Comparing Global Optimization and Default
Settings of Stream-based Joins

M. Asif Naeem, Gillian Dobbie, and Gerald Weber

Department of Computer Science, The University of Auckland,
Private Bag 92019, 38 Princes Street, Auckland, New Zealand
mnae006@aucklanduni.ac.nz,{gill, gerald}@cs.auckland.ac.nz

Abstract. One problem encountered in real-time data integration is the
join of a continuous incoming data stream with a disk-based relation. In
this paper we investigate a stream-based join algorithm, called mesh join
(MESHJOIN), and focus on a critical component in the algorithm, called
the disk-buffer. In MESHJOIN the size of disk-buffer varies with a change
in total memory budget and tuning is required to get the maximum
service rate within limited available memory. Until now there was little
data on the position of the optimum value depending on the memory
size, and no performance comparison has been carried out between the
optimum and reasonable default sizes for the disk-buffer. To avoid tuning,
we propose a reasonable default value for the disk-buffer size with a small
and acceptable performance loss. The experimental results validate our
arguments.

Key words: ETL for real-time data warehouse, ETL optimization, Tun-
ing and management of the real-time data warehouse, Performance and
scalability, Stream-based join

1 Introduction

Data warehouses are used to aggregate and analyze data in order to provide reli-
able information for business-related decisions. Traditional data warehouses are
static data repositories based on batch-driven Extract-Transform-Load (ETL)
tools. Data loading from operational systems to data warehouses is usually per-
formed on a nightly basis or even in some cases on a weekly basis, therefore
typical data warehouses do not have the most current data.

To make data integration near to real-time a new concept of data ware-
housing, called real-time or active data warehousing, has been introduced [1][2]
[3][4][5][6]. In real-time data warehousing the updates occurring on operational
data sources are immediately reflected in the data warehouse.

In data warehousing, the data needs to be transformed into the destination
format before loading it into the data warehouse. One important type of trans-
formation is the replacement of the key in the data source with a data warehouse
key, which is also called a surrogate key. A surrogate key is typically an integer-
based format which is used to access the data from the data warehouse uniquely.

2 M. Asif Naeem, Gillian Dobbie, Gerald Weber

To perform this key transformation in practice a join is required between source
updates and a master data table.

Source data updates after
Join operator key transformation

Product_code Product_name Product_name | Warehonse key
BH501 Banana Banana 1001
APADS Apple Apple 1002
MGL05 Mango Mango 1003

Join output

Source data updates

Continuous data stream

Taster data
Product_code | Product_name = Warehouse_key
EN501 Banana 1001
APADS Apple 10z
MG105 Mango 1003

Fig. 1. An example of key transformation

Consider the example shown in Figure 1 where the updates occurring at the
source level are propagated to the transformation layer. In the transformation
phase, the source keys are validated against the master data using a join and
the corresponding records are enriched producing output tuples.

In proprietary data warehousing, this join is usually performed using block
algorithms [15][7] where the incoming tuples are buffered and then joined in order
to reduce the execution time. In the case of real-time data warehousing where
a continuous stream of updates is propagated and needs to be processed, these
algorithms do not work efficiently because of the blocking factor. The major
challenge is to deal with the different rates of join inputs. The incoming stream
is fast while the access rate of disk-based tuples is relatively slow.

The Index-Nested-Loop (INL) algorithm is an option for implementing this
join. In the case of INL, a stream S is scanned tuple by tuple and the look-up
relation R is accessed using a cluster-based index on the join attribute. Although
this join algorithm can deal with a continuous stream and can generate the
output in an online fashion, it requires extra time to maintain an index on the
join attribute and also it handles one tuple at a time reducing the throughput.

The MESHJOIN algorithm was introduced by Polyzotis et al. [5][6] to per-
form joins between a continuous stream and a disk-based relation using limited
memory. The key idea of the algorithm is that, for each iteration it retrieves a
number of pages from disk and a set of tuples from the stream and then loads
them into relevant buffers. The disk buffered pages are then joined with all tu-
ples stored in a hash table and the final output is generated. At the start of next
iteration the expired tuples are discarded from the hash table and the new inputs
are scanned into both buffers. The advantage of this algorithm is to amortize
the fast arrival rate of the incoming stream by executing the join of disk pages
with a large number of stream tuples.

