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The dynamics of thin elastic plates have been studied using various theoretical and experimen-
tal methods. In the context of acoustics, the primary interest is in the sound propagation from
one side of the plate to the other. This paper shows how to compute the vibration of rectangular
single- and double-plates that have inhomogeneous material properties. One of the inhomo-
geneities is the elasticity modulus of the plates, which is continuously and smoothly varying
over the plates. The elasticity modulus is simulated as a random function with a pre-assigned
probability density at any given position on the plate and power spectral density over the plate.
The method of simulating such random functions is adopted from the theories of signal pro-
cessing. In the case of the double-plate, the inhomogeneities in the junctions between the plate
and the reinforcement beams are also considered. The behaviour of the plates is numerically
analysed using the root-mean-square velocity and the transmission loss factor. The vibration
field of the plates is represented using the Fourier series by taking advantage of the rectangular
shape. Furthermore the random functions are represented by the series of cosine functions
with random phases, wavelengths and amplitudes. As a result, the computation of the solution
does not require discretization of the object, and thus the computational cost is low compare to
typical finite element methods. Effects of the random inhomogeneities are compared to those
of the deterministic inhomogeneities. Several probability density functions for the elasticity
are also tried. In addition to numerical simulations, theoretical studies on the single-plate are
presented using the analytical formulas for the Fourier coefficients.

1. Introduction

This paper shows how to compute vibrations of rectangular elastic plates with random inho-
mogeneous parameters. The elastic plates here include a single plate with various random stiffness
distributions and a double-leaf plate (DLP) with irregular junctions between the plates and the rein-
forcement beams. Figures 1 and 2 show simple depictions of the plates studied in this paper. Numeri-
cal simulations will be used to study the variations of the fundamental frequencies of the single-plate
when the plate has different kinds of random rigidity. The DLP will be studied using the same ran-
domness in addition to the randomness in the junctions. The displacement of the two plates will be
computed, and then the transmission loss between the two plates will be studied.

Some elastic plates with random material properties such as rigidity or density may be studied
using the theory of random matrices. Though, the random matrix theory can be rather technical
and it usually deals with distributions of whole eigenvalues of very large matrices. In this paper the
stiffness matrices are small because of the finite size and the simple rectangular shape of the plates.
Figure 1 shows an example of discrete random rigidity distributed over the grid on the plate. The
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rigidity Dpq is a random variable with some probability density function (PDF). It is simple to run
numerical experiments to confirm that the eigenvalues or the fundamental frequencies are normally
distributed whenDpq has either a uniformly and a normally distributed PDF. However the distribution
of fundamental frequencies behaves differently when the rigidity varies smoothly over the plate with
smooth power spectral density.
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Figure 1. Depiction of the randomly distributed rigidity.

The number of components in a DLP (see Fig. 2), which have to be connected in some ways,
makes it difficult to construct mathematical models of DLPs. Although DLPs are theoretically dif-
ficult to deal with, they are attractive in real-life. DLPs have high strength-to-weight ratio, and are
used in many lightweight constructions. A difficulty of modelling a DLP is that components interact
in complex and unpredictable ways. There are various methods of joining the two component, such
as nails and glue, which are difficult to represent mathematically. An often used modelling method is
the finite element method (FEM), which requires detailed descriptions of the junction between a plate
and a beam, e.g., nail’s reacts to forces and affects the surrounding material.

In this paper the displacement of the plates is found using the Fourier expansion of the solution,
which is possible here because of the rectangular shape of the DLP. The Fourier expansion method
requires less computation than FEM. Furthermore the conditions at the junctions, which must be func-
tions of spatial variable(s), can be included in the variational formulation as the Fourier expansion.
The reduction of computation time leads to faster Monte-Carlo simulations. It may be computation-
ally impossible to use the FEM to perform 1000s of Monte-Carlo simulations over wide frequency
range without a super computer. Whereas all results shown here are produced using MatLab on an
average desktop PC.

