponding Wiener component will be close to one and for small SNRs, 

the Wiener component will be close to zero. In [32] a method for finding this a-priori 

SNR by tracking the noise is introduced. Prior to this, there were an iterative method for 
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finding such an a-priori SNR as in [33] and a method for tracking noise using HMMs as 

in [34]. A more recent method is introduced in [35] where a model-based Wiener filter 

is derived from log-Mel feature vectors. By using MMSE estimation, the feature vectors 

were enhanced and inverted to compute the filter response. Using Mel filter bank during 

feature extraction process resulted in smooth Wiener filter over frequency and hence 

resulted in better spectral details in the noise cancellation process.  

 Statistical model-based enhancement methods 

These methods use the statistical methods of estimation to extract the proper ܪሺ߱ሻ 

filter. The main methods in this category which are Maximum Likelihood (ML), 

Minimum Mean Square Error (MMSE) and Maximum A-Posteriori (MAP) estimation 

which are the Bayesian estimation criteria. From (2.4) we want to recover the speech 

spectrum ܵሺ߱ሻ form the observed noisy speech spectrum ܺሺ߱ሻ. Since the Bayesian 

estimation is based on statistics of the signal its focus is on the Probability Density 

Functions (PDF) of the mentioned signals. By applying Bayes rule we have: 

 
ሻࢄ|ࡿሺࢄ|݂ࡿ =

1

ሻࢄሺ݂ࢄ ሻࡿ|ࢄሺࡿ|݂ࢄ ሻ (2.26)ࡿሺ݂ࡿ

where ࢄ|݂ࡿሺࢄ|ࡿሻ is the posterior PDF, ࡿ|݂ࢄሺࡿ|ࢄሻ is the likelihood, ݂ࡿሺࡿሻ is the prior 

PDF and ݂ࢄሺࢄሻ is a constant which has only a normalizing effect. The Bayesian 

estimation of a speech spectrum ܵሺ߱ሻ from the observed noisy speech spectrum ܺሺ߱ሻ 

is based on the minimization of a Bayesian risk function which is defined as an average 

cost-of-error function as: 

 
ܴ൫ࡿ෡൯ = ,෡ࡿ൫ܥൣܧ ൯൧ࡿ = න න ,෡ࡿ൫ܥ ൯ࡿ ሻࡿ|ࢄሺࡿ|݂ࢄ ࡿ݀ࢄሻ݀ࡿሺ݂ࡿ

 

ࢄ

 

ࡿ
 (2.27) 

where the cost-of-error function ܥ൫ࡿ෡,  ൯ generates the proper weighting for the desiredࡿ

outcomes of the estimator and ܧሾ ሿ is the expectation value. For a given ࢄ|݂ࡿ ,ࢄሺࢄ|ࡿሻ is 
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constant and has no effect on the minimization process. Knowing that ࡿ|݂ࢄሺࡿ|ࢄሻ ሻࡿሺ݂ࡿ =

ሻࢄ|ࡿሺࢄ|݂ࡿ  ሻ being a constant, we can show the resulted Bayesian riskࢄሺ݂ࢄ ሻ andࢄሺ݂ࢄ

function from (2.27) as: 

 
ܴ൫ࡿ෡|ࢄ൯ = න ,෡ࡿ൫ܥ ൯ࡿ ࡿሻ݀ࢄ|ࡿሺࢄ|݂ࡿ

 

ࡿ
 (2.28)

The Bayesian estimate ࡿ෡ is obtained as the minimum-risk parameter vector as: 

 
෡୆ୟ୷ୣୱ୧ୟ୬ࡿ = arg min

෡ࡿ
ܴ൫ࡿ෡|ࢄ൯ = arg min

෡ࡿ
ቈන ,෡ࡿ൫ܥ ൯ࡿ ࡿሻ݀ࢄ|ࡿሺࢄ|݂ࡿ

 

ࡿ
቉ 

                              = arg min
෡ࡿ

ቈන ,෡ࡿ൫ܥ ൯ࡿ ሻࡿ|ࢄሺࡿ|݂ࢄ ࡿሻ݀ࡿሺ݂ࡿ
 

ࡿ
቉ 

(2.29) 

In this way by calculating the first derivative of (2.29) with respect to ࡿ෡ and equating it 

to zero the Bayesian estimate of the clean speech spectrum will be attained. Here we are 

going to describe each of these methods.  

2.1.4.1 Maximum Likelihood estimation  

It is widely used for parameter estimation and first used in speech enhancement in [36]. 

In this method we try to find the most likely clean speech spectral amplitude |ܵሺ߱ሻ| that 

builds up the noisy speech spectral amplitude |ܺሺ߱ሻ|. It is assumed that the relationship 

between |ܵሺ߱ሻ| and |ܺሺ߱ሻ| is deterministic and not random. In this way the estimation 

of |ܵሺ߱ሻ| could be done through maximization of likelihood function ݂ as: 

 ห መܵሺ߱ሻห = arg max
หௌመሺఠሻห

ሺ|ܺሺ߱ሻ|  |  |ܵሺ߱ሻ|ሻ (2.30)ࡿ|݂ࢄ

To solve this equation, we assume that the likelihood function has Gaussian distribution 

and then we should find the first derivative of the likelihood function ݂ with respect to 

ห መܵሺ߱ሻห and by taking it equal to zero we will have [27]: 
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ห መܵሺ߱ሻห =

1
2

ቈ|ܺሺ߱ሻ| + ට|ܺሺ߱ሻ|ଶ − ห ෡ܰሺ߱ሻห
ଶ

቉ (2.31)

where ห ෡ܰሺ߱ሻห
ଶ
 is the estimate noise power spectral amplitude. Such an estimator can be 

shown as a filter in terms of the a-posteriori SNR as: 

 
ெ௅ሺ߱ሻܪ =

1
2

+
1
2

ඨ
ሺ߱ሻߛ − 1

ሺ߱ሻߛ
 (2.32)

where ߛሺ߱ሻ is the a-posteriori SNR and can be calculated as: 

 
ሺ߱ሻߛ =

|ܺሺ߱ሻ|ଶ

ห ෡ܰሺ߱ሻห
ଶ (2.33)

By applying the resulted ܪெ௅ሺ߱ሻ from (2.32) in (2.5) to find a ML estimate of the clean 

speech spectral amplitude.  

2.1.4.2 Minimum Mean Square Error estimation 

In this method a MSE criterion is minimized between ห መܵሺ߱ሻห and |ܵሺ߱ሻ|. This is a 

statistical estimation method in which the proper gain function ܪሺ߱ሻ through Bayesian 

estimation. In this method we should have some prior knowledge of the Probability 

Density Function (PDF) of the speech and noise and hence this method is more accurate 

than the ML method. The cost-of-error function for MSE criterion will be as ܧ ቂ൫หࡿ෡ห −

൯|ࡿ|
ଶ

ቃ and hence the Bayesian risk function based on (2.28) using MSE criterion will 

be: 

 
ܴெௌா൫หࡿ෡ห|ࢄ൯ = න ൫หࡿ෡ห − ൯|ࡿ|

ଶ
|ࡿ|ሻ݀ࢄ||ࡿ|ሺࢄ|݂ࡿ

 

|ࡿ|
 (2.34)

To minimize ܴெௌா, we find its first derivative with respect to หࡿ෡ห and equate it to zero. 

In this way the MMSE estimate of the clean speech spectral amplitude will be as: 
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ห መܵሺ߱ሻห = න |ܵሺ߱ሻ| |൫|ܵሺ߱ሻ||ܺሺ߱ሻ൯݀|ܵሺ߱ሻࢄ|݂ࡿ

 

|ௌሺఠሻ|
 (2.35) 

It could be seen that ห መܵሺ߱ሻห is dependent on ܺሺ߱ሻ and the posterior PDF which was 

mentioned in (2.26). By assuming the statistical independence between the coefficients 

and from the definition in (2.7) and by taking ݏ௧ as the ݐ-th component of ݏሺݐሻ, the 

Bayesian MSE estimator can be simplified to: 

 
ห መܵሺ߱ሻห = න ௧ݏ ௧ݏ௧|ܺሺ߱ሻ൯݀ݏ൫ࢄ|݂ࡿ

 

௦೟

=
׬ ௧ݏ ௧ሻݏ|ሺܺሺ߱ሻࡿ|݂ࢄ ௧ݏ௧ሻ݀ݏሺ݂ࡿ

ஶ
଴

׬ ௧ሻݏ|ሺܺሺ߱ሻࡿ|݂ࢄ ௧ݏ௧ሻ݀ݏሺ݂ࡿ
ஶ

଴

 (2.36) 

In this way the spectral amplitude of clean speech can be calculated by MMSE 

estimator. Since human ears are sensitive to the logarithmic levels of sound intensity, 

the MMSE method for the calculation of log-magnitude spectrum was introduced in 

[37]. In this method the cost-of-error function for MSE criterion will be as 

ܧ ቂ൫log൫ห መܵሺ߱ሻห൯ − logሺ|ܵሺ߱ሻ|ሻ൯
ଶ

ቃ and hence the MMSE estimator becomes like: 

 log൫ห መܵሺ߱ሻห൯ = ሾlogሺ|ܵሺ߱ሻ|ሻܧ |ܺሺ߱ሻሿ (2.37)

In this way the estimate of clean speech spectral amplitude becomes: 

 ห መܵሺ߱ሻห = expሺܧሾlogሺ|ܵሺ߱ሻ|ሻ |ܺሺ߱ሻሿሻ (2.38) 

Using (2.38), the corresponding gain function can be calculated as: 

 
ሺ߱ሻܪ =

ሺ߱ሻߦ

1 + ሺ߱ሻߦ
exp ቆ

1
2

න
݁ି௧

ݐ
ݐ݀

ஶ

௩ሺఠሻ
ቇ (2.39) 

where ߦሺ߱ሻ is the a-priori SNR as 
|ௌሺఠሻ|మ

|ே෡ሺఠሻ|మ from (2.25) and ݒሺ߱ሻ is defined as: 

 
ሺ߱ሻݒ =

ሺ߱ሻߦ

1 + ሺ߱ሻߦ
ሺ߱ሻ (2.40)ߛ
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where ߛሺ߱ሻ is the a-posteriori SNR as discussed in (2.33). In this way the gain function 

or filter can be shown as a function of a-priori and a-posteriori SNRs applied to the 

noisy speech spectral amplitude as: 

 ห መܵሺ߱ሻห = ݂ିଵ ቀห መܵሺ߱ሻห, ,ሺ߱ሻߦ ሺ߱ሻቁߛ =  ሺ߱ሻ|ܺሺ߱ሻ| (2.41)ܪ

It is reported that such a log MMSE estimator has fewer musical noise (artifacts) 

compared to ML estimator [37]. It is mentioned in [38] that such a better performance 

of log MMSE method is a result of having a filter as a function of a-priori SNR. The a-

posteriori SNR has less influence on noise suppression and since the ML method is 

more related to the a-posteriori SNR it has lower performance compared to log MMSE 

method.  

2.1.4.3 Maximum A-Posteriori 

As discussed in 2.1.4.2, the MMSE estimator is actually the mean of the a-posteriori 

SNR. For MAP estimator, the cost-of-error function will be as ܥ൫หࡿ෡ห, ൯|ࡿ| = 1 −

෡หࡿ൫หߜ −  ൯ and by replacing it in (2.27) the Bayesian risk function based on MAP|ࡿ|

criterion will be as: 

 
ܴெ஺௉൫หࡿ෡ห|ࢄ൯ = න ൫หࡿ෡ห − ൯|ࡿ|

ଶ
|ࡿ|ሻ݀ࢄ||ࡿ|ሺࢄ|݂ࡿ

 

|ࡿ|
= 1 − ൯ (2.42)ࢄ|෡หࡿ൫หࢄ|݂ࡿ

In (2.42), the minimum value for the risk function corresponds to the |ࡿ| value for 

which the posterior function attains a maximum. Since the MAP estimate of |ࡿ| is 

equivalent to the minimization of the risk function or the maximization of the posterior 

function as: 

 ห መܵሺ߱ሻห = arg max
|ௌሺఠሻ|

 ൫|ܵሺ߱ሻ||ܺሺ߱ሻ൯ࢄ|݂ࡿ

                                 = arg max
|ௌሺఠሻ|

ሺܺሺ߱ሻ||ܵሺ߱ሻ|ሻࡿ|݂ࢄ  ሺ|ܵሺ߱ሻ|ሻ݂ࡿ

(2.43)



20 
 

If the a-posteriori distribution is Gaussian then the MAP and MMSE estimators will 

become equal. There are some discussion on the MAP estimator on non-Gaussian PDFs 

in [27].  

2.2 Binary Time-Frequency masking 

In these speech enhancement algorithms, a time-frequency mask is used to remove the 

noise from the noisy speech. These masks are matrices of time-frequency scaling factors 

which are applied to the spectrogram of the noisy speech as: 

 ห መܵሺ݆, ߱ሻห = ,ሺ݆ܯ ߱ሻ|ܺሺ݆, ߱ሻ| (2.44)

where ܯሺ݆, ߱ሻ is a vector of mask values for the frequency bins ߱ applied to the ݆-th 

frame of the noisy speech and we have 0 ≤ ,ሺ݆ܯ ߱ሻ ≤ 1. If we use any value in 

between 0 and 1 as the mask, it is called soft-decision mask and it is like conventional 

filtering method which discussed in section 2.1. The values for ܯሺ݆, ߱ሻ can also be 

binary (0 or 1) and it can be shown as: 

,ሺ݆ܯ  ߱ሻ = ቄ1
0

     if speech
otherwise

 (2.45)

In this way the non-speech regions will be completely removed. Application of such a 

binary mask will still result in some noise in the enhanced speech but it also exhibits 

higher intelligibility for the enhanced signal [39]. To attain better binary mask, we can 

measure the a-priori SNR at each time-frequency component and then set a cut off level 

where the noise is more powerful than the speech as: 

 
,ሺ݆ܯ ߱ሻ = ቐ1

0
     if 10 logଵ଴ ቆ

|ܵሺ݆, ߱ሻ|ଶ

|ܰሺ݆, ߱ሻ|ଶቇ > 0

otherwise

 (2.46) 
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where 10 logଵ଴ ቀ
|ௌሺ௝,ఠሻ|మ

|ேሺ௝,ఠሻ|మቁ is the instantaneous a-priori SNR in decibel. The a-priori 

SNR should be estimated since it is often unknown. In [8] am method introduced to 

estimate a-priori SNR using a gain function and a-posteriori SNR as: 

 
,ሺ݆ߦ ߱ሻ = ߙ

ሺܪሺ݆ − 1, ߱ሻ|ܺሺ݆ − 1, ߱ሻ|ሻଶ

ห ෡ܰሺ݆ − 1, ߱ሻห
ଶ + ሺ1 − ሻߙ maxሺߛሺ݆, ߱ሻ − 1,0ሻ (2.47) 

Where empirically for good tracking 0 < ߙ < 1 and (we choose ߙ = 0.98) and 

ሺ݆ܪ − 1, ߱ሻ is a gain function as discussed before. ߛሺ݆, ߱ሻ is the a-posteriori SNR and 

|ܺሺ݆ − 1, ߱ሻ| and |ܰሺ݆ − 1, ߱ሻ| are the noisy speech and noise spectral magnitudes of 

the previous frame respectively. The gain function (filter) can be calculated using all the 

previously discussed estimators. In addition to the type of estimator, the performance of 

this method is very dependent to the accuracy of noise estimation. In [40] a range of 

gain functions and noise estimators have been tested to find the best combination. It has 

been reported in [27] that the MMSE-based methods using VAD-based or MCRA2 

noise estimators are of the best performance. Some more experiments on the variation 

of binary mask using different estimators have been mentioned in [41, 42]. 

2.3 Subspace enhancement 

In the previous speech enhancement methods it is assumed that the effect of noise can 

be removed from the noisy speech by means of filtering. In subspace methods it is 

assumed that the clean speech occupies a small subspace of the noisy speech space and 

hence some other subspaces or the whole noisy speech space is occupied by noise. In 

these methods, the aim is to detect the subspaces which are exclusively occupied by 

noise and remove them and then through resynthesizing the modified frames recover the 

estimate of the clean speech. Practically the subspaces of speech and noise are not 

separate and can be highly overlapped and hence some other considerations should be 
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taken to effectively remove the noise. These methods are generally implemented in 3 

steps as: 

1) Separating the subspaces of clean speech plus noise and pure noise 

2) Removing the noise subspace 

3) Pot-processing the subspace of clean speech plus noise to remove the effect of 

noise from the clean speech 

In the second step, the noise subspace will be removed without doing any modifications 

on the speech signal. The third step is of great importance since it will modify the 

resulted enhanced speech but on the other hand it can introduce some distortion to the 

enhanced speech due to the existing overlap between the noise and speech subspaces 

[43]. In [44] a subspace method discussed with the assumption of additive noise in the 

noisy speech as in (2.1) which is ݔሺݐሻ = ሻݐሺݏ + ݊ሺݐሻ. In this method some short time 

frames are applied to the long time domain signals to preserve the assumption of 

stationarity for them.  

࢙  = (2.48) ࢟ࢸ

where ࢙ = ܯ where ܯ matrix with rank ܯ×ܭ is a rank deficient ࢸ ,ሻݐሺݏ <  is ࢟ and ܭ

a weighting vector of size 1×ܯ. To be able to separate the subspaces occupied by 

speech and noise, the ࢸ should be rank deficient [43]. As discussed in [27], from such a 

linear model, a linear estimator can be computed as: 

ො࢙  = .ࡴ (2.49) ࢞

in which the optimal estimator ࡴ is defined as: 

ࡴ  = ௦ࢳ௦ሺࢳ + ௡ሻିଵ (2.50)ࢳߤ

where ઱௦ and ઱௡ represent the covariance matrix of the clean speech and noise 

respectively. During the non-speech portion of the noisy speech signal, the value of ઱௡ 
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can be calculated but since ઱௦ is not available, another approach for the calculation of ۶ 

should be used. We define a matrix ࡶ as: 

ࡶ  = ௡ࢳ
ିଵࢳ௫ − (2.51) ࡵ

where ࡵ is the identity matrix. Using eigenvector decomposition, the eigenvectors and 

eigenvalues of ࡶ can be calculated as: 

ࢂࡶ  = ௦ (2.52)ࢫࢂ

where ࢂ and ࢫ௦ represent the eigenvectors and eigenvalues of ۸ respectively. Assuming 

that the largest eigenvalues represent the signal, through setting the non-positive 

eigenvalues we can remove the noise subspace.  Based on (2.49) and (2.50), the proper 

estimator ۶ can be calculated as  

ࡴ  = (2.53) ்ࢂࡳࢂ

where ࡳ is a ܭ×ܭ matrix with the diagonal elements as: 

ࡳ  = ቄ1
0

         for Λሺ݇, ݇ሻ > 0
otherwise

     for ݇ = 1, … , (2.54) ܭ

Using the resulted estimator in (2.49) we can resynthesize the noisy speech signal with 

the noise subspace removed. The resulting resynthesized subspace is still affected by 

noise and to retrieve a good quality estimate of clean speech some more processing 

should be performed. In this phase one of the speech enhancement methods discussed in 

previous sections can be used, which Wiener filter can be a good candidate. Such a 

Wiener filter can be constructed as: 

 
,ሺ݇ܩ ݇ሻ = ൝

Λሺ݇, ݇ሻ

Λሺ݇, ݇ሻ + ߤ
0

         for Λሺ݇, ݇ሻ > 0
otherwise

     for ݇ = 1, … , (2.55) ܭ

in which ߤ is the Lagrange multiplier as: 
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ߤ = ൞
଴ߤ −

ܴܵܰௗ஻

݀
1
5

          
−5 < ܴܵܰௗ஻ < 20

ܴܵܰௗ஻ ≥ 20
ܴܵܰௗ஻ ≤ −5

 (2.56)

which as mentioned in [44] has ߤ଴ = 4.2 and ݀ = 6.25. In this way using  ߤ from (2.56) 

in (2.55) and then the resulting ࡳ from (2.55) in (2.53) the optimal estimator of ࡴ can 

be calculated. Such an estimator will null the noise subspace and also suppress the noise 

in the noisy speech, simultaneously.   

2.4 Speech enhancement by reconstruction 

These methods are somehow similar to the conventional speech enhancement methods. 

The difference is that instead of using inverse Fourier transform to resynthesize 

(recover) the whole enhanced speech after the filtering process, the speech is 

reconstructed using a construction model that is driven by a set of acoustic features. 

These methods could be divided in the following steps: 

1) Acoustic feature extraction (Analysis) 

2) Acoustic feature enhancement  

3) Speech reconstruction using the enhanced acoustic features (Synthesis) 

The speech reconstruction models were developed to be used in channel coding but they 

have some properties that make them such a good tool for speech enhancement. One of 

the benefits of the speech reconstruction model is the constraints that it applies on the 

reconstructed signal which makes is more accurate than the normal re-synthesis process. 