Although the original paper gave a very clear explanation of how the al-
gorithm worked, it contained only a very brief evaluation of one of its critical
components, the disk-buffer, which stores the disk relation R. For every new

Comparing Global Optimization and Default Settings of Stream-based Joins 3

memory budget, MESHJOIN tunes this disk-buffer size in order to find its op-
timum value. This is further explained in section 3.

In this paper we evaluate the algorithm and propose an alternative to the
tuning approach for the MESHJOIN algorithm. We analyze the performance of
the algorithm for different sizes of disk-buffer, and compare the performance for
the optimal disk-buffer size with the performance for a default size that remains
constant for all memory budgets. We find a difference of less than two percent. In
the straightforward implementation of MESHJOIN, the tuning component has
full control over the buffer size. Since the tuning component has a sizeable code
base, it can have errors. A typical estimate assumes 20 errors per 1000 lines
of code [22]. These errors can produce widely deviating buffer sizes, or worse
fatal errors. Widely deviating buffer sizes are a higher risk than the default size.
Therefore our findings suggest that in critical applications the tuning component
could be omitted and the default size should be chosen.

The rest of the paper is structured as follows. Section 2 focuses on the
working, architecture and algorithm for MESHJOIN. Our observations about
MESHJOIN are discussed in section 3. Tuning and performance comparisons
using default and optimum values for the disk-buffer sizes, are presented in sec-
tion 4. Section 5 explains the strategy for choosing the default value for the size
of disk-buffer. Section 6 describes the related work and finally section 7 concludes
the paper.

2 MESHJOIN

To support real-time data warehousing, the stream-based algorithm MESHJOIN
is designed for joining a fast stream S with a large disk-based relation R under
a limited memory budget. The algorithm can be tuned to maximize the output
for a specific allocated memory size or to minimize the memory limit for a
specific output. The authors made the following assumptions about the join
input parameters for the MESHJOIN algorithm:

1. The disk-based relation R remains unchanged during the transformation.

2. There are no special physical characteristics (e.g. index or cluster property)
of R.

3. The algorithm receives a continuous stream S from the data source without
any bottleneck.

2.1 Basic operation

The operation of MESHJOIN is illustrated with the help of an example [5][6].
Assume that R contains two pages, p; and po, and there is sufficient memory to
hold the window of the two most recent tuples of the stream. The operation of
the algorithm at different time intervals is depicted in Figure 2.

1. At time ¢t=0, the algorithm scans the first stream tuple s; and the first page
p1 from relation R and joins them in memory.

4 M. Asif Naeem, Gillian Dobbie, Gerald Weber

already joined withpy already joined with p
51

Join mo duleﬁ

Join module Join module
]
1
et
&

Fig. 2. MESHJOIN Operation[5][6]

2. At time t=1, the algorithm brings a second stream tuple s into memory
along with the second page p,. Currently the page ps is joined with two
stream tuples. Since the stream tuple s; has been joined with all of relation
R it can be removed from memory.

3. At time t=2, the algorithm again retrieves both inputs p; and s3 into memory
from the sources R and S respectively. At this time page ps is replaced by p;
and s; with the next stream tuple s3 and thus page p; is joined with s, and
s3. As stream tuple so has joined with both pages p; and ps, it is discarded
from memory.

2.2 Architecture

The architecture of the MESHJOIN algorithm is shown in Figure 3. In the figure,
there are two input sources, one is a continuous data stream S and the other is a
disk-based relation R. MESHJOIN continuously scans the data from these input
sources and joins them together in order to generate the result. The disk relation
R is scanned sequentially but in a cyclic manner i.e. after scanning the last page
it again starts from the first page. It is assumed that k iterations are required
to bring the whole relation R into memory. In each iteration a set of tuples w is
scanned from stream S and stored in the hash table H along with their pointer
addresses in a queue . The size of @ in terms of number of partitions is normally
equal to the number of iterations k. The reason is once the stream tuples enter
into the execution window they are probed by all tuples of relation R before
they expire. The key function of @ is to keep a record of stream tuples in order
to identify the expired tuples for each iteration. In each iteration MESHJOIN
scans b pages from disk and loads them into a buffer, therefore the total number
of pages in R is Np=k.b.

