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Abstract

This research is a case study evaluation of the use of self-organising map (SOM)
techniques for ecosystem modelling to overcome the perceived inadequacies with
conventional ecological data analysis methods. SOMs provide an analytical method
within the connectionist paradigms of artificial neural networks (ANNSs), developed from
concepts that evolved from late twentieth century neuro-physiological experiments on

the cortex cells of the human brain.

The rate and extent at which humans influence environmental deterioration with
commensurate biodiversity loss is a cause for major concern and to prevent further
degradation by human impact, parsimonious models are urgently needed. Indeed, the
need for better modelling techniques has never been so great. Ecologists and many
national and international bodies see the situation as ‘significantly critical’ for the
conservation of our global ecosystem to foster the continued wellbeing of humanity on

this earth.

The thesis investigates and further refines SOM based exploratory data analysis methods
for modelling naturally evolving, highly diverse and extremely complex ecosystems.
Eatlier studies provide evidence on SOM ability to analyse complex forest and freshwater
biological community structures at limited scales. On the other hand, growing concerns
over conventional methods, their soundness and ability to model large volumes of data

are seen as of little use, leading to arguments on the results derived from them.

Case study chapters illustrate how SOM methods could be best applied to analyse often
‘cryptic’ ecosystems in a manner similar to that applied in modelling highly complex and
diverse industrial system dynamics. Furthermore, SOM based data clustering methods,
used for financial data analysis are investigated for integrated analysis of ecological and

economic system data to study the effects of urbanisation on natural habitats.

SOM approaches prove to be an excellent tool for analysing the changes within physical
system variables and their effects on the biological systems analysed. The Long Bay-
Okura Marine Reserve case study elaborates on how SOM based approaches could be
best applied to model the reserve’s intertidal zone with available numeric data. SOM

maps depicted the characteristic microclimate within this zone from ecological
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monitoring data of physical attributes, without any geographical data being added. This
kind of feature extraction from raw data is found to be useful and is applied to two more
case studies to study the slow variables of ecosystems, such as population dynamics, and
to establish their correlation with environmental variations. SOM maps are found to be
capable of distinguishing the human induced vatiations from that of natural/ global
variations, at different scales (site, regional and global) and levels using regional and
global data. Hence, SOM approaches prove to be capable of modelling complex natural
systems incorporating their spatial and temporal variations using the available monitoring

data, this is a major advantage observed with SOM analyses.

In the third case study, potential use of SOM techniques to analyse global trends on the
effects of urbanisation in environmental and biological systems are explored using the
World Bank’s statistical data for different countries. Many state and international
institutions, concerned over global environmental issues, have made attempts to develop
indicators to assess the conditions of different ecosystems. The enhancements with
SOM approaches against the currently recommended indicator system based on

information pyramid and pressure-state-response (PSR) models are elaborated upon.

The research results of SOM methods for ecosystem modelling, similar to that applied to
industrial process modelling and financial system analysis show potential. SOM
approaches (i.e. cluster, dependent component, decision system and trajectories/ time
series analyses) provide a means for feature extraction from the available numeric data at
different levels and scales, fulfilling the urgent need for modelling tools to conserve our
global ecosystem. They can be used to bridge the gap in converting raw data into
knowledge to inform sustainable ecosystem management. Increasingly, traditional
methods based on Before-After-Control-Impact (BACI) designs and Analysis of
Variance (ANOVA) are seen to be unsuitable for ecological data analysis, as they are
unable to detect human induced environmental impacts from that of a natural cause.
This thesis proves that SOM techniques could be applied to modelling not only a natural
systems complexity but also its functioning and dynamics, incorporating spatial as well as
temporal variations, to overcome the constraints with conventional methods as applied

in other stated disciplines.
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Chapter 1

Introduction

This research investigates the use of self-organising map (SOM)' techniques for
modelling disparate ecological data with a systems approach to overcome the perceived
inadequacies with conventional data analysis methods and, in so doing, to address the
following research questions:

(i)  How could SOM methods be best applied to unravel the structure of highly
diverse, extremely complex” and naturally evolving ecosystems’ and to predict
their system dynamics?

(i) How this approach could be applied to transform and disseminate disparate
(ecological and socio-economic system) data to a wider community in order

to foster conservation of our global ecosystem?

1.1 Hypothesis and assumptions

This research further develops the use of SOM techniques for modelling ecosystem
structure, functioning and dynamics, in a manner similar to that applied in industrial
process modelling. SOM based approaches, built on measurable process variable data,
also referred to as “soft sensors”, are successfully applied to monitoring and control of
industrial processes without any physical models (Simula et al. 1999; Himberg et al.
2001). They can effectively track the process dynamics of highly complex and diverse
industrial systems, provided that a large volume of good quality data is made available.
In addition, innovative SOM applications in financial data analysis are investigated for
analysis of disparate ecological and economic data to study the effects of urbanisation on

the environment including possible economic trade-offs within an ecosystem framework.

1 SOMs, first introduced by Tuevo Kohonen (1982), are feed forward artificial neural networks based on
an unsupervised algorithmic training. They are capable of projecting multidimensional input vectors on to
a low dimensional, topology preserving output display of self-organising neurons.

2 The term complex refers to the many interrelating components and mechanisms those make the final
outcome of a process, difficult for inference.

3 An ecosystem is “A biological community fermed as a biological system in this research and the physical
environment, which in turn is termed as the physical/ environmental system associated with it...” Concise Science

Dictionary (1991). Oxford Reference. (Attention of italics is for specific clarification of this research).
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In theory, the approaches should be viable as SOM methodologies are successfully

applied to overcome the issues with traditional methods in the said disciplines.

SOM applications to modelling biological population assemblage using forest (Giraudel
and Lek 2001) and freshwater (Cere’ghino et al. 2001) system data, at limited scales,
provide the basis for this research on the use of SOM based methods in ecology.
Giraudel and Lek (2001) concluded that the SOM algorithm could be used for
exploratory data analysis in ecology, complementing the existing classical techniques. In
(Murray-Bligh 1998) SOMs are considered to have shown “...considerable potential for
diagnosing different types of pollution....” In this system, SOM methods are applied to
predict the biotic indices based on the distribution and abundance of BMWP* taxa for
establishing the water quality index of a system. Modelling Patterns in Environmental
Data (MOPED) uses SOM techniques for mapping of patterns in freshwater system
data, such as fish species distribution and elevation of freshwater systems, and to predict

the biological assemblages that should be present in certain streams (Jowett 2001).

1.2 Ecosystem modelling: A need for better techniques

“Humans have profoundly changed the world’s ecosystems. Some 40 to 50 percent of
land has been transformed (through change in land cover) or degraded by human
actions; more than 60 percent of the world’s major fisheries are in urgent need of actions
to restore overfished stocks or to protect stocks from overfishing; natural forests
continue to disappear at a rate of about 14 million hectares each year; and other
ecosystems such as wetlands, mangroves, and coral reefs have been substantially reduced

or degraded...” (Reid 2000:3).

“Humans have appropriated half of the accessible global freshwater runoff, and this
could climb to 70% by the year 2025. Neatly 2/3 of all rivers are regulated in some
manner, causing fragmentation, deterioration, and losses of flood plains, wetlands, and

riparian ecosystems...” (Clark et al. 2001:1).