2. Methods of solution

2.1 Single plate and DLP

The method of solutions comes directly from Hamilton’s principle for elastic plates (see [4]),
which states that when there is an external force that causes the plate to vibrate the total energy
(Lagrangian) of the plate satisfies the following equation for the first variation of the time integral of
the Lagrangian.

δ(1)
∫ t2

t1

(T − V − U) dt = 0 (1)

where T , V are the kinetic and strain energies and U is the work done to the plate by the external force.
For simplicity the simple harmonic oscillation of a thin plate is considered here. Thus the solution or
the vertical displacement of the mid-plane of the plate is given by the real function Re

[
w(x, y)eiωt

]
,

where ω = 2πα is the radial frequency for the frequency α in Hz. Then mathematical formulations
can be simplified for the function w(x, y) for (x, y) ∈ [0, A] × [0, B] because of the linearity of the
thin-plate theory, and the integral over time in Eq. (1) is unnecessary.

ICSV20, Bangkok, Thailand, July 7–11, 2013 2



The strain energy and kinetic energy of a plate with non-moving boundaries are

V =
1

2

∫ A

0

∫ B

0

D(x, y)
∣∣∇2w(x, y)

∣∣2 dxdy, T =
ρhω2

2

∫ A

0

∫ B

0

|w(x, y)|2 dxdy (2)

where D(x, y) = E(x, y)h3/ (12 (1− ν2)) is the flexural rigidity, and h, E, and ν are the plate
thickness, Young’s modulus and Poisson’s ratio, respectively. Note that the effects of rotation are
neglected in T . The work done to the plate is given by the following integral when the external force
is distributed over the plate by the function p(x, y).

U =

∫ A

0

∫ B

0

p(x, y)w(x, y) dxdy (3)

An additional plate joined by parallel reinforcement beams can be included in the modelling
using the same variational formulation. The additional components’ strain and kinetic energies can
be included in the integral form in Eq. 2. The displacements of the top and the bottom plates are
denoted by w1(x, y) and w3(x, y), respectively. The displacements of the beams are denoted by
w2(x, j), where j = 1, 2, ..., S indicates jth beam located at y = yj . Note that the beams here are
assumed to be always in contact with the plates. It is possible to add more degrees of freedom to
the beams as shown in [1], though we consider only the lateral slippage between the plates and the
beams. The Kinetic and the strain energies of the plates have the same formulas as Eq. 2 for w3.

x

y

y

x

Figure 2. Depiction of double-plate model.

The beams will be modelled using the Euler beam theory. Thus the strain and kinetic energy
contributions from the beams are

V2 =
1

2

S∑
j=1

∫ A

0

D2 |w′′2(x, j)|2 dx, T2 =
ρ2h2ω

2

2

S∑
j=1

∫ A

0

|w2(x, j)|2 dx (4)

where D2 is the rigidity of the beam and ρ2 and h2 are the mass density per unit length and the
thickness of the beam, respectively. Note that the primes on w2 indicate the second derivative with
respect to x. HereD2 is assumed to constant and calculated using the formulaD2 = E2h

3
2l/12, where

E2, h2 and l are the Young’s modulus, vertical depth and horizontal width of the beam. All beams are
assumed to be identical. We assume that the plates and the beams are in constant contact, and thus
we the conditions w1(x, yj) = w2(x, j) = w3(x, yj).

The energy contribution from the junctions is given by

P1,2 =
1

2

S∑
j=1

∫ A

0

σ (x, j) |h1w′1 (x, yj) + h2w
′
2 (x, j)|2 dx (5)

where σ is the Hooke’s constants (though it is a function of x) for resistance for the slippage at the
junction. The contribution from the beams and the bottom plate have the same formula except that
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the notation is P2,3 with the displacement functions w2 and w3. Finally the modified variational form
from Eq. 1 is then given by

δ(1) [T + P1,2 + P2,3 − V − U ] = 0 (6)

Now the terms T and V are the sum of all kinetic and strain energies of the plates and the beams.