2.3 Algorithm

The pseudo-code for the original algorithm is shown in Figure 4. For each it-
eration, the algorithm takes two parameters, w tuples and b pages, from the

Comparing Global Optimization and Default Settings of Stream-based Joins 5

HE BEEEE
&C)ueue Q, to store w po nters& Hash
table

w tuples
BN of s 5

Join outnut

-y
o] =
200

Partitions Total number of partions in R=%
Size of each partition =4 (pages)

Fig. 3. Architecture of MESHJOIN(5][6]

input sources S and R respectively and feeds them into relevant buffers. Be-
fore starting the join execution the algorithm monitors the status of Q. If it is
already full, the algorithm dequeues the pointer addresses of the oldest tuples
and discards the corresponding tuples from the hash table. In the next step the
algorithm stores w tuples in the hash table with their corresponding addresses
into Q. Finally, it generates the required output after performing the join of b
pages with all tuples in the hash table.

MESHJOIN algorithon

Input: & relation & and a stream 5.
Output: Stream 8 8.5
Parameters: w tuples of 5 and & pages of R
Methad:
/. While true
2. READ & pages of R into disk-buffer
3 If @15 full Then
4. DEQUE T from O where T are w pointers
5 REMOVE the tuples of hash & that correspond to T
6. EndIf
T ADD wtuples of 5m &
8. ENQUEUE in &, w pointers to the above tuples in /&
9. Foreach tuple » in & pages of B
10. Output » ® &
11. EndWhile

Fig. 4. MESHJOIN algorithm|[5][6]

6 M. Asif Naeem, Gillian Dobbie, Gerald Weber

3 Problem definition

In this paper we focus on an optimization problem for a critical component of
MESHJOIN. As shown in Figure 3 , the disk-buffer component of MESHJOIN
is used to load a group of disk pages into memory and its size varies with a
change in the total allocated memory for join execution. Therefore, in order to
achieve the maximum service rate within a fixed memory budget, MESHJOIN
first tunes that disk-buffer component. The parameters that MESHJOIN uses
in tuning are based on a cost model.

To explore the analytical steps behind this tuning process we consider the cost
equations [5][6], both in terms of memory and processing, used by MESHJOIN.
To calculate the memory cost, MESHJOIN uses the following equation while the
symbols used in the cost equations are explained in Table 1.

N, N
M:b~vp+w-vs+wTRsize0f(ptr)+w-fTRv5 (1)

where M is the total memory reserved by all join components, which can be less
than or equal to the maximum memory budget, b - vp is the piece of memory
allocated for the disk-buffer, w-vg is the memory reserved for the stream-buffer,
w%sizeof(ptr) represents the memory reserved by the queue and finally, w -
f %vs is the memory allocated for the hash table.

The MESHJOIN processes w tuples in each iteration of the algorithm and
the processing cost for one iteration is denoted by c¢;40p that can be calculated
using the following equation.

cloop:cI/O(b)+w~cE+wocs+w~cA+bv—PcH+0bv—PcO (2)
UR UR

where c;/0(b) is the cost to read b pages from the disk, w - cg is the cost to
expire w tuples from the queue and hash table, w-cg is the cost to read w tuples
from stream S into the stream-buffer, w - c4 represents the cost to append w
tuples into the queue and the hash table, b72cy denotes the probing cost of all
tuples in b pages into the hash table, and finally, Ubf)—;co represents the cost to
generate output for b pages.
Also equation (1) can be written in the following form as:

M—b-vp

vg + %Sizeof(ptr) + %vs - f

3)

w =

Similar to equation (2), ¢jo0p is the processing cost for w tuples therefore, the
service rate pu can be calculated using the following equation.

o= — 4)

Cloop

By substituting the value of w in equation (4),
M—b- vp

Cloop(Vs + %sizeof(ptr) + %vs -)

M:

Comparing Global Optimization and Default Settings of Stream-based Joins 7

Table 1. Notations used in cost estimation of MESHJOIN

lParameter name [Symbol ‘
Size of each tuple of S (bytes) vs
Number of pages in R Ngr

