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Abstract
The topic of this paper is an inverse problem of identifying defects in composite beams and plates. The
physical representation of defects is parametrized. Assuming Gaussian errors in measurements, the Bayesian
inference is performed for those unknown parameters, and the most probable physical representations of
detects are estimated. A composite beam/plate is usually made up of several layers, and there may be some
defect in the bonding process or a defect may develop later. We use the natural frequencies of the beam/plate
to estimate the position and the size of the defects. We propose that the bonding within the beam and plate
can be modelled as added rigidity, which can be incorporated as an extra energy to the conventional strain
energy. Standard Monte-Carlo simulation will then give the probabilistic properties of the natural frequencies
of the beam/plate. The more prior information about the defects is limited, and thus we estimate the posterior
distribution using the trans-dimensional Bayesian method, which lets us make an inference of different types
of defects.

1 Introduction

Composite structures are made of two or more components to achieve stronger and lighter structures than they
would be with a single component. In this paper, we study how to detect defects, particularly de-laminations,
as an inverse problem. We consider a composite beam and a composite plate with two reinforcement beams.
The beam is made up of two beams that are glued together, and the plate and the reinforcement beams
are also glued together. A defect will be modelled as a de-lamination at the bonding-layer. The defects
will be detected and estimated using the natural frequencies of the bending vibration. The bonding layer is
modelled as extra layer of potential energy, in addition to the strain energy, required for the beam/plate to
bend. This somewhat similar to the methods used in [1, 2], though the model here is simplified by omitting
damping. As the beam bends, the bonding layer slips due to the discrepancy in the lateral displacement of
the beams. Ideally there is no slippage and thus the bonding is perfect. Then the composite beam can simply
be modelled as a single homogeneous elastic beam, and the composite plate can be modelled as a single plate
with stiffeners. A de-lamination occurs when the bonding is not perfect.

The natural frequencies of the beam and the plate will be affected by the de-lamination (length and loca-
tion) [3, 4, 5, 6, 7]. In other words, the eigenvalues of the linear system constructed for the bending motion
will change as the lengths and the positions of the de-lamination changes. We will use this change in nat-
ural frequencies to estimate the de-lamination. This is slightly different from the methods of measuring
the displacement at some positions at single or multiple frequencies, then formulating/solving the inverse
problem as shown in [8, 9]. In practice the model or the forward problem is usually constructed using the
Finite Element Analysis (FEA), then the measurements of structures with defect and without defect are com-
pared to estimate the de-lamination (e.g., [3, 4]). Various methods of estimating defects are reviewed in



[6, 10], including inverse problems. In this paper, once the forward linear system is constructed for given
de-laminations, an inverse problem can be constructed using Bayes’ theorem. This method is relatively new
in structural dynamics, though it has been used widely in the signal and image processing community for
sometime. The inverse problem will be solved, i.e., the de-laminations are identified and estimated, using
the Markov-Chain-Monte-Carlo method (MCMC). The initial data for the MCMC will be simulated from
the forward problem solver with a Gaussian noise added to a set of natural frequencies. We will show that
the forward problem solver here is so efficient that the MCMC can be performed within a reasonable amount
of time.

The effectiveness or practically of the MCMC depends on the efficiency of the forward problem solver, which
is high in this case because of the modal representation rather than the finite element representation of the
solution. The size of the linear system for the forward problem is much smaller here. It is however uncertain
how valid the model for the bonding layer between between components is. The evidence from [11] suggests
that the slippage model is valid for wood-based composite structures with relatively low natural frequencies.
It remains to be seen if this method can be scaled to smaller structures with higher natural frequencies.

In the following section, the method of solutions for the forward problem and the inverse problem will
be shown. The mathematics of the method is not new, though the procedure to include the bonding as
slippage energy is a novelty of this method. In section 3, the numerical results of detections and estimation
of the (multiple number of) lengths and positions of the de-laminations will be shown. The paper will be
summarized in section 4.

2 Method of Solution

2.1 Forward problem

We first model a composite beam that is made up of two beams glued together. The schematics is shown in
Fig. 1. Since the only the natural frequencies of the beams are considered here, the eigenvalue problem is
formulated and solved for the clamped boundary conditions as depicted in Fig. 1.
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Figure 1: Schematic drawings of simply supported and clamped beam and their bending motion.