2.2 The Fourier series solution

We now have to find the solution of Eq. 6 using the Fourier expansion method. The displacement
of the top plate and the beams, which are simply supported, can be expressed by

w1(x, y) =
N∑

m,n,=1

C(1)
mnφm(x)ψn(y), w2(x, j) =

N∑
m=1

C
(2)
mjφm(x) j = 1, 2, ..., S. (7)

The basis functions are φm(x) =
√

2/A sin kmx and ψn(y) =
√

2/B sinκny. The series for the
bottom plate w3 is same as the series for w1 except the sub- and super-scripts are changed from 1
to 3. The wavenumbers are given by km = πm/A and κn = πn/B. Note that the basis functions
are orthonormal. The positions of the beams are given by y = yj , j = 1, 2, ..., S. We can derive
the equations for the coefficients by substituting the series expansions into Eqs. 2, 4, 5 and then into
Eq. 6. Note that the number of terms in the series has already been truncated to N to construct the
finite system for the numerical computation.

The integrals can be expressed using the column vectors of the coefficients, denoted by c1, c2
and c3 or simply denoted by the column vector c = (c1, c2, c3). The variational formulation then
becomes

δ(1)
{

1

2
ctLc− ptc

}
= 0 (8)

where L is the matrix from the integrals and p is the vector of the external forcing and the super-script
t indicates the vector transpose. The elements of p are given by the integral in Eq. 3,∫ A

0

∫ B

0

p(x, y)φm(x)ψn(y) dxdy, m, n = 1, 2, ..., N (9)

with zero padding for the parts corresponding to c2 and c3 and thus the bottom N2 +N ×S elements
are zero. In the numerical computations, the forcing will be set to be a point forcing, that is, p(x, y) =
δ(x−x0, y−y0) for some fixed point (x0, y0), and thus the integrals are unnecessary. The coefficients
are then found by solving the normal equation of Eq. 8,

Lc = p (10)

Substituting the Fourier series expansion for the displacements w1 and w2 into Eq. 5 gives

P1,2 =
1

2

S∑
j=1

N∑
m,n,

m′,n′=1

h21C
(1)
mnC

(1)∗
m′n′ψn(yj)ψn′(yj)Jmm′ +

1

2

S∑
j=1

N∑
m,m′=1

h22C
(2)
mjC

(2)∗
m′j Jmm′

+ Re
S∑
j=1

N∑
m,m′,n=1

h1h2C
(1)
mnC

(2)∗
m′j ψn(yj)Jmm′ (11)

where Jmm′ = kmkm′
∫ A
0
σ(x, j)ϕm(x)ϕm′(x) dx and ϕm(x) =

√
2/A cos kmx and ∗ indicates the

complex conjugate. The above integrals and summations can be rewritten using the vectors c1 and c2
and a matrix denoted by Lσ,

P1,2 =
1

2

(
c1
c1

)t

Lσ

(
c1
c1

)
(12)

The matrix Lσ can be included as a part of the matrix L in Eq. 8.
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3. Numerical computation of solutions

3.1 Simulation of irregularities based on power spectral density

We start with the simple discrete case when the plate is divided into grids as shown in Fig. 1
with a constant rigidity {Dpq}p=1,...,P,q=1,...,Q, assigned for each grid. These sets of random numbers
are assumed to be independent and have an identical PDF. The smooth functions for the rigidity and
the slippage are also tested. In other words, the rigidity D(x, y) in Eq. 2 can be rewritten to have a
constant part and a zeros-mean random part. We then have D(x, y) = D + d(x, y), where D is the
average rigidity and d(x, y) is the random deviation. The slippage resistance function can also be
expressed with the average and random deviation parts, σ(x, j) = σ + S(x). Note that the index j
is omitted because the resistance for all beams will be randomized in the same way. These functions
must be simulated with some PDF and PSD. A parameter function with any PDF can be simulated
using the method given in [3]. However here only the Gaussian density function will used.

