
INTELLIGENT COLLISION DETECTION AND

AVOIDANCE TECHNIQUES FOR AUTONOMOUS

AGENTS

By

Fan Liu

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

AUCKLAND UNIVERSITY OF TECHNOLOGY

AUCKLAND, NEW ZEALAND

AUGUST 2014

c© Copyright by Fan Liu, 2014

To Prof. Ajit Narayanan and

my parents Guoqing Liu and Yufen Zheng.

ii

Table of Contents

Table of Contents iii

Attestation of Authorship xv

Abstract xvi

Acknowledgments xviii

1 Introduction 1

1.1 Scenarios . 1

1.2 Background of Artificial Intelligence 6

1.3 Multiple Agent (Multi-agent) System 8

1.3.1 Definition of Multiple Agent System 8

1.3.2 Coupled Approach vs. Decoupled Approach 10

1.3.3 Traditional Collision Avoidance Algorithms 11

1.4 Nature-Inspired Observation . 12

1.5 Motivation for the Presented Research 13

1.6 Structure of the Thesis . 15

1.7 Publications . 17

2 Review of AI Research for Collision Avoidance between Agents 19

2.1 Introduction . 19

2.2 Agent Path Planning . 20

2.2.1 Single Agent Path Planning 21

2.2.2 Multiple Agent Path Planning 21

2.3 Coupled Approach . 22

2.3.1 Definition . 22

2.3.2 Problem Modeling . 23

2.3.3 Existing Techniques . 24

iii

2.4 Decoupled Approach . 30

2.4.1 Definition . 30

2.4.2 Prioritized Planning . 31

2.4.3 Path Coordination . 33

2.5 Research Issues . 35

2.6 Summary . 37

3 Review of AI Research for Collision Avoidance between Robots 38

3.1 Introduction . 39

3.2 Existing Approaches . 39

3.2.1 Traffic Control Approaches . 39

3.2.2 Reactive Approaches . 43

3.2.3 Swarm Techniques . 44

3.3 Summary . 46

4 Research Methodology 47

4.1 Introduction . 47

4.2 Scientific Research Methodology . 49

4.3 Research Problems and Open Questions 50

4.3.1 Research Problems . 51

4.3.2 Research Questions . 53

4.4 Proposed Method . 55

4.4.1 Limitations of Previous Methods 55

4.4.2 An Ideal Collision Avoidance Method 55

4.4.3 The Idea of MER-based Collision Avoidance 56

4.5 Design of Experimental Methods . 59

4.6 Analysis of Results and Validation . 61

4.7 Review and Evaluation of Output Reports 62

4.8 Summary . 64

5 Super A* based on Collision Type 66

5.1 Introduction . 67

5.2 Deadloop and Collision Types . 68

5.3 Prioritized A*-based Path Planning and Step-Forward Path Coordination 69

5.3.1 Prioritized A*-based Path Planning 71

5.3.2 Step-Forward Path Coordination 73

5.4 Evaluation . 74

5.4.1 An Example with Real Robots 75

5.4.2 Simulation Experiments . 76

iv

5.5 Discussion . 79

5.6 Supporting Information . 81

5.6.1 Video S1 Super A* in a Two Robot System 81

5.6.2 Video S2 Super A* in Extra Simulation Demos 81

5.7 Relation to Previous Work . 82

5.8 Summary . 85

6 P* and SKP Algorithm 86

6.1 Introduction . 87

6.2 Review of Existing Approaches . 89

6.3 P* with Dynamic Priority Scheme . 90

6.4 SKP Algorithm . 93

6.5 Evaluation for P* Algorithm . 96

6.5.1 Experiment 1: P* in Simple Collision Avoidance 96

6.5.2 Experiment 2: Comparison of P* and Super A* 98

6.6 Evaluation for SKP Algorithm . 101

6.7 Discussion . 101

6.8 Summary . 104

7 Swarm Robotic Group Formation 106

7.1 Introduction . 107

7.2 Background . 108

7.3 Collision Avoidance Strategy . 109

7.3.1 Multi-Robot Coordination . 110

7.3.2 Swarm Super A* . 112

7.4 Simulations . 113

7.4.1 Simulation 1: Formation with Collision Avoidance 113

7.4.2 Simulation 2: Tunnel Environment 113

7.5 Discussion . 115

7.6 Summary . 116

8 A Human-Inspired Collision Avoidance Method 117

8.1 Introduction . 118

8.2 Previous Work . 122

8.3 Preliminaries . 124

8.3.1 Collision Avoidance Through The Minimal Predicted Distance 124

8.3.2 Collision and Conflict Definition 125

8.4 Deconflict Through MER Roundabout Method 127

8.4.1 Local View Definition . 127

v

8.4.2 Deconflict Maneuver . 128

8.4.3 Guarantees . 131

8.4.4 Rectabout Algorithm . 134

8.5 Experimental Results . 135

8.5.1 Local Behavioural Results . 135

8.5.2 Large Scale Simulation Results 137

8.5.3 Additional Case Studies . 139

8.5.4 Comparison with Centralized Approach 141

8.6 Summary . 142

9 Intelligent Collision Avoidance between Multiple Autonomous Hy-

brid Agents using Adaptive Local Views 145

9.1 Introduction . 146

9.2 Problem Definition . 148

9.2.1 Collision Issues . 148

9.2.2 Minimal Predicted Distance 149

9.2.3 Collision and Conflict Definition 151

9.3 Collision Avoidance . 152

9.3.1 MER Representation . 153

9.3.2 Local View Definition . 154

9.3.3 Hybrid MER-based Rectabout 154

9.3.4 Static Obstacles . 156

9.4 Experimentation . 157

9.4.1 Implementation Details . 157

9.4.2 Experimental Results . 158

9.4.3 Comparison . 161

9.5 Conclusions . 164

10 Conclusion and Future Directions 167

10.1 Evaluation of Research Methodology 167

10.2 Summary of Achievements . 168

10.3 Future Directions . 169

10.3.1 Limitations . 169

10.3.2 Reality . 170

Bibliography 171

vi

List of Tables

5.1 Super A* Notations . 72

6.1 P* Notations . 92

7.1 Coordination Notations . 111

8.1 MER rectabout compared with a centralized priority-based approach.

Performance evaluation on the total number of moves for 10, 20, 50

and 100 agents by 50x50 grid configuration space. 143

9.1 Timing of simulations of 100 virtual agents moving simultaneously

across a circle using Hybrid Rectabout and three variations of velocity

obstacle algorithm. 164

vii

List of Figures

1.1 Schematic diagram to show the idea for multiple agent systems with lo-

cal view, no central coordinator, no communication and heterogeneity.

Agent models its goal, action, and domain knowledge. 10

1.2 A snake robot with compass, sonar, and heat sensors; it may provide

better agility and flexibility than wheeled or legged robots for search-

and-rescue missions in collapsed buildings (from [84]). 13

2.1 An illustration of a coordinated path generated by the super-graph

approach, for 5 nonholonomic car-like agents (from [129]). 27

2.2 An example of a multi-agent path planning problem using the spanning

tree method of Peasgood, et al., along with the corresponding graph

and spanning tree (from [103]). 28

2.3 The multi-phase solution of the multi-agent path planning problem,

using the spanning tree method of Peasgood, et al. (from [103]) . . . 29

2.4 An example of a multi-agent path planning problem that is difficult

for decoupled approaches to solve (from [65]). 31

4.1 Reasoning Cycle - Scientific Research. 51

4.2 MER of η = 2, with dots representing the position of the two agents.

The orientation of the rectabout can differ according to the local view. 58

4.3 Communication architecture in multi-agent systems. 60

4.4 The journey of this PhD research. 61

viii

ix

4.5 Illustration of experimental environment for centralized multi-agent

simulator. 62

4.6 Illustration of experimental environment for decentralized multi-agent

simulator. 63

5.1 R1 and R2 represents robot 1 and robot 2, respectively. (a) Occupy

the same position. (b) Sideswipe collision. 68

5.2 Illustration of deadloop. The green squares and the red squares are

the agent positions (R1, R2) and the goal positions (G1, G2) for two

agents, respectively. R1 and R2 are agent 1 and agent 2. (a) The

initial position for two agents. (b) and (c) The deadloop condition

is encountered and repeated in-between (b) and (c) infinitely as each

agent makes a move that mirrors the other agent. 69

5.3 Illustration of 5 collision types. (a) Head-On. (b) Front Sideswipe. (c)

Rear Sideswipe. (d) Front-End Swipe. (e) Front-End Sideswipe. . . . 70

5.4 The coordination scheme for possible moves. (a) 8 possible moving

directions for Agent 1. (b) The coordination scheme. (c) The possible

move of R1 based on the coordination scheme. 71

5.5 These two pictures show the robot used in the experiment as (a) and

configuration space in real world as (b). 76

5.6 An application example with the Rovios of the WowWee Technologies:

(a) shows the initial situation of two robots; (b) shows the two robots

rotating in their cells to avoid collision; (c) depicts the two robots

passing each other with no collision; and (d) shows the two robots in

their goal positions. 77

5.7 Illustration of the priority with collision condition: (a) shows the origi-

nal calculated paths; (b) shows sub-optimal collision avoidance without

priority; and (c) shows Super A* (with priority) and optimal collision

avoidance. 78

x

5.8 Illustration of priority without collision condition. Once R2 which

has priority because it reaches the tunnel first, is clear of the possible

collision nodes in the tunnel, R1 can complete its moves. 79

6.1 A problematic situation for centralized and decoupled approaches where

shortest path length is the global objective. The green square is the

initial position, the red square is the goal position. R1 and R2 are

agent 1 and agent 2. 89

6.2 Illustration of deadlock when two agents move towards each other in a

tunnel. R1 and R2 denote two agents, and G1 and G2 their destination

nodes, respectively. (a) shows the initial situation of two agents. (b)

shows the two agents following their optimal paths as signified by the

numbers in the squares. (c) shows the two agents detecting the collision

one step ahead and stopping due to no solution being found. 94

6.3 An application example with the Rovios of the WowWee Technologies:

(a) shows the initial situation of two robots. (b) shows one robot

moving left to avoid collision. (c) depicts the two robots passing each

other with no collision. (d) shows one robot returning to its optimal

path and the other robot at its goal position, and (e) shows the two

robots in their goal positions. 97

6.4 Illustration of Super A* for the fixed priority with collision conditions

for 5 agents: (a) shows the original calculated paths. (b) shows the

suboptimal collision avoidance planning with fixed priority between R2

and R4; R2 has higher priority than R4. (c) and (d) show Super A*

(with fixed priority) and optimal collision avoidance. 98

xi

6.5 Illustration of P* for the dynamic priority with collision condition for

2 agents: (a) shows the original calculated paths using standard A*.

(b) shows the suboptimal collision avoidance re-planning with dynamic

priority (rule-based, less distance remaining higher priority), here, R2

has a higher priority than R1. (c) and (d) show P* (with dynamic

priority) and optimal collision avoidance. 99

6.6 Illustration of P* for the dynamic priority with deadloop and other col-

lision conditions for 2 agents: (a) shows the original calculated paths

using standard A*. (b) shows the agents following the established op-

timal paths to move and suddenly their goals are changed with swiping

each other as seen in (c), robots recalculate their paths. (d) and (e)

show two agents encountering the deadloop condition. (f) shows two

agents avoiding deadloop condition using P*. (g) shows suboptimal

collision avoidance with dynamic priority (less remaining distance, so

higher priority, R1 moves away from the optimal path to give way

to R2). (h) shows P* (with dynamic priority and optimal collision

avoidance). 100

6.7 Illustration of priority without collision condition. R1 reaches the tun-

nel first and therefore receives higher priority. R2 follows (b) and (c)

without collision, until a clear path is found to achieve their goal (d). 102

6.8 Illustration of SKP* for the tunnel deadlock situation for 2 agents:

(a) shows the initial situation of two agents. (b) shows the two agents

following their optimal paths using standard A* to move. (c) R1 moves

out from the path of R2 one step. (d) R2 moves forward to the goal,

and then the deadlock is formed again, R1 continues to move out in

(e). (f) and (g) R1 moves out of the way and R2’s path is clear. (h)

shows the agents completing the temporary cooperation. 103

xii

7.1 Illustration of real-time goal changing in a tunnel-like environment for

a three-robot situation. (a) shows the initial positions. (b) shows the

robots following their established optimal paths. (c) shows R2’s goal

changed and R2 recalculate its path in (d). (e) shows R3’s goal changed

and R3 recalculate its path in (f). 114

7.2 The initial positions of 9 robots. 115

8.1 (a) 8 possible moving directions. (b) and (c) The front local view (LV)

of the agent. 128

8.2 The symmetry property of the rectabout maneuver for collision avoid-

ance. The velocities ~vi and ~vj are the new velocities after deconfliction

by MER rectabout. 130

8.3 Illustration of how rectabouts resolve conflicts between three agents.

Agent 1 computes virtual rectabouts by pairwise approach based on

MER for deconfliction. 136

8.4 Two small behavioural simulations. R and G represent Agent and Goal

for each agent, respectively. (a) The solid arrow line is the intended

trajectory. The dotted arrow line is the deconfliction trajectory. The

central dotted rectangle is a virtual rectabout enclosing two agents R1

and R2. (b) The 16 agents are densely located in a 10x10 grid environ-

ment. Each agent moves to its antipodal position in the environment,

leading to maximum possible conflict and possible deadlock. 137

8.5 The total running can be seen to scale almost linearly with the number

of agents. 138

8.6 Collision avoidance for 3 agents. (R1, R2, R3) and (G1, G2, G3) are the

agent positions and the goal positions for three agents, respectively. (a)

The initial position for three agents. (b) R1 computes MER rectabout

and re-plans its moving direction in order to avoid collisions with the

other two neighbour agents. (c) The other two agents employ a similar

approach to obtain a new moving direction. 140

xiii

8.7 Collision avoidance for 5 agents. (a) The initial position for five agents.

(b) R1 computes MER rectabout in relation to the other neighbour

agents, but cannot find a solution and causes deadlock. (c) R1 takes

wait action while in deadlock in such a case. The other agents use a

similar approach to compute a new deconfliction moving direction. . . 141

8.8 Scalability evaluation on 10, 20, 50 and 100 agents by 50x50 grid con-

figuration space. The total moves show a linear increase as the number

of agents increases. 142

9.1 MER of η = 2, with dots representing the position of the two agents.

The orientation of the rectabout can differ according to the local view. 153

9.2 A and G represent agent A and agent A’s goal, respectively. (a) A

configuration of an agent A and a static obstacle O. (b) Geometric

illustration of how a rectabout is located to resolve collision between

the agent and static obstacle using hybrid rectabout. (c) Here the path

for the agent is tracked for avoiding the static obstacle using keep right

traffic rule. 156

9.3 Solid arrow line is the intended trajectory. Dotted arrow line is the de-

confliction trajectory. The central dotted rectangle is a virtual rectabout

enclosing two robots R1 and R2. 158

9.4 Illustration shows the start positions of four robots. 159

9.5 Six hybrid agents (variable size and speed) avoiding collision with each

other. (a) soon after starting. (b) after avoiding collisions. 160

9.6 The total running can be seen to scale almost linearly with the number

of heterogeneous agents. 161

9.7 Collision avoidance of 32 agents using the hybrid rectabout algorithm

where each is attempting to reach a goal on the exact opposite side of

the environment (the starting point of the opposite agent). 162

xiv

9.8 Comparison of the timing of simulations of increasing numbers of vir-

tual agents moving simultaneously across a circle of increasing circum-

ference between hybrid rectabout and ORCA. 165

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by an-

other person, nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of a university or other institution of higher

learning.”

Auckland, New Zealand

August 2014

Fan Liu

xv

Abstract

Collision is one of the main problems in distributed task cooperation involving multi-

ple moving agents or robots. The collision avoidance problem arises when the environ-

ment is dynamic and to reach their destination agents need to use paths that conflict

with other agents’ paths on specific moves. Decentralized collision avoidance in these

situations is more challenging than centralized collision avoidance since autonomous

agents must manage their moves independently and may have only a limited capabil-

ity (local view) to detect the potential risk of collision. Moreover, for true autonomy,

there must be no communication between agents or with a central coordinator.

This thesis describes novel extensions to current approaches for dealing with colli-

sion avoidance and proposes a new dynamic rectangular roundabout (‘rectabout’)

collision avoidance method based on human behaviour. The method uses Mini-

mum Enclosing Rectangles (MERs) as potential roundabout carriers to form virtual

rectabouts that allow each agent to re-plan its path autonomously and with no com-

munication. This maneuver is calculated independently by each agent involved in a

possible collision. The virtual rectabout lies in the intersecting and conflicting po-

sition of two agent routes. The approach does not depend on priority schemes and

instead involves only local views.

MER in turn consists of two components: Minimal Predicted Distance (MPD)

detection and MER rectabout collision avoidance algorithm. The MPD is a metric

inspired by real human pedestrian collision avoidance behaviour. We use MPD to

detect the possible collisions along agent paths and trajectories. The agents involved

in conflict will compute a rectabout and re-plan a new velocity when MPD is below

xvi

xvii

the threshold.

Experimental simulations involving multi-agent systems indicate that the pro-

posed approach ensures that all agents remain free of collision while attempting to

follow their goal direction. The decentralized collision avoidance approach is also

applied for WowWee Rovio mobile robots and provides both analytic and empirical

evidence to show that the approach generates collision-free motions.

Keywords — Multi-Agent System, Decentralized Collision Avoidance, Minimum

Enclosing Rectangle, Rectangular Roundabout, Rectabout, MER Rectabout.

Acknowledgments

I have the pleasure to acknowledge here some of the many people who have inspired,

supported, and educated me over the past three years. First and foremost, I am very

grateful to my primary supervisor Prof. Ajit Narayanan who gave me the opportunity

to start my PhD in Robotics research. In particular, Ajit gave full support, encour-

agement, guidance from the initial to the final stage which enabled me to develop a

deep understanding of the subject. He has a remarkably good taste in research and

an excellent sense of strategy. He showed me how to approach a research problem in

different ways and find the best solution. I greatly appreciate his open personality,

patience, enthusiasm, and immense knowledge that, taken together, make him a great

supervisor.

I am very indebted to Saide Lo, the personal assistant of the Head of School of

Computing and Mathematical Sciences (SCMS) for all her kindness and the tremen-

dous support, she has offered me since I started my PhD. Also, many thanks to

Gordon Grimsey (now retired) who was the technology resources manager of SCMS,

Greg Knowles the current technology resources manager of SCMS, Ramon Lewis the

technician of SCMS and Terry Brydon the school manager.

I would also like to thank the past and present members of Auckland University

of Technology for their support and straight-talking honesty. I thank Associated

Prof. Shaoning Pang who helped me a lot with his own background in bioinformatics

and evolutionary computation. Dr. Quan Bai, Dr. Waseem Ahmad and Dr. Anuj

Bhowmik deserve special acknowledgment for their thoughtful advice, friendship and

a lot of insightful discussions. Because they deserve it and are not thanked nearly

enough, I would also like to thank the staff of the SCMS, Dr. Weiqi Yan, Dr. Stefan

Schliebs, Dr. Paul Leong, Md. Zulfikar Hossain, Md. Akbar Hossain, Raihana

Roslan, Abhimanyu Singh Garhwal. Their helpful influence is clear, and has enriched

my educational experience immeasurably.

xviii

xix

On a personal level, I would like to express my love and gratitude to my parents in

China for their understanding, support and encouragement during my PhD research

study. My parents have supported me for almost 10 years since I first came to New

Zealand. I owe a great deal to my parents who definitely cannot be thanked enough.

Without their support and encouragement, I would not be able to complete my study.

Lastly, I offer my regards and blessings to all of those who have supported me in

any way during the completion of the study.

Auckland, New Zealand

August 2014

Fan Liu

Chapter 1

Introduction

This chapter introduces the motivation and background of the research, followed by

brief introductions to artificial intelligence, multiple agent systems and nature-inspired

observation in the context of collision avoidance.

1.1 Scenarios

The motivation for the research on collision avoidance described in this thesis can be

summarized in two scenarios: one at a macro level and the other at the micro or nano

level.

Scenario one: the high volume of traffic is a problem in cities and towns

all over the world.

Broadly speaking, there are three main reasons for this. One is that cars have

become more affordable for the average consumer and they are no longer a luxury

item, but something that most families expect to own. A second reason is that traffic

lights have become more prevalent in recent years, which cause increased traveling

time because of the wait at traffic lights even if there are no cars coming from another

1

2

direction. The third reason is that humans in general require enough reaction time

and therefore distance from other cars for collision avoidance. This means that road

capacity is restricted by the need to ensure that there is sufficient space between

cars to allow drivers to stop safely in case the car in front stops or a car comes

from a different direction that may lead to collision. A typical solution to the traffic

congestion problem is to build more roads. However, increasing awareness of the

environmental impact of building more roads is making this option less acceptable in

many parts of the world.

From an artificial intelligence perspective, a solution is the idea of robot cars [145]

where human provides the destination for the car, and the car is responsible for taking

human to the destination. During travel, robot cars can determine speeds and routes.

It is possible that, due to faster reactions and some communication with other cars,

robot cars can be more densely packed on available roads, thus allowing for an increase

in car ownership without needing to build new roads. However, even if the solution

is a good idea, how do we guarantee the safety of occupants and passengers in other

cars? And what happens if communication between cars is somehow affected?

Scenario two: consider a patient with a tumour and a future where nanobots

can deliver tumour suppressing molecules to the site of the tumour, thereby

removing the need for toxic chemotherapy or radiotherapy. A number of

nanoparticles are injected into the cancer patient’s body and the particles

are programmed to search the body for the tumour, use receptors on their

surface to dock onto the tumour when found and release its chemical pay-

load at the tumour site. However, as the nanobots close in on their target,

the likelihood increases that they will collide with each other and damage

3

their valuable payload or receptors.

There are a number of common elements to both scenarios, despite the difference

in scale. The first is the ability of the robot car or nanobot to be given a destination

and to find their own way to the destination despite any obstacles in their way.

In other words, the car or nanobot has to be ‘intelligent’ and have the capability

of planning and reasoning. The second is the lack of central control. Each car

or nanobot is responsible for its own behaviour and for getting to the destination.

In other words, each car or nanobot is autonomous and will determine actions for

itself rather than being told what to do by a remote controller. The third is lack of

communication unless absolutely necessary. Each car or nanobot does not need to

know what other cars or nanobots are doing in order to determine what it should

do. In other words, each car or nanobot uses its own local view to determine its

course of action and is not dependent on the views of others or a global view. In any

case, adding communication nano-technology to nanobots and thereby increasing the

size of the nanobots could severely compromise the ability of the nanobots to get to

their target. To realize these two scenarios, the cars and nanobots should ideally be

working in a decentralized environment involving no communication.

All this is well known in the AI, robotics and multi-agent literature. Also, the

idea of multiple intelligent, autonomous and decentralized robots, cars and nanobots

needing to reach their destination is subsumed under ‘swarm intelligence’ or ‘swarm

technologies’ [87, 86, 52, 12]. However, there is another aspect implicit in the two

scenarios above which is not often recognized in the swarm literature: the need for the

robot cars and nanoparticles to avoid each other so as not to damage each other. In

other words, the fourth and perhaps critical aspect is collision avoidance. Robot cars

4

and nanobots are physical agents / machine and therefore require collision avoidance

capability to reach the goal position.

If we look at birds flocking, ants foraging, fish swarming and pedestrians on a

busy street, we observe very little collision and no obvious communication between

these agents. The motivation to this thesis is that: so far, relatively little research has

been directed towards this - perhaps most critical aspect of intelligent, autonomous

and decentralized systems and architectures; the need for the robots or agents to

avoid colliding with each other when moving from their start positions to their goal

positions.

One piece of evidence for this relative lack of research in collision avoidance comes

from a straightforward series of searches using Google Scholar.

1. There are nearly a million hits for ‘robots’ and 3.5 million hits for ‘agents’.

2. There are almost half a million hits for “intelligent” + “robots” and one and a

half million for “intelligence” + “agents”.

3. There are just under 300,000 hits for “autonomous” + “intelligent” + “robots”

and just under 400,000 hits for “autonomous” + “intelligent” + “agents”.

4. There are about 17,000 hits for “decentralized” + “autonomous” + “intelli-

gent” + “robots” and nearly 21,000 hits for “decentralized” + “autonomous”

+ “intelligent” + “agents”.

5. Around 5000 hits for “collision avoidance” + “decentralized” + “autonomous”

+ “intelligent” + “robots” and approximate 4000 hits for “collision avoidance”

+ “decentralized” + “autonomous” + “intelligent” + “agents” (the first time

that the number of hits for ‘agents’ drops below the number of hits for ‘robots’).

5

That is still a lot of lacking research. To specialize the search further:

6. There are 58 hits for “local view” + “collision avoidance” + “decentralized” +

“autonomous” + “intelligent” + “robots” and 55 for “local view” + “collision

avoidance” + “decentralized” + “autonomous” + “intelligent” + “agents”. In

other words, it is quite possible that the hits up until this point have included

approaches involving a global view (the view of all robots or agents) even though

‘decentralized’ was included in the search terms. Accessing or maintaining a

global view will require some communication and coordination.

As mentioned above, it is clear from observations of nature that there are many

examples of collision avoidance between autonomous, intelligent, decentralized

entities, such as birds, ants and human pedestrians. So it would be natural

to think that, of the 50+ hits above, the most obvious way to build collision

avoidance into robots and agents would be to model collision avoidance on

nature. Lastly, final search:

7. There are two hits for “nature inspired” + “local view” + “collision avoidance”

+ “decentralized” + “autonomous” + “intelligent” + “robots” and three for

“nature inspired” + “local view” + “collision avoidance” + “decentralized” +

“autonomous” + “intelligent” + “agents”.

These are, of course, superficial results. However, the main point behind the

searches still remains and can be stated as follows: while nature-inspired techniques

are well adopted in intelligent, autonomous and decentralized robot and agent sys-

tems (typically, for swarm behaviour modelling); there is hardly any attempt to draw

inspiration from nature on how to get robots and agents to avoid colliding with each

6

other. In other words, despite the large number of examples around us in nature of

how intelligent autonomous entities avoid collision with each other when moving from

one point to another, the robotics and agent-based literature has ignored them. The

motivation behind this thesis is: to address what appears to be a gap in robot and

agent research; modelling the critical aspect of robots and agents avoiding each other

through inspiration from nature. Further evidence for this contention is provided in

the literature reviews that follow in the next two chapters.

We will discuss which particular aspect of nature inspiration has been the driver

behind the thesis especially in the later chapters. Returning to the series of searches

above - it is also clear that there are much uncertainties about what counts as being

centralized, autonomous and intelligent. There is also uncertainty as to what counts

as an agent and when a robot should be an agent, or vice versa. We also need to say

what we mean by “collision avoidance” and “nature-inspired”. So before exploring our

approach in more detail, we need to explain our understanding of many of the terms

above to lay an unambiguous foundation for our reported algorithms and results.

1.2 Background of Artificial Intelligence

The field of artificial intelligence, or AI, attempts not just to understand but also to

build intelligent entities. Currently, “AI encompasses a huge variety of subfields, such

as learning and perception to such specific tasks as playing chess, proving mathemati-

cal theorems, writing poetry, and diagnosing diseases. AI systematizes and automates

intellectual tasks and is therefore potentially relevant to any sphere of human intel-

lectual activity. In this sense, it is truly a universal field” [111]. Extending the realm

of the social world to include autonomous computer systems is now becoming both

7

possible and necessary through advances in the field of Artificial Intelligence.

In the past several years, AI techniques have become more and more robust and

complex and AI researchers have been attempting to discover the implications of

multiple autonomous “agents” interacting in the real world. Russel and Norvig [111]

define an agent as “anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors”. Another definition [47]

is “intelligent agents as entities that continuously perceive a dynamic environment,

reason about and interpret their perceptions, solve problems, and determine actions”.

“A computer system that is situated in some environment, and that is capable of au-

tonomous action in this environment in order to meet its designed objectives” is

defined by Wooldridge [111], and an intelligent agent is further defined to be “capa-

ble of flexible autonomous action in order to meet its design objective. Flexible is

interpreted to imply that the agents are reactive to their environment, are able to

exhibit goal-directed behaviour, and are able to interact with other agents” [111].

Finally, “Distributed Artificial Intelligence (DAI) has existed as a subfield of AI for

less than two decades. DAI systems can be defined as cooperative systems where a set

of agents act together to solve a given problem. These agents are often heterogeneous

(e.g. in a Decision Support System, the interaction takes place between a human and

an artificial problem solver). Traditionally, DAI is broken into two sub-disciplines:

distributed problem solving and multiple agent systems. [15]”

As can be seen from the above quotes, the concept of agents is closely tied to

problem solving, autonomy, co-operation and multiplicity. We now explore these

concepts in more details.

8

1.3 Multiple Agent (Multi-agent) System

Multi-agent systems is the subfield of AI that aims to provide both principles for the

construction of complex systems involving multiple agents and mechanisms for the

coordination of independent agents’ behaviors. Multi-agent systems allow the sub-

problems of constraint satisfaction to be sub-contracted to different problem solving

agents with their own interests and goals. Furthermore, domains with multiple agents

of any type, including autonomous vehicles and even human agents have attracted

interest in the field of study [127]. For the purposes of this research, we consider an

agent to be an entity, such as a robot, with goals, actions, and domain knowledge,

situated in an environment. However, it is believed that much of the prior research in

non-robotic multi-agent systems is relevant to robotic multi-agent systems (referred

to as multi-robot systems).

The idea of a multiple agent system is inspired by daily human activities, where

multiple agents might be independently doing tasks at the same time. The definition

of multiple agent system, the relationship between coupled and decoupled approach,

and the relationship between multiple agent system and traditional multiple agent

collision avoidance algorithms are now discussed.

1.3.1 Definition of Multiple Agent System

Broadly speaking, multiple agent systems are everywhere in nature. For example,

ants by themselves may seem to act randomly and without any discernible purpose,

but when the collective interactions among ants are taken together, a collective in-

telligence and behaviour that have the capability of solving many problems, such as

finding food and building a nest will emerge. Multiple agent systems can be used to

9

achieve tasks beyond the capability of an individual agent, especially in the presence

of uncertainties, incomplete information, distributed control, and asynchronous com-

putation [56]. The goal of multiple agent systems is to model such natured agents

functionality to explore the collective efficiency and effectiveness in relation to specific

activities.

A multiple agent system is in principle about lower level agents independently and

separately operating on local information to achieve global goals. While the task is

handled by independent agents, it may require communication or group cooperation

to improve efficiency. Collision avoidance is an important issue in multi-agent systems

that involve planning, searching or coordination. According to [73], the definition of

decentralized multiple agent system is “agents plan their routes and make decisions

independently. Ideally, an optimal decentralized multiple agent system should allow

each of the agents involved in a possible collision to make the minimum changes

to their planned routes so that - after avoiding collision - they can return to their

optimal planned routes.”. It is also described as decentralized collision avoidance in

the literature [53, 63, 122].

Multi-agent systems differ from single-agent systems in that several agents ex-

ist with their own goals or a shared goal. From an individual agent’s perspective,

multi-agent systems differ from single-agent systems most significantly in that the

environment’s dynamics can be affected by other agents. In addition to the uncer-

tainty that may be inherent in the domain, the behaviour of other agents can affect

the environment in unpredictable ways. Thus, all multi-agent systems can be viewed

as being in a dynamic environment. Figure 1.1 shows the schema of multi-agent

10

systems. Each agent is both part of the environment and modeled as a separate en-

tity. There may be any number of agents, with limited local view (front view), with

different degrees of heterogeneity and without the ability to communicate directly.

Figure 1.1: Schematic diagram to show the idea for multiple agent systems with local
view, no central coordinator, no communication and heterogeneity. Agent models its
goal, action, and domain knowledge.