Size of each tuple in R (bytes) VR

Size of each page in R (bytes) vp
Number of pages of R in memory for each iteration b

Total number of iterations required to bring the whole R into memory|k

Number of stream tuples read into join window for each loop iteration|w

Cost of reading b disk pages into the disk-buffer cryo(b)
Cost of removing one tuple from H and @ CE
Cost of reading one stream tuple into the stream-buffer cs
Cost of appending one tuple into H and @ cA
Cost of probing one tuple into the hash table cH
Cost to generate the output for one tuple co
Total cost for one loop iteration of MESHJOIN (seconds) Cloop
Total memory used by MESHJOIN (bytes) M
service rate (tuples/second) m

If we are interested in the maximum service rate depending on b, then we can
find the maximum of equation (5) as a function of b using numerical methods.
Numerical methods are necessary, since equation (5) depends on ¢;/0, which is
a measured function of b and we have no analytical formula for it. MESHJOIN
uses a tuning step, where for each memory budget M, the optimal disk buffer size
b is determined by solving this numerical problem. The size of the disk-buffer is
not fixed and a tuning effort is made for every new memory budget. The issue
is whether this tuning effort is really necessary.

4 Tuning and performance comparisons

4.1 Proposed investigation

We decided that in order to assess the necessity of the tuning process for the
component disk-buffer in MESHJOIN, we need empirical results about how the
cost function behaves in a real world scenario, and how much better the per-
formance for the optimal setting is, as compared to reasonable default settings.
Since the original code was not available on request, we investigate this problem
by implementing the MESHJOIN algorithm ourselves, incorporating the same
assumptions around the input stream and disk-based relation R as described in
section 2. Our implementation and settings are available for download.

As a preview of our findings in this paper and to indicate where we are
heading, we show in Figure 5 a sample performance measurement of MESHJOIN
for different sizes of the disk-buffer within a fixed memory budget. Note that in
order to magnify the effect under investigation the y-axis does not start with
zero . We observe that the curve has a pronounced knee [21]. According to

8 M. Asif Naeem, Gillian Dobbie, Gerald Weber

90000
83000
a6000
G4000
§2000
a0000
78000
76000
74000
72000
70000 T T T

02 0393073117156 193234 273 313352 39

Dizk-buffer size (MB)

anjea ynejap
anjea wnwinndo

Service rate (tuples/zec)

Fig. 5. Effect of disk-buffer on MESHJOIN performance using fixed memory budget
(80MB)

the figure the service rate grows drastically up to the knee in the curve. We
observe a saturation behavior, where incrementing the disk-buffer size improves
the performance only a little. This is important, because it allows us to choose
a default value near the knee of the curve. In the end, we will come up with a
reasonable default value for the disk-buffer size that holds for a series of memory
budgets. Before proceeding towards the experimental results we first describe the
experimental setup.

4.2 Experimental setup

We implemented a prototype of the MESHJOIN algorithm using the following
specifications.

Hardware specifications: We conducted our experiment using Pentium-IV
2x2.13GHz machine with 3G main and 160G disk memory under Windows-XP.
We implemented the experiment in Java using the Eclipse IDE Version: 3.3.1.1.
We also used built-in plug-ins, provided by Apache, and built-in functions like
nano Time(), provided by the Java API, to measure the memory and processing
time. In addition to that, Java hash table does not support the storage of multiple
tuples against one key value. To resolve this issue we used multi-hash-map,
provided by Apache, in our experiments.

Data specifications: We analyzed the performance of MESHJOIN using
synthetic data. The look-up data (relation R) is stored on disk while the stream
data is generated at run time using our own random-number generating pro-
cedure. Both the look-up data file and random number generating procedure
are also available along with our open source MESHJOIN implementation. We
tested our experiment with varying sizes of disk-buffer to find its optimum default
value. On the other hand the size of the stream-buffer is flexible and fluctuates
with the size of disk-buffer. Similarly the size of the @ (in terms of partitions)
also varies with the total number of iterations required to bring the whole R

Comparing Global Optimization and Default Settings of Stream-based Joins 9

into disk-buffer. The detailed specification of the data that we used for analysis
is shown in Table 2.

