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Abstract 

 

In the field of computer vision, image recognition has been developing for a long time. 

Text recognition, license plate recognition, etc. are already very mature technologies. In 

recent years, with the development of deep neural networks, the technology of object 

recognition has been further developed. Starting with RCNN(Region-CNN), although the 

accuracy of recognition is constantly improving. But at the same time, object recognition 

faces many challenges. These challenges include lighting conditions, similar colors for 

object and backgrounds, and more. 

 

To meet these challenges, this thesis proposes a method to improve the accuracy of 

object recognition model by using depth information. This method uses the Grab-cut 

algorithm segmentation the depth information and uses the depth map after the 

segmentation to complete the segmentation of the target object. This method avoids the 

impact of complex scenes on object recognition. Using this method also reduces the 

effects of illumination, shadows, colors, etc. on recognition accuracy. The effectiveness 

of our proposed method is demonstrated by testing the depth map database we collected. 

As a result of the experiment, the average accuracy of the method can be improved by 5% 

to 10%. 
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Chapter 1 Introduction 
 

1.1 Background and Motivation 

Identifying objects visually is an extremely easy task for humans, but not so for a 

computer. Image recognition refers to the process by which a computer processes an 

image and identifies objects that exist in that image. In general, image recognition is a 

two-step process. The first step is image segmentation [76,77,78] where the image is 

divided into some meaningful regions. In the second step, the features of each region are 

extracted and a classifier determines which kind of object that region of the image belongs 

to. 

Research in image recognition started with text recognition [79, 80] in the 1950s. The 

objects to be identified were letters, numbers, and symbols. A popular application of text 

recognition is car license plate recognition [81, 82]. This technology is now very mature. 

The processing of digital images [83] began in the 1960s. Digital images have great 

advantages such as easy storage, convenient and compressible transmission, and not easy 

to be distorted. Image recognition has since been a very active area of research. Many 

different techniques have been invented for various purposes. But the features that are 

extracted from the images are typically human engineered which are quite specific to an 

application. With the development of deep neural networks [84, 85], research on image 

recognition has progressed very rapidly. For the PASCAL VOC dataset [86], the accuracy 

of recognition has increased from the initial 30% to the current 90%. In the 2012 
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ImageNet Large-Scale Recognition Challenge (ILSVRC) [88] competition, the Alex Net 

model achieved an accuracy of 85%, an improvement of over 10% compared with the 

best traditional model. The advantage of using neural networks is that the network learns 

relevant feature representations from the training images automatically, eliminating the 

need for feature engineering. 

This is a turning point in the history of image recognition. These achievements shift 

the focus from traditional image recognition methods to methods using deep neural 

networks. In the ILSVRC 2013 competition, all participants use solutions and algorithms 

based on deep learning techniques. In the 2015 ILSVRC competition, Convolutional 

Neural Network (CNN) based algorithms achieved recognition accuracy exceeding 95%, 

higher than the recognition rate of humans. From 2017 to 2018, 29 out of 38 participants 

in the competition provided solutions exceeding 95% recognition accuracy, the highest 

being 97.3%. This illustrates the great potential of deep learning in image recognition. 

Although deep learning has so far achieved great success in the field of image 

recognition, there are still many challenges that we need to face. The first challenge is 

how to improve the generalization capabilities of the model; how to make the existing 

model achieve good performance in the type of images that the network has not been 

trained on. Untrained scenes can create many problems for the network. Usually, a simple 

solution to this problem is to increase the training dataset.  However, it is not always 

possible to have all scenes in the training dataset. The second challenge is how to make 

better use of small data sets. Identifying objects that have only been seen once is relatively 

easy for humans. However, it is very difficult for a computer. With existing technology, 
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if a large data set is used, the accuracy of recognition can be easily increased. But with 

the small data sets, the results are not as good as we wish. The third challenge is how to 

make computers understand the relationship of objects in the three-dimensional world. 

This is the focus of the research presented in this thesis. 

The advent of depth cameras has enabled the 3D scene to be captured digitally. 

However, the cost of these cameras tends to be very high. More recently, low-cost depth 

cameras have become commercially available. Examples include Kinect [93] and ZED 

[94].  

The availability of depth information has opened up a lot of possibilities. Two-

dimensional face recognition technology has been developed for decades. However, it is 

still difficult to achieve high-accuracy recognition with face images taken from all kinds 

of angles, lighting conditions, and facial occlusion (e.g. by eyeglasses). Depth 

information makes it possible to improve accuracy [90]. Depth information can also be 

used to generate 3D emoji, recognize the facial activity, and perform sight-line correction 

[95]. Another area where depth information is widely used is intelligent human-computer 

interaction. For example, the Kinect camera was originally designed for human-computer 

interaction with Xbox users [91] to play computer games. Other intelligent human-

computer interaction includes human skeleton extraction and tracking, and gesture 

recognition and tracking. In robot vision, 3D information is used for 3D Simultaneous 

Localization and Mapping (SLAM) that allows the robot to know where it is located 

relative to surrounding objects and the environment [96,97]. Similar technology is also 

used in autonomous driving, augmented reality (AR) and virtual reality (VR) [92, 98, 99]. 
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One of the difficulties with object recognition is the lighting and the angle at which 

an image is taken. It is possible that the use of depth information can provide extra 

information that is needed to overcome this problem. Furthermore, using depth 

information can better preserve the advantages of geometric features of objects and 

therefore aid us in constructing models that can achieve high recognition accuracies in 

unfamiliar scenes. 

 

1.2 Objectives 

Lighting conditions have always been a challenge to the recognition model. Even the 

most advanced object recognition systems cannot overcome these challenges. Since the 

depth information is less interfered by the light source, the main research objective of this 

project is to use the depth information to overcome the influence of the complex light 

source on the object recognition, so as to improve the recognition accuracy. In order to 

achieve a more complex lighting environment, the project will collect and use its own 

database. This project selected YOLO as the main recognition model for comparative 

experiments. The Grab-cut algorithm is used for segmenting the depth map. Details of 

YOLO and Grab-cut are described in Chapter 3. The two main research questions are 

stated below. 

Q1:  Could the grab-cut algorithm be effectively used to segment objects from 

their backgrounds from images with depth information? 

Q2:  What is the change in the recognition accuracy using the YOLO network 
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with and without using the depth information to segment the image? 

1.3 Structure of the Thesis 

A literature review is presented in Chapter 2. This review is divided into two parts. 

The first part is a review of the development and status of object recognition. In the second 

part, the development of image processing and recognition techniques that make use of 

the depth information is reviewed. Currently available datasets with depth map are also 

reviewed. 

In Chapter 3, the methodology used in this research and the design of the computer 

experiments will be introduced. The YOLO architecture and the Grab-cut algorithm, 

which are used in this research, will be described in detail. Also included are the details 

of the dataset that is collected for this project. 

The results of the experiments are presented and analyzed in Chapter 4. These results 

will help answer the research questions that are presented in this chapter. 

Finally, in Chapter 5, conclusions are drawn. Furthermore, the limitations and 

potential future works are discussed. 
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Chapter 2 Literature Review 
 

2.1 Review of Object Recognition 

As an important branch of computer vision, object recognition has a wide range of 

applications in many areas of daily life. With the development of intelligent hardware 

devices, there are an increasing amount of images and video information which 

consolidate the increasingly important role played by computer vision technology in 

human life. Object detection and identification have also become active research 

directions. Detection and identification technologies have the following applications in 

real life such as object tracking, video surveillance, information security, autopilot, image 

retrieval, medical image analysis, network data mining, drone navigation, remote sensing 

image analysis, defense systems, etc. 