1.3.2 Coupled Approach vs. Decoupled Approach

According to [99], in multi-agent systems, a coupled approach refers to a fixed order

motion planning method that can achieve a single search using all agents to find the

optimal solution for every agent by treating the agents as centrally controlled entities

that follow a strict ordering of movement.

In contrast to coupled approach, a decoupled approach allows agents to plan

independently and move in any order. The aim of this research is to explore and

evaluate decoupled multi-agent systems with no central control. More detail on a

decoupled approach will be presented in Section 2.4.

11

Note that the definition of multi-agent system also mentions collision avoidance be-

tween agents, but this has been often ignored in previous multi-agent approaches [28,

27, 26]. Collision avoidance for multi-agent systems is an important topic [98, 99, 100].

One of the major problems with a multi-agent system where agents perform tasks in-

dependently of each other is the need to ensure that agents, after planning their

moves, do not collide with each other when converting their planned moves into ac-

tual motion. Collision avoidance is necessary due to each agent planning its moves

independently of any other agent, thus the risk of collision is not detected until it

happens or almost happens. The aim is to ensure that any action taken to avoid col-

lision with another agent in real-time does not adversely affect the ‘optimal’ planned

route beyond the minimum extra effort required to avoid the collision.

1.3.3 Traditional Collision Avoidance Algorithms

Historically, collision avoidance approaches have been focused on robot applications.

Previous collision avoidance approaches are based on speed adaptation, route devi-

ation by a single agent only, route deviation by two agents, or a combined speed

and route adjustment. Priority-based approaches are widely used in the literature,

e.g. [14, 137, 118], but these centralized communicative approaches can become im-

practical as the number of agents increases. In particular, time complexity can be

exponential in the dimension of the composite configuration space.

Many decentralized approaches [63, 107, 123] have been presented recently. How-

ever, such techniques require a global view or communication between agents.

Interestingly, there is also a lack of understanding of what “collision” actually

12

means. As will be shown later in the thesis: it is important to have a clear under-

standing of what collision types exist if algorithms for collision avoidance are to be

effective.

1.4 Nature-Inspired Observation

The use of nature as a source of inspiration is a well established concept in computer

science. The past few decades had seen computational approaches that had brought

out new ways of thinking during observations in nature. Natural computing [147], also

called natural computation, is a terminology introduced to encompass three classes

of methods: 1) those that take inspiration from nature for the development of novel

problem-solving techniques; 2) those that are based on the use of computers to simu-

late natural phenomena; and 3) those that employ natural materials (e.g. molecules)

to compute. The main fields of research that comprise these three branches are arti-

ficial neural networks, evolutionary algorithms, swarm intelligence, artificial immune

systems, fractal geometry, artificial life, DNA computing, and quantum computing.

Multi-agent systems consist typically of a population of homogeneous or hetero-

geneous agents interacting locally with one another and with their environment. The

inspiration often comes from nature, especially biological systems. Consider, for ex-

ample, a group of people walking through a crowded city center or a school of fishes

that aggregate in the presence of a predator. In both cases the behavior of an indi-

vidual is affected by the behaviour of its neighbours.

Bio-inspired robots are robots that resemble living organisms in some specific

characteristics, such as the control system, the morphology, the actuators, or the

electronics. Robot engineers take inspiration from biology in order to design robots

13

that have better agility and flexibility, display a novel functionality, more adaptive and

intelligent, or that can better operate in the vicinity of humans. For example, snake

robots [84] are developed for search and rescue in collapsed buildings where wheeled

and legged robots as well as humans may not meet the necessary requirements to move

over debris, climb high obstacles, and pass through narrow openings, see Figure 1.2.

Figure 1.2: A snake robot with compass, sonar, and heat sensors; it may provide bet-
ter agility and flexibility than wheeled or legged robots for search-and-rescue missions
in collapsed buildings (from [84]).

1.5 Motivation for the Presented Research

Having explained our understanding of the main terms that constitute this thesis, we

can now rephrase our motivation for the research that follows.

Multi-agent systems is the subfield of Artificial Intelligence (AI) that aims to

provide both principles for construction of complex systems involving multiple agents

14

and mechanisms for coordination of independent agents behaviors. For the purposes

of this research, to be an entity an agent is considered as a robot - with goals, actions,

and domain knowledge, situated in an environment. The background of the research

is the need to develop new methods not just for a small collection of autonomous

agents to reach their goals but also for a large number of agents. Centralized control

and command work for a small number of agents, but as the number of agents grows,

the communication needed between the centralized control and the agents rapidly

increases, leading to the problem of agents moving only at the speed at which it

takes to communicate with large numbers of agents. Additionally, as the number of

agents grows in a constrained space (‘configuration space’ if the agents are robots),

there is an increased risk of collision between agents. The needs to predict and avoid

collisions centrally adds a significant overhead to the communication requirements.

As noted earlier, if we look at humans going on foot in crowded areas or driving by

car in urban traffic, we observe very little collision and no obvious communication

between these agents. As a result, new methods need to be found to supplement

existing and well-established AI, agent-based and robot movement algorithms for

large-scale planning and coordination tasks. The research study proposed here will

investigate - how classical AI search algorithms can be adapted to deal with large-

scale autonomous agent planning and coordination using the latest knowledge derived

from nature-inspired techniques.

The aim of this research is to implement human-like collision avoidance to large

scale autonomous agent planning and coordination with no priority, no communica-

tion and no global view. The goal here is to evaluate how existing computer science

algorithms for finding paths and routes can be adapted to autonomous multi-agent

15

systems and how agents on a small scale and a large scale can equally adapt suitable

motion to find routes without the need for centralized control and command.

1.6 Structure of the Thesis

The thesis is structured as follows:

Chapter 2 contains a review of previous studies on agent research for collision avoid-

ance. In the review, the traditional collision avoidance method which includes

single agent and multiple agent path planning model are investigated. In the

context of decentralized multi-agent systems, various collision avoidance ap-

proaches are summarized, such as prioritized planning and path coordination.

The importance of collision avoidance in agent simulation is then analyzed. The

limitations of the existing collision avoidance approaches are identified.

Chapter 3 presents an overview of a range of robotic studies on collision avoidance

by providing background information. A brief description of existing approaches

and modeling that have been used for multi-robot systems is included.

Chapter 4 describes the research methodology along with open questions that are

relevant to this research and the proposed collision avoidance method for multi-

agent systems, where the the limitations of previous methods and ideal collision

avoidance methods are discussed for both collision avoidance and multi-agent

systems. This chapter also introduces the idea of the Minimum Enclosing Rect-

angle (MER) based collision avoidance method, where MER is used as a form

of roundabout carrier, allowing agents to replan the path.

16

Chapter 5 proposes a method to allow agents to replan their routes in real time,

taking into account a dynamic environment. This chapter defines various colli-

sion types with several possible collision scenarios in a multi-agent system. The

remainder of the thesis will deal with collision avoidance based on these collision

types.

Chapter 6 proposes novel real time collision avoidance algorithms to solve deadlock

situations in tunnel-like environments. This chapter attempts to develop a new

algorithm to solve the deadlock situation based on defined collision types.

Chapter 7 presents a new algorithm on formation based on defined collision types

in the previous two chapters.

Chapter 8 proposes a novel and dynamic rectangular roundabout (‘rectabout’) col-

lision avoidance method based on human behaviour for multiple, homogeneous,

autonomous and mobile agents. This chapter describes the principle of MER

and the idea of MER rectabout. The experiments are conducted in 2 aspects

– local behaviour and large scale simulation. Additionally, 3 case studies are

demonstrated in aspects of: (1) the capability of collision avoidance; (2) the

adaptability of collision avoidance; (3) the scalability of collision avoidance.

Chapter 9 proposes a novel hybrid rectabout algorithm for a group of heterogeneous

agents in collision avoidance problems. This chapter briefs the idea of the

hybrid rectabout and demonstrates the performance of the proposed collision

avoidance method. The experiment is conducted in a real robot demonstration

and simulation including heterogeneity and scalability tests. Furthermore, an

experimental comparison between the proposed and traditional decentralized

17

multi-agent collision avoidance algorithm is undertaken.

Chapter 10 concludes the thesis and provides an overview for future work.

1.7 Publications

The following research papers have been written and published during the course of

this research thesis.

1. Fan Liu and Ajit Narayanan. (2011) Real Time Replanning based on A* for

Collision Avoidance in Multi-Robot Systems. In Proceedings of the 8th Interna-

tional Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2011),

pp. 473-479, 23-26 November 2011, Incheon, Korea.

2. Fan Liu, Ajit Narayanan and Quan Bai. (2012) Effective Methods for Generat-

ing Collision Free Paths for Multiple Robots based on Collision Type (Demon-

stration). In Proceedings of the 11st International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2012), pp. 1459-1460, 4-8 June 2012,

Valencia, Spain.

3. Fan Liu and Ajit Narayanan. (2013) Roundabout Collision Avoidance for Mul-

tiple Robots based on Minimum Enclosing Rectangle (Demonstration). In Pro-

ceedings of the 12th International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2013), pp. 1375-1376, 6-10 May 2013, Saint Paul,

MN, USA.

4. Fan Liu and Ajit Narayanan. (2013) A Human-Inspired Collision Avoidance

Method for Multi-robot and Mobile Autonomous Robots. In Proceedings of the

18

16th International Conference on Principles and Practice of Multi-Agent Sys-

tems (PRIMA 2013), pp. 181-196, 1-6 December 2013, Dunedin, New Zealand.

Chapter 2

Review of AI Research for
Collision Avoidance between
Agents

Traditionally, agents do not consider collisions, because collision avoidance is not

usually an issue for simulated (or soft) agents. This chapter investigates the impor-

tance of collision avoidance for virtual (or soft) agents in simulated environments,

as identified in the AI literature. Section 1 presents the outline of virtual agents ap-

plication. In section 2, path planning in agent simulations is reviewed. Agent path

planning is categorized into two groups, with coupled planning and decoupled planning

described in detail in section 3 and section 4, respectively. Section 5 covers the cur-

rent emergent research issues for collision avoidance in multi-agent system. Finally,

section 6 summarizes the agent review chapter.

2.1 Introduction

Multi-agent simulation has been widely exploited in a number of virtual environ-

ment applications such as games, virtual world, entertainment, and especially in the

19

20

computer graphics community. It is also called crowd simulation [142] when the fol-

lowing research issues are addressed: animation, motion planning, rendering, etc.

Crowds mean hundreds or thousands of humans or pedestrians, with rendering in

real-time [149]. These kinds of applications can provide one with a feeling of being

immersed in the dynamic scene, therefore enhancing the reality of the systems. Real-

istic and believable simulation is one of the important aspects of computer graphics

application. Normally, agent simulation is separated into two types: real-time simu-

lation and non real-time simulation [64]. Real-time simulation application in games

is often seen, which allows user interaction, while non real-time simulation is nor-

mally used in film productions. In non real-time simulation, there is no interaction

with users and the simulation occurs without any control of the user. The research

on interacting with multi-agent systems in real time is still rare. However, multi-

agent systems have great potential in simulated training and safety evaluation by

using immersive virtual environments, which includes evacuation in emergency situ-

ations [149], military training [142], and urban planning [64].

2.2 Agent Path Planning

Many efficient path planning algorithms have been proposed for both single-agent and

multi-agent systems. For example, A* algorithm [89] based on heuristic determination

is proposed for single agent path planning. It can plan an optimal path from an

initial position to a desired goal position in a static environment with fixed obstacles.

Approaches based on a potential field [39, 105] (see Section 3.2.2) are suitable for

systems with a static environment containing obstacles. Once the goals are changed,

it will require significant re-computation to update the potential fields. As for other

21

planning approaches, both continuum (macroscopic) models (e.g. [133, 19, 71]) and

agent-based (microscopic) models (e.g. [149, 38, 3]) are fast enough to handle the path

planning for thousands of agents or even more in real time. However, these models

are not specially designed for dynamic interaction. In an interactive multi-agent

system, each agent’s path should be dynamically re-planned to react to a dynamic

environment changing (or user’s command).

2.2.1 Single Agent Path Planning

The A* algorithm [89], which is a well-known algorithm for the single-agent path

finding, can be formalized as a 4-tuple (G, h, s, t), where G is the search graph, h is a

heuristic function, s is the start node, and t is the target node. This can be extended

to multiple agents as (G, h,A, S, T), where A = {a1...an} is the set of agents in the

world, S = {s1...sn} is the set of start nodes for each agent, and T = {t1...tn} is

the set of target nodes for each agent. Finally, it can be extended to a dynamically

searching problem by requiring that agents repeatedly update their motion path using

the most recent information (the positions of other agents) in every time step. While

agents may search on any graph, in this work the configuration space is assumed as

a discrete occupancy grid map (refer further details below), which is commonly used

in the literature of agents’ path planning research.

2.2.2 Multiple Agent Path Planning

In previous multi-agent simulations, path planning is used to determine a route from

an initial position to a desired goal position for each agent in multi-agent systems.

Planning approaches can be categorized based on the amount of information used

22

during the planning process [99] - coupled planning and decoupled planning.

We will give the definition, existing techniques, and issues of coupled and decou-

pled approaches in the following sections.

2.3 Coupled Approach

2.3.1 Definition

Approaches that use global information and plan directly in a state space X (de-

tailed notations in Section 4.3.1) are called coupled centralized approaches. These

approaches treat the agent team as a composite agent system, to which classical single-

agent path planning algorithms are applied. For example, the A* algorithm [89, 46]

can generate complete and optimal solutions to the multi-agent path planning prob-

lem under a centralized and coupled approach. Motion planning algorithms for single

mobile agent systems have been intensively studied for years [65, 114, 51]. Examples

of classical single agent path planning algorithms include sampling-based planning,

potential-field techniques and combinatorial methods. Sampling-based planners [59]

avoid the explicit construction of Cobs (obstacle space) by sampling different config-

urations to generate curves that represent collision-free paths in Cfree (free space);

potential field techniques [10, 11] construct real-valued functions that pull the agent

toward the goal, and repulse the agent away from obstacles, via a combination of force

vector fields. Combinatorial method constructs roadmaps through the configuration

space using techniques such as cell decomposition (e.g. [117]).

23

2.3.2 Problem Modeling

Extending the problem further to multiple agent path planning requires even more

computational resource. An example of a centralized approach for generating com-

plete multi-agent path solutions is the work of Parsons and Canny [101], which takes

a global cell decomposition approach, incorporating obstacles and other agents in a

unified configuration space representation. This algorithm first computes a decom-

position of the free space into cells; it then searches through the resulting adjacency

graph for a path. However, the algorithm is exponential in the number of agents.

Other centralized algorithms that represent the path planning problem as a cross

product of the configuration spaces of the individual agents also exist [11, 113].

Because of the high dimension of the multi-agent configuration space, centralized

approaches that treat the multi-agent team as a single composite agent tend to be

computationally impractical if the full search space is used. Instead, techniques that

reduce the size of the search space have been shown to be practical for small-sized

problems. One way to reduce the search space is to constrain the allowable paths

that agents can follow by limiting the motion of the agents lying on roadmaps in the

environment. Intuitively, roadmaps are akin to automotive highways, where agents

move from their starting position to a roadmap, move along the roadmap to the

proximity of the goal, and then move off the roadmap to the specific goal location.

More formally, a roadmap is defined as follows [20]:

Definition (Roadmap): A union of one-dimensional curves is a roadmap (RM) if for

qstart (the configuration of all start positions) and qgoal (the configuration of all goal

positions) in Cfree that can be connected by a path, the following properties hold:

1. Accessibility: there exists a path from qstart ∈ Cfree to some q′start ∈ RM ,

24

2. Departability: there exists a path from q′goal ∈ RM to qgoal ∈ Cfree, and

3. Connectivity: there exists a path in RM between q′start and q′goal.

Typically, a roadmap RM is represented as a graph G = (V,E), in which the nodes

V represent collision-free configurations and the edges E represent feasible paths. A

feasible path is one that can be executed by agent Ai, based on its motion constraints.

Various algorithms have been created that make use of the roadmap concept for

motion planning, both for single agents and for multi-agent teams (e.g., [112, 103,

129]).

2.3.3 Existing Techniques

It is worth noting that many other roadmapping approaches to multi-agent path

planning have been proposed. For example, the work of Ryan [112] reduces the

search space by decomposing the original map into subgraphs, planning paths between

subgraphs, and then coordinating motions within the subgraphs. This approach has

been shown to be effective for up to 10 agents. In [22], Clark et al. introduce

the concept of dynamic networks, which are formed between agents that are within

communication range. Within this framework, only agents within the same network

use a centralized planner, which is based upon probabilistic roadmaps [59]; otherwise,

agents plan their paths using decoupled planners based on optimizing priorities. Some

of the existing coupled approaches are explained as follows:

25

Super-graph Method

In [129], Svestka and Overmars present an approach for creating a composite roadmap,

which represents a network of feasible motions for the composite agent. This com-

posite roadmap is created as follows: (a) a roadmap for each individual agent is

constructed using the standard roadmap generation algorithm, Probabilistic Path

Planner (PPP) [59]; (b) n such roadmaps are combined into a roadmap for the com-

posite agent, which can be used to generate coordinated paths.

Specifically, the coordinated path for the composite agent (A1, . . . , An) is an n-

tuple of paths feasible for all agents Ai that, when executed simultaneously, introduce

no mutual collisions between the individual agents. Formally, let C [0,1] represent the

configuration space from time t = 0 to time t = 1, where the agent is at its starting

position at time 0, and is at its goal location at time 1. Let s1, . . . , sn and g1, . . . , gn

be given starting and goal configurations for the n agents, where ∀i ∈ {1, . . . , n} :

si ∈ Cfree∧gi ∈ Cfree. Let P represents a free path if P is in Cfree for all times t (i.e.,

∀t ∈ [0, 1] : P (t) ∈ Cfree). Let A ∩ B 6= 0 (i.e., A and B intersect) be represented by

A⊗B. Then if P1, . . . , Pn ∈ C [0,1] are feasible paths, such that for all i, j ∈ {1, . . . , n}

1. Pi(0) = si ∧ Pi(1) = gi

2. i 6= j ⇒ ∀t ∈ [0, 1] : ¬A(Pi(t))⊗ A(Pj(t))

then (P1, . . . , Pn) is a coordinated path for (A1, . . . , An) solving the problem ((s1, . . . , sn),

(g1, . . . , gn)).

Svestka and Overmars present an approach for constructing such a coordinated

path for a composite agent [129]. The basic idea is to seek paths along the roadmap,

G, that allow the agents to move from their starting to their goal configurations, while

26

disallowing simultaneous motions or motions along paths that are blocked by other

agents. This type of path is called a G-discretized coordinated path. The authors

introduce the concept of super-graphs, which represent roadmaps for the composite

agents created by combining n simple agent roadmaps. Two variants of super-graphs

are proposed – flat super-graphs and multi-level super-graphs.

In the flat supergraph, a node represents a feasible placement of the n simple

agents at the nodes of G, and an edge represents a motion of exactly one simple

agent along a non-blocked path of G.

The second type of super-graph – the multi-level super-graph – reduces the size

of the super-graph data structure by combining multiple nodes into a single node of

the graph. This approach makes use of the concept of subgraphs. Whereas the nodes

in a flat super-graph represent agents being located at particular nodes of G, the

nodes in a multi-level super-graph represent agents being located in a subgraph of G.

The restriction placed on node combinations is that the resultant subgraphs should

not interfere with each other, meaning that the nodes in one subgraph cannot block

paths in another subgraph. Experimental results have shown that the multi-level

super-graphs are typically much smaller than the equivalent flat super-graphs.

Svestka and Overmars apply this approach to teams of up to 5 car-like agents

in simulation. An example of these results is shown in Figure 2.1, illustrating the

feasibility of this approach for small-sized multi-agent teams. Nevertheless, this type

of approach is appropriate only for relatively small numbers of agents. For much larger

sizes of agent teams, decoupled approaches are necessary, because a disadvantage of

the supergraph is that its size is exponential according to the number of agents.

27

Figure 2.1: An illustration of a coordinated path generated by the super-graph ap-
proach, for 5 nonholonomic car-like agents (from [129]).

Spanning Tree Method

Peasgood et al., [103] present another roadmap-based planner for multi-agent teams.

This approach is a multi-phase planner that uses a graph and spanning tree represen-

tation to create and maintain obstacle-free paths through the environment. Initially,

a graph is created, in which the nodes are the agents’ initial and goal positions, and

the edges represent the connectivity of the node positions. An example is illustrated

in Figure 2.2(a), in which the starting positions of the three agents (R1, R2, and

R3) are (C, B, A), while the goal positions are (A, C, B). Figure 2.2(b) shows the

graph-based map for this example. Then, a spanning tree of this graph is created,

which is a connected subset of the original graph that includes all the nodes without

cycles; Figure 2.2(c) shows an example of a spanning tree. The root of this spanning

tree is chosen to be the node that is closest to the geographic center of the map.

28

(a) Original planning
problem.

(b) Graph-based map.

(c) Spanning tree for the graph representation.

Figure 2.2: An example of a multi-agent path planning problem using the spanning
tree method of Peasgood, et al., along with the corresponding graph and spanning
tree (from [103]).

In the first phase of the approach, a plan is generated that moves the agents to the

leaves of the spanning tree along collision-free paths, as shown in Figure 2.3(a). In the

second phase, the agents are moved into positions where they can reach their goals

without creating obstructions for other agents. This is accomplished by processing

the agents in order according to the depth of their goals in the spanning tree. This

is shown in Figure 2.3(b and c). The third phase moves agents to the remaining

unfilled goal locations, as shown in Figure 2.3(d). These three phases result in a

29

sequence of motions that allow only one agent to move at a time. The final phase of

the process seeks to improve the quality of the concurrent plan by allowing agents to

move simultaneously when doing so does not introduce any collisions.

(a) (b) (c) (d)

Figure 2.3: The multi-phase solution of the multi-agent path planning problem, using
the spanning tree method of Peasgood, et al. (from [103])

Peasgood et al., [103] show that this algorithmic approach results in time com-

plexity that is linear in the number of agents. To further improve the resulting path

lengths, the authors propose a hybrid planning approach, which uses the regular

multi-phase planner, but then also uses a decoupled planner (such as [13]) in attempt

to find shorter path solutions. For smaller-sized robot teams (less than 20), the

decoupled planner can often find better solutions. However, for larger-sized teams,

the multi-phase approach is more time-efficient (increasingly as the team size grows

larger).

30

2.4 Decoupled Approach

2.4.1 Definition

According to [99], decoupled approaches decompose the path planning problem into

independent components that can find good solutions quickly, although at the cost

of losing optimality (i.e. the quality of the resulting solution) and completeness (i.e.

whether they are guaranteed to find a solution if one exists). Decoupled approaches

can either be centralized or decentralized: centralized decoupled (or semi-centralized)

approach is a coordinator-based technique where all agents plan the path indepen-

dently, and then report to the coordinator regarding their intentions. Coordinator

then gives a command to accept or reject their intentions for collision avoidance, be-

cause the agents here might only have local views. Decentralized decoupled approach

is a distributed multi-agent system where every agent attempts to solve the problem

locally with / without communication. Most commonly, approaches plan individual

paths for agents, followed by methods for handling collision avoidance. For instance,

Figure 2.4 shows an example of a situation that is difficult for decoupled approaches

to solve. In this situation, agents must exchange positions in a narrow corridor. A

centralized approach on the other hand would find a solution in which the agents first

move into the open space at the end of the corridor to exchange places.

Path planning builds a bridge to exploit the relationship between traditional de-

coupled planning algorithms and various realistic dynamic environment settings, in or-

der to avoid collisions between agents via planning, evaluating, and resolving [59, 58].

Based on the characteristics of various path planning bridges, the different approaches

to decoupled planning in the literature can be divided into two categories [99, 65, 66]

31

(a) (b)

Figure 2.4: An example of a multi-agent path planning problem that is difficult for
decoupled approaches to solve (from [65]).

– prioritized planning and path coordination. Prioritized planning considers the mo-

tions of the agents one at a time, in priority order, calculating path information for

the ith agent by treating the previous i - 1 agents as moving obstacles. Path coor-

dination, on the other hand, first plans independent paths for the agents separately,

then seeks to plan their velocities so as to avoid collisions along those paths.

2.4.2 Prioritized Planning

The prioritized planning approach to multi-agent path planning was first proposed

by Erdmann and Lozano-Pérez [32]. In this approach, priorities are assigned to each

agent. These priorities could be assigned randomly, or they could be determined

from motion constraints, in which more-constrained agents are given higher priority.

A path is planned for the first agent using any single-agent path planning approach.

The path for each successive agent, Ai, then takes into account the plans for the

previous agents A1, . . . Ai−1, treating these higher-priority agents as moving obstacles.

More specifically, in the prioritized planning approach of [32], the configuration

32

space is extended to account for time, since the time-varying motions of previously

planned agents must be taken into account. Configuration space-time is represented

as a list of configuration space slices at particular times, specifically, those times

corresponding to when a moving object changes its velocity. Motions between slices

can then be interpolated via straight-line translations between these configuration

space slices. The configuration space-time can be constructed in O(m) time, where

m = nr, for n edges in the environment and r time slices.

In another example, a prioritized A* algorithm [14] is extended to multi-agent sys-

tems based on a priority scheme. An optimal route is first calculated for each agent

using A* [89] (the decoupled phase) and then agent paths are checked for possible

collisions (the centralized phase) with a global priority scheme for detecting and re-

solving collisions. However, this type of planning approach requires computation time

that is exponential in the dimension of the multi-agent configuration space. Thus,

these approaches can only be used in real time for the smallest of problems (scala-

bility). Another limitation with these approaches is that the global environment is

still considered as a static configuration. It is not clear how effective this coupled and

centralized approach can handle dynamic environments with priority, such as new

obstacles and other agents appearing.

Other researchers who have studied prioritized path planning for multiple mobile

agents include [34, 143, 14, 18]. Both Ferrari et al. [34] and Warren [143] use a fixed

priority scheme for the decoupled planner. In the work of Buckley [18], a heuristic

determination is applied to assign higher priorities to agents that can move in a

straight line to their target location. Chun et al. [21] use this priority scheme to

coordinate independently-generated schedules online, as the conflicts arise. The work

33

of Azarm and Schmidt [7] considers all possible priority assignments, although the

resulting approach is computationally complex.

Priority-based approaches are widely used in the literature, e.g., [14, 118, 137];

the advantage of prioritized planning approaches is that they reduce the problem

from a single planning problem in a very high-dimensional space to a sequence of

planning problems in a much lower dimensional space. The disadvantage, as with

all decoupled approaches, is that these approaches are not complete, and centralized

approaches can become impractical as the number of agents increases. In particular,

time complexity can be exponential in the dimension of the composite configuration

space.

2.4.3 Path Coordination

In the path coordination approach, the path planning step first generates individual

agent paths independently, using common single-agent path planners. The second

step plans a velocity profile that each agent should follow along its path so as to

avoid collisions with other agents. This approach is typically called fixed-path coor-

dination [99], since the paths planned in the first step are not altered in the second

step. Instead, only the velocities taken by the agents along the paths are varied.

A formal explanation assumes that the path generated for each individual agent

in the first step constrains agent Ai to follow a path τi : [0, 1] → C i
free. Then,

an m-dimensional coordination diagram X = [0, 1]m for m robots is defined that

is used to schedule the motions along their paths so that they do not collide [90].

The ith coordinate represents the domain, Si = [0, 1], of the path of agent Ai. At

state (0, . . . , 0) ∈ X, every agent is in its initial starting configuration. At state

34

(1, . . . , 1) ∈ X, every agent is at its goal configuration. Within the coordination

diagram, obstacles form obstacle regions Xobs that must be avoided. Any continuous,

obstacle-free path, h : [0, 1] → X, for which h(0)=(0, . . . , 0) and h(1)=(1, . . . , 1), is

a valid path that moves the agents from their starting positions to their goals. The

objective, therefore, is to find h : [0, 1] → Xfree, in which Xfree = X \ Xobs, and \

means removing or excluding.

Many other researchers have looked at variations of the path coordination ap-

proach. In [68], Lee and Lee use a similar idea to plan the motions of two agents.

Griswold and Eem [41] take uncertainty of the moving obstacles into account while

using the same principle for path planning. Pan and Luo [95] use the concept of

traversability vectors to analyze the spatial relationship between the agent and moving

obstacles, and develop a search algorithm to coordinate the agent motion. Rude [110]

proposes a space-time representation for collision avoidance in pre-planned individ-

ual agent paths. In [44], Guo and Parker present a decentralized path coordination

approach that also incorporates optimization issues into the planning, including a

global performance measurement to minimize the weighted sum of the most time

taken to reach the goals and all idle time, as well as individual optimization goals

for navigation over rough terrain. In [67], LaValle and Hutchinson consider multiple

agents with independent goals and performance measures, and propose algorithms

optimizing a scaling function that is a weighted average of individual performance

functions. Direction maps [54] add penalties to the heuristic function by storing a

direction for each node. An agent gets a penalty for not moving in the exact direction

that is stored in the node. The penalty is proportional to the difference between the

direction stored in the node and the actual direction the agent is moving in. The

35

direction for a node changes when an agent moves across it, and the new direction

is a weighted value between the old direction and the direction the agent is moving

in. Along time, the direction map will form lanes to discourage agents from moving

against the general flow of other agents.

While all of these decoupled approaches typically allow good solutions to the

multi-agent path planning problem, they can lead to deadlocks, in which solutions

cannot be found. In these cases, it may be possible to make use of a centralized

planner for small portions of the original problem in order to solve the immediate

deadlock problem.

2.5 Research Issues

Many open issues in multi-agent path planning and coordination remain. The follow-

ing is a discussion of open research issues [99, 90, 53, 76, 63].

• Existing multi-agent path planning approaches ignore sideswipe collisions among

agents (i.e., they only consider the collision in which two agents try to occupy

the same node during the same time-step) [54, 120, 126], and allow diagonal

movement between two adjacent nodes. However, in many real world applica-

tions, sideswipe collisions may also block agents’ movements or cause deadlocks.

Therefore, it is absolutely crucial to investigate all possible collision scenarios

in a multi-agent system and design space efficient collision avoidance techniques

when agents are moving. (Chapter 5)

• Deadlock is a popular issue in multi-agent path planning [90, 108, 53]. If two

agents move towards each other in one narrow passageway, the lack of space

36

in the tunnel will prevent one agent from moving out of the way. Ideally,

agents should temporarily cooperate, leading to one agent re-planning a way to

escape this deadlock while the other agent can continue to move to its target

location. (Chapter 6)

• Formation and flocking have been topics of interest in multiple mobile agent

systems since the inception of the field. A key question in both flocking and

formation control research is determining the design of local control laws for each

agent that generates the desired emergent collective behavior, and how paths

can be planned for a moving goal in multi-agent formations [87, 86]. (Chapter 7)

• Most previous approaches are based on the classical path planning model,

such as global information data structures, priority schemes and communica-

tive methods. This research aims to develop and implement: a human-like

autonomous collision avoidance approach for the multi-agent system using non-

priority, local views and a configuration space where an agent can make any

move it likes as long as there is no obstacle (fixed or dynamic) in the way. In

such a configuration space there are no predetermined routes. Every space in

the configuration space is reachable from every neighbouring space provided

there is no obstacle. The scalability issue is also taken into account. How can

a large number of agents autonomously and equally deconflict paths efficiently

in dynamic and uncertain environments? (Chapter 8)

• There is also an issue of collision avoidance for heterogeneous agents [123, 135,

124]. Collision avoidance requires adaptive local views since the variable speed

of agents means not just that agents are moving at different speeds from each

37

other but also that an agent can vary its own speed while moving. (Chapter 9)

The above issues represent great challenges to collision avoidance in multi-agent

path planning systems. There is a real need to address the above research problems.