4The BMWP scores are devised for the taxonomic families occurring in British rivers, depending upon
their sensitivity to organic pollution, those very sensitive to organic pollution with 10, down to families

more tolerant of pollution with 3 or less.
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Even with these disturbing statements and predictions, the attitude of resource managers
and stakeholders remains unchanged due to lack of sufficient relevant knowledge on
ecosystem response to human influenced activities (Bierbaum et al. 2001). This is despite
the significant efforts made by national, international and academic research institutions
to elucidate how human environmental effects cause damage to natural habitats
(Osenberg and Schmitt 1996). In fact, many resource managers and stakeholders still
assume that the effects of human impact on the environment as being mitigated or
neutralised (Clark et al. 2001). Some state authorities even consider natural resources as a
plethora or infinite (Buckeridge 1999) and tend to approve developmental activities that
could possibly lead to great losses in ecosystem functioning and biodiversity. On a world
scale, state institutions spend US § 700 billion a year to subsidise environmentally
unsound practices in the use of water, agriculture, energy and transport (World

Resources Institute 2000).

Understanding complex ecosystems, places more significance on environmental sciences
as humans attempts to transform their relationship with the Earth and its natural
resources, more sustainable by the latter, argued (Graedel et al. 2001); a seventeen-
member committee appointed by the National Science Foundation (NSF) and the
National Research Council (NRC). The committee was asked to identify topics of
greatest potential for immediate investment and in their report titled ‘Grand Challenges
in Environmental Sciences’, eight chosen topics were elaborated. Under the topic
biological diversity and ecosystem functioning, the report reads,

“The challenge is to improve understanding of the factors affecting biological diversity
and ecosystem structure and functioning, including the role of human activity.
Important research areas include improving tools for rapid assessment of diversity at all
scales; producing a quantitative, process-based theory of biological diversity at the largest
possible variety of spatial and temporal scales; elucidating the relationship between
diversity and ecosystem functioning; and developing and testing techniques for
modifying, creating, and managing habitats that can sustain biological diversity, as well as

people and their activities” (Graedel et al. 2001)

Similar views on the need for new models to elucidate ecosystem functioning and
biodiversity including human activity, to inform sustainable environment management,

are expressed in (Ravetz 2000; Parker et al. 2001; Harris 2002). Current methods are
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inadequate to study the environmental effects of an impact, argued (Thrush et al. 1995).
Also, explained the reasons as to why these effects could not be modelled with traditional
methods; the environmental effects that are extensively varying even within an ecosystem
due to the spatial and temporal variations in the system, may also depend on the nature
and extent of the impact being analysed. In addition, species’ threshold responses’ and

biodiversity’ (Raimondi and Reed 1996) further complicate ecosystem modelling.

Even the highly complex conventional ecological data analysis methods are not capable
of detecting an environmental impact (Stewart-Oaten 1996; Thrush et al. 1995), let alone
prediction. For instance, Before-After-Control-Impact (BACI) design methods, solely
developed to analyse an impact at a particular site using data before and after an activity
occurs, including control sites (and paired sampling BACIPS) may not provide a good
assessment for decision making, mainly because of model uncertainty (Stewart-Oaten
1996). Thrush et al. (1995) argued that these complex methods could not be used to
describe the formal biological results succinctly and unambiguously within a single

general parameter, such as mean abundance.

For instance, Walker et al. (2000), who attempted to analyse the effects of urbanisation
on subtidal population dynamics along the northeastern coast of Auckland, based on
BACI design with conventional univariate and multivariate analyses, could not establish a
link between the causal process and the environmental effects or otherwise from the
monitoring data. Conventional methods invariably produce complex matrices of
different functions, such as diversity indices, that are difficult to analyse the biological

assemblage and its dynamics (Giraudel and Lek 2001).

Bowler (1992) blamed the research approaches of the twentieth century for significantly
contributing to the current global environmental issues of pollution and over exploitation

of natural resources. In the last century, research in environmental sciences became

5> Species: In systematic biology, species is one of the groups into which a genus is divided. The members
of a species are able to interbreed (Collins English Dictionary 1997) and produce viable offspring. In
general, species are the final group in the classification of living beings, although in some special cases, sub
species are possible within a species.

¢ Threshold responses are the different levels at which deferent species response to the same impact.

7 Biodiversity is defined as species richness and evenness in a system.
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more focused in gaining in-depth knowledge with highly specialised scientific fields,
enforcing a fragmented image of nature. Actions based on such narrowly focused
research and knowledge are found to be responsible for even altering the Earth’s basic

chemical cycles (Vitousek et al. 1997; Kirby 2000).

Despite these impeding issues with ecosystem modelling, understanding and prediction
of environmental ramifications of human induced impacts are considered to be crucial
for sustainable environment management. Blanket restriction on developmental
activities would cause undue socio-economic hardship on the current generation. [7ce
versa could cause detrimental efforts on the environment, affecting future generations

(Schmitt et al. 19906).

In view of the complexities involved in modelling environmental and biological
processes, a holistic approach® (Buckeridge 1994; Reid 2000) supported by
interdisciplinary research (Soule and Kleppel 1988) has been suggested since the 1980s.
The use of new models to elucidate complex ecosystem interactions at different scales
and levels, involving data sets, computation and statistics, to assess the state of an
ecosystem and to predict the systems response, is critical for sustainable environment
management (Soule and Kleppel 1988; Buckeridge 1994; Hammond et al. 1995; Ravetz
2000; Gustavsson 2001; Harris 2002). However, owing to lack of quantitative methods,
achieving environmental sustainability seems remote (Shanmuganathan et al. 2003).
Conventional models either oversimplify or over complicate the environmental issues
(Ravetz 2000; Parker et al. 2001; Harris 2002). They do not facilitate interdisciplinary
research on natural habitats with a systems approach, nor do the attitudes of different
professionals involved (stakeholders, resource managers and land developers), who
mistrust each other and show little enthusiasm even for initiating such efforts (Ravetz
2000; Parker et al. 2001; Harris 2002). The situation leaves the environmental decisions

to be made by the expensive and stochastic process of law (Lester 1996).

Thesis case studies illustrate the use of various SOM approaches to quantitative analysis
of ecosystem structure, functioning and dynamics, incorporating spatial as well as

temporal changes at different scales and levels with a systems approach. This is carried

8 Holistic approach is sometimes refereed to as ‘an integrated’ or ‘a systems approach’.
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out by collectively analysing the available ecological and socio-economic data sets that are
not analysed to their potential (Hammond et al. 1995; Vant 1999). Scientists and the
general public carryout monitoring programmes, such as the ones by (Vant 1999;
Wilcock and Stroud 2000; North Shore City Council - Project care 2002; North Shore
City Council - Wai Care 2002) and produce large volumes of data, which can not be
integrated for analysis owing to inconsistent labelling. Details on how integrated analysis
could be best performed on such dissimilar data sets, to unravel often ‘cryptic’
ecosystems and to predict their responses for trade-off analysis, using SOM

methodologies, are revealed in chapter 4 Experimental methodology.

Unlike the financial analysts, ecologists do not have a single established practice to assess
the state of our environment or the natural resources (Hammond et al. 1995). Across the
United States (US), policy makers and many others carefully watch every single move of
Dow Jones and make predictions on its effects in their daily business activities (Lash
1995). Even global economic trends are predicted based on small changes in such
numeric figures, whereas no such indicators are in use to measure the state of the
environment or the natural resources to conserve the global ecosystem. Scientists and
ecologists are still engaged in research in devising a suite of concise ecological indicators
to assess ecosystem changes by integrating the structure, functioning and its biological
diversity (National Center for Environmental Research (NCER) Office of Research and
Development (ORD) - US Environmental Protection Agency (EPA) 2000 ; Ravetz 2000;
Bierbaum et al. 2001; Parker et al. 2001; Harris 2002)).

The shortcomings of the currently recommended indicator system based on information
pyramid’ and pressure-state-response (PSR) concepts are illustrated in chapters 3 and 7.
Using this indicator system, local environmental problems, arising from ozone depletion,
climate change, acid rain and many more have been studied in the Netherlands for the
first time (Hammond et al. 1995). Through this indicator system, a number of related
primary indicators are aggregated to form the condensed, composite indices based on
well-defined physical processes of the human-environment interaction. The third case
study of this research illustrates how SOMs could be used to analyse global data within

an integrated framework even with limited prior knowledge on the physical processes.