Object detection and recognition refer to finding an object from a scene (picture), 

including the two processes of detection (where) and identification (what). The difficulty 

of the task lies in the extraction and recognition of the area to be detected. Therefore, the 

main framework of the task is to firstly establish a model for extracting candidate regions 

from the scene and next to identify the classification model of the candidate area. Finally 

fine-tuning the parameters of the classification model and the location of the effective 

candidate frame. 

Techniques for object detection and identification could be broadly classified into two 

categories: 
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i. Object detection and recognition method based on traditional image processing 

and machine learning algorithm; 

ii. Object detection and recognition method based on deep learning. 

 In the following two subsections, I will discuss and review the above two categories 

of methods. 

2.1.1 Object Recognition/Detection based on Machine learning 

The most significant object recognition algorithms that belong to the traditional 

algorithm category include Cascade, SVM, DPM, and their variants.  

Research on object recognition in the 1980s has used tree search to match how well 

the features in the model match the features in the image [1].  However, when the 

number of image features and model features is increased, the difficulty of recognition 

increases accordingly. This is true especially when the background of the picture is very 

complex and when there are many noises in the picture [2]. In order to solve this problem, 

researchers at the Robotics Institute of Carnegie Mellon University are the first to use the 

concept of cascading in the field of image recognition at the beginning of the 21st century 

[3]. With cascading, each classifier calculates more object edge features than the previous 

region. Other researchers also proposed a machine learning method with cascading ideas 

at around the same time. For example, in [4], Adaboost was used to speed up recognition. 

Adaboost constructs a classifier by concentrating on only a small number of important 

features. This reduces the total number of features which is similar to the approach by 

Haar [100, 101] which speeds up recognition processing. 
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Support Vector Machine (SVM) was proposed in 1995. Compared with traditional 

statistical machine learning, SVM avoids the problem of resulting variations due to 

individual differences [5]. SVM finds the best solution between the complexity of the 

model and the learning ability based on limited sample information to obtain the best 

results. SVM has a large advantage in cases where there are a small sample size and a 

non-linear distribution of samples. It is widely used in the use of machine learning. In the 

field of computer vision, changes in illumination are one of the factors that affect 

recognition accuracy. Sabri et. al. used SVM for image recognition as early as 2004 [6]. 

They recognized that if the target object remains unchanged, then only the lighting 

conditions need to be changed. The geometric position of several information points in 

the slice remains unchanged. This makes it possible to use SVM.  

Computer vision has its applications in many areas of identification. In [7], the 

author uses HOG (direction gradient histogram rendering method) and SVM for vehicle 

brand recognition. In order to use HOG, the author simulated the shape and appearance 

of the vehicles and the HOG/SVM architecture is parameterized. As a statistical method, 

the use of SVM is very extensive. SVM has also been used with neural networks to 

achieve better target recognition accuracies. Zhang et. al [8] proposed a new recognition 

method based on SVM and KNN. They used SVM to run on the kernel matrix without 

reference to perform a rough analysis of the object. For example, in a photo of a cat, the 

SVM only needs to determine whether there is any animal in the picture. This is followed 

by fine identification of animal species by a K-Nearest Neighbour (KNN) algorithm. 

Finally, a traditional algorithm called DPM is has been used very successfully for 
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target detection. Before the deep learning-based algorithm was not available, the DPM 

algorithm was the VoC (Visual object Class) Test champion for five consecutive years [9, 

14]. DPM can be regarded as a derivative of HOG, and its general idea is consistent with 

HOG. The first step is to first calculate the gradient histogram, then use the SVM to train 

and get a new gradient model of the object. Finally, use the new gradient model and target 

matching. Unlike the HOG algorithm, DPM has made many improvements in the 

generated gradient model. DPM has great advantages when dealing with large data sets. 

It also has certain advantages when dealing with situations where the appearance of the 

object has changed dramatically. Because of this, the DPM algorithm has been applied to 

many fields including face detection [10, 11], and pedestrian detection on the road [12, 

13]. DPM achieved good accuracy for both of these applications. However, in the field of 

image recognition, the response speed of the system and the accuracy of recognition are 

equally important. What DPM algorithm really needs to improve on is its recognition 

speed. Cascading has been used to accelerate the recognition speed [102]. An alternative 

method makes use of the Fast Fourier Transform (FFT) [103]. In [14], the author speeds 

up the recognition process by constraining the level of the root filter. 

2.1.2 Object Recognition based on Deep Learning 

Deep learning allows neural networks consisting of multiple processing layers to 

learn data with multiple abstract features [15]. Deep learning is now widely used in speech 

recognition, visual object recognition, object detection and pharmacology [104,105,106]. 

Deep learning algorithms currently used in the field of object recognition can be 
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divided into three categories. The first category is based on regional recommendations 

for object detection and recognition such as R-CNN, Fast-R-CNN, and Faster-R-CNN. 

The second category is regression-based object detection and recognition algorithms such 

as YOLO and SSD. The third category is search-based object detection and recognition 

algorithms such as AttentionNet which is based on visual attention. In the next section, I 

will review several mainstream neural networks in the field of target recognition. The 

advantages and disadvantages of these neural networks are compared. 

  

a. R-CNN and Variants 

In 2013, Ross Girshick and his team applied the convolutional neural network (CNN) 

to object detection [16]. Their method, known as R-CNN, adopted the approach of 

generating a candidate region on the image and then recognize the target in this region. 

This method is much faster than traditional target recognition algorithms. It also increases 

the accuracy by about 20%. 

However, R-CNN has two main issues. R-CNN adopts a method of convolving a 

region into a candidate region. With this method, the computer performs repeated 

convolution work when the candidate regions overlap. For every candidate region, 

additional storage space is required, which slows down the recognition speed. The second 

issue with R-CNN is that the picture is likely to be deformed after R-CNN processing 

[16].  

In [17], SPP-NET is developed to overcome these two problems. First, it used a 

method to convolve the entire image before generating candidate regions. The benefit of 
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this is that it saves storage space. Secondly, a pooling layer is used to adapt to the size of 

the input image before the FC Layer, breaking the constraint that R-CNN needs fixed size 

images. 

Further improvements to R-CNN are subsequently proposed in [18]. The resulting the 

Fast R-CNN network. Higher accuracies and lower storage demand are achieved. With 

R-CNN, the candidate frames are classified to determine whether there are any objects, 

and if there are objects, a bounding box is computed. Fast R-CNN, on the other hand, 

computing the bounding box and classifying the candidate boxes are performed at the 

same time. 