The bending motion of this Euler beams will be represented using the eigenfunctions of the motion, which
satisfy the boundary conditions. We assume that there is no separation between the top and the bottom
beams. The eigenfunctions of the clamped beam are

ψm(x) =

√
1

A
[cosh kmx− cos kmx− γm (sinh kmx− sin kmx)] , m = 1, 2, ... (1)

where
γm =

cos kmA+ cosh kmA

sin kmA− sinh kmA

and the wavenumbers km are the roots of the frequency equation

cos kmA cosh kmA = −1



The vertical displacement of the beam can be expressed as

w(x) =
N∑
m=1

Cmψm(x), (2)

where Cm are the coefficients yet to be determined. See Fig. 2 for the coordinate system of the beam. The
roots of this equation are found numerically, though km ≈ π(2m− 1)/2A for m ≥ 5. Note that γm ≈ 1 for
m ≥ 5.

The second case of the forward problem is a beam-reinforced plate as shown in Fig. 3. The clamped edge
again breaks the symmetry of the position of the defects. Figure 3 shows the coordinate system for the model.
Only the vertical bending motion will be considered here, and thus the torsional and the in-plane deflections
will not be included in the model. The eigenfunctions for the plate are

wmn(x, y) = ψm(x)φn(y), m, n = 1, 2, ... (3)

where φn is the eigenfunctions for the y-direction when the boundary y = 0 is clamped (see to Eq. (1)).
Then the vertical displacement of the plate is given by

w(x, y) =

M∑
m=1

N∑
n=1

Cmnψm(x)φn(y), (4)

Note that the number of terms is truncated for later numerical computation, and the terms for the plate in the
x and y directions need not be the same.

In both plate and beam cases, we assume that there is a thin layer of contact between two beams and plate and
beams. The defects will occur in this layer. The defects will affect the total stiffness matrix of the structure,
and thus change the natural frequencies. The stiffness matrix will be derived from the strain energy and the
energy required for the slippage in the mid-layer.
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Figure 2: Axis orientation of the composite beam with one clamped edge at x = 0.
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Figure 3: Axis orientation of the beam-reinforced plate (not to scale) with two clamped edges at x = 0 and
y = 0. The beams are running alog the x-axis.

The energy of the harmonic vibration of a beam and a plate can be expressed using only the function of the
displacement, which are w(x) for the beam and w(x, y) for the plate. The strain energy for a beam ([12]) is

Ub =
EI

2

∫ A

0
(w′′(x))2 dx (5)

where E is Young’s modulus and I is moment of inertia, which, for example, is calculated by I = h3h
3
1/12,

h3 being the width of the beam for the top beam. The strain energy of the composite beam will be sum of



the two beams. The strain energy of a plate is

Up =
D

2

∫ A

0

∫ B

0

{
(∇2w)2 + 2(1− ν)

[
w2
xy − wxxwyy

]}
dxdy (6)

where the bending stiffness D is calculated by D = Eh31/12(1− ν2) for the thickness h1 and Poisson ratio
ν. The strain energy of the reinforcement beams are given by

Urb =
EI

2

J∑
j=1

∫ A

0
(w′′(x, yj))

2 dx (7)

where the position of the beams are denoted by y = yj , j = 1, 2, ..., J . The additional energy due to the
slippage in the contact layer [11] is given by

Us =
s

2

J∑
j=1

∫ A

0
((h1wx(x, yj) + h2wx(x, yj))

2 dx (8)

where s denotes the slippage constant. The modelling regime for the slippage energy is depicted in Fig. 1,
which shows the discrepancy in the lateral displacement as the beams bend. The de-lamination is modelled
as zero-slippage resistance, which is defined as [ci − li, ci + li], i = 1, 2, ..., Nd where ci is the centre of the
de-lamination, 2li is the width and Nd is the number of defects. Then the integral in Eq. (8) becomes

Us =
s

2

J∑
j=1

∫
D
((h1wx(x, yj) + h2wx(x, yj))

2 dx

where D is the integral limit which has the de-lamination regions subtracted.

The linear system can now be formulated for the coefficients of the eigenfunction expansion of the deflection
w(x) or w(x, y) in Eqs. (2) and (4), respectively. The linear systems are derived for the vectors

c =


C1

C2
...

CM

 , or c =


C11

C12
...

CMN


Then, the eigenvalue problem is given by

M−1Uc− (2πf)2c = 0 (9)

whereM and U are the mass density and stiffness matrices, and (2πf)2 is the eigenvalue, in other words f
is the natural frequency.

The matrix for the eigenvalue problem can be constructed using Eqs. (5) to (8). Hence, the matrix for the
beam case is

Ub =


EI1k

4
1 0 . . . 0

0 EI1k
4
2 0

...
. . .