? Information pyramid consists of highly aggregated indices on the top of the pyramid with primary data

from monitoring programmes at the bottom. Condensation of data is catried out in a bottom up fashion.
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1.3 Artificial neural networks in information processing

Biologically inspired ANNs provide a totally different approach to the conventional
computational algorithmic information processing methodologies. Conventional
computing methodologies consist of sequential programs with explicit step-by-step
instructions to solve a problem whereas no such clear understanding of either the
problem or the solution is required in ANN algorithms. The use of ANNs in

information processing has been significant since the 1940s.

Deboeck (1998) defined neural networks (NNs) as a collection of mathematical
techniques that could be used for signal processing, forecasting and clustering. ANNs
could be considered as non-linear, multi layered, parallel regression techniques. NN
modelling is like fitting a line, plane or hyper plane through a set of data points to define
the relationships that may exist between (in this case) the inputs and the outputs; or it

can be fitted for identifying a representation of the data on a smaller scale.

Summary

In this research, SOM techniques are investigated for ecosystem modelling, in a manner
similar to that applied in complex industrial system modelling; SOM techniques are seen
as being successful in providing an alternative approach to a global system analytical
model for complex industrial processes. In addition, innovative SOM approaches of
financial data analysis are investigated for integrated analysis of dissimilar ecological and
economic system data to model the effects of urbanisation on natural habitats, as
conventional methods are perceived to be inadequate in this regard. New methods are
urgently required to elucidate ecosystem functioning and biodiversity including human
activity, to preserve natural habitats as well as foster human wellbeing on this Earth.
Unless the physical interactions are known, the latest pressure-state-response approach,

first introduced by the Dutch cannot be applied to modelling natural processes.

Case study chapters illustrate how SOMs could be best applied to modelling ecosystem
structure, functioning and dynamics at different scales and levels by making use of the
available ecological monitoring and economic system data (from different sources) with a
systems approach. Earlier studies produce evidence of SOM use for studying the

biological assemblage of forest and freshwater systems at limited scales.



Chapter 2
Self-organising maps: A review

The previous chapter provided an introduction to this research, aimed at exploring the
application of SOM techniques to modelling highly complex and diverse ecosystems
using biological and environmental monitoring data. SOMs belong to a connectionist
paradigm'” of artificial neural networks (ANNS). This chapter illustrates the literature on
ANNSs with special emphasis on SOM methodologies and their application to real world

problems, reviewed for the research.

2.1 Artificial neural networks

ANN s are biologically inspired approaches to intelligent information processing
methodologies. They provide a means to incorporating innovations and flexibility into
conventional computing and to solve real world problems (Amari 1995). Complex
problems of modern day (Kasabov 1999, 2000) and human expectations from computers

(Aleksander 2000) continue to demand innovations in this rapidly changing field.

Efforts to understand the functioning of the human brain and its structure have existed
ever since human beings themselves began wondering about their fascinating thinking
ability. However, the use of the brain’s cognitive abilities and its functioning to construct
ANNSs and to formulate concepts of artificial intelligence (Al) began only six decades
ago. The discovery of actual processing in the human brain consisting of 10" neurons,
participating in perhaps 10" interconnections over transmission paths, is unlikely to be
made in the near future (Wasserman 1989). However, every breakthrough made by
neurologists and neuroanatomists has been modelled and then applied to information
processing in knowledge engineering''. More recent insights into the brain’s capabilities
to automatically acquire information-processing algorithms (Matsumato 1999), elucidate
the mental growth and the involved factors. They also lay a platform for developing

novel information processing methods. The latter is known as artificial neural networks.

10 Connectionist paradigm: A term that refers to the ANN models of the late 1970s.
11 Knowledge Engineering: A term that refers to the academic research aimed at developing models,
methods and basic technologies for representing and processing knowledge for building intelligent

knowledge-based systems.
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The ANN computational methods have a fundamental difference to the traditional
‘conventional computing methods’ that basically consist of sequential programming.
Conventional computing methods are successfully applied to solve highly laborious,
repetitive tasks, such as complex mathematical calculations or ‘rote things’, without
making any mistakes similar to that characteristic of humans, arising from fatigue.
However, conventional computers cannot solve what are simple problems for humans,
such as remembering patterns, relating and using them for future processing, especially
for recognising images and figures that can be handled effortlessly even in low order

animal brains (Anderson and McNeill 1992).

One of the many breakthroughs achieved in neurology is to understand how patterns of
information are stored in biological nerve cells. Based on such understandings
innovative ANN computational methodologies are developed for storing information in
the neuronal structures and networks that could be trained through parallel processing.
During the training process depending on the neuron type, network architecture and the
training algorithm used, the necessary information is transferred into the network in the
form of weights and connections, which are later used to solve specific problems;
generally found to be impossible by conventional computational methods. Since the
1940s, ANNSs have been considerably successful in introducing heuristics into
computational algorithmic processing; associated with them are the terms, behave, react,

adapt, self-organise, learn, generalise, and forget (Anderson and McNeill 1992).

The kind of parallel processing used in neural computing is different from that of parallel
distributed processing. In parallel distributed processing, the main task is subdivided into
several fragments, each with its own processor. All these fragments are run
simultaneously, whereby the execution of the main task is sped up. Nevertheless in
neural computing, the neurons and the network architecture are used to store
information. The summation of input into weight and the transformation function are

part of the information storing process.

It is widely accepted that the human brain is much more complicated than the available
models and many of its cognitive functions are still unknown (Kasabov 1995).
Nonetheless the following are the main characteristics that are considered as common in

real and artificial networks based on figures 2.1 a & b:
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(i) learning and adaptation,

(if) generalisation,

(iii) massive parallelism,

(iv) robustness,

(v) associative storage of information, and
(vi) spatiotemporal information processing

(Kasabov 1995).

4 Parts of a
Typical Nerve Gell

Dendrites: Accept inputs

@ il Soma: Process the inputs

Axon: Turn the processed inputs
into outputs

Synapses: The electrochemical
contact between neurons

Figure 2.1 a: A schematic diagram of a simple neuron. Source: (Anderson and McNeil] 1992).
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X1, X2 ... Xn: Input connections, W1, W2....Wn : Weights, U : Summation function, g ; Threshold.

Figure 2.1 b: A model of an artificial neuron. Source: (Kasabov 1995).
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ANN s are generally defined by the following four parameters:

@

(i)

(iti)

Type of neuron (or nodes as a neural network resembles a graph), such as
Perceptron of Pitts and McCulloch (1943) and Yamakawa’s fuzzy neuron
(1990).

Connectionist or network architecture: The organisation of the connections
between the neurons in the network is described as its architecture. The
topology of the network, such as fully connected or partially connected, is
one way of defining the network architecture. ANNs can also be
distinguished based on the number of layers and the number of input and

output neurons in the layers:

a Autoassociative: where input neurons are the output neurons i.e.
Hopfield network

b Heteroassociative: consists of separate input and output neurons i.e.
MLP.

Furthermore, depending on the connections back from the output to the

input neurons, two different kinds of architecture are determined:

a Feed forward architecture: where no connections are found, back
from the output neurons to the input neurons. The network does
not remember values of its previous output or the activation states of
its neurons.

b Feedback architecture: where there are connections back from the
output neurons to the input neurons and as such the network holds
the memory of its previous states and the next state depends on the
current input signals and the previous states of the network i.e.
Hopfield network.