The reconstruction models are designed in a way to only reconstruct the speech related 

components and those ones which are related to noise will not be reconstructed. Using 

these models with some previously discussed filtering methods can result in more noise 

reduction as mentioned in [45, 46]. The use of these reconstruction models as a post-
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filtering process in conventional methods, is mentioned in [47] where before the speech 

reconstruction using the LPC vocoders, a spectral subtraction is used for the noise 

reduction. Such a method but using Wiener filtering instead of spectral subtraction is 

discussed in [48]. These methods resulted in less artifacts in enhanced speech while it 

was almost inevitable in conventional methods. In [49] a conventional post-processing 

method is introduced in which the regions of speech spectra which are distorted within 

noise reduction process will be reconstructed. To do so, a reconstruction model called 

Harmonic Noise pulse Model (HNM) is used to reconstruct the damaged harmonics 

[50]. In the HNM method, the speech is reconstructed as a sum of harmonic sinusoids 

which are modulated by amplitude and frequency and offset for relative phase:  

 
ሻݐ௥ሺݏ = ෍ ሺ݈ܣ ଴݂ሻ cos൫2݈ߨ ଴݂ݐ + ሺ݈ߠ ଴݂ሻ൯

௅

௟ୀଵ

+ ݊௥ሺݐሻ (2.57) 

where ݏ௥ሺݐሻ is the ݐ-th sample of the reconstructed speech signal, ܮ is the total number 

of harmonics, ܣሺ݈ ଴݂ሻ is the value of spectral envelope sampled at the ݈-th harmonic in 

which ଴݂ is the fundamental frequency, ߠ is the phase spectrum and ݊௥ሺݐሻ is the filtered 

noise. Using this method we can make sure that the speech energy is reconstructed in 

voiced frames. In [49], the harmonic amplitude ܣሺ݈ ଴݂ሻ and frequencies ݈ ଴݂ are tracked 

and the damaged or missing harmonic components are recovered using codebooks. Such 

codebooks are trained on the clean speech signals. Another method discussed in [51] for 

suppression of the noise of a recorded speech in the car. In such environments, high 

frequency components are of higher SNR and vice versa because of engine and wind 

noise. At first a conventional speech enhancement method will be used and then using 

an IIR filter the spectral envelope is extracted. For low SNR regions of speech, a 

codebook is used and for voiced speech, by using inverse Fourier transform, the signal 

is reconstructed at harmonic frequencies to generate a reconstruction model like those 

ones of the HNM method.  
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The HNM method can also be used as an enhancement method rather than a post-

filtering method. Such a method is discussed in [52] where an iterative process of 

Wiener filtering was used to estimate the required acoustic features and these features 

could be used for reconstruction and noise reduction stages.  Another method in [53] 

uses spectral subtraction in pre-processing phase to analyze the spectral envelope. A 

very advanced feature extraction is discussed in  [54] where the HNM is used for 

reconstruction. In this method through analysis of a pre-cleaned speech the voice 

activity and fundamental frequencies are estimated through the use of time-frequency 

tracking. All these methods revealed good enhancement results with no musical noise 

but some distortion in the signal.  

2.5 Summary  

A variety of speech enhancement methods have been introduced in this section. Some 

methods are based on filtering and are so simple to implement but suffer from some 

lack of accuracy. Some other methods which are more complicated but more accurate 

are also introduced which make use of some models for speech and noise distributions. 

In the next chapter we are going to introduce methods in which the model based and 

filter based methods are mixed to get to more accurate speech enhancement methods.  
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3 Speech enhancement using the combination of 

conventional and reconstruction methods 

 

As discussed in chapter 2 the conventional methods are very simple to implement and 

they can easily be used in different applications, but they suffer from a residual musical 

noise. It is also reported that the reconstruction methods are of high accuracy but they 

are more complicated and need some models trained on clean speech or even different 

noises. Here we are going to discuss two algorithms in which a combination of 

conventional and reconstruction methods can be used and such methods are the 

concentration of this thesis.  

Using the assumptions made in section 2.1.3 as shown in (2.23) we can say that the sum 

of the power spectrum of clean speech and noise is equal to the power spectrum of the 

noisy speech and by defining the power spectrum as the periodogram, we can rewrite 

(2.23) as: 

 ௫ܲሺ߱ሻ = ௦ܲሺ߱ሻ + ௡ܲሺ߱ሻ (3.1)

where ௫ܲ, ௦ܲ and ௡ܲ are the periodograms of noisy speech, clean speech and noise 

respectively. Using this definition, the two-sided Wiener filter transfer function in (2.4) 

can be rewritten as: 

 
ܹሺ߱ሻ = ௦ܲሺ߱ሻ

௦ܲሺ߱ሻ + ௡ܲሺ߱ሻ
 (3.2) 

By using (3.1) to replace the denominator of Wiener filter we can re-write (3.2) as: 
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ܹሺ߱ሻ = ௦ܲሺ߱ሻ

௫ܲሺ߱ሻ
 (3.3)

Such a Wiener filter can be effectively used for the enhancement of any noisy frame if 

we can accurately estimate the periodograms of clean speech and noise. In this chapter 

we are going to concentrate on the methods which can be used to estimate these 

periodograms. 

3.1 Voice Activity Detection (VAD) 

Using a VAD, we can show that a frame of a signal is voiced, unvoiced or silent. 

Voiced frames are of higher energy than unvoiced or silent frames. Unvoiced frames are 

more like noise and also of higher energy than the silent frames. The silent frames have 

the least energy and what exists within them can be considered as the environment noise 

[55]. The VAD is of great use for noise estimation in the methods based on spectral 

subtraction since it will increase the accuracy of noise estimation and hence decrease 

the resulting distortion and musical noise in the enhanced speech. A VAD is used to 

make the decision when to update noise information as discussed in section 2.1.2. If in a 

VAD it is considered that the first frames are silent and just contain noise and hence we 

can have an initial estimate of the statistics of noise in terms of mean and standard 

deviation, then we can proceed. A threshold can then be calculated, which can be used 

for making the decision about a frame being speech or noise (silent) and in this way in 

case of silent frame detection all its statistical components will be updated. If we take 

ܺ௞ሺ߱ሻ as the spectrum (Fourier transform) of the ݇-th frame of the noisy speech then 

we can find the initial estimate of the noise spectral amplitude as: 

 | ଵܰሺ߱ሻ| = | ଵܺሺ߱ሻ| (3.4)

And hence the initial estimate of noise mean can be calculated as: 
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ேభߤ

=
1
Ω

෍| ଵܰሺ߱ሻ|
ஐ

ఠୀ଴

 (3.5) 

When the mean of the observed signal is close to the noise mean, it represents that there 

is no signal. If the algorithm detects that there is no speech signal, then the noise 

spectral amplitude, mean and the standard deviation of current frame will be updated. 

The first couple of frames that are taken as noise will result in more accurate initial 

estimates of the noise properties. The noise spectral amplitude update process for the 

next frames (݇ > 1) will be as: 

 | ௞ܰሺ߱ሻ| = |ߙ ௞ܰିଵሺ߱ሻ| + ሺ1 −  ሻ|ܺ௞ሺ߱ሻ| (3.6)ߙ

The update process for the mean value will be as: 

 
ேೖߤ

= ேೖషభߤߚ
+

ሺ1 − ሻߚ

Ω
෍| ௞ܰሺ߱ሻ|

ஐ

ఠୀ଴

 (3.7)

where ߤேೖ
 is the mean of noise spectral amplitude in the ݇-th frame. The update process 

for the standard deviation will be as: 

 
ேೖߪ

= ටߪߚேೖషభ
ଶ + ሺ1 − ேೖߤሻߚ

ଶ  (3.8)

where ߪேೖ
 and ߪேೖ

ଶ  are the standard deviation and variance of noise spectral amplitude 

in the ݇-th frame, respectively. The update parameters of ߙ and ߚ are both taken 0.95 

and relate the estimation of noise properties of each frame to the previous frames. In this 

way each estimate is smoothed with the previous ones [56]. The thresholds used to 

detect whether a frame is noise or speech can be determined as follows. If the current 

frame is noise, then it will be updated using the standard deviation and mean of noise. 

These thresholds can be defined as: 

 ௌܶ = ேߤ + ே (3.9)ߪௌߙ
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ேܶ = ேߤ +  ேߪேߙ

where ௌܶ and ேܶ are the thresholds of speech and noise and ߙௌ and ߙே are the 

coefficients of speech and noise that can be calculated experimentally. The VAD 

decision-making can be implemented using ௌܶ and ேܶ in a way that when the energy of 

the current frame is two times the noise standard deviation more than noise mean, then 

the frame is taken as speech (ߙௌ = 2). If the energy of the frame is a fraction of noise 

standard deviation, the frame will be taken as noise (ߙே < 1). This decision making can 

be shown as: 

 if Energyሺ݇ሻ > ௌܶ then ܸܦܣሺ݇ሻ = 1 

if Energyሺ݇ሻ < ேܶ then ܸܦܣሺ݇ሻ = 0 

else ܸܦܣሺ݇ሻ = ሺ݇ܦܣܸ − 1ሻ 

(3.10)

As can be seen, making a wrong decision about a frame being noise or signal is 

probable and if the properties of noise change from one frame to another or the noise 

shows nonstationary behavior then the probability of wrong decisions will be even 

higher. Using the resulting noise spectral amplitude estimate from (3.6) we can find the 

noise periodogram as ௡ܲሺ߱ሻ = |ܰሺ߱ሻ|ଶ. Since we can find the noisy speech 

periodogram from the observed noisy speech as ௫ܲሺ߱ሻ, by substituting ௡ܲሺ߱ሻ and 

௫ܲሺ߱ሻ in (3.1) we can calculate an estimate of clean speech periodogram as ௦ܲሺ߱ሻ. By 

substituting the resulting ௦ܲሺ߱ሻ and ௡ܲሺ߱ሻ in (3.2), the suitable Wiener filter for the 

enhancement of the current noisy frame can be constructed.  

3.2 Minimum statistics 

Despite the VAD method in which an algorithm is used to detect the speech or noise 

frames and the noise estimation was only updated in the noise frames, in Minimum 
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Statistics the minimums of the sub bands of the smoothed power spectral amplitude of 

noisy speech are used to detect noise boundaries. This algorithm is dependent on the 

maxima and minima of the power spectral amplitude of short time frames of the noisy 

speech. The maxima represent the speech activity and the minima of the smoothed 

power spectral amplitude can be used for the estimation of sub band noise [25, 57]. In 

this method it is considered that the relationship in (3.1) exist between the periodograms 

of clean speech, noisy speech and noise. To find the noise estimate we define a 

smoothed power spectral amplitude using exponential smoothing accordingly: 

 ௌܲெೖ
ሺ߱ሻ = ߙ ௌܲெೖషభ

ሺ߱ሻ + ሺ1 − ሻ|ܺ௞ሺ߱ሻ|ଶ (3.11)ߙ

where ௌܲெೖ
ሺ߱ሻ is the smoothed power spectral amplitude of the ݇-th frame, |ܺ௞ሺ߱ሻ|ଶ is 

actually ௫ܲೖ
ሺ߱ሻ which is the power spectral amplitude of the noisy speech of the ݇-th 

frame and ߙ is the smoothing coefficient which ranges as 0.9 ≤ ߙ ≤ 0.95. The estimate 

of noise power spectral amplitude can be attained as a weighted minimum of the 

smoothed power spectral amplitude as: 

 
௡ܲೖ

ሺ߱ሻ = ܱ௠௜௡ min ቀ ௌܲெೖ
ሺ߱ሻቁ (3.12) 

where min ቀ ௌܲெೖ
ሺ߱ሻቁ is the estimated minimum power and ܱ௠௜௡ is a coefficient for the 

compensation of bias of the estimated minimum power. Knowing that the power 

spectrum has Ω frequency components, a buffer with ܾ vectors of size Ω are used to 

keep the smoothed power spectrum ௌܲெೖ
ሺ߱ሻ. This buffer will be initialized with values 

larger than the power spectral amplitude (periodogram) of the first frame of the noisy 

speech. After entering the noisy speech periodogram to smoothing equation of (3.11), 

the minimum of the resulting smoothed periodogram and the first vector of the buffer 

will replace the value of the first vector of the buffer. After reading a pre-defined 

number of noisy speech frames say ݂, all the vectors of the buffer will be shifted to the 
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right (the vector 1 will replace vector 2, vector 2 will replace vector 3 and so on) so 

vector ܾ − 1 will replace vector ܾ. The estimate of noise periodogram ௡ܲೖ
ሺ߱ሻ from 

(3.12) will be attained by finding the minimum of each frequency component over all ܾ 

vectors of the buffer. The value of ݂ which shows the number of frames that are 

averaged, and by reading this number of frames all the values of the buffer will be 

shifted, should be large enough to cover all the maximums of speech activity and small 

enough to track a variety of nonstationary noises. In the practical implementation of this 

algorithm ܾ = 4 and ݂ = 46 are considered. The smoothed periodogram and the 

estimated noise periodogram using it are shown in Figure 3.1.  

 

Figure 3.1:The smoothed noisy speech periodogram and the estimated noise periodogram 
as the minimums [25] 

 

In the practical implementation of the Minimum Statistics algorithm, the bias of the first 

frame is used for the calculation of ܱ௠௜௡. Since it is considered that the first couple of 

frames contain no speech signal, the periodogram of these frames is considered as the 
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periodogram of noise and by dividing the energy (sum of periodogram components) of 

these first frames to the energy of the resulted periodogram from the noise estimation 

algorithm, the suitable bias can be calculated. This value can be used in the next frames 

as the coefficient of the noise estimation algorithm.  

Using the resulting noise periodogram from (3.12) and replacing it in (3.1) we can 

calculate an estimate of clean speech periodogram as ௦ܲሺ߱ሻ. By substituting ௦ܲሺ߱ሻ and 

௡ܲሺ߱ሻ in (3.2), the suitable Wiener filter for the enhancement of the current noisy frame 

can be constructed. 

3.3 Codebook constrained speech and noise estimation 

As discussed in section 2.4, the reconstruction methods use a model of speech or noise 

as a reference for better enhancement of noisy speech. Here we are going to concentrate 

on the codebook constrained Wiener filter. Using VAD and Minimum Statistics 

methods, we can estimate noise and speech periodograms but there is no guarantee that 

all the components in the estimated speech periodogram belong to the speech. Using a 

reference model we can improve the enhanced speech periodogram and maintain as 

many number of speech components as possible.  

 Full search codebook 

In this method some codebooks for the speech and noise periodograms are created. To 

create such codebooks, a large database of different speech files and also different noise 

types should be collected. These codebooks can preserve a relationship between the 

frequency components of the speech and noise periodograms which is mostly in terms 

of the shape of the periodograms. The energy of a speech signal is mostly concentrated 

in lower frequencies and hence speech periodograms have large peaks at low 
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frequencies and in high frequencies they almost have no energy. Noises such as White 

noise have energy in almost all frequencies and hence their periodograms have a flat 

shape having components in all frequencies. Other types of noises have their own shape 

of periodograms which are notably different from speech periodogram shapes due to the 

physics of generation which is different from speech. Speech is generated through the 

vibrations of the vocal chords and this will end up in some specific fundamental 

frequencies and their harmonics while the other noises are generated from some devices 

such as cars, destroyer engines, trains and etc. whose fundamental frequencies and 

frequency ranges are totally different from speech.  

After collecting a reasonable amount of observation files of different signal types, 

speech and different noises, we should construct the codebooks on their periodograms. 

The larger the datasets the more accurate the resulting codebooks will be. In the same 

way that the noisy speech is divided into some overlapping frames to preserve the 

stationarity of the signals, the files that are going to be used in codebook construction 

process will be divided into overlapping windowed frames (Hamming window in this 

work). Using the DFT (practically an FFT) all these frames will be transformed to the 

frequency domain and then by finding the squared value of their spectral amplitude the 

periodograms of all these frames will be calculated. The numerous periodograms of 

each signal type (either speech or noise) will be entered into their corresponding dataset 

of periodograms. Since we want to classify these periodograms based on their shapes to 

have each cluster in charge of one specific shape of periodogram, all the periodograms 

in the dataset will be normalized which means making their energy equal to one and this 

can be achieved through dividing each periodogram by the sum of its components. Now 

these datasets should be classified into some clusters using clustering algorithms which 

in this case is called K-means. K-means algorithm will look for the members that are 

closer to each other in an iterative manner. The criterion for the distance is the Euclidian 
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distance. The number of clusters in such an algorithm should be set manually and after 

summing we will end up with some clusters each containing periodograms of similar 

shapes. By finding the mean periodogram (average of all periodograms) of the cluster 

and finding the periodogram in that cluster which is the closest to this mean vector, we 

can find the centroid of that cluster. In this way numerous periodograms of the dataset 

(nearly one million periodograms in our experimental datasets) are classified into some 

clusters (say 100) and for each cluster the centroid is calculated and from now on these 

centroids will represent the whole large dataset.  

 

Figure 3.2: Full-search codebook construction procedure 

 

In Figure 3.2, a large periodogram dataset is shown with as a collection of ܮ vecrtors of 

length Ω (number of frequency components). Using K-means this dataset is divided to 

 cluster each containing some periodograms which are closer to each other and we ܭ

have ܮ = ଵܮ + ଵܮ + ⋯ +  ௄. Finding the centroids of each cluster gives the codebookܮ

centroids as ܭ vectors of length Ω + 1.  
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 Tree-structured codebooks 

Another method that can be used for creating such clusters is called tree-structured 

codebooks. In these codebooks the large periodogram datasets of each signal type will 

be classified into two clusters using the K-means algorithm. On the next step, each of 

these two clusters will be classified into two more clusters using the K-means algorithm 

and hence we will have 4 clusters. This procedure is shown in Figure 3.3.  

C

C2C1

C12C11 C21 C22

C111 C112 C121 C122 C211 C212 C221 C222

C1121 C1122 C2111 C2112 C2221 C2222

C21121 C21122C11221 C11222

C112211 C112212 C211211 C211212

C22211 C22212

 

Figure 3.3: Tree-structured codebook clustering procedure 

 

As can be seen from Figure 3.3, in each level of this procedure the clusters from the 

previous level will be divided into two new clusters using the K-means algorithm [58]. 

The number of levels for this procedure can be found by experiment. Since this 

procedure can continue till there is just one member in the very lower level clusters and 

this is against the idea of clustering, we need to set some restrictions on the clustering 

process to stop it. These restrictions can be as the minimum number of members in each 

cluster or the average distance of the members from the centroid. We can stop the 

division of clusters to the two new clusters when these restrictions are violated. In this 
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way we can make sure that we have reliable centroids to represent the whole dataset. 

Such procedure is discussed in [59, 60].  

 Periodogram estimation by solving a set of over-determined 

equations 

Now that we were able to decrease the variety of periodograms of the observed dataset 

by clustering it into some clusters and representing those clusters with their centroids, 

we need to find a way of applying these periodogram models in speech and noise 

periodogram estimation. We can assume that the periodogram of the noisy speech in the 

current frame is ௫ܲሺ߱ሻ = ൣ ௫ܲଵ, ௫ܲଶ, … , ௫ܲஐ൧ which shows the total Ω frequency 

components of the periodogram. We assume that we have a speech codebook of size ܫ 

which means that it has ܫ centroid periodograms and each periodogram can be shown as 

௦ܲ,௜
௖௕ሺ߱ሻ = ቂ ௦ܲ,௜

௖௕
ଵ

, ௦ܲ,௜
௖௕

ଶ
, … , ௦ܲ,௜

௖௕
ஐ

ቃ where ݅ = 1, … ,  In the same manner we can .ܫ

introduce a noise codebook of size ܬ as ௡ܲ,௝
௖௕ ሺ߱ሻ = ቂ ௡ܲ,௝

௖௕
ଵ

, ௡ܲ,௝
௖௕

ଶ
, … , ௡ܲ,௝

௖௕
ஐ

ቃ where ݆ =

1, … ,  Since we assumed that the periodogram of noisy speech is equal to the sum of .ܬ

the periodograms of speech and noise and we want to use the created codebooks of 

speech and noise as the reference of the periodogram, we will consider all the speech 

and noise codebook centroids as the building block of the noisy speech periodogram. In 

this way we are assuming that each noisy speech periodogram can be formed as 

weighted sum of one speech periodogram centroid and one noise periodogram centroid. 