However, as can be seen from the literature review above, there has been no attempt

so far to model collision avoidance on models adapted from collision avoidance in

nature. This ‘blind spot’ mentioned in Chapter 1 has been shown to exist through

a systematic review of the agent-based literature and, in the next chapter, we shall

show that it exists in the robot literature as well.

2.6 Summary

This chapter has reviewed different path planning approaches including single agent

and multiple agent path planning, coupled and decoupled approaches. Current tech-

niques typically do not scale well to very large numbers of agents (e.g., thousands), and

many still have limitations for extensions to human-like autonomy (e.g., autonomous

agents – collision avoidance with local view, no priority and no communication). De-

veloping path planning and motion coordination techniques that incorporate practical

motion and sensing constraints of physical robots is still an open issue. Integrating

these techniques into physical robots remains uncommon, due to the practical need

to integrate these path planning and coordination algorithms with complete sensing,

navigation and reasoning systems, as well as the practical difficulty of experiments

involving large numbers of robots (e.g., the application of swarm robots) and fallible

robots (e.g., robot malfunction).

Chapter 3

Review of AI Research for
Collision Avoidance between
Robots

Artificial intelligence is the simulation of intelligence in machines [146]. A robot is

a mechanical or virtual agent [148]. In the robotics field, especially in the collision

avoidance issue, intelligence incorporates / includes autonomy as well as planning,

reasoning and cognitive abilities. Achievements in artificial intelligence and robotics

include autonomous cars [145]. Robots need agent research because an intelligent

agent is a system that perceives its environment and takes actions which maximize

its chances of success. Physical robots must consider the collision issue because they

are physical and entities are not simulated agents. This chapter reviews the existing

approaches of collision avoidance in multi-robot systems. Section 1 introduces the dif-

ference between motion coordination (physical robots) and path planning (soft agents).

The collision avoidance approaches are reviewed in section 2. Finally, section 3 sum-

marizes the robot review chapter.

38

39

3.1 Introduction

Research problems and challenges that have arisen in the area of multi-robot systems

have been addressed by using well established path planning and motion coordina-

tion approaches. Multi-robot path planning / path coordination is to plan and / or

coordinate the complete paths of all of the robots in advance. By contrast, motion

coordination focuses on decentralized, online approaches that allow robots to avoid

and / or resolve conflict as the situation arises during path execution, such as through

the use of traffic control rules. In traffic control applications, individual robots still

have independent starting and goal positions, and must move so as to avoid conflict

with each other. In this chapter these theoretical foundations are reviewed.

3.2 Existing Approaches

Motion coordination solutions are categorized into traffic control approaches, reactive

approaches and swarm techniques. In traffic control solutions, the idea is to pre-define

traffic control rules that robots must obey as they move through the workspace. On

the other hand, in reactive-style solutions, techniques from potential fields have been

adopted to achieve fast, real-time solutions. In swarm techniques, the aim is to control

robot motions in order to achieve a group objective, such as maintaining a formation.

3.2.1 Traffic Control Approaches

Typically, traffic control approaches require that individual robots move along paths

to their goals that they pre-plan in advance, based only on the individual robot’s

goals. Then, as regions involving shared resources are reached (such as the space in

40

an intersection), robots follow the traffic or control rules to coordinate their motions

with other robots who also need access to the shared resources [100].

An early traffic control example is proposed by Grossman [42] whose work ad-

dresses the motion of large numbers of automatic guided vehicles in a factory. Gross-

man defines three types of control possibilities:

1. Option 1 - centralized: controls all automatic guided vehicles’ paths using cen-

tralized traffic control;

2. Option 2 - suboptimal: restricts the roads so that there is a unique route between

all starting and goal positions;

3. Option 3 - decentralized: allows automatic guided vehicles to select their own

routes autonomously.

Grossman shows that allowing automatic guided vehicles to select their routes

autonomously (option 3) is preferred over the sub-optimal restriction of roads (option

2). On the other hand, the centralized approach (option 1) has high combinatorial

complexity.

The problem in [42] is formulated as follows. A set of m automatic guided vehicles

are allowed to follow unconstrained paths in two dimensions, on a grid-iron network

of roadways, with n parallel roads along each axis. Each section of roadway between

intersections is called an arc; in this formulation, there are 2n(n − 1) arcs in the

network. Each intersection of roadways is called a node, representing the locations of

machine tools to be serviced by the robots. It is assumed that 1 ≤ m ≤ n2 − 1, and

that all vehicles move at the same speed, v. Each automatic guided vehicle has the

task of moving from a source location (i.e., starting position) to a sink location (i.e.,

41

a goal location). Defining S to be the average number of time steps per task for

each vehicle, the average throughput of all the vehicles together is W = vm
S
. This

throughput must exactly match the throughput of all the n2 machine tools, leading to

a requirement that the vehicle speed must satisfy: v = Sn2

m
. The price of m vehicles

is considered negligible in comparison to the price of the machine tools. Thus, the

problem is formulated as the problem of optimizing the traffic control and the value

of m so as to minimize v in an n × n grid-iron floor plan. The constraints on the

traffic in this environment are as follows:

• At the end of each step, one automatic guided vehicle at most may be at each

node.

• During each step, no two automatic guided vehicles may pass on the same arc.

• All automatic guided vehicles have equal priority.

There are many variants on the traffic control and conflict resolution theme [57,

6, 151, 139, 72, 78]. For example, Kato et al. [57] categorize traffic rules into three

types: first, traffic rules to be applied to the current positions of the robot, such as

passage zone, stop, slow. The second is traffic rules to be applied to current positions

and conditions, such as overtaking, avoiding obstacles, crossing intersections. Lastly

are the traffic rules to ensure safety in case of accidents or failures. These rules are

illustrated for robot teams operating in indoor hallway-types of settings. Asama, et

al. [6] propose two basic rules for avoiding collisions: if the colliding robot is near the

front and approaching, then it should avoid the other agent from the left. Else, if the

colliding robot is near the front and leaving, then it must stop for a while. These rules

are combined with a communication-based negotiation process that resolves conflicts

42

by setting priorities based on the task requirements, the environmental situation

and robot performances. Another approach to conflict resolution is to use techniques

from distributed computing, as shown in [139], in which robots use a mutual exclusion

protocol to compete for the right to move along certain pathways or to resolve conflicts

at intersections.

In [94], the work considers a more realistic kinematic model of the robot dynamics,

recognizing that most robots cannot stop instantly in order to avoid collisions. This

model focuses on large numbers of robots (e.g., 70) operating closely in shared, open

spaces. This approach is particularly relevant for applications of aerial vehicles flying

at a constant altitude. This work makes use of the concept of a reserved region, which

is an area over which a robot claims exclusive ownership. The control policy is defined

for a set of discrete modes of operation, including a hold state in which a robot is

stopped, a straight state in which the robot is moving forward without turning, and

two roll states – one for wide turns and another for tight turns.

More recent work in conflict resolution for multi-robot teams is the work of Lal-

ish [63], a global deconfliction maneuver which mimics a ‘rules of the road’ approach

such as roundabout passing behaviour. In this approach all vehicles turn the same

way until a conflict-free state is reached for the whole system. The approach is ‘global’

because the positions of all vehicles are regulated by a deconfliction maintenance con-

troller even if they are not involved in collision, and ‘distributed’ because collision

avoidance computation is shared among a group of robots.

43

3.2.2 Reactive Approaches

One common reactive method makes use of potential fields [60]. In the potential

field approach, the robot moves through space as if it is being acted upon by a set

of forces. Attractive forces pull the robot toward a goal destination, while repulsive

forces push the robot away from obstacles and / or other robots. At each point in

the configuration space, the robot moves along the vector representing the combined

forces acting on that point in the configuration space. These concepts have been

applied to various multi-robot applications [143] including multi-robot soccer [69].

Other potential field approaches to multirobot coordination include [25, 70, 141, 140].

While all of the above techniques work well for relatively unconstrained situa-

tions, they are not analyzed formally to provide guidance for setting the navigation

parameters. On the other hand, a more formal method for determining reactive colli-

sion avoidance parameters is proposed in [36]. The approach is a collision avoidance

method based on an adaptive navigation technique, in which the navigation law is

given by a first-order differential equation. Navigation of the robot to the goal and

obstacle avoidance are handled by switching the direction angle adaptively. Robots

are assigned priorities to determine which vehicles must yield to the others. The

proper value of the direction angle is calculated theoretically, based on three robot

modes of operation: the navigation mode where the robot is moving towards the goal

without interference; the cooperative avoidance mode, in which the robot avoids other

robots; and the final mode is when the robot is approaching the goal. The approach

has been implemented in simulation for up to five mobile robots and on two physical

robots.

More recent works in the reactive technique for multi-robot systems is proposed by

44

Jur van den Berg et al., [135, 136, 135] involving a velocity-based collision avoidance

approach. This lets a robot take just half the responsibility for avoiding a collision,

while assuming the other robot reciprocates by taking care of the other half. How-

ever, the reciprocal velocity obstacle approach can cause robots to select oscillating

velocities as a result of not reaching agreement on which side to pass each other.

The latest work (hybrid reciprocal velocity obstacle [124]) reduces the possibility of

oscillations and introduces priority to moving left.

3.2.3 Swarm Techniques

Many types of swarm behaviors have been studied, such as foraging, flocking, chain-

ing, search, herding, aggregation and containment. The majority of these swarm

behaviors deal with spatially distributed multirobot motions, requiring robots to co-

ordinate motions either (1) relative to other robots, (2) relative to the environment,

(3) relative to external agents, (4) relative to robots and the environment, or (5)

relative to all (i.e., other robots, external agents and the environment) [98]. Coor-

dinating the motions of robots relative to each other has been a topic of interest in

multiple mobile robot systems since the inception of the field, especially regarding

flocking and formation control problems. In these problems, robots are assumed to

have only minimal sensing, computation, effector and communications capabilities.

A key question in both flocking and formation control research is determining the

design of local control laws for each robot that generate the desired emergent collec-

tive behavior. Other issues include how robots cooperatively localize themselves to

achieve formation control [87, 86].

Early solutions to the flocking problem in artificial agents are proposed in [109],

45

which is a rule-based approach. Similar behavior-based or rule-based approaches have

been used in physical robot demonstrations and studies [82, 9]. These earlier solutions

are based on human-generated local control rules that are demonstrated to work in

practice. More examples include [52, 12, 132, 33, 80, 37, 130, 4].

To conclude this part of the literature review, it has been shown that, while colli-

sion avoidance is well-understood and researched in the robot literature, there is very

little previous research on adapting nature-inspired collision avoidance techniques to

robot collision avoidance. It is not within the scope of this thesis to ask why this

blind spot exists, although it could be hypothesized that reasons may include per-

ceived irrelevance of nature inspiration, lack of understanding of how natural entities

avoid each other and perceived difficulties in implementing nature-inspired collision

avoidance strategies safely and reliably. While it is not within the scope of this the-

sis to cover the issue of the largely ignored nature-inspired collision avoidance, it is

certainly within the thesis’s interest to understand how natural entities avoid each

other, demonstrate working systems of collision avoidance strategies and to ensure

that such systems are safe and reliable for all entities. These points will be covered

during the course of the thesis.

It may be noted from the literature review that there is another perceived gap

- understanding what a collision actually consists of. This is surprising, given that

collision avoidance algorithms need to be shown to handle the specific types of collision

they are designed for. The lack of a formal framework for describing collision types

also makes it difficult to compare collision avoidance algorithms with each other. The

collision types need to be addressed as part of the research methodology if the claims

regarding the collision avoidance algorithms actually work and needs support.

46

3.3 Summary

From a practical perspective, many real-world applications can potentially benefit

from the use of multiple mobile robot systems. Examples of applications include

container management in ports [2], extra-planetary exploration [128], search and res-

cue [55], mineral mining [116], transportation [131], industrial and household main-

tenance [100], construction [121], hazardous waste cleanup [97], security [45], agri-

culture [106] and warehouse management [48]. To date, relatively few real-world

implementations of these multi-robot systems have occurred, primarily due to the

complexities of multiple robot systems and the relative newness of the supporting

technologies.

From a scientific perspective, understanding interactions between multiple au-

tonomous robots might lead to insights in understanding other types of complex sys-

tems, from natural interactions in biology and social systems to engineered complex

systems involving multiple interacting agents. Because multi-robot systems operate

in stochastic and unpredictable settings, the study of the interaction dynamics in

these settings can lead to discoveries that have a broader impact on a wide range of

complex non-linear systems [99].

In the next chapter, a description of the research methodology will be given which

provides the experimental framework for the research in this thesis.

Chapter 4

Research Methodology

The scientific research methodology (SRM) provides the most logical and constructive

way to conduct experiments when there is little previous research on which to base the

new research questions and experiments. Section 1 gives a general overview of SRM.

The research problems will be formulated and open questions in this thesis study are

briefed in section 2. Section 3 gives the proposed method along with the discussion of

an ideal collision avoidance method. A design of the experimental method is proposed

in section 4. Section 5 provides the analysis of results and validation. A review

and evaluation of output reports are given in section 6. Lastly, section 7 forms the

summary of this chapter.

4.1 Introduction

Chapter 1 introduced two scenarios to provide a motivation for the research described

in this thesis, which is to address a gap in the multi-robot and multi-agent litera-

ture: the use of nature-inspired techniques for collision avoidance. Chapters 2 and 3,

through literature review, provide evidences of this gap, with much work focused on

47

48

rigorous and formal ways to avoid collision based on well-known search strategies and

methods for representing the search space within which robots and agents must move.

Therefore, the following research question is imposed. Can nature-inspiration be used

in multi-robot and multi-agent systems, and if so, how? To answer this question sys-

tematically within the scope of a PhD thesis, it requires a research methodology

to ensure that the question can be broken down into manageable sub-parts. Also,

such a break-down will allow for the emergence of sub-questions to the main research

question. Finally, such a breakdown will allow a ‘flow’ of research that represents

a journey of discovery, given that the thesis appears to be located in a space that

has not been previously occupied by any PhD thesis or, to the best knowledge, any

previous research directly related to the research question. In other words, this thesis

does not claim to provide a complete answer to the research question but does claim

to be setting down some fundamental pointers as to how the research question, if

adopted by others, can be pursued. Along the way there will be a number of hy-

potheses to test, with results from the tests leading to refinements of hypotheses or

new hypotheses to test. This chapter identifies the research methodology adopted to

manage and keep control of the research. The concluding chapter will return to the

research methodology and will ask whether it has been successful.

The critical aspect of any suitable research methodology, given our research ques-

tion above and the relative lack of previous work in the area covered by the research

question, is the need to formulate a hypothesis, derive some test conditions, imple-

ment software solutions relevant to those test conditions, run the software, collect the

results, analyze the results against the test conditions, report the results and then

either reformulate the hypothesis or derive some new test conditions, and so on. This

49

process is repeated until, ideally, the best software solution is found for the best test

conditions (extremely unlikely in any science) or, as is the case in this thesis, time

runs out. When time runs out, the merit of what has been achieved needs to be eval-

uated both on its own terms (e.g. novelty and significance) as well as the possibility

of continuation. We will return to discussing the merit of what has been achieved at

the end of the thesis.

4.2 Scientific Research Methodology

The scientific method is a body of techniques for investigating phenomena, acquiring

new knowledge or correcting and integrating previous knowledge [40]. The scientific

method is a way to ask and answer scientific questions by making observations and

doing experiments. Common steps of the scientific methods are:

• To ask questions;

• To do background research;

• To construct a hypothesis;

• To test a hypothesis by doing experiments;

• To analyze data and draw a conclusion;

• To communicate results.

The main challenge in this research is the lack of previous work on autonomous

agents for collision avoidance, which involves no priority, communication, global-

view and central coordinator. There is no previous work on which to base a fully

50

autonomous method through nature-inspired observation. The design process consists

of a set of steps that starts first with the identification of a problem or a need and

leads to creating and developing a solution that solves the problem or meets the need.

The steps of the methodology used in this thesis are:

• To define the problem;

• To do background research;

• To design the method;

• Experiments;

• Analysis and validation;

• Output report;

• Review and Evaluation;

• To re-define the questions;

The research method to be adopted in this thesis is illustrated by the diagram in

Figure 4.1.

4.3 Research Problems and Open Questions

This section formulates the collision avoidance problems in multi-agent systems and

briefs open questions.

51

Figure 4.1: Reasoning Cycle - Scientific Research.

4.3.1 Research Problems

The multi-agent path planning problem with collision avoidance is defined as follows:

given a set of m agents in k-dimensional workspace, each with an initial starting

configuration (e.g. position and orientation) and a desired goal configuration, deter-

mine the path each agent should take to reach its goal, while avoiding collisions with

obstacles and other agents in the workspace. More formally, let A be an agent in

a static workspace W = R
k, where k = 2 or k = 3. The workspace is populated

with obstacles. A configuration q is a complete specification of the location of every

point on the agent geometry. The configuration space C represents the set of all the

possible configurations of A with respect to W . Let O ⊂ W represent the region

within the workspace populated by obstacles. Let the closed set A(q) ⊂ W denote

the set of points occupied by the agent when it is in the configuration q ∈ C. Then,

52

the C-space obstacle region, Cobs, is defined as:

Cobs = {q ∈ C|A(q) ∩ O 6= 0} .

The set of configurations that avoid collision (called the free space) is:

Cfree = C/ Cobs.

A free path between two obstacle-free configurations cinit and cgoal is a continuous

map:

τ [0, 1]→ Cfree

such that τ(0) = cinit and τ(1) = cgoal.

For a team of m agents, define a state space that considers the configurations of

all the agents simultaneously:

X = C1 × C2 × · · · × Cm.

Note that the dimension of X is N , where N =
∑m

i=1 dim(C i). The C-space

obstacle region must now be redefined as a combination of the configurations leading

to an agent-obstacle collision, together with the configurations leading to agent-agent

collision. The subset of X corresponding to agent Ai in collision with the obstacle

region, O, is

X i
obs =

{

x ∈ X|Ai(qi) ∩ O 6= 0
}

. (4.3.1)

The subset of X corresponding to agent Ai in collision with agent Aj is

53

X ij
obs =

{

x ∈ X|Ai(qi) ∩ Aj(qj) 6= 0
}

. (4.3.2)

The obstacle region in X is then defined as the combination of Equations 4.3.1

and 4.3.2, resulting in

Xobs =

(

m
⋃

i=1

X i
obs

)

⋃

(

⋃

i,j,i 6=j

X ij
obs

)

. (4.3.3)

With these definitions, the planning process for multi-agent systems treats X the

same as C, andXobs the same as Cobs, where cinit represents the starting configurations

of all the agents, and cgoal represents the desired goal configurations of all the agents.

Typically, optimization criteria guide the choice of a particular solution from an

infinite number of possible solutions. Example criteria include minimized total path

lengths, minimized time to reach goals, and minimized energy used to reach goals.

Additional constraints can introduce more complexity in the planning process, such

as navigational restrictions on the agents (e.g., maximum slope restrictions, inability

to traverse rocky terrain, etc.), or the need for multiple agents to move in tandem with

each other (e.g., a formation of agents moving over uneven terrain). Since the general

optimal motion planning problem for multiple moving objects is computationally in-

tractable (specifically, PSPACE-hard [50]), most approaches relax the requirement for

global optimality, and instead seek to locally optimize portions of the path planning

problem.

4.3.2 Research Questions

The previous chapters review methods and techniques that are used or are highly

related to the research in this PhD study. Each of the works carried out in this PhD

54

study is either an improvement made on previous studies reviewed in this chapter or

an existing method integrated in a new way to achieve better results.

As a result of the reviews presented in chapter 2 and chapter 3, several research

questions related to multi-agent collision avoidance can be formulated as follows:

1. Can we investigate and summarize all possible collision types in multi-agent

systems? (Chapter 5)

2. Can we solve a deadlock situation in a cooperative way in a tunnel-like envi-

ronment? (Chapter 6)

3. How can paths be planned for a moving goal in swarm robotic group forma-

tions? (Chapter 7)

4. How can a large number of agents autonomously and equally deconflict paths

in dynamic and uncertain environments? (Chapter 8)

5. Can a large number of homogeneous autonomous agents extend to heteroge-

neous agents with variable size and speed? (Chapter 9)

The first two questions in particular are the foundation questions, since a clear

understanding is required of what it is exactly that agents and robots must avoid.

As noted in the literature reviews, there is surprisingly little work on this foundation

issue. The fourth and fifth questions can only be tackled if an answer is provided to

the first three questions. All of these questions will be answered in the rest of the

thesis.

55

4.4 Proposed Method

4.4.1 Limitations of Previous Methods

The disadvantage of most of the previous decentralized collision avoidance approaches

is that each method is restricted to a global view or requires communication between

agents. In addition, none of them can take advantage of local view, and there is

non-priority and no communication in a shared environment. This thesis claims that

by adopting a nature-inspired approach, these disadvantages can be overcome.

4.4.2 An Ideal Collision Avoidance Method

An ideal collision avoidance method is: decentralized (no central control); distributed

(each agent adopts the same procedure); localized (each agent has their own local

view and does not depend on a centrally held data structure that gives a global view

of the environment); non-communicative; reactive and autonomous (each agent is

responsible for its own collision avoidance maneuver). In this study, inspiration for

avoiding collisions comes from the use of roundabouts for resolving potential vehicle

collisions at road intersections. When a vehicle approaches a roundabout, drivers

adopt a specific set of autonomous but shared procedures for negotiating the round-

about to continue on their routes while avoiding collision with other vehicles already

on the roundabout. Drivers do not require a central command and control structure

or communication with each other to avoid collision. The idea adopted in the thesis is

employing a temporary roundabout such that each agent independently locates in the

possible collision position when two agents realized they may be on a collision course.

The two agents then adopt shared but non-communicated procedures for negotiating

56

the roundabout and thereby avoid colliding with each other until they can resume

their desired path.

While roundabouts are concrete in the real traffic world, the temporary round-

abouts used here by agents are virtual: they do not actually exist in the configuration

space but do exist temporarily on the paths of each agent involved in a possible col-

lision before disappearing from each agent’s paths once collision is avoided. No other

agent sees this roundabout. Because the configuration space consists of rectangu-

lar grids, the virtual roundabout necessarily becomes straight-lined and rectangular,

hence it is called a ‘rectabout’. Moreover, real roundabouts can vary in size depend-

ing on various parameters such as approach speed, one-lane or multi-lane, number of

roads leading to that intersection, etc.

In order to design an effective collision avoidance model, two points should be

taken into consideration: (1) no communication while avoiding collisions since true

autonomy requires no central coordinator and no communication between agents; (2)

how to ensure that agents resume their paths after collision avoidance to still reach

their goals effectively and efficiently.

4.4.3 The Idea of MER-based Collision Avoidance

An ideal roundabout collision avoidance system has to satisfy the following principles:

1. Flexibility in size: since the degree of collision risk depends on the distance

between the two agents, the system should have the ability to shift its scale

according to the distance of the nearby agents.

2. Orientation: the topology of the roundabout must be such that it is correctly

oriented to deal with conflict. That is, the location and orientation of the

57

roundabout must be able to deal with two robots approaching each other from

any angle and not assume fixed entry and/or fixed exit points.

3. System adaptability: the system can be used for resolving any type of possible

collision for multi-agent systems.

4. System independence: the system should not be restricted to deal with a pre-

determined number of agents, a fixed local view or a predetermined and fixed

configuration space.

In this thesis the Minimum Enclosing Rectangle (MER) is used to support these

principles. According to Das et al. [23], given a set of points P = {p1, p2, ..., pk} with

pk ∈ ℜ
2, the minimum enclosing square (or rectangle) of P is the smallest square (or

rectangle) that contains all points of P . For the purposes of this research, the smallest

square or rectangle is defined as the smallest rectangle that contains a given number

k such that n
2
< k ≤ n of x-consecutive points in a set of n points in the plane. The

problem of computing k-square and k-rectangle has been investigated since 1991 (for

a review, see [1, 31, 115, 23, 79]). MER has been applied in various areas, such as

pattern recognition [96], facility location [29], similarity search [88, 24] and collision

detection [75]. In order to classify the k-square with respect to the number of points

η present on its boundary, Das et al. [23] investigated all the different possibilities of

k-squares. As a result, no k-square is possible with η = 0 or 1. The only possibility

with η = 2 is that the two points appear at the two diagonally opposite corners of

the corresponding k-squares. Nevertheless, MER has potential to be used to address

multiple points at the same time for collision avoidance. This could be one direction

of future work. In this study, k = η = 2 is the MER or MES that the robots are

58

searching for, as shown in Figure 4.2.

(a) (b) (c) (d)

Figure 4.2: MER of η = 2, with dots representing the position of the two agents. The
orientation of the rectabout can differ according to the local view.

In this study, MER as a potential roundabout representation method is considered

for the following reasons. First, MER encloses agent positions in the smallest rectangle

or square irrespective of the distance from the other agent, and the MER itself is

flexible in size. Second, MER can find the suitable location and orientation to enclose

agent positions at the two diagonally opposite corners η = 2. Third, MER is an

independent system representation method. Because the enclosed agents in MER

are not constrained by specific synchronous, symmetric and communication-based

restrictions, these agents are fully autonomous in their moving direction along the

paths given by the roundabout.

The proposed method builds on an implicit assumption that other agents make

similar collision avoidance reasoning via MER. That is, knowledge of MER is shared

by all agents. It consists of two components: Minimal Predicted Distance (MPD)

detection and MER rectabout collision avoidance algorithm. The MPD is a metric

inspired by real human pedestrian collision avoidance behaviour (for a review, see [93,

92] and more details below). As far as we are aware, this is the first time that MPD

59

has been used for addressing collision problems in multi-agent systems. The MER-

based rectabout collision avoidance algorithm is a pairwise approach which computes

and re-plans agents’ moving direction by following a ‘keep left’ rule at the rectabout.

This rule can be changed if necessary to keep right. The proposed collision avoidance

method is demonstrated for multi-agent systems using different types of collisions

investigated in [76].

4.5 Design of Experimental Methods

In this research work, the algorithms are applied to distributed multi-agent systems.

At each time step, an agent has potentially 9 legal actions, irrespective of the local

view schema adopted by agents. This will be described later in the thesis. Each of

these legal actions is a solution to the constraint satisfaction problem in which each

agent must be assigned a move from {E,S,W,N,NE,SE,SW,NW,wait}, and there are

constraints between sets of legal moves. For example, these legal moves must not

lead to two agents colliding. With respect to preventing collisions, the algorithms

presented in the work are intended to cope with local view collisions in various situ-

ations, such as crowded environments and tunnel-like environments. We adopt both

simulated agents and robots for the experiments, since our robots have the capacity

to plan and resolve conflicts between themselves, just like autonomous agents. We

employ both implicit communication methods and explicit communication methods

for robots to handle all the data which are transmitted via the network system, shown

in Figure 4.3.

For multi-agent and motion coordination rehearsal, a four-step experiment on

multi-agents is planned as follows,

60

Figure 4.3: Communication architecture in multi-agent systems.

1. Stage 1 - centralized coupled system - experiments with collision types [73, 76]

in multi-agent / robot systems. All agents move to their targets synchronously

without collisions, including encountering fixed and dynamic obstacles through

a centralized coupled approach.

2. Stage 2 - centralized decoupled system - two experiments are conducted in this

stage, one with the adaptability of motion coordination and automatic obstacle

avoidance behaviour. The other is with the agent swarm from an initial random

start position which must coordinate their behaviours to form a shape (e.g.

circle, square) such that each agent is equidistant from its neighbours.

3. Stage 3 - autonomous homogeneous system - multiple homogeneous agents move

from start position to goal position with local view through a decentralized

approach. Communication is not allowed between each other. All start and

goal positions are randomly assigned.

4. Stage 4 - autonomous heterogeneous system - heterogeneous agents are applied

to the system, achieving the goal of Stage 3.

61

Figure 4.4 shows the journey of this PhD research.

Figure 4.4: The journey of this PhD research.

4.6 Analysis of Results and Validation

The analysis and evaluation of this research is carried out by using a centralized

multi-agent pathfinding simulator, a decentralized multi-agent system simulator and

Matlab tools. Figure 4.5 and Figure 4.6 illustrate the experimental environment for

centralized and decentralized multi-agent simulators, respectively. With centralized

simulator, agents settings (number of agents, start and positions, etc), group settings

and environmental settings can be interacted with user. With decentralized simulator,

it is very similar to the centralized one, but the differences are approach setting (A*

or A* with other algorithms) and rules setting (keep left or keep right for different

62

traffic controls).

Figure 4.5: Illustration of experimental environment for centralized multi-agent sim-
ulator.

4.7 Review and Evaluation of Output Reports

The proposed approach will be tested on real robots and in extensive simulation runs

to answer the following questions. (1) Practicability: Is the proposed approach rel-

evant and applicable to real robot systems? (2) Solvability (Completeness): Does

63

Figure 4.6: Illustration of experimental environment for decentralized multi-agent
simulator.

the proposed approach succeed in finding valid collision-free multi-robot paths if one

exists? All experiments are carried out using different configuration environments.

We apply the proposed method to the two robot systems with deadloop and collision

conditions in [73, 76]. The control architecture is through networked robotics to allow

mobile robots to communicate with each other via Wi-Fi and through a coordination

control laptop that relays path and obstacle information to all mobile robots. In

simulated validation, the robustness of collision avoidance needs to be evaluated on:

64

(A) the capability of agents’ positions, i.e. the system is not restricted to any syn-

chronous, symmetric and communication-based maneuvers; (B) the adaptability of

collision avoidance in case of deadlock; and (C) the scalability of collision avoidance

to increasingly larger numbers of agents.

4.8 Summary

This chapter presents a scientific research methodology in the form of sequence analy-

sis. It is the best possible way to focus the research process and organize the research

by formulating and defining a research problem and drawing conclusions that reflect

the real world.

The research methodology identified in this chapter makes a crucial assumption,

which is that our contribution of inspiration from nature will be introduced not from

the very beginning of the research but at a point in the research where it is most desir-

able to do so. As can be seen in Chapters 2 and 3, there are already a lot of knowledge

and information concerning formal path-based search approaches and collision avoid-

ance approaches in the standard literature. While these classical approaches are well

understood and, in many cases, formally grounded, they assume a compromise of the

ideal scenarios identified in the Introduction chapter: these approaches assume a mix-

ture of centralized control, communication, priority and a global data structure. That

does not mean that we have to start again with a blank page with a nature-inspired

approach. That would be throwing away too much good work that already exists.

The task for this thesis is to take those aspects of searching, planning and collision

avoidance that are well understood and relevant to our research, and then to see how

we can add to them with inspiration from nature at that point in the research when

65

it is most appropriate to do so.

In conjunction with the research questions above is also a suggested method: see

how far we can get with current techniques and extending them where necessary to

make them more suitable for collision avoidance. We believe that we have gone as far

as we can with these classical methods and see how inspiration from nature can lead

to new insights as well as possibly novel solutions. These covers the perspective of the

two scenarios introduced in Chapter 1, for autonomous, non-centralized, non-global,

non-communicative collision avoidance.

We therefore need to start with what is currently known, or not known, about

collision avoidance which leads to the encounter of our first problem. As was shown

in the literature reviews, despite all the work done so far in collision avoidance, there

is actually very little formally stated on what a collision is and how to recognize a

collision.

The next chapter investigates all possible collision types in multi-agent systems.

A novel extension to the standard A* algorithm using centralized coupled approach

is presented and experimental results follow which relate to research question 1.

Chapter 5

Super A* based on Collision Type

The aim of this chapter is to address the first research question identified in the Re-

search Methodology chapter: Can we investigate and summarize all possible collision

types in multi-agent systems? The purpose of this chapter is to evaluate our colli-

sion avoidance classification using a path-searching method that is well understood by

classical researchers so that our identification of collision types is kept separate from

questions about detecting and avoiding them. If a standard, well-understood approach

can be shown to work with our collision types, that will count as some evidence that

our classification may be correct. Nevertheless, changes will need to be made to the

standard approach to cope with the collision types identified. In this chapter, we use

the standard A* algorithm as our basic, well-understood method to demonstrate that,

with suitable and novel extensions, it can implement avoidance strategies based on our

collision types.