Learning algorithm: the algorithm used to train a network is referred to as

the learning algorithm. Extensive research has been carried out in trying

out various concepts and it gives researchers a high degree of flexibility for
innovations. Discussing the whole set of learning algorithms is far beyond
the scope of this section. However, the learning algorithms so far used
could be classified into three groups:
a. Supervised learning: the training examples that consist of input
vectors x and their desired output vectors y, are used in the training.

Training is performed until the neural network ‘learns’ to associate

11
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each input vector x to its corresponding output vector y (approximate
a function y = f(x)). It encodes the example in its internal structure.

b. Unsupervised learning: only input vectors x are supplied and the
neural network learns some internal feature of the whole set of the
input vectors presented to it. Contemporary unsupervised algorithms
are further divided into two i) noncompetitive and ii) competitive.

c. Reinforcement learning: also referred to as reward penalty learning,
The input vector is first presented and the neural network is allowed
to calculate the corresponding output. If the network calculation is
good then the existing connection weights are increased (rewarded),
otherwise the connection weights involved are decreased (punished).

(vi) Recall algorithm: the algorithm, by which learned knowledge in a trained
network is recalled to solve similar but new problems, is referred to as the

recall algorithm.

Following this brief introduction to ANNS, in the next section SOMs and their

application to real world problems are discussed.

2.2 Self-organising maps

A SOM is a feed forward neural network as shown in figure 2.2 c. It uses an
unsupervised training algorithm to perform non-linear regression. Through a process
called self-organisation, the network configures the output data into a display of
topological representation where similar input data are clustered near each other. At the
end of the training, SOM enables analysts to view any novel relationships, patterns or
structures in the input vectors. The topology preserving mapping nature of the SOM
algorithm is useful in projecting multidimensional data sets into low dimensional displays,
generally one- or two-dimensional planes. Thus SOMs can be used for clustering as well

as visualisation of multidimensional data sets (Deboeck and Kohonen 1998).

The SOM techniques are successfully applied to many real world problems of large
volumes of complex multidimensional data sets, such as pattern recognition, image
analysis, process monitoring and control, and fault recognition. As SOM methods are
based on an unsupervised training algorithm, they could be used for data clustering

without knowing the class membership of the input vectors (Simula et al. 1999).

12
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Traditional methods, such as simple statistical methods, that are useful in summarising
low-dimensional data sets (mean value, smallest and highest values), are seen to be less

effective in visualising multidimensional (i.e. multivariate) data sets (Deboeck 1998);

(Deboeck and Kohonen 1998)
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Figures 2.2 a & b: Brain areas and somatosensory map. Source: (Kohonen 1997).
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Figure 2.2 ¢: A simplified diagram of a SOM.
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The self-organising map (SOM) algorithm, first introduced by Teuvo Kohonen (1982)
was developed from the basic modelling information of the human brain’s cortical cells,
known from the neuro-physiological experiments of the late twentieth century. The
processing of synaptic connections between the cortex cells in the human brain is based
upon the nature of the sensorial stimuli. Different patterns of sensorial signals converge
at different areas within the brain’s cortex cells. Because of this reason different
individual neurons or groups of neurons become sensitive to different sensorial stimuli.
Neighbouring neurons also learn to respond to similar patterns of signals (figure 2.2 a)
including visual, auditory and somatosensory. The somatopic map of such an order is
shown in figure 2.2 b. Despite the insights gained in the area of synaptic processing,
knowledge on the associative areas of signals and other different tasks involved with the
rest of the cortical area is relatively poor. Only ten percent of the total cortical area is
described to be involved with the primary sensorial signals. The planning of actions is

assumed to take place in the frontal lobe (Kohonen 1997).

Based on Kohonen’s SOM, an algorithm of Evolving Self-Organizing Map (ESOM), was
developed by (Deng and Kasabov 1999). Unlike the former, ESOM network structure
evolves in an on-line adaptive mode with capabilities for exploring large volumes of data
flows, updated daily, hourly or every minute. Extracting knowledge from such large and
continuously changing data sets, received in an on-line environment, could be of
invaluable use for future decision-making, especially in macroeconomic performance of

individual countries or country clusters.

2.3 Applications of self-organising maps

SOM applications to real world problems along with traditional data clustering and

visualisation methods are examined.

2.3.1 Applications of SOM methods to real world problems

Kohonen’s SOM (1996) applications to real world problems have been successful; most
of them centred on knowledge discovery. SOM ability to discover implicit knowledge
from numerical data is significant. SOMs are capable of displaying the input vectors on
low dimensional grid structures while preserving the topology of the original data.

However, the main objective of the analysis should be identified before designing ways

14
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and means for assessing the effectiveness of the outcome. The following are some of
the major identified areas of SOM applications:

(i) Classification, clustering, and/or data reduction

(if)  Visualisation of the data

(i) Decision-support

(iv) Hypothesis testing

(v) Monitoring system performance

(vi) Lookup table for missing values

(vit) Forecasting

(Deboeck and Kohonen 1998)

In applications aimed at clustering and visualisation of data, consideration of various
other traditional statistical clustering methods is advised. Combining traditional methods
(explained in the next section) with SOM methods gives an opportunity to obtain some
priori knowledge on the data, which would enhance the design on better data reduction,

such as how much data reduction would be desired for the design of SOM.

For decision support applications, it is important to precisely define the decisions to be

supported such as the scope of decisions and time frame.

In hypothesis testing, it is essential to define the hypothesis and the standards for

acceptance and rejection, prior to the analysis.

For monitoring applications, the main goal of the monitoring process, such as quality
control, fault detection and standard compliance, should be defined. In occasions where
forecasting is the main objective, it is necessary to describe the forecasting window, the

preferred accuracy and the methods for performance evaluation.

2.3.2 Traditional methods for data clustering and visualisation

Traditional statistical methods consist of limited abilities for revealing structures,
relationships and novel patterns in low dimensional data sets. Two to three dimensional
data sets can be visualised using simple two- to three-dimensional graphs. Nonetheless,

with multidimensional data sets, plotting a vector or analysing the relationships between

15
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different vectors by simple graphs is not possible. Thus other methods are needed to

visualise such multidimensional data sets.

In the existing data visualisation methods, the different components contributed by each
and every dimension are integrated into the one final result. The major drawback
experienced with conventional methods is that they are unable to reduce the amount of
data within large sets, as processing becomes incomprehensible. Nonetheless
conventional methods can be used to display simple summaries in low dimensional data

sets (Deboeck and Kohonen 1998).

Data clustering is an operation, through which similar data items are categorised or
grouped together, in the best possible method to reduce the large volumes of data for
visualisation purposes. Clustering is described as similar to information processing in
humans and preferred to projection methods'”. Clustering can be automated to classify

different categories and automation also reduces bias and errors in the grouping process.

2.3.2.1 Clustering methods

Traditional clustering methods can be classified into two basic types:

1) Hierarchical, and  (ii) non-hierarchical.

Hierarchical clustering is proceeded successively by merging the smaller clusters into
larger ones, or by splitting the larger clusters into smaller units. In general, clustering
methods differ based on the rule that is used to decide on the merger/ splitting of
clusters. The end result of the algorithm will be a tree of clusters called as a dendrogram
that shows the clusters and their relationships. When two small clusters are merged, a
new higher level is created in the dendrogram. The representation of the new level is
connected to its respective representations in the lower level clusters. By cutting the
dendrogram at an appropriate level the data items could be clustered into different

groups (Deboeck and Kohonen 1998).

12 Projection methods: The goal of projection methods is to represent the input data in a chosen low
dimensional space, where certain properties of the structure of original data are preserved as faithfully as
possible to the original values. Thus these projections can be used to visualise a high dimensional data set

if a sufficiently enough low dimensionality is chosen for output display
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Non-hierarchical clustering is performed by directly decomposing a data set into disjoint
clusters. The different kinds of algorithms used in the clustering vary in assigning
clusters to the most densely regions in the data space. The algorithm used defines a
cluster, where there are a large number of similar data items are positioned. Another
possible approach used for this purpose is minimising the measures of dissimilarities of
the samples within each cluster while maximising the dissimilarities between different

clusters (Deboeck and Kohonen 1998).