...
0 0 . . . EI1k

4
M

+


EI2k

4
1 0 . . . 0

0 EI2k
4
2 0

...
. . .

...
0 0 . . . EI2k

4
M

 (10)

where I1 and I2 are moment of inertia for the top and bottom beams, respectively. The stiffness matrix for
the plate with the reinforcement beams is

Up =


D(k21 + κ21)

2 0 . . . 0
0 D(k22 + κ21)

2 0
...

. . .
...

0 0 . . . D(k2M + κ2N )
2

+T t


EI2k

4
1 0 . . . 0

0 EI2k
4
2 0

...
. . .

...
0 0 . . . EI2k

4
M

T



where the matrix T represents the linear operation on the vector c, and the m’th element of the vector Tc is
given by

[Tc]m =
N∑
n=1

Cmnφn(yj)

The stiffness matrix U for the beam or the plate in Eq. 9 can be derived by summing all the energy matrices,

U = Ub + Us or for the plate U = Up + Us

For the composite beam, the mass density matrix is simply a diagonal matrix of the mass density of the beam.
For the composite plate the matrixM is given byMp +T tMbT , whereMb andMp are diagonal matrices
of the mass density of the beams and plate, respectively.

The natural frequencies of the linear system given by Eq. 9 can be computed using any elimination algorithm.
In this case, MatLab is used to compute the natural frequencies, which takes a short amount of time. We note
that we set M = 20 and N = 4 and the size of the linear system for the beam was 20× 20 and for the plate
was 80× 80.

2.2 Inverse problem

We suppose that there are Nd-number of defects on the composite beam/beam-reinforced plate. The defect
is defined by a position and a length, denoted by c and l, respectively. Here, l is a half length of the defect
and a range of the defect is [c− l, c+ l]. When all defects, {cj , lj}Nd

j=1, are known, the first Nf exact natural
frequencies, denoted by µ1, · · · , µNf , are computed using the forward map described in section 2.1. The
inverse problem is a procedure that finds the defects from the observed natural frequencies, which consist of
random noise.

We use the Bayesian inference to estimate the distribution for unknown defects, {cj , lj}Nd
j=1, from an observed

set of natural frequencies, {fi}Nf
i=1. This is called the posterior distribution and denoted by

p(c1, · · · , cNd , l1 · · · , lNd |{fi}
Nf
i=1). If probability for {fi}Nf

i=1 is non-zero, the posterior is represented by the
Bayes’ rule, which is

p(c1, · · · , cNd , l1 · · · , lNd |{fi}
Nf
i=1) =

p({fi}Nf
i=1|c1, · · · , cNd , l1 · · · , lNd)p(c1, · · · , cNd , l1 · · · , lNd)

p({fi}Nf
i=1)

∝ p(f |c1, · · · , cNd , l1 · · · , lNd)p(c1, · · · , cNd , l1 · · · , lNd) . (11)

where p(f |c1, · · · , cNd , l1 · · · , lNd) is the likelihood and p(c1, · · · , cNd , l1 · · · , lNd) is a prior. The posterior
distribution is proportional to the likelihood and prior.

Because of the assumption that a Gaussian random noise is in the natural frequency observation, the i-th
observation fi is normally distributed with the mean of µi and standard deviation of σi,

p(fi|µi, σ2i ) =
1√
2πσ2i

e−(fi−µi)
2/2σ2

i , i = 1, · · · , Nf. (12)

Here, the standard deviation σi represents the noise error level and a relative error µi is chosen for the
simulations in section 3. The likelihood in Eqs. (11) is assessed by a probability of f conditioned on using
the exact natural frequency, µ, in which is computed for a given defect

p({fi}Nf
i=1|c1, · · · , cNd , l1 · · · , lNd) =

Nf∏
i=1

1√
2πσ2i

e−(fi−µi)
2/2σ2

i . (13)



We assume that all defects are within the beam with the length ofA and neighbouring defects do not overlap.
The domain for defect is (c, l) ∈ [0, A]× [0, A/2]/overlapping . The prior is formulated as the following.

p(c1, . . . , cNd , l1, . . . , lNd) = 1(Noverlap = 0)

Nd∏
j=1

p(cj)p(lj)

= 1(Noverlap = 0)

Nd∏
j=1

U(cj |0, A)U(lj |0, A/2)
(14)

where Noverlap is a number of overlapping defects. If none of defect overlap, 1(Noverlap = 0) = 1. Other-
wise 1(Noverlap = 0) = 0. The uniform distribution, U , is used for both p(c) and p(l) in Eq. (14). Although a
simple uniform prior is used here, a more informative prior could be considered for more complex problems.

