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Schematics

irregular seabed 

h

x

z

φ ∝ cosh k(z + h)
cosh kh

ei kx

z = −h + b(x)



Background

1. Linear PDEs and boundary conditions

2. Multi-scale expansion: slow variables

3. Attenuation of waves by randomly irregular seabed

4. Ensemble-average and realization-dependent solutions

5. Finding the above within the linear wave theory



Mathematics of waves over irregular seabed

Linear time-harmonic waves in incompressible fluid
I φ(x , z) : velocity potential of water

I ω2

g φ = ∂zφ : free surface condition

(∂2
x + ∂2

z )φ = 0 for −h + b(x) < z < 0
(g∂z − ω2)φ = 0 for z = 0

∂nφ = 0 for z = −h + b(x)



Scaling regime

Scaling regime based on wavenumber k and small ε

1. The seabed shape given by smooth random process b(x)
2. kh = O(1) and klg = O(1), lg is the correlation length of b(x)
3. lg/h = O(1), the seabed shape b(x) = O(ε), the slope of the

seabed b′(x) = O(ε)



Realizations of seabed

Stationary process

b(x) = σ

√
2
M

M∑
m=1

cos (Amx + Bm)

Am and Bm are random variables that are determined by the
prescribed probability density and auto-correlation functions.

I PDF : b(x) has the same normal distribution at any x
I Auto-correlation : Gaussian function
I Correlation/characteristic length lg is the standard deviation

(width) of the auto-correlation function



Other examples of b(x)

I Step-functions : series of random numbers

I Deterministic deviation from a periodic function: sin (x + εg(x))

In both cases, diffusion of a pulse over the seabed has been
observed.



Multi-scale expansion

Introduction of slow variables

x0 = x , x1 = εx , x2 = ε2x , ....

Perturbation method

φ = φ0 + εφ1 + ε2φ2 + · · ·

∂x = ∂x0 + ε∂x1 + ε2∂x2 + · · ·

Approximation of the seabed condition

∂nφ(x ,−h + b(x)) = ∂zφ− b′∂xφ = 0

φz + bφzz +
b2

2
φzzz = b′

{
φx + bφxz +

b2

2
φxzz

}



Attenuation in the leading order wave

Slow-attenuating wave
φ0 satisfies the homogeneous BVP w.r.t. the fast variable x0.

φ0(x0, x1, x2) =
i gA(x1, x2)

ω2
cosh k(z + h)

cosh kh
ei kx0

where k is the real root of the dispersion equation

gk tanh kh = ω2

It turns out A(x2)
A(x2) ∼ exp (−βi + iβr )x2

Exponentially decaying w.r.t. the slow variable x2.



Expression of φ1

Seabed condition for φ1

∂zφ1 = ∂x0 (b(x0)∂x0φ0) , for z = −h

Expression of φ1

φ1 =

∫ ∞
−∞

∂x ′(b(x ′)∂x ′φ0)G(|x − x ′| ,−h)dx ′

G(|x − x ′| ,−h) is a Green’s function for the Laplace equation with the
seabed condition ∂zG = δ(x − x ′) at z = −h.



Green’s function

Green’s function for the BVP of φ1

G(ξ,−h) =
iω2ei k|ξ|

ω2kh + gk sinh2 kh
−
∞∑

n=1

iω2ei kn|ξ|

ω2knh + gk sin2 knh

where {i kn} are the imaginary roots of the dispersion equation.



Expression of φ2

Deriving the equation for A(x1, x2)
The ensemble average/coherent 〈·〉 part of the equation for φ2

(∂2
x0
+ ∂2

z )〈φ2〉 = 2 i k∂x2φ0 for −h < z < 0
(g∂z − ω2)〈φ2〉 = 0 for z = 0

∂z〈φ2〉 = 〈∂x0 (b(x0)∂x0φ1)〉 for z = −h

〈φ2〉 is expressed using the same G(|x − x ′| ,−h). Then φ0 and φ1
are used to derive the equation for A(x2) w.r.t. the slow variable x2

Cg
∂A
∂x2

=
i(βr + iβi)

2 cosh kh
A(x2)



Attenuation amplitude

Attenuation in the slow variable regime

A(x2) = A(0)exp
[
(−βi + iβr )x2/Cg

]
Attenuation parameters

Qatt = βi Attenuation rate

Lloc =
Cg

ε2βi
Localization length

Attenuation happens at ε−2 order, and is sensitive to the range of
parameters.



Numerical results
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Summary

1. Linear wave equations can lead to attenuation in the ensemble
average sense

2. The random seabed is simulated using harmonic random
process satisfying the conditions of multi-scale expansion

3. There is a big discrepancy between the ensemble average
solution and the realization dependent solution for weakly
random seabed
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