2.3.2.2 Projection methods

Projection methods can be classified into two basic types:

(i) Linear,and (ii) non-linear.

A data set, represented on a # dimensional space could be projected on a subspace
represented by 7 dimensions (either one-dimensional such as a line or two-dimensional
plane), within the # dimensional space (where 7 is less than 7): referred to as the linear
projection. The basic concept behind projection methods is that it is possible to
represent a data set with a subset of vectors that comprise a linear subspace of a lower
dimensionality. Fach of the vectors in an 7 dimensional linear subspace would be a
linear combination of » independently selected basis vectors. However, it is difficult to
visualise the structure and distribution of multidimensional data sets, especially the data
sets that consist of highly unsymmetrical distribution, on a low dimensional display by
using linear projection methods. Principle component analysis (PCA) is a linear

projection method.

There are several other approaches to projecting non-linear, highly asymmetric data
structures onto low dimensional displays, referred to as non-linear projection methods.
In most of these approaches, as a first step, every data item is actually mapped as a point
in a lower dimensional space. This mapping is then optimised to make the distances
between the image points as similar as possible to the original distances of the
corresponding data items. The existing methods vary based on how the different
distances are weighted and their representations are optimised. Multidimensional scaling

(MDS) is an example of non-linear projection method (Deboeck and Kohonen 1998).
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2.3.3 Data mining and knowledge discovery

Data mining is a process by which raw data is sieved through searching for useful
information. Information is extracted in the form of patterns, structures or relationships.
The misinterpretations that existed over the exact meaning of some terms, such as ‘Data
mining’, ‘exploratory data analysis’ and ‘knowledge discovery’” were eventually resolved at

a conference "’ in 1995 (Deboeck and Kohonen 1998).

Statisticians blame themselves for being slow in adapting to recent changes and their
attitude towards data and technology, which led I'T professionals embark on research in
data mining techniques (Pregibon and DuMouchel 2001). Furthermore, faster switching,
data compaction and better technologies also contributed towards the need for better

techniques to analyse the abundant digital data to its potential (Mitchell 1999).

SOM applications in industrial system modelling are evaluated in the next section as the
same concept is being experimented in this research to ecosystem modelling, using

biological and environmental monitoring data with a systems approach.

2.3.4 Applications of SOMs in industrial process modelling

In the modelling and control of complex industrial systems, it is usually assumed that a
global system analytical model could be defined. However, many industrial processes are
so complex and diverse it is not possible to build a global model for this purpose.
Nonetheless, SOM based ANN models are successfully used to model such complex
industrial processes, based directly on their process variable measurements alone. They
provide a means to analyse these processes without any physical models, provided that a
large volume of good quality, stable, numerical data, describing the process is made
available. Similar ANN models, used in the estimation of signal values or process
variables, measured indirectly or offline are referred to as ‘soft sensors’ (Simula et al.

1999).

13 Initially, the terms ‘Data mining’ and ‘exploratory data analysis’ were used for knowledge discovery, the
whole discovery process of novel patters or structures in the data. It was proposed at the first international
conference in Montreal in 1995 that the term ‘knowledge discovery’ be employed to desctibe the whole
process of knowledge extraction (knowledge means relationships and patters between data elements) from
data and the term ‘data mining’ be used exclusively for the discovery stage of the process (Deboeck and

Kohonen 1998b).
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The theory behind the SOM applications in data mining are elaborated based on (Simula
etal. 1999). The SOM consists of a regular, usually two-dimensional grid of neurons.
Each neuron 7 of the SOM is represented by a weight model vector, m; = |7, ),
where 7 is equal to the dimension of the input vectors. The set of weight vectors is

called the codebook.

The map neurons are connected to their adjacent neighbours by a neighbourhood
relation, which dictates the topology of the map. Usually a rectangular or hexagonal

topology is used. Immediate neighbours belong to the neighbourhood NN, of the neuron =

In the basic SOM algorithm, the topological relations and the number of neurons are
fixed from the beginning. The number of neurons may vary from a few dozens up to
several thousands. It determines the granularity of the mapping, which in turn affects
the accuracy and generalisation capacity of the SOM. During an iterative training, the
SOM forms an elastic net that folds onto the ‘cloud’ formed by the input data. The net
tends to approximate the probability density of the data; the codebook vectors tend to
drift to places where the data is dense, while there would be only a few codebook vectors

in places where data is sparse.

At each training step, one sample vector x is randomly chosen from the input data set
and the distances (such as the similarities) between the vector x and all codebook vectors
are computed. The best matching unit (BMU) denoted here by ¢, would be the map unit

whose weight vector is closest to x: [ [x-m, || = min {|[x-m] [}

After finding the BMU, the weight vectors are updated. The BMU and its topological
neighbours are moved closer to the input vector in the input space. The update rule for

the weight vector of unit 7 is:
my(A) + a() [x() - m(@)], i&N, (1)

m; (1) =

mi(f)’ Z ¢'N[ (Zj

where #denotes time. IN,(?) is the non-increasing neighbourhood function around the

winner unit c and 0 < a(?) <1 is a learning coefficient, a decreasing function of time.
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The SOM algorithm performs a topology-preserving mapping, during which the
multidimensional input space is transformed onto units in a two-dimensional map,
preserving the relative distances between the data points. Data points lying near each
other in the input space would be mapped onto nearby map units, thus making the SOM
a powerful clustering tool of multidimensional data sets. SOMs are able to generalise
data, for example a SOM network can interpolate between the previously encountered
inputs. The quality of the mapping is usually determined by the following factors:
(i)  Precision: measured by using average quantisation error, which is the average
distance between input vectors of the testing set and the corresponding
BMUs.
(i) Topology preservation: several studies have been undertaken on different
topology measures (Kaski and Lagus 1996; Kiviluoto 1996). The latter
suggested a method called a goodness meter, to measure both precision and

topology at the same time.

The SOM can be interpreted by naming the units according to the input vectors whose
type or class is known and this is shown in figure 2.3. The labelling gives physical
interpretation of the network. If labelled vectors are not available, the map can be
interpreted by direct inspection of the weight vectors and clusters on the map by using
different visualisation techniques. Automatic interpretation of the map as well is possible

with the use of fuzzy rules (Simula et al. 1999).

Measurement vector

(Feature vector)
Input measurements @
Output ® © ®
measurements . .
Process Data buffer Map training and labelling
—> — Processing E AL 7
Input Output
B
D
Process parameters Self-organising Map

Figure 2.3: A schematic tllustration of a SOM application to an industrial process (1) data processing
(acquisition, preprocessing, feature extraction, and normalisation), (2) map training, (3) validation and

interpretation, (4) visualisation. Source: (Simula et al. 1999).
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Figure 2.4: Different visualisation of SOM. Source: (Simula et al. 1999).

SOM approaches to visualising a computer system in a network environment using data
on utilisation rates of the central processing unit (CPU) and the network traffic volumes
are elaborated upon. These visualisation approaches are investigated for integrated
analysis of ecosystem variables and economic system data to study the effects of
urbanisation on natural habitats and for economic trade-off analysis of developmental
activities with a systems approach, in case study chapters 4, 5 and 6:

(i)  Unified distance matrix (u-matrix): The u-matrix method (Ultsch 1990) used
in figure 2.4 (i), projects the SOM structure on a two-dimensional display.
The distance and difference in grey colour represent the variations among
map units. The greater the difference in colour the more the distance
between the nodes, for instance, the large uniform area on the left of this
SOM map, corresponds to an idle state of the computer system.