The weightings are actually a compensation of the bias since the codebooks are created 

on normalized periodograms (power equal to 1) while in practice the periodograms can 

be of any power. To do so, we need to find the two centroids (one from speech 

codebook and one from noise codebook) that their weighted sum is the closest to the 

noisy speech periodogram. In this way we will have: 
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 ௫ܲሺ߱ሻ = ܽ௜,௝ ௦ܲ,௜
௖௕ሺ߱ሻ + ܾ௜,௝ ௡ܲ,௝

௖௕ ሺ߱ሻ + ݁௜,௝ሺ߱ሻ (3.13)

where ݁௜,௝ሺ߱ሻ represents the error between the real periodogram of the noisy speech and 

the one estimated using the codebook centroid periodograms. Since ܽ௜,௝ and ܾ௜,௝ are 

constants and are multiplied by all the Ω components of ௦ܲ,௜
௖௕ሺ߱ሻ and ௡ܲ,௝

௖௕ ሺ߱ሻ we can 

expand (3.13) as: 

 

ە
ۖ
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௫ܲஐ = ܽ௜,௝ ௦ܲ,௜
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ஐ
+ ܾ௜,௝ ௡ܲ,௝

௖௕
ஐ

+ ݁௜,௝ஐ

 (3.14)

In (3.14), ܽ௜,௝ and ܾ௜,௝ are unknown coefficients and since they are going to bias the 

centroid periodograms of the codebooks we need to find them in this equation. To find 

these coefficients we want to minimize the MSE of the ݁௜,௝ሺ߱ሻ vector. This value can be 

calculated as: 

 
௜,௝ܧ =

1
Ω

෍ ݁௜,௝ఠ
ଶ

ஐ

ఠୀଵ

=
1
Ω
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ఠ
+ ܾ௜,௝ ௡ܲ,௝

௖௕
ఠ

− ௫ܲఠቁ
ଶ

ஐ

ఠୀଵ

 (3.15)

where ܧ௜,௝ represents the MSE corresponding to the use of ݅-th centroid of the speech 

codebook and ݆-th centroid of the noise codebook. To minimize this MSE we need to 

find its partial fractions with respect to ܽ௜,௝ and ܾ௜,௝ and equate them to zero [60].  

 

ە
ۖ
۔

ۖ
௜,௝ܧ߲ۓ

߲ܽ௜,௝  
=

2
Ω

෍ ௦ܲ,௜
௖௕

ఠ
 ቀܽ௜,௝ ௦ܲ,௜

௖௕
ఠ

+ ܾ௜,௝ ௡ܲ,௝
௖௕

ఠ
− ௫ܲఠቁ

ஐ

ఠୀଵ

= 0

௜,௝ܧ߲

߲ܾ௜,௝
=

2
Ω

෍ ௡ܲ,௝
௖௕

ఠ
 ቀܽ௜,௝ ௦ܲ,௜

௖௕
ఠ

+ ܾ௜,௝ ௡ܲ,௝
௖௕

ఠ
− ௫ܲఠቁ

ஐ

ఠୀଵ

= 0

 (3.16)

By simplifying (3.16) we will have: 
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 (3.17)

Using (3.17) we can find the values of ܽ௜,௝ and ܾ௜,௝ as: 
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(3.18)

For the implementation of such algorithm in MATLAB we can use pinv function. 

Solving these overdetermined equations might lead to negative values for ܽ௜,௝ and ܾ௜,௝ 

and since multiplying these values in the codebook centroids will lead to negative 

periodograms which is impossible, we should use the positive values of these 

coefficients. In this way the MSE from the calculated ܽ௜,௝ and ܾ௜,௝ for a frame will be 

sorted in ascending order and the first pair of ܽ௜,௝ and ܾ௜,௝ which are both positive will 

be considered as the biasing coefficients of the current frame. In this way the proper 

indexes of ݅ and ݆ can be found accordingly as: 

 ሺ݅, ݆ሻ = arg min
௜,௝

௜,௝ܧ       where         ܽ௜,௝ , ܾ௜,௝ > 0 (3.19)

As discussed in [60], since we have different codebooks for different noise types such 

over-determined equations will be solved between the speech codebook centroids and 

each noise codebook centroids and their corresponding ܧ௜,௝ and also resulted ܽ௜,௝ and 

ܾ௜,௝ will be recorded and at the end the ܽ௜,௝ and ܾ௜,௝  coefficients that exhibited the 

minimum value of ܧ௜,௝ will be considered as the biasing coefficients of codebook 
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centroids. Using this method we will be able to detect the noise type based on detecting 

the codebook that exhibited the minimum ܧ௜,௝.  

If we use full search codebooks with speech codebook of size ܫ and each noise 

codebook of size ܬ and totally we have ܰ noise codebooks, then we need to solve 

 sets of over-determined equation with each set containing Ω equations and ܬ×ܫ×ܰ

hence this noise estimation method using full search codebooks can be too time 

consuming. Using tree-structured codebooks at each step we can solve the over-

determined equations in the same levels from speech and noise codebooks and then by 

finding the minimum MSE, just go through the branch that it’s up-level centroid 

represented this value. In this way we can exclude some centroids from the over-

determined equation- solving process while going deeper in the tree-structured 

codebook and hence the use of these codebooks is notably faster than the full search 

codebooks.  

After finding the estimate of speech and noise periodograms using such a codebook 

constrained method we need to construct the proper Wiener filter for the enhancement 

of the current noisy frame. Such a Wiener filter can be constructed as: 

  
ܹሺ߱ሻ =

ܽ௜,௝ ௦ܲ,௜
௖௕ሺ߱ሻ

ܽ௜,௝ ௦ܲ,௜
௖௕ሺ߱ሻ + ܾ௜,௝ ௡ܲ,௝

௖௕ ሺ߱ሻ
 (3.20) 

where ݅, ݆, ܽ௜,௝ and ܾ௜,௝ are calculated by solving the over-determined equations on the 

clean speech and noise periodogram codebooks. 
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3.4 Gaussian Mixture Modelling of speech and noise 

periodograms 

In codebook constrained periodogram estimation methods, we discussed different 

methods of constructing codebooks for speech and noise. These codebooks are a 

reference for the estimation process and actually these methods are case-based in which 

a collection of observed vectors (periodograms in here) are classified based on their 

Euclidian distance (using the K-means algorithm) and each class will then be 

represented with the centroid of that class. The problem in this method is that all the 

various members of a class that can contain hundreds or thousands of the observed 

vector, are represented with only one vector which is the centroid of that class. In this 

way the codebook constrained methods cannot track the fast changing behavior of the 

speech periodogram and the corresponding periodograms from this method will be 

smoothed.  

Speech signals are the collections of sentences; sentences are the collections of words; 

words are the collections of vowels and consonants are generated by passing the voice 

generated by the vibrations of human vocal chords through mouth and nasal paths. 

Since we have a finite number of vowels and consonants to make our human speech, we 

can classify them into a finite number of classes. As mentioned before, we divide the 

noisy speech observation into some overlapping short frames (of length of 20-30 ms) 

and calculate the periodogram of each frame. The periodogram shows the power of 

signal in a specific frequency and in this way we have mapped our sharply varying time 

domain signal space to the smoother frequency domain periodogram space. Since the 

vowels and consonants that form each short time frame are a power shared between 

some of these frequency components, for different speakers saying different words, we 

have slight changes in the periodogram (the frequency powers) representing a specific 
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vowel or consonant or a combination of them for that frame. In this way, we may have 

finite number of clusters representing different vowels or consonants or a combination 

of them in which we can classify a large training periodogram dataset. These clusters 

have some statistic characteristics such as probability, mean and covariance. The 

probability characteristic means the portion of periodogram vectors in that cluster with 

respect to all periodogram vectors. The mean characteristic means the average of 

periodogram vectors in that cluster. The covariance characteristic means the average 

distant of all periodogram vectors in that cluster from the mean vector of that cluster. As 

illustrated in Figure 3.4, each circle can represent a cluster and each dot can represent a 

periodogram vector.  

 

Figure 3.4: GMM classification 

 

The centers of these circles (that represent the mean of that cluster) are quite dense and 

when we get to the boundaries the density decreases. The population of one cluster 

could be shown in Figure 3.5. 



43 
 

 

Figure 3.5: Gaussian distribution 

The vector X1 is closer to the mean than vector X2 and hence has larger population (P1 

> P2). This distribution of vectors is similar to a Gaussian distribution. We can use 

some Gaussians to model the space of periodogram vectors into some finite clusters and 

this method is called Gaussian Mixture Modeling [61]. A Gaussian distribution for a 

sample periodogram ܲሺ߱ሻ can be shown in (3.21). 
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=
1

ሺ2ߨሻ
ௗ
ଶ|Σ௞ሺ߱ሻ|

ଵ
ଶ

exp ൜−
1
2

൫ܲሺ߱ሻ − ௞ሺ߱ሻ൯ߤ
்

Σ௞
ିଵሺ߱ሻ൫ܲሺ߱ሻ −  ௞ሺ߱ሻ൯ൠߤ

(3.21)

where index ݇ shows the characteristics of ݇-th Gaussian, ߤ is the mean vector, Σ is the 

covariance matrix and ݀ is the space dimension. Also |Σ௞ሺ߱ሻ| represents the 

determinant of the covariance matrix Σ௞ሺ߱ሻ. The Probability Density Function (PDF) of 

this sample periodogram can be calculated as: 

 
݂൫ܲሺ߱ሻ൯ = ෍ ;௞൫ܲሺ߱ሻܩ௞ߨ ,௞ሺ߱ሻߤ Σ௞ሺ߱ሻ൯

௄

௞ୀଵ

       ,       ෍ ௞ߨ

௄

௞ୀଵ

= 1 (3.22) 

where ߨ௞ is the probability of ݇-th Gaussian that can be calculated as the portion of total 

periodogram vectors in the ݇-th Gaussian. If we assume that ܲሺ߱ሻ is a periodogram 
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selected among a periodogram dataset with ܯ periodograms, each periodogram of this 

dataset is as ௠ܲሺ߱ሻ , ݉ = 1, … ,  :must have ܯ

 
ሺܮ ௠ܲሺ߱ሻ , ݉ = 1, … , ሻܯ = ෑ ݂൫ ௠ܲሺ߱ሻ൯

ெ

௠ୀଵ

 (3.23) 

where ܮ is the Likelihood of the GMM with ܭ components and can be assumed as a 

criterion of how good the GMM models of  the periodogram dataset are. We also can 

calculate another criterion like ܮ which is called Log-Likelihood as in (3.24). 

 
௟௢௚ሺܮ ௠ܲሺ߱ሻ , ݉ = 1, … , ሻܯ = ෍ log ቀ݂൫ ௠ܲሺ߱ሻ൯ቁ

ெ

௠ୀଵ

 (3.24) 

Since we are dealing with large periodogram datasets, ܮ may result in large values 

which most of the time are assumed as infinity in computer programming languages, 

hence in our calculations we use ܮ௟௢௚. The larger ܮ௟௢௚ represents the better GMM for 

modelling the database which means the larger ܭ value (number of GMM components).  

To create such a model for speech signals and different noise types, we divide each 

signal into some overlapping short time frames, calculate their periodograms, normalize 

their power to 1 and in this way we make large periodogram datasets for speech signal 

and different noise types. To check the possibility of classifying speech and different 

noise periodograms, we calculated the Histogram of these periodogram datasets. Since 

the periodogram vectors that we are dealing with are of size of Ω elements (in our 

experiments Ω = 257), we calculated these Histograms based on the distances of these 

periodograms from the origin and are shown in Figure 3.6. 

It can be seen from Figure 3.6 that the Histograms of the periodogram distances can be 

shown as the sum of some Gaussians and hence using GMM in this case seems logical. 

To create a proper GMM, we apply the Estimate Maximization (EM) algorithm on the 
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periodogram datasets. EM is an iterative algorithm in which after setting the desired 

number of Gaussians, the probability ߨ௞, mean vector ߤ௞ and covariance matrix Σ௞ for 

all ܭ Gaussians would be calculated.  

 

Figure 3.6: Histogram of the distance of normalized periodograms of speech and different 
noises from the origin 
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As mentioned previously, the larger ܭ (number of GMM components) will result in 

larger Log-Likelihood which means more accurate GMM but as the number of GMM 

components increases we will deal with more complex calculations which will increase 

the speech enhancement processing time. As can be seen in Figure 3.7, the circles 

represent the GMM clusters and could be increased till each member of this space 

represents one GMM component which will not be logical since we are using the GMM 

to decrease the number of components we are dealing with. In this figure GMMs with 5 

and 6 components seem reasonable for modeling of this sample space but we need to 

find a theoretical solution to be implemented in different spaces with different 

dimensions and much more number of elements. 

 

Figure 3.7: Different number of GMMs to model a space 
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As discussed in (3.21) and (3.22) we are dealing with a covariance matrix Σ௞ to 

calculate the PDF. The covariance matrix contains variances as its diagonal and 

covariances of different frequencies as its off-diagonal elements. Working with 

covariance matrixes will increase the complexity of PDF calculations while we are 

already dealing with complicated equations. Since off-diagonal elements are quite small 

compared to diagonal elements, we can neglect them (assume them equal to zero) and in 

this way change the covariance matrixes to variance vectors which are the diagonals of 

covariance matrixes so the notation Σ௞ for covariance matrix is replaced with σ௞ for 

variance vector (orthogonal assumption for periodograms). In this way (3.21) and (3.22) 

are rewritten for speech periodograms as in (3.25). 
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where ࡼ௦ = ௦ܲሺ߱ሻ, ࣆ௦೔
= ௦೔ߤ

ሺ߱ሻ, ો௦೔
= σ௦೔

ሺ߱ሻ. Also ௦ܲഘ
௦೔,ഘߤ ,

 and σ௦೔,ഘ
 represent the 

߱-th component of ࡼ௦, ࣆ௦೔
 and ો௦೔

 respectively. หો௦೔
ห is the multiplication of all 

elements of ો௦೔
. In the same way for the noise periodogram we will have: 

 

௡ሻࡼሺ݂ࡺ = ෍ ௡ೕߨ
௡ೕܩ

ቀࡼ௡; ௡ೕࣆ
, ો௡ೕ

ቁ

௄೙

௝ୀଵ

       ,       ෍ ௡ೕߨ

௄೙

௝ୀଵ

= 1 

௡ೖܩ
ቀࡼ௡; ௡ೕࣆ

, ો௡ೕ
ቁ =

1

ሺ2ߨሻ
ௗ
ଶ ቚો௡ೕ

ቚ
ଵ
ଶ

exp ቐ−
1
2

෍
ቀ ௡ܲഘ

− ௡ೕ,ഘߤ
ቁ

ଶ

σ௡ೕ,ഘ

ஐ

ఠୀଵ

ቑ 

(3.26) 
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where ࡼ௡ = ௡ܲሺ߱ሻ, ࣆ௡ೕ
= ௡ೕߤ

ሺ߱ሻ, ો௡ೕ
= σ௡ೕ

ሺ߱ሻ. Also ௡ܲഘ
௡ೕ,ഘߤ ,

 and σ௡ೕ,ഘ
 represent 

the ߱-th component of ࡼ௡, ࣆ௡ೕ
 and ો௡ೕ

 respectively. ቚો௡ೕ
ቚ is the multiplication of all 

elements of ો௡ೕ
. 

In [62, 63] a number of 6 Gaussians for the speech GMM (ܭ௦ = 6) and 9 Gaussians for 

each noise GMMs (ܭ௡ = 9) are used and these numbers are selected with trial and 

error. These models can be used with Bayesian speech and noise estimation methods 

(MMSE and MAP) that will be discussed later.  

 Periodogram estimation by solving over-determined equations 

on the GMMs 

In [63, 64] these GMMs of speech and different noise types were treated like full search 

codebooks that discussed in section 3.3.1. A set of over-determined equations were 

solved on the mean vectors of these GMMs to find the proper centroids and their power 

coefficients that closely build the noisy speech periodogram.  

In [63] the GMMs are treated exactly like full search method in which at each time a set 

of overdetermined equations will be solved between one centroid of speech and one 

centroid of one noise type and at the end the power coefficients and centroids 

corresponding to the minimum MSE will be selected for periodogram estimation.  

In [64], all the centroids of speech GMM and all centroids of one noise type GMM will 

be put together to solve the overdetermined equations. In this case we will have 

coefficients for each centroid of the GMMs. The estimated periodograms of speech and 

noise will be as: 

 

௦ܲሺ߱ሻ = ෍ ܽ௦೔
௦೔ߤ

ሺ߱ሻ

௄ೞ

௜ୀଵ

           ,         ௡ܲሺ߱ሻ = ෍ ܽ௡ೕ
௡ೕߤ

ሺ߱ሻ

௄೙

௝ୀଵ

 (3.27)
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where ܽ௦೔
 and ܽ௡ೕ

 are the power coefficients of the ݅-th and ݆-th centroids of speech and 

noise GMMs, respectively and are the result of solving over-determined equations on all 

the GMM centroids of speech and one noise type.  

Using these centroids and their power coefficients a Wiener filter like (3.20) will be 

constructed for the enhancement of the noisy frame. The difference in this method 

versus full search method is that here we had 6 centroids for speech and 9 centroids for 

each noise type while in full search codebook we had like a hundred centroid for each 

codebook. In this case the search process using GMMs will be considerably faster than 

full search codebooks and the experiments exhibited better enhancement results [63, 

64].  

 MMSE periodogram estimation using GMM 

By using the MMSE Bayesian estimation discussed in section 2.1.4.2 and by rewriting 

(2.35) for speech and noisy speech periodograms we will have: 

 
௦ࡼ

ெெௌா = න ௦ࡼ ௦ࡼ௫ሻ݀ࡼ|௦ࡼሺࢄ|݂ࡿ

 

ೞࡼ

 (3.28)

Using (2.36) we can rewrite (3.28) as: 

 
௦ࡼ

ெெௌா =
׬ ௦ࡼ ௦ሻࡼ|௫ࡼሺࡿ|݂ࢄ ௦ࡼ௦ሻ݀ࡼሺ݂ࡿ

ஶ
଴

׬ ௦ሻࡼ|௫ࡼሺࡿ|݂ࢄ ௦ࡼ௦ሻ݀ࡼሺ݂ࡿ
ஶ

଴

 (3.29) 

As mentioned in [65] by substituting (3.25) and (3.26) in  (3.29) and using the Gamma 

distribution, a MMSE estimate of speech periodogram is calculated as in (3.30). 

 

௦ࡼ
ெெௌா =

∑ ∑
௦೔ߨ

ඥો௦೔

௡ೕߨ

ඥો௡ೕ

,ଶ൫ܾ௜,௝ܫ ܿ௜,௝ , ݀௜,௝൯௄೙
௝ୀଵ

௄ೞ
௜ୀଵ

∑ ∑
௦೔ߨ

ඥો௦೔

௡ೕߨ

ඥો௡ೕ

,ଵ൫ܾ௜,௝ܫ ܿ௜,௝, ݀௜,௝൯௄೙
௝ୀଵ

௄ೞ
௜ୀଵ

 (3.30) 

The elements of this equation are expressed as follows: 
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ܾ௜,௝ =

1
2

ቆ
1

ો௦೔

+
1

ો௡ೕ

ቇ , ܿ௜,௝ = − ቆ
௦೔ࣆ

ો௦೔

+
௫ࡼ − ௡ೕࣆ

ો௡ೕ

ቇ ,  

݀௜,௝ =
1
2

ቌ
௦೔ࣆ

ଶ

ો௦೔

+
ቀࡼ௫ − ௡ೕࣆ

ቁ
ଶ

ો௡ೕ

ቍ 

ݖ =
ܿ௜,௝

ඥ2ܾ௜,௝
 , ଵିܦ = e

௭మ

ସ ට
ߨ
2

൜1 − erf ൬
ݖ

√2
൰ൠ , ଶିܦ

= e
௭మ

ସ ට
ߨ
2

ቊට
ߨ
2

e
௭మ

ସ − ݖ ൤1 − erf ൬
ݖ

√2
൰൨ቋ 

௩ܫ = න ௦ܲ
௩ିଵe൫ି௕೔,ೕ௉ೞ

మି௖೔,ೕ௉ೞିௗ೔,ೕ൯݀
ାஶ

଴
௦ܲ = eିௗ೔,ೕ൫2ܾ௜,௝൯

ି
௩
ଶΓሺݒሻe

௭మ

ସ  ሻݖ௩ሺିܦ

(3.31) 

Since the models are all normalized (the power of used periodograms is normalized to 

one), they must be scaled according to the input SNR before being used. The power 

biasing is discussed in [66]. 

There are 6 different noise source candidates whose models must be used for the 

estimation of ࡼ௦
ெெௌா and ࡼ௡

ெெௌா for each noisy speech frame. To alleviate the 

computation we use the method described in [63], using speech and noise mean vectors 

to model the space of the noisy speech periodogram, as a pre-processing step to find the 

suitable noise model i.e. the best noise candidate. Therefore, the following processing is 

limited to a single noise source. To calculate ࡼ௡
ெெௌா in (3.31) we can replace ો௦೔

 with 

ો௡ೕ
 and ࣆ௦೔

 with ࣆ௡ೕ
 and vice versa. By the use of estimated ࡼ௦

ெெௌா and ࡼ௡
ெெௌா and 

(3.2) we can construct a Wiener filter to enhance the noisy frame. Some other methods 

for realization of MMSE estimation of speech and noise periodograms are also 

discussed in [64] and [62]. Such MMSE method exhibited better enhancement results 

with respect the full search codebooks. 
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 MAP periodogram estimation using GMM 

By rewriting (2.43) for a speech periodogram we will have: 

௦ࡼ 
ெ஺௉ = arg max

ೞࡼ
 ௫ሻࡼ|௦ࡼሺࢄ|݂ࡿ

                            = arg max
ೞࡼ

ቀ ௦ሻࡼ|௫ࡼሺࡿ|݂ࢄ  ௦ሻቁࡼሺ݂ࡿ

(3.32)

The last part of (3.32) is like the maximization of the denominator of (3.29). Since 

(3.30) is the representation of (3.29) using GMMs, the maximization of the denominator 

of (3.29) is like the maximization of the denominator of (3.30). As mentioned in [66], 

such a maximization process can be done with some assumptions and hence the MAP 

estimate of speech periodogram can be written as: 

 
௦ࡼ

ெ஺௉ =
− ∑ ∑ ܿ௜,௝

௄೙
௝ୀଵ

௄ೞ
௜ୀଵ

2 ∑ ∑ ܾ௜,௝
௄೙
௝ୀଵ

௄ೞ
௜ୀଵ

 (3.33) 

where the values for ܾ௜,௝ and ܿ௜,௝ are the ones mentioned in (3.31). To calculate ࡼ௡
ெ஺௉ in 

(3.33) we can replace ો௦೔
 with ો௡ೕ

 and ࣆ௦೔
 with ࣆ௡ೕ

 and vice versa. By the use of 

estimated ࡼ௦
ெ஺௉ and ࡼ௡

ெ஺௉ and (3.2) we can construct a Wiener filter to enhance the 

noisy frame. Such a MAP estimation method, exhibited very good enhancement 

performance with respect to the MMSE method [67].  