System of measurement: The performance of the join is measured by
calculating the number of tuples processed in a unit second, which is the service
rate and is denoted by u. We start our measurement after some iterations of
the loop. For increased accuracy we take three readings for each specification
and take their average. Moreover, it is assumed that during the execution of the
algorithm no other applications run in parallel.

Table 2. Experimental data characteristics

Parameter [value
Disk-based data

Size of disk-based relation R |3.5 millions tuples
Size of each tuple 120 bytes
Default size for the disk-buffer|0.93MB

Stream data
Size of each tuple 20 bytes
Size of each pointer in @ 4 bytes
Fudge factor for hash table 4.8

4.3 Tuning of disk-buffer for different memory budgets

We first analyze the optimum values of the disk-buffer size for a series of memory
budgets and the join performance at these optimum values. No such values for
different memory settings have been published before. In order to obtain the
optimum value for the disk-buffer size we tuned MESHJOIN for a series of
memory budgets.

Figure 6 depicts the optimum values for the disk-buffer size in the case of
different memory budgets. The figure shows that the size of disk-buffer increases
with an increase in the total memory budget. As the total memory M depends
on w and b and we also stated that w also depends on b, therefore the optimum
size of disk-buffer b will increase with an increase in the total memory budget.

4.4 Performance analysis using default and optimum values for the
disk-buffer size

In this experiment we test the MESHJOIN algorithm for a series of memory
budgets in order to observe the real difference in performance for a reasonable
default value and optimum values of the disk-buffer size. Figure 7 shows perfor-
mance measurements for different memory budgets along with the default and
optimum values for disk-buffer size. Note that, the scales in Figure 7 differ from
Figure 10(a). The scale of the y-axis is larger in Figure 7, and only the lowest

10 M. Asif Naeem, Gillian Dobbie, Gerald Weber

4
3.5 A
3 4
2.3 A
o
1.5 A
1 4
0.3 A

Optirum size for disk-buffer (MB)

a T T T T T T
5 10 20 40 a0 160 320
Total memory (MB)

Fig. 6. Optimum values for the disk-buffer size with respect to the different memory

budgets
165000 4 ,
155000 | | !
@ 145000 - i -
135000 A | detaut value | optimum value
125000 - | for disk-butter I for disk-buffer
= 115000 1 i !
= 105000 - | remmeos .
= ga000 | | —s— 160 MB
2 85000 - —4— 50 MH
= 75000 - — i ——d0mB
= 55000 A P —A—
2 55000 -
R I
v 35000 4 f----
25000 - P
15000 LA T e B —_

02 039 078 117 156 1.85 234 273 313 352 39
Disk-buffer size (MB)

Fig. 7. Performance comparisons using default and optimum values for the disk-buffer
size in case of different memory budgets

most curve is shown in Figure 10(a). Also in Figure 5, only the 80MB curve is
shown.

The optimum value for 20MB is 0.93MB. The setting 20MB is the memory
budget from the original MESHJOIN paper and for today’s computing landscape
a very small value for a server component even when considering limited memory
budgets. For the purposes of this discussion we deemed it most helpful to use
the optimum value for this setting as the default value, because if we obtain a
reasonable performance for all other memory budgets, there is a strong indication
that tuning dependent on the overall memory budget is not necessary.

We observe for all memory budgets a clear saturation behavior. In the case
of 40MB as total memory budget, the value for the optimum disk-buffer size
is 1.35MB and the improvement in performance as compare to the default size
of disk-buffer is only 0.4%. By considering the 80MB total memory budget, the

Comparing Global Optimization and Default Settings of Stream-based Joins 11

value for the optimum disk-buffer size is 1.91MB with 1.17% performance im-
provement. Finally, in the case of 160MB as total memory budget, the optimum
value for the disk-buffer size is 2.63MB and it again improves the performance
a little, 1.78%.

