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Financial Models

The first generation model: Black-Scholes model

dS = rSdt+ σSdBt

Black-Scholes formula

Ct = StN(d1)−K exp [−r(T − t)]N(d2)

where

d1 =
lnSt/K + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

It is incapable of generating “volatility smile”.
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Financial Models

The implied volatility is calculated from the ASX/SPI200 index call options which

will expire in one month. Data are obtained from Australia Stock Exchange, on Feb. 8,

2010. The ASX/SPI index is 4521 on that date.
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Financial Models

The second generation of models.

Stochastic volatility models (Heston 1993; Stein and Stein 1991)

Jump diffusion models (Bakshi et al. 1997; Duffie et al. 2000)

Local volatility surface models (Dupire B. 1994).
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Financial Models

The third generation of models.

Models incorporating regime switching.

Levy jump models (CGMY);

VG models;
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Why Regime Switching?

Economic reasons: business cycles.

It is necessary to allow the key parameters of the model to respond to
the general market movements.
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Why Regime Switching?

Empirical evidence: variation in parameters, e.g. Brown Dybvig (1986)
and Gibbons Ramaswany (1993).

Vo (2009) found strong evidence of regime-switching in the market,
and showed that the regime-switching stochastic volatility model does
a better job in capturing major events affecting the market.
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Regime Switching Model in Finance Research

The applications of regime switching models in finance include

asset allocation (Elliott & Van der Hoek 1997);

short term rate model and bond evaluation (Elliott & Siu 2009);

portfolio analysis (Zhou & Yin 2004; Honda 2003);

pricing options (Guo & Zhang 2004);

risk management (Elliott et al. 2008).
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Pricing Variance Swaps in Regime Switching Model

There is a little work on pricing variance swaps in the context of
regime-switching models.

The only paper so far is Elliott et al. (2007).

Their work for variance swaps is based on continuous observations in
calculating realized variance.

They have also pointed out that in practice, variance swaps are always
written on the realized variance evaluated by a discrete summation
based on daily closing prices, instead of a continuous observations.
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Background
What is a variance swap?
A variance swap is a forward contract on the future realized variance
of the underlying asset.

Cash flow of a variance swap at expiration

i) the σ2
R is the annualized realized variance over the contract life T ;

ii) Kvar is the annualized strike price for the variance swap.
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Background

The payoff of a variance swap at maturity T is usually of the form:
VT = (σ2

R −Kvar)× L,

and L is the notional amount of the swap per annualized volatility point
squared, which is usually set to 10000.
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Background

There are several different forms of σ2
R:

σ2
R =

AF

N

N∑
k=1

(
Stk − Stk−1

Stk−1

)2 (1)

or

σ2
R =

AF

N

N∑
k=1

[Ln(Stk)− Ln(Stk−1
)] (2)

or

σ2
R =

1

T

∫ T

0
vtdt (3)
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Background

Analytical Approaches:

– Carr and Madan (1998), Demeterfi et al. (1999): replicate a
variance swap by a portfolio of options;

– Heston (2000): analytical solution based on GARCH model;

– Howison (2004): continuously-sampled variance swaps based on
stochastic volatility.

The limitation of these methods is the assumption that sampling
frequency is high enough to allow the realized variance to be approximated
by a continuously-sampled variance defined as

σ2
R =

1

T

∫ T

0
vtdt (4)
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Background

Numerical Approaches:

– Little and Pant (2001): Finite difference method for discretely-
sampled realized variance;

– Windcliff et al. (2006): Integral differential equation approach
for discretely sampled realized variance;

The drawback of these numerical approaches is that they are limited
to the case with local volatility being a given function of the underlying
asset and time.
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Background

Most Recent Research:

To properly address the discretely sampling effect, several works
have been completed, based on the Heston stochastic volatility
model (SV)

– Broadie & Jain (2008);

– Itkin & Carr (2010);

– Zhu & Lian (2010);
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Background