This chapter will therefore investigate and summarize all possible collision types

in multi-agent systems. Section 1 describes collision avoidance issues in existing

approaches. Section 2 defines a number of collision types for multiple agents and, in

particular, between pairs of agents that need to be handled by any real-time collision

66

67

avoidance systems. In Section 3 a novel extension to the standard A* algorithm is

presented (Super A*) that solves the problem of these collision types by using dynamic

real time monitoring and iterative move-evaluate-move cycles. The evaluation of the

Super A* algorithm is presented in Section 4. A discussion on Super A* performance

is given in Section 5.

5.1 Introduction

The area of dynamic multi-agent systems has many unresolved interaction problems.

The goal of this chapter is to describe an alternative approach to collision avoidance

that is intended for use in real-time situations. To achieve this, it is necessary to

identify all possible collision types in a multi-agent system.

Existing multi-agent pathfinding approaches ignore sideswipe collisions among

agents (i.e., only consider the collision where two agents try to occupy the same

node during the same time-step) [54, 120, 126], and allow diagonal moves between

two adjacent nodes (e.g., Figure 5.1(b)). However, in many real world applications,

sideswipe collisions may also block agents’ movements or cause deadlocks. For exam-

ple, as shown in Figure 5.1, if the size of two agents is as big as the grid size they

occupy, collisions will happen not only between agents R1 and R2 in the situation

depicted in Figure 5.1(a), but also in Figure 5.1(b), which is typically not considered

as a collision in existing multi-agent systems.

68

(a) (b)

Figure 5.1: R1 and R2 represents robot 1 and robot 2, respectively. (a) Occupy the
same position. (b) Sideswipe collision.

5.2 Deadloop and Collision Types

To overcome the limitation depicted in Figure 5.1(b), we investigate all possible col-

lision scenarios in a multi-agent system (the speed / velocity of agents is taken into

consideration when describing these collisions) when agents are moving, and iden-

tify one deadloop type and five collision types. We show that all possible scenarios

that may hinder an agent’s planned motion in a two-dimensional space can be cov-

ered by these collision / deadloop types (with symmetry). The scenario that may

cause a deadloop situation in a multi-agent system, on the other hand, is depicted

in Figure 5.2. The five collision types are head-on, front sideswipe, rear sideswipe,

front-end swipe and front-end sideswipe, which are illustrated in Figure 5.3(a) to (e),

respectively. Front sideswipe (Figure 5.3(b)) and rear sideswipe (Figure 5.3(c)) can

occur only on diagonal moves for both agents.

In this research, we model the motion space of agents as a grid map, and assume

that an agent can be as big as, or smaller than, the cell. The Super A* algorithm,

which will be introduced in the following section, can handle all these collision / dead-

loop situations, and allow agents to reach their destinations.

69

(a) (b) (c)

Figure 5.2: Illustration of deadloop. The green squares and the red squares are the
agent positions (R1, R2) and the goal positions (G1, G2) for two agents, respectively.
R1 and R2 are agent 1 and agent 2. (a) The initial position for two agents. (b)
and (c) The deadloop condition is encountered and repeated in-between (b) and (c)
infinitely as each agent makes a move that mirrors the other agent.

5.3 Prioritized A*-based Path Planning and Step-

Forward Path Coordination

The A* search algorithm [89] is widely used in computing cost-optimal paths for

individual agents. It uses branch and bound supplemented by heuristic information

and pruning of redundant paths to find the time or length optimal collision-free path

from start point to goal point [46]. In this work, we assume that the environment, or

configuration space, is simulated by a discrete occupancy grid map. This assumption

is widely used in the robotics literature. An occupancy grid consists of a grid of

equally spaced cells of arbitrary size. Here, we use a two-dimensional space, i.e.,

the ‘environmental matrix’, to represent the physical environment. Each cell in the

matrix can be empty, occupied by a static obstacle, or occupied by an agent. Paths

for agents are represented as moves through or over grids in the two-dimensional

space.

70

(a) (b) (c)

(d) (e)

Figure 5.3: Illustration of 5 collision types. (a) Head-On. (b) Front Sideswipe. (c)
Rear Sideswipe. (d) Front-End Swipe. (e) Front-End Sideswipe.

Given two specific locations, i.e., the initial position (x, y) and the goal position

(x∗, y∗), the objective of A* is to estimate the lowest cost path from position (x, y) to

(x∗, y∗). The gone cost G and heuristic cost H are involved to calculate the total cost

F (F = G+H), which is used to guide the search (the path with least F is explored

next). Figure 5.4 illustrates the coordination scheme for moves in the simulation

environment. There are nine cells which represent eight possible single move directions

(nodes) for R1, which is located in the center of this space. The gone cost is the

actual cost moving from the currently occupied cell (the central node) to one of the

8 neighboring nodes, which then becomes the newly occupied cell. Heuristic cost is

the estimated cost remaining from the newly occupied cell to the goal position. Here,

we use the Manhattan formula as the method to estimate distance remaining (which

takes no account of any obstacles), given by C · (||xnewnode − x∗|| + ||ynewnode − y∗||),

where C > 0 is chosen as the Heuristic Coefficient. The optimal path is the path

71

with the lowest F cost (F = G,H = 0), and can be found by using the heuristic

information with no ‘open’ paths left (i.e. paths that may reach the goal with less

actual cost).

(a) (b) (c)

Figure 5.4: The coordination scheme for possible moves. (a) 8 possible moving direc-
tions for Agent 1. (b) The coordination scheme. (c) The possible move of R1 based
on the coordination scheme.

5.3.1 Prioritized A*-based Path Planning

Super A* is a new algorithm for solving the multi-agent path planning problem. The

major issues for re-planning relate to the deadloop and the five collision types defined

above. In collision avoidance, determination of priorities is a key factor that may

result in different re-planning outcomes. When dealing with agents pausing to allow

other agents to move, priority can be assigned to agents based on a static factor, such

as the order in which they are placed on the grid [73], or based on some dynamic

factors, such as which agent is closer to its target or which agent reaches a potential

collision point first. Priority is only introduced when dealing with possible collisions

between individual agents. It does not affect the optimal paths of other agents. In

this way, global and local optimal solutions are taken into account.

72

The basic ideas of the Super A* algorithm are summarized in Table 5.1 and

Algorithm 1.

Table 5.1: Super A* Notations

Notation Descriptions
n0 Starting node
n Ending node
L Label of agent
pn Parent node

Nopen OPEN-list of node
Nclose CLOSE-list of node
nnew New node of current parent node
G Gone cost value

Gnew New gone cost value

Super A* is a fixed priority scheme and there is no calculation for priority. This is

a coupled procedure that each agent runs Super A* one by one in order. The collision

types are built into each agent and checked at stage 10 of the Super A* algorithm

which works in an intelligent grid that describes the position of every agent, its start

and end path nodes, and stores the paths calculated from the previous Super A* run.

Before generating a full path in the next run of Super A* (stages 15-22), the agents

check for possible collision types and deadloop on the various paths in the intelligent

grid, where agents employ ‘flagged’ if two or more agents are going to collide. If

collision is flagged, the agents find an alternative route avoiding the collision, but this

alternative route is also checked at the next run of Super A*. The partial path of the

new node does not exist, because in A* algorithm the new node is one of 8 neighbour

nodes for calculating the heuristic cost from the new node to goal node.

73

Algorithm 1 Super A* Algorithm

Input: Input two nodes n0, n and L

Output: Output a set of nodes Nclose, ni ∈ Nclose

1: Nopen ← n0, Nclose ← ∅, flagged ← false

2: loop

3: pn← Compute the lowest cost of node, in Nopen

4: if pn = n then

5: Nclose ← Nclose ∪ {pn}
6: Return Nclose

7: else

8: for all neighbours nnew do

9: if L accords with a fixed priority scheme then

10: flagged ← Check Deadloop and five Collision types
11: end if

12: if flagged is true then

13: Continue Loop
14: end if

15: if (nnew ∈ Nopen or nnew ∈ Nclose) and Gnew < current G then

16: G← Gnew

17: Continue Loop
18: end if

19: Nopen ← Nopen ∪ nnew

20: end for

21: end if

22: Nclose ← Nclose ∪ {pn}
23: end loop

5.3.2 Step-Forward Path Coordination

Given a common space, a start node and a goal node set for each agent, a path

is computed for each agent that avoids collisions with fixed obstacles. As noted

earlier, a major limitation of the A* algorithm is that it can find the optimal path

in a static environment but not in dynamic environments where A* is started again

with the new configuration. Therefore, in [73], we extended the A* algorithm and

propose the Super A* algorithm which can handle dynamic obstacles in real-time (i.e.

without restart). Given two agents R1 and R2, R1 can become a dynamic obstacle in

relation to R2, and vice versa if collision is possible between them (Figure 5.2). The

Super A* algorithm consists of redesigning A* as a real-time algorithm for handling

74

dynamic environments through a step-forward dynamic moving approach (‘move-

evaluate-move’). The following procedure is repeated until the goals are achieved by

all agents. The extension to A* is as follows:

1. The agent with Label 1 computes its optimal path using Super A*. Then, pass

the planned path to the agent with Label 2.

2. Each agent moves one step following the established path.

3. Each agent evaluates the current environment. If the goal is achieved, then the

algorithm is stopped for that agent. Otherwise, the algorithm runs again until

all agents achieve their goal.

A single agent keeps updating its path by using the most recent information avail-

able, including the positions of other agents and their planned next moves. Deadloop

and five other collision types are identified one step ahead. For these situations, the

Super A* algorithm applies a single and fixed priority scheme based on the order in

which agents are placed on the grid one step ahead of the collision for preventing col-

lisions between agents, and then agents are returned to their optimal paths as quickly

as possible.

5.4 Evaluation

We have conducted both real robot and simulator-based simulations. Through these

simulations, we try to evaluate the following three aspects of the proposed strategy:

(1) Practicability: is the strategy relevant and applicable to real robot systems? (2)

75

Solvability: can the strategy find valid collision-free multi-robot paths? (3) Opti-

mality: is the strategy able to generate the best paths despite collision-avoidance

behaviour? Experiments were carried out using different configuration environments.

The proposed method is applied to a two-robot system with the deadloop and colli-

sion conditions described in Section 5.2. Video links to demonstration are provided

at the end of the chapter.

5.4.1 An Example with Real Robots

The goal of the first experiment is to demonstrate the applicability of our approach

to real robot systems. This experiment was carried out using the Rovio robots of

WowWee Technologies. The task of the robots is to find the optimal / shortest

path and move from their initial positions to their goal positions without collision.

Figure 5.5 shows one experimental robot and one experimental physical space, which

is a 5 by 5 grid with each grid measuring 50cm by 50cm. In Figure 5.6(a), the robots

are deployed on two sides of the field and have to move to their goal positions on the

other side using Super A* and avoiding deadloop and collision. Figure 5.6(b) shows

the two robots rotating their directions from the initial situation. As can be seen in

Figure 5.6(c), the paths of the robots are changed in order to avoid collisions with

each other. For the optimal paths computation, robot 1 and robot 2 both have to take

a detour around each other. At the end, the two robots achieve their goal position

shown in Figure 5.6(d). This is the optimal resolution to this possible collision without

introducing a sideways move or a front end swipe or sideswipe.

76

(a) (b)

Figure 5.5: These two pictures show the robot used in the experiment as (a) and
configuration space in real world as (b).

5.4.2 Simulation Experiments

In the simulation experiments using a 10 by 10 grid, we analyze the conditions with

collision and without collision. The ‘without collision’ condition may arise when

agents need to coordinate their actions and synchronize their movements to ensure a

proper sequence is achieved.

Priority with collision

The first set of experiments was performed to investigate the effects of the priority

scheme. In Figure 5.7(a), the blue squares represent the calculated paths of the

agents, and the orange squares are the potential collision risk where the paths of the

two agents overlap. Without a priority scheme, it can be seen in Figure 5.7(b) that

agent 1 and agent 2 both find sub-optimal paths to avoid collision. But with priority,

optimal collision avoidance is achieved. In Figure 5.7(c), R2 lets R1 take the optimal

path and R2 selects an avoidance strategy that allows it to return to the optimal path

after collision is avoided.

77

(a) (b)

(c) (d)

Figure 5.6: An application example with the Rovios of the WowWee Technologies:
(a) shows the initial situation of two robots; (b) shows the two robots rotating in
their cells to avoid collision; (c) depicts the two robots passing each other with no
collision; and (d) shows the two robots in their goal positions.

Priority without collision

The final experiment in this section is designed to illustrate that the priority scheme

is flexible and can be used to find the optimal / shortest paths for multiple agents in

the presence of fixed obstacles rather than collisions. Figure 5.8(a) demonstrates the

environment of two agents needing to pass through a tunnel to reach their goals.

In Figure 5.8(b), R2 gets to the tunnel first, so R2 has the priority to go through

the tunnel. R1 must stop and wait until R2 passes. Then, R1 follows, as shown in

Figure 5.8(c). This is an example of allocating priority based on time, in this case,

78

(a) (b) (c)

Figure 5.7: Illustration of the priority with collision condition: (a) shows the original
calculated paths; (b) shows sub-optimal collision avoidance without priority; and (c)
shows Super A* (with priority) and optimal collision avoidance.

which robot reached a potential collision point first. The reason why R1 has to wait

by the entrance of the tunnel until R2 has passed through the tunnel completely

is that, in Super A*, R2 and other obstacles represent a dynamic, unavoidable and

unpredictable obstacle. That is, because there is no other path available to R1, and

because there is no certainty that R2 may not change direction in a subsequent move.

There is no point in R1 moving to be right by the tunnel entrance until a clear path is

found. Also, a ‘fixed’ obstacle, such as part of the tunnel at the extreme right of the

space, may be removed due to the changing and dynamic nature of the configuration

space, thereby allowing R1 another route to its goal. If R1 moves to the mouth of the

tunnel before R2 has exited the tunnel, R1’s path to its goal, will be non-optimal,

should a gap open up at the extreme right of the configuration space.

79

(a) (b) (c)

Figure 5.8: Illustration of priority without collision condition. Once R2 which has
priority because it reaches the tunnel first, is clear of the possible collision nodes in
the tunnel, R1 can complete its moves.

5.5 Discussion

The aim of path finding algorithms is to find the shortest / optimal path from the start

position to the goal position. The application of optimal path techniques to robotics

and multiple agents in particular has a long history [65], as does the application of

A* in multiple constrained search spaces [77]. Despite much early work in multiple

agent planning, there is no clear understanding as to whether collision avoidance

and replanning should be included explicitly in such planning algorithms (potentially

slowing down the algorithms) or whether collision avoidance should be left to agents to

negotiate at the local level. The Super A* algorithm assumes that replanning should

be built into A*, taking into account the many different types of collisions possible,

so that global requirements of optimality can be addressed. Due to major increases

in computer speed since the early days of robotic planning, the major bottleneck

now can be expected to lie in inter-robotic communications. Leaving agents to deal

with collision avoidance locally is subject to the ‘horizon effect’, when a new danger

80

presents itself that could lead to robots taking non-optimal replanned routes, which

could further increase the risk of collisions. The proposed algorithm has been shown

capable of dealing with both static and dynamic obstacles. Each agent is able to

find the optimal path or, if it has to move off the path to avoid collision, to resume

its optimal path. The extensions to standard A* involve the use of a step-by-step

recalculation once the full paths have initially been calculated. Agents are allowed to

progress on their optimal paths until collision is detected one step ahead or an obstacle

is encountered. This delay in collision detection allows the system to be in an optimal

state for as long as possible and to take into account obstacles that appear from over

the horizon. Once the possibility of collision is detected, the appropriate avoidance

behaviour is taken and the agents return to their optimal paths as quickly as possible.

The extensions to A* rely on a networked robotics architecture that allows collision

avoidance to be built explicitly into the replanning process. However, there is still

work to be done to ensure that collision and replanning in Super A* adhere to global

system requirements of optimality, since the approach is ‘optimistically optimal’, i.e.

we cannot yet prove that Super A* is optimal in avoiding collisions.

Finally, further experiments need to be conducted to evaluate the behaviour of

Super A* in the context of state-space configurations of increasing complexity. The

current estimate of complexity (node expansion) is:

l ∗ (b− o) ∗
m
∑

i=1

m

where l is the number of robots, b is the branching factor (8 possible directions in

our case), o is the average number of obstacles at each stage of the expansion and, m

is the number of total moves. So for 1, 2 and 5 robots, with 10 and 20 obstacles in

81

each case, this leads to 475, 1394 and 3319 predicted node expansions (10 obstacles),

and 352, 1327 and 2766 predicted node expansions (20 obstacles), respectively. Over

10 experimental runs with random start and goal points, the average actual numbers

of nodes expanded were 447, 1092 and 2401 (10 obstacles), and 381, 856 and 3511

(20 obstacles), respectively, indicating that our estimate of complexity is reasonably

accurate.

5.6 Supporting Information

5.6.1 Video S1 Super A* in a Two Robot System

The Super A* algorithm is redesigned based on the traditional A* search algo-

rithm. It applies a single and fixed priority scheme for preventing collisions between

robots one step ahead of the collision and then returning the robots to their optimal

paths as quickly as possible. A video regarding this algorithm ca be retrieved at:

http://www.youtube.com/watch?v=Qxseu5P4ZlM (4.78 MB MOV)

5.6.2 Video S2 Super A* in Extra Simulation Demos

Three scenarios are simulated in a 10 by 10 grid. The first scenario demonstrates

deadloop and all five collision types, with dynamic path replanning demonstrated.

It can be seen that R1 lets R2 take the optimal path, and R1 selects an avoidance

strategy that allows it to return to the optimal path after collision is avoided. In

addition, the proposed strategy can also cater for a combination of possible collisions.

For instance, if a dynamic change to one or more agents’ goal states leads to a

deadloop condition, the proposed strategy can resolve the problem effectively. The

82

second scenario shows the tunnel-like environment, where two agents need to pass

through a tunnel to reach their goals. R1 gets to the tunnel first, so R1 gets the

priority to go through the tunnel. This is an example of allocating priority based on

time. That is, the proposed strategy not only considers the optimal path cost but

also takes optimal time cost into account. Finally, the last scenario shows that, with

randomly changing goals in real time, the proposed strategy is capable of avoiding

collisions and returning to the planned optimal path for the new goal nodes. An

environment is randomly generated on 50 by 50 grid for 20 and 50 robots, respectively,

with 10% obstacle density. The video link is http://youtu.be/gEHRxpbD LY.

5.7 Relation to Previous Work

As noted in the literature reviews, collision avoidance is a well studied area in multi-

agent research. In [102], Parsons and Wooldridge introduce an agent conflict resolu-

tion strategy which adapts the concept of utility from classical decision theory and

applied to electronic commerce. This adaptation resulted in two decentralized con-

flict resolution algorithms for multiple autonomous aerial vehicles usage [122, 104].

The first collision avoidance algorithm was an iterative peer-to-peer algorithm, where

the two agents (aircraft) involved in a possible collision negotiate collision avoidance.

The second algorithm used a multi-party approach, where a group of agents or air-

craft together manage to avoid the collision so that the effects of a pair of aircraft

avoiding a collision would not impact on other aircraft. A version of A* [89, 46], was

used to implement the multiple-party collision avoidance strategy. The equivalents

of distance remaining and actual costs of the route were used in the utility function

to queue the aircraft in a collision avoidance data structure to ensure that a collision

83

avoidance strategy was devised for each aircraft. One advantage of the multiple-party

algorithm is that path finding does not need to be restarted again after each collision

avoidance. However, it cannot cope with changing goals of aircraft. In other words,

aircraft will have fixed destination landing sites, whereas agents may have multiple

sites to visit while undertaking a task. In addition, since aerial vehicles cannot stop

in mid-air, collision avoidance between two or more agents requires the craft to move

continuously. In the robotic domain it is possible for an agent to pause to give pri-

ority to another agent. This pause feature raises the question of how priority is to

be calculated to determine which agent should pause and which should continue to

move. In a true dynamic environment, the goal states can also change due to unfore-

seen events. Optimality in terms of finding the least cost route for all agents will also

need to be reviewed to take into account temporary halts in path traversal. As far

as we are aware, there has been no previous work on optimality in the A* algorithm

that includes not just distance traveled and distance remaining but also the effects of

temporary halts. While the A* algorithm can be employed to solve the problem of

the optimal / shortest path in a centralized approach, it will have difficulties when

anything changes in the environment that leads to recalculation. The A* algorithm

can also be used in a decoupled approach as will be seen in the next chapter. If the

agent can move freely regardless of other agents’ positions, the problem can be easily

separated into many local optimal path planning problems. However, agents cannot

occupy the same position at the same time. Figure 6.1 shows a situation in which a

collision will occur between two agents if each agent runs and executes its own A* as

if in a single agent system.

D*, or dynamic A* [16], is another algorithm based on A* for real-time re-planning

84

in dynamic environments. D* generates an initial plan based on known information

and then incrementally develops the plan as new information is discovered. However,

explicit methods for avoiding collision are not incorporated into D* on the assumption

that any potential collision between two agents can be resolved ‘locally’ between just

these two agents. Further extensions to D* were incorporated into GRAMMPS [17],

but not explicit collision avoidance mechanisms. Agents may need complex sensors

and movement-effect predictors to ensure the effectiveness of D*.

RTA* and LRTA* [119] use a search with limited lookahead (look ahead to a

specific depth), which it bases on minimax search, and calls minimin search, as costs

should be minimized on all layers. The search is a modified Dijkstra search, or a

BFS (Breadth First Search) with re-expansion. As with A*, a heuristic function is

used with the search. From the limited lookahead search, a better heuristic value

for the node is obtained and stored in a hash table containing improved heuristic

values. This limited lookahead is also the reason why (L)RTA* maintains real-time

properties for computational cost and memory usage. When looking up a heuristic

value, this table is primarily consulted, and if that does not yield an answer, the

regular heuristic function is consulted. The hash table serves to build an improved

heuristic function for the domain. This type of search is non-exhaustive and thus does

not guarantee that the agent will move on a path directly towards the goal. That

is, it may fall into local minima of the heuristic function. However, thanks to the

hash table of stored heuristic values, it will eventually work itself out of the minima

and continue on a better path towards the goal. The main difference between RTA*

and LRTA* is that RTA* stores the second lowest f = g + h value generated by the

minimum search. This works well when the hash table is not reused for subsequent

85

searches toward the same goal. However, if it was reused, the heuristic values stored

in the hash table might become non-admissible. LRTA* thus stores the lowest f value

generated by the minimum search to enable the hash table to be reused for solving

additional problems.

5.8 Summary

In this chapter, all possible collision types have been defined for multi-agent systems

where one deadloop condition and five collision types will be considered through

the whole thesis. The proposed extension to A* is capable of avoiding not just other

moving agents but also static obstacles. Also, the proposed extension allows agents to

replan their routes as optimal as possible. Simulations of the algorithm are conducted

in different state-space configurations. The algorithm is tested on two minibots in real

world, small-scale environments containing obstacles. However, while Super A* has

shown how to ensure that two agents do not enter a tunnel together from opposite ends

in a static environment, there still remains the question of how to handle the situation

where two agents find themselves in a tunnel, heading towards each other. This is

due to dynamically changing environments or miscalculated priorities. Therefore,

research question 1 has only been partially answered for environments with priority.

In the next chapter, we will show that centralized decoupled algorithm solves the

deadlock issue in tunnel-like environments and later addresses the second research

question identified in the Research Methodology chapter.

Chapter 6

P* and SKP Algorithm

The aim of this chapter is to address research question 2 (Research Methodology

chapter): Can we solve deadlock situation in a cooperative way in a tunnel-like en-

vironment? This research question follows naturally from the first research question.

The first research question led to the identification of all possible collision types and

the Super A* for avoiding collisions is classified into one of these types. But the

question was left open in the previous chapter as to how to deal with deadlock, which

falls outside the scope of Super A*. The solutions to the problem of these collision

types depend on there being a certain amount of space around the agents that allows

collisions to be avoided.

While we used standard A* as a basis for developing a novel method, for handling

collision types which is the Super A*, we have seen that there is actually very little in

the literature on how to handle collisions in a dynamic environment using A* with-

out recalculating all paths from scratch. In a dynamic, distributed and decentralised

scenario, such recalculation is neither desirable nor possible without compromising

the goal of autonomous agents. The work presented in this chapter is novel due to its

formulation of two algorithms that are designed with autonomous agents in a dynamic

86

87

environment where a collision is detected. Currently, the only classical approach that

presents itself is for the central coordinator to plan all agents’ moves ahead of any first

move, identify possible collisions and then re-plan agents’ moves in such a way that

collision-free routes are ‘guaranteed’ once the agents start moving. This is a severe

limitation on autonomous, distributed agents. The aim of this chapter is to show how

we can allow for dynamic re-planning of routes in real time (while agents are moving)

with Super A* and other novel methods.

The previous chapter investigates all possible collision types in multi-agent sys-

tems and presents one centralized coupled algorithm solution based on these collision

types. This chapter introduces the deadlock issue and proposes two novel real time

collision avoidance algorithms, i.e., P* and SKP algorithms, for dynamic and decou-

pled systems. Section 1 introduces the importance of a decoupled collision avoidance

approach. Section 2 reviews and describes the limitations of existing algorithms. Sec-

tion 3 presents the P* algorithm that solves the problem of these collision types with

dynamic priority allocation. The SKP algorithm that solves deadlock situations in

tunnel-like environments is described in Section 4. The evaluation of P* and SKP is

presented in Section 5. Finally, the summary of the proposed algorithms is given in

Section 6.

6.1 Introduction

Multi-agent systems can be used to achieve tasks beyond the capability of an in-

dividual agent, especially in the presence of uncertainties, incomplete information,

distributed control, and asynchronous computation [43]. To avoid collisions, a multi-

agent system needs to include a collision avoidance mechanism to coordinate agents’

88

actions / movements and ensure that agents, after planning their moves, do not col-

lide with each other when converting their planned moves into actual motion. Some

multi-agent systems may include a number of loosely coupled mobile autonomous

agents and work under open dynamic environments. Collision avoidance in these sit-

uations is more challenging since agents manage their moves independently and may

have only a limited capacity to detect the potential risk of collisions. The problem

will be more complex if we want to reduce the effect of collision avoidance on the

‘optimally’ planned routes of individual agents.

In decoupled approaches, agents plan their routes and make decisions indepen-

dently. Decoupled collision avoidance is more challenging since each agent plans its

movements independently, and can only have a limited capability to detect the risk

of collisions. The problem will be even more complex if we want to reduce the effect

of collision avoidance on the ‘optimally’ planned routes of individual agents. Ideally,

an optimal decoupled system should allow each of the agents involved in a possible

collision to make minimum changes to their planned routes so that, after avoiding

collision, they can return to their optimal planned routes. Unfortunately, there is no

known algorithm which allows decoupled systems to satisfy the global objective of

minimum perturbation to a planned route for all agents. For example, in Figure 6.1,

agent R1 (heading south) will collide with agent R2 (heading north), and vice versa,

when trying to reach their desired targets (red squares). One possible solution is to

move one of the agents out of the way to allow the other to pass. So, for instance,

R2 can move to the left and then head north before making a diagonal move (R2

north-east) back to the optimal path to reach its target. Another possible solution is

that both R1 and R2 make diagonal moves (R1 south-west and R2 north-east) before

89

moving back to their optimal paths with another diagonal move each after passing

each other. If the path cost of a horizontal (or vertical) move and a diagonal move

are 10 and 14, respectively, the total path cost of the former solution (74) with two

robots is less than the latter solution (76). However, it is not clear how generalizable

the former solution is, especially when more than two agents are involved or if there

is no space for an agent to move to one side.

Figure 6.1: A problematic situation for centralized and decoupled approaches where
shortest path length is the global objective. The green square is the initial position,
the red square is the goal position. R1 and R2 are agent 1 and agent 2.

6.2 Review of Existing Approaches

To overcome some limitations of existing methods, in this chapter we introduce the

P* algorithm which can enable individual agents to manage their own movement and

achieve peer-to-peer coordination. The P* algorithm (to be described below) differs

from prioritized A* in that prioritized A* is run once to find possible collisions, and

collisions are resolved before agents move. In the P* algorithm, optimal paths are

initially formed using standard A* (the decoupled phase) without considering other

agents. Then a peer-to-peer coordination method is used to check possible collisions

90

one step ahead of each movement without a global view of the entire environment. A

dynamic priority queue is determined by a distance remaining rule: the less distance

remaining for an agent, the higher priority that agent has. An improved A* algorithm,

called Super A*, was developed to resolve any collisions by dynamic priority queuing

before the agents move, if possible collisions are detected. This ‘plan-evaluate-move’

process is repeated iteratively until all agents reach their goals. In other words, the

P* algorithm takes into account that the world can change as agents move, so that

two agent paths that were previously not involved in collision can become involved in

collision if the environment changes as the agents move (e.g. an agent breaks down,

or a new agent is placed in the environment). The ‘plan-evaluate-move’ phases of P*

allow dynamic aspects of path finding to be included in prioritized A* planning.

6.3 P* with Dynamic Priority Scheme

In this chapter we propose a novel decoupled collision avoidance algorithm, called P*.

This algorithm can facilitate decoupled agents to achieve collision avoidance through

the following three steps.

1. Each agent computes its optimal path by using a classical path finding algo-

rithm, i.e., the A* algorithm.

2. Then, agents detect potential collisions based on their limited local views, and

use a peer-to-peer coordination approach to make collision avoidance decisions.

Also, agents use a path re-planning algorithm, called Super A*, to avoid colli-

sions.

3. Each agent recalculates the current environment using standard A*; if the goal

91

is achieved, then the algorithm is stopped for that agent. Otherwise, the agent

goes back to step (1) for the next step until all agents achieve their goals.

The Super A* algorithm allows agents to avoid dynamic obstacles. However, it

does not allow agents to have interactions, and agents have to coordinate their move-

ments according to fixed / pre-defined priorities. This feature cannot properly be

adapted to dynamic environments. To compensate for this limitation, P* is proposed

here to coordinate agents’ movements. The P* algorithm assumes that two agents

can share some simple information, which includes their current position, previous

position, intention of the next move, and estimated distance remaining. The main

idea is to obtain a dynamic priority based on a set of rules. In this work, we consider

a decoupled and prioritized path planning approach which plans the paths in the con-

figuration space. First, each agent computes the path with standard A* and without

considering the paths of other agents. Then each agent broadcasts its information

including the current position, previous position, intention and estimated distance

remaining in order to share and coordinate for the deadloop and the possible collision

checks. Conflicts between agents are resolved by introducing the Super A* algorithm

if P* detects the potential collisions. Otherwise each agent makes its move along

the original planned path. A fixed priority scheme determines the order in which

the paths for the agents are re-planned. The path of an agent is then planned in its

configuration space. The traditional A* search algorithm is then adopted to find the

optimal path for each individual agent in the current configuration space (planning).

When ‘deadloop’ and other collision conditions are met, the priority method is used

to resolve conflicts (evaluation) before agents are allowed to move (moving) (noted

as Video S2). Table 6.1 and Algorithm 2 describe the notations and the pseudo code

92

of the peer-to-peer coordination algorithm used in P*, respectively.