   In 2015, another variant of R-CNN, known as Faster R-CNN, is proposed [19]. It 

makes use of a new concept called Region Proposal Networks (RPN). It can process a 

single picture in 10 milliseconds, compared with around 2 seconds for R-CNN. Faster R-

CNN relies on external candidate region methods, such as selective search. Faster R-CNN 

changed the fast R-CNN candidate area method to an internal deep network which is more 

efficient in generating regions of interest (ROI). Since the neural network itself is 

generating candidate regions, it can learn more advanced and abstract features. The 

location of each window in the feature map generates K anchors, and then determines the 

position of each anchor (foreground or background). At the same time, the precise 

location of the bounding box is returned to make the prediction of the bounding box more 

accurate. 

b. Yolo and SSD 

The principle of the object recognition system based on R-CNN can be divided into 
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two steps. The first step is to generate a Region Proposal, then CNN is used to extract 

features of the region. The second step is to classify the feature maps in the CNN and 

correct the position of the region in the image. The approach of YOLO and SSD is quite 

different. YOLO and SSD make use of the regression method to output the border and 

category of the target. When analyzing a picture, first they give a rough range for 

classification, and finally iterate over the range to refine the position. YOLO stands for 

“You Only Look Once” and SSD stands for “Supervised Salient Object Detection”. 

YOLO imposes a strong spatial constraint on the boundary, which limits the number 

of objects the model can predict. The first generation of YOLO used coarse features to 

predict the bounding box, so there was a loss of function handling errors. The main source 

of error for YOLO is positioning error [23]. 

SSD aims to improve on YOLO. SSD adds the anchor concept of Faster R-CNN to 

YOLO. Moreover, SSD fuses the characteristics of different volume base layers to make 

predictions. To increase the accuracy of SSD, feature maps of different scales are 

generated and differentiated the predictions based on the aspect ratio. These features make 

end-to-end training easier. Even with low-resolution images, SSDs can still achieve good 

accuracy [24]. In [24], SSD is compared with YOLO and Faster R-CNN using Pascal 

VOC [20] and MS COCO [21]. The results show that SSD is superior to the other two in 

most cases with these datasets. 

In August 2018, a new version of YOLO was proposed [25]. This version of YOLO, 

denoted as YOLOv3, is much faster than the previous algorithm. It is 3.8 times faster than 
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SSD with the same accuracy. YOLOv3 uses a backbone network to extract features from 

the picture. DarkNet-53 consists of 3 × 3 and 1 × 1 convolution kernels and skip 

connections like ResNet. Compared to ResNet-152, DarkNet has lower BFLOP (billion 

floating point arithmetic) but is up 2 times faster while achieving the same accuracy. FPN 

has also been added to YOLOv3 to better detect small objects. The use of FPN in 

YOLOv3 replaces the feature extractor in Faster R-CNN, SSD and YOLOv2, achieving 

better recognition. The FPN consists of top-down paths that are common networks for 

feature extraction. Compared to SSD, YOLOv3's ability to detect small objects is 

significantly enhanced. This is because the SSD performs object detection using only the 

upper layer of the neural network, and therefore the detection performance for small 

objects is poor. 

YOLOv3 is the fastest deep learning algorithm for object recognition so far. In the 

standard database, the difference in recognition accuracy with SSD is small. But the 

recognition speed of YOLOv3 is higher [63]. However, applying YOLOv3 to color 

images face many challenging problems, mostly related to illumination, shadow 

projection, and colour camouflage due to the foreground and background-like colors [62]. 

The objective of this thesis is to investigate if the use of depth information could help 

overcome some of these challenges. 

2.2 RGB-D Images 

The depth image refers to an image in which the pixel values are related to the distance 

between that point in the image and the camera plane. It directly reflects the geometric 
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features and shape of the object. The depth image can be calculated by coordinate 

transformation from point cloud data captured by an RGB-D camera. In November 2010, 

a low-cost depth camera called Kinect is released by Microsoft Inc. for its XBOX 

platform [26]. Since then, several inexpensive RGB-D cameras became commercially 

available, opening up new possibilities for capturing depth images.  

Depth cameras can be divided into two types, depending on how depth information is 

obtained. a TOF structure [48]. By continuously transmitting a light pulse to the target, 

and then receiving the light returned from the object with a sensor, the depth information 

of the target is obtained from the time it takes for a pulse to travel to the target and back 

[27]. The second type of depth cameras makes use of stereoscopic vision [49].  Depth is 

computed through triangulation by matching left and right images. Compared to the TOF 

cameras, the stereoscopic cameras has the advantages of high resolution and low power 

consumption. An example of which is the ZED camera [107]. 

2.2.1 Applications 

In recent years, depth cameras have been applied to object pose recognition, camera 

tracking, scene reconstruction target tracking, and recognition, face recognition and other 

fields. They have also been applied to 3D scanning. Previously, 3D scanning has been 

limited by the instrument because 3D scanners are large and expensive devices. The 

emergence of handheld RGB-D cameras has changed this landscape. For example, 

KinectFusion [28] is a 3D reconstruction project, which is based on the Kinect camera, 

that enables 3D modeling of the target. In the field of robotics, RGB-D cameras have also 
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been used for Simultaneous Localization and Mapping (SLAM). A featureless SLAM 

algorithm was proposed in [30]. This algorithm is able to construct a 3D scene in a large-

scale environment [31]. Thomas et al. [32] used RGB-D cameras to achieve high-quality 

surface reconstruction. They used the GPU's 3D loop buffering technique to effectively 

process the depth map. Furthermore, they overcame closed-loop constraints due to pose 

estimation and lighting factors. 

RGB-D images can also be used to perform more reliable face recognition, and there 

are already commercial products, such as the iPhoneX by Apple Inc. In [33], a method to 

performing face recognition using a depth camera is described. Different lighting 

conditions, the camouflage of the face (such as wearing sunglasses), posture problems of 

the face, etc. are all challenges encountered in face recognition [34]. The most reliable 

way to solve such problems is to use 3D information since the effects of illumination on 

the depth map is limited. More stable features could also be extracted using the depth 

map. 

Human body pose recognition is another area of applications for RGB-D cameras. In 

order to improve the quality of life of the elderly, as early as 2007, Jansen et al. [50] 

proposed a model for automatic detection of the behavior of the elderly. The model they 

proposed uses depth information. In [51], a method for human gesture recognition that 

requires only a single depth image was proposed. This method does not require time 

information. The inspiration comes from the idea of object recognition. They use depth 

information to relabel parts of the human body.  
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Hand gesture recognition is also a direction of depth image application. The geometry 

of the hand is very complicated and the hand is small, which makes the identification 

difficult [52]. Athitsos et al. [53] created a large database of hand postures in complex 

environments. In [54], hand features are extracted from depth images for training [54]. 

Liu and Fujimura [55] used threshold processing to detect depth data from the hand and 

measure the shape similarity by using the chamfer distance. 

2.2.2 Object Recognition Using RGB-D Images 

In recent years, as RGB-D cameras have become faster, and high-quality depth 

information has become available. Research on object recognition based on depth 

information is also increasing. In [35], the HMP concept was introduced. HMP uses 

sparse coding to learn hierarchical features from raw RGB-D data in an unsupervised 

fashion. The R-CNN network was also applied to depth images for object recognition 

[36]. The training parameters of the R-CNN network is finetuned by initializing the 

learning rate to 0.001 and reducing the number of iterations by 10 times every 20k 

iterations. The results show that these fine adjustments are effective, with an average 

accuracy of 37.3%, which is an 56% improvement on the existing methods. In [37], a 

semi-supervised learning framework for RGB-D object recognition was proposed and 

achieved good results. Based on the ideas stated in the Yahua’s paper, we know that most 

object recognition project is based on RGB images, and the geometric features provided 

by RGB images are often unreliable. Illumination factors and backgrounds are too 

cluttered to affect the results of the recognition, and the indistinct distinction between the 



 

17 
 

background and foreground colors also affects the accuracy of the recognition. Depth 

images provide us with reliable geometric features and shape cues. Kevin et al. [38] used 

depth information to segment the images. They used an adaptive Gaussian mixture model 

[39] to overcome the depth noise problem. In order to extract low-level image features 

more efficiently, special kernel descriptors are designed a hierarchical application of them 

are used [40]. They applied this method to an RGB-D dataset [41]. They processed the 

depth information into a grayscale image. This is very similar to the idea used in this 

research. Although this method achieved good results, the results were still affected by 

the fact that there was no noise and void processing in the depth image. In [42] the 

descriptor method is used to link the color information with the depth information. The 

idea is novel, but there is still no way to avoid the influence of noise in the depth map. 