The posterior given by Eq. (11) is found using the likelihood (Eq. (13)) and the prior (Eq. (14)). The an-
alytical formula for the posterior is not available for this problem and thus the MCMC method is used to
simulated the posterior numerically. A sequence of random samples from the posterior is simulated using
the Metropolis Hastings algorithm and those samples contain the Markov chain property.

The Markov chain with the length of T is denoted by {c(t)1 , · · · , c(t)Nd
, l

(t)
1 , · · · , l(t)Nd

}Tt=1. At each iteration, a

sample {cj , lj}Nd
j=1 is generated by sampling (cj , lj) for each defect in turn. At t-th iteration, with a given

{c(t−1)j , l
(t−1)
j }Nd

j=1, a sample {c(t)j , l
(t)
j }

Nd
j=1 is generated by the following algorithm.

Step 1 Set j = 1.

Step 2 Generate the proposals, c∗ ∼ q(·|c(t−1)j ) and l∗ ∼ q(·|l(t−1)j ).

Step 3 Set the vectors
c0 = c′ = [c

(t)
1 , · · · , c(t)j−1, c

(t−1)
j , · · · , c(t−1)Nd

]

and
l0 = l′ = [l

(t)
1 , · · · , l(t)j−1, l

(t−1)
j , · · · , l(t−1)Nd

] .

Replace the j-th element in c′ and l′ to c′j = c∗ and l′j = l∗.

Step 4 Compute the prior p(c′, l′) in Eq. (14) and likelihood p(f |c′, l′) in Eq. (13) for c′ and l′.

Step 5 Compute the acceptance probability, α(c∗, l∗|c(t−1)j , l
(t−1)
j )

α(c∗, l∗|c(t−1)j , l
(t−1)
j ) = min

(
1,

p(f |c′, l′)p(c′, l′)q(c(t−1)j |c∗)q(l(t−1)j |l∗)

p(f |c0, l0)p(c0, l0)q(c∗|c(t−1)j )q(l∗|l(t−1)j )

)
.

Step 6 Accept c∗ and l∗ with α(c∗, l∗|c(t−1)j , l
(t−1)
j ). If they are accepted, set c(t)j = c∗ and

l
(t)
j = l∗. Otherwise c(t)j = c

(t−1)
j and l(t)j = l

(t−1)
j .

Step 7 Set j = j + 1 and repeat the Steps 2 – 6 until j = Nd.

In this paper, the proposal density q is the normal distribution with a mean of the condition and variance of
ϕ2;

q(c∗|c(t−1)j ) = N(c∗|c(t−1)j , ϕ2
c) , and q(l

∗|l(t−1)j ) = N(l∗|l(t−1)j , ϕ2
l ) , j = 1, · · · , Nd

These are also called the normal random walk proposals. The variances ϕ2
c and ϕ2

l are related to the random
walk sizes. When a size of walk is too big, proposals are hardly accepted. For a very small walk size, the



chain takes very long to explore the posterior state space. For our simulation studies in the following section,
the number of unknown parameters are relatively small and ϕ2

c and ϕ2
l are manually adjusted following [13].

The adaptive MCMC [14] can be easily adapted to this algorithm and a random walk size is adaptively
tuned. This approach is particularly useful as the dimension of posterior (a number of unknown parameters)
increases. Broad studies on MCMC method up to recent is well summarized in [15].

3 Numerical Results

The physical and material parameters for the beam and the plate are given in Table 1. The material parameters
are those of typical wood panels and beams. Note that all parameters are measurable except the slippage
constant, which needs to be determined by modelling and parameter fitting.

notation value
length A 1.5 m
width B 0.3 m

mass density m 500 kgm−3

Young’s modulus E 14 GPa
thickness h1 0.01 m
thickness h2 0.1 m

beam width h3 0.05 m
Poisson ratio ν 0.4

slippage constant s 108 Nm−1

location of the beams y1, y2 0.15 m, 0.25 m

Table 1: Notations and values of the physical parameters

For the simulation study, the following four cases are considered.

• A composite beam with one defect.
• A composite beam with two defects.
• A composite beam with three defects.
• A beam-reinforced plate with one defect on each beam.