The contributions of this study

Models Continuous sampling case Discrete sampling case

SV Many Zhu & Lian (2010)

SV with regime
switching Elliott et al. (2007) No exact formula
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Our Closed-form Analytical Solution

Assumptions:
– Consider a continuous-time finite-state Markov chain X = {Xt}t∈T

Xt = X0 +

∫ t

0
AXsds+Mt, (5)

where Mt is an martingale.
The finite-state space is identified with S = {e1, e2, ..., eN}, where
ei = (0, ..., 1, ..., 0) ∈ RN
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Our Closed-form Analytical Solution

Assumptions:
– The realized variance is discretely sampled and defined as

σ2
R =

AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2 (6)

– The underlying asset and the instantaneous variance follow the dy-
namics:

dSt = rtStdt+
√
VtStdB

S
t ,

dVt = κ(θt − Vt)dt+ σV
√
VtdB

V
t , (7)

respectively.
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Our Closed-form Analytical Solution

dSt = rtStdt+
√
VtStdB

S
t ,

dVt = κ(θt − Vt)dt+ σV
√
VtdB

V
t .

Here r is the risk-free interest rate, θ is the long-term mean of the
variance, κ is a mean-reverting speed parameter of the variance, σV is
the so-called volatility of volatility.

rt = r(t,Xt) =< r,Xt >, r = (r1, r2, ..., rN )

θt = θ(t,Xt) =< θ,Xt >, θ = (θ1, θ2, ..., θN )

dBS
t and dBV

t are two Wiener processes that are correlated by a con-
stant correlation coefficient ρ, that is < BS

t , B
V
t >= ρt.
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Our Closed-form Analytical Solution

Clearly, to calculate the price of an existing variance swap with a
payoff VT = (σ2

R −Kvar)× L or to set up a strike price Kvar for a new
contract, essentially, all one needs is to calculate the expectation of the
unrealized variance:

Kvar = EQ0 [σ2
R] = EQ0 [

1

T

N∑
i=1

(
Sti − Sti−1

Sti−1

)2],

where EQt denotes the expectation under the Q measure conditional on
the information available at time t.
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Our Closed-form Analytical Solution

If we further assume that the sampling points are equally spaced, i.e.,
AF = 1

∆t = N
T ,

then

Kvar = EQ0 [σ2
R] = EQ0 [

1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2].

Thus, our problem essentially becomes to evaluate N expectations

EQ0 [(
Sti − Sti−1

Sti−1

)2] (8)
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Our Closed-form Analytical Solution

Characteristic Function Method:

Assuming the current time is t, write yT = logST+∆ − logST .

Define forward characteristic function f(φ; t, T,∆, Vt) of the stochastic
variable yT as the Fourier transform of the probability density function
of yT , i.e.,

f(φ; t, T,∆, Vt) = EQ
t [eφyT ]

= EQ
t [exp (φ(logST+∆ − logST ))]

Obtain this characteristic function and then solve the pricing of variance
swaps.

Robert Elliott, Guang-Hua Lian∗, Feb. 2, 2011 0-25



Our Closed-form Analytical Solution

We combine the techniques of the tower rule (law of iterated
expectation) and the partial differential equation (PDE).

Step 1: conditional expectation.
Given the filtration FXT+∆, the parameters rt and θt can be considered
to be time-dependent deterministic functions.

Step 2: characteristic function of regime switching process, Xt;
Solve the PDE associated with the regime switching process;

Step 3: unconditional expectation;
Apply the results in step 1 and 2 to finally obtain the required charac-
teristic function.

... mathematical derivations ...