2.2.3 Image Segmentation Based on Depth Map 

Image segmentation is an important part of indoor scene analysis, object pose 

recognition, target recognition, etc. Nathan et al. used depth information to propose a 

main surface for interpreting indoor scenes [57]. The database used in this work consists 

of images taken in a messy indoor environment. The algorithm first calculates the normal 

of the surface and then use RANSAC to fit the plane to the point and segment according 

to the depth information. In [58] a real-time plane segmentation method  was proposed 

and collected a database of indoor scenes.  

Using an RGB-D camera is not only helps to segment the various planes in a scene, 

but we can also use depth information to segment the object we want to identify. Most of 
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the perceptual work on RGB-D pictures is focused on semantic segmentation, the task of 

assigning category labels to each pixel [36]. In semantic segmentation of indoor scenes, 

super pixels are classified into 40 main object categories in NYUD2 [59]. Xiaofeng et al. 

combined the kernel descriptor and super pixel method to segment the object [60]. In  

[61], SLAM is used to form multiple views, and 3D pixels are marked with absolute 

positions in each scene. The object is segmented by the information of the pixel. Since 

the depth map is often very noisy, Massimo et al. [62] combined the colour features of 

the image and the depth features of the image while performing the segmentation task. In 

[64], RGB-D segmentation is performed through unsupervised learning. Depth cues are 

used to better protect the boundaries of objects and constrain the smoothness and 

consistency of the surface of objects.  

The Grab-cut algorithm can effectively extract the foreground in a picture or segment 

the picture [65]. It splits the image by comparing the color information and contrast 

information of the image. In [66], the implementation of this algorithm was described in 

detail. There are also subsequent efforts to optimized it, but the basic idea of this 

algorithm has not been changed. Shoudong et al. [67] used the MSNST algorithm to 

extract the color information of the original image and then segmented using the Grab-

cut function. Most Grab-cut algorithms can only extract features from images. In [68, 69], 

a fully automated Grab-cut algorithm, which is called Vabcut, is proposed. They used it 

for the segmentation of human behavior in the video. Further improvements in 

convergence speed and segmentation accuracy of the Grab-cut algorithm, the region of 

interest of the user is used to constrain the existing Grab-cut algorithm in [70].  
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The Grab-cut algorithm has also been applied to segment RGB-D images. In [71], it 

was used in combination with the Kinect camera. The authors successfully segmented the 

contours of the human body. However, due to excessive noise, it could not effectively use 

the depth information. The author of [72] used the Grab-cut algorithm to segment the 

depth grayscale image, but the author did not explore the effects of noise in the depth map.  

2.2.4 Depth Image Datasets 

Dataset collection is an important part of every field of RGB-D camera applications. 

Several different RGB-D image datasets are available. They are collected for specific 

application areas of research, such as gesture recognition, human actions, and pose 

estimation. Since this research is in target detection and recognition, only object datasets 

are reviewed here.  

In [38], a total of 51 categories of images with 300 different objects are collected. 

Also included in the dataset are images with multiple angles of the objects. The objects 

are common ones found in homes and offices. These objects are rotated on a fixed 

turntable to extract their multiple angles, and the pose of the object remains consistent. In 

the dataset used in [43], the depth maps produced by some existing RGB-D cameras are 

collected. A dataset that is derived from video clips is reported in [44]. The scenes in this 

dataset are very diverse, with a total of 2347 pictures. In order to make this dataset better 

suited for robot vision, the objects in the images are manually annotated, providing a label 

covering for each pixel in the image. Since the environment in the real world is much 

more complicated than the environment in the laboratory (such as lighting factors, 
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occlusion, etc.), more and more scholars are collecting RGB-D datasets based on real-

world settings [45]. Currently, a large database based on the real-world is reported in [46]. 

This dataset contains images of more than 10,000 objects in real-world settings. Another 

dataset with more than 10,000 objects [47]. 3D models of every object in the dataset are 

created. 
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Chapter 3 Methodology 
 

This research is inspired by the approach described in [38] that make use the depth 

grayscale to directly implement the segmentation process. Based on the literature review 

presented in Chapter 2, the idea is to use the Grab-cut algorithm [65] for segmenting 

objects in an RGB-D image and use YOLOv3 for target recognition. It has been observed 

that the grayscale depth image is filled with large patches of information including the 

shape of the object. The Grab-cut algorithm could effectively segment large areas of 

grayscale in the depth map that contain object geometry. This idea is simple and efficient, 

requiring demand on hardware, and can split any object in the picture. 

In this chapter, I will elaborate on the details of these two algorithms. Following that, 

the experimental plan and explain the evaluation methods used will be described. In order 

to have full control of the experimental conditions, I have collected a dataset of RGB-D 

images that will be used in this research. A full description of this dataset will also be 

presented. 

3.1 Grab-cut Algorithm 

The Grab-cut algorithm can effectively extract the foreground in a picture [65]. It 

segments an image by comparing the color and contrast of the various parts of the image. 

A detailed description of its implementation can be found in [66]. This algorithm requires 

a small amount of user interaction for it to work. A user specifies the area of interest with 

a rectangular border to complete the segmentation of the foreground. Figure 3.1 is an 
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example of RGB image segmentation using the Grab-cut algorithm.  

 

Figure 3.1 Example of using the Grab-cut algorithm 

The Grab-cut algorithm was developed from the Graph-cut algorithm [108]. With 

Graph-cut, the target and background models is a grayscale histogram. In Grab-cut, it is 

replaced by an RGB three-channel mixed Gaussian model. The segmentation process of 

Grab-cut is an interactive one involving interactive segmentation estimation and model 

parameter learning. These two parts of the process are explained in the subsections below. 

3.1.1 Color model 

As mentioned above, the Grab-cut algorithm uses a three-channel mixed Gaussian 

model. A full covariance Gaussian mixed model (GMM) of N 

Gaussian components, where  is the Gaussian component corresponding to the ith 

pixel, is used to model the target and background. Each pixel must come from a certain 

Gaussian component of the target GMM or a certain Gaussian component of the 

background GMM.  

The Gibbs energy of the entire image is given by 

 

Here, U is the region term, given by 
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which is the negative logarithm of the probability that a pixel belongs to the target or the 

background.  