3.5 Summary 

Some model-based speech enhancement methods were introduced in this chapter. Two 

different models as full search codebooks and also GMMs and also different estimation 

methods such as MMSE, MAP and over-determined equation solving were discussed. 

Some improvements on the modelling, estimation and filtering procedure is going to be 

introduced in the next chapter. 
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4 Proposed algorithms for improvement of speech 

enhancement 

Some well-known speech enhancement algorithms were discussed in chapter 3. These 

algorithms were based on Wiener filtering due to its high performance and low residual 

noise. To make it even more accurate, the algorithms use some models of speech and 

noise features. These features were the shape and the distribution of speech and noise 

periodograms. All these methods were compared based on their performance and here 

we are going to propose methods to overcome their shortcomings to have the highest 

possible improvement to corrupted noisy speech. 

4.1 Finding the reasonable size of the GMMs 

One of the important issues that we must deal with is the best size of GMMs (the 

number of Gaussians in each GMM) since in previous methods which discussed in 

section 3.4 the size of GMMs were found by trial and error. In this way, we should find 

the best number of GMM components that is not too small to decrease the accuracy of 

modeling and is not too large to increase the processing time. In our experiments, we 

are dealing with clean speech files among the TIMIT database and different noise types 

such as Babble, Babble, Pink, HF Channel, destroyer Engine and Factory noises. The 

TIMIT database is made up of 4620 speech files spoken by different speakers and we 

divided them to some overlapping frames and for each frame calculated the 

periodogram and put them all together as a periodogram dataset. Also for different noise 

types we have one large file for each recorded noise and we make the periodogram 
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dataset by the same procedure as for the clean speech dataset. To find the reasonable 

number of Gaussians in the GMMs we use the Bayesian Information Criterion (BIC) as 

discussed in [68, 69]. We used the gmdistribution.fit command in MATLAB to apply 

the EM algorithm on the periodogram datasets. The outputs of this command are the 

probability, mean vectors and covariance matrices of the GMM centroids and also it 

calculates the BIC. Each periodogram dataset is fed to the EM algorithm to make the 

GMM from ܭ = 2 to ܭ = 26. As discussed in [69], the number of mixtures that 

represent the maximum BIC, is the best number of mixtures. Since the BIC values for 

speech and different noise types have different ranges and we just want to find their 

maximums, to be able to show them on the same figure, we mapped all these different 

values to the range of 0 to 1. The actual BIC values are negative and hence we take the 

minimum value as 0 and the maximum value as 1 and every other value in between will 

be mapped with the same ratio. The mapped values of BIC for speech and different 

noise types with respect to the number of mixtures are shown in Figure 4.1. 

 

Figure 4.1: BIC (vertical axis) versus number of GMM mixtures (horizontal axis) for clean 
speech and different noise types 

In a similar manner as like the BIC criterion, we calculated Log-Likelihood as ܮ௟௢௚ 

from (3.24) for each GMM with the number of mixtures changing from 2 to 26. Again 
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to have all the Log-Likelihoods together despite their different ranges for speech and 

different noise types, we mapped their range of variation between 0 to 1. These Log-

Likelihoods with respect to the number of mixtures for speech and different noise types 

are shown in Figure 4.2.  

 

Figure 4.2: The Log-Likelihood of different noise types and clean speech (vertical axis) 
with respect to the number of GMM mixtures (horizontal axis) 

 

As discussed in [70] and as can be seen in Figure 4.1 and Figure 4.2, for small numbers 

of mixtures, the curves are quite steep and with increasing number of mixtures the 

slopes are reduced. In all the plots at around 10 mixtures the slopes decrease and hence 

we take 10 as a reasonable number of mixtures for our experiments. This is later 

verified by simulation experiments. This number does not look too small to decrease the 

accuracy and does not look too big to make calculations complicated. In this way we 

created GMMs with 10 mixtures for speech and different noise types and used it for the 

enhancement procedure. As discussed in [70], this is not a deterministic method for 

finding the number of mixtures in GMMs but a way to select the number of mixtures 

with a degree of rigor. In this way for all the introduced speech enhancement methods 
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that are based on GMM, we use 10 Gaussians in them and hence 10 mean vectors in 

each GMM.  

4.2 Explicit MAP using Optimization algorithms 

To create the GMMs of speech and noise periodograms, we are dealing with large 

datasets of periodograms which could be assumed as ܫ vectors of Ω + 1 components for 

speech and ܬ vectors of Ω + 1 components for noise which are large numbers (ܫ and ܬ 

can be as large as a couple of hundred thousand to a few million). We are dealing with a 

space of normalized speech and noise periodograms according to: 

 
നࡿ = ቊܳ௦

௜ሺ߱ሻ = ௦ܲ
௜ሺ߱ሻ
തܲ௦௜

, ݅ = 1, … ,  ቋܫ

നࡺ = ቊܳ௡
௝ሺ߱ሻ = ௡ܲ

௝ሺ߱ሻ

തܲ
௡
௝ , ݆ = 1, … ,  ቋܬ

(4.1) 

where ࡿന and ࡺന  are the space of normalized speech and normalized noise, respectively. 

തܲ௦
௜ and തܲ

௡
௝ are the power of ݅-th speech periodogram and ݆-th noise periodogram found  

as: 

 
തܲ௦

௜ = ෍ ௦ܲ
௜ሺ߱ሻ

ஐ

ఠୀ଴

 

തܲ
௡
௝ = ෍ ௡ܲ

௝ሺ߱ሻ
ஐ

ఠୀ଴

 

(4.2) 

We assume that all the noisy speech periodogram observations which can be considered 

as the space of noisy speech periodograms, can be created as the sum of the 

periodograms in ࡿന and ࡺന  spaces with proper biasing as: 
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നࢄ  = { ௫ܲ
௛ሺ߱ሻ = ܿܳ௦

௜ሺ߱ሻ + ݀ܳ௡
௝ሺ߱ሻ  , ℎ = 1, … ,  (4.3) {ܬ×ܫ

where ܿ and ݀ are the biasing that compensate the power since ܳ௦
௜ሺ߱ሻ and ܳ௡

௝ ሺ߱ሻ have 

normalized powers. We are going to find a MAP estimate of speech and noise 

periodograms through the maximization of the posterior PDF of the speech 

periodogram. Applying the Bayes rule from (2.26) we have: 

 
f܁ധ|܆നሺࡼ௦|ࡼ௫ሻᇣᇧᇧᇤᇧᇧᇥ

୔୭ୱ୲ୣ୰୧୭୰

=
1

f܆നሺࡼ௫ሻ
f܆ന|܁ധሺࡼ௫|ࡼ௦ሻᇣᇧᇧᇤᇧᇧᇥ

୐୧୩ୣ୪୧୦୭୭ୢ

f܁ധሺࡼ௦ሻᇣᇤᇥ
୔୰୧୭୰

 (4.4) 

where ݂ is the PDF as discussed in (3.22) and for the bold vectors we have ࡼ௦ = ௦ܲሺ߱ሻ 

and ࡼ௫ = ௫ܲሺ߱ሻ which are written in this form for the sake of simplicity of the 

equation. Assuming that the space of speech periodogram ࡿന and noise periodogram ࡺന  

are statistically independent, we can replace the likelihood term of ݂ࢄന|ࡿനሺࡼ௫|ࡼ௦ሻ with 

നࡺ݂ ሺࡼ௫ −  ௦ሻ as discussed in section 5.6.2 of [61]. We also know thatࡼ
ଵ

௙ࢄനሺೣࡼሻ
 is a 

constant and in this way the MAP estimates of speech and noise periodograms are as: 

௦ࡼ 
ெ஺௉ = arg max

ೞࡼ

௫ࡼനሺۼ݂ൣ −  ௦ሻ൧ࡼധሺ܁௦ሻ݂ࡼ

௡ࡼ
ெ஺௉ = arg max

೙ࡼ

௫ࡼധሺ܁݂ൣ −  ௡ሻ൧ࡼനሺۼ௡ሻ݂ࡼ

(4.5) 

where ݂܁ധሺࡼ௦ሻ and ݂ۼനሺࡼ௡ሻ are calculated by substituting 
ೞࡼ

௉തೞ
 and 

೙ࡼ

௉ത೙
 in (3.25) and (3.26), 

respectively. In (4.5) as discussed in [61], ௦݂ሺࡼ௦ሻ and ௡݂ሺࡼ௡ሻ are assumed as the prior 

probabilities of ࡼ௦ and ࡼ௡ respectively and ݂ۼനሺࡼ௫ − ௫ࡼധሺ܁݂ ௦ሻ andࡼ −  ௡ሻ as theࡼ

corresponding likelihoods. Using (3.1), we can rewrite these likelihoods as ݂ேനሺࡼ௡ሻ and 

݂ௌ̿ሺࡼ௦ሻ respectively. By merging the two equations in (4.5) we can write: 

௦ࡼ 
ெ஺௉ , ௡ࡼ

ெ஺௉ = arg max
೙ࡼ,ೞࡼ

ሾ ௦݂ሺࡼ௦ሻ ௡݂ሺࡼ௡ሻሿ (4.6) 
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This equation is so complicated since the sum of ܭ = 10 exponentials (due to the use of 

GMMs with 10 mean vectors) for the speech PDF multiplied by the sum of ܭ = 10 

exponentials for the noise PDF which are totally 100 exponential terms and since there 

is no explicit solution for it, we use optimization algorithm to solve it and find the value 

of ࡼ௦
ெ஺௉ and ࡼ௡

ெ஺௉ in a numerical basis. We have different classes of the optimization 

algorithms which are derivative based algorithms and genetic based algorithms. In 

genetic based algorithms there is no consideration on the optimum path to get to the 

final answer. In the derivative based algorithms, the best path could be found by finding 

the derivative of the cost function or by trial and error. In MATLAB there are a variety 

of optimization algorithms and one of them is fmincon command which is a derivative 

based algorithm to minimize the cost function. In this command we can enter the 

derivative equation of the cost function to increase the accuracy of the algorithm. This 

algorithm can be set to perform within some constraints and these constraints can be fed 

to it with some simple equations. Using this algorithm for MAP estimation can become 

too time-consuming due to dealing with relatively large periodogram vectors. This 

algorithm will input an initial estimate of the speech and noise periodograms and then 

change them within the constraints in an iterative manner to decrease the cost function 

from one iteration to the other. These iterations will continue while these changes that 

are made to the periodograms, decrease the value of the cost function and do not violate 

the predefined constraints. In here, the decrement of the cost function from one iteration 

to another is actually the increment of the PDF multiplication in (4.6). The required 

initial estimates of the speech and noise periodograms for this algorithm can be found 

using Minimum Statistic method discussed in 3.2. In the implementation of this 

algorithm the Minimum Statistics method of [71] was used in which an estimate of the 

noise periodogram will be resulted and also by decreasing it from the noisy speech 

periodogram and estimate of speech periodogram will be attained. The power of these 
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initial estimates will be then normalized by dividing them by the sum of all their 

components. The distance between the normalized noise periodogram and the mean 

vectors of different noise type GMMs will be calculated and the GMM and the noise 

GMM that has the closest mean vector to the normalized noise periodogram will be 

taken as the noise GMM of the whole noisy file. Such an optimization algorithm is 

illustrated in Figure 4.3. 

 

Figure 4.3: Optimization algorithm procedure 

 

In this figure the ݅ index represents the ݅-th iteration and hence ࡼ௦ ௜ and ࡼ௡ ௜ are the 

periodograms of speech and noise estimated in the ݅-th iteration. Using the final output 

periodograms of ࡼ௦ and ࡼ௡ which are the MAP estimates of speech and noise 

periodograms from the noisy periodogram, we can construct a Wiener filter to enhance 

the analyzing noisy frame. Different parts of this optimization procedure to attain the 

MAP estimations of speech and noise periodograms are explained in details as follows. 
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 Cost function  

As discussed earlier, in the cost function the PDFs of the speech and noise 

periodograms are calculated. In the cost function, since we want to maximize 

௦ሻࡼሺ݂ࡿ  ௡ሻ and the fmincon command in MATLAB tries to find the minimum of theࡼሺ݂ࡺ

cost function when we put the value of 
ଵ

௙ࡿሺࡼೞሻ௙ࡺሺࡼ೙ሻ
 in the cost function because its 

minimization is equivalent to the maximization of the ݂ࡿሺࡼ௦ሻ  ௡ሻ term. The fminconࡼሺ݂ࡺ

optimization command can just accept one vector as the input and since we want to 

estimate both ࡼ௦
ெ஺௉ and ࡼ௡

ெ஺௉, we can concatenate them as one single vector. By 

assuming that ࡼ௦ = ௦ܲሺ߱ሻ = ൣ ௦ܲబ
, … , ௦ܲಈ

൧ and ࡼ௡ = ௡ܲሺ߱ሻ = ൣ ௡ܲబ
, … , ௡ܲಈ

൧ where the 

number of frequency bins is Ω + 1, we can define ௦ܲ௡ሺ߱ሻ = ሾ ௦ܲሺ߱ሻ, ௡ܲሺ߱ሻሿ =

ൣ ௦ܲబ
, … , ௦ܲಈ

, ௡ܲబ
, … , ௡ܲಈ

൧ and rewrite (4.4) as: 

௦௡ࡼ 
ெ஺௉ = ሾࡼ௦

ெ஺௉, ௡ࡼ
ெ஺௉ሿ = arg max

ೞ೙ࡼ

ሾ ௦݂ሺࡼ௦ሻ ௡݂ሺࡼ௡ሻሿ (4.7) 

where ࡼ௦௡
ெ஺௉ is a vector made up of the two vectors ࡼ௦

ெ஺௉ and ࡼ௡
ெ஺௉ of length 2ሺΩ + 1ሻ. 

 Constraints 

We need to apply some constraints to the fmincon algorithm to make sure it does not 

violate some considerations about the properties of periodograms or their relationships. 

These constraints can be shown as in (4.8). 

 
arg min

ೞ೙ࡼ

൤
1

௦ሻࡼሺ݂ࡿ ௡ሻࡼሺ݂ࡺ
൨       such that     ቐ

௦௡ࡼ࡭ ≤ ࢈
௦௡ࡼ௘௤࡭ = ௘௤࢈

࢈࢒ ≤ ௦௡ࡼ ≤ ࢈࢛
 (4.8)

The definition of matrix ࡭ is in a way such that its multiplication by ࡼ௦௡ results in a 

vector of smaller than the vector ࢈. The matrix ࡭௘௤ definition is in a way that its 

multiplication by ࡼ௦௡ results in a vector equal to the vector ࢈௘௤. The vectors ࢈࢒ and ࢈࢛ 
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are of the same length of ࡼ௦௡ and define the lower bound and upper bound of ࡼ௦௡. All 

these matrices and vectors are defined in next paragraphs.  

To have good estimates of speech and noise periodograms, we should be able to 

estimate the power of the speech and noise periodograms in an accurate way. 

Experiments showed that if we do not apply any limitation on the power of the speech 

and noise periodograms, the resulted periodograms will be very different from the 

original ones. To solve this problem we need to set the limitations to force the 

optimization algorithm to work within tolerable ranges. Since we used Minimum 

Statistics to find the initial estimates of the periodograms, we can use the power of these 

initial periodograms as the constraints. If we assume that ௦ܲ
ெௌሺ߱ሻ and ௡ܲ

ெௌሺ߱ሻ are the 

periodograms of speech and noise from the Minimum Statistics algorithm, we can 

define the power of speech and noise in each frame as (4.9). 

 

௦ܲ
ெௌሺ߱ሻ = ൣ ௦ܲభ

ெௌ, … , ௦ܲಈ
ெௌ൧  →  തܲ௦ = ෍ ௦ܲഘ

ெௌ

ஐ

ఠୀ଴

 

௡ܲ
ெௌሺ߱ሻ = ൣ ௡ܲభ

ெௌ, … , ௡ܲಈ
ெௌ൧  →  തܲ௡ = ෍ ௡ܲഘ

ெௌ

ஐ

ఠୀ଴

 

(4.9)

We define the ࡭ matrix in a way that forces the power of estimated speech and noise 

periodograms to be within a little range of tolerance around these estimated powers. If 

we assume the tolerance as േߙ and the calculated powers of speech and noise 

periodograms from Minimum statistics as തܲ௦ and തܲ௡ we can write the resulted power 

equations for the estimated speech and noise periodograms as (4.10). 

 
ሺ1 − ሻߙ തܲ௦ ≤ ෍ ௦ܲഘ

ஐ

ఠୀ଴

≤ ሺ1 + ሻߙ തܲ௦ 

ሺ1 − ሻߙ തܲ௡ ≤ ෍ ௡ܲഘ

ஐ

ఠୀ଴

≤ ሺ1 + ሻߙ തܲ௡ 

(4.10)
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In MATLAB we can define the  ࡭ matrix and ࢈ vector as (4.11). 

 

൦

1 … 1 0 … 0
−1 … −1 0 … 0
0 … 0 1 … 1
0 … 0 −1 … −1

൪

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
࡭ ۏ

ێ
ێ
ێ
ێ
ێ
ۍ ௦ܲబ

⋮
௦ܲಈ

௡ܲబ

⋮
௡ܲಈے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ᇣᇤᇥ
ೞ೙ࡼ

≤

ۏ
ێ
ێ
ێ
ۍ

ሺ1 + ሻߙ തܲ௦

−ሺ1 − ሻߙ തܲ௦

ሺ1 + ሻߙ തܲ௡
−ሺ1 − ሻߙ തܲ௡ے

ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
࢈

 (4.11)

where ࡭ is a 4×ሺΩ + 1ሻ matrix, ࡼ௦௡ is a ሺ2Ω + 2ሻ×1 vector and ࢈ is a 4×1 vector.  

There is another important consideration that should be taken account of and it is the 

sum of estimated speech and noise periodograms which should be always equal to the 

noisy speech periodogram as ௫ܲሺ߱ሻ = ௦ܲ
ெ஺௉ሺ߱ሻ + ௡ܲ

ெ஺௉ሺ߱ሻ. To force this condition to 

the algorithm, we define ࡭௘௤ matrix and ࢈௘௤ vector as (4.12). 

 

ۏ
ێ
ێ
ێ
ۍ
1 0 0 … 0 1 0 0 … 0
0 1 0 … 0 0 1 0 … 0
0 0 1  0 0  1  ⋮
⋮ ⋮  1 ⋮ ⋮   1 0
0 … 0 0 1 0 … 0 0 ے1

ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
೐೜࡭

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ௦ܲబ

⋮
௦ܲಈ

௡ܲబ

⋮
௡ܲಈے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ᇣᇤᇥ
ೞ೙ࡼ

= ቎
௫ܲబ

⋮
௫ܲಈ

቏
ᇣᇤᇥ

೐೜࢈

 (4.12)

where ࡭௘௤ is a ሺΩ + 1ሻ×ሺ2Ω + 2ሻ matrix and ࢈௘௤ is a ሺΩ + 1ሻ×1 vector. Another 

important consideration is that the components of the resulted periodogram estimates 

cannot become negative and hence we can set ࢈࢒ as a zero vector with the length of 

2Ω + 2 (since the input is ࡼ௦௡). 

There are some other conditions that can be set for the fmincon optimization algorithm 

which are input tolerance or TolX, output tolerance or TolFun and constraint tolerance 

or TolCon. TolFun is the minimum accepted difference of the cost function output 

between two successive iterations and if during the iterations of the fmincon the 

difference of the cost function output value becomes less than TolFun the iterations will 

stop. By setting TolCon we can determine the least possible change in limitations. By 
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setting TolX we can determine the least possible change in the input vector. In our 

experiments the suitable values for these parameters are calculated through trial and 

error. 

In this way, using the fmincon algorithm we were able to implement explicit MAP with 

no approximation. The enhancement results using this algorithm are discussed in section 

5. We tried to simplify the cost function in a way to extract its derivative directly and by 

equating it to zero find the explicit MAP estimate of the periodograms without using an 

optimization algorithm and this method is the focus of the next section.  