Table 6.1: P* Notations

Notation Descriptions
L Label of agent
C Agent current position
M Agent previous position
I Agent intention
D Agent estimated distance remaining to the goal
P Agent priority

Algorithm 2 P* Coordination Algorithm

Input: Input LK , CK , MK , IK , DK , K ∈ ℜd, i, j ∈ K for i, j = 1, 2, i 6= j
Output: Output true or false, and PK

1: flagged ← false
2: flagged ← Call P* - Deadloop Check Algorithm
3: flagged ← Call P* - Head-On Check Algorithm
4: flagged ← Call P* - Front Sideswipe Check Algorithm
5: flagged ← Call P* - Rear Sideswipe Check Algorithm
6: flagged ← Call P* - Front-End Swipe Check Algorithm
7: flagged ← Call P* - Front-End Sideswipe Check Algorithm
8: if flagged = true then
9: if Di > Dj then

10: P [0]← Lj, P [1]← Li

11: else
12: P [0]← Li, P [1]← Lj

13: end if
14: end if
15: Return flagged

Multi-agent coordination allows a multiple agent system to detect and avoid colli-

sions through a centralized coordination, resulting in a dynamic allocation of priority

to help agents re-plan their moves. The dynamic priority scheme is based on various

constraints and rules, such as distance remaining and locations previously visited.

Compared with the existing algorithms [120, 102], the coordination algorithm can

93

perform well in open dynamic environments, especially when agents have dynamic

goals and dynamically allocated priorities.

6.4 SKP Algorithm

One issue with the previous algorithms is that they are not capable of dealing with

the deadlock situation shown in Figure 6.2. If two agents move towards each other

in a narrow passageway, the lack of space in the tunnel will prevent one agent from

moving out of the way. Ideally, agents should temporarily cooperate, leading to one

agent re-planning a way to escape this deadlock while the other agent can continue to

move to its target location. The reason for deadlock is that previous algorithms must

calculate a complete route to the target location. In the calculation, the expanded

node is checked with the nodes in the CLOSE list. If there is a matched node, this

means the agent comes from that node (its parent) and the algorithm will remove the

parent node to ensure that the agent does not return to where it has just come from.

Instead, other solutions are searched for, but in Figure 6.2 there is no alternative

route, hence the deadlock.

A simple solution to this is to search only one step lookahead without fully com-

puting a route to the destination. In other words, when two agents encounter the

deadlock, one agent follows an incomplete search strategy, which adds adjacent un-

occupied nodes into the OPEN list, then selects the node with the lowest cost and

executes the move in order to escape the deadlock. This approach can deal with the

deadlock in a narrow passageway like a tunnel. That is, if R1 performs an incomplete

search and R2 performs a complete search (because R2 has higher priority than R1),

R1 will move one step backwards to allow R2 to move forward. This is repeated

94

(a) (b) (c)

Figure 6.2: Illustration of deadlock when two agents move towards each other in
a tunnel. R1 and R2 denote two agents, and G1 and G2 their destination nodes,
respectively. (a) shows the initial situation of two agents. (b) shows the two agents
following their optimal paths as signified by the numbers in the squares. (c) shows
the two agents detecting the collision one step ahead and stopping due to no solution
being found.

for as many steps as it takes to resolve the deadlock, at which point R2 calculates a

complete path again. Pseudocode for the SKP algorithm is shown in Algorithm 3.

The strategy repeats a ‘plan-evaluate-move’ process to plan agents’ routes and

avoid potential collisions. In detail, collision avoidance is achieved through the fol-

lowing steps:

1. Each agent computes its optimal path by using a classical path finding algo-

rithm, i.e., the A* algorithm.

2. Each agent reports to the coordinator its current node position, previous node

position, intended next node position and estimated remaining distance to the

goal node.

3. The coordinator detects potential deadloop and collisions based on agents’ in-

tentions (i.e., the nodes the agents want to move to). If no collision or deadloop

is detected, agents go to Step (6), otherwise they go to the next step.

95

Algorithm 3 SKP Algorithm

1: Nopen ← n0, Nclose ← ∅
2: loop

3: pn← Compute the lowest cost of node, in Nopen

4: if pn = n then

5: Nclose ← Nclose ∪ {pn}
6: Return Nclose

7: else

8: for all neighbours nnew do

9: if nnew ∈ Nopen and Gnew < current G then

10: G← Gnew

11: Continue Loop
12: end if

13: if nnew ∈ Nclose and Gnew < current G then

14: G← Gnew

15: Continue Loop
16: end if

17: Nopen ← Nopen ∪ nnew

18: end for

19: end if

20: Nclose ← Nclose ∪ {pn}
21: if Nopen > 0 then

22: Nclose ← Popup the node, in Nopen

23: Return Nclose

24: end if

25: end loop

4. Agents with potential collisions or deadloop will use the Super A* algorithm,

and with a potential deadlock will use the SKP algorithm, which is described

in Algorithm 3, to re-plan their routes in a decoupled manner. Agents with less

remaining distance will get higher priority for path planning purposes.

5. Agents will then report their re-planned intentions to the coordinator. Steps

(3)-(5) are repeated until no collision or deadloop can be detected by the coor-

dinator.

6. Each agent moves to their intended node. If the goal node is achieved, then the

algorithm is stopped for that agent. Otherwise, the agent goes back to Step (1)

96

and repeats Step (1)-(6) until all agents achieve their goals.

6.5 Evaluation for P* Algorithm

Our approach has been tested on real robots and in extensive simulation runs to

answer the following questions. (1) Practicability: is our approach relevant and ap-

plicable to real robot systems? (2) Solvability: does our approach succeed in finding

valid collision-free multi-robot paths? (3) Optimality: is our approach able to gen-

erate the best paths? All experiments were carried out using different configuration

environments. The proposed method is applied to a two robot system with the dead-

loop and collision conditions described above. The control architecture is through

networked robotics to allow our mobile robots to communicate with each other via

WiFi.

6.5.1 Experiment 1: P* in Simple Collision Avoidance

In Experiment 1, we implemented the scenario in Figure 6.1 in a real robot en-

vironment. The goal of the experiment is to demonstrate the applicability of our

approach to real robot systems. This experiment was carried out using the Rovio

robots of WowWee Technologies. The task of the robots was to find the opti-

mal / shortest path and move from their initial positions to their goal positions

without collision. Figure 5.5 shows one experimental robot and one experimental

physical space, a 5 by 5 space with each grid of 50cm by 50cm. The video link is

http://youtu.be/w24SkiYuh7g.

In Figure 6.3(a), the robots are deployed on two sides of the field and have to

97

move to their goal positions on the other side using P*, avoiding dead looping (Fig-

ure 5.2) and collisions. Figure 6.3(b) shows one robot moving away from its optimal

direction in the initial situation. As can be seen in Figure 6.3(c), the path of one

robot is changed in order to avoid collisions with each other. For the optimal paths

computation, one robot has to take a detour around the other and then return to its

optimal path as quickly as possible (see Figure 6.3(d)). At the end, the two robots

reached their goal positions (see Figure 6.3(e)). This is the optimal resolution to

this possible collision without introducing a sideways move or a front-end swipe or

sideswipe.

(a) (b)

(c) (d) (e)

Figure 6.3: An application example with the Rovios of the WowWee Technologies:
(a) shows the initial situation of two robots. (b) shows one robot moving left to avoid
collision. (c) depicts the two robots passing each other with no collision. (d) shows
one robot returning to its optimal path and the other robot at its goal position, and
(e) shows the two robots in their goal positions.

98

6.5.2 Experiment 2: Comparison of P* and Super A*

In Experiment 2, we compared the performances of the P* algorithm and the Super

A* algorithm. Two scenarios, i.e., with collision and without collision, were simulated

in a 10 by 10 space.

Scenario 1: With Collision

(a) (b)

(c) (d)

Figure 6.4: Illustration of Super A* for the fixed priority with collision conditions for
5 agents: (a) shows the original calculated paths. (b) shows the suboptimal collision
avoidance planning with fixed priority between R2 and R4; R2 has higher priority
than R4. (c) and (d) show Super A* (with fixed priority) and optimal collision
avoidance.

In the first scenario, we simulated five agents and randomly selected an initial

99

and goal position for each agent. In the experiment, both Super A* and P* allow

agents to cross-traverse each other’s paths without collision. Figure 6.4 shows the

path re-planning result of Super A*. In Figure 6.4(a), the blue squares represent

the calculated paths of the agents, and the orange squares the potential collision risk

where the paths of some agents overlap. Figure 6.4(c) and (d) show that agent R1,

agent R3 and agent R5 can still take the optimal paths, but agent R2 and agent R4

take a sub-optimal path to avoid collisions.

(a) (b)

(c) (d)

Figure 6.5: Illustration of P* for the dynamic priority with collision condition for 2
agents: (a) shows the original calculated paths using standard A*. (b) shows the
suboptimal collision avoidance re-planning with dynamic priority (rule-based, less
distance remaining higher priority), here, R2 has a higher priority than R1. (c) and
(d) show P* (with dynamic priority) and optimal collision avoidance.

100

The path re-planning results of the P* algorithm are shown in Figure 6.5 for two

agents involved in a potential deadloop situation. It can be seen that R1 lets R2 take

the optimal path, and R1 selects an avoidance strategy that allows it to return to

the optimal path after collision is avoided. In addition, the P* algorithm can also

cater for a combination of possible collisions. For instance, as shown in Figure 6.6,

if a change in the goal states of two agents leads to a deadloop condition, the P*

algorithm can resolve the problem effectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: Illustration of P* for the dynamic priority with deadloop and other col-
lision conditions for 2 agents: (a) shows the original calculated paths using standard
A*. (b) shows the agents following the established optimal paths to move and sud-
denly their goals are changed with swiping each other as seen in (c), robots recalculate
their paths. (d) and (e) show two agents encountering the deadloop condition. (f)
shows two agents avoiding deadloop condition using P*. (g) shows suboptimal colli-
sion avoidance with dynamic priority (less remaining distance, so higher priority, R1
moves away from the optimal path to give way to R2). (h) shows P* (with dynamic
priority and optimal collision avoidance).

101

Scenario 2: Without Collision

The second scenario in Experiment 2 was designed to demonstrate that the P* al-

gorithm is flexible enough to achieve path re-planning in more complicated environ-

ments. Figure 6.7(a) demonstrates the environment of two agents needing to pass

through a tunnel to reach their goals. In Figure 6.7(b), R1 gets to the tunnel first, so

R1 gets the priority to go through the tunnel. On the other hand, R2 follows without

stopping and waiting, as shown in Figure 6.7(c). This is an example of allocating

priority based on time. That is, P* not only considers the optimal path cost but

also takes the optimal time cost into account. Finally, the agents find clear paths to

achieve their goals, as shown in Figure 6.7(d).

6.6 Evaluation for SKP Algorithm

In this evaluation, deadlock in a tunnel environment is simulated. The scenario

demonstrates the performances of SKP algorithm, see Figure 6.8.

6.7 Discussion

In a multi-agent system, agents use path finding algorithms to find the shortest / op-

timal paths from a start position to a goal position. In the context of multiple agent

path planning, there is a lack of understanding of whether collision avoidance and re-

planning should be included at a global level or whether collision avoidance should be

left to agents to negotiate at the local level. The proposed method described in this

chapter is capable of detecting the deadloop and other collision types before allowing

agents to move, and calculates priority based on constraints adapted to the dynamic

102

(a) (b)

(c) (d)

Figure 6.7: Illustration of priority without collision condition. R1 reaches the tunnel
first and therefore receives higher priority. R2 follows (b) and (c) without collision,
until a clear path is found to achieve their goal (d).

environment. In other words, the P* algorithm integrates standard A*, peer-to-peer

coordination and Super A* to resolve the conflicts for re-planning paths. The Super

A* algorithm assumes that re-planning should be built into A*, taking into account

the many different types of collision possible, so that global requirements of optimal-

ity can be addressed. Due to major increases in computer speed since the early days

of robotic planning, the major bottleneck now can be expected to lie in inter-robotic

communications. Leaving agents to deal with collision avoidance locally is subject

to the ‘horizon effect’, when a new danger presents itself that could lead to robots

103

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8: Illustration of SKP* for the tunnel deadlock situation for 2 agents: (a)
shows the initial situation of two agents. (b) shows the two agents following their
optimal paths using standard A* to move. (c) R1 moves out from the path of R2 one
step. (d) R2 moves forward to the goal, and then the deadlock is formed again, R1
continues to move out in (e). (f) and (g) R1 moves out of the way and R2’s path is
clear. (h) shows the agents completing the temporary cooperation.

taking global non-optimal re-planned routes, which could further increase the risk

of collisions. The proposed algorithm has been shown capable of dealing with both

static and dynamic obstacles. Each agent is able to find the optimal path or, if it has

to move off the path to avoid collision, to resume its optimal path. Our extensions

to standard A* involve the use of a step-by-step recalculation once the full paths are

initially calculated. Agents are allowed to progress on their optimal paths until colli-

sion is detected one step ahead or an obstacle is encountered. This delay in collision

detection allows the system to be in an optimal state for as long possible and to take

into account obstacles that appear from over the horizon. Once collision is detected,

104

the appropriate avoidance behavior is taken and the agents return to their optimal

paths as quickly as possible. The extensions to A* rely on a networked robotics ar-

chitecture that allows collision avoidance to be built explicitly into the re-planning

process.

6.8 Summary

The algorithm P* allows a multiple agent system to detect and avoid collisions through

peer-to-peer coordination, resulting in a dynamic allocation of priority to help agents

re-plan their moves. We also present simulations of the proposed peer-to-peer co-

ordination to demonstrate the effectiveness of the P* algorithm under a number of

different collision conditions. The proposed dynamic priority scheme is based on

various constraints and rules, such as distance remaining and locations previously

visited. Also, the P* algorithm is tested on two minibots in real world, small-scale

environments containing obstacles. The results show that the collision avoidance and

re-planning approach is useful for managing possible collisions between agents, or

other groups of autonomous agents, working independently in a shared physical en-

vironment and needing to traverse the environment to undertake and complete their

tasks.

To conclude this part of the decoupled collision avoidance approach, we have

shown that, while all possible collision types are identified and resolved by Super

A* in the previous chapter, the deadlock issue was not considered by the coupled

approach. Also, the coupled approach is a fixed priority scheme for avoiding colli-

sions. To contrast with the Super A* coupled approach, the solution to the deadlock

depends on there being a dynamic priority scheme that allows agents communicative

105

and cooperative methods for avoiding a deadlock situation. The previous and current

chapters represent two types of centralized approach to solve collision issues (includ-

ing deadlock) based on our defined collision types, coupled and decoupled. In the

next chapter, we will attempt to apply the presented algorithms for a multi-agent

architecture.

Chapter 7

Swarm Robotic Group Formation

The previous two chapters focus on centralized collision avoidance. The aim of

this chapter is to address the third research question: how can paths be planned for

a moving goal in swarm robotic group formations? Also, there has been relatively

little nature inspiration in this thesis so far. The materials covered in the previous

two chapters are essentially major and provide novel extensions to existing search

algorithms for single agents. Now that we move to swarm robotics, the thesis also

makes its first move towards introducing inspiration from nature to help solve the

collision avoidance problem.

This chapter gives a further evaluation on swarm robotic formation based on

the proposed algorithms, such as Super A*, P*, SKP and the coordination strategy.

Section 1 introduces swarm robotics. Section 2 describes the background. In Sec-

tion 3 a coordinator-based (centralized) strategy is presented. Further evaluations are

demonstrated in Section 4. A performance discussion is given in Section 5.

106

107

7.1 Introduction

Swarm robotics is a new approach to the coordination of multi-agent systems and con-

sist of large numbers of relatively simple robots that are capable of performing a task

cooperatively to achieve a common goal [150]. The idea is biologically inspired from

nature. For example, ants by themselves may seem to act randomly and without any

discernible purpose. However when the collective interactions among ants are taken

together, a collective intelligence and behaviour that have the capacity for solving

many problems will emerge, such as searching for food and building a nest. Swarm

robot systems can be used to achieve tasks beyond the capability of an individual

robot, especially in the presence of uncertainties, incomplete information, distributed

control and asynchronous computation [56]. In many swarm robot systems, forming

and maintaining a desired formation can result in significant benefits, such as a school

of fish reducing the chances of an individual member straying too close to a predator

or a pack of wolves cooperatively hunting prey.

To avoid collisions in swarm robot systems, path planning needs to include a

collision avoidance mechanism to coordinate robots’ actions / movements and en-

sure that robots moving plans do not collide with each other when converting into

actual motion. In difficult environments with one passageway and multiple robots,

an ideal multi-robot system not only requires collision avoidance, but also coopera-

tive behaviours. In this work, we propose a coordinator based strategy to plan and

control agents’ movements in the context of these collision types with the goal of

demonstrating how robots can form a particular pattern once they reach the goal

node. The strategy repeats a ‘plan-evaluate-move’ process to plan agents’ routes and

avoid potential collisions due to same cell occupancy and possible sideswipes while

108

still finding optimal paths from the starting position to the destination position for

each robot within a formation.

7.2 Background

Silver [120] describes an algorithm, i.e. WHCA*, which builds a more accurate heuris-

tic determination for the multi-agent planning problem by solving the single-agent

problem. To further reduce computational costs, it performs a windowed search

through the cooperative space, reverting to a single agent computation after the win-

dow is exceeded. This idea chooses an ordering of agents, and plans a path for each

agent that avoids conflicts with previously computed paths by checking against the

‘reservation table’. The reservation table is a data structure that signifies, for each

cell of the space-time map, whether that cell is available or reserved. However, in

addition to the extra cost required to maintain this data structure for large spaces

containing a large number of agents, a reservation table is not feasible in cooperative

pathfinding where the map is dynamic (obstacles appear and disappear) and the goal

state can change at any time. Also, the window size is not easy to handle, especially

in a dynamic environment. If the window size is small, this may lead to the bottle-

neck situations not being solved, and if it is large, some redundant searches may be

performed.

In this chapter, the proposed algorithms are applied to each agent independently,

which consider the moves of all agents simultaneously in a time step with each state

potentially has 9n legal actions. Each of these legal actions is a solution to the

constraint satisfaction problem in which each agent must be assigned a move from

{E, S,W,N,NE, SE, SW,NW, and wait}, and there are constraints between sets of

109

legal moves. For example, these legal moves must not lead to two agents colliding.

With respect to preventing collisions, the algorithms presented in this chapter are

intended to cope with collisions with one step lookahead in various situations, such

as tunnel-like environments.

7.3 Collision Avoidance Strategy

In this chapter, we propose a coordinator-based (centralized) strategy to prevent

collision. The strategy repeats a ‘plan-evaluate-move’ process to plan robots’ routes

and avoid potential collisions. Collision avoidance is achieved through the following

steps: ‘distributed’ signifies that each robot performs this step independently of any

other robot, ‘centralised’ means that the central coordinator is involved in calculating

the step, ‘coupled’ means that a single planning system is used, and ‘decoupled’ means

that each robot plans its own path.

1. Each robot independently computes its optimal path by using a classical path

finding algorithm, i.e., the A* algorithm (distributed, decoupled).

2. Each robot reports to the coordinator its current node position, previous node

position, intended next node position and estimated distance remaining (EDR)

to the goal node (distributed, decoupled).

3. The coordinator detects potential deadloop and collisions based on robots’ in-

tentions (i.e., the node each robot wants to move to). If no collision or deadloop

is detected, it goes to Step (6), otherwise it goes to the next step (centralized,

coupled).

110

4. Robots with potential collisions or deadloop will use the Super A* algorithm,

and with deadlock will use SKP algorithm, which are described above, to re-

plan their routes in a decoupled manner (centralized, decoupled). Robots with

less remaining distance will get higher priority for path planning purposes (cen-

tralized, coupled).

5. Robots will then report their re-planned intentions to the coordinator (dis-

tributed, decoupled). Then they repeat Steps (3)-(5) until no collision or dead-

loop can be detected by the coordinator.

6. Each robot moves to its intended node. If the goal node is achieved, then the

algorithm is stopped for that robot (distributed, decoupled). Otherwise, it goes

back to Step (1) and repeats Steps (1)-(6) until all robots reach their goals.

7.3.1 Multi-Robot Coordination

The coordinator-based approach is a decoupled approach to plan the paths indi-

vidually for each agent and uses centralized communication to coordinate robots’

movements on demand, such as when collisions are encountered. The coordinator-

based approach assumes that two robots can share some simple information, which

includes their current position, previous position, intention of next move and esti-

mated distance remaining. The main idea is to obtain a dynamic priority based on a

set of constraints. First, each agent computes the path with standard A* algorithm

and without considering the paths of other agents. Then each robot broadcasts its

information including the current position, previous position, intention and estimated

distance remaining to share and coordinate for the deadloop and the possible collision

111

checks. If two or more robots are involved in a potential collision, conflicts between

them are resolved through Super A* algorithm. Otherwise, each agent makes its

move along the original planned path. The ‘plan-evaluate-move’ strategy for reach-

ing a goal has the added advantage that it can deal with dynamic situations, such

as the goal being moved or an obstacle appearing suddenly. Coordination notations

and Pseudocode are shown in Table 7.1 and Algorithm 4, respectively.

Table 7.1: Coordination Notations

Notation Descriptions
DR Distance remaining from the current position to the goal position

Priority Priority queue of agents starting with ‘0’ index, it is the first priority
Label Agent label

Algorithm 4 Multi-Robot Coordination

Input: Label, Agent′sPath
Output: Priority
1: isCollided← false

2: isCollided← CollisionCheck()
3: if isCollided = true then

4: if DRi > DRj then

5: Priority[0]← Labelj , Priority[1]← Labeli

6: else

7: Priority[0]← Labeli, Priority[1]← Labelj

8: end if

9: end if

10: Return isCollided

To summarize, multi-robot coordination allows a multiple robot system to detect

and avoid collisions through a centralized coordination, resulting in a dynamic allo-

cation of priority to help robots re-plan their moves. The dynamic priority scheme

is based on various constraints and rules, such as distance remaining and locations

previously visited. Compared with existing algorithms [102, 120], the coordination

algorithm can perform well in open dynamic environments, especially when robots

112

have dynamic goals and dynamically allocated priorities.

7.3.2 Swarm Super A*

Unlike the traditional A*, Swarm Super A* involves another heuristic cost which is

calculated from agent start node to the current expanded node. The logic is same as

Super A* only the function cost formula is changed. By doing so, the cost function

is F = G +Hc2g +Hs2c, with G is the gone cost, Hc2g is the heuristic cost from the

current expanded node to the goal node and Hs2c is the heuristic cost from the start

node to the current expanded node. This leads to boosting performance of finding

the optimal path and reduces the chance of cyclic searching. Furthermore, Swarm

Super A* enables robots to achieve a desired formation when the goal is reached while

simultaneously avoiding fixed and dynamic obstacles, including themselves. Unlike

other behaviour-based formation approaches [9, 85], communication among robots is

not required and each robot does not have a specific position to maintain formation,

i.e. the proposed formation does not have strict requirements on fixed positions for

individual robots. The desired goal formation in this chapter is occupying and fully

encircling the goal node, resulting in a 3 by 3 formation of robots (9 robots). Also,

Swarm Super A* is capable of dealing with groups of robots needing to adopt the

desired goal formation at different goals simultaneously. The idea is motivated by

swarming behaviour in the real world, e.g. ants circling a food source.

113

7.4 Simulations

In this section, we show the results of two types of simulations. In the first simulation,

we evaluate the performance of goal formation control which simulates swarm robots

starting at different random positions encircling a common destination node to form

a 3 by 3 shape. The second simulation is swarm robots passing through a one-

passageway tunnel-like environment and then managing to keep 3 by 3 formation.

Collision avoidance is also taken into account in swarm robots. Goal swarm formation

around the goal only takes place when each robot reaches the goal node. This is in

contrast to group swarm formation where the robots move in formation to a desired

goal state (e.g. [30]).

7.4.1 Simulation 1: Formation with Collision Avoidance

In Simulation 1, we implement the scenario of swarm robots forming a 3 by 3 shape at

the goal node. 9 robots are randomly located on the grid. The task of the robots is to

find the optimal / shortest path and move from their initial positions to the common

goal and form a 3 by 3 shape around the goal node without collision. The video link

is http://youtu.be/oYMNyPIGtxw. Note that the algorithms can cope with the goal

being changed while the robots are still in motion.

7.4.2 Simulation 2: Tunnel Environment

In Simulation 2, two scenarios are simulated. The first scenario demonstrates the

performance of the algorithms when the goal is changed in real time, leading to re-

planning in a 6 by 6 space. The algorithms can cater for a combination of possible

114

collisions. For instance, as shown in Figure 7.1, if a change occurs in the goal state

of any robot, the algorithms can resolve the problem effectively. The video link is

http://youtu.be/89EoYBgdTl8.

(a) (b) (c)

(d) (e) (f)

Figure 7.1: Illustration of real-time goal changing in a tunnel-like environment for a
three-robot situation. (a) shows the initial positions. (b) shows the robots following
their established optimal paths. (c) shows R2’s goal changed and R2 recalculate its
path in (d). (e) shows R3’s goal changed and R3 recalculate its path in (f).

In the second scenario, 9 robots are initialized on one side of the tunnel and the

common goal is set on the other side of the tunnel, as shown in Figure 7.2. The

robots move sequentially through the passageway and achieve the desired formation

around the goal node. Robots only pass one at a time through the tunnel in case

the agent itself breaks down or the goal is suddenly changed to be on the other side

115

of the tunnel (in which case, only one robot in the tunnel needs to turn back). The

video link is http://youtu.be/-T-VWN5R0CE.

Figure 7.2: The initial positions of 9 robots.

7.5 Discussion

We expanded the configuration space to a 50 by 50 grid involving 99 robots (11

groups), with 10% density of obstacles. All start, goal and obstacle positions were

generated randomly. The algorithms were able to move all 99 robots to their desired 11

destination nodes avoiding collisions and obstacles (static and dynamic). Multi-group

robot formation simulations are shown in the video link http://youtu.be/xx6sVvs1p-

E.

For a 50 by 50 grid and 99 robots with 10% obstacle density, the predicted num-

ber of node expansions is 366,796, whereas the actual number of expanded nodes

116

is 1,220,733. The reason for the discrepancy is that a wait action is not taken into

account in the formula. That is, when there is no path to the goal from the robot’s

current position and given the current set of obstacles, the robot must wait until

there is a change in the state of the configuration space and then search again. This

process may search duplicate nodes several times.

7.6 Summary

In this chapter, we have further presented swarm behaviour on robotic group forma-

tion, which is based on Super A*, SKP algorithms and the proposed coordination

strategy. The strategy is tested on a series of challenging, tunnel-like environments.

The results show that the strategy is useful for managing possible collisions between

agents and allowing agents to escape deadlock in a shared physical and dynamic envi-

ronment while at the same time adopting a formation once the goal node is reached.

To conclude this part of formation in multi-agent systems, we have shown that, our

approach gives one possible solution to the perspective of the nanobots scenario intro-

duced in Chapter 1. Even though the solution has not much inspiration from nature

and is limited to autonomous, non-centralized, non-global, non-communicative colli-

sion avoidance, we have attempted extending the existing approaches where necessary

to make them more suitable for collision avoidance and implement a nanobots sce-

nario. In the previous three chapters of centralized approaches for collision avoidance,

we have successfully answered research questions 1, 2 and 3. Following the process of

our research methodology, we have moved towards the collision avoidance approach

from a centralized to a decentralized strategy. In the next chapter, we will introduce

a novel nature-inspired decentralized method for homogeneous collision avoidance.

Chapter 8

A Human-Inspired Collision
Avoidance Method

In the previous 3 chapters, centralized methods were studied as necessary for the

understanding of dynamic collision avoidance. It is possible that the design is not

extendable to a truly intelligent multi-agent system. However, the centralized work

on collision avoidance, which we believe is novel, will need to be embedded into any

decentralized design. In particular, the work has shown that existing techniques for de-

tecting collisions do not capture all collision types. On the other hand, the limitations

of our centralized approaches are lack of autonomy, and the growth of communication

overhead by agents. Dealing with these crucial aspects will now form the rest of this

thesis and can be expected to lead to a genuinely novel multi-agent architecture. The

aim of this chapter is to address the fourth research question: How can a large number

of agents autonomously and equally deconflict paths in dynamic and uncertain envi-

ronments? In the literatures, there has been relatively little on nature inspiration for

collision avoidance, especially the methods with no communication, no priority, and

local views (evidence shown in Chapter 1). Now that we move to nature inspiration,

the thesis also makes its move towards introducing inspiration from nature to help

117

118

solve the collision avoidance problem.

In this chapter a novel and dynamic rectangular roundabout (‘rectabout’) collision

avoidance method based on human behaviour is presented for multiple, homogeneous,

autonomous and mobile agents. Section 1 briefs the idea of rectabout. Section 2

provides an overview of prior work on collision avoidance. Section 3 provides a brief

summary of minimal predicted distance and definition of conflict and collision in our

approach. In section 4 we describe the rectabout collision avoidance maneuver for

multiple mobile agents. Section 5 presents the experimental (simulation) results of

the obtained collision avoidance maneuver. Finally, section 6 gives the summary of

this work.

8.1 Introduction

As noted previously, collisions between multiple, autonomous agents is one of the

main problems in decentralized, distributed task cooperation. The collision avoid-

ance problem arises when the environment is dynamic and to reach their destination

agents need to use paths that conflict with other agents’ paths on specific moves.

Decentralized collision avoidance in these situations is more challenging than central-

ized approaches since autonomous agents must manage their moves independently

and may have only a limited capability to detect the potential risk of collision. More-

over, another problem is having no communication while avoiding collisions since true

autonomy involves no central coordinator and no communication between agents. A

secondary problem is how to ensure that agents resume their paths after collision

avoidance to still reach their goals effectively and efficiently.

119

In this chapter, collision detection is inspired by studies on how human pedestri-

ans detect possible collision, and collision avoidance is inspired by the use of round-

abouts for resolving potential vehicle collisions at road intersections. When a vehicle

approaches a roundabout, drivers adopt a specific set of autonomous but shared pro-

cedures for negotiating the roundabout to continue on their routes while avoiding

collision with other vehicles already on the roundabout. Drivers do not require a

central command and control structure or communication with each other to avoid

collision. While roundabouts are concrete in the real traffic world, the temporary

roundabouts used here by agents are virtual: they do not actually exist in the con-

figuration space but do exist temporarily on the paths of each agent involved in a

possible collision before disappearing from each agent’s paths once collision is avoided.

No other agent sees this roundabout. Because the configuration space used in my ex-

periments can be regarded as consisting of rectangular grids, the virtual roundabout

necessarily becomes straight-lined and rectangular, hence it is called a ‘rectabout’.

Moreover, real roundabouts can vary in size depending on various parameters such as

approach speed, one-lane or multi-lane, number of roads leading to that intersection,

etc. In our experiments below, all agents move at the same speed and the size of

their local views will determine the size of the roundabout. The larger the local view,

the further ahead the agents can plan and therefore the larger the roundabout can

be to ensure a smooth deviation from a planned straight line for collision avoidance.

However, for the experiments below, the local view is fixed for all agents and therefore

the roundabouts are of fixed size.

A desirable roundabout collision avoidance system has to satisfy the following

principles. (1) Flexibility in size: since the degree of collision risk depends on the

120

distance between the two agents, the system should have the ability to shift its scale

according to the distance of the nearby agents. As noted above, our experiments below

assume fixed size roundabouts for demonstration of feasibility and further work will

be required to evaluate flexibility in roundabout size. (2) Orientation: The topology

of the roundabout must be such that it is correctly oriented to deal with the conflict.

That is, the location and orientation of the roundabout must be able to deal with two

agents approaching each other from any angle and not assume a fixed entry and/or

fixed exit points. (3) System adaptability: the system can be used for resolving any

type of possible collisions for multi-agent systems. (4) System independence: the

system should not be restricted to deal with a predetermined number of agents, or a

predetermined and fixed configuration space.