 

This is obtained by taking the negative logarithm of the mixed Gaussian density model: 

 

The parameter θ of the GMM has three elements. They are the weight π of each 

Gaussian component, the mean vector u of each Gaussian component, and the 

covariance matrix ∑. Thus, 

 

This is the parameter that the algorithm needs to estimate. Once it is determined, by 

substituting the RGB color value of a pixel into the target and background GMM, the 

probability that this pixel belongs to the target/background can be obtained. After this, 

the value of U of the Gibbs energy formula can be determined by us. Then the value of U 

could be computed. 

The second term in the Gibbs energy formula above is the boundary energy term V, 

given by 

 

Grab-cut uses a two-norm method to measure the similarity of two adjacent pixels. 

3 3´
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The parameter β here is determined by the contrast of the image. If the contrast of the 

image is low, then the difference  between two pixels m and n is small. In this 

case, it needs to be multiplied by a relatively large β to amplify this difference. For images 

with high contrast, this difference is large, and so it needs to be multiplied by a small β to 

reduce the difference. The initial value of the constant γ is usually 50, with a better value 

obtained after training. With both U and V (and thus E) computed, the image foreground 

could be determined. 

3.1.2 Iterative Energy Minimization Segmentation 

The segmentation process of Grab-cut is iterative. Users need to manually tell the 

computer about the general range of targets. After passing the user's markup, we get some 

pixels that may belong to the target ( ) and some pixels that may belong to the 

background ( ). The pixels are classified by the K-means algorithm and are 

recorded as . By using the resulting set of pixel samples, the parameter θ of the GMM, 

as described in the previous section, is computed. 

At this stage, a rough segmentation can be obtained. If the user is not satisfied with 

the result of this segmentation, manual marking is performed. After each manual marking, 

the segmentation result is recalculated. The process of this iterative is to of gradually 

reduce the range of pixels where . Since the iterative process is a process with a 

decreasing range, the iterative process must be convergent. 

3.2 YOLO 

m nz z-

1nA =

0nA =

nK
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3.2.1 YOLOv1 

YOLO [23] is a deep learning architecture proposed to speed up object detection and 

recognition after R-CNN, fast-R-CNN and faster-R-CNN. YOLO treats object detection 

as a regression problem. The input to YOLO is entire image. The position of the bounding 

box of an object is regressed and its associated target category is obtained directly at the 

output layer. This is in contrast to other object detection techniques which are divided 

into two separate steps. 

YOLO divides the input image into a grid of cells. If the coordinates of the 

center position of an object falls within a certain cell, then this cell is responsible for 

detecting the object. At the same time, each cell also needs to predict the value of the 

bounding boxes. A value known as “confidence” is predicted for each bounding box. This 

confidence value is computed by: 

 

If an object falls in a grid cell, then . Otherwise it is 0. The second term 

represents intersection over union (IOU) which is a value between the predicted bounding 

box and the actual ground truth value. 

Apart from confidence, each bounding box predicts 5 values (x, y, w, h), and a 

category, which is denoted as class C. With an  grid that predicts B bounding boxes 

and C categories. The output is a tensor of . 

In a test, the class information for each grid prediction is multiplied by the 

confidence information predicted by the bounding box. The result is the class-specific 

S S´

( )Pr 1object =
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confidence score for each bounding box, given by 

  

The first item on the left side of the equation is the category information for each grid 

prediction, and the second and third items are the confidence of each bounding box 

prediction. This product encodes the probability that the predicted box belongs to a class. 

A threshold is set in order to filter out the boxes with low confidence scores and 

perform NMS (Non-Maximum Suppression) processing on the reserved boxes to get the 

final test results. 

3.2.2 YOLO9000 & YOLOv3 

In YOLO, it is difficult to detect objects that are very close in distance to each other. 

The reason is that only two boxes are predicted in a grid and belong to only one category. 

YOLO9000 was proposed to overcome this problem [109]. It uses a Word Tree to mix 

and detect data sets and identify data sets. It can detect more than 9,000 classes of objects.  

The coordinate values of the bounding box are predicted by the fully connected layer 

in YOLO. In YOLO9000, the fully connected layer is removed and Anchor Boxes are 

used to predict the Bounding Boxes. This is because the prediction offset is simpler than 

the predicted coordinate value. A pooling layer has also been removed. This allowed the 

output of the convolutional layer to have a higher resolution. Using the Anchor Box will 

reduce the accuracy slightly but using it will allow YOLO9000 to predict more than a 

thousand boxes, with a recall of 88% and an mAP (mean Average Precision) of 69.2%. 

( ) ( ) ( )Pr *Pr * Pr *truth truth
i jpred predClass Object Object IOU Class IOU=



 

27 
 

 

 

Figure 3.2 The structure of the classifier Darknet-53 used by YOLOv3 

 

A completely different approach is used in YOLOv3 compared to other object 

detection methods [63]. It applies a single neural network to the entire image. This neural 

network divides the image into different regions, predicting the bounding box and 

probability of each region. It also uses a better classification network and a better 

classifier called Darknet-53, instead of using SoftMax to classify each box. The main 

reason is that Softmax is not suitable for datasets with multiple label classifications. 
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Moreover, Softmax can be replaced by multiple independent logistic classifiers without 

compromising accuracy. 

 

3.3 Database Collection and Preprocessing 

A dataset of RGB-D images has been collected for this research. This section 

describes the content and the collection process of this dataset. The images in this dataset 

have also been preprocessed using homomorphic filtering algorithm. This preprocessing 

is also discussed. 

3.3.1 Database Collection 

The RGB-D image database that has been collected for this research included color 

and depth images of a total of six objects. Each object in the database includes at least 

fifty pictures taken from different angles. The objects that have been chosen are common 

objects in everyday life, such as trash cans, chairs, suitcases, etc. The images are taken 

using a ZED camera [107]. The ZED is a stereoscopic camera that can capture 1080p HD 

video at 100FPS and WFGA at 30FPS for clear images. The acquisition depth is 0.5-20 

meters. Still images have a maximum resolution of 4416´1242 pixels. Before collecting 

the images in this database, the camera is calibrated using the SDK provided by the 

manufacturer. 

In the course of our literature review, it has been found that lighting condition is a 

main factor that affects the accuracy of object recognition. The intensity of the light 
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causes the color characteristics of the object as well as the changes in the texture 

characteristics. This poses a great challenge to the accuracy of object recognition. At the 

same time, angled lighting can cause shadows. The appearance of large shadows in a 

darker environment is similar to occlusion, which also greatly affects the accuracy of 

object recognition. In order to explore the performance of our method under these 

conditions, a strong light source is used. 

When taking the images, the camera is 1.5 meters away from the object. Our process 

of collecting the images is similar to that used by [38] where the objects are placed on a 

turntable to record images of objects as the table is turned. For this database, the position 

of the camera is manually rotated through 360° around the object. However, the position 

and angle of the light source remain unchanged throughout this process. Figure 3.3 shows 

the RGB images of a chair in this database. In order to save space, images of only 15 

different angles are shown in this Figure. 
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Figure 3.3 Chair database example 

 

The depth map of the images in the database has been recorded in two formats: FULL 

and RAW. The depth map in RAW format is similar to the depth map collected in [38]. 

The FULL format is closer to a disparity map [73-75]. Since the RAW format depth map 

is noisier, the FULL format depth maps are used in the experiment. But the depth map in 

the RAW format contains a lot of information. Hence these depth maps are also kept in 

the database. 
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3.3.2 Preprocessing 

Some basic preprocessing of the images could improve the recognition accuracies. 