Robert Elliott, Guang-Hua Lian∗, Feb. 2, 2011 0-26



Our Closed-form Analytical Solution

Proposition 0.1

If the underlying asset follows the dynamics (7), then the forward charac-
teristic function of the stochastic variable yT = logST+∆ − logST is given
by:

f(φ; t, T,∆, Vt) = EQ
t [eφyT ] (9)

= exp (G(D(φ, T ), T − t)Vt) < Φ(t, T )Xt, I > (10)

where D(φ, t) is given by,
D(φ, t) =

a+ b

σ2
V

1− eb(T+∆−t)

1− geb(T+∆−t)

a = κ − ρσV φ, b =
√
a2 + σ2

V (φ− φ2), g =
a+ b

a− b

(11)
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Our Closed-form Analytical Solution
Proposition 0.2

(Continue)
If the underlying asset follows the dynamics (7), then the forward charac-
teristic function of the stochastic variable yT = logST+∆ − logST is given
by:

f(φ; t, T,∆, Vt) = EQ
t [eφyT ] (12)

= exp (G(D(φ, T ), T − t)Vt) < Φ(t, T )Xt, I > (13)

where G(φ; t, T, Vt) is given by,
G(φ, t) =

2κφ

σ2
V φ+ (2κ − σ2

V φ)eκ(T−t)

J(t) = (1−HT (t))(κθG(D(φ, T ), t)) +HT (t)(rφ+ κθD(φ, t))

Φ(t, T ) = exp

(∫ T+∆

t
A′ + diag(J(s))ds

)
(14)
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Our Closed-form Analytical Solution

Having worked out the forward characteristic function

f(φ; t, T,∆, Vt) = EQ
t [eφyT ]

Pricing variance swaps becomes quite trivial.

Kvar =
1

T

N∑
k=1

[f(2; 0, tk−1,∆t, V0)− 2f(1; 0, tk−1,∆t, V0) + 1]
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Numerical Results

Obtain numerical results from the implementation of our pricing for-
mula.

Monte Carlo benchmark values for testing purpose.

Compare with the continuous sampling approximation.
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Numerical Results
The model

dSt = rStdt+
√
VtStdB

S
t ,

dVt = κ(θ − Vt)dt+ σV
√
VtdB

V
t ,

< BS
t , B

S
t >= ρt

rt = r(t,Xt) =< r,Xt >, r = (r1, r2, ..., rN )

θt = θ(t,Xt) =< θ,Xt >, θ = (θ1, θ2, ..., θN )

Xt = X0 +

∫ t

0
AXsds+Mt,

Parameters ρ = −0.82; κ = 3.46;
σV = 0.14; V0 = (8.7/100)2;
A = [−0.1, 0.1; 0.4,−0.4]; X0 = 1;
r = [0.06; 0.03]; θ = [0.009; 0.004].
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Semi-Monte Carlo Simulations

MC simulations are frequently used, particularly when no closed-form
solutions.

obtain benchmark values for testing other methods.

not feasible for practical use because of computational inefficiency.
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Semi-Monte Carlo Simulations

We suggest a semi-MC method

Algorithm.
1. Let N be the number of samplings. For each n = 1, ..., N , we then
2. obtain the n-th sampling path of the regime switching process, XT ;
3. with a realized sampling path of XT , the characteristic function is
presented in Proposition 1.

f(φ; t, T,∆, Vt|FXT+∆) = EQ[eφyT |FSt ∨ F Vt ∨ FXT+∆]

= eC(φ,T )g(D(φ, T ); t, T, Vt)

So we can calculate the price of a variance swap for the n-th sampling
path.
4. calculate the average K = 1

N

∑N
n=1Kn.
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The continuous observation case

Elliott et al. (2007)’s formula
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Results and Discussions

A comparison with the results obtained from other approaches:
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Results and Discussions

A comparison with the results obtained from other approaches:
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Prices of variance swaps without regime switching (Zhu & Lian 2010)
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Concluding Remarks

An analytical solution is obtained for variance swaps based on a
stochastic volatility model with regime switching;

For discretely sampled variances, it is more accurate to use our
solution than using continuous approximations;

It examines the effect of ignoring regime switching on pricing
variance and volatility swaps;

Our solution can be very efficiently computed; substantial com-
putational time can be saved in comparison to Monte Carlos
Method;
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