(i) Component plane representation: The visualisation approach of figure 2.4 (i),
using component planes enhances the investigation of parameter variations
of VLSI circuit (Tryba et al. 1989). By studying the component planes, it is
possible to analyse the relative component values of the weight vectors that
contribute to the final SOM, which shows the final outcome of CPU usage.

This is applied to analyse ecosystem structure, functioning and dynamics by
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(i)

(iv)

v)

studying the relationships between the environmental parameters and
biological assemblage dynamics and to establish the link between the causal
processes and their environmental effects as well.

Sammon’s mapping: They can be directly applied to data sets. However, with
large data sets the algorithm becomes computationally intensive, making the
approach ineffective. With the use of a SOM this limitation could be
overcome by quantising the input data to a smaller number of weight vectors
whereby, the computation load could be reduced to acceptable levels.
Connecting the neighbouring map units in the SOM map enhances the net
like structure (figure 2.4 (iii)). Sammon’s mappings, based on an iterative
algorithm can be used to project high dimensional vectors onto two-
dimensional displays. It is a non-linear mapping of data sets that preserves
the relative distances between the input vectors.

Data histogram: A data histogram on a SOM map can be created with a
trained SOM and a data set. On the SOM map, when the BMU is
determined to each of the data vector, the ‘hit countet’ for the unit is
increased by one. The data histogram of the computer example used in the
u-matrix SOM of figure 2.4 (i) is shown in figure 2.4 (iv).

Operating point and trajectory: A trajectory of data points is very useful in
tracking the progress of a process in time. The current point of the process
is shown as the BMU of the current measurement vector in the SOM map.
By watching the progress of the current point in time, its entry towards
undesirable areas could be detected in advance. The trajectory of the
computer example from normal operation area to disk intensive phase and

then to high load area is shown in figure 2.4

(Simula et al. 1999).

A SOM (figure 2.5), created with the measurements of incoming raw material

characteristics and process parameter settings, was used to predict the output quality of

the manufacturing system process (Hollmen and Simula 1996; Simula et al. 1999).
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Figure 2.5: Prediction of missing components of the input vector. Source: (Simula et al. 1999:9).

General regression of y on x is usually defined by y = E(y|x) (expectation of the output
_y stated in the input vector x). To motivate the use of SOM for regression, the codebook
vectors represent the local averages of the training data. Regression is achieved by
searching for the BMU using the known vector components of x. During the operation
the output and approximation of the unknown components of the codebook vector are
produced. The approach is applied to predicting species assemblages for particular
streams/ freshwater bodies of known altitudes in MOPED (see chapter 3). The system

generalises values for species from the vectors of known water bodies.

In industrial process modelling applications, model accuracy could be increased by
building local models for the data in the Voronoi sets of the SOM. This method is based
on ‘divide and conquer’ concept, where the input data is divided into subsets (containing
points that are nearer to each other in the data space), each of the subset being modelled
with an independent local model. This is considered only for simple local linear models
and successtully applied in model fitting using Principal Component Analysis (PCA) to

promoter recognition issues in DNA analysis (Bajic and Bajic 1999).

SOMs are usefully applied to sensitivity analysis'* of industrial systems. They are useful
in studying the implications of small changes on the whole system. It is generally
difficult to observe the effects on the wider system, caused by a small change in one of
the system parameters/ components. The observation becomes extremely difficult or
often impossible with the presence of noise in the measurements and operating

conditions, especially in industrial systems and even more complex in natural systems

14 Sensitivity analysis means the observation of the whole systems changes, arising from a small change in

one or more of system components.
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that consists of slow, subdue reactions and compensating mechanisms (Clark et al. 2001).
SOM methods are successfully applied to an manufacturing system, where the state of
the process was moved towards the desired direction to achieve better quality (Simula et
al. 1999). Based on this concept, SOM are applied to natural systems in case study

chapters 5, 6 and 7.

Conventional analytical methods cannot be used to evaluate the outcome of a small
change on a space with wider ranges; however, SOMs are proven to be successful in this
regard (Simula et al. 1999). When a single value in a set of parameters, changes, its BMU
in the SOM also changes and by tracking this trend, the final results of the small change
can be tracked and even used for optimisation of the operation to improve the quality
with minimum cost. This is illustrated in figure 2.6, using a two-dimensional SOM map
trained with data originating from a three-dimensional measurement space. When a
small change in one of the measurements is imposed, the BMU changes to another map
unit. By tracking the change of the BMU caused by a system parameter change, the
mutual non-linear dependence of the parameter can be revealed. This is possible only by
limiting the space defined by the measurements to a selected characteristic behaviour of
the whole system. The approach is applied to track ecosystem dynamics and is explained

in chapter 4.

SOM
Leverage
effect ’
caused by J |
a small \\J
change
4»
"~ Small
change
Measurement
space

Figure 2.6: A small change along one measurement axis canses a change in the other process parameters.

Source: (Simula et al. 1999:11).
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In this research, the SOM based sensitivity analysis concept of manufacturing systems is
applied to modelling ecosystem functioning and dynamics. In theory the sensitivity
analysis concept could be applied to analyse and predict the biological community

changes against an environmental parameter (see chapter 4 experimental methodology).

Summary

SOM approaches and their application to real world problems were examined.
Biologically inspired ANNs enabled a major breakthrough in introducing heuristics into
information processing methodologies with provisions for novel approaches, paradigms

and applications.

SOM applications in industrial system process dynamics and financial data analysis were
briefly described as they are investigated for cryptic ecosystem modelling in this research.
Further details of SOM approaches to real world problems will be discussed in chapter 4.
The next chapter reviews the current approaches in ecosystem modelling and the urgent
need for better techniques for this purpose. World population growth rates are
extending the pressure on the already declining global ecosystems thus increasing the

need to preserve them for future generations.
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Chapter 3

Ecological modelling: A review

The previous chapter outlined the SOM techniques and their applications to real world
problems. In this chapter, the quest for changes in resource management practices along
with contemporary ecosystem modelling techniques and biomonitoring concepts
reviewed for this research are discussed. The earlier studies on SOM based approaches
to modelling the biological assemblages of freshwater and forest systems are elaborated.
The main aim of the research is to investigate potential SOM applications to modelling
natural habitats in order to bridge the gap in integrated ecological data analysis and this is
carried out, based on how industrial process engineers and financial analysts use SOMs in

their own disciplines.

3.1 Need for changes in environmental management

Forceful moves by environmentalists from around the world, also supported by the
scientific community, to protect our global ecosystem, drive (Hammond et al. 1995a) for
a transition in many aspects of human-environment relationship (Reid 2000). The rapid
scientific advances achieved in terms of computing power, molecular biology and new
techniques to sense biological, physical and chemical phenomena below, on and above
the Farth’s surface have not been effective, either in warning people of major
environmental changes or how human should respond to an environment that is under
threat (Graedel et al. 2001). In that context, redirection of research efforts, development
of new models and techniques, radical changes in resource management practices and
better co-ordination among the professionals involved and the general public, are the key
areas identified for human activity on the environment to be sustainable by ecosystem

functioning and biodiversity (Harris 2002).

3.1.1 Redirection in future research efforts

Improving our understanding on the human-environment relationship, is vital for the
design and management of natural habitats that could support both human uses and
natural biota, argued (Graedel et al. 2001). Further identified eight areas as important for
future research in this regard. One among them was biological diversity and ecosystem

functioning, for which the following recommendation was made for immediate research.
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“Develop a comprehensive understanding of the relationship between ecosystem
structure and functioning and biological diversity. This initiative would include
experiments, observations and theory and should have two interrelated foci: (a)
developing the scientific knowledge needed to enable the design and management of
habitats that can support both human uses and native biota; and (b) developing a detailed
understanding of the effects of habitat alteration and loss on biological diversity,
especially those species and ecosystem whose disappearance would likely do
disproportionate harm to the ability of ecosystem to meet human needs or set in motion

the extinction of many other species.” (Graedel et al. 2001:5).