Since the images used in this experiment consist of both RGB and depth images, different 

preprocessing methods are applied to these two kinds of images. 

For the images that have been acquired, the depth grayscale images tend to be too 

dark. This phenomenon also exists in other image datasets mentioned in the previous 

section. So the brightness of the depth grayscale image is adjusted. For both the RGB and 

depth images, homomorphic filtering is used to increase their quality.  

   

The basic flow of homomorphic filtering is shown in Figure 3.4. 

 

Figure 3.4 Signal processing flow of homomorphic filtering 

 

 

Figure 3.5 Example of originally acquired depth maps of the chair image 

 



 

32 
 

 

Figure 3.6 Example of Full Format depth maps after preprocessing 

 

The effects of homomorphic filtering are illustrated in Figures 3.5 and 3.6. Figure 3.5 

shows three full-format depth maps of the chair images that have not been pre-processed. 

It is obvious that they are too dark. The image below is the Full format depth map after 

our preprocessing. After increasing the brightness and using homomorphic filtering to 

improve the contrast of the image, we obtained depth maps as shown in Figure 3.6 that 

are more useful. The same pre-processing could also be used for depth maps in the RAW 

format. Figure 3.7 is the result of preprocessing the depth maps in RAW format. 

 

 

Figure 3.7 Example of a RAW Format depth map after preprocessing 

 

For the RGB images, the brightness is generally acceptable. However, their contrast 

could be improved using homomorphic filtering. Figures 3.8 and 3.9 show the chair 

images before and after filtering respectively. Compared to the depth map, the RGB 

images do not change much visually before and after preprocessing. The preprocessing 

of the depth maps has a greater impact on the experimental results. 
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Figure 3.8 Example of original chair RGB images acquired 

 

 

Figure 3.9 Example of chair RGB image after preprocessing 

 

 

3.4 Research Design 

Computer experiments are planned to answer the research questions presented in 

Chapter 1. All experiments are conducted using the database of RGB-D images that have 

been acquired for the purpose of this research as discussed in the previous section. 

3.4.1 Experimental Plan 

In order to determine the effects of image segmentation using Grab-cut on the object 

recognition accuracies by YOLO, a method of comparative experiments is adopted. The 

first experiment is designed to establish a baseline for comparison. YOLOv3 is used to 

identify all the objects in the database images. The code for YOLO is based on Python 

using the TensorFlow library. 
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For the second experiment, the depth maps are segmented using the Grab-cut 

algorithm. A contour map belonging to the recognition object is obtained. Finally, 

Photoshop is used to manually merge the contour map and the RGB image. The depth 

images are pre-processed as discussed in Section 3.3.2. Both the Full and Raw formats of 

the depth grayscale image are processed. During segmentation, the one that provides the 

best segmentation results is used. YOLOv3 is then applied to identify the objects after 

image segmentation. 

3.4.2 Training 

The YOLOv3 network needs to be a trained process for target detection. Supervised 

training with relevant data is important as it greatly affects accuracy. A YOLOv3 network 

has already been trained in [25, 109] and the pre-trained model has been made available. 

This model has been trained using datasets ImageNet [87], Coco [20], and VOC [21]. 

Since it already contains the categories we use to detect objects (chairs and suitcases). So, 

in this project, we used the YOLOv3 pre-trained model provided by darknet [110]. 

3.4.3 Evaluation Method 

In the YOLO series of object detection algorithms, an important step is to use the non-

maximum suppression algorithm (NMS) to obtain the target area. Non-Maximum 

Suppression needs to find the bounding box with high confidence based on the coordinate 

information of the score matrix and the region. For forecast boxes that are overlapping, 

only the one with the highest score is retained. The confidence score is given by 
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In this mathematical expression, the value of IOU (intersection-over-union) intuitively 

determines the class-specific confidence score. It is defined by 

 

 

It is a ratio of on the area where the two bounding boxes overlap. The NMS processes can 

only work with one category at a time. These two bounding boxes are those of the 

detection results and the Ground Truth. This algorithm can only work with one category 

at a time. If there are N categories, NMS needs to be executed N times. 
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Chapter 4 Experimental results and Analysis 

4.1 Experimental results 

The aim of this research is to object detection how the accuracy of YOLOv3 could be 

improved by depth image segmentation using Grab-cut. The computer experiment results 

are shown in this Section. There are three parts of the results. The first part will show the 

detection results using the RGB images. In the second part, the results of segmenting the 

depth map using the Grab-cut algorithm are shown. In the third part, the experimental 

results using the segmented image test are shown.  

Images of two objects have been selected for these experiments. The objects are a 

chair and a suitcase. Each dataset consists of 52 sets of images. Each set of images 

includes an RGB image, a depth map in Raw format, and a depth map in Full format. As 

described in Section 3.3, these images are captured at different angles with a light source 

that is placed in such a way that there will be shadows of objects in the image. 

4.1.1 Result of the first recognition 

The first experiment establishes the “ground truth” by which comparisons are made. It 

involves only the RGB images of the datasets. In this work, we use the value of IOU after 

NMS screening as the most important value for evaluation (class-specific confidence 

score) as described in Section 3.4.3. In this and subsequent experiments, a threshold of 

0.5 is used. This means that if the IOU value is higher than 50%, then the detection is 

considered successful. A value below 50% will be recorded as a detection failure. 
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Chair dataset 

The results of the chair dataset is shown in Table 4.1. Using a threshold of 50%, 4 out 

of 52 images fail to be detected, equivalent to 7.7%. But most of the confidence scores of 

successful detection are between 60% and 80%. In order to avoid bias due to individual 

differences when the average accuracy is calculated, the two extreme values -- the lowest 

and highest confidence scores are removed. In this case, the average accuracy is 72.65%. 

 

confidence 

score 

90% 80% 70% 60% 50% Not 

recognized 

No. of images 4 14 16 11 3 4 

Table 4.1 Chair database detection results. 

 

 

Figure 4.1 Examples of recognition in the chair database. 
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Figure 4.2 Examples of recognition in the chair database. 

 

Figures 4.1 and 4.2 are examples of detection with high and low confidence scores 

respectively. It is interesting to note that a higher score is obtained when the front of the 

chair is facing the camera. But when the side of the chair is facing the camera, the 

accuracy is much lower. Incidentally, Figure 4.2 shows the case where the score is lowest.  

Confidence score as a function of the angle of rotation is shown in the graph in Figure 

4.3. In this graph the accuracy is divided into ten groups after the two extreme values 

have been removed. Thus each group has five samples and the average value of these five 

samples is displayed. Each group of objects has a similar angle and perspective. In this 

figure, the vertical axis is the magnitude of the confidence score, and the horizontal axis 

are the ten groups of images. It can be observed that the lowest average is the fourth group. 

The images in the fourth group are those where the side of the chair faces the camera. 
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Figure 4.3 Confidence score vs image perspective for the chair dataset. 

 

Suitcase Dataset 

A similar experiment is performed on the suitcase dataset. The results are shown in 

Table 4.2. The highest score is 96.7%, and the lowest is 64.5%. There is no undetected 

image. The average score, with the highest and lowest values removed, is 87.62%. This 

is substantially higher than that for the chair dataset, by about 15%. This could be due to 

greater contrast between the color of the suitcase and the background color. 