1400000

4200000 4 High YO cost

W
=
S 1000000 4 \5"‘—0‘%.5,‘,_,_,
= N y
% snooon | ~ k—Y—}
= P
= I/0 cost decreasing Invisible
= 500000 4 decrement
w .
=1 in /0 cost
© 400000 A
o
=

200000 4

0

02 039 078 147 156 1.95 234 273 313 352 3.91
Disk-buffer size (MB)

Fig. 8. Disk I/O cost for different sizes of disk-buffer

To prove this experimentally we measured the I/O cost per page amortized
over all pages read into the disk-buffer in one iteration. The per page I/O cost
for different sizes of disk-buffer is depicted in Figure 8. The figure shows that
in the beginning the I/O cost is high due to the small size of the disk-buffer.
After that as the size of disk-buffer increases the amortized I/O cost per page
decreases, but after a while further increments in the size of the disk-buffer does
not reduce the I/O cost considerably.

300000

—=— Service rate using optimal disk-buffer 274510
—a&— Service rate using default disk-buffer
250000 269295
o
& 200000 -
) 163203
=
= 150000 A 160345
=
@
1=
Z 100000
)
80000 455472
460585
23172
u] T T T T
20 40 80 160 320

Total memory budget (MB)

Fig. 9. Performance comparison directly at default and optimum values of disk-buffer
size using different memory budgets

12 M. Asif Naeem, Gillian Dobbie, Gerald Weber

To visualize the performance difference more clearly we also measure the
MESHJOIN performance directly on the default value and the optimum values
of disk-buffer size for a series of memory budgets. Figure 9 depicts the experi-
mental results in both cases. From the figure it is clear for small memory budgets
the performance of the algorithm is approximately equal, and even for a large
memory limit (320MB) there is no remarkable improvement in performance.

4.5 Cost validation

In this section we validate our implementation of MESHJOIN by comparing
the predicted cost with the measured cost. In the case of the predicted cost,
we first calculated the cost for one loop iteration using equation (2) and then
calculated the service rate by applying the formula in equation (4). To validate
the cost model we performed two different kinds of experiments. The results of
both experiments are shown in Figure 10.

24000 —8— Measured service rate 300020 —8— Measured service rate
= 23000 | : —&— Predicted service rate o 250000 —i— Pradicted senvice rate
@ @
E 22000 4 o 200000
& B
E 21000 4 Ef' 150000 4
2 2
2 20000 £ 100000 -
g z
@ 18000 A @ 50000 A
18000 e e e L 0 T T T T
0.2 039078117166 195 234273313 3.62 391 20 40 80 160 320
Disk-buffersize (MB) Total memory budget(MB)
(2)Predicted and measured perfommance within (b) Predicted and measured performance
fixed memory budget (20MB) while the size of for different memory budgets

disk-bufferincreases inearly

Fig. 10. Cost validation of MESHJOIN

In our first experiment, shown in Figure 10(a), the size of disk-buffer increases
linearly while the total memory budget is fixed. In the figure both the measured
and the predicted results indicate that the performance of MESHJOIN remains
consistently high for small values of disk-buffer size and drops rapidly as disk-
buffer size is increased. In our second experiment, shown in Figure 10(b), we
validate the cost model using optimum disk-buffer for different memory budgets.
However, in both cases the measured cost closely resembles the predicted cost,
validating the correctness of our MESHJOIN implementation.

Comparing Global Optimization and Default Settings of Stream-based Joins 13
5 Approach for choosing the default value

Although the function for the performance of MESHJOIN depending on the
buffer size has a pronounced knee (see Figure 5), it is still a smooth curve,
therefore the question arises, which exact value should be chosen as a default
value. Through practice, we have observed that a value for the buffer size which
is optimal for a specific setting is at the same time still a good value for a wide
range of settings, and therefore suitable as a default value.

In order to support this we have chosen in our experiments a default size
of 0.93MB, which is the optimal buffer size for a very small memory budget.
Our experiments have shown that this setting is also sufficient for other memory
budgets allocated for MESHJOIN. In particular we have shown that the results
for this default value were less than 3 percent below the optimum for all tested
memory settings. We restricted our tests to memory sizes up to 320MB. This
restriction is motivated by the fact that MESHJOIN, according to the authors
of the original publication, is designed for a limited memory budget. In fact the
original publications only consider memory budgets up to 40MB, so our investi-
gation up to 320MB has sufficient security margin. In summary our experiments
have shown that while the optimal disk buffer size varies over a certain range,
the performance achieved with them varies only in the order of a few percent.
Therefore, in settings where simplicity of the system has precedence over very
small performance gains, the default buffer size strategy seems worthwhile.