Buckeridge (1994) and Reid (2000) also emphasised the need for a systems/ holistic
approach in resource management decisions as opposed to the twentieth century
research efforts that became more focused in gaining in-depth knowledge with highly
specialised scientific fields (Bowler 1992). Human activities resulting from such narrowly
focused research and knowledge are accounted even for altering the Earth’s basic
chemical cycles (Kirby 2000), leading to global ecosystem failure in its natural functioning
that supports the continued existence of humans and other living beings on this Earth

(Harris 2002).

Suggestions for the implementation of better planning and decision making based on
reliable forecasts on ecosystem state and functioning in order to achieve sustainable
environment management has become the theme in recent times. Clark et al. (2001)
took a different perspective, in that they argued that the current environmental issues",
resulting from sectoral resource management that pose unprecedented threats to human
civilisation, all of which would have been avoided if the decisions in the past had been
based on ecosystem forecasts. Furthermore, suggested the following, aimed at
developing co-ordinated working practices based on interdisciplinary linkages;

a.  availability of new data sets,

b.  together with progress in computation and statistics with increased capacity

to forecast ecosystem change,

15> Environmental issues such as rapid change in climate and chemical cycles, depletion of the natural
resoutces that support regional economies, proliferation of exotic species, spread of disease and

detetioration of air, waters and soils
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c.  approaches for better communication between scientists and decision makers
to enforce ecosystem management based on continuos reliable forecasting,
d.  suggestions for trade-offs and alternative options, and

e. evaluation of feedbacks.

Changes aimed at developing better co-ordination and, more importantly, better
communication among a range of professionals such as scientists, stakeholders and the
community in large, play a critical role in solving the growing global environmental issues
(Harris 2002). Scientists’ predictions that are based on highly complicated principles and
hypotheses are generally found to be beyond comprehension by individuals from
different professions. This has been a common practice for a long time now. Matters
got further complicated with scientists becoming more focused on science and research,
being isolated from the rest of the world especially, from the general public, because of
their poor communication abilities (Buckeridge 2001). The knowledge divide between
these two has resulted in valuable scientific predictions being ignored by stakeholders
and the general public (Clark et al. 2001). Vant (1999), Reid (2000), Clark et al. (2001)
and Harris (2002) stressed the need for new modelling tools with an integrated approach
to create trust between the participants. All these publications describe the need for new
models, depicting disparate data (from different disciplines) to understand and predict
complex ecosystem behaviour in response to human and other natural/global causes.
The need for new approaches is seen as ‘significantly critical’ for the conservation of our

global ecosystem.

3.1.2 Interdisciplinary approaches

The importance of integrated, interdisciplinary environmental research and approaches
to improve ecosystem understanding of natural habitats has been stressed since the
1980s, as would be seen in (Mann 1982; Soule and Kleppel 1988; Graedel et al. 2001);
Parker et al. 2001; Harris 2002)). In consideration of the then modern analytical
technological improvements, Soule and Kleppel (1988) looked into the prospects of
bringing scientists together from a broad spectrum of disciplines, such as computing,
physical, chemical, biological oceanography, marine ecology and environmental sciences.

Further argued that such interdisciplinary research based approaches as vital for the use
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of indicator species'® in studying the environmental pollution resulting from
anthropogenic causes. This aspect is stressed in the later studies as well. It appears then,
that the problems in introducing interdisciplinary approaches to ecosystem modelling

have remained the same since the early 1980s until recent times.

With regards to the current quest, Graedel et al. (2001) described the tasks ahead in
developing interdisciplinary approaches, as the ‘Grand challenges of this era’ and
highlighted the following four, among the eight areas of ‘highest priority’ for future
research.

e Biological Diversity and Ecosystem Functioning: an initiative to develop a
comprehensive understanding of the factors that generate, maintain, and
diminish biological diversity and their effects on ecosystem functioning,

»  Hydranlic Forecasting: an initiative to develop a comprehensive hydrological
forecasting, specifically including the ecological consequences of changing water
regimes.

o Infectious Disease and the Environment: an initiative to develop a comprehensive
ecological and evolutionary understanding of infectious and environmental
diseases.

o Land-Use Dynamics: an initiative to develop a systematic, spatially explicit
understanding of the changes in land use and land cover that are critical to

ecosystem functioning, ecosystem services, and human welfare...”

(Graedel et al. 2001:60)

In consideration of these key issues, data needs within each area and co-ordination with
other environmental science research, are emphasised.

“... The overall effort will require interdisciplinary research involving ecologists,
ethologists, psychologists, engineers, economists, planners, landscape architects and
others. The definitions of data needs and the collection and synthesis of data will require
cooperation among physical, biological, and social scientists; engineers and planners; and

other associated funding agencies.” (Graedel et al. 2001:62).

16 Indicator species/ communities are used in biomonitoring methods to analyse the magnetite and extent

of pollution in a particular environment (see section 3.2 biomonitoring).
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The following are the areas suggested for co-ordinated research along with the efforts of
environmental science, to gain more understating on the controls and means to protect
biological diversity:

(i)  Co-ordinate research on hydraulic modelling on runoff and subsurface
water, which reflect the way living beings, humans inclusive, interact with the
landscape.

(i) Include the effects of human management institutions on ecosystems.

(i) Include the effects of changing patterns of land use and land cover on
potential for habitat redesign.

(iv) Include the effects of climate change in ecosystem functioning assessments
and in habitat design to buffer for disturbances and extreme events.

(v)  Create partnerships and work with urban long-term ecological research sites.

The scientific publications so far discussed illustrate the future direction to support and
inform sustainable environment management by evaluating the state of the environment
and its response at different scales and levels. This is increasingly seen as the greatest
ever challenge in human history. The existing methods for ecosystem modelling are
inadequate, in that they are not even useful in portraying the magnitude of current global
environmental issues, as required for the design and management of natural systems. In
the next section, sectoral resource management approaches and their consequences on

the environment are discussed.

3.1.3 Sectoral approaches of ecosystem management

The conventional approaches of sectoral management, such as reactive resource
management practices that consider only the socio-economic benefits of developmental
activities, have led to unprecedented consequences on our global ecosystem (Hammond
et al. 1995a). Continued use of such approaches will only worsen the situation as the
world population growth increases at alarming proportions, the demand on the already

declining ecosystem functioning and biological diversity also will increase (Reid 2000).

(Reid 2000:1) described the resource management actions, solely aimed at addressing the
social and economic outcome as ““... examples abound of vast and uncontrolled
ecosystem ‘experiments’...”. One among these many ‘experiments’ illustrated in the

article, is the state of the native fish, in Lake Victoria, Africa. In this case, the newly
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introduced species, initially found to be succeeding beyond expectations with a dramatic
growth in fish harvests, ultimately became a threat to the fish productivity as well as the
native species of the area. The increased harvest of exotic species initially increased land
use changes on the limited forest resources surrounding the lake, which in turn increased
lake siltation and pollution. This reduced the fish production in the area. In the end Nile
perch, a prolific, non-native species also led to the extinction of 350 native species, or

reduced them to a fraction of their original size.

A few single need (or secctoral) resource management solutions and their side effects
observed world wide are outlined below based upon (Reid 2000);

(i)  The expansion of agricultural land into natural habitats around the world
increased the food production but also changed the quantity and quality of
freshwater runoff tremendously.

(i)  The use of modern fertilisers, as expected increased yield but also caused
eutrophication of nearby rivers and estuaries and was found to be responsible
for anoxic ‘dead zones’ seen in coastal areas near major agricultural river
basins.