4.3 A Simple explicit MAP estimation 

As discussed earlier, the multiplication of the two PDFs of speech and noise 

periodograms is so complicated and hence using optimization algorithm and applying 

all the constraints can become drastically time consuming. Here we are going to 

introduce an explicit solution to maximize the multiplication of the PDFs of speech and 

noise periodograms. To do so, we need to simplify the multiplication and since the 

PDFs contain positive values, the maximization of the multiplication of these positive 

PDFs is equivalent to the maximization of the logarithm of their product as in (4.13). 

௦ࡼ 
ெ஺௉, ௡ࡼ

ெ஺௉ = arg max
೙ࡼ,ೞࡼ

ሾ ௦ሻࡼሺ݂ࡿ  ௡ሻሿࡼሺ݂ࡺ

                                ≡ arg max
೙ࡼ,ೞࡼ

ൣln൫ ௦ሻࡼሺ݂ࡿ  ௡ሻ൯൧ࡼሺ݂ࡺ

                                              = arg max
೙ࡼ,ೞࡼ

ൣln൫ ௦ሻ൯ࡼሺ݂ࡿ + ln൫ ௡ሻ൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥࡼሺ݂ࡺ
்

 

(4.13)

The maximization of the multiplication ݂ࡿሺࡼ௦ሻ  ௡ሻ can be replaced with theࡼሺ݂ࡺ

maximization of the summation ܶ = ln൫ ௦ሻ൯ࡼሺ݂ࡿ + ln൫  ௡ሻ൯. In (4.13) each PDF isࡼሺ݂ࡺ

the sum of 10 exponentials as in (3.25) and (3.26) and hence we can consider ݂ࡿሺࡼ௦ሻ =
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భ݂ࡿ
ሺࡼ௦ሻ + ⋯ + భబ݂ࡿ

ሺࡼ௦ሻ and ݂ࡺሺࡼ௡ሻ = భ݂ࡺ
ሺࡼ௡ሻ + ⋯ + భబ݂ࡺ

ሺࡼ௡ሻ. From Jensen’s 

inequality we know that: 

 ln൫ ௦ሻ൯ࡼሺ݂ࡿ ≥ ln ቀ భ݂ࡿ
ሺࡼ௦ሻቁ + ⋯ + ln ቀ భబ݂ࡿ

ሺࡼ௦ሻቁ 

ln൫ ௡ሻ൯ࡼሺ݂ࡺ ≥ ln ቀ భ݂ࡺ
ሺࡼ௡ሻቁ + ⋯ + ln ቀ భబ݂ࡺ

ሺࡼ௡ሻቁ 

ܶ ≥ ln ቀ భ݂ࡿ
ሺࡼ௦ሻቁ + ⋯ + ln ቀ భబ݂ࡿ

ሺࡼ௦ሻቁ + ln ቀ భ݂ࡺ
ሺࡼ௡ሻቁ + ⋯ + ln ቀ భబ݂ࡺ

ሺࡼ௡ሻቁ 

(4.14)

As discussed in [72], to maximize the ܶ term in (4.13) we can maximize its lower 

bound as shown in the last equation of (4.14). In the experiments we found out that the 

maximization of the lower bound of ܶ almost always results in the maximum of the ܶ 

term and the exceptional cases can be considered as the estimation error. By such an 

assumption we can say that the maximization of the logarithm of sum of all positive 

exponentials in the PDF formula of speech or noise can be taken as the maximization of 

sum of the logarithm of all those values. In this way we can replace ܶ in (4.13)  with the 

right hand side of the last equation in (4.14) and replace all the PDF values from (3.25) 

and (3.26) and rewrite (4.13) as: 

 
௦ࡼ

ெ஺௉, ௡ࡼ
ெ஺௉ = arg max

೙ࡼ,ೞࡼ

൥෍ൣln൫ߨ௦ೖ
௦ೖܩ

൯ + ln൫ߨ௡ೖ
௡ೖܩ

൯൧

௄

௞ୀଵ

൩ 

                       = arg max
࢔ࡽ,࢙ࡽ

቎෍ ቐܥ௞ −
1
2

෍ ൥
൫ࡽ௦ − ௦ೖࣆ

൯
ଶ

ો௦ೖ

+
൫ࡽ௡ − ௡ೖࣆ

൯
ଶ

ો௡ೖ

൩

Ω

ఠୀ଴

ቑ

௄

௞ୀଵ

቏ 

(4.15)

where ࡽ௦ = ܳ௦ሺ߱ሻ = ௦ܲሺ߱ሻ ∑ ௦ܲሺ߱ሻஐ
ఠୀ଴⁄  and ࡽ௡ = ܳ௡ሺ߱ሻ = ௡ܲሺ߱ሻ ∑ ௡ܲሺ߱ሻஐ

ఠୀ଴⁄  are 

the normalized speech and noise periodograms, respectively. Also ܩ௦ೖ
 and ܩ௡ೖ

 are 

actually ܩ௦ೖ
൫ࡼ௦; ௦ೖࣆ

, ો௦ೖ
൯ and ܩ௡ೖ

൫ࡼ௡; ௡ೖࣆ
, ો௡ೖ

൯. The parameter ܥ௞ is a constant as 

௞ܥ = ln൫ߨ௦ೖ
൯ − Ω+1

ଶ
lnሺ2ߨሻ − ଵ

ଶ
ln൫หો௦ೖ

ห൯ + ln൫ߨ௡ೖ
൯ − Ω+1

ଶ
lnሺ2ߨሻ − ଵ

ଶ
ln൫หો௡ೖ

ห൯. We also 

know that since we have 10 mean vectors in each GMM, we have ܭ = 10. At this stage 
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to find the values of ࢙ࡼ,  that maximize the final extracted function in (4.15), we ࢔ࡼ

calculate its first derivatives with respect to ࡽ௦ and ࡽ௡ and we take them equal to zero 

and hence equal to each other as: 

 
෍ ෍

௦ೖࣆ
− ௦ࡽ

ો௦ೖ

ஐ

ఠୀ଴

௄

௞ୀଵ

= ෍ ෍
௡ೖࣆ

− ௡ࡽ

ો௡ೖ

ஐ

ఠୀ଴

௄

௞ୀଵ

= 0 (4.16) 

In our very first consideration about the speech and noise periodograms we assume that 

௦ܲሺ߱ሻ + ௡ܲሺ߱ሻ = ௫ܲሺ߱ሻ and since all the vectors are periodograms, their components 

cannot get any negative values. Therefor, when we want to find ௡ܲሺ߱ሻ = ௫ܲሺ߱ሻ −

௦ܲሺ߱ሻ or ௦ܲሺ߱ሻ = ௫ܲሺ߱ሻ − ௡ܲሺ߱ሻ as used to get from (4.5) to (4.6), we assume that 

there is no negative components in the resulted periodograms from the subtraction 

process and in this way each frequency component is treated independently. In this way 

we can remove the summation over ߱ from the two sides of (4.16) and assume that the 

sum of ܭ different values of each frequency component are equal to zeros and hence 

rewrite (4.16) as: 

 
෍

௦ೖࣆ
− ௦ࡽ

ો௦ೖ

௄

௞ୀଵ

= ෍
௡ೖࣆ

− ௡ࡽ

ો௡ೖ

௄

௞ୀଵ

 (4.17)

In the same way as discussed in section 4.2, we use Minimum Statistics method to find 

the best noise GMM for the noisy file. Also the result of Minimum Statistics can be 

used as the power estimate for MAP process. To solve (4.17), ࡽ௦ and ࡽ௡ are replaced 

with ࡼ௦/ തܲ௦
ெௌ and ࡼ௡/ തܲ௡

ெௌ where തܲ௦
ெௌ and തܲ௡

ெௌ are resulted from Minimum Statistics, 

and then ࡼ௡ is replaced with ࡼ௫ −  :௦ asࡼ

 

෍
௦ೖࣆ

−
௦ࡼ
തܲ௦

ெௌ

ો௦ೖ

௄

௞ୀଵ

= ෍
௡ೖࣆ

−
௫ࡼ − ௦ࡼ

തܲ௡
ெௌ

ો௡ೖ

௄

௞ୀଵ

 (4.18) 

The vectors ࡼ௦ and ࡼ௫ can be brought out of the summations as: 
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෍

௦ೖࣆ

ો௦ೖ

௄

௞ୀଵ

−
௦ࡼ

തܲ௦
ெௌ ෍

1
ો௦ೖ

௄

௞ୀଵ

= ෍
௡ೖࣆ

ો௡ೖ

௄

௞ୀଵ

−
௫ࡼ − ௦ࡼ

തܲ௡
ெௌ ෍

௡ೖࣆ

ો௡ೖ

௄

௞ୀଵ

 (4.19)

By simplifying (4.19) we can calculate the MAP estimate of the speech periodogram as: 

 

௦ܲ
ெ஺௉ሺ߱ሻ =

∑ ቆ
௦ೖߤ

ሺ߱ሻ
σ௦ೖ

ሺ߱ሻ −
௡ೖߤ

ሺ߱ሻ
σ௡ೖ

ሺ߱ሻቇ௄
௞ୀଵ + ௫ܲሺ߱ሻ

തܲ௡
ெௌ ∑ 1

σ௡ೖ
ሺ߱ሻ

௄
௞ୀଵ

1
തܲ௦

ெௌ ∑ 1
σ௦ೖ

ሺ߱ሻ
௄
௞ୀଵ +

1
തܲ௡

ெௌ ∑ 1
σ௡ೖ

ሺ߱ሻ
௄
௞ୀଵ

 (4.20)

We can estimate the MAP estimate if the noise periodogram ࡼ௡
ெ஺௉ through ࡼ௡

ெ஺௉ =

௫ࡼ − ௦ࡼ
ெ஺௉ and zero any resulting negative elements. Using these periodograms in (3.2) 

we can enhance the current noisy speech frame. The enhancement results of this method 

is discussed in section 5 in Figure 5.1.  

4.4 Improved explicit MAP estimation  

In section 4.3 a method for the MAP estimation of speech and noise periodograms from 

a noisy observation using speech and noise GMMs was introduced which is discussed in 

[73]. This MAP estimation is simplified to the maximization of the multiplication of the 

PDFs of the speech and noise periodograms. This PDF multiplication can be really 

complicated to maximize and hence we introduced some new variables as ࡽ௦ = ܳ௦ሺ߱ሻ 

and ࡽ௡ = ܳ௡ሺ߱ሻ to replace the ௦ܲሺ߱ሻ ∑ ௦ܲሺ߱ሻஐ
ఠୀ଴⁄  and ௡ܲሺ߱ሻ ∑ ௡ܲሺ߱ሻஐ

ఠୀ଴⁄  in (4.15). 

In this way, the derivative of the multiplication of the two PDFs once with respect to ࡽ௦ 

and then with respect to ࡽ௡ is calculated and both taken equal to zero. After this the 

values of ࡽ௦ and ࡽ௡ were again replaced with ௦ܲሺ߱ሻ ∑ ௦ܲሺ߱ሻஐ
ఠୀ଴⁄  and 

௡ܲሺ߱ሻ ∑ ௡ܲሺ߱ሻஐ
ఠୀ଴⁄  this time the noise periodogram ௡ܲሺ߱ሻ is replaced with ௫ܲሺ߱ሻ −

௦ܲሺ߱ሻ and from these two equations the value of ௦ܲሺ߱ሻ could be calculated as (4.20). 

Mathematically, the use of ࡽ௦ and ࡽ௡ and using them as independent variables, can 
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affect the performance of the MAP estimation algorithm. To prevent this effect, the 

maximization of the multiplication of the two PDFs as in (4.15) can be written as: 

௦ࡼ 
ெ஺௉, ௡ࡼ

ெ஺௉ = arg max
೙ࡼ,ೞࡼ

ሾ ௦݂ሺࡼ௦ሻ ௡݂ሺࡼ௡ሻሿ = arg max
೙ࡼ,ೞࡼ

ൣln൫ ௦݂ሺࡼ௦ሻ ௡݂ሺࡼ௡ሻ൯൧ 

                       = arg max
࢙ࡼ

ۏ
ێ
ێ
ێ
ۍ

෍

ە
ۖ
۔

ۖ
ۓ

௞ܥ −
1
2

෍

ۏ
ێ
ێ
ێ
൬ۍ

௦ࡼ
തܲ௦

− ௦ೖࣆ
൰

ଶ

௦ೖ࣌

+
൬

௫ࡼ − ௦ࡼ
തܲ௡

− ௡ೖࣆ
൰

ଶ

௡ೖ࣌

ے
ۑ
ۑ
ۑ
ఆې

ఠୀ଴

ۙ
ۖ
ۘ

ۖ
ۗ௄

௞ୀଵ
ے
ۑ
ۑ
ۑ
ې

 

(4.21)

Now in this equation we find the first derivative with respect to ௦ܲሺ߱ሻ and by equating 

it to zero we can come up with a more accurate MAP estimate of clean speech 

periodogram. The only variable in this equation is ௦ܲሺ߱ሻ and all the other parameters 

are constants and we assume that all the frequency bins are independent [73], hence we 

have: 

 

௦ܲ
ெ஺௉ሺ߱ሻ =

௫ܲሺ߱ሻ
തܲ௡

ଶ ∑ ቆ
1

௡ೖߪ
ሺ߱ሻቇ௄

௞ୀଵ +
1
തܲ௦

∑ ቆ
௦ೖߤ

ሺ߱ሻ
௦ೖߪ

ሺ߱ሻቇ௄
௞ୀଵ −

1
തܲ௡

∑ ቆ
௡ೖߤ

ሺ߱ሻ
௡ೖߪ

ሺ߱ሻቇ௄
௞ୀଵ

1
തܲ௦ଶ

∑ ቆ
1

௦ೖߪ
ሺ߱ሻቇ௄

௞ୀଵ +
1
തܲ௡

ଶ ∑ ቆ
1

௡ೖߪ
ሺ߱ሻቇ௄

௞ୀଵ

 (4.22) 

As mentioned in [73], the values തܲ௦ and തܲ௡ can be calculated using the Minimum 

Statistics method as discussed in [71]. Using this estimated ௦ܲ
ெ஺௉ሺ߱ሻ we can calculate 

௡ܲ
ெ஺௉ሺ߱ሻ as ௫ܲሺ߱ሻ − ௦ܲ

ெ஺௉ሺ߱ሻ and then construct the proper Wiener filter as 

mentioned in (3.2) to enhance the noisy file. The enhancement results of this method are 

discussed in section 5 and illustrated in Figure 5.7 “MAP periodogram”. 

The enhanced speech using this improvement in the MAP formula exhibits some 

residual noise in each frame which could be the result of inaccurate power estimation 

using the Minimum Statistics method. Rather than periodogram estimation, this time we 

estimate the amplitude of the speech spectrum knowing that practically the periodogram 

is the squared value of the amplitude. Since the residual noise which can occur in 



67 
 

different frequency bins in the speech amplitude are normally smaller than 1, squaring 

the amplitude value to calculate their corresponding periodogram value will decrease 

the total residual noise. In the frequency domain we have ܺሺ߱ሻ = ܵሺ߱ሻ + ܰሺ߱ሻ where 

ܺ, ܵ ans ܰ are the spectrum of noisy speech, speech and noise respectively and hence 

the noise periodogram becomes ܰሺ߱ሻ = ܺሺ߱ሻ − ܵሺ߱ሻ. Using this equation, the noise 

periodogram can be written as: 

 
௡ܲሺ߱ሻ = ܰሺ߱ሻܰ∗ሺ߱ሻ = ൫ܺሺ߱ሻ − ܵሺ߱ሻ൯൫ܺሺ߱ሻ − ܵሺ߱ሻ൯

∗
 

                           = ܵሺ߱ሻܵ∗ሺ߱ሻ + ܺሺ߱ሻܺ∗ሺ߱ሻ − ܵሺ߱ሻܺ∗ሺ߱ሻ − ܵ∗ሺ߱ሻܺሺ߱ሻ 

(4.23) 

Knowing that ௦ܲሺ߱ሻ = ܵሺ߱ሻܵ∗ሺ߱ሻ and ௫ܲሺ߱ሻ = ܺሺ߱ሻܺ∗ሺ߱ሻ, we can rewrite (4.23) as: 

 ௡ܲሺ߱ሻ = ௦ܲሺ߱ሻ + ௫ܲሺ߱ሻ − ܵሺ߱ሻܺ∗ሺ߱ሻ − ܵ∗ሺ߱ሻܺሺ߱ሻ (4.24) 

Based on (4.24), the minimum value for ௡ܲሺ߱ሻ will become: 

 ௡ܲ
௠௜௡ሺ߱ሻ = ௦ܲሺ߱ሻ + ௫ܲሺ߱ሻ − |ܵሺ߱ሻܺ∗ሺ߱ሻ| − |ܵ∗ሺ߱ሻܺሺ߱ሻ| 

                               = ௦ܲሺ߱ሻ + ௫ܲሺ߱ሻ − 2|ܵሺ߱ሻ||ܺሺ߱ሻ| 

(4.25) 

This minimum value happens when the phase difference between the spectrums of 

speech and noisy speech is zero. By defining ܣ௦ሺ߱ሻ = ඥ ௦ܲሺ߱ሻ = |ܵሺ߱ሻ| and ܣ௫ሺ߱ሻ =

ඥ ௫ܲሺ߱ሻ = |ܺሺ߱ሻ| in which ܣ௦ሺ߱ሻ = ௫ሺ߱ሻܣ ௦ and࡭ =  ௫ represent the spectrum࡭

amplitudes of clean speech and noisy speech respectively, the minimum noise 

periodogram of (4.25) can be re-written as: 

 
௡ܲ
௠௜௡ሺ߱ሻ = ௦ܣ

ଶሺ߱ሻ + ௫ܣ
ଶሺ߱ሻ − ௫ሺ߱ሻܣ௦ሺ߱ሻܣ2 = ൫ܣ௫ሺ߱ሻ − ௦ሺ߱ሻ൯ܣ

ଶ
 (4.26) 

This is then replaced with the ௡ܲሺ߱ሻ value (or actually ࡼ௫ −  ௦ value) in equationࡼ

(4.21) and the resulting MAP estimation of speech spectrum amplitude will become: 
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ெ஺௉ = arg max
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 (4.27) 

The idea of replacing ௡ܲሺ߱ሻ with its minimum is that to make sure that it will at least 

meet its minimum expected value. Since the noisy speech periodogram is considered as 

the sum of clean speech and noise periodograms, and if the minimum expected value for 

the noise periodogram is not met, the remainder would be considered as the speech 

periodogram which can cause residual noise in the enhanced speech. The next step is to 

calculate the first derivative of the resulted equation with respect to ܣ௦ሺ߱ሻ and then 

making it equal to zero and solving it. Since (4.27) is of order 4 for ܣ௦ሺ߱ሻ variable, its 

first derivative with respect to ܣ௦ሺ߱ሻ becomes of order 3 and in this way equating it to 

zero will lead to 3 roots. Again here we are going to use the same assumption as [73] 

where we treat each frequency bin independently and hence ignoring the summation 

over ߱ in (4.27). The resulted equation for ܣ௦ሺ߱ሻ that needs to be solved becomes: 

 ܽଷܣ௦
ଷሺ߱ሻ + ܽଶܣ௦

ଶሺ߱ሻ + ܽଵܣ௦ሺ߱ሻ + ܽ଴ = 0 

ܽଷ =
1
തܲ௦

ଶ ෍
1

௦ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

+
1
തܲ௡

ଶ ෍
1

௡ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

 

ܽଶ =
௫ሺ߱ሻܣ3−

തܲ௡
ଶ ෍

1
௡ೖߪ

ሺ߱ሻ

௄

௞ୀଵ

 

ܽଵ =
௫ܣ3

ଶሺ߱ሻ
തܲ௡

ଶ ෍
1

௡ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

−
1
തܲ௦

෍
௦ೖߤ

ሺ߱ሻ

௦ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

−
1
തܲ௡

෍
௡ೖߤ

ሺ߱ሻ

௡ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

 

ܽ଴ =
௫ሺ߱ሻܣ

തܲ௡
෍

௡ೖߤ
ሺ߱ሻ

௡ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

−
௫ܣ

ଷሺ߱ሻ
തܲ௡

෍
1

௡ೖߪ
ሺ߱ሻ

௄

௞ୀଵ

 

(4.28) 
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Since each amplitude vector contains Ω + 1 frequency bins, we need to deal with Ω + 1 

sets of 3 roots and among these sets we used the minimum of the real value of the 3 

roots. In this way we can make sure that the least possible residual noise will exist in the 

enhanced speech. The enhancement results of this method are discussed in section 5 and 

illustrated in Figure 5.7 as “MAP amplitude”. 

4.5 Power estimation using Gamma modelling 

Minimum Statistics (MS) is a well-known power estimation method in which the 

minima of smoothed noisy speech periodogram in some successive frames is taken as 

the periodogram of noise [25, 71, 74]. The method discussed in [71] is used for speech 

and noise power estimation in the MAP estimation method discussed in 4.3. There is 

also another power estimation method called Unbiased MMSE discussed in [75] in 

which a MMSE criterion is used on a GMM model of speech and noise periodograms to 

estimate noise power. In this section we are going to improve power estimation for the 

sake of MAP estimation algorithm improvement.  