This default value is still dependent on the underlying hardware, therefore
we focus primarily on the transferability of default values for settings on the
same hardware. Nevertheless it is fair to assume that even across different but
similar hardware configurations there will be some transferability.

6 Related work

Most of the research related to data warehousing deals with managing propri-
etary warehouses [8][9][12]. To make data integration near to real-time, different
approaches [1][2][3][4] have been introduced that primarily use block algorithms
[11]]10] to perform the join between source updates and the look-up table. These
block algorithms store the incoming data streams in disk-buffers and process
them in batches. Therefore, such algorithms normally can work efficiently for
off-line data loading windows.

In the field of real-time data warehousing the processing of continuous data
streams has become an emerging area for research. Researchers have explored
the area from different perspectives and inspected issues related to join exe-
cution requirements, data models, challenges in query processing and different
algorithmic problems [13][14].

The sort-merge join [15] is a well known algorithm that joins two different
data sets. The major drawback with this algorithm is that it cannot start its
execution until all the data is sorted, causing unnecessary delays to generate the
join output.

14 M. Asif Naeem, Gillian Dobbie, Gerald Weber

To remove this delay different progressive joins are proposed [16][17][18][19].
The basic aim of these algorithms is to generate the output as fast as the tuples
arrive. The key idea used in these approaches is to access the input stream in
a continuous manner and in the case when memory is not sufficient, the excess
tuples are flushed to the disk to be processed later when resources are free.
The key challenge with these approaches is the need to process each tuple very
efficiently while there is a large volume of incoming data. In addition to that
the stream amortizing cost should be smaller than the time difference of two
contiguous incoming tuples. Under certain conditions, the number of unprocessed
tuples will grow regularly and exceed the memory limit.

The novel flushing algorithm [20] was proposed to enhance the performance of
a progressive join. Again this algorithm does not fulfil our requirements because
the stream tuples are stored on disk rather than in a memory buffer which can
be refreshed in an online fashion. The recent algorithm [5][6] that we focus on
in this paper, fulfils the requirement of join execution with a continuous data
stream.

7 Conclusions and future work

In real-time data warehousing the stream of update tuples needs to be trans-
formed in an online fashion before loading the result into the data warehouse.
To perform this transformation a join operator is required in order to probe the
incoming stream tuples with master data. In this research we explore a stream-
based join, MESHJOIN. MESHJOIN reserves a variable size of memory for a
disk-buffer to store the relation R and the procedure to measure the size of the
disk-buffer was not previously evaluated. In addition for every memory budget
the algorithm tunes the disk-buffer in order to find its optimum value. In our
research we defined a complete set of parameter settings for the setup. The ex-
ample default settings for the setup used here are derived from experimental
results. We have shown that the default settings are <2% worse than the opti-
mum, which should be taken into account when considering the importance of
the optimization process. Given that the tuning component is a sizeable fraction
of the code, and every code can have bugs, this is an important indication that
in mission critical systems one should consider only using the default size. We
have provided an open source implementation of the MESHJOIN algorithm.

In order to deal with the intermittent nature of the input stream updates,
in the future we will extend the implementation of the MESHJOIN algorithm
with indexes on the disk-based relation that will further enhance the efficiency
of real-time data warehousing.

Source URL: The source for our implementation can be downloaded from.
https: / /www. cs.auckland.ac.nz/research/groups/serg/mj/BIRTE/

References

1. Bruckner, R., M., List, B., Schiefer, J.: Striving towards Near Real-Time Data Inte-
gration for Data Warehouses. In: DaWakK 2000: Proceedings of the 4th International

Comparing Global Optimization and Default Settings of Stream-based Joins 15

Conference on Data Warehousing and Knowledge Discovery, pp. 317-326. Springer-
Verlag, London, UK(2002)

2. Nguyen, A., Tjoa, A.: Zero-Latency data warehousing for hetrogeneous data sources
and continuous data streams. In: iiWAS’2003 - The Fifth International Conference
on Information Integrationand Web-based Applications Services, Austrian Com-
puter Society (OCG)(2003). pp. 55-64