(i) Timber harvest and the transformation of forestland to agriculture helped
many states to meet their needs for food and fibre but also released carbon
into the atmosphere that changed the Earth’s surface reflectivity, contributing

significantly to the risk of global climate change.

Efforts made by the New Zealand and Australian governments and scientists to
introduce new policies and methods to protect the environment are elaborated in 3.2.3

New approaches for developing indicators; New Zealand’s perspective.

So far in this chapter the prevalent influence of scientists and concerned national and
international bodies for changes in environmental management and how this occurred,
have been discussed. In the next section, biomonitoring concepts used to study
anthropogenic environmental pollution are discussed. Biomonitoring concepts have
long been used in ecological modelling despite the controversies in their ability to detect

the exact cause of an environmental pollution.
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3.2 Biomonitoring

Biomonitoring is the use of biological responses to assess changes in the environment;

generally that are anthropogenic. It mainly involves indicator'” species or indicator

communities that accumulate pollutants in their tissues from the surrounding
environment and thus reflect the environmental conditions. The extent of
environmental effects within an ecosystem on individual organisms, species and
communities provides information on the magnitude and ecological effects of the
pollutants on the ecosystem despite the expensive processes involved in the initial
development of such indicators. Basically there are two types of biomonitoring:

(i)  to observe the biological system changes before and after a project is

completed or before and after a toxic substance enters the water.
(i)  to ensure compliance with regulations or guidelines or to ensure water quality

is maintained (Biological Monitoring 2000).

In the second type, the transformation of biomonitoring data into useful information for
decision making has long been a challenge, the key factors for this being:
(i)  the identification of robust methods for summarising lots of data, without over-
simplification and
(i) the presentation of the resulting information in an understandable and attractive

way to a largely non-technical audience (Vant 1999).

3.2.1 Biomonitoring in environmental pollution studies

A hypothetical model (figure 3.1) (Sastry and Miller 1980), illustrates the time related
sequence of possible effects of reduced water quality either pollutant induced or due to
natural causes at various levels of biological organisation. The model does not give
detailed descriptions of the states in the sequence, however, gives an outline of the

effects of different biological organisation.

17 An indicator is a pointer that provides a clue, or a means of measure, to a much more significant event
or trend or progress of a more complex set of actions. In ecology, an indicator is a plant or an animal or
the whole community, whose existence in an area is strongly indicative of specific environmental
conditions. Thus an indicator is significant in extending beyond that which is actually measured to a larger
phenomenon of interest (Hammond, A., A. Adriaanse, E. Rodenburg, D. Bryant and R. Woodward 1995;
On-line dictionary (2002).
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Figure 3.1: A hypothetical model of time related sequence of possible biological effects of reduced water
quality. Source: (Sastry and Miller 1980:267).

Even with significant development and broad use of biomonitoring models, in order to
study the environmental conditions, a symposium held (in the late 1980s) on this subject
for the Southern California Academy of Sciences dealt with a number of issues. Many
questions were raised on the concept and the ‘rules’ administered for appropriate use of
indicator organisms, either based on single species or community indicators, to particular
problems:

(i) How would the true indicators be distinguished from biological anomalies?
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(i) How would one select the kinds of organisms that would be appropriately
associated with conditions and events at various scales in time and space?

(ii)) To what extent would any one particular species represent other species in
the same environmental setting?

(iv) Could the indicator concept be applied to modern sampling and analytical
technology?

(v) How would the anthropogenic disturbances be distinguished from those of
natural phenomenar

(vi) How would the differing databases be best matched with deferring scales?

(Soule and Kleppel 1988).

This illustrates the major problem identified in pollution monitoring methods using
indicator organisms of the 1980s. An inability to distinguish the exact cause for the
observed biological responses, either arising from environmental or from natural causes
was a major concern (Soule and Kleppel 1988). More than two decades on, the situation

remains the same and is discussed below.

A website, posted by the National Center for Environmental Research (NCER) Office of
Research and Development (EPA, United States), consists of a list of science questions
and issues, addressed by the institute researchers on the use of ecological assessment and
indicators:

“...How Can We Identify and Develop Molecular and Cellular Indicators for Monitoring
and Assessing Changes in Genetic Diversity in Response to Environmental Stress?

How Can We Relate Indicators of Population and Community Structure and Function to
Exposure to Chemical, Physical and Biological Stressors?

How Can We Assess Ecological Condition Through Chemical Indicators?

How Can We Use Remote Sensing Techniques to Develop Landscape Indicators that
Quantify and Characterize the Geographic Extent of Key Attributes as They Relate to a
Range of Environmental Values?

How Can We Assess Ecological Condition Using Indicators that Incorporate Multiple
Resources and Spatial Scales? ...”

(National Center for Environmental Research (NCER) Office of Research and
Development (ORD) - US Environmental Protection Agency (EPA) 2000:1)
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Funded through this programme, many academic institutions have been conducting
research in a wide spectrum of disciplines with an aim of developing integrated
approaches for ecosystem modelling. The research effects are focused on developing a
new suite of environmental integrative indicators for use in estuarine and other long-term
environmental monitoring programs, span from DNA analysis to integrated ecosystem
modelling techniques with interfaces to geographical information systems (GISs)

(http://es.epa.gov/ncer/starreport.html).

Despite all this investment made by industry, government and academia in reviewing,
debating and complying with countless number of environmental regulations, ecologists
are still unable to exactly notify the consequences of human induced impact particularly,
in marine habitats (Osenberg and Schmitt 1996). The uncertainties on environmental
response to various causes remain the same; except for some changes in the terminology.
In fact, the more we learn about the ecosystems the greater the complexity revealed
despite the advances of science and technology. The major issues for this could be
(i)  the inherent complexities of ecosystem structure and functioning (Clark et al.
2001), and
(i)  the twentieth century approaches, based on gaining in-depth knowledge that
led to decisions with a fragmented image of nature (Bowler 1992).
(i)  the sectoral resource management approaches that looked only into the social
and economic aspects of developmental activities without any concern for

the environment and its consequences on biodiversity (Reid 2000).

These considerations will be further elaborated upon in section 3.4 Ecosystem modelling.

3.2.2 Developments in biomonitoring

Biomonitoring that involves the use of biological responses could be classified into two
broad categories; either based on the use of indicator species or indicator communities.
Monitoring methods of both categories can be carried out at different levels, such as

. . . . . 18
macromolecular, cellular, using organs, organisms, population and biogeocenosis *. The

18 o . . . ‘
“A combination on a specific area of the Earth’s surface of atmosphere, mineral strata, soil, vegetation,

animal and microbial life, water-possessing its own specific type of interactions of these components and

interchange of their matter and energy among themselves and other natural phenomena...” (Mackey

2003:1).
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advanced indicator species methods enable ecologists to analyse biochemical,
histological, morphological and physiological changes in individual organisms, however,
are successful only in certain specific organisms, such as filter feeders, clams and mussels
(Biological Monitoring 2000). The changes observed through these methodologies are
then related to the identified environmental stressors, as explained in Sastry’s (1980)
model; thus using these organisms as true indicators or biomonitoring devices of

environmental changes. Such organisms are sometimes referred to as sentinel organisms.

The following is a modern model that provides an overview on the levels of organisation
and their associated biomonitoring measures:
(i) Individual - Organism - genetic mutations - reproductive success - physiology
- metabolism - oxygen consumption, photosynthesis rate - enzyme/protein
activation/inhibition - hormones - growth and development - disease
resistance - tissue/organ damage - bioaccumulation
(ii) Population - survival/mortality - sex ratio - abundance/biomass - behaviour
(migration) - predation rates - population decline/increase
(i) Community - Abundance ("evenness") of an organism or organisms -
Biomass - Density of an organism or organisms - Richness (variety) - number
of species, size classes, or other functional groups, per unