Attenuation of ocean waves due to random perturbations in the seabed profile

Hyuck Chung, Luke Bennetts, Malte Peter

School of Computer & Mathematical Sciences, Auckland U. of Tech. School of Mathematical Sciences, Univ. of Adelaide Institute for Mathematics, Univ. of Augsburg

KOZWAVES 2014 - Newcastle

Outline

Introduction

Method of solution

Numerical results

Summary

Schematics

Background

- 1. Linear PDEs and boundary conditions
- 2. Multi-scale expansion: slow variables
- 3. Attenuation of waves by randomly irregular seabed
- 4. Ensemble-average and realization-dependent solutions
- 5. Finding the above within the linear wave theory

Mathematics of waves over irregular seabed

Linear time-harmonic waves in incompressible fluid

- $\phi(x, z)$: velocity potential of water
- $\frac{\omega^2}{g}\phi = \partial_z \phi$: free surface condition

$$(\partial_x^2 + \partial_z^2)\phi = 0$$
 for $-h + b(x) < z < 0$
 $(g\partial_z - \omega^2)\phi = 0$ for $z = 0$
 $\partial_n\phi = 0$ for $z = -h + b(x)$

Scaling regime based on wavenumber k and small ε

- 1. The seabed shape given by smooth random process b(x)
- 2. kh = O(1) and $kl_g = O(1)$, l_g is the correlation length of b(x)
- 3. $l_g/h = O(1)$, the seabed shape $b(x) = O(\varepsilon)$, the slope of the seabed $b'(x) = O(\varepsilon)$

Realizations of seabed

Stationary process

$$b(x) = \sigma \sqrt{\frac{2}{M}} \sum_{m=1}^{M} \cos\left(A_m x + B_m\right)$$

 A_m and B_m are random variables that are determined by the prescribed probability density and auto-correlation functions.

- PDF : b(x) has the same normal distribution at any x
- Auto-correlation : Gaussian function
- Correlation/characteristic length *l_g* is the standard deviation (width) of the auto-correlation function

Other examples of b(x)

Step-functions : series of random numbers

• Deterministic deviation from a periodic function: $sin(x + \varepsilon g(x))$

In both cases, diffusion of a pulse over the seabed has been observed.

Multi-scale expansion

Introduction of slow variables

$$x_0 = x, x_1 = \varepsilon x, x_2 = \varepsilon^2 x, \dots$$

Perturbation method

$$\phi = \phi_0 + \varepsilon \phi_1 + \varepsilon^2 \phi_2 + \cdots$$
$$\partial_x = \partial_{x_0} + \varepsilon \partial_{x_1} + \varepsilon^2 \partial_{x_2} + \cdots$$

Approximation of the seabed condition

$$\partial_n \phi(x, -h + b(x)) = \partial_z \phi - b' \partial_x \phi = 0$$

 $\phi_z + b \phi_{zz} + \frac{b^2}{2} \phi_{zzz} = b' \left\{ \phi_x + b \phi_{xz} + \frac{b^2}{2} \phi_{xzz} \right\}$

Attenuation in the leading order wave

Slow-attenuating wave

 ϕ_0 satisfies the homogeneous BVP w.r.t. the fast variable x_0 .

$$\phi_0(x_0, x_1, x_2) = \frac{\mathrm{i}\,gA(x_1, x_2)}{\omega^2} \frac{\cosh k(z+h)}{\cosh kh} e^{\mathrm{i}\,kx_0}$$

where k is the real root of the dispersion equation

 $gk \tanh kh = \omega^2$

It turns out $A(x_2)$

$$A(x_2) \sim \exp(-\beta_i + i\beta_r)x_2$$

Exponentially decaying w.r.t. the slow variable x_2 .

Expression of ϕ_1

Seabed condition for ϕ_1

$$\partial_z \phi_1 = \partial_{x_0} \left(b(x_0) \partial_{x_0} \phi_0 \right), \quad \text{for } z = -h$$

Expression of ϕ_1

$$\phi_1 = \int_{-\infty}^{\infty} \partial_{x'}(b(x')\partial_{x'}\phi_0)G(|x-x'|,-h)\,dx'$$

G(|x - x'|, -h) is a Green's function for the Laplace equation with the seabed condition $\partial_z G = \delta(x - x')$ at z = -h.

Green's function for the BVP of ϕ_1

$$G(\xi, -h) = \frac{\mathrm{i}\,\omega^2 e^{\mathrm{i}\,k|\xi|}}{\omega^2 kh + gk\sinh^2 kh} - \sum_{n=1}^{\infty} \frac{\mathrm{i}\,\omega^2 e^{\mathrm{i}\,k_n|\xi|}}{\omega^2 k_n h + gk\sin^2 k_n h}$$

where $\{i k_n\}$ are the imaginary roots of the dispersion equation.

Expression of ϕ_2

Deriving the equation for $A(x_1, x_2)$

The ensemble average/coherent $\langle \cdot \rangle$ part of the equation for ϕ_2

$$\begin{array}{ll} (\partial_{x_0}^2 + \partial_z^2)\langle\phi_2\rangle = 2\,\mathrm{i}\,k\partial_{x_2}\phi_0 & \text{for} & -h < z < 0\\ (g\partial_z - \omega^2)\langle\phi_2\rangle = 0 & \text{for} & z = 0\\ \partial_z\langle\phi_2\rangle = \langle\partial_{x_0}\,(b(x_0)\partial_{x_0}\phi_1)\rangle & \text{for} & z = -h \end{array}$$

 $\langle \phi_2 \rangle$ is expressed using the same G(|x - x'|, -h). Then ϕ_0 and ϕ_1 are used to derive the equation for $A(x_2)$ w.r.t. the slow variable x_2

$$C_g \frac{\partial A}{\partial x_2} = \frac{\mathrm{i}(\beta_r + \mathrm{i}\,\beta_i)}{2\cosh kh} A(x_2)$$

Attenuation amplitude

Attenuation in the slow variable regime

$$A(x_2) = A(0) \exp\left[(-\beta_i + i\beta_r)x_2/C_g\right]$$

Attenuation parameters

Attenuation happens at ε^{-2} order, and is sensitive to the range of parameters.

AUT COMPUTER + MATHEMATICAL SCIENCES

▶ Short *l_g*: M-Scale method ~ realization dependent

AUT COMPUTER + MATHEMATICAL SCIENCES

Summary

- 1. Linear wave equations can lead to attenuation in the ensemble average sense
- 2. The random seabed is simulated using harmonic random process satisfying the conditions of multi-scale expansion
- There is a big discrepancy between the ensemble average solution and the realization dependent solution for weakly random seabed