For each model, a set of natural frequencies, {fi}i=1,2,...,Nf , is generated by adding a Gaussian noise to the
exact natural frequency {µi}i=1,2,...,Nf . For the numerical computation, we set Nf = 10 for the beam and
Nf = 20 for the plate. The first 10 natural frequencies for the beam range approximately from 150 Hz to
10 kHz. The first 20 natural frequencies for the plate range approximately from 130 Hz to 2.5 kHz. The
Gaussian noise here is generated by a zero-mean normal distribution with the standard deviation, σi for each
i. Here, σi is 0.5% of µi. We estimate the posterior distribution for {cj , lj}Nd

j=1 using the MCMC method. The
Markov chain with the length of 105 is simulated and the first 2, 000 iterations are ignored for the inference.

The means and 95% confidence intervals for {cj , lj}Nd
j=1 are shown in Table 2. In general, the true posi-

tions and length values are within the 95% confidence intervals and the defects are identified well. This is
supported graphically by the marginal posterior distributions in Figs. 4 – 7. Uni-modal marginal posterior
distributions are centred at near the true values and thus the data is informative of the defects.

In the case of three defects, one defect is estimated with a relatively wider range, which affects the rest
estimates of the other defects. We speculate that the defect near the clamped edge has less effects on the
natural frequencies than the other defects because the displacement near the clamped edge is small. However
we have noticed that the method performs well when there is a single defect near the edge.



Model Parameter Mean 95% confidence interval True value
One defect Position (c) 0.9882 [0.9382 , 1.0324] 1

Length (l) 0.0337 [0.0266 , 0.0407] 0.035
Two defects Position (c) 0.5023 [0.4625 , 0.5495] 0.5

0.9856 [0.9301 , 1.0327] 1
Length (l) 0.0341 [0.0253 , 0.0421] 0.035

0.0346 [0.0254 , 0.0437] 0.035
Three defects Position (c) 0.3582 [0.0628 , 0.6902] 0.3

0.7294 [0.6691 , 0.7917] 0.75
1.1925 [1.1637 , 1.2257] 1.2

Length (l) 0.0171 [0.0008 , 0.0402] 0.035
0.0444 [0.0175 , 0.0603] 0.035
0.0399 [0.0288 , 0.0503] 0.035

Plate Position (c) 0.6085 [0.5564 , 0.6723] 0.6
0.9823 [0.9494 , 1.0161] 1

Length (l) 0.0354 [0.0235 , 0.0475] 0.05
0.0528 [0.0473 , 0.0582] 0.05

Table 2: Parameter estimate result using the MCMC method.

A trace plot is often used as a graphical tool to monitor the convergence of the simulated Markov chain. All
simulated chains were monitored graphically and converged to the target distributions. For example, Fig. 8
shows the convergence of a simulated chain for the composite beam with one defect.
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Figure 4: Marginal posterior distributions for the position (c) and length (l) parameters for the composite
beam with one defect.

4 Summary

In this paper the Bayes’ theorem is implemented using the MCMC to solve the inverse problem of estimating
the position and the length of de-laminations in composite beam and plate. The method uses the natural
frequencies of the structures to estimate the de-laminations. The natural frequencies are computed using the
eigenfunction expansion of the bending vibration of the structures, and thus the computation of the natural
frequencies takes short time. The numerical results of MCMC show that a single defect in a composite beam
can be estimated accurately. The accuracy of the de-lamination near the clamped edge is lower than others.
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Figure 5: Marginal posterior distributions for the position (c) and length (l) for the composite beam with two
defects. The solid and dashed lines respectively represent the distributions for parameters for each defect.
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Figure 6: Marginal posterior distributions for the position (c) and length (l) for the composite beam with
three defects. The solid and dashed lines respectively represent the distributions for parameters associated
with each defect.

The de-laminations in composite plate are more difficult to estimate, though the positions are estimated
accurately. The estimates of the length of the de-lamination show certain bias either to larger or smaller
values. The reason is yet unknown to the authors. In all cases, the MCMC chains converge within 2000
iterations, which require short length of computing time and enough for determining the positions and the
lengths of the de-lamination. We note that many more iterations are required to construct smooth probability
distribution of the de-laminations. Further study is needed for determining the effectiveness of the method
for structures with higher or lower natural frequencies. It remains to be seen how the results in this paper
can be scaled to other materials and sizes. As shown in section 2, the method here assumes that we know
the number of de-laminations. If we assume no such priori information, the MCMC simulation would take
much longer. A further study is needed for effective method of estimating the number of de-laminations in
addition to lengths and positions.
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Figure 7: Marginal posterior distributions for the position (c) and length (l) parameters for the composite
plate with one defect on each beam. The solid and dashed lines respectively represent the distributions for
parameters associated with a defect in each beam.
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Figure 8: Trace plots of simulated Markov chains for the position (left) (c) and length (right) (l) for the
composite beam with one defect.
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