In this chapter we use Minimum Enclosing Rectangle (MER) to support these

principles. According to Das et al. [23], given a set of points P = {p1, p2, ..., pk} with

pk ∈ ℜ
2, the minimum enclosing square (or rectangle) of P is the smallest square (or

rectangle) that contains all points of P . For the purposes of this work, the smallest

square or rectangle is defined to be the smallest rectangle that contains a given number

k such that n
2
< k ≤ n of x-consecutive points in a set of n points in the plane. The

problem of computing k-square and k-rectangle has been investigated since 1991 (for

a review, see [1, 31, 115, 23, 79]). MER has been applied in various areas, such as

pattern recognition [96], facility location [29], similarity search [88, 24] and collision

detection [75]. In order to classify the k-square with respect to the number of points

η present on its boundary, Das et al. [23] investigated all different possibilities of

k-squares. As a result, no k-square is possible with η = 0 or 1. The only possibility

with η = 2 is that the two points appear at the two diagonally opposite corners of

121

the corresponding k-squares. In this study, k = η = 2 is the MER or MES that the

agents are searching for.

The proposed method builds on an implicit assumption that other agents make

similar collision avoidance reasoning via MER. That is, knowledge of MER is shared

by all agents. It consists of two components: Minimal Predicted Distance (MPD)

detection and MER rectabout collision avoidance algorithm. The MPD is a metric

inspired by real human pedestrian collision avoidance behaviour (for a review, see [92,

93] and more details below). As far as we are aware, this is the first time that MPD

has been used for addressing collision problems in multi-agent systems. The MER-

based rectabout collision avoidance algorithm is a pairwise approach which computes

and re-plans agents’ moving direction by following a ‘keep left’ rule at the rectabout.

This rule can be changed if necessary to keep right. The proposed collision avoidance

method is demonstrated for multi-agent systems using different types of collision

investigated in [76]. So far, the simulations indicate that the proposed approach

generates collision-free motions.

We envisage the proposed approach being of use in autonomous cars [145], such

as Google’s driverless car [125]. If in the future all cars are autonomous (to compress

more traffic onto increasingly busy roads), the proposed approach may be of use in

automatic traffic control systems that are fully decentralized and distributed (e.g.

traffic-light free roads). As the need for unmanned vehicles grows and their speeds

increase, fully decentralized traffic control systems may be the only way to ensure a

speedy response to possible collisions without the need to communicate with a cen-

tralized controller and the delays involved in such communication. Even if there is an

efficient centralized controller, autonomous vehicles will still need some independent

122

emergency systems to overcome central control failure.

8.2 Previous Work

There has been more interest recently in decentralized approaches to collision avoid-

ance that involve no priority. Distributed reactive collision avoidance [63] is a global

deconfliction maneuver which mimics a ‘rules of the road’ approach such as round-

about passing behaviour. In this approach all vehicles turn the same way until a

conflict-free state is reached for the whole system. The approach is ‘global’ because

the positions of all vehicles are required by a deconfliction maintenance controller

even if they are not involved in collision, and ‘distributed’ because collision avoidance

computation is distributed among a group of agents. The approach is therefore not

autonomous. A collision avoidance approach based on Bernstein-Bézier curves [123]

is a cooperative method, where reference-tracking control is used to direct the agents

by minimizing the difference in a future trajectory and using the deviation of an

agent from its reference path. In this case all agents have a global view and change

their paths cooperatively to achieve their individual goals. The limitation of these

two approaches is that all-to-all information is needed, where one agent has to con-

sider all other agents’ information. Although decentralized in terms of control, these

two approaches require a constantly updated global data structure or map for each

agent, containing the positions of all other agents. Reciprocal velocity obstacle [135]

is a velocity-based collision avoidance approach that lets an agent take just half the

responsibility for avoiding collision, while assuming the other agent reciprocates by

taking care of the other half. However, the reciprocal velocity obstacle approach

123

can cause agents to select oscillating velocities as a result of not reaching agree-

ment on which sides to pass each other. The latest work (hybrid reciprocal velocity

obstacle [124]) reduces the possibility of oscillations but introduces priority. Knep-

per and Rus [61] proposed a sampling-based approach with inspiration from human

pedestrians, but the approach allows communication between agents and agents also

broadcast their own latest planned trajectory to the coordinator. In addition, Toll

et al. [138] proposed a multi-layered path planning algorithm for collision avoidance

at an airport or a multi-storey building, but again the algorithm is based on global

information being available to each agent. Kato et al. [57] outline a traffic rule system

for collision avoidance between multiple mobile agents. However, their approach is

restricted to route networks, where traffic follows predictable connections between

nodes. It is not certain how their approach can be generalized to a complex and

large configuration space, where the number of connections can grow exponentially.

The approach closest to the one adopted here is [107], where a fully flyable tangen-

tial roundabout (FFTR) maneuver is used to prevent collision between two aircraft.

However, FFTR requires communication between the two aircraft to agree on the

roundabout center and assumes fixed entry and exit points.

Previous work in collision avoidance also does not always take obstacles into ac-

count. Obstacles can be fixed (blockages on a straight-line path to a goal) or dynamic

(a moving agent getting in the way of another moving agent is an obstacle, and vice

versa). The proposed approach takes both sets of potential obstacle into account.

Nature-inspired computing can be a major source of inspiration for improving the

designs of autonomous agents and robotics. The approach described below is nature-

inspired as it applies metrics and processes taken from the area of human kinematics

124

science (for a review, see [92, 93]) to address collisions between autonomous agents.

This research aims to develop and implement a human-like autonomous collision

avoidance approach for multi-agent systems using non-priority, local views and a con-

figuration space where an agent can make any move it likes as long as there is no

obstacle (fixed or dynamic) in the way. In such a configuration space there are no

predetermined routes. Every space in the configuration space is reachable from every

neighbouring space provided there is no obstacle.

8.3 Preliminaries

8.3.1 Collision Avoidance Through The Minimal Predicted

Distance

Olivier et al. [92, 93] proposed a new minimal predicted distance metric to investigate

collision avoidance between two pedestrians. Given two persons with positions pi and

pj, for i, j = 1, 2, i 6= j, each person is considered as a moving obstacle for the other.

At each instant t, MPD(t) represents the distance at which a person would meet the

other if they did not perform motion adaptation after instant t. According to the

model of MPD [92], the future trajectory for each person is modeled as follows:

p′(t, u) = p(t) + (u− t) ~v(t), (8.3.1)

where u is a future time instant with u, t > 0 and u > t, p(t) and ~v(t) are the position

and velocity at time instant t, respectively. Their experimental studies showed that

MPD is constant and that walkers adapt their motion only when MPD is small.

Therefore, we can predict potential collisions by computing the absolute distance

125

between pi and pj at each time instant t:

MPD(t) = min
u

∥

∥p′i(t, u)− p′j(t, u)
∥

∥. (8.3.2)

MPD is a strategy adopted by each robot for predicting potential collision risk.

It is also a strategy that attempts to explain how individual humans implicitly adapt

their motion and proposes implicit rules that humans naturally and intuitively follow

for this adaptation. We further develop this strategy to devise a computational,

geometric approach to compute a conflict-free solution for each agent separately and

autonomously.

Physical agents will typically calculate paths that suit their own needs. The moves

of two or more agents will need to be separated by a minimal safety distance Ω, to

ensure no collisions. If two moves along planned paths never take agents within Ω

of one another, we say they are conflict-free. That is, paths can intersect but moves

along these paths cannot. Put differently, paths can be time-independent but moves

along these paths cannot. Formally, moves along paths are conflict-free if and only if

∀t, ∀pi, pj , i 6= j,MPDij(t) > Ω, (8.3.3)

where MPD(pi(~vi, t), pj(~vj, t)) is the Euclidean distance between two positions at

each time step, and Ω is the grid size dynamically adapted to the configuration space.

8.3.2 Collision and Conflict Definition

The agents considered here are modeled as point masses. However, physical agents

have actual size constraints and we need to take physical size into account in the

theoretical model. In [76], we investigated all possible collision types between two

126

moving agents in a configuration grid space, where the collision avoidance condition is

to not occupy the same position during the same time-step when following paths, but

rather to keep moving within a minimal safety distance at all times. This minimal

safety distance has been studied in [92, 93] and is considered a useful metric for

minimal predicted distance. Collision can be defined as follows:

Definition 1 (Collision State). A collision occurs between agents Ai and Aj when

Cij ⇔ ‖pi − pj‖ < Ω(Ai, Aj), (8.3.4)

where Cij represents the collision between two agents Ai and Aj, Ω is a distance

threshold for the minimal safety distance, which in turn is the absolute distance be-

tween the agents’ geometric centers. Thus, we have the non-collision state description

as follows:

Definition 2 (Non-Collision State).

Sij ⇔ ‖pi − pj‖ ≥ Ω(Ai, Aj), (8.3.5)

where Sij represents the non-collision state of the two agents corresponding to Cij

condition.

Definition 3 (Conflict State). Another situation that must be accounted for is when

collision would occur if two agents do not perform motion adaptation at a future

time instant t. According to Equation 8.3.2, a conflict occurs between agents Ai and

Aj if the agents are not currently in a collision situation but will enter a collision

situation at time u if they do not perform motion adaptation. Equation 8.3.6 gives

the definition of this conflict:

127

Hij(t)⇔ Sij(t) ∧MPD(u) < Ω(Ai, Aj), (8.3.6)

whereHij(t) represents conflict between two agents Ai and Aj at time instant t taking

into account the future time u (Equation 8.3.2). ∧ is the conjunction operator.

8.4 Deconflict ThroughMER Roundabout Method

The proposed MER roundabout method is a pairwise collision avoidance maneuver

and includes two phases – a conflict detection phase and a deconflict phase.

8.4.1 Local View Definition

We define a local view LV in front of the current position of an agent and only take

into account the agents and any other obstacles inside this local view. The local

view has to be of a minimum size to ensure satisfactory conflict detection. If the

configuration space is considered as consisting of a grid of squares or rectangles, the

size of which is equal to the size of the agent, each agent has 8 moving directions at

each time step, as shown in Figure 8.1(a) and a wait action, plus front local view, as

shown in Figure 8.1(b) and (c). All agents have a constant speed for simplicity. My

approach requires each agent to consider its moves within its front local view at each

time step, so each agent potentially has 9 legal actions. Each of these legal actions is

a solution to the constraint satisfaction problem in which each agent must determine

a move from {E,S,W,N,NE,SE,SW,NW,wait}, as shown in Figure 8.1(a), provided

that the chosen move does not lead to collision with another agent.

128

The front local view will be restricted to the region that the agent can actually

see, given the direction of motion of the agent, its view angle, and the position of any

static obstacles (and perhaps other agents). The LV needs to be updated once the

new velocity ~v is computed. Fixed and dynamic obstacles will be presented in the

LV of each agent, not in a global data structure to be shared by all agents.

(a) (b) (c)

Figure 8.1: (a) 8 possible moving directions. (b) and (c) The front local view (LV)
of the agent.

8.4.2 Deconflict Maneuver

Given an agent Ai and n number of neighbour agents A = {A1, A2, ..., An} with

1 ≤ j ≤ n in LV , if two agents’ moves conflict Hij, a virtual rectangular roundabout

can be computed by calculating a minimum enclosing rectangle,

Rij = MER(pi, pj), (8.4.1)

where pi, pj ∈ Rij , η ≡ 2. That is, the boundary of the rectangle is also included in

the rectangle. Then, a new velocity is calculated over Rij.

129

To calculate the new velocity ~v over Rij for deconfliction between Ai and Aj, we

calculate the other two diagonal opposite corner points p′i and p′j, and we have

p′ =



























q1 min{xi, xj} and min{yi, yj},

q2 min{xi, xj} and max{yi, yj},

q3 max{xi, xj} and min{yi, yj},

q4 max{xi, xj} and max{yi, yj}.

(8.4.2)

Here, pi, pj correspond to two distinct elements of p′. Then we have another two

points p′i and p′j

{p′i, p
′
j} = p′ ∩ ¬{pi, pj}. (8.4.3)

Some elementary properties of rectabout maneuver that we will use in this research

are introduced as follows:

Lemma 1 (Symmetry).

~vi ∈MER(pi, pj)⇔ ~vj ∈MER(pj, pi),

Symmetry property follows from Figure 4.2. The velocities ~vi and ~vj belong to the

boundary of the rectabout (see Figure 8.2).

Lemma 2 (Keep Left Traffic Rule).

p′i ∈MER(pi, pj) ∧ p′j ∈MER(pj, pi)⇔ ∆pipjp
′
i > 0 ∧∆pipjp

′
j < 0.

Proof. Construct three vertices pi, pj , p
′
i and pi, pj , p

′
j to form two triangles. According

to the vector cross product theory [81], the area of a triangle ∆ can be calculated

using the cross product to keep track of the signs of each angle, i.e., by the sign of

the expression

130

(a) (b) (c) (d)

Figure 8.2: The symmetry property of the rectabout maneuver for collision avoidance.
The velocities ~vi and ~vj are the new velocities after deconfliction by MER rectabout.

∆ =























1
2
((xi − x′

i)(yj − y′i)− (yi − y′i)(xj − x′
i)),

1
2
((xi − x′

j)(yj − y′j)− (yi − y′j)(xj − x′
j)).

(8.4.4)

Since the ‘keep left’ traffic rule is used in this work, we always select an anti-

clockwise point as a solution from the two diagonally opposite corner points p′i and p′j.

Clockwise motion is represented by a negative value and anticlockwise by a positive

value. Therefore:

p′ =











p′i ∆ > 0 anticlockwise - keep left traffic rule,

p′j ∆ < 0 clockwise - keep right traffic rule.
(8.4.5)

The new velocity ~v′i can be calculated as

p′i − pi = (x′
i − xi) ∧ (y′i − yi). (8.4.6)

131

For x < 0,

~v′i =















(−1,−1) if y < 0,

(−1, 0) if y = 0,

(−1, 1) if y > 0.

For x = 0,

~v′i =

{

(0,−1) if y < 0,

(0, 1) if y > 0.

For x > 0,

~v′i =















(1,−1) if y < 0,

(1, 0) if y = 0,

(1, 1) if y > 0.

Assuming the system consists of n neighbour agents, this algorithm’s computa-

tion time on each agent scales as O(n), since it only requires the computation of

each agent’s move to detect conflict and then compute the MER for deconfliction.

Formally, O(n2) MER computations occur in the worst case, but since these compu-

tations are independent of each other, they are calculated in parallel in a distributed

fashion, so only the per-agent scaling matters. However, to calculate the performance

of a system of multiple agents for comparison with other approaches we need to as-

sume a centralized control strategy version of this distributed conflict detection and

deconfliction strategy (Results, below).

8.4.3 Guarantees

We now prove that the MER Rectabout can be used to generate conflict-free, deadloop-

free 1 and deadlock-free motions for each agent.

1Deadloop problem is defined in [76]. Oscillation problem [136] is similar to the deadloop and is
considered as deadloop in this work.

132

Conflict-Free Navigation

Let ~vA be the current velocity of agent A, and let ~vB be the current velocity of agent

B, and let both A and B choose new velocities (~v′A and ~v′B) based on the other two

diagonal opposite corner points p′A and p′B. The following theorem proves that this is

safe, provided that both agents choose the same side (keep left) to pass each other:

Theorem 1 (Conflict-Free).

~v′A ∈MER(pA, pB) ∧ ~v
′
B ∈MER(pB, pA)⇒ ~v′A × ~v′B = 0

Proof.

MER(pA, pB) ∧MER(pB, pA)

⇒ {Equation 8.4.1 and Equation 8.4.3}

p′A ∈MER(pA, pB) ∧ p′B ∈MER(pB, pA)

⇔ {Equation 8.4.6 and Lemma 2}

~v′A ∈MER(pA, pB) ∧ ~v
′
B ∈MER(pB, pA)

⇒ {Lemma 2}

~v′A × ~v′B = 0

⇔ {Equation 8.3.3 and Definition 3}

MPD(pA(~v
′
A, t), pB(~v

′
B, t)) > Ω(A,B)

Deadloop-Free Navigation

If all agents follow the same ‘keep left’ rule, this guarantees deadloop-free navigation.

This is proven by the following theorem:

Theorem 2 (Deadloop-Free).

~v′A ∈MER(pA, pB)⇔ ∆pApBp
′
A > 0 ∧ ~v′B ∈MER(pB, pA)⇔ ∆pBpAp

′
B > 0

133

Proof.

~v′A ∈MER(pA, pB) ∧ ~v
′
B ∈MER(pB, pA)

⇔ {Equation 8.4.6}

p′A ∈MER(pA, pB) ∧ p′B ∈MER(pB, pA)

⇔ {Theorem 1}

~v′A × ~v′B = 0

⇔ {Lemma 2}

∆pApBp
′
A > 0 ∧∆pBpAp

′
B > 0

Deadlock-Free Navigation

Let the conflict group, SH, contains n constant-speed agents that are in conflict and

deadlock. Let m agents be in deadlock in SH where no solution is found and choose

the ‘wait’ action, m,n ∈ ℜ, n > m. We guarantee deadlock-free navigation if and only

if n > m. This is the case even though these conflicts can be daisy-chained such that,

if each agent is in conflict with another, this analysis still guarantees that at least

one agent in the group can find a move solution. Hence, some agents must eventually

attain their goal and allow another to progress, thereby breaking the deadlock. This

is proven by the following theorem:

Definition 4 (Deadlock State). We consider the deadlock state if the new velocity

belongs to a set of conflict velocities for the current agent Ai:

~v′i ∈ SH(Ai, Aj),

where SH(Ai, Aj) is a set of conflict velocities for the current agent Ai with neighbour

agents Aj, denoted as SH(Ai, Aj) = {~vi|~vi ∈ MER(pi, pj)}, i 6= j, j ∈ n. The SH is

always updated once the new velocity ~v′ is computed for each agent.

134

Theorem 3 (Deadlock-Free).

Ai, Aj are in conflict, ~vi, ~vj ∈ SH, i ∈ m, j ∈ n, n > m⇒
∥

∥

∥

~v′i

∥

∥

∥
6= 0.

Proof.

Ai, Aj are in conflict

⇒ {Definition 8.3.6}

Hij(t)

⇒ {Equation 8.4.1}

p′i ∈MER(pi, pj) ∧ p′j ∈MER(pj, pi)

⇔ {Lemma 1}

~v′i ∈MER(pi, pj) ∧ ~v
′
j ∈MER(pj, pi)

⇒ {Theorem 1 and Definition 4}
∥

∥

∥

~v′i

∥

∥

∥
= 0 ∧

∥

∥

∥

~v′j

∥

∥

∥
6= 0 at time instant t

⇒ {Theorem 1 and Definition 4}
∥

∥

∥

~v′i

∥

∥

∥
6= 0 at time instant t+ 1

8.4.4 Rectabout Algorithm

Given n > 0, the rectabout is calculated as the following at each time step:

1. Estimate the motion state pairwise for agent Ai with neighbour agents Aj in

LV of velocity ~v by MPD(Ai, Aj) where i, j ∈ n, i 6= j,

2. Repeat until there is no conflict: If there is conflict, then compute Rij by

MER(pi, pj). If no solution is found, then execute the wait action and termi-

nate; otherwise

3. Find the other two diagonally opposite corner positions p′i and p′j,

135

4. Calculate the new velocity ~v′i using the two points pi and p′i.

5. Update the information of neighbour agents and static obstacles in LV of new

velocity ~v′.

This procedure is repeated until the deconfliction motion is found (including a wait

action) for all the neighbour agents. Figure 8.3 illustrates agent 1 (R1) computing

pairwise virtual rectabouts to avoid collisions with two other agents R2 and R3 (a).

First, R1 calculates a rectabout to avoid R2 and plans a move NW (b). However,

R3 is also in conflict (c), so R1 calculates another rectabout and planned move W to

avoid R3 (d). Similarly, the other two agents use the same procedure to deconflict.

8.5 Experimental Results

We performed both small-scale simulations to test local behaviour and large-scale

simulations to analyze performance scaling. We also compared the proposed approach

to a centralized approach. The simulations model used mobile agents of constant

size and speed, where the task is to move from their current position towards a goal

position. Each agent has its own random current and goal positions. Paths calculated

by agents can intersect and in certain move situations lead to conflict. The aim is

to minimize stop and wait states so that agents can reach their goal in the minimum

time while avoiding collision.

8.5.1 Local Behavioural Results

We show two scenarios which demonstrate how agents smoothly avoid collisions with

each other at the local level. In the first scenario shown in Figure 8.4(a), two agents

136

(a) (b)

(c) (d)

Figure 8.3: Illustration of how rectabouts resolve conflicts between three agents.
Agent 1 computes virtual rectabouts by pairwise approach based on MER for decon-
fliction.

are moving towards each other. Each agent is able to detect conflict with the other

and computes a virtual rectabout based on MER (MER(p1, p2)). A new velocity is

planned along the path of MER and the agents follow a shared ‘keep left’ traffic rule

to resolve the conflict independently. The virtual rectabout is removed after one time-

step, after which each agent needs to independently operate the process again, since

the information around the agent always changes with every time step. However,

agents always attempt to move towards their own goal position at every time-step.

137

The second scenario involves 16 agents where all agents are densely located in the

center of the environment, shown in Figure 8.4(b). In this worst-case scenario, using

rectabouts may cause deadlock and the wait action (one timestep) is used for the

agents involved in deadlock. Agents will follow their goal-direction again after one

time step. An agent takes avoiding action irrespective of whether an obstacle in its

LV is fixed (non-moving agent) or dynamic (moving robot). Videos of these scenarios

can be found at http://youtu.be/GSH_i98Ju6w.

(a) (b)

Figure 8.4: Two small behavioural simulations. R and G represent Agent and Goal
for each agent, respectively. (a) The solid arrow line is the intended trajectory. The
dotted arrow line is the deconfliction trajectory. The central dotted rectangle is a
virtual rectabout enclosing two agents R1 and R2. (b) The 16 agents are densely
located in a 10x10 grid environment. Each agent moves to its antipodal position in
the environment, leading to maximum possible conflict and possible deadlock.

8.5.2 Large Scale Simulation Results

In order to test the performance of the proposed method we varied the number of

agents in different configuration spaces (200x200 grid, 300x300 grid and 400x400 grid)

138

to see how our approach scales when the number of agents increases. We performed

my experiments on an Intel Core(TM) i5 processor 3.20 GHz with 4GByte of memory.

Each scenario was repeated 10 times and results were averaged. All start and goal

positions were generated randomly. Figure 8.5 shows the total running time for vari-

ous numbers of agents. We note that the total running time of the proposed method

scales nearly linearly with the number of agents. Furthermore, the computation time

increases as the density of agents increases, as would be expected given that deadlock

is more frequent with high density.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

200

Number of Robots

T
o

ta
l R

u
n

n
in

g
 T

im
e

(m
s)

Total Running Time vs. Num. Robots

200x200 Grid
300x300 Grid
400x400 Grid

Figure 8.5: The total running can be seen to scale almost linearly with the number
of agents.

139

8.5.3 Additional Case Studies

The proposed approach has been tested in extensive simulations to evaluate the ro-

bustness of the collision avoidance system, using multiple autonomous agents with

different goals that involve crossing trajectories. Three case studies are presented

below. The robustness of collision avoidance is evaluated on: (A) the capability of

the agent’s position, i.e. the system is not restricted to any synchronous, symmetric

and communication-based maneuvers; (B) the adaptability of collision avoidance in

case of deadlock; and (C) the scalability of collision avoidance to increasingly larger

numbers of agents / robots.

Case Study 1: Collision Avoidance Capability

Figure 8.6 (a) depicts three agents R1, R2 and R3 moving to their goal position G1,

G2 and G3, respectively. Figure 8.6 (b) presents R1’s trajectory being in conflict with

R2 and R3’s trajectories because their paths cross each other (i.e. H12 and H13). R1

computes rectabouts corresponding to R2 and R3 conflicts. R1 re-plans a moving

direction for only one move. After one move, R1 resumes its goal-directed path and

repeats the process. Similarly, R2 and R3 follow the same procedure. Figure 8.6

(c) shows R2 and R3 employing a similar approach to change their original moving

directions to avoid each other.

Case Study 2: Collision Avoidance Adaptability

We conduct an experiment with five mobile agents, where one agent R1 cannot find

a solution. Figure 8.7 (a) shows R1 is surrounded by its four neighbour agents. In

this case R1 using MER roundabout may cause deadlock, as shown in Figure 8.7

140

(a) (b) (c)

Figure 8.6: Collision avoidance for 3 agents. (R1, R2, R3) and (G1, G2, G3) are the
agent positions and the goal positions for three agents, respectively. (a) The initial
position for three agents. (b) R1 computes MER rectabout and re-plans its moving
direction in order to avoid collisions with the other two neighbour agents. (c) The
other two agents employ a similar approach to obtain a new moving direction.

(b). The wait action is used while the agent is involved in deadlock in Figure 8.7 (c).

Wait only takes one time step. Agents will follow their goal-direction again after one

time step. The iterative plan-evaluate-move process runs until all agents reach their

goal. As seen in this case study, MER-based rectabout collision avoidance maneuver

is adaptable to all possible collisions in [76] and to deadlock.

Case Study 3: Collision Avoidance Scalability

To evaluate the robustness of large scale agent systems, we expand the configuration

space to a 50x50 grid involving 10, 20, 50 and 100 agents. All start and goal positions

are generated randomly. The proposed algorithms are able to move all agents to

their desired destination nodes avoiding collision. Figure 8.8 shows the scalability

performance evaluation on 10, 20, 50 and 100 agents by 50x50 grid configuration

space. The moves increase linearly as the number of agents increases.

141

(a) (b) (c)

Figure 8.7: Collision avoidance for 5 agents. (a) The initial position for five agents.
(b) R1 computes MER rectabout in relation to the other neighbour agents, but cannot
find a solution and causes deadlock. (c) R1 takes wait action while in deadlock in
such a case. The other agents use a similar approach to compute a new deconfliction
moving direction.

8.5.4 Comparison with Centralized Approach

The performance of the MER rectabout maneuver was compared against a centralized

priority-based algorithm described in Chapter 5, called Super A*. The test config-

uration space was based on a 50x50 grid involving 10, 20, 50 and 100 agents. All

start and goal positions were generated randomly. The result was evaluated by the

total number of moves for all agents moving from their start positions to their goal

positions. To undertake this comparison, the proposed decentralized approach was

represented as a centralized approach (a central coordinator needing to calculate all

LV s for every agent and all collision and collision avoidance strategies). Table 8.1

presents the statistical results for the MER rectabout approach and shows that it is

comparable to a centralized approach. The big difference, however, is that Super A*

(and other centralized approaches) has costly overheads in terms of communication

and global map updates.

142

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Number of Robots

T
ot

al
 M

ov
es

Figure 8.8: Scalability evaluation on 10, 20, 50 and 100 agents by 50x50 grid con-
figuration space. The total moves show a linear increase as the number of agents
increases.

8.6 Summary

A novel non-priority and non-global view rectabout approach based on MER for

collision avoidance is proposed in this chapter. The kinematic research on the minimal

predicted distance between two human walkers is applied for the first time to deal

with agent collision problems in conjunction with a rectabout maneuver. We use

MPD to detect the possible collisions along agent paths and trajectories. The agents

involved in conflict will compute a rectabout and re-plan a new velocity when MPD

is below the threshold. This process is repeated until all agents reach their goals. The

proposed approach also takes into account obstacles and sudden changes of direction

143

Number of Agents 10 20 50 100

Super A* 194 543 1318 2554
MER rectabout 194 552 1341 2568

Table 8.1: MER rectabout compared with a centralized priority-based approach.
Performance evaluation on the total number of moves for 10, 20, 50 and 100 agents
by 50x50 grid configuration space.

by agents.

While this work presents a significant advancement, there are several issues which

require further work. One key area for future work is the effect on MPD and MER

of variable sized local views. The second is the need for dealing with variable speed

agents. Also, while the aim of this work is to remove the need for any communication

between agents, there may be occasions (e.g. deadlocks, cooperative behaviour) where

some form of communication is required or desired.

Finally, while the work has focused on collision detection and avoidance among

agents and has presented simulations involving agents of fixed size and speed, the

research needs extending to problem solving by a number of agents needing to search

a complex space cooperatively as well as autonomously. In particular, it is not clear

how generalizable the use of rectangles will be in more complex spaces. Nevertheless,

it could be argued that the most important aspect of any mobile multi-agent system

is how to prevent agents from getting in each other’s way. Such collision avoidance

is often overlooked or ignored in mobile multi-agent and swarm-based approaches

and simulations. Swarm simulations frequently assume that swarm members can fly

through each other. The lack of collision detection and avoidance severely limits the

application of swarm technology to real-life problems (e.g. nanobots taking antiviral

molecules to specific cells in the body).

144

To conclude this part dealing with fully autonomous multi-agent system, we

have shown that, how nature-inspired observations help to resolve the research ques-

tion / issue for collision avoidance problem. In the previous chapters, we elimi-

nated coupling priority, decoupling priority, communication, and global views which

are essential aspects in multi-agent systems step by step, in order to explore a re-

search procedure for nature-inspired autonomous, non-centralized, non-global, non-

communicative collision avoidance. We have proved that our proposed approach is

guaranteed and reliable for safety. In the next chapter, we will expand the idea of

rectabout to a heterogeneous multi-agent system for collision avoidance.

Chapter 9

Intelligent Collision Avoidance
between Multiple Autonomous
Hybrid Agents using Adaptive
Local Views

The aim of this chapter is to address research question 5 (Research Methodology chap-

ter): Can a large number of homogeneous autonomous agents extend to heterogeneous

agents with variable size and speed? This research question follows naturally from the

fourth research question identified in the Research Methodology chapter. The fourth

research question led to the novel solution of a nature-inspired autonomous collision

avoidance – MPD for detection of collisions and MER-based rectabout for deconflic-

tion. But the question was left open in the previous chapter as to how to extend

the homogeneity modelling to heterogeneity modelling, which allows agents to have

variable size and speed.

The previous chapter presents an autonomous multi-agent system; the idea from

nature – the use of roundabouts – describes deconfliction between two vehicles with no

priority, no communication and local view. The purpose of this chapter is to expand a

homogeneous to a heterogeneous system, which introduces a hybrid rectabout modeling

145

146

for a group of heterogeneous agents in collision avoidance problems. Section 1 briefs

the idea of the hybrid rectabout. In Section 2, we formally define the problem we

address in this chapter; we introduce minimal predicted distance for conflict detection

used in our approach, and also provide definitions of collision avoidance. Section

3 introduces our formulation of hybrid rectabout collision avoidance maneuver for

various speed multiple autonomous agents; it also takes into account obstacles in the

environment as well as uncertainty in position and velocity, and the dynamics and

kinematics of the agents. We discuss implementation and present experimental results

in Section 4. Finally, section 5 gives the conclusion of this work and some further

research directions.

9.1 Introduction

In this chapter, the main contribution focuses on two aspects. First, we present a

hybrid rectabout procedure for navigation of multiple mobile robots or virtual agents

that explicitly considers heterogeneity (i.e. variable speed and variable size of agents).

Second, we present both practical demonstrations and experimental simulations to

demonstrate scalability and efficiency, taking into account Minimal Predicted Dis-

tance (MPD, more details below) between all the autonomous agents and the velocity

of each agent. The approach is ‘nature inspired’ because of its use of theories taken

from human pedestrian collision avoidance. The approach is ‘intelligent’ because

of its use of traffic regulations and conventions. It is also fully decentralized, with

each agent taking responsibility independently for detecting and avoiding collisions

through local views / maps and local decision-making.