 Gamma model of power distributions  

The MS power estimation method is online and this means that the power at each frame 

can be estimated based on the current frame and some information collected from 

previous frames. Sometimes there is no need for online enhancement like a recorded 

noisy speech and etc. and hence the whole noisy speech signal or at least a large portion 

of it is available and in this way the power estimation can become offline. The power of 

periodograms can be calculated as 

 തܲ௫ = ෍ ௫ܲሺ߱ሻ
ఠ

 , തܲ௦ = ෍ ௦ܲሺ߱ሻ
ఠ

  , തܲ௡ = ෍ ௡ܲሺ߱ሻ
ఠ

 (4.29)
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in which തܲ௫, തܲ௦ and തܲ௡ are the power of noisy speech, speech and noise respectively. If 

we do the summation over ߱ on the two sides of (3.1) and from the definition given in 

(4.29) we can write the relationship between these powers as: 

 തܲ௫ = തܲ௦ + തܲ௡ (4.30) 

In the same way discussed in section 3.4, some large files from speech and different 

noise types divided into some overlapping frames and for all these frames the 

periodogram calculated. For those periodogram datasets, the power (sum of all 

components) of each periodogram is calculated and hence we will have large datasets of 

powers for speech and different noise types. Our experiments were done on Clean 

Speech and White, Babble, Pink, Destroyer Engine, HF channel and Factory noises and 

hence for each signal type the power dataset is created. For each signal type (speech and 

different noise types), the range of the power dataset (the difference between maximum 

and minimum values) is divided into some classes. For each class, the number of 

elements that fall into that class is counted and this number can represent the histogram. 

To be able to compare all these histograms, each one is divided to the sum of all its 

values and in this way the histogram will be changed to the probability distribution (in 

which sum of all its values will be equal to 1) which is the Probability Density Function 

(PDF) in practice. These PDFs are shown in Figure 4.4. In This figure the number of 

power classes is taken as 100. 
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Figure 4.4: PDF of clean speech and different noise types periodogram power (power is 
considered as the sum of all frequency components of the periodograms) 
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The shapes of PDFs shown in Figure 4.4 are quite similar to the shapes created using 

variations of Gamma distribution as in Figure 4.5.  

 

Figure 4.5: Variations of Gamma distribution using shape and rate parameters 

 

The variations of Gamma distribution which are shown in Figure 4.5 are based on the 

two parameters of ܽ and ܾ which are called shape and rate parameters respectively. If തܲ 

is taken as the variable of the horizontal axis as power, the values on the vertical axis as 

PDF can be calculated using the parameters of the Gamma distribution as (4.31). 

 

݂ሺ തܲሻ =
തܲ௔ିଵ݁ି

௉ത
௕

ܾ௔Γሺܽሻ
 (4.31)

where ݂ represents the PDF of the corresponding power of തܲ with the shape and rate 

parameters of ܽ and ܾ respectively. To fit a distribution on these PDFs which is 

equivalent to finding the proper parameters of the Gamma distribution, the Maximum 

Likelihood Estimator (MLE) is used [76]. In this way, variations of Gamma 

input 

ou
tp

ut
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distributions, different ܽ and ܾ parameters, are found and then the closest one to the 

original PDF is considered as the desired distribution. Using the fitdist command of 

MATLAB we can fit a Gamma distribution on these periodogram power PDFs. This 

command will give the two parameters of ܽ and ܾ that can generate the proper Gamma 

distribution that can fit the PDF. All the speech and different noise type power PDFs 

and their fitted Gamma distribution are shown in Figure 4.6. In This figure the number 

of power classes is taken as 100. 
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Figure 4.6: The power PDFs of speech and different noise types and the fitted Gamma 
distribution on them 
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The resulted ܽ and ܾ parameters for speech and different noises after applying fitdist on 

the power PDFs of their training files, for the distributions shown in Figure 4.6 are 

exhibited in Table 4.1. 

Table 4.1: Shape and Rate parameters of the power distributions of large speech and noise 
PSD datasets 

Signal Shape parameter ࢇ Rate parameter ࢈ 

Speech 0.232 1201.285 

White noise 69.516 16.735 

Babble noise 3.164 136.370 

Pink noise 10.055 108.118 

HF Channel noise 32.699 39.357 

Destroyer Engine noise 12.948 112.743 

Factory noise 3.093 125.519 

 

The shape and rate parameters reported in Table 4.1 are calculated through the training 

set of data for speech and different noise types. To test the accuracy of these shape 

parameters, 50 test speech files were taken and mixed with all 6 noise types with -5, 0, 5 

and 10 dB input SNR and for each noisy speech file, the PDF of speech and noise 

periodogram power were calculated. For each PDF the corresponding shape parameters 

were calculated using MATLAB fitdist. All these shape parameters then averaged on 

each signal type, either speech or different noises. These averaged shape parameters on 

the test data and their corresponding value from the training data are shown in the 

following table: 
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Table 4.2: Averaged shape parameters of speech and noise from 50 noisy speech files for 
each noise 

Signal Shape parameter ࢇ 

from training data 

Averaged shape 

parameter ࢇ on test data 

Speech 0.232 0.229 

White noise 69.516 74.005 

Babble noise 3.164 5.072 

Pink noise 10.055 11.020 

HF Channel noise 32.699 48.457 

Destroyer Engine noise 12.948 23.731 

Factory noise 3.093 6.195 

 

Viewed from Table 4.2, the averaged values are quite close to the real values. In this 

way the shape parameter values which are calculated from the large periodogram power 

datasets of the train files are be used as the shape parameters of speech and noise in the 

noisy speech with for input SNR. The modelling procedure is illustrated in Figure 4.7. 

 

Figure 4.7: Fitting Gamma distribution on the power periodograms of speech and noise 
and extracting their shape parameters 



77 
 

One of the properties of the Gamma distribution is that the mean of the distribution can 

be calculated by multiplication of the shape and rate parameters as ܾܽ. Since it is 

considered that the noisy speech is the sum of the clean speech and noise, after doing 

some practical experiments and observations, it turned out that it can be assumed 

empirically that the mean of noisy speech power distribution is roughly equal to the sum 

of the mean of speech and noise power distributions.  

 ܽ௫ܾ௫ ≅ ܽ௦ܾ௦ + ܽ௡ܾ௡ (4.32) 

where the ݏ ,ݔ and ݊ indexes represent noisy speech, clean speech and noise and ܽ and 

ܾ are the corresponding shape and rate parameters of their Gamma distribution. In this 

way after finding the parameters of the distributions of the power PDF of the observed 

noisy speech (ܽ௫  and ܾ௫) and also replacing ܽ௦ and ܽ௡ from their corresponding models 

created from the large power PDF datasets shown in Table 4.2, there is a relationship 

between ܾ௦ and ܾ௡. The next step is finding a way to estimate the proper values for 

these two rate parameters to be able to get to the power distribution of speech and noise 

in a noisy speech observation. It is considered that for different noisy speech files, the 

shapes of the power PDF of the consisting speech and noise is the same as the ones in 

Table 4.1, and their different rates will cause different shapes and rates for the 

distribution of the power PDF of the noisy speech. Hence, the power PDF of some 

sample noisy speech files of different noises with different input SNRs were drawn as 

shown in Figure 4.8 to find a relationship between the SNR and the shape of the power 

PDF of the noisy speech.  



78 
 

 

Figure 4.8: The power PDF of 3 different clean speech signals mixed with White, Babble 
and Pink noises with -5, 0 and 5 dB input SNRs. 

 

As can be seen from Figure 4.8, by increasing the SNR (moving from the first row to 

the last row), the tendency of the shape of the noisy speech power PDF migrates 

towards the left and gets close to the power PDF of clean speech. However, the 

decrement of the SNR results in the less tendency of noisy speech power PDF towards 

left, and mostly getting close to the noise power PDF. The tendency of the distribution 

towards the left is actually the asymmetry of the power PDF and in terms of statistic 

criterions, it can be considered as the Skewness of the distribution [77]. In Gamma 

distributions, the Skewness can be calculated as 2 √ܽ⁄  where ܽ is the shape parameter 

of the distribution [78]. To find the relationship between the SNR and the Skewness, 50 

test speech files were used to create noisy speech files for each noise type with -5, 0, 5 

and 10 dB input SNRs. In this way a total number of 200 noisy files were created for 

each noise type. For each noisy speech signal the power PDF and its corresponding 

Skewness were calculated, and for each noise type the average Skewness versus input 

SNR was drawn as in Figure 4.9. 
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Figure 4.9: Skewness of noisy speech power distribution averaged over 50 noisy speech 
files 

 

As can be seen in Figure 4.9, the Skewness vs. SNR diagrams are almost linear and 

almost have the same values. Hence all diagrams of Figure 4.9 were averaged and came 

up with a final Skewness vs. SNR diagram as in Figure 4.10. 

 

Figure 4.10: Skewness of noisy speech power PDF averaged over 50 noisy speech files and 
6 noise types 
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Using the two points shown in Figure 4.10, a relationship between Skewness and the 

SNR of the noisy speech can be written as (4.33). 

 ܴܵܰ = ߣ8.375 − 12.864 (4.33)

and by replacing ߣ with its relationship with the shape parameter (4.33) can be rewritten 

as:  

 
ܴܵܰ =

16.75

ඥܽ௫
− 12.864 (4.34)

So, using (4.34) it will be possible to estimate the input SNR using the calculated ܽ௫ 

from the power distribution of the observed noisy speech. To test the accuracy of this 

method, for each noise type of Babble, White, Pink, HF channel, Destroyer Engine and 

Factory we created 3 different noisy speeches with -5, 0 and 5 dB input SNR. The 

estimated speech and noise powers using this method can be seen in the following 

figures.  

 

Figure 4.11: The real (solid line) and estimated (dashed line) speech and White noise 
power distribution PDF of a sample noisy speech with different input SNRs (vertical and 

horizontal axis are the power and the input SNR, respectively) 
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Figure 4.12: The real (solid line) and estimated (dashed line) speech and Babble noise 
power distribution PDF of a sample noisy speech with different input SNRs (vertical and 

horizontal axis are the power and the input SNR, respectively) 

 

 

Figure 4.13: The real (solid line) and estimated (dashed line) speech and Pink noise power 
distribution PDF of a sample noisy speech with different input SNRs (vertical and 

horizontal axis are the power and the input SNR, respectively) 
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Figure 4.14: The real (solid line) and estimated (dashed line) speech and HF Channel noise 
power distribution PDF of a sample noisy speech with different input SNRs (vertical and 

horizontal axis are the power and the input SNR, respectively) 

 

 

Figure 4.15: The real (solid line) and estimated (dashed line) speech and Destroyer Engine 
noise power distribution PDF of a sample noisy speech with different input SNRs (vertical 

and horizontal axis are the power and the input SNR, respectively) 
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Figure 4.16: The real (solid line) and estimated (dashed line) speech and Factory noise 
power distribution PDF of a sample noisy speech with different input SNRs (vertical and 

horizontal axis are the power and the input SNR, respectively) 

 

As can be seen from Figure 4.11 to Figure 4.16 using the mentioned Gamma modelling 

method the power distributions of the clean speech and different noises with different 

input SNRs can be estimated with high accuracy.  

 Power estimation using the MAP criterion 

By considering the first frame of the noisy speech as pure noise (silent speech) and 

comparing its normalized periodogram with all the periodograms in different noise 

GMMs (each GMM contains 10 normalized periodogram as the mean vectors) as 

introduced in [73], the GMM containing the closest periodogram to the noisy speech 

frame could be considered as the proper noise model for the current noisy speech file. 

For the selected noise model the corresponding shape parameters (ܽ௦ and ܽ௡) are 

available from the Gamma models shown in the “training data” column of Table 4.2. 

Based on (4.32) we can write the SNR of a frame as: 
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ܴܵܰ = 10 log ൬

ܽ௦ܾ௦

ܽ௡ܾ௡
൰ (4.35)

where ܽ௦ܾ௦ is the power of the speech periodogram and ܽ௡ܾ௡ is the power of the noise 

periodogram and by the assumption of (4.30), we can rewrite (4.35) as: 

 
ܴܵܰ = 10 log ൬

ܽ௦ܾ௦

ܽ௫ܾ௫ − ܽ௦ܾ௦
൰ (4.36) 

In this equation the SNR is known from (4.34), ܽ௦ and ܽ௡ are known from the model, 

ܽ௫ and ܾ௫ are known from the Gamma distribution of the noisy speech power and the 

only unknown is ܾ௦ which could be calculated as: 

 
ܾ௦ =

ܽ௫ܾ௫

ܽ௦ ൬1 + 10ି
ௌேோ
ଵ଴ ൰

 (4.37) 

By replacing the calculated ܾ௦ in (4.32) the proper value for ܾ௡ could be calculated. 

Now by having all the shape and rate parameters the power PDF of speech and noise 

periodograms forming the observed noisy speech periodogram can be calculated. Now 

the right speech and noise powers can be found using the MAP criterion on these power 

distributions. The Gamma distributions of speech and noise power ( തܲ௦ and തܲ௡) using 

equation (4.31) by replacing ݕ with power can be written as (4.38). 

 
௦݂ሺ തܲ௦ሻ = ܿ௦ തܲ௦

௔ೞିଵ
݁

ି
௉തೞ
௕ೞ    ,    ܿ௦ =

1

ܾ௦
௔ೞΓሺܽ௦ሻ

 

௡݂ሺ തܲ௡ሻ = ܿ௡ തܲ௡
௔೙ିଵ

݁
ି

௉ത೙
௕೙    ,   ܿ௡ =

1

ܾ௡
௔೙Γሺܽ௡ሻ

 

(4.38) 

where തܲ௦ and തܲ௡ are the powers of speech and noise, and ௦݂ and ௡݂ are the PDFs of 

speech and noise powers respectively. As discussed in [73], the MAP criterion between 

the two PDFs is written as (4.39). 



85 
 

 തܲ௦
ெ஺௉, തܲ௡

ெ஺௉ = arg max
௉തೞ,௉ത೙

ሾ ௦݂ሺ തܲ௦ሻ ௡݂ሺ തܲ௡ሻሿ (4.39) 

Since both PDFs result in positive values, maximization of the multiplication of the two 

PDFs is like maximization of the logarithm of this multiplication. 

 തܲ௦
ெ஺௉, തܲ௡ெ஺௉ = arg max

௉തೞ,௉ത೙

ሾ ௦݂ሺ തܲ௦ሻ ௡݂ሺ തܲ௡ሻሿ = arg max
௉തೞ,௉ത೙

ൣln൫ ௦݂ሺ തܲ௦ሻ ௡݂ሺ തܲ௡ሻ൯൧ 

                             = arg max
௉തೞ,௉ത೙

ൣln൫ ௦݂ሺ തܲ௦ሻ൯ + ln൫ ௡݂ሺ തܲ௡ሻ൯൧ 

(4.40)

After replacing the ௦݂ and ௡݂ in (4.40) with their equivalents from (4.38) there will be an 

equation with തܲ௦ and തܲ௡ that should be maximized to find the  തܲ௦
ெ஺௉ and തܲ௡ெ஺௉.  

 
തܲ௦

ெ஺௉, തܲ௡ெ஺௉ = arg max
௉തೞ,௉ത೙

ቈlnሺܿ௦ሻ + ሺܽ௦ − 1ሻ lnሺ തܲ௦ሻ −
തܲ௦

ܾ௦
+ lnሺܿ௡ሻ

+ ሺܽ௡ − 1ሻ lnሺ തܲ௡ሻ −
തܲ௡

ܾ௡
቉ 

(4.41)

By replacing തܲ௡ with തܲ௫ − തܲ௦, the whole equation would be just in terms of തܲ௦ as:  

 
തܲ௦ெ஺௉ = arg max

௉തೞ

ቈlnሺܿ௦ሻ + ሺܽ௦ − 1ሻ lnሺ തܲ௦ሻ −
തܲ௦

ܾ௦
+ lnሺܿ௡ሻ + ሺܽ௡ − 1ሻ lnሺ തܲ௫ − തܲ௦ሻ

−
തܲ௫ − തܲ௦

ܾ௡
቉ 

(4.42)

Now to find the തܲ௦
ெ஺௉ the first derivative of the right hand side term of (4.42) should be 

taken equal to zero and be solved to have the തܲ௦
ெ஺௉. The resulting equation is shown 

below 

 ܽ௦ − 1
തܲ௦

−
1
ܾ௦

−
ܽ௡ − 1
തܲ௫ − തܲ௦

+
1

ܾ௡
= 0 (4.43)

In (4.43) തܲ௦ is actually തܲ௦
ெ஺௉. By solving (4.43) the resulting speech power using the 

MAP criterion will be: 
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തܲ௦

ெ஺௉ =
ܯ− േ ଶܯ√ − ܰܮ4

ܮ2
 

ܮ = ܾ௡ − ܾ௦ 

ܯ = ሺܾ௦ − ܾ௡ሻ തܲ௫ + ሺ2 − ܽ௦ − ܽ௡ሻܾ௦ܾ௡ 

ܰ = ሺܽ௦ − 1ሻܾ௦ܾ௡ തܲ௫ 

(4.44) 

From the two calculated values for തܲ௦
ெ஺௉, the positive one and smaller than തܲ௫ will be 

selected, since the power cannot be negative and cannot go beyond the total power of 

the frame. In this way the value of തܲ௡ெ஺௉ can be calculated as തܲ௫ − തܲ௦
ெ஺௉.  

 MAP periodogram estimation and Wiener filtering 

As discussed in chapter 3, we created GMMs on normalized periodograms of speech 

and different noise types. To estimate the periodograms of the speech and noise that 

form the observed noisy speech periodogram, a MAP criterion is calculated between the 

PDFs of speech and noise periodograms using their GMMs. Since the GMMs are 

created on normalized periodograms (with their powers equal to 1), we need an estimate 

of speech and noise power to bias these to the level of the speech and noise 

periodograms of the observed noisy frame. In (4.20), these power estimates were shown 

as തܲ௦
ெௌ and തܲ௡

ெௌ which were calculated using Minimum Statistics method. After finding 

the proper values for തܲ௦
ெ஺௉ and തܲ௡

ெ஺௉ from (4.44), they can replace the തܲ௦
ெௌ and തܲ௡ெௌ 

values in equation (4.20) and in this way the MAP estimate of speech periodogram can 

be shown as: 

 

௦ܲ
ெ஺௉ሺ߱ሻ =

∑ ቆ
௦ೖߤ

ሺ߱ሻ
σ௦ೖ

ሺ߱ሻ −
௡ೖߤ

ሺ߱ሻ
σ௡ೖ

ሺ߱ሻቇ௄
௞ୀଵ + ௫ܲሺ߱ሻ

തܲ௡
ெ஺௉ ∑ ቆ 1

σ௡ೖ
ሺ߱ሻቇ௄

௞ୀଵ

1
തܲ௦

ெ஺௉ ∑ ቆ
1

σ௦ೖ
ሺ߱ሻቇ௄

௞ୀଵ +
1

തܲ௡
ெ஺௉ ∑ ቆ

1
σ௡ೖ

ሺ߱ሻቇ௄
௞ୀଵ

 (4.45)
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where ܭ is the total number of mixtures in the GMMs which in our experments is taken 

as 10. ߤ௦ೖ
ሺ߱ሻ and ߤ௡ೖ

ሺ߱ሻ are the ݇-th mean vector (periodogram) of speech and noise 

GMMs respectively. σ௦ೖ
ሺ߱ሻ and σ௡ೖ

ሺ߱ሻ are the ݇-th mean vector (periodogram) of 

speech and noise GMMs respectively. ࡼ௫ is the periodogram of the observed noisy 

speech frame. The MAP estimate of noise periodogram can be calculated as 

௡ܲ
ெ஺௉ሺ߱ሻ = ௫ܲሺ߱ሻ − ௦ܲ

ெ஺௉ሺ߱ሻ and as it might result in some negative frequency 

components which is of no meaning for periodograms, they will be zeroed. Using these 

MAP estimates of speech and noise periodograms a Wiener filter can be constructed to 

de-noise the noisy frame as: 

 
ܹሺ߱ሻ = ௦ܲ

ெ஺௉ሺ߱ሻ

௦ܲ
ெ஺௉ሺ߱ሻ + ௡ܲ

ெ஺௉ሺ߱ሻ
 

መܵሺ߱ሻ = ܹሺ߱ሻܺሺ߱ሻ 

(4.46)

where ܹሺ߱ሻ, መܵሺ߱ሻ and ܺሺ߱ሻ are the Wiener filter, the estimated spectrum of clean 

speech and the observed noisy speech spectrum, respectively. Using inverse DFT, መܵሺ߱ሻ 

can be converted to ̂ݏ௠ሺݐሻ which is the estimate of the ݉-th frame of the clean speech in 

time domain. It can be put together with the other neighbor frames using overlap-add 

method and form the whole clean speech file. This procedure is illustrated in  Figure 

4.17. 
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Figure 4.17: Power estimation and enhancement procedure using the introduced power 
estimation and the enhancement method introduced in [73] 

 

The enhancement process and filtering is exactly the same as the simple MAP method 

discussed in [73] and just the power estimation method is changed the way shown in 

Figure 4.17. The enhancement results using this method are discussed in section 5 in 

Figure 5.11.  