 

confidence 
score 

90% 80% 70% 60% 50% Not 
recognized 

No. of images 14 30 2 6 0 0 

Table 4.2 Suitcase database detection results 
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Figure 4.4 Examples of recognition in the suitcase database. 

 

Figure 4.5 Examples of recognition in the suitcase database. 

Figures 4.4 and 4.5 show two examples of the results with high and low scores 

respectively. As with the chair dataset, the results vary depending on the angle of the 

suitcase in the image; when the suitcase is facing sideways, the accuracy is usually lower. 

A similar graph to Figure 4.3 is produced for this dataset and is shown in Figure 4.6. 

Group 4 consists of images where the suitcase is facing sideways. 
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Figure 4.6 Suitcase database line chart 

 

4.1.2 Segmentation of Depth Map 

The main goal of this part of the experiment is to use the depth information provided 

by the depth camera to perform background separation of the original image. Because the 

principle of the Grab-cut algorithm is based on image color information and contrast, and 

since the depth images we collect have strong contrast, it is suitable for this purpose. The 

flow of this algorithm is as follows. After completing the cutting of the depth image, the 

contrast brightness is adjusted. A contour map based on the depth information is obtained. 

Then Photoshop is used to combine the contour map with the RGB image to separate 

object from the background. This process is illustrated in Figure 4.7. 
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Figure 4.7 The workflow of the segmentation process. 

 

In the process of collecting the datasets, depth maps are obtained in two different 

formats. The Raw format holds the most primitive depth information while the Full 

format is calculated from the Raw format. Each of these two depth images has its own 

advantages. The depth map in the Raw format has more large-area patches, which in some 

cases is more conducive to the process of cutting. However, these depth maps also tend 

to contain a lot of noise and “holes” in the image. They may be related to the light and 

angle of the shot, which we will discuss in more detail in Section 4.2. For this reason, 

depth maps in the Full format have been used. 

Figure 4.8 shows examples of depth maps of different formats of the chair images. 

The two pictures on the left are depth maps in Raw format while those on the right are in 

Full format. The images in the first row are from the image of the chair in the same 

position and those in the second row are in a different position from the first. 
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Figure 4.8 Example of depth maps in Raw and Full formats. 

 

 

Figure 4.9 Segmentation result of a suitcase depth map. 

 

An example of the depth map and the result of the segmentation process is shown in 

Figure 4.9. The image on the left is the depth map where the lighter the color, the closer 

it is to the camera, and the darker the color, the farther from the camera. In this case, a 

good separation is achieved. 
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Figure 4.10 Segmentation result of a chair depth map 

 

Figure 4.10 shows the depth map of a chair image. In this case, the lighter the color 

in the depth map, the farther the object is from the camera. Interference can be observed 

due to view angle and lighting factors. It is not easy to distinguish between the object and 

the ground using the depth map. As a result, the segmentation is not as successful as in 

Figure 4.9. 

Examples of the segmented RGB images can be found in Figures 4.11, 4.12, 4.14 and 

4.15. 

4.1.3 Results of the Second Experiment 

This experiment is conducted in a similar way to the first experiment. The same 

datasets are used. The only difference is that in this experiment, the segmented images 

produced using the process described in the previous section are used for object detection. 

Chair Dataset 

The results are shown in Table 4.3. The number of unrecognized images and 

inaccurate positioning has not improved much. However, the confidence score of most 
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images has increased by about 10%, and has even reached 15%. After removing the 

highest and lowest scores, the minimum and maximum scores are 62.83% and 95.53% 

respectively. 

 

confidence 
score 

90% 80% 70% 60% 50% Not 
recognized 

No. of images 12 19 15 2 1 3 

Table 4.3 Chair database detection confidence scores. 

 

 

Figure 4.11 Example of detection in the chair dataset. 
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Figure 4.12 Examples of detection in the chair dataset. 

Figures 4.11 and 4.12 show the bounding boxes of two example images. They are the 

same sample images as in Figures 4.1 and 4.2. The score of the first image increased from 

90.96% to 95. 40% and that of the second picture increased from 55.67% to 68.94%. 

The confidence score still varies with the angle of rotation of the chair. When the front 

of the chair faces the camera, the score is higher. When the back or side of the chair is 

facing the camera the score is lower as shown in Figure 4.13. However, the lowest average 

score has increased from around 60% to 70%. 

 

 

Figure 4.13 Confidence score for chair images with different orientations 

 

Suitcase Dataset 

Table 4.4 shows the results for the suitcase dataset. The confidence scores are very 
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good as expected. The lowest score is 72.02%, and the highest is 98.86%. Moreover, more 

than 60% of the scores are higher than 90%. The average score is 92.29%. Compared 

with the first experiment, there is a 5.2% increase. 

 

confidence 
score 

90% 80% 70% 60% 50% Not 
recognized 

No. of images 28 16 8 0 0 0 

Table 4.4 Suitcase database statistics 

The segmented images of Figures 4.4 and 4.5 are shown in Figures 4.14 and 4.15 

respectively. While the score changes with the angle of the suitcase, the amount of change 

is not very large. The scores for the two images have improved to varying degrees. The 

score for the first image has increased from 90.12% to 95.41%, and that for the second 

one has increased from 92.94% to 98.16%. 

 

 

Figure 4.14 Examples of recognition in the suitcase database. 
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Figure 4.15 Examples of recognition in the suitcase database. 

 

The effect of the orientation on the confidence score is shown in Figure 4.16. The 

scores fluctuate between 80% and 100%. 

 

 

Figure 4.16 Confidence score for chair images with different orientations 
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4.2 Analyses and Observations 

4.2.1 Comparison of Results 

Chair Dataset 

Figures 4.3 and 4.13 are combined into one graph in Figure 4.17. The blue line 

represents the result of the first experiment and the red line represents that of the second 

experiment. From the figure, one can see that in the fourth group, the average confidence 

scores are the lowest. The scores drop in the sixth and eighth groups, with the later group 

dropping more significantly. The overall trend of score variations between groups in the 

two experiments is approximately the same. For the first experiment, the highest and the 

lowest average scores differ by 24.47%. In the second experiment, this difference is 

20.23%. 

 

Figure 4.17 Confidence scores for Chair dataset in Experiments 1 and 2. 
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In Figure 4.18, the graph in Figure 4.17 is expressed as a bar graph for comparison. 

The blue bars represent the results of the first experiment while the red bars are for the 

second experiment. The highest increase in score (10.53%) is in the fourth group. The 

lowest increase was in group 8, an increase of 3.35%. Thus the segmentation has an 

impact on the images with the lowest original confidence scores. 

 

 

Figure 4.18 The results of Figure 4.17 in bar chart form. 

 

The average accuracy of the first experiment is 72.65%, and that of the second 

experiment is 82.40%. The above experimental data shows that the accuracy of the 

recognition changes as the chair rotates. After segmenting the original RGB image using 

the depth map, the results are more stable, and the accuracy is improved. The average 

improvement is about 10%. 
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Suitcase Dataset 

A comparison of the confidence scores of the 10 groups of images in experiment 1 

and 2 is shown in Figure 4.19. Again, the trends are similar in both cases. This graph is 

expressed in a bar chart form in Figure 4.20. It can be observed that the confidence scores 

in the second experiment are higher than in the first. The third group is the one with the 

greatest difference in scores. For this group, the average score is 83.81% in the first 

experiment and 91.55% in the second experiment, giving a difference of 7.74%. On the 

whole, the improvement is relatively small. 