The hybrid rectabout is an extension of the Minimum Enclosing Rectangle-based

147

(MER-based) rectabout described in Chapter 8 that was introduced to address sim-

ilar issues in multiagent simulation. However, the rectabout formulation had some

limitations. All agents were required to be homogeneous (same size and speed). This

meant that all agents had the same local view. To extend the applicability of the

MER-based rectabout to heterogeneous agents, the procedure needs to take into ac-

count variable speeds of agents as well as variable size of agents. Both require adaptive

local views since variable speeds of agents means not just that agents are moving at

different speeds from each other but also that an agent can vary its own speed while

moving. The size of an agent is, however, constant. The aim of this chapter is to

extend the MER-based rectabout procedure to deal with heterogeneous agents (vari-

able speeds of agents and various sizes of agents), hence the term ‘hybrid’. To deal

with this hybrid nature of agents the adaptive MER-based rectabout procedure to be

described below is also hybrid in that the size and location of the rectabout will vary

to reflect the properties of the agent. Consequently, MPD is adaptive to change while

the agent speed is variable. In addition, our approach takes into account both the

kinematic constraints of an agent and sensor uncertainty, which makes it specifically

suitable for navigation of autonomous agents.

Informally, the hybrid rectabout procedure to be described below builds on the

implicit assumption that other agents make similar collision avoidance reasoning via

MER. That is, knowledge of MER is shared by all agents. It consists of two compo-

nents: Minimal Predicted Distance (MPD) detection and hybrid rectabout collision

avoidance algorithm. The MPD is a metric inspired by real human pedestrian colli-

sion avoidance behaviour (for a review, see [91, 92, 93] and more details below). As

148

far as we are aware, this was the first time that MPD has been used for addressing col-

lision problems in multi-agent systems. The hybrid MER-based rectabout collision

avoidance algorithm is a pairwise approach which computes and navigates agents’

moving direction by following a ‘keep right’ rule at the rectabout. This rule can be

changed if necessary to ‘keep left’.

We have implemented and applied our new approach for heterogeneous agents

to a set of WowWee Rovio mobile robots moving in an indoor environment using

independent sensing and WiFi-based wireless remote control. Our experiments show

that our approach achieves direct, collision-free and oscillation-free navigation in an

environment containing multiple mobile robots and dynamic obstacles, even with

some uncertainty in position and velocity. We also demonstrate the ability to handle

static obstacles and the low computational requirements, scalability and efficiency of

the hybrid rectabout in simulations of multiple virtual agents.

9.2 Problem Definition

In this section, we introduce the collision issues in multi-agent systems and collision

avoidance through a minimal predicted distance concept in our approach.

9.2.1 Collision Issues

The problem we discuss in this chapter is formally defined as follows. Let there be

a set of n agents sharing an environment. For simplicity we assume the agents move

in the plane R
2. Each agent A has a current position pA, a current velocity ~vA. An

agent’s position can be obtained through sensors on the agent and the information

149

can be broadcast through a WiFi-based remote control if necessary. In other words,

all we need to demonstrate our new approach is that an agent can observe another

agent when it ‘comes into view’ and that every agent knows what its position is in

relation to the configuration space. These parameters are part of the agent’s external

state. Furthermore, each agent can have a different speed while moving from start

location to goal location, for instance, starting slow and speeding up.

The task is for each agent A to independently and simultaneously calculate a new

velocity ~vnewA for itself such that, at an emergent level, all agents are guaranteed to be

conflict-free for at least a certain amount of time (one time step in our experiments)

when they would continue to move at their new velocity. As a secondary objective,

each agent should calculate its new velocity as close as possible to its goal orientation

so that, at an emergent level, all agents reach their goal. The agents are not allowed to

negotiate with each other, and can only use observations of the other agent’s current

position and velocity. However, each of the agents may assume that the other agents

use the same strategy as itself to select a new velocity.

9.2.2 Minimal Predicted Distance

As seen in the last chapter, inspiration from nature comes from Olivier et al. [92, 93],

who proposed a new minimal predicted distance metric to investigate how pedestrians

effortlessly and without communication avoid each other repeatedly and in a variety

of different circumstances while still reaching their goals with minimum disruption to

their paths. To recap, given two persons with positions pi and pj, for i, j = 1, 2, i 6= j,

each person is considered as a moving obstacle for the other. At each instant t,

MPD(t) represents the distance at which a person would meet the other if they did

150

not perform motion adaptation after instant t. According to the model of MPD [92],

the future trajectory for each person is modeled as follows:

p′(t, u) = p(t) + (u− t) ~v(t), (9.2.1)

where u is a future time instant with u, t > 0 and u > t, p(t) and ~v(t) are the position

and velocity at time instant t, respectively. Their experimental studies showed that

MPD is constant and that walkers adapt their motion only when MPD is small.

Therefore, we can predict potential collisions by computing the absolute distance

between pi and pj at each time instant t:

MPD(t) = min
u

∥

∥p′i(t, u)− p′j(t, u)
∥

∥. (9.2.2)

MPD is a strategy adopted by each agent for predicting potential collision risk.

It is also a strategy that attempts to explain how individual humans implicitly adapt

their motion and proposes implicit rules that humans naturally and intuitively follow

for this adaptation. We further develop this strategy to devise a computational,

geometric approach to compute a conflict-free solution for each agent separately and

autonomously.

The further effects on MPD for two pedestrians walking at different speeds are

revealed in [91], where computing the MPD with respect to motion adaptation shows

the extent to which MPD is adapted when the speed s or orientation θ of two walkers

varies. We formalize this as:

MPDij(t) = f(pi(t, u), pj(t, u), θi, si, θj , sj), (9.2.3)

Physical agents will typically calculate paths that suit their own needs. The moves

151

of two or more agents will need to be separated by a minimal safety distance, Ω, to

ensure no collisions. If two moves along planned paths never take agents within Ω

of one another, we say they are conflict-free. That is, paths can intersect but moves

along these paths cannot. Put differently, paths can be time-independent but moves

along these paths cannot. Formally, moves along paths are conflict-free if and only if

∀t, ∀pi, pj , i 6= j,MPDij(t) > Ω, (9.2.4)

where MPDij(t) is the Euclidean distance between two positions at each time step,

and Ω is the grid size dynamically adapted to the configuration space to compute the

minimal safety distance.

9.2.3 Collision and Conflict Definition

To recap, the agents considered here are modeled as point masses. However, physical

agents have actual size constraints and we need to take physical size into account in the

theoretical model. Liu et al. [76] investigated all possible collision types between two

moving agents in a configuration grid space, where the collision avoidance condition is

to not occupy the same position during the same time-step when following paths, but

rather to keep moving within a minimal safety distance at all times. This minimal

safety distance has been studied in [91, 92, 93] and is considered a useful metric for

minimal predicted distance. Collision can be defined as follows:

Definition 5 (Collision State).

A collision occurs between agents Ai and Aj when

Cij ⇔ ‖pi − pj‖ < Ω(Ai, Aj), (9.2.5)

152

where Cij represents the collision between two agents Ai and Aj, Ω is a distance

threshold for the minimal safety distance, which in turn is the absolute distance be-

tween the agents’ geometric centers. Thus, we have the non-collision state description

as follows:

Definition 6 (Non-Collision State).

Sij ⇔ ‖pi − pj‖ ≥ Ω(Ai, Aj), (9.2.6)

where Sij represents the non-collision state of the two agents corresponding to Cij

condition.

Definition 7 (Conflict State).

Another situation that must be accounted for is when collision will occur if two

agents do not perform motion adaptation at a future time instant t. According to

Equation 9.2.2, a conflict occurs between agents Ai and Aj if the agents are not

currently in a collision situation but will enter a collision situation at time u if they

do not perform motion adaptation. Equation 9.2.7 gives the definition of this conflict:

Hij(t)⇔ Sij(t) ∧MPD(u) < Ω(Ai, Aj), (9.2.7)

whereHij(t) represents conflict between two agents Ai and Aj at time instant t taking

into account the future time u (Equation 9.2.2). ‘∧’ is the conjunction operator.

9.3 Collision Avoidance

In this section, we describe how agents avoid collisions with each other. We briefly

review the idea of MER [23], and then introduce our formulation of the hybrid MER-

based rectabout that we use for heterogeneous multi-agent navigation.

153

9.3.1 MER Representation

According to Das et al. [23], given a set of points P = {p1, p2, ..., pk} with pk ∈ ℜ
2,

the minimum enclosing square (or rectangle) of P is the smallest square (or rectangle)

that contains all points of P . For the purposes of this chapter, the smallest square

or rectangle is defined to be the smallest rectangle that contains a given number k

such that n
2
< k ≤ n of x-consecutive points in a set of n points in the plane. The

problem of computing k-square and k-rectangle has been investigated since 1991 (for

a review, see [1, 23, 31, 79, 115]). MER has been applied in various areas, such as

pattern recognition [96], facility location [29], similarity search [24, 88] and collision

detection [75]. In order to classify the k-square with respect to the number of points

η present on its boundary, Das et al. [23] investigated all different possibilities of

k-squares. As a result, no k-square is possible with η = 0 or 1. The only possibility

with η = 2 is that the two points appear at the two diagonally opposite corners of

the corresponding k-squares. In this study, k = η = 2 is the MER or MES that the

agents are searching for, as shown in Figure 9.1.

(a) (b) (c) (d)

Figure 9.1: MER of η = 2, with dots representing the position of the two agents. The
orientation of the rectabout can differ according to the local view.

154

9.3.2 Local View Definition

We define a local view (LV) in front of the current position of an agent and only

take into account the agents and any other obstacles inside this local view. The local

view has to be of a minimum size to ensure satisfactory conflict detection. If the

configuration space is considered as consisting of a grid of squares or rectangles, the

size of which is equal to the size of the agent, each agent has 8 moving directions

at each time step and a wait action, plus front local view. Our approach requires

each agent to consider its moves within its front local view at each time step, so

each agent potentially has 9 legal actions. Each of these legal actions is a solution

to the constraint satisfaction problem in which each agent must determine a move

from {E,S,W,N,NE,SE,SW,NW,wait}, provided that the chosen move does not lead

to collision with another agent.

The front local view will be restricted to the region that the agent can actually

see, given the direction of motion of the agent, its view angle, and the position of any

static obstacles (and perhaps other agents). The LV needs to be updated once the

new velocity ~v is computed. Fixed and dynamic obstacles will be presented in the

LV of each agent, not in a global data structure to be shared by all agents. The size

of the individual squares in the LV will vary according to the size of the agent.

9.3.3 Hybrid MER-based Rectabout

In our experiments below, all agents are allowed to move at various speeds. Different

speeds require different local views to take into account any other agents in their

path, given their speed. The size of agents’ LV s and of the squares making up their

LV s will determine the size of the rectabout for that agent. This will allow agents

155

independently to calculate a possible collision and place a virtual rectabout on their

paths in case they need to use it to avoid collisions. If one agent is moving at a

very high speed (e.g. on the motorway or highway), the agent will need a larger

view to react to any hazard and keep a minimum safety distance from other agents.

Therefore, LV s and minimal safety distances are scaled by velocity. The larger the

LV , the further ahead the agents can plan. If one agent’s speed is one grid (agent

size Φ(A) is also one grid) at one move, then setting that agent’s LV to grid size two

can be guaranteed collision-free. According to Definition 5 and 6, different agents

may have various physical sizes and the handling of agents of different sizes is taken

into account. Thus, we can write the relationship between minimum local view LV ,

speed and physical sizes for agents as

LVmin =

{

π(‖~v‖+ Φ(A)) if ‖~v‖ > 0,

0 if ‖~v‖ = 0.
(9.3.1)

Equation 9.2.4 is not applicable to multiple agent systems with various speeds.

According to Equation 9.3.1, an agent’s speed affects that agent’s LV and a larger

LV affects roundabout location. In hybrid speed multi-agent systems, we can have a

simple formula to calculate the minimal safety distance:

Ω(t) = ‖~v‖ , ‖~v‖ > 0 (9.3.2)

and therefore Equation 9.2.4 can be rewritten for agent Ai calculation as

∀t, ∀pi, pj, i 6= j,MPDij(t) > ‖~vi‖ , (9.3.3)

which can be applicable to hybrid speed multiple agent systems.

156

9.3.4 Static Obstacles

We have discussed how agents avoid collisions with each other, but typical multi-

agent environments also contain static obstacles. We can follow the same approach

as above, with a key difference being that fixed obstacles do not move, so they can

be treated as object ‖~v‖ = 0. We can generally assume that obstacles are modeled as

the same size of grid unit due to our simulations being based on a grid environment.

Let O be a one grid unit static obstacle, and let A be an agent positioned at pA.

Then the virtual rectabout induced by obstacle O is defined as (see Figure 9.2(a) and

(b)):

RAO = MER(pA, pO) (9.3.4)

(a) (b) (c)

Figure 9.2: A and G represent agent A and agent A’s goal, respectively. (a) A
configuration of an agent A and a static obstacle O. (b) Geometric illustration of
how a rectabout is located to resolve collision between the agent and static obstacle
using hybrid rectabout. (c) Here the path for the agent is tracked for avoiding the
static obstacle using keep right traffic rule.

In case of obstacles, the agent employs the hybrid rectabout to calculate a new

velocity to move around such obstacles. This guarantees that there always exists a

157

valid velocity for the agent that avoids collisions with the fixed obstacle. The direction

of motion around obstacles towards the agent’s goal can be obtained by the agent

using standard path planning techniques, e.g. the A* algorithm [89]. Figure 9.2(c)

shows the tracked path, how the agent avoids the static obstacle to reach its goal.

9.4 Experimentation

In this section, we describe the implementation of our approach and report results

from our simulation experiments involving multiple autonomous agents.

9.4.1 Implementation Details

We implemented our approach for a set of WowWee Rovio mobile robots using inde-

pendent sensing and WiFi-based wireless remote control. The WowWee Rovio is a

differential-drive mobile robot. It has three individual omni-directional wheels. There

are ten various drive and turn speeds in both forward and reverse directions and its

shape is a rectangular car-like robot.

All calculations were performed on a 3.2GHz Intel Core i5 system with 4GB of

memory running Microsoft Windows XP. However, to ensure that our approach ap-

plies when each agent uses its own on-board sensing and mobile laptop for computing,

only the WiFi signal sending was carried out centrally. The calculations for each agent

were performed in separate and independent processes that did not communicate with

each other.

158

9.4.2 Experimental Results

Using the WowWee Rovio mobile robots, we tested our approach in the following two

scenarios.

1. Two robots are deployed on two sides of the field and have to move to their goal

positions on the other side using the hybrid rectabout to avoid collision. The

video link is http://youtu.be/nitsN0Sxs9Q.

Figure 9.3: Solid arrow line is the intended trajectory. Dotted arrow line is the
deconfliction trajectory. The central dotted rectangle is a virtual rectabout enclosing
two robots R1 and R2.

2. Four robots are distributed evenly on a square, and their goal is to navigate to

the antipodal position on the circle. In doing so, the robots will form a dense

crowd in the middle. The video link is http://youtu.be/lYQY3TZJzwM.

In addition, we tested the heterogeneity and scalability of our approach in the

following two simulated scenarios.

1. Heterogeneity: The simulation demonstrates a heterogeneous group of five

virtual agents navigating from one side to the other, negotiating around each

other in the center. For the path computation, each agent employs the A*

algorithm [89] to navigate from the initial position to the goal position with

159

Figure 9.4: Illustration shows the start positions of four robots.

a minimum local view. Each agent is able to detect conflict with any other

agent and computes a virtual rectabout based on MER (MER(p1, p2)). A new

velocity is planned along the path of MER and the agents follow a shared ‘keep

right’ traffic rule to resolve the conflict independently. The virtual rectabout is

removed after one time-step, after which each agent needs to independently op-

erate the process again, since the information around the agent always changes

with every time step. However, agents always attempt to use A* planning path

towards their own goal position at every time-step. Figure 9.5 shows snapshots

of collision avoidance for six agents while adhering to their chosen paths. The

video link is http://youtu.be/lXHEi0LScXY.

2. Scalability: In order to test the performance of our method we varied the

number of agents in a different configuration space (200x200 grid, 300x300 grid

and 400x400 grid) to see how our approach scales when the number of agents

increases. We performed our experiments on an Intel Core(TM) i5 processor

3.20 GHz with 4GByte of memory. Each scenario was repeated 10 times and

160

(a) (b)

Figure 9.5: Six hybrid agents (variable size and speed) avoiding collision with each
other. (a) soon after starting. (b) after avoiding collisions.

results were averaged. All start and goal positions were generated randomly. All

agents have various speeds (1 to 3 grid per move step) and these were randomly

assigned for each agent at the initial position. The agents with higher speed

require larger local views, leading to increasing computation time in comparison

to homogeneous settings. Figure 9.6 shows the total running time for various

numbers of agents with various speeds. We note that the total running time

of our method scales nearly linearly with the number of heterogeneous agents.

Furthermore, the computation time increases as the density of agents increases,

as would be expected given that deadlock is more frequent with high density.

An agent enters a ‘wait’ state for one or more moves if it is in deadlock. As long

as one agent in a deadlock situation can move, such deadlock is temporary [74].

161

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

200

Number of Agents

T
o

ta
l R

u
n

n
in

g
 T

im
e

(m
s)

Total Running Time vs. Num. Agents

200x200 Grid
300x300 Grid
400x400 Grid

Figure 9.6: The total running can be seen to scale almost linearly with the number
of heterogeneous agents.

9.4.3 Comparison

We conducted a number of simulations for comparison against other decentralized

approaches. Through these simulations, we tried to evaluate the following two crite-

ria to compare with two decentralized approaches - Satisficing Game Theory (SGT)

algorithm by Hill et al. [49, 5] and Distributed Reactive Collision Avoidance (DRCA)

algorithm by Lalish and Morgansen [63]: (1) Computation Time: how long the al-

gorithm needs to compute deconfliction between agents in path conflict; and (2)

Solution Efficiency: how efficient the solution is for collision avoidance. The scenario

is referred to as a choke point because, without deconfliction, all the agents would

meet at the center. In order to fairly compare these three algorithms, the hybrid

rectabout algorithm has been set up for this simulation such that each agent has a

162

constant speed (1 grid / move). The agent’s size is the same as the grid size, so each

agent has information only within the two grid front local view of itself, which is the

same as in Hill et al. [49, 5] and Lalish [63].

Figure 9.7: Collision avoidance of 32 agents using the hybrid rectabout algorithm
where each is attempting to reach a goal on the exact opposite side of the environment
(the starting point of the opposite agent).

Computation Time: A simulation of the hybrid rectabout algorithm for de-

conflicting 32 agents is shown in Figure 9.7, the densest choke pattern demonstrated

by Hill et al. [49, 5]. Our hybrid rectabout algorithm consumed 0.1953 milliseconds

for the mean running time for deconfliction, compared to 0.1180 seconds in DRCA

and 127.3804 seconds in SGT. The reason for the increased time in SGT is that their

approach requires communication and priority for deconfliction, unlike our approach.

Solution Efficiency: The efficiency of the maneuver is defined as the average of

163

the percentage of moving cost (or time delay) in arrival from start position to goal

position:

Efficiency =
1

n

n
∑

i=1

C i
r

C i
,

where C i
r is the reference moving cost for the ith agent (moving straight without

considering other agents), and C i is the actual moving cost taken for the ith agent.

The hybrid rectabout algorithm attained an efficiency of 88.9%, compared to 87.6%

in DRCA and 85.7% in SGT. However, the DRCA algorithm breaks some of the

guarantees of safety for this simulation; in other words, it does not always work for

this situation with safety. Meanwhile, the SGT algorithm has collisions occurring in

its experiments (recorded 19 out of 32 agents). Importantly, no collisions occurred

with our hybrid rectabout algorithm which guaranteed safety for each agent.

We also conducted an experiment with 100 virtual agents moving simultaneously

across a circle; the scenario is referred to by [124]. All agents approaching the cen-

ter of the circle and the agents moving toward the perimeter of the circle have to

pass through the center. The timings of this scenario for the hybrid rectabout and

three other variations of velocity obstacles (Velocity Obstacle [35], Optimal Recip-

rocal Collision Avoidance (ORCA) [135], Hybrid Reciprocal Velocity Obstacle [124])

are shown in Table 9.1 These approaches are implemented by an open source li-

brary [35, 135, 124].

Figure 9.8 shows the comparison of the timings for this scenario with an increasing

number of virtual agents moving across a circle. The timing of the hybrid rectabout

requires less time to complete.

164

Algorithm Computation Time (ms)

Hybrid Rectabout 0.77
Velocity Obstacle 0.81

Optimal Reciprocal Collision Avoidance 0.83
Hybrid Reciprocal Velocity Obstacle 1.24

Table 9.1: Timing of simulations of 100 virtual agents moving simultaneously across
a circle using Hybrid Rectabout and three variations of velocity obstacle algorithm.

9.5 Conclusions

Collision avoidance has a long history in both agent-based and robotics research and

there exist many approaches, only some of which have been mentioned here. Nearly

all previous approaches assume some degree of communication, access to a global

map, priority allocation or central coordination. In this chapter, we have introduced

a novel and intelligent hybrid rectabout procedure for navigation of multiple robots

or autonomous agents using nature-inspired techniques. We take into account the

obstacles in the environment as well as uncertainty in position and velocity. We also

consider the dynamics and kinematics of the agents, thereby allowing us to implement

our approach on WowWee Rovio mobile robots. The kinematic research on minimal

predicted distance between two human walkers is applied for the first time to deal

with agent collision problems in conjunction with a hybrid rectabout maneuver. We

use MPD to detect the possible collisions in agent trajectories. The agents involved

in conflict will compute a rectabout and re-plan a new velocity when MPD is below

the threshold. This process is repeated until all agents achieve their goals, but each

of the agents acts completely independently without central coordination and does

not communicate with other agents.

165

0 200 400 600 800 1000
0

5

10

15

20

25

30

Number of Agents

T
o

ta
l R

u
n

n
in

g
 T

im
e

(m
s)

Total Running Time vs. Num. Agents

ORCA
Hybrid Rectabout

Figure 9.8: Comparison of the timing of simulations of increasing numbers of virtual
agents moving simultaneously across a circle of increasing circumference between
hybrid rectabout and ORCA.

The hybrid rectabout for mutual avoidance provides a powerful method for a mul-

tiple heterogeneous agent avoidance maneuver. At present, most agent search-based

algorithms assume all agents have the same physical size (e.g. particles in PSO), travel

at the same speed (e.g. ants in ACO) or have the same kinematic constraints (e.g.

autonomous robots). Simulations involving such autonomous agents rarely take into

account the need to avoid collision, which makes the application of these algorithms to

real-world situations problematic. Our findings indicate that a MER-based rectabout

procedure can be appended to the search algorithm (e.g. A*) used by agents with

little additional cost, resulting in greater applicability to real-world navigation and

therefore increased plausibility. We would like to develop a more sophisticated model

166

of uncertainty that takes into account uncertainty in position and velocity as given by

sensors of the agent, and apply it to the hybrid rectabout formulation. The other fu-

ture direction is to apply our approach for avoiding collisions within swarms or groups

of agents with no communication or central coordination. Such collision avoidance

is often overlooked or ignored in mobile multi-agent and swarm-based approaches

and simulations. Swarm simulations frequently assume that swarm members can fly

through each other. The lack of collision detection and avoidance severely limits the

application of swarm technology to real-life problems (e.g. nanobots taking antiviral

molecules to specific cells in the body, fleets of autonomous cars taking humans safely

and reliably to their destinations).

To conclude this part of decentralized design, we raise the question of how natural

entities avoid each other, posed at the beginning of this thesis, then we provide mod-

elling on how human pedestrians avoid each other; this is implemented in autonomous

multi-agent research through nature-inspired observation for the first time. The pre-

vious chapter and current chapter focus on inspiration from nature observation and

lead to a new solution on collision avoidance, so that the gap of nature-inspired col-

lision avoidance has been filled through the course of this thesis. Also, we guarantee

the nature-inspired collision avoidance strategies work safely and reliably. We have

given a good start point on both the macro level and micro level for the motivation of

this research. In the next chapter, we will give the conclusion and future directions.

Chapter 10

Conclusion and Future Directions

In this final chapter, we first evaluate the research methodology adopted in this thesis.

Secondly, the main achievements of this PhD research are summarized. Finally, the

thesis closes with a brief discussion of future directions in four possible areas.

10.1 Evaluation of Research Methodology

In this thesis, we studied nature-inspired observation for collision avoidance as a way

for detecting and resolving potential collisions in multi-agent systems. While most

existing collision avoidance methods are not intelligent and autonomous, we have

shown that a fully decentralized (decoupled) approach - no communication, no global

view and no priority can be effective.

In our collision avoidance procedure, MER was taken as a size-flexible roundabout

representation method, for which collision avoidance in multi-agent systems was con-

ducted for any type of collisions and any distance between two agents. Moreover,

MER was inspired by nature through the use of roundabouts and MPD was inspired

167

168

by studies on how human pedestrians detect possible collision. The kinematic re-

search on MPD was applied for the first time to deal with robot collision problems

in conjunction with a rectabout maneuver. MER rectabout and MPD both served

to resolve collision problems through no communication, no global view and no pri-

ority. Therefore, the question “can nature inspiration be used in multi-robot and

multi-agent systems?” has been successfully answered.

10.2 Summary of Achievements

This PhD study has shown how nature-inspired techniques (i.e. human behaviour

modelling) can be adopted in intelligent, autonomous and decentralized robot and

agent systems. Modelling the critical aspect of robots and agents avoiding each other

through inspiration from nature is a gap in robot and agent research. We have filled

this gap through embedding agent research into robot research by exploring an ap-

proach between “collision avoidance” and “nature inspiration”. The idea of focusing

on the unique problem “collision avoidance” in human walkers appears to be ben-

eficial to the multiple agent / robot modelling problems. It allows identification of

how intelligent autonomous entities avoid collision with each other when moving from

one point to another and allows further study on robotics research. Every research

endeavor starts with the objectives that guide the direction of the research. The ulti-

mate objective of this research has been to develop novel collision avoidance methods

and systems for multiple agents and specifically for autonomous heterogeneous agent

applications.

169

10.3 Future Directions

This section presents some promising future directions for the development of the

methods and modelling in autonomous multiple mobile agent systems. However,

the problems in decentralized multi-agent systems are in principle very challenging

and difficult due to the dynamic environments and the lack of efficient methods.

Although this study has proposed new algorithms and methods for autonomous agents

in collision avoidance and large scale problems, there are limitations and open research

problems that need to be investigated and solved in future research.

10.3.1 Limitations

One major restriction on the rectabout method is that the algorithm cannot perform

well in an environment that is not large enough to locate a rectabout. This is because

the virtual MER-based rectabout lies in the intersecting and conflicting position of

two agent paths. If the rectabout cannot be located in-between two conflict agents

due to lack of space, the algorithm fails.

A second limitation is that the algorithm does not allow agents to move in for-

mation, because communication between agents is not allowed. It might be possible

to employ some swarm techniques, such that PSO algorithm could merge into the

rectabout algorithm with no communication. This method would allow formation of

agents within the rectabout architecture, but the safety guarantees would have to be

re-proven.

A third limitation is that the A* algorithm is used for the path computation from

the initial position to the goal position with a minimum local view. The computation

does not consider other agents’ positions and communication is not allowed. Each

170

agent is able to detect conflict with the others and computes a virtual rectabout

based on MER. However, the optimality for the rectabout with A* is still open. The

optimality could be time-optimal, cost-optimal, or velocity optimal.

A fourth limitation is as follows. This thesis focuses on a two dimensional model,

because the point of developing and implementing it is for autonomous vehicles.

However, we would like to develop a more sophisticated model of three dimensions

that takes into account kinematics mechanisms, such as aircrafts being unable to easily

stop and go backwards, thus the three dimensional case needs a better deconfliction

maneuver, and perhaps this can be accomplished through a hyperplane model, i.e.

minimum enclosing ball (MEB) [144, 62, 134, 83]. Badoiu [8] found that the size of

the MEB core set is independent of the dimensionality. Based on such a size-flexible

characteristic, the MEB can serve as a new 3D model representation in an intelligent

collision avoidance approach.

10.3.2 Reality

The whole point of developing these algorithms is to implement them on real systems

to improve safety. A big part of the motivation for this research is to integrate the

autonomous car [145] (also known as a robotic car, or informally as driverless or

self-driving car, an autonomous vehicle capable of fulfilling the human transportation

capabilities of a traditional car, e.g. Google driverless car [125]) into the traffic control

system, and perhaps also automate more of the existing traffic control system (e.g.

becoming traffic-light free). Additionally, this research could be used for collision

avoidance regarding autonomous harbour control for ships or teams of mobile agents.

These scenarios will become more important as unmanned vehicles are introduced.

Bibliography

[1] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri, Finding k Points

With Minimum Diameter And Related Problems, Journal of Algorithms 12

(1991), no. 1, 38–56.

[2] Rachid Alami, Sara Fleury, Matthieu Herrb, Félix Ingrand, and Frédéric

Robert, Multi-robot Cooperation in the MARTHA Project, IEEE Robotics &

Automation Magazine 5 (1998), no. 1, 36–47.

[3] Brian F. Allen, Nadia Magnenat-Thalmann, and Daniel Thalmann, Politeness

Improves Interactivity in Dense Crowds, Journal of Visualization and Computer

Animation 23 (2012), no. 6, 569–578.

[4] Gianluca Antonelli and Stefano Chiaverini, Kinematic Control of Platoons of

Autonomous Vehicles, IEEE Transactions on Robotics 22 (2006), no. 6, 1285–

1292.

[5] James K. Archibald, Jared C. Hill, N. A. Jepsen, Wynn C. Stirling, and

Richard L. Frost, A Satisficing Approach to Aircraft Conflict Resolution, IEEE

Transactions on Systems, Man, and Cybernetics, Part C 38 (2008), no. 4, 510–

521.

[6] Hajime Asama, Koichi Ozaki, Hiroaki Itakura, Akihiro Matsumoto, Yoshiki

Ishida, and Isao Endo, Collision Avoidance Among Multiple Mobile Robots based

171

172

on Rules and Communication, Proceedings of The 1991 IEEE/RSJ Interna-

tional Workshop on Intelligent Robots and Systems’ Intelligence for Mechanical

Systems (IROS 1991) (Osaka, Japan), 3-5 November 1991, pp. 1215–1220.

[7] Kianoush Azarm and Günther Schmidt, Conflict-free Motion of Multiple Mo-

bile Robots based on Decentralized Motion Planning and Negotiation, Proceed-

ings of the 1997 IEEE International Conference on Robotics and Automa-

tion (ICRA 1997) (Albuquerque, USA), 20-25 April 1997, pp. 3526–3533.

[8] Mihai Badoiu and Kenneth L. Clarkson, Optimal Core-sets for Balls, Compu-

tational Geometry 40 (2008), no. 1, 14–22.

[9] Tucker Balch and Ronald C. Arkin, Behavior-based Formation Control for

Multi-robot Teams, IEEE Transactions on Robotics and Automation 14 (1998),

no. 6, 926–939.

[10] Jérôme Barraquand, Bruno Langlois, and Jean-Claude Latombe, Numerical

Potential Field Techniques for Robot Path Planning, IEEE Transactions on

Systems, Man, and Cybernetics 22 (1992), no. 2, 224–241.

[11] Jérôme Barraquand and Jean-Claude Latombe, Robot Motion Planning: A Dis-

tributed Representation Approach, The International Journal of Robotics Re-

search 10 (1991), no. 6, 628–649.

[12] Calin Belta and Vijay R. Kumar, Abstraction and Control for Groups of Robots,

IEEE Transactions on Robotics 20 (2004), no. 5, 865–875.

[13] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun, Optimizing Sched-

ules for Prioritized Path Planning of Multi-Robot Systems, Proceedings of the

2001 IEEE International Conference on Robotics and Automation (ICRA 2001)

(Seoul, Korea), 21-26 May 2001, pp. 271–276.

173

[14] , Finding And Optimizing Solvable Priority Schemes For Decoupled Path

Planning Techniques For Teams Of Mobile Robots, Robotics and Autonomous

Systems 41 (2002), no. 2-3, 89–99.