4.6 Improved Wiener filter 

We have used the Wiener filter in its frequency domain form with different 

periodogram estimation methods. Using all these methods we tried to extract an 

estimate of clean speech periodogram and noise periodogram from the observed noisy 

speech periodogram and construct a proper Wiener filter for the enhancement of the 

observed frame. The performance of such a Wiener filter is highly dependent on the 

accuracy of the estimated periodograms. Most of the discussed periodogram estimation 

methods are of good performance for frames with high speech activity where the speech 
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level is reasonably higher than the noise level. The critical situations is when the speech 

power is at the noise level or lower as the possibility of wrong frequency components in 

estimated periodograms will increase. Subsequently some components that are basically 

for the noise periodogram may appear in the speech periodogram which can cause some 

residual background noise and hence lower the quality of the enhanced speech. 

Moreover, some components that are basically for the speech periodogram may appear 

in the noise periodogram which can lower the intelligibility of the enhanced speech.  

In methods like Minimum Statistics that the noise periodogram is estimated through 

tracking the minima of a smoothed noisy speech periodogram as in [71], the estimated 

speech periodogram will be too smooth to track the sharp peaks of the original speech 

periodogram. In codebook based methods either full search codebooks or GMM based 

methods as in [59, 60, 64], since there is a limited number of centroids representing all 

possible periodogram shapes, the estimated speech periodogram cannot accurately 

simulate the whole variety of speech periodogram shapes. Such errors are quite 

probable in frames with low SNR values and hence we need to come up with a Wiener 

filter that is more robust all the estimation errors. Having more variety of periodogram 

shapes is more related to the codebook or GMM design and the optimal number of 

clusters and classification algorithm and is not the scope of this topic, but removing as 

many unwanted components as possible from the enhanced speech, can be attained by 

improving the Wiener filter formula. The Wiener filter is constructed by dividing the 

speech periodogram by the noisy speech periodogram and since the estimated speech 

periodogram in the numerator is not accurate especially for low SNRs, we can 

compensate it with more attenuation at lower SNRs. For higher SNRs we assume that 

the estimation is accurate enough and we do not need any more attenuation. Such an 

extra attenuation for low SNRs and none for high SNRs is like increasing the 

denominator of the Wiener filter with a factor that has an inverse relationship with the 
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frame SNR. Such a factor can be like multiplying the nomerator by a factor or adding a 

constant to it. Multiplication can increase distortion since it will mess with the 

relationship between periodogram components and will change the shape of the 

periodogram which is not desirable. Adding a constant to the denominator can preserve 

the shape of the noisy speech periodogram whilst increasing all the components at the 

same level and in this way all the components in the noisy speech will be attenuated. 

Such attenuation will not affect the large speech components which are higher than the 

average noise level but those ones that are below the average noise level and have the 

potential of being mistaken with noise components We should mention again that in this 

way the noise components will be attenuated to the highest degree at the cost of losing 

some low level speech components. This will increase the quality and hence the SNR of 

enhanced speech but lower the intelligibility. With such a constant in the denominator, 

the Wiener filter becomes: 

 
෡ܹ ሺ߱ሻ =

෠ܲ௦ሺ߱ሻ

௫ܲሺ߱ሻ + ሺ߱ሻݑܿ
 (4.47)

where ෡ܹ ሺ߱ሻ is the estimated Wiener filter, ෠ܲ௦ሺ߱ሻ is the estimated speech periodogram, 

 ܿ ሺ߱ሻ is a unity vector with Ω frequency bins and all components are equal to one andݑ

the constant that is going to be added to all the components of the noisy speech 

spectrum. Since ෡ܹ ሺ߱ሻ should be as close as possible to ܹሺ߱ሻ in (4.47) we should 

have: 

 ෠ܲ௦ሺ߱ሻ

௫ܲሺ߱ሻ + ሺ߱ሻݑܿ
= ௦ܲሺ߱ሻ

௫ܲሺ߱ሻ
 (4.48)

We know that the noisy speech periodogram is the sum of speech and noise 

periodograms and hence replacing the nominator of the right hand side fraction with 

௫ܲሺ߱ሻ − ௡ܲሺ߱ሻ gives: 
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 ෠ܲ௦ሺ߱ሻ

௫ܲሺ߱ሻ + ሺ߱ሻݑܿ
= 1 − ௡ܲሺ߱ሻ

௫ܲሺ߱ሻ
 (4.49)

Since we can say ෠ܲ௦ሺ߱ሻ = ൣ ෠ܲ௦భ
, ෠ܲ௦మ

, … , ෠ܲ௦ಈ
൧, ௫ܲሺ߱ሻ = ൣ ௫ܲభ

, ௫ܲమ
, … , ௫ܲಈ

൧ and ௦ܲሺ߱ሻ =

ൣ ௦ܲభ
, ௦ܲమ

, … , ௦ܲಈ
൧ which are the vector representation of the periodograms, writing (4.49) 

for each frequency component and simplifying it we have: 

 ෠ܲ௦ഘ

௫ܲഘ
+ ܿ

= 1 −
௡ܲഘ

௫ܲഘ

→ ܿ ቆ1 −
௡ܲഘ

௫ܲഘ

ቇ = ෠ܲ௦ഘ
+ ௡ܲഘ

− ௫ܲഘ
 (4.50)

If we rewrite this equation for all frequency components we will have: 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ܿ ቆ1 −

௡ܲభ

௫ܲభ

ቇ = ෠ܲ௦భ
+ ௡ܲభ

− ௫ܲభ

ܿ ቆ1 −
௡ܲమ

௫ܲమ

ቇ = ෠ܲ௦మ
+ ௡ܲమ

− ௫ܲమ

         ⋮               ⋮          ⋮         ⋮

ܿ ቆ1 −
௡ܲಈ

௫ܲಈ

ቇ = ෠ܲ௦ಈ
+ ௡ܲಈ

− ௫ܲಈ

→ ሺ߱ሻܣܿ = ሺ߱ሻ (4.51)ܤ

where the left hand side of all these equations can be replaced with a vector as ܣሺ߱ሻ 

and the right hand sides with ܤሺ߱ሻ both of size Ω×1 (Ω rows and 1 column). In this 

way we will have one unknown variable of ܿ and a total number of Ω equations that 

should be solved to find this variable. Since the value of 
௉೙ሺఠሻ

௉ೣ ሺఠሻ
 in ܣሺ߱ሻ cannot be larger 

than 1 (because ௫ܲሺ߱ሻ ≥ ௡ܲሺ߱ሻ), then all the negative values of ܣሺ߱ሻ will be zeroed. 

(4.51) can be considered as an over-determined equation and hence we can solve it the 

way discussed in section 3.3.3. The final value for ܿ can be calculated by multiplying 

the pseudo-inverse of ܣሺ߱ሻ and multiply it by ܤሺ߱ሻ. Such a pseudo-inverse can be 

calculated using the pinv function in MATLAB. This calculation is: 

 ܿ = Pinv൫ܣሺ߱ሻ൯×ܤሺ߱ሻ (4.52)
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where × represents the matrix multiplication. In this equation Pinv൫ܣሺ߱ሻ൯ is of size 

1×Ω and multiplying it by ܤሺ߱ሻ of size Ω×1 will result in the scalar ܿ. This calculated 

value for ܿ together with the estimated speech and noisy speech periodogram can be 

used in (4.47) to construct an improved Wiener filter for the enhancement of the current 

noisy frame. Using this constant in the denominator of the Wiener filter can result in 

adaptive attenuation for different frames, more attenuation for frames with more noise 

and vice versa, that can lead to a high degree of noise reduction. The results of this 

method are discussed in section 5 in Figure 5.14.  

4.7 Summary  

Some new speech enhancement methods based on GMM, MAP estimation and Wiener 

filtering introduced and discussed mathematically.  In each method we tried to resolve 

the shortcomings of the other existing similar methods. In the next chapter we are going 

to analyze the performance of the introduced methods in terms of quality and 

intelligibility.  
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5 Experiments 

In this chapter we are going to discuss the performance of all the introduced algorithms 

from chapter 4. This analysis is in terms of quality and intelligibility of the enhanced 

speech using these methods.  

We have formed 6 noise Periodogram datasets using long files of each noise type 

babble, white, pink, destroyer engine, factory and HF channel and each noise file 

contains more than 1.8 million samples. The noise files are converted from originally 16 

kHz  to 8 kHz from the NOISEX dataset available on the Rice University Digital Signal 

Processing (DSP) group home page [79]. We have also created a speech Periodogram 

dataset using training data obtained from the TIMIT dataset [80] with each clean speech 

file containing around 30000 to 60000 samples. The speech files are also quantized with 

16 bit and converted from 16 kHz originally to 8 kHz. The test files of speech and noise 

(TIMIT has some test speech files and from each noise file some samples are not used 

in the Periodogram dataset collection and are used instead as test files) are used to 

create noisy observations at -5, 0, 5 and 10dB input SNRs. All these training files of 

speech different noisy type are divided to some overlapping windowed frames. These 

frames have 75% overlap and each has 256 samples which for 8 kHz sampling rate is 

equal to 32 ms length and each of them will be multiplied by a Hamming window with 

the same number of samples as discussed in section 01 and illustrated in Figure 2.1. In 

this way for each windowed frame the periodogram will be calculated and inserted into 

the corresponding periodogram dataset. For calculating the periodogram we need to find 

the DFT or the Discrete Fourier transform of these frames and this DFT can be 

implemented using Fast Fourier Transform (FFT). We applied FFT of length 512 
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(frequency components) on each frame of 256 time samples. Since the Fourier 

transform of a signal is symmetric to the zero frequency (DC component), we will take 

the half band of each Fourier transform plus the DC component, totally 257 frequency 

components, as the Fourier transform of the frame. In this way in all the equations that 

we had so far we can take Ω = 256 and hence ߱ ∈ {0,1, … ,256}. These Fourier 

transforms contain complex components and to find the periodogram of these Fourier 

transforms, we need to find the squared value of the amplitude of each frequency 

component. Using this procedure for speech and different noise training files, we will 

have collections of periodogram vectors with 257 frequency components which are 

called periodogram datasets. The resulted datasets had almost 800000 periodograms for 

speech and 50000 periodograms for each noise type. 

To create these noisy speech signals with any desirable SNR, to test the performance of 

the proposed algorithms, we will use the test files of each signal type and these files are 

not used in the periodogram dataset creation. To have a noisy speech file, we will select 

one of the test files from the TIMIT dataset and from the test file of the proper noise 

type, we will select a part with the same length of the speech file. To have the desired 

SNR in the noisy speech file, the proper level of the selected part of the specific noise 

signal (a number multiplied by noise), will be added to the speech signal. If the speech 

file and the selected noise part are of length ܮ, the power of these files can be calculated 

as: 

  
തܲ௦

௧ = ෍ ௅ݏ
ଶሺ݉ሻ

௅

௠ୀଵ

 

തܲ௡
௧ = ෍ ݊௅

ଶሺ݉ሻ
௅

௠ୀଵ

 

(5.1) 
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where ݏ௅ሺ݉ሻ and ݊௅ሺ݉ሻ are the time domain speech and noise signals of length ܮ and 

തܲ௦
௧ and തܲ௡

௧ are the power of the ݏ௅ሺ݉ሻ and ݊௅ሺ݉ሻ in time domain, respectively. Using 

these power values, the proper coefficient for the noise signal can be calculated as: 

 

ܿ௡ = ඨ
തܲ௦

௧

തܲ௡
௧ ×10ି

ௌேோ
ଵ଴  (5.2) 

where ܴܵܰ is the expected Signal to Noise Ratio after multiplying this coefficient by 

the noise signal. The final noisy speech can be created as: 

௅ሺ݉ሻݔ  = ௅ሺ݉ሻݏ + ܿ௡݊௅ሺ݉ሻ (5.3) 

Now these noisy speech signals can be used for testing the proposed algorithms.  

The next stage is to create the GMMs for the speech and different noise types. This 

procedure is discussed in section 3.4. Earlier we mentioned that we created vary large 

periodogram datasets for speech and each noise type and now using the EM algorithm 

we are going to create some GMMs on them. As discussed in section 4.1 we will use 10 

Gaussians in each GMM and hence in the EM algorithm implemented in 

gmdistribution.fit command in MATLAB, we will set 10 as the number of classes and at 

the output we will come up with 10 probabilities (1 for each Gaussian), 10 mean vectors 

and 10 covariance matrices. Since we are neglecting the cross-correlation of frequency 

components, we just use the diagonal of the covariance matrices as the variance vector 

for the calculations. In this way we can create one GMM for speech and 6 GMMs for 

the 6 different noisy types of White, Babble, Pink, Factory, HF Channel and Destroyer 

Engine.   

All the tests are performed on a PC with Intel Core i5 3.2 GHz processor and 16 GB 

RAM. We used MATLAB 2013b on 64 bit Windows 7 OS to implement the 

algorithms. 
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5.1 Performance measurement  

To measure the performance of each speech enhancement algorithm and to be able to 

compare them we need to use some criteria. In speech enhancement algorithms the 

criteria which can represent the algorithm performance are the quality and the 

intelligibility of the enhanced speech. Quality can be considered as the level of noise in 

the enhanced speech file. The less noise remaining in the enhanced speech the higher 

the quality will be. The intelligibility means how good the enhanced speech can be 

understood by a listener. The more words that could be recognized by the listener the 

more intelligible the enhanced speech is. To determine these criteria in for enhanced 

speech we can use subjective and objective methods. In subjective measurements of 

quality and intelligibility, we can use a group of human listeners to rate the outcome of 

the enhancement algorithms. In this way to measure the quality of the played speech 

they can rate it for example from very good to very bad [27]. To measure the 

intelligibility they could be asked to determine the number of recognized words in the 

played enhanced speech. Such subjective measurement methods are expensive and time 

consuming since we need a group of listeners that should be trained. To overcome these 

problems we will use objective measurement methods. In objective methods we use 

some numeric criteria to measure the quality and the intelligibility of the enhanced 

speech and hence it will be easier to compare different speech enhancement algorithms. 

Some of these objective criteria are discussed in the following sections. All these 

mentioned criteria will be calculated on both the enhanced speech and the noisy speech 

and then the difference of these two values will be considered as the improvement 

resulted from the speech enhancement algorithm.  
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 Segmental SNR 

In this criterion, we can divide the enhanced speech to some segments and in each 

segment calculate the power of noise and the power of speech. Dividing the power of 

speech to the power of noise will give the value of SNR in that segment and averaging it 

over all the segments of the enhanced speech will give the value of the segmental SNR 

[27]. Since we have access to the clean speeches that are used for the creation of the 

noisy speeches, the speech power in each segment of the noisy speech is considered as 

the power of corresponding segment from the clean speech. In this way, the power of 

noise is considered as the power of the difference of the clean speech and the enhanced 

speech. The segmental SNR can be calculated as: 

 
ܴܵܰ௦௘௚ =

10
ܮ

෍ logଵ଴ ቌ
∑ ்×ሻ௟ݐଶሺݏ

௧ୀሺ௟ିଵሻ×்ାଵ

∑ ൫ݏሺݐሻ − ሻ൯ݐሺݏ̂
ଶ௟×்

௧ୀሺ௟ିଵሻ×்ାଵ

ቍ

௅

௟ୀଵ

 (5.4) 

where ݏሺݐሻ and ̂ݏሺݐሻ are the original and the enhanced clean speeches, respectively. The 

total number of segments in these signals are ܮ and each segment is of length ܶ time 

samples. The segmental SNR is shown in dB and its higher values represents the higher 

quality of the enhanced speech.  

 Perceptual Evaluation of Speech Quality (PESQ) 

In this criterion, we have a pre-processing stage in which the input signals are 

normalized and time-aligned and in this way we can overcome the problems caused by 

delay and non-matching gains. After this stage, the signals are compared using a 

perceptually motivated distance measure. The signals are divided into frames of length 

32 ms. A bark scale filter bank with 42 bands is then applied to the power spectrum of 

each frame and hence a loudness spectrum is produced. The next stage is calculating a 

difference between the signals. The negative differences are related to the components 
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being added to the signal, like noise. Positive differences mean that the signal is 

attenuated. Using these differences between the signals, the disturbance values are 

calculated which are then used to form a single score by averaging these disturbances 

between the frames and then between the files. The overall disturbance score is then 

scaled to within the range of 1.0 and 4.5 to produce a score. The PESQ provides a good 

correlation with subjective tests. PESQ is a quantitative psycho-acoustic measure that is 

used to evaluate how the enhanced speech is appreciated. To calculate PESQ as 

explained in [14], the routine available in [81] is used. 

 BSS-Eval toolbox 

This is a toolbox to evaluate some Blind Source Separation (BSS) criteria which is 

introduced in [82]. Using these criteria we can say how good the clean speech is 

separated from the noise in the observed noisy speech. These criteria are Source to 

Distortion Ratio (SDR), Source to Interference Ratio (SIR) and Source to Artefact Ratio 

(SAR). SDR measures the amount of distortion in the output enhanced speech signal 

and is defined as the ratio of the energy of the clean signal, and the energy of the 

distortion [83]. SIR is defined as the ratio of the target enhanced clean speech power to 

the power of the interference signal and measures the amount of undesired interference 

signal still remained [83]. SAR measures the quality in terms of absence of the artificial 

noise [83]. SDR represents the overall quality of the enhanced speech while SIR and 

SAR represent the amount of noise reduction and are proportional to the inverse of the 

distortion [3]. 

5.2 Optimization MAP and simple explicit MAP 

Here we are going to implement the “explicit MAP using an optimization algorithm” as 

discussed in section 4.2 and the “simple explicit MAP” as discussed in section 4.3 and 
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measure their performance and compare them with each other. We set the parameters of 

fmincon function as ܶ݊ݑܨ݈݋ = ݊݋ܥ݈݋ܶ ,10 = 10ିଷ and ݈ܶܺ݋ = 10ିଷ which are 

calculated by trial and error. As we decrease these values, the number of iterations in 

the optimization algorithm will increase and will result in higher accuracy and hence 

higher processing time. We found that for values lower than these, the accuracy will not 

increase significantly. To analyze the performance of the simple MAP algorithm we 

compared our results with the Nonnegative Matrix Factorization (NMF) method 

discussed in [3] which has reported outstanding speech enhancement results, recently in 

which a MAP estimation of the speech periodogram has been used. To do so, we used 

the MATLAB files of the author of [3] which is available in [84] and trained it with the 

same training datasets that we used for our GMM procedure. We used all different test 

sentences of different speakers from the TIMIT dataset (192 sentences) and all the 

measured performance criteria are averaged on these 192 files. To perform experiments, 

each noisy speech file is divided into some 75% overlapping Hamming windowed 

frames of length of 256 samples which for 8kHz sampling rate is equal to 32ms. Using a 

FFT with 512 frequency samples, the Fourier transform of the noisy speech frame is 

calculated. The amplitude of all these frequency components are calculated and then 

squared to find the periodogram of noisy speech frame. Since the periodogram is 

symmetric with respect to the DC component (frequency of zero) half band plus DC 

component, totally 257 frequency components are considered as the periodogram of the 

noisy speech frame. Using the defined algorithms in sections 4.2 and 4.3, the MAP 

estimates of speech and noise periodograms presenting in the noisy speech periodogram 

frame are calculated. The appropriate Wiener filter is then constructed using these 

periodograms and multiplied by the noisy speech spectrum (Fourier transform) to 

suppress the noise. These resulted spectrums are recovered in the time-domain by using 

the inverse FFT and are put together with the neighbor overlapping frames in the same 
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order of the input noisy speech through overlap-add method. Hence the enhanced 

speech in the time domain is created. As discussed previously, we are using the MS 

method to have an initial estimate of speech and noise Periodograms and their power 

and also finding the right GMM of noise. We have also calculated all the performance 

criterions for the case that we just use the MS method as discussed in [25] for the 

estimation of noise and speech periodograms and use them in Wiener filter construction. 

This method is compared to other results as an unsupervised speech enhancement 

method versus MAP and NMF which are supervised methods.  

For each noise type (totally 6), and each input SNR (-5, 0, 5 and 10 dB), the 

performance criterions are averaged on the test files. All the criterions are averaged on 

the 6 noises and are shown with respect to the input SNRs in Figure 5.1. In terms of 

segmental SNR, PESQ and SIR improvement, the simple MAP algorithm performs 

significantly better than the NMF method and the other ones too. This means that we 

have a higher degree of enhancement with the simple MAP algorithm than the 

optimization, NMF and MS methods. But in terms of SDR improvement and SAR we 

can see that NMF method has better performance. Since we are using limited GMMs for 

speech and noise and there are 10 mixtures (Periodograms) in each GMM, the resulting 

Wiener filters for enhancement of noisy frames will definitely cancel some frequency 

components of speech or keep some frequency components of noise within them and 

hence increase the distortion in the enhanced speech which results in less SDR 

improvement and SAR for the simple MAP method rather than the NMF method.  