3. Francisco, A.: Real-time Data Warehousing with Temporal Requirements. In: CAiSE
Workshops(2003)

4. Karakasidis, A., Vassiliadis, P., Pitoura, E.: ETL queues for active data warehousing.
In: IQIS ’05: Proceedings of the 2nd international workshop on Information quality
in information systems, pp. 28-39. ACM, New York, NY, USA(2005)

5. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.E.: Sup-
porting Streaming Updates in an Active Data Warehouse. In: ICDE 2007. IEEE
23rd International Conference on Data Engineering, pp. 476-485. Los Alamitos,
CA, USA(2007)

6. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Mesh-
ing Streaming Updates with Persistent Data in an Active Data Warehouse. In:
IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 7, pp. 976-991, Piscataway, NJ,
USA(2008)

7. Shapiro, L. D.: Join processing in database systems with large main memories. In:
ACM Trans. Database Syst., vol. 11, no. 3, pp. 239-264, New York, NY, USA(1986)

8. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: AJAX: an extensible data clean-
ing tool. In: SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pp. 590, New York, NY, USA(2000)

9. Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, J.: Performance Issues
in Incremental Warehouse Maintenance. In: VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, pp. 461-472, San Francisco,
CA, USA(2000)

10. Labio, W. J., Wiener, J. L., Garcia-Molina, H., Gorelik, V.: Efficient resumption
of interrupted warehouse loads. In: SIGMOD Rec., vol. 29, no. 2, pp. 46-57, New
York, NY, USA(2000)

11. Labio, W., Garcia-Molina, H.: Efficient Snapshot Differential Algorithms for Data
Warehousing. In: VLDB ’96: Proceedings of the 22th International Conference on
Very Large Data Bases, pp. 63-74, San Francisco, CA, USA(1996)

12. Raman, V., Hellerstein, J. M.: Potter’s Wheel: An Interactive Data Cleaning Sys-
tem, In: VLDB ’01: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 381-390, San Francisco, CA, USA(2001)

13. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS ’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 1-16, New
York, NY, USA(2002)

14. Golab, L., Ozsu, M. T.: Issues in data stream management. In: SIGMOD Rec.,
vol. 32, no. 2, pp. 5-14, New York, NY, USA(2003)

15. Blasgen, M. W., Eswaran, K. P.: Storage and access in relational data bases. In:
IBM System, vol. 16, no. 4, pp. 363, (1977)

16. Mohamed, F. M., Ming, L., Walid, G. A.: Hash-merge Join: A Non-blocking Join
algorithm for Producing Fast and Early Join Results. In: ICDE ’04: Proceedings of
the 20th International Conference on Data Engineering, pp. 251-263, Washington,
DC, USA(2004)

17. Tolga, U., Michael, J. F.: Xjoin: A reactively-scheduled pipelined join operator. In:
IEEE Data Engineering Bulletin, vol. 23, no.2, pp. 27-33, (2000)

16 M. Asif Naeem, Gillian Dobbie, Gerald Weber

18. Viglas, S. D., Naughton, J. F., Burger, J.: Maximizing the output rate of multi-
way join queries over streaming information sources. In: VLDB ’2003: Proceedings
of the 29th International Conference on Very large Data Bases, pp. 285-296, Berlin,
Germany(2003)

19. Dittrich, J., Seeger, B., Taylor, D. S., Widmayer, P.: Progressive merge join: a
generic and non-blocking sort-based join algorithm. In: VLDB ’02: Proceedings of
the 28th international conference on Very Large Data Bases, pp. 299-310, Hong
Kong, China(2002)

20. Tao, Y., Yiu, M. L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: RPJ: pro-
ducing fast join results on streams through rate-based optimization. In: SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 371-382, New York, NY, USA(2005)

21. Fogiel, M.: Basic Electricity. Research and Education Assoc. (2002), pp. 355.
http://www.flipkart.com/handbook-basic-electricity-research-education/
087891420x-c9w3fliclf#previewbook

22. Gaffney, J. E.: Estimating the number of faults in code. In: IEEE Transactions on
Software Engineering. vol. SE-10, no. 4, pp. 459-464. 1984