We assume that S(x) has the probability p(S ≤ s) and the PDF pS(s) at any x ∈ [0, A]. The
PDF pS(s) is assumed to be identical for any x. In other words S(x) is a stationary process. It is
further assumed that S(x) can be expressed by

S(x) =

√
2

M

M∑
i=1

Qi cos (2πFix/A+ Φi) (13)

where Qi, Fi, and Φi are the random variables with some probability densities. Here M needs to be
sufficiently large, and is set to 100. The above series makes the mean of S(x) zero for all x ∈ [0, A].

The amplitudes {Qi} are assumed to be independent and identically distributed (i.i.d) random
variable with PDF denoted by pQ(q) for q > 0. The phases {Φi} are also assumed to be i.i.d and their
PDF is given by the uniform distribution in [−π, π]. The frequencies {Fi} are i.i.d with the marginal
first order continuous PDF denoted by pF (f) for 0 ≤ f ≤ V/2. The PDF of Fi and the PSD of S(x)
denoted by PS(f) are related by the formula

pF (|f |) =
2

E [Q2]
PS(f), −V/2 ≤ f ≤ V/2 (14)

where V is some large enough value so that PS(f) is nearly zero outside of the range [−V/2, V/2].
Setting the variance of S to be ν2 gives E [Q2] = ν2. The PSD function PS(f) here is chosen to be
simple bell shaped. An example is shown in Fig. 3(left). It is simple to vary the shape of the PSD,
though the number of peaks did not affect the behaviour of the plates. The PDF of Qi is given by
pQ(q) = 2q/ν2 exp (−q2/ν2). This is a Rayleigh PDF, which can be simulated from the two Gaussian
random variables. For example, when the variance is ν2 = 2, then the amplitudes are simulated by
U1 ∼ N (0, 1) and U2 ∼ N (0, 1), then Q ∼

√
U2
1 + U2

2 . The standard deviation of the distribution
will be set to be 10% of σ.

The random rigidity function d(x, y) can be similarly simulated using the expansion

d(x, y) =
2

M

M∑
i,j=1

Qij cos (2πFix/A+ Φi) cos (2πGjy/B + Ψj) (15)

where the coefficients {Qij} are random variables with the Rayleigh distribution. In the numerical
simulations, the standard deviation of the rigidity of the plates d1(x, y) and d3(x, y) will be set to be
10% of the average stiffness of the plates in the following section.
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Figure 3. Examples of PSDs for the 1 and 2 dimensional random functions

3.2 Eigenvalue analysis

The number of terms for the Fourier expansion was set to be N = 20. All computation results
are produced using MatLab on a standard desktop PC. The parameters for the beams and the plates are
chosen from the well used values for plywood and timber beams,E1 = E3 = 1010 Pa,E2 = 1.4×1010

Pa, m1 = m2 = m3 = 500 kgm−3, A = 1.5 m, B = 2.5 m, h1 = h3 =0.015 m, h2 =0.1 m, ν =0.3,
yj = jB/6, j = 1, 2, ..., 5, and the width of the beams is 0.05m. The average slippage constant is
3 × 107 Nm−1, which was determined from the experiments in [2]. The location of the forcing is
(1.07, 1.67) with f0 = 1000 N. The range of the frequency is from 1 Hz to 1000 Hz with 0.5 Hz
intervals.

For the single-plate cases, analysing the eigenvalues of the stiffness matrix lets us compare the
effects of the random rigidity. The three cases of random rigidities are considered here. First, Dpq