We also compared the two optimization MAP and simple MAP algorithms in terms of 

processing time. For input speech files of average length of 3.5 secs, the processing time 

for the optimization method was about 200 secs while it was just 1.9 secs for the simple 

MAP method and 2.5 secs for the NMF method. Hence, the optimization method is of 

no practical use for real-time applications as compared with the simple MAP technique.  
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Figure 5.1: Comparison the performance of Optimization MAP, Simple MAP, MS and 
NMF algorithms. The horizontal axis shows the input SNRs 
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In Figure 5.1 we have shown the performance of the MS algorithm which is an 

unsupervised speech enhancement method. A detailed comparison of the proposed 

Simple MAP method and the NMF algorithm in terms of Segmental SNR improvement 

and PESQ improvement can be shown in Figure 5.2 and Figure 5.3.  

 

Figure 5.2: Segmental SNR improvement comparison for different noise types and 
different input SNRs. 

 

 

Figure 5.3: PESQ improvement comparison for different noise types and different input 
SNRs. 
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It is seen from Figure 5.2, for all input SNRs and for all noise except for destroyer 

engine noise, the simple MAP method exhibits better segmental SNR improvement than 

the NMF method. Such poor performance of this algorithm for destroyer engine noise 

can be due to its high level of non-stationarity and very sharp changes of frequency 

components from one frame to another that will result in inaccurate GMM that cannot 

represent all variety of periodogram shapes. Also from Figure 5.3 we can see that 

almost for every noise with every input SNR the simple MAP exhibits higher PESQ 

improvement. The PESQ improvement level for babble noise is lower than the other 

noise types and that is due to the similarity of this noise type to speech signal which 

makes it harder to easily distinguish the utterances of the speech.  

We used the periodogram power estimates resulting from MS with our MAP estimation 

method and proposed a supervised method which attained very good enhancement 

results regardless of just using MS, which has poor performance. The MS algorithm has 

also some error in the estimation of power. In this way we tried to implement the simple 

MAP algorithm using the true power of speech and noise in the analyzing frame. Since 

we are creating the noisy observations from pure speech and pure noise files, in each 

analyzing frame we can replace തܲ௦ெௌ and തܲ௡
ெௌ in (4.20) with the real power of original 

speech and noise in that frame. The comparison of this method with the simple MAP 

method is shown in Figure 5.4. 
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Figure 5.4: Comparison of proposed Simple MAP with the one with the true power of 
speech and noise applied to it. 
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As can be seen from Figure 5.4, if we were able to correctly estimate the power of 

speech and noise in the analyzing frame, we would have significantly increased the 

segmental SNR, PESQ and SIR. This is an ideal assumption and in practical use we are 

never able to estimate the true power of speech and noise only from the noisy 

observation. This experiment can give us the idea about the improvement of simple 

MAP results by improving the used power estimation method which was the focus of 

section 4.5. In terms of the SDR and SAR criterion we can see that there will not be a 

big difference for the case of improvement of the power estimation method, which can 

justify the poor SDR improvement and SAR criteria when using the simple MAP 

method in Figure 5.1. This is due to the nature of the Wiener filter and the high degree 

of enhancement in which we may suppress some frequency components of speech while 

removing the noise components. In terms of a SIR improvement criterion we can see 

that the simple MAP has a reverse relation with the one with true power. This is because 

of the poor performance of the MS algorithm in low input SNRs where the estimated 

speech periodograms are not accurate and hence the constructed Wiener filter will 

remove most of the frequency components of the speech as well as noise. 

Some sample noisy speeches and their clean and enhanced versions using the “Simple 

MAP” method for different noise types and different input SNRs are shown in Figure 

B.1 to Figure B.6 of the Appendix. From the spectrograms in Figure B.1 to Figure B.6 

we can see that for the noisy speeches of higher input SNR, more frequency 

components can be extracted and hence we will have higher resolution in the enhanced 

speech.  

We have also performed another test in which the noisy speech is created as the sum of 

clean speech and White and Babble noises together. To do so, we just considered that 

the power of Babble and White noise in the noisy speech are equal and the different 
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input SNRs are considering the combination of White and Babble noises as a single 

noise. The enhancement results are shown in Figure 5.5. 

 

Figure 5.5: Segmental SNR improvement comparison for different input SNRs. 

 

 

Figure 5.6: PESQ improvement comparison for different input SNRs. 
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improvement and PESQ improvement between those of pure Babble and pure White 

cases. This algorithm does not care about the noise type or whether it’s GMM is 

available, and just searches among the available GMMs to find the one whose mean 

vectors are the closes to the current observed noise. In this way lack of some noise types 

GMMs will not stop the algorithm from working.   

5.3 Improved explicit MAP 

In this section the performance of the two algorithms discussed in section 4.4 as “MAP 

periodogram” from (4.22) and “MAP amplitude” from (4.27) will be measured and 

compared with the performance of the “Simple MAP” method reported in section 5.2. 

The test procedure for dividing the noisy speech to some overlapping frames, GMMs, 

filtering and reconstruction of the enhanced speech is like section 5.2 and just an 

improvement in MAP periodogram estimation is introduced. The enhancement results 

are shown in Figure 5.7. 
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Figure 5.7: Comparison the performance of Simple MAP, Periodogram MAP and 
Amplitude MAP algorithms. The horizontal axis shows the input SNRs. 
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As shown in Figure 5.7, in terms of Segmental SNR improvement, the “MAP 

amplitude” method which could be attained using equations (4.27) and (4.28) is 

showing very good results with respect the “MAP periodogram” using (4.22) or the 

“MAP simple” mentioned in [73] which was expected from the assumptions made to 

get to such a method. This really supports the idea of less residual noise in the enhanced 

speech frames, using the squared spectral amplitude of speech as the speech 

periodogram. The Segmental SNR improvement degrades for higher SNRs beyond 5dB 

since the noisy signal is already of a good quality. In terms of PESQ improvement, the 

“MAP amplitude” performs way better than the “MAP periodogram” since it does not 

have those extra frequency components (residual noise) but slightly worse than the 

“MAP simple” method since in high degree of enhancement, the cancellation of some 

speech frequency components are inevitable. In low SNRs (-5dB and 0dB) the “MAP 

amplitude” has better SDR improvement but for higher SNRs due to higher cancellation 

of speech frequency components, it results in some distortion in the enhanced signal. In 

terms of SIR improvement, “MAP amplitude” is way better than other algorithms and 

this represents very low resulted interference of this algorithm which supports its good 

SAR that shows the low resulted artefact of this algorithm. 

A more detailed comparison on the segmental SNR improvement and PESQ 

improvement for different noise types with different input SNRs are shown below: 
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Figure 5.8: Segmental SNR improvement comparison for different noise types and 
different input SNRs. 

 

 

Figure 5.9: PESQ improvement comparison for different noise types and different input 
SNRs. 
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is less than “MAP Simple” method which has already been discussed.  Some sample 

noisy speeches and their clean and enhanced versions using the “MAP Amplitude” 

method for different noise types and different input SNRs are shown in Figure B.7 to 

Figure B.12 of the Appendix. By comparing Figure B.7 to Figure B.12 to their 

corresponding figures among Figure B.1 to Figure B.6 we can see that there are more 

frequency components present in the spectrogram of the enhanced speech resulted from 

the “MAP amplitude” method than the “Simple MAP” and this means the higher 

resolution of the enhanced speech in this method and it can justify the results of Figure 

5.7.  

5.4 Power estimation using Gamma modelling 

Here we are going to analyze the performance of the power estimation method 

discussed in section 4.5. Since the Minimum Statistic (MS) algorithm is mainly used to 

estimate the power of noise in the noisy speech signal [71], the power resulted from this 

method and the Gamma method introduced in section 4.5 are compared. To do this 

comparison the following formula is used: 

 
ሺ%ሻݎ݋ݎݎܧ = 100×

1
ܯ

෍
ห തܲ௡೘ − തܲ௡೘

௘௦௧ห
തܲ௡೘

ெ

௠ୀଵ

 (5.5) 

where, ܯ is the total number of frames in a noisy file, തܲ௡೘
 is the real noise power in the 

݉-th frame and തܲ௡೘
௘௦௧ is the estimated noise power in the ݉-th frame that could be a 

result of either MS or Gamma algorithms. This comparison is shown in Figure 5.10. 
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Figure 5.10: Error resulting from the estimated noise power using Gamma and MS 
algorithms 

 

As can be seen from Figure 5.10, the error resulting from the Gamma method is smaller 

than MS method. In lower SNRs (-5dB) since the noise level is way higher than speech 

level the error difference is small but in higher SNRs that the noise is equal or smaller 

than speech power, the Gamma method exhibits much less error.  

The Gamma power estimation method replaced the MS power estimation method in 

speech enhancement method introduced in section 4.3 and [73], and applied on the same 

noisy speech files using the same GMMs of speech and noises. All the performance 
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using MS algorithm and also the case in which the true power was used in the 

enhancement procedure. These comparisons are shown in Figure 5.11. 
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Figure 5.11: Comparison of the performance of speech enhancement algorithms in [73] 
using Gamma and MS power estimation and also true power. The horizontal axis shows 

the input SNRs. 
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As can be seen from Figure 5.11, in terms of all enhancement criterions almost in all 

input SNRs, the Gamma noise estimation exhibits better performance than the MS 

algorithm. This performance is still less than the one attained using the true power 

which is the ideal situation and is shown in Figure 5.4, but is still an improvement to the 

existing noise estimation methods.  

The two power estimation algorithms are also compared while being used for 

enhancement from a processing time point of view. For input speech files of average 

length of 3.5 Sec, the processing time for the enhancement algorithm using MS noise 

estimation was 1.9 sec while it is just 0.75 sec for the one using Gamma power 

estimation. This difference is due to large amount of calculation used in the 

implementation of MS as in [71], resulting from the periodogram smoothing procedure 

while in the Gamma method the power can be calculated very straightforwardly using 

the model parameters. In the simple MAP method using the MS algorithm during the 

analysis of each frame, the enhanced version of that frame can be attained at the same 

time (before getting to the next frame) which makes it applicable for online 

applications. In the simple MAP using the Gamma method, a proper amount of noisy 

frames should be captured to extract the proper model parameters and this property 

makes it offline. But if both algorithms are to be used to enhance a recorded noisy 

speech, the Gamma power estimation algorithm will work much faster than the MS 

algorithm. 

A detailed comparison of the segmental SNR and PESQ improvement for the two 

Minimum Statistics and Gamma power estimation methods are shown below: 
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Figure 5.12: Segmental SNR improvement comparison for different noise types and 
different input SNRs. 

 

 

Figure 5.13: PESQ improvement comparison for different noise types and different input 
SNRs. 
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5.5 Improved Wiener filter 

In this section we use the same speech and noise periodogram estimates resulted from 

the method introduced in section 4.3 in the new Wiener filter formula introduced in 

section 4.6 and compare the resulted enhancement criteria with those ones of the classic 

Wiener filter which used before.  

As can be seem from Figure 5.14 for all input SNRs the PESQ improvement in the 

improved Wiener is slightly higher than the normal Wiener. Since in this method the 

filter has adaptive attenuation for different frames, more attenuation for frames with 

more noise and vice versa, it will be easier to distinguish between different types of 

speech utterances and this will result in higher intelligibility and hence slightly higher 

PESQ improvement. In terms of Segmental SNR, SDR and SIR improvement, the 

improved Wiener performs better than the normal Wiener for lower input SNRs (0dB 

and -5dB). This is exactly expected as in these low input SNRs, the speech is mostly 

masked by the noise and hence such improved Wiener filter can become of very high 

performance. For higher input SNRs, since speech is the dominant part of the noisy 

frame, it is always possible that the lower activity of the speech being treated as noise 

and hence the corresponding frequency components being removed in the enhanced 

speech. This will result in less Segmental SNR, SDR and SIR improvement as can be 

seen in Figure 5.14. Since we are treating different frames with different attenuation, 

this will slightly affect the original power of the frames and hence generating an artifact 

in the enhanced speech which results in lower SAR for the improved Wiener with 

respect to the normal Wiener. Totally for lower input SNRs, which is mostly the focus 

of speech enhancement methods, the improved Wiener has an outstanding performance 

over the normal Wiener.  
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Figure 5.14: Comparison of the performance of normal Wiener and improved Wiener  
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A detailed comparison of the segmental SNR and PESQ improvement for the two 

Wiener methods are shown below:  

 

Figure 5.15: Segmental SNR improvement comparison for different noise types and 
different input SNRs. 

 

 

Figure 5.16: PESQ improvement comparison for different noise types and different input 
SNRs. 
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segmental SNR improvement than the normal Wiener. From Figure 5.16, we can see 

that for most noises except for White noise and almost for all input SNRs, the PESQ 

improvement in improved Wiener is slightly higher than the normal Wiener. The reason 

for the poor performance of the algorithm for the White noise is the presence of the 

noise frequency components in almost all frequencies that treating different frames with 

different attenuation cannot remove it.  

5.6 Summary  

All the introduced methods of chapter 4 are analyzed and compared in terms of 

enhancement performance using intelligibility and quality criteria. The mentioned 

criteria are measured on the noisy speech and enhanced speech and the differences are 

reported as the improvement of these criteria. They are averaged over a large number of 

files for each noise type and different input SNR to come up with universal performance 

measures.  



120 
 

6 Conclusion and future work  

A new GMM has been introduced in which the normalized periodograms of each signal 

type, both speech and different noises are treated as a vector in a 257 dimensional vector 

space. The periodograms which have similar shapes form a colony in the 257 

dimensional vector space and hence the GMM can relate the probability of each colony 

(PDF of the distribution) to the mean vector and covariance matrix of each colony.  

A new method for MAP estimation of the speech periodogram from the observed noisy 

speech has been introduced in which a MAP criterion is calculated using the PDFs of 

clean speech and noise based on the mentioned GMMs. This method uses a series of 

approximations on MAP formula to make it simple enough to implement. Some 

improvements on these approximations are then introduced which led to more accurate 

MAP estimates of speech periodogram.  

Experiments showed that the accuracy of MAP periodogram estimates is really 

dependent to the accurate estimation of the speech and noise power within a noisy 

speech frame. In an earlier MAP estimation method we used Minimum Statistics (for 

power estimation) which was of low accuracy. We introduced a new power estimation 

method in which a MAP criterion is used on Gamma models of speech and noise power. 

These Gamma models were created offline. This power estimation replaced the MS 

method used in the MAP method discussed previously and exhibited better speech 

enhancement result.  

All the estimated speech and noise periodograms via all the introduced novel methods 

are used to construct a Wiener filter to enhance the noisy speech frames. In the classic 

Wiener filter formula, the noisy speech periodogram is considered as the sum of clean 



121 
 

speech periodogram and noise periodogram. Since the estimated speech and noise 

periodograms are not accurate, this consideration can lead to some residual noise in the 

enhanced speech. Hence, we introduced a new variable in the denominator of the 

Wiener filter to suppress the errors resulted from the inaccuracy of periodogram 

estimation methods. This new Wiener filter formula exhibited relatively better 

enhancement results with respect to its classic version. 

The MAP estimation method discussed in section 4.3 was considered as the reference of 

the comparison of the other introduced enhancement methods such as improved explicit 

MAP in section 4.4, Gamma power estimation in section 4.5 and an improved Wiener 

filter in section 4.6. In this way we could observe the effect of the new introduced 

methods or the improvements applied on the previous algorithms in terms of 

enhancement performance.   

As a future work the simultaneous use of all the mentioned algorithms can be 

considered to benefit from the introduced improvements of all of them together. 

In the experiments we discussed the use of the enhancement algorithms on noisy speech 

containing just one noise type. We have also done a test in which a combination of 

Babble and White noises with the same power are considered as the noise but in the 

MAP estimation part the combination of speech PDF and one noise PDF is considered. 

The presence of multiple noises in the noisy speech can highly affect the performance of 

the mentioned algorithms. In the case of having for example two noises with almost the 

same power, the MAP estimation can use the speech GMM with the noise GMM that 

contains the closest mean vectors (centroid periodograms) to the periodogram of the 

sum of the two noise types. In this case the performance will definitely degrade from the 

case of one noise but still we can perform the enhancement procedure for the noisy 

speech. Such case can happen when we are dealing with a noise type whose model does 

not exist in our collection of noise GMMs. Furthermore the GMM that exhibits 
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periodograms (mean vectors) that are the closest to the periodogram of the new noise 

type will be used. This is the strong point of the mentioned MAP algorithm in which the 

lack of some models will not stop the algorithm from enhancing the noisy file although 

adding more GMMs of a variety of environmental noise will result in better 

performance of the algorithm.  

Most of the discussed algorithms were implemented in a manner to be of low 

mathematical complexity and hence of use in real-time and online speech enhancement. 

The processing times for the introduced algorithms are reported in the test sections.  

A method introduced in which we can come up with a reasonable number of Gaussians 

for the GMMs which is just a smart guess and is not accurate. Further work can be done 

on coming up with more accurate criteria while modelling high dimensional spaces. For 

high dimensional spaces in some dimensions the two different Gaussian might look 

quite similar and hence it will be critical to distinguish between them. The 

dimensionality of the space can be reduced using Mel frequency analysis and for 

example the 257 dimensional vector space can be mapped to a 12 dimensional space 

and in this way it will be easier to distinguish between the two Gaussians and to come 

up with a more optimum number of Gaussians for the model.  

Another improvement on the introduced methods will be considering a case when we 

show a noisy speech as the sum of clean speech and two or more noises (with different 

levels). In this way we can have more variety of noise GMMs with respect to the single 

noise case (since the combination of GMMs can create a new GMM which can 

represent a new noise type). To have better estimations, we can incorporate more than 

one noise PDF in the MAP criterion and this can become really complicated 

mathematically and hence we should incorporate proper simplifications to make it 

possible to implement. This method can lead to more accurate periodogram estimates 

for speech and noise.  
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We can also come up with other variations of parametric Wiener filters in which a 

power is applied to the numerator and denominator. We can also use the estimated 

periodograms with other enhancement methods such as spectral subtraction and etc. to 

find the optimum one in terms of the quality and intelligibility of the resulted enhanced 

speech.  

Some more work can also be done on replacing the used MAP criteria on the PDFs of 

speech and noise periodograms with some other Bayesian criteria such as ML or MMSE 

to find the most accurate estimates of the clean speech periodogram.  

We have always used the periodogram as the feature to be estimated and enhanced. We 

can also concentrate on other features of speech and noise signals such as spectral 

amplitude, LPC and so on. The GMMs can be created upon these new features and then 

be used to estimate those of clean speech and noise through the corresponding feature 

observed from the noisy speech. 

It has always been considered that human ears are not sensitive to the speech phase and 

hence the enhanced spectral amplitude was combined with the phase of noisy speech 

and reconstructed as the enhanced speech. We can do some research on phase 

enhancement and its effect on the quality and intelligibility of the enhanced speech.  
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A. Appendix A 

All the multiplications and divisions in the mentioned equations are element-wise. In 

this way for two vectors as: 

ࡿ = ܵሺ߱ሻ = {ܵ଴, ܵଶ, … , ܵஐ}  , ߱ ∈ ሾ0, Ωሿ 

ࡺ = ܰሺ߱ሻ = { ଴ܰ, ଶܰ, … , ஐܰ}  , ߱ ∈ ሾ0, Ωሿ 

For the element-wise multiplication of these vectors we have: 

ࡺࡿ = ܵሺ߱ሻܰሺ߱ሻ = {ܵ଴ ଴ܰ, ܵଵ ଵܰ, … , ܵஐ ஐܰ} 

For the element-wise division of these vectors we have: 

ࡿ
ࡺ

=
ܵሺ߱ሻ

ܰሺ߱ሻ
= ൜

ܵ଴

଴ܰ
,

ܵଵ

ଵܰ
, … ,

ܵஐ

ஐܰ
ൠ 



125 
 

B. Appendix B 

Some sample noisy speeches and their clean and enhanced versions using the “Simple 

MAP” method for different noise types and different input SNRs are shown in Figure 

B.1 to Figure B.6. 

Some sample noisy speeches and their clean and enhanced versions using the “MAP 

Amplitude” method for different noise types and different input SNRs are shown in 

Figure B.7 to Figure B.12. 
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Figure B.1: Noisy speech with White noise and the input SNR of -5dB 
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Figure B.2: Noisy speech with White noise and the input SNR of 0dB 
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Figure B.3: Noisy speech with White noise and the input SNR of 5dB 
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Figure B.4: Noisy speech with Babble noise and the input SNR of -5dB 
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Figure B.5: Noisy speech with Babble noise and the input SNR of 0dB 
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Figure B.6: Noisy speech with Babble noise and the input SNR of 5dB 
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Figure B.7: Noisy speech with White noise and the input SNR of -5dB 
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Figure B.8: Noisy speech with White noise and the input SNR of 0dB 
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Figure B.9: Noisy speech with White noise and the input SNR of 5dB 
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Figure B.10: Noisy speech with Babble noise and the input SNR of -5dB 
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Figure B.11: Noisy speech with Babble noise and the input SNR of 0dB 
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Figure B.12: Noisy speech with Babble noise and the input SNR of 5dB 
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