[15] Alan H. Bond and Les Gasser, An Analysis of Problems and Research in DAI,

Distributed Artificial Intelligence (Alan H. Bond and Les Gasser, eds.), Morgan

Kaufmann Publishers, San Mateo, CA, 1988, pp. 3–35.

[16] Barry Brumitt and Anthony Stentz, Dynamic Mission Planning for Multi-

ple Mobile Robots, Proceedings of the 1996 IEEE International Conference on

Robotics and Automation (ICRA 1996) (Minneapolis, USA), 22-28 April 1996,

pp. 2396–2401.

[17] , GRAMMPS: A Generalized Mission Planner for Multiple Mobile

Robots in Unstructured Environments, Proceedings of the 1998 IEEE Inter-

national Conference on Robotics and Automation (ICRA 1998) (Leuven, Bel-

gium), 16-20 May 1998, pp. 1564–1571.

[18] Stephen J. Buckley, Fast Motion Planning for Multiple Moving Robots, Pro-

ceedings of the 1989 IEEE International Conference on Robotics and Automa-

tion (ICRA 1989) (Scottsdale, USA), 14-19 May 1989, pp. 322–326.

[19] Schubert R. Carvalho, Ronan Boulic, Creto Augusto Vidal, and Daniel Thal-

mann, Latent Motion Spaces for Full-body Motion Editing, The Visual Com-

puter 29 (2013), no. 3, 171–188.

[20] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram

Burgard, Lydia E. Kavraki, and Sebastian Thrun, Principles of Robot Motion:

Theory, Algorithms, and Implementations, MIT Press, Cambridge, MA, June

2005.

174

[21] Li Chun, Zhiqiang Zheng, and Wensen Chang, A Decentralized Approach to the

Conflict-Free Motion Planning for Multiple Mobile Robots, Proceedings of the

1999 IEEE International Conference on Robotics and Automation (ICRA 1999)

(Detroit, USA), 10-15 May 1999, pp. 1544–1549.

[22] Christopher M. Clark, Stephen M. Rock, and Jean-Claude Latombe, Mo-

tion Planning for Multiple Mobile Robots using Dynamic Networks, Proceed-

ings of the 2003 IEEE International Conference on Robotics and Automa-

tion (ICRA 2003) (Taipei, Taiwan), 14-19 September 2003, pp. 4222–4227.

[23] Sandip Das, Partha P. Goswami, and Subhas C. Nandy, Smallest k-point En-

closing Rectangle And Square Of Arbitrary Orientation, Information Processing

Letters 94 (2005), no. 6, 259–266.

[24] Minati De, Anil Maheshwari, Subhas C. Nandy, and Michiel H. M. Smid, An

In-Place Min-Max Priority Search Tree, Computational Geometry 46 (2013),

no. 3, 310–327.

[25] Dimos V. Dimarogonas, Savvas G. Loizou, Kostas J. Kyriakopoulos, and

Michael M. Zavlanos, A Feedback Stabilization and Collision Avoidance Scheme

for Multiple Independent Non-point Agents, Automatica 42 (2006), no. 2, 229–

243.

[26] Marco Dorigo, Marco Antonio Montes de Oca, and Andries Petrus Engelbrecht,

Particle Swarm Optimization, Scholarpedia 3 (2008), no. 11, 1486.

[27] Marco Dorigo and Luca Maria Gambardella, Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem, IEEE Transactions on

Evolutionary Computation 1 (1997), no. 1, 53–66.

175

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, Ant System: Optimiza-

tion by a Colony of Cooperating Agents, IEEE Transactions on Systems, Man,

and Cybernetics, Part B 26 (1996), no. 1, 29–41.

[29] Zvi Drezner and Horst W. Hamacher, Facility Location: Applications and The-

ory, Springer, Berlin, 2002.

[30] Magnus Egerstedt and Xiaoming Hu, Formation Constrained Multi-Agent Con-

trol, IEEE Transactions on Robotics 17 (2001), no. 6, 947–951.

[31] David Eppstein and Jeff Erickson, Iterated Nearest Neighbors And Finding Min-

imal Polytopes, Discrete & Computational Geometry 11 (1994), no. 1, 321–350.

[32] Michael Erdmann and Tomás Lozano-Pérez, On Multiple Moving Objects, Al-

gorithmica 2 (1987), no. 1-4, 477–521.

[33] J. Alexander Fax and Richard M. Murray, Information Flow and Cooperative

Control of Vehicle Formations, IEEE Transactions on Automatic Control 49

(2004), no. 9, 1465–1476.

[34] Carlo Ferrari, Enrico Pagello, Jun Ota, and Tamio Arai, Multirobot Motion

Coordination in Space and Time, Robotics and Autonomous Systems 25 (1998),

no. 3-4, 219–229.

[35] Paolo Fiorini and Zvi Shiller, Motion Planning in Dynamic Environments Using

Velocity Obstacles, International Journal of Robotic Research 17 (1998), no. 7,

760–772.

[36] Atsushi Fujimori, Masato Teramoto, Peter N. Nikiforuk, and Madan M. Gupta,

Cooperative Collision Avoidance between Multiple Mobile Robots, Journal of

Robotic Systems 17 (2000), no. 7, 347–363.

176

[37] Veysel Gazi, Swarm Aggregations using Artificial Potentials and Sliding-Mode

Control, IEEE Transactions on Robotics 21 (2005), no. 6, 1208–1214.

[38] Pascal Glardon, Ronan Boulic, and Daniel Thalmann, Dynamic Obstacle Avoid-

ance for Real-time Character Animation, The Visual Computer 22 (2006), no. 6,

399–414.

[39] Siome Goldenstein, Menelaos I. Karavelas, Dimitris N. Metaxas, Leonidas J.

Guibas, Eric Aaron, and Ambarish Goswami, Scalable Nonlinear Dynamical

Systems for Agent Steering and Crowd Simulation, Computers & Graphics 25

(2001), no. 6, 983–998.

[40] Alfred Scharff Goldhaber and Michael Martin Nieto, Photon and Graviton Mass

Limits, Reviews of Modern Physics 82 (2010), no. 1, 939–979.

[41] Norman C. Griswold and J. Eem, Control for Mobile Robots in the Presence

of Moving Objects, IEEE Transactions on Robotics and Automation 6 (1990),

no. 2, 263–268.

[42] David D. Grossman, Traffic Control of Multiple Robot Vehicles, IEEE Transac-

tions on Robotics and Automation 4 (1988), no. 5, 491–497.

[43] Dongbing Gu and Erfu Yang, Fuzzy Policy Reinforcement Learning in Coopera-

tive Multi-robot Systems, Journal of Intelligent and Robotic Systems 48 (2007),

no. 1, 7–22.

[44] Yi Guo and Lynne E. Parker, A Distributed and Optimal Motion Planning Ap-

proach for Multiple Mobile Robots, Proceedings of the 2002 IEEE International

Conference on Robotics and Automation (ICRA 2002) (Washington, USA),

11-15 May 2002, pp. 2612–2619.

177

[45] Yi Guo, Lynne E. Parker, and Raj Madhavan, Towards Collaborative Robots

for Infrastructure Security Applications, Proceedings of the International Sym-

posium on Collaborative Technologies and Systems (CTS 2004) (San Diego,

USA), 18-23 January 2004, pp. 235–240.

[46] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, A Formal Basis for the

Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Sys-

tems Science and Cybernetics 4 (1968), no. 2, 100–107.

[47] Barbara Hayes-Roth, An Architecture for Adaptive Intelligent Systems, Artifi-

cial Intelligence 72 (1995), no. 1-2, 329–365.

[48] Christopher J. Hazard, Peter R. Wurman, and Raffaello D’Andrea, Alphabet

Soup: A Testbed for Studying Resource Allocation in Multi-vehicle Systems,

Proceedings of the AAAI Workshop on Auction Mechanisms for Robot Coor-

dination (AMRC 2006) (Boston, USA), 17 July 2006, pp. 23–30.

[49] Jared Hill, James Archibald, Wynn Stirling, and Richard Frost, A Multi-Agent

System Architecture for Distributed Air Traffic Control, Proceedings of AIAA

Guidance, Navigation, and Control Conference and Exhibit (AIAA 2005) (San

Francisco, California, USA), 15-18 August 2005, pp. 1936–1946.

[50] John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir, On the Complexity of

Motion Planning for Multiple Independent Objects; PSPACE-Hardness of the

”Warehouseman’s Problem”, The International Journal of Robotics Research 3

(1984), no. 4, 76–88.

[51] Yong K. Hwang and Narendra Ahuja, Gross Motion Planning - A Survey, ACM

Computing Surveys 24 (1992), no. 3, 219–291.

178

[52] Ali Jadbabaie, Jie Lin, and A. Stephen Morse, Coordination of Groups of Mo-

bile Autonomous Agents using Nearest Neighbor Rules, IEEE Transactions on

Automatic Control 48 (2003), no. 6, 988–1001.

[53] Markus Jagër and Bernhard Nebel, Decentralized Collision Avoidance, Dead-

lock Detection, and Deadlock Resolution for Multiple Mobile Robots, Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS 2001) (Maui, USA), 29 October - 3 November 2001, pp. 1213–1219.

[54] M. Renee Jansen and Nathan R. Sturtevant, Direction Maps for Cooperative

Pathfinding, Proceedings of the Fourth Artificial Intelligence and Interactive

Digital Entertainment Conference (AIIDE 2008) (Stanford, USA), 22-24 Octo-

ber 2008, pp. 185–190.

[55] James S. Jennings, Greg Whelan, and William F. Evans, Cooperative Search

and Rescue with a Team of Mobile Robots, Proceedings of the 1997 IEEE In-

ternational Conference on Robotics and Automation (ICRA 1997) (Monterey,

USA), 7-9 July 1997, pp. 193–200.

[56] Yaochu Jin and Yan Meng, Morphogenetic Robotics: An Emerging New Field in

Developmental Robotics, IEEE Transactions on Systems, Man, and Cybernetics,

Part C 41 (2011), no. 2, 145–160.

[57] Shin Kato, Sakae Nishiyama, and Jun’ichi Takeno, Coordinating Mobile Robots

by Applying Traffic Rules, Proceedings of The 1992 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 1992) (Raleigh, USA),

7-10 July 1992, pp. 1535–1541.

[58] Lydia E. Kavraki, Mihail N. Kolountzakis, and Jean-Claude Latombe, Analysis

of Probabilistic Roadmaps for Path Planning, IEEE Transactions on Robotics

and Automation 14 (1998), no. 1, 166–171.

179

[59] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars,

Probabilistic Roadmaps for Path Planning in High-dimensional Configuration

Spaces, IEEE Transactions on Robotics and Automation 12 (1996), no. 4, 566–

580.

[60] Oussama Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots, The International Journal of Robotics Research 5 (1986), no. 1, 90–98.

[61] Ross A. Knepper and Daniela Rus, Pedestrian-Inspired Sampling-based Multi-

robot Collision Avoidance, Proceedings of The 21st IEEE International Sympo-

sium on Robot and Human Interactive Communication (RO-MAN 2012) (Paris,

France), 9-13 September 2012, pp. 94–100.

[62] Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim, Approximate

Minimum Enclosing Balls in High Dimensions using Core-sets, Journal of Ex-

perimental Algorithmics (JEA) 8 (2003), no. 1.1.

[63] Emmett Lalish and Kristi A. Morgansen, Distributed Reactive Collision Avoid-

ance, Autonomous Robots 32 (2012), no. 3, 207–226.

[64] Fabrice Lamarche and Stéphane Donikian, Crowd of Virtual Humans: a New

Approach for Real Time Navigation in Complex and Structured Environments,

Computer Graphics Forum 23 (2004), no. 3, 509–518.

[65] Jean-Claude Latombe, Robot Motion Planning, Kluwer Academic Publishers,

Boston, 1991.

[66] Steven M. LaValle, Planning Algorithms, Cambridge University Press, New

York, USA, 2006.

[67] Steven M. LaValle and Seth Hutchinson, Optimal Motion Planning for Mul-

tiple Robots Having Independent Goals, IEEE Transactions on Robotics and

Automation 14 (1998), no. 6, 912–925.

180

[68] B. H. Lee and C. S. George Lee, Collision-Free Motion Planning of Two Robots,

IEEE Transactions on Systems, Man, and Cybernetics 17 (1987), no. 1, 21–32.

[69] Byoung-Ju Lee, Sung-Oh Lee, and Gwi-Tae Park, Trajectory Generation

and Motion Tracking Control for the Robot Soccer Game, Proceedings of

The 1999 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS 1999) (Kyongju, Korea), 17-21 October 1999, pp. 1149–1154.

[70] Jihong Lee and Zeungnam Bien, Collision-free Trajectory Control for Multiple

Robots based on Neural Optimization Network, Robotica 8 (1990), no. 3, 185–

194.

[71] Hui Liang, Junsong Yuan, Daniel Thalmann, and Zhengyou Zhang, Model-based

Hand Pose Estimation via Spatial-temporal Hand Parsing and 3D Fingertip

Localization, The Visual Computer 29 (2013), no. 6-8, 837–848.

[72] Chi-Fang Lin and Wen-Hsiang Tsai, Motion Planning for Multiple Robots with

Multi-mode Operations via Disjunctive Graphs, Robotica 9 (1991), no. 4, 393–

408.

[73] Fan Liu and Ajit Narayanan, Real Time Replanning based on A* for Collision

Avoidance in Multi-Robot Systems, Proceedings of the 8th International Con-

ference on Ubiquitous Robots and Ambient Intelligence (URAI 2011) (Incheon,

South Korea), 23-26 November 2011, pp. 473–479.

[74] , A Human-Inspired Collision Avoidance Method for Multi-robot and

Mobile Autonomous Robots, Proceedings of the 16th International Conference

on Principles and Practice of Multi-Agent Systems (PRIMA 2013) (Dunedin,

New Zealand), 1-6 December 2013, pp. 181–196.

[75] , Roundabout Collision Avoidance for Multiple Robots based on Mini-

mum Enclosing Rectangle (Demonstration), Proceedings of the International

181

conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2013)

(Saint Paul, USA), 6-10 May 2013, pp. 1375–1376.

[76] Fan Liu, Ajit Narayanan, and Quan Bai, Effective Methods For Generating

Collision Free Paths For Multiple Robots Based On Collision Type (Demon-

stration), Proceedings of the Eleventh International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2012) (Valencia, Spain),

22-24 June 2012, pp. 1459–1460.

[77] Brian Logan and Natasha Alechina, A* with Bounded Costs, Proceedings of

the Fifteenth National Conference on Artificial Intelligence and Tenth Innova-

tive Applications of Artificial Intelligence Conference (AAAI 1998, IAAI 1998)

(Madison, USA), 26-30 July 1998, pp. 444–449.

[78] V.J. Lumelsky and K.R. Harinarayan, Decentralized Motion Planning for Mul-

tiple Mobile Robots: The Cocktail Party Model, Autonomous Robots 4 (1997),

no. 1, 121–135.

[79] Priya Ranjan Sinha Mahapatra, Arindam Karmakar, Sandip Das, and Partha P.

Goswami, k-Enclosing Axis-Parallel Square, Proceedings of the 2011 Interna-

tional Conference on Computational Science and Its Applications (ICCSA 2011)

(Santander, Spain), 20-23 June 2011, pp. 84–93.

[80] Joshua A. Marshall, Mireille E. Broucke, and Bruce A. Francis, Formations of

Vehicles in Cyclic Pursuit, IEEE Transactions on Automatic Control 49 (2004),

no. 11, 1963–1974.

[81] W. S. Massey, Cross Products of Vectors in Higher Dimensional Euclidean

Spaces, The American Mathematical Monthly 90 (1983), no. 10, 697–701.

[82] Maja J Matarić, Designing Emergent Behaviors: From Local Interactions to

Collective Intelligence, Proceedings of the Second International Conference on

182

Simulation of Adaptive Behavior (SAB 1992) (Cambridge, USA), MIT Press,

1992, pp. 432–441.

[83] Nimrod Megiddo, Linear-Time Algorithms for Linear Programming in R3 and

Related Problems, SIAM Journal on Computing 12 (1983), no. 4, 759–776.

[84] Gavin S. P. Miller, Snake Robots for Search and Rescue, Neurotechnology for

Biomimetic Robots (Joseph Ayers, Joel L. Davis, and Alan Rudolph, eds.),

MIT Press, Cambridge, MA, 2002, pp. 271–284.

[85] Sergio Monteiro and Estela Bicho, A Dynamical Systems Approach to Behavior-

Based Formation Control, Proceedings of the 2002 IEEE International Confer-

ence on Robotics and Automation (ICRA 2002) (Washington, USA), 11-15 May

2002, pp. 2606–2611.

[86] Anastasios I. Mourikis and Stergios I. Roumeliotis, Optimal Sensor Schedul-

ing for Resource-constrained Localization of Mobile Robot Formations, IEEE

Transactions on Robotics 22 (2006), no. 5, 917–931.

[87] , Performance Analysis of Multirobot Cooperative Localization, IEEE

Transactions on Robotics 22 (2006), no. 4, 666–681.

[88] Subhas C. Nandy and Bhargab B. Bhattacharya, A Unified Algorithm for Find-

ing Maximum and Minimum Object Enclosing Rectangles and Cuboids, Com-

puters & Mathematics with Applications 29 (1995), no. 8, 45–61.

[89] Nils J. Nilsson, Principles of Artificial Intelligence, Springer, Berlin, New York,

1982.

[90] Patrick A. O’Donnell and Tomás Lozano-Pérez, Deadlock-Free and Collision-

Free Coordination of Two Robot Manipulators, Proceedings of the 1989 IEEE

International Conference on Robotics and Automation (ICRA 1989) (Scotts-

dale, USA), 14-19 May 1989, pp. 484–489.

183

[91] Anne-Hélène Olivier, Antoine Marin, Armel Grétual, Alain Berthoz, and Julien

Pettré, Collision avoidance between two walkers: Role-dependent strategies,

Gait & Posture 38 (2013), no. 4, 751–756.

[92] Anne-Hélène Olivier, Antoine Marin, Armel Grétual, and Julien Pettré, Min-

imal Predicted Distance: A Common Metric For Collision Avoidance During

Pairwise Interactions Between Walkers, Gait & Posture 36 (2012), no. 3, 399–

404.

[93] , Minimal Predicted Distance: A Kinematic Cue To Investigate Col-

lision Avoidance Between Walkers, Computer Methods in Biomechanics and

Biomedical Engineering 15 (2012), no. 1, 240–242.

[94] Lucia Pallottino, Vincenzo Giovanni Scordio, Antonio Bicchi, and Emilio Fraz-

zoli, Decentralized Cooperative Policy for Conflict Resolution in Multivehicle

Systems, IEEE Transactions on Robotics 23 (2007), no. 6, 1170–1183.

[95] Tai-Jee Pan and R.C. Luo, Motion Planning for Mobile Robots in a Dynamic

Environment with Moving Obstacles, Proceedings of the 1990 IEEE Inter-

national Conference on Robotics and Automation (ICRA 1990) (Cincinnati,

USA), 13-18 May 1990, pp. 578–583.

[96] Shaoning Pang, Fan Liu, Youki Kadobayashi, Tao Ban, and Daisuke Inoue,

Training Minimum Enclosing Balls for Cross Tasks Knowledge Transfer, Pro-

ceedings of the 19th International Conference on Neural Information Processing

(ICONIP 2012) (Doha, Qatar), 12-15 November 2012, pp. 375–382.

[97] Lynne E. Parker, ALLIANCE: An Architecture for Fault Tolerant Multirobot

Cooperation, IEEE Transactions on Robotics and Automation 14 (1998), no. 2,

220–240.

184

[98] , Multiple Mobile Robot Systems, Springer Handbook of Robotics (Bruno

Siciliano and Oussama Khatib, eds.), Springer, 2008, pp. 921–941.

[99] , Path Planning and Motion Coordination in Multiple Mobile Robot

Teams, Encyclopedia of Complexity and Systems Science (Robert A. Meyers,

ed.), Springer, 2009, pp. 5783–5800.

[100] Lynne E. Parker and John V. Draper, Robotics Applications in Maintenance

and Repair, Handbook of Industrial Robotics, 2nd Edition (Shimon Nof, ed.),

Wiley Publishers, 1999, pp. 1023–1036.

[101] David Parsons and John Canny, A Motion Planner for Multiple Mobile Robots,

Proceedings of the 1990 IEEE International Conference on Robotics and Au-

tomation (ICRA 1990) (Cincinnati, USA), 13-18 May 1990, pp. 8–13.

[102] Simon Parsons and Michael Wooldridge, Game Theory and Decision Theory in

Multi-Agent Systems, Autonomous Agents and Multi-Agent Systems 5 (2002),

no. 3, 243–254.

[103] Mike Peasgood, Christopher M. Clark, and John McPhee, A Complete and Scal-

able Strategy for Coordinating Multiple Robots Within Roadmaps, IEEE Trans-

actions on Robotics 24 (2008), no. 2, 283–292.

[104] Michal Pechoucek and David Sislák, Agent-Based Approach to Free-Flight Plan-

ning, Control, and Simulation, IEEE Intelligent Systems 24 (2009), no. 1, 14–

17.

[105] Julien Pettré, Helena Grillon, and Daniel Thalman, Crowds of Moving Objects:

Navigation Planning and Simulation, Proceedings of the 2007 IEEE Interna-

tional Conference on Robotics and Automation (ICRA 2007) (Roma, Italy),

10-14 April 2007, pp. 3062–3067.

185

[106] Thomas Pilarski, Michael Happold, Henning Pangels, Mark Ollis, Kerien Fitz-

patrick, and Anthony (Tony) Stentz, The Demeter System for Automated Har-

vesting, Proceedings of the 8th International Topical Meeting on Robotics and

Remote Systems (USA), April 1999.

[107] André Platzer and Edmund M. Clarke, Formal Verification Of Curved Flight

Collision Avoidance Maneuvers: A Case Study, Proceedings of Formal Meth-

ods, Second World Congress (FM 2009) (Eindhoven, The Netherlands), 2-6

November 2009, pp. 547–562.

[108] Samer Qutub, Rachid Alami, and Félix Ingrand, How to Solve Deadlock Situa-

tions within the Plan-Merging Paradigm for Multi-robot Cooperation, Proceed-

ings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 1997) (Grenoble, France), 7-11 September 1997, pp. 1610–1615.

[109] Craig W. Reynolds, Flocks, Herds and Schools: A Distributed Behavioral Model,

Proceedings of the 14th Annual Conference on Computer Graphics and Inter-

active Techniques (SIGGRAPH 1987) (New York, USA) (Maureen C. Stone,

ed.), ACM Press, 1987, pp. 25–34.

[110] M. Rude, Collision Avoidance by Using Space-Time Representations of Motion

Processes, Autonomous Robots 4 (1997), no. 1, 101–119.

[111] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,

Prentice Hall, third edition, Upper Saddle River, New Jersey, 2009.

[112] Malcolm Ryan, Graph Decomposition for Efficient Multi-robot Path Planning,

Proceedings of the Twentieth International Joint Conference on Artificial Intel-

ligence (IJCAI 2007) (Hyderabad, India), 6-12 January 2007, pp. 2003–2008.

[113] Jacob T. Schwartz and Micha Sharir, On the Piano Movers’ Problem: III.

Coordinating the Motion of Several Independent Bodies: The Special Case of

186

Circular Bodies Moving Amidst Polygonal Barriers, The International Journal

of Robotics Research 2 (1983), no. 3, 46–75.

[114] , A Survey of Motion Planning and Related Geometric Algorithms, Ar-

tificial Intelligence 37 (1988), no. 1-3, 157–169.

[115] Michael Segal and Klara Kedem, Enclosing k Points In The Smallest Axis Par-

allel Rectangle, Information Processing Letters 65 (1998), no. 2, 95–99.

[116] Gary Shaffer and Anthony Stentz, A Robotic System for Underground Coal

Mining, Proceedings of the 1992 IEEE International Conference on Robotics

and Automation (ICRA 1992) (Nice, France), 12-14 May 1992, pp. 633–638.

[117] Micha Sharir, Algorithmic Motion Planning in Robotics, IEEE Computer 22

(1989), no. 3, 9–20.

[118] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant, Conflict-Based

Search For Optimal Multi-Agent Path Finding, Proceedings of the Twenty-Sixth

AAAI Conference on Artificial Intelligence (AAAI 2012) (Toronto, Canada), 22-

26 July 2012, pp. 563–569.

[119] Li-Yen Shue and Reza Zamani, An Admissible Heuristic Search Algorithm, Pro-

ceedings of the 7th International Symposium, Methodologies for Intelligent Sys-

tems (ISMIS 1993) (Trondheim, Norway), 15-18 June 1993, pp. 69–75.

[120] David Silver, Cooperative Pathfinding, Proceedings of the First Artificial Intelli-

gence and Interactive Digital Entertainment Conference (AIIDE 2005) (Marina

del Rey, USA), 1-5 June 2005, pp. 117–122.

[121] Reid Simmons, Sanjiv Singh, David Hershberger, Josue Ramos, and Trey Smith,

First Results in the Coordination of Heterogeneous Robots for Large-Scale As-

sembly, Proceedings of the Seventh International Symposium on Experimental

Robotics (ISER 2000) (Honolulu, USA), Springer-Verlag, 10-13 December 2000.

187

[122] David Šǐslák, Jǐŕı Samek, and Michal Pěchouček, Decentralized Algorithms for

Collision Avoidance in Airspace, Proceedings of the Seventh International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008)

(Estoril, Portugal), vol. 2, 12-16 May 2008, pp. 543–550.

[123] Igor Škrjanc and Gregor Klančar, Optimal Cooperative Collision Avoidance Be-

tween Multiple Robots Based On Bernstein-Bézier Curves, Robotics and Au-

tonomous Systems 58 (2010), no. 1, 1–9.

[124] Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha, The

Hybrid Reciprocal Velocity Obstacle, IEEE Transactions on Robotics 27 (2011),

no. 4, 696–706.

[125] IEEE Spectrum, How Google’s Self-Driving Car Works, October 2011.

[126] Trevor Scott Standley, Finding Optimal Solutions to Cooperative Pathfinding

Problems, Proceedings of the Twenty-Fourth AAAI Conference on Artificial

Intelligence (AAAI 2010) (Atlanta, USA), 11-15 July 2010, pp. 173–178.

[127] Peter Stone and Manuela M. Veloso, Multiagent Systems: A Survey from a

Machine Learning Perspective, Autonomous Robots 8 (2000), no. 3, 345–383.

[128] Ashley W. Stroupe, Avi Okon, Matthew L. Robinson, Terry Huntsberger,

Hrand Aghazarian, and Eric T. Baumgartner, Sustainable Cooperative Robotic

Technologies for Human and Robotic Outpost Infrastructure Construction and

Maintenance, Autonomous Robots 20 (2006), no. 2, 113–123.

[129] Petr Svestka and Mark H. Overmars, Coordinated Path Planning for Multiple

Robots, Robotics and Autonomous Systems 23 (1998), no. 3, 125–152.

[130] Paulo Tabuada, George J. Pappas, and Pedro U. Lima, Motion Feasibility of

Multi-agent Formations, IEEE Transactions on Robotics 21 (2005), no. 3, 387–

392.

188

[131] Chuck Thorpe, Todd Jochem, and Dean Pomerleau, The 1997 Automated High-

way Free Agent Demonstration, Proceedings of the 1997 IEEE Conference on

Intelligent Transportation System (ITSC 1997) (Boston, USA), 9-12 November

1997, pp. 496–501.

[132] Chad M. Topaz and Andrea L. Bertozzi, Swarming Patterns in a Two-

Dimensional Kinematic Model for Biological Groups, SIAM Journal of Applied

Mathematics 65 (2004), no. 1, 152–174.

[133] Adrien Treuille, Seth Cooper, and Zoran Popovic, Continuum Crowds, ACM

Transactions on Graphics (TOG) 25 (2006), no. 3, 1160–1168.

[134] Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung, Core Vector Machines:

Fast SVM Training on Very Large Data Sets, Journal of Machine Learning

Research 6 (2005), 363–392.

[135] Jur van den Berg, Stephen J. Guy, Ming C. Lin, and Dinesh Manocha, Recip-

rocal n-Body Collision Avoidance, Proceedings of The 14th International Sym-

posium of Robotics Research (ISRR 2009) (Lucerne, Switzerland), 31 August-3

September 2009, pp. 3–19.

[136] Jur van den Berg, Ming Lin, and Dinesh Manocha, Reciprocal Velocity Obstacles

for Real-Time Multi-Agent Navigation, Proceedings of the 2008 IEEE Interna-

tional Conference on Robotics and Automation (ICRA 2008) (Pasadena, USA),

19-23 May 2008, pp. 1928–1935.

[137] Jur van den Berg, Jack Snoeyink, Ming Lin, and Dinesh Manocha, Centralized

Path Planning For Multiple Robots: Optimal Decoupling Into Sequential Plans,

Proceedings of Robotics: Science and Systems (RSS 2009) (Seattle, USA), 28

June - 1 July 2009.

189

[138] Wouter van Toll, Atlas F. Cook IV, and Roland Geraerts, Navigation Meshes

for Realistic Multi-Layered Environments, Proceedings of The 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2011) (San

Francisco, USA), 25-30 September 2011, pp. 3526–3532.

[139] Jing Wang and Gerardo Beni, Distributed Computing Problems in Cellular

Robotic Systems, Proceedings of The 1990 IEEE/RSJ International Work-

shop on Intelligent Robots and Systems’ Towards a New Frontier of Appli-

cations (IROS 1990) (Ibaraki, Japan), 3-6 July 1990, pp. 819–826.

[140] P. K. C. Wang, Interaction Dynamics of Multiple Autonomous Mobile Robots

in Bounded Spatial Domains, International Journal of Control 50 (1989), no. 6,

2109–2124.

[141] , Interaction Dynamics of Multiple Mobile Robots with Simple Naviga-

tion Strategies, Journal of Robotic Systems 6 (1989), no. 1, 77–101.

[142] Yanbin Wang, Rohit Dubey, Nadia Magnenat-Thalmann, and Daniel Thal-

mann, An Immersive Multi-agent System for Interactive Applications, The Vi-

sual Computer 29 (2013), no. 5, 323–332.

[143] Charles W. Warren,Multiple Robot Path Coordination Using Artificial Potential

Fields, Proceedings of the 1990 IEEE International Conference on Robotics and

Automation (ICRA 1990) (Cincinnati, USA), 13-18 May 1990, pp. 500–505.

[144] Emo Welzl, Smallest enclosing disks (balls and ellipsoids, New Results and New

Trends in Computer Science (Graz, Austria) (Hermann Maurer, ed.), Lecture

Notes in Computer Science, vol. 555, Springer-Verlag, 20-21 June 1991, pp. 359–

370.

[145] Wikipedia, Autonomous Car, May 2013.

[146] , Intelligence, February 2014.

190

[147] , Natural computing, March 2014.

[148] , Robot, February 2014.

[149] Barbara Yersin, Jonathan Mäım, Fiorenzo Morini, and Daniel Thalmann, Real-

time Crowd Motion Planning, The Visual Computer 24 (2008), no. 10, 859–870.

[150] Mohan Yogeswaran and S. G. Ponnambalam, An Extensive Review of Research

in Swarm Robotics, Proceedings of the World Congress on Nature & Biologically

Inspired Computing (NaBIC 2009) (Coimbatore, India), 9-11 December 2009,

pp. 140–145.

[151] Shin’ichi Yuta and Suparerk Premvuti, Coordinating Autonomous and Central-

ized Decision Making to Achieve Cooperative Behaviors between Multiple Mo-

bile Robots, Proceedings of The 1992 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 1992) (Raleigh, USA), 7-10 July 1992,

pp. 1566–1574.