has the uniform PDF with D as the mean and ranging [−0.1, 0.1]×D. Second, Dpq has the Gaussian
PDF with D as the mean and the standard deviation of 0.1D. For these two cases {Dpq} are assumed
to be uncorrelated. Third, d(x, y) at any (x, y) has the independent identical Gaussian probability
density function, and the function d has the bell-shaped power spectral density function over (x, y) ∈
[0, A] × [0, B]. Figure 4 shows the mean fundamental frequencies αn, n = 1, 2, ..., 100 and their
variance computed from the eigenvalues of the stiffness matrix. The mean of αn is computed for the
discrete and smooth rigidities. The PDFs of the discrete rigidity made little difference, whereas the
smooth rigidity diverges as the frequency increases. The The amount of variance of the fundamental
frequencies increases linearly for both uniformly and normally distributed rigidity as n increases. The
smooth rigidity gives larger variance compared to the discrete cases when the standard deviation is
the same 10% of the average rigidity.
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Figure 4. Left: mean fundamental frequencies for the discrete (solid) and the smooth (dashed) random
rigidities. Right: the std for uniform (dotted), normal (dashed) and the smooth (solid) rigidities.

Figure 5 shows the PDFs of α50 for the uniform, normal and smooth rigidities. The other {αn}
had the similar distribution. The fundamental frequency due to the discrete rigidities is normally
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distributed. Whereas α50 due to the smooth random rigidity has a skewed distribution. A set of
examples are shown in Fig. 5. The skewness (always negative) increases as n increases.
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Figure 5. The PDF of 50th fundamental frequency for the uniform distribution (right), normal distribution
(center) and smooth rigidity (right).

3.3 Transmission-loss analysis

We here study the behaviour of the DLP using the transmission-loss (TL) between the top plate
and the bottom one. The root-mean-square velocity (RMSV) of the plates are computed from the
displacement w1 and w3, and then the TL of the DLP for various cases of random parameters are
compared. The TL in this case is a simple log-ratio between the RMSV of the top and the bottom
plates. The linearity of the system gives us the velocity of the plate by v1(x, y) = iωw1(x, y) (or
i 2παw1(x, y)) and same for v3. Hence the RMSV can be computed by√

〈|v|2〉 =
1√
AB

[∫ B

0

∫ A

0

ω2 |w(x, y)|2 dxdy
]1/2

(16)

The above integral can be obtained using the simple Riemann sum once the displacement w1(x, y)
and w3(x, y) have been computed. The TL is a function of frequency α, which is computed by

TL(α) = log10

[√
〈|v1|2〉/

√
〈|v3|2〉

]
(17)

Here we consider two cases when the slippage alone is randomized and both the slippage and the
rigidity (both the top and the bottom plates) are randomized. The standard deviation of the slippage
S(x) is set to be 30% of the average slippage constant σ. The random rigidities d1(x, y) and d3(x, y)
are the same as before, which are set at 10% of the average rigidity. The TL and the variance of the TL
are shown in Fig. 6. The mean of the TL changed little regardless of the randomization, and thus the
smoothness of the rigidity made no difference to the mean TL. The variance of the surface velocity
itself was much smaller than the single-plate cases shown in the previous section. The variance of the
TL increases as the random rigidity is introduced the the DLP, though the variance has appreciable
values mostly at the maxima of TL. The random rigidity affects the TL over a wider frequency range
than the random slippage does. The variance and the mean changed little when the peak of the PSDs
of the top and/or bottom plates are changed.

4. Summary

The simulations of the vibration of elastic plates with random parameters have been carried out
using the variational principle and the Fourier series expansion method. A single plate and a DLP
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Figure 6. The mean of the TL (top). The variance of the TL with random slippage (second), random rigidity
(third) and both randomized (bottom).

have been considered. For the single plate, discrete and smooth rigidities are used to simulate their
effects on the fundamental frequencies. The smooth rigidity gives larger variations in the fundamental
frequencies than the discrete ones. Furthermore the distribution of the fundamental frequencies is
skewed when the smooth rigidity is used. On the other hand, the discrete rigidities give normally
distributed fundamental frequencies. The model for the DLP includes the slippage at the junctions
between the beams and the plates as an additional energy. The computation method basically stays
the same as the single-plate case because of the variational principle. The random slippage and the
random rigidity are simulated from a pre-assigned PDF at each location and a PSD over either the
beam or the plate. The TL is then used to study the effects of the randomness. The simulations show
that the effects of the random rigidity and the random slippage may be additive.
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