 

 

Figure 4.19 Confidence scores for Suitcase dataset in Experiments 1 and 2 
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Figure 4.20 Results in Figure 4.19 expressed in bar chart form. 

 

The average score of the first experiment is 87.62%. This is compared with 92.29% 

for the second experiment – an increase of 5.2%. Compared to the 10% improvement in 

the chair database, the 5.2% increase in the suitcase dataset is much smaller. But the score 

of the suitcase dataset is much higher than the chair dataset. So, this is still a good 

performance. 

4.2.2 Other Observations 

Apart from the confidence scores, in the course of the experiment, three other 

phenomena have been observed. 

Effect of Angle of View 

It has been observed that the confidence score varies as the angle of view is changed.  
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Figure 4.21 Example of undetected object 

 

Low scores or even undetected objects usually occur when the object is viewed side-

on. Figure 4.21 shows two images where the chair is not detected by YOLOv3. A 

plausible reason is that the images are not properly pre-processed. In the traditional object 

recognition process, the color distribution, overall brightness, and size of the image are 

usually adjusted to provide the best possible results. However, the RGB images of the 

chair and suitcase datasets have not been preprocessed. Preprocessing is only performed 

on the depth images. Some images are dark due to lighting factors. Darker pictures tend 

to lose image details and have a negative impact on the confidence score. For the above 

reasons, the darkness of the RGB image affects the accuracy at different view angles. 

With object recognition, feature extraction is the first step and an important part of 

the recognition method. A second plausible reason is that the YOLOv3 model training is 

not sufficient to extract sufficient features of the object when it is viewed from the side. 

Increased learning of the objects side-on would possibly improve accuracy.  
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Figure 4.22 Chair database recognized example 

 

Figure 4.23 Suitcase database recognized example 

 

The Suitcase Dataset Produces Better Results 

Figures 4.22 and 4.23 show a chair and a suitcase image that is in the dataset used in 

the experiments. Both images have been segmented using the depth map. Also, these two 

images have the object viewed at the same angle. Even though the conditions are roughly 

the same, the confidence score of the suitcase is significantly higher than that of the chair. 

It has been discussed in the previous section that the scores of the suitcase images are 

always higher than the chair images. This could be due to the following two reasons. The 

first one is that the color of the chair is close to the color of the light. This makes the 
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chairs more affected by illumination. The small color difference between the foreground 

and background in the chair images thus results in low scores. Thus, in this case, depth 

information helps to segment the chair from the background. 

The second reason is that the chair is more complicated in structure compared with 

the suitcase. This makes the chair a lot more difficult to model. Given a set of features, 

extracting the same points and distinguishing the different points becomes a problem to 

be solved by the model. Moreover, the shape of the chair also results in more shadows 

that could interfere with the recognition process. 

 

Noise problem in the RAW format depth map 

From experience, in most cases, the Full format of the depth maps has less noise. 

While this is the case, depth maps in RAW format with large same-color patches are more 

suitable for cutting. If the noise in these depth maps could be reduced, then Raw format 

depth maps could produce more accurate segmentation. 

The ZED camera is a stereoscopic camera. A stereoscopic camera calculates depth 

information by matching pixels belonging to the same target in two images. The method 

used by the stereoscopic camera is called the epipolar constraint. Epipolar constraint 

refers to the fact that when the same spatial point is imaged separately on the two images, 

the left projection point p1 is known, then the corresponding projection point p2 must be 

on the polar line relative to p1, which can reduce the matching range. When the two 

cameras of a stereoscopic camera are not in the same horizontal plane, the camera uses 
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image correction technology to level the two cameras by matrixing the two images. 

The key to the method of computing the depth map is the matching of pixel points. 

To get a depth map with high precision and less noise, the original image cannot lose too 

much detail. Since lighting conditions affect the quality of the picture, it is possible that 

if the lighting conditions are good, the noise of the depth map will be reduced. 

 

 

Figure 4.24 Comparison of different lighting conditions 

 

In order to verify this speculation, depth maps are acquired in different lighting 

conditions in RAW format and compared. The two images shown in Figure 4.24 are under 

different lighting contrasts, with the one on the right under brighter lighting. Figure 4.25 

shows the corresponding depth maps of these two images. By increasing the brightness 

of the image, the depth image has less “holes” in them and thus makes it easier to segment 

the chair. Course this is just an unscientific verification and is not comprehensive nor 

conclusive. This could be a direction of future research. 
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Figure 4.25 RAW format depth map obtained under different lighting conditions. 
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Chapter 5 Conclusions and Future Works 

5.1 Conclusions 

Illumination conditions have always been one of the important factors affecting the 

accuracy of object recognition. Although the performance of the existing object 

recognition system is already excellent, there is still room for improvement in the case of 

a complicated lighting environment. With the advent of depth cameras, further 

improvements in the field of image recognition have become possible. This thesis 

proposes a method to improve the accuracy of YOLO object recognition model. Our 

proposed method uses the depth information of segment the target. One of the benefits is 

that it can reduce the impact of complex environments on recognition. In order to get the 

environment needed for the experiment, we collected our own depth image database. And 

we preprocessed the image for the characteristics of the depth map. We collected this 

database in the absence of sufficient lighting conditions. In the process of collecting the 

database, we used a strong yellow light source. This practice changes the color 

characteristics of the object and creates a lot of shadows that can challenge existing 

recognition systems. After reviewing the literature, we have chosen the YOLO model. In 

parallel, we chose the Grab-cut algorithm when cutting the depth map. 

In order to test the performance of our proposed method, we conducted three 

experiments in this project. In the first experiment, we used the YOLO model to identify 

the color images in the database, and the results were not very satisfactory. In the second 

experiment, we used Grab-cut on the data. The depth map in the middle was cut. After 
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merging the segmented contour map with the original color map, we have completed the 

extraction of the target object. In the third experiment, we used YOLO to identify the 

segmented image. Compare the results of the first and second experiments, after the 

treatment increased by 5.2% to 10%. This proves that the method we proposed is effective. 

We also made our own analysis of several phenomena that appeared in the experiment. 

These phenomena included different angles lead to different accuracy; the accuracy of the 

suitcase database is higher than the accuracy of the chair database. At the same time, we 

also analyzed how to reduce the RAW format depth map noise. 

 

5.2 Future Works 

Regardless of the great efforts, we contributed to this project, there are still 

considerable limitations and factors hinder us from betterment. We intend to make 

improvements in our future work. 

 

1. The database we collected in this project includes about 400 images, and in our 

database, only one scenario is included. We plan to continue to maintain the 

collection of the database in the future. And we plan to collect the database in more 

scenarios. 

 

2. When collecting the depth database, we found that the distance from the ground to 

the camera is similar to the distance from the object to the camera. So, both have 
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similar colors and shades in the depth map. This will challenge us to the process of 

segmentation. In future work, we will begin to work on the use of depth information 

to identify ground. 

 

3. We used YOLO as our object recognition model in our experiments. In future work, 

we will try to use other object recognition models and compare their performance. 

 

4. In the process of analysis, to reduce the noise in the depth map. We have proposed 

ways to increase illumination. In future work, we will investigate how to reduce the 

noise in the depth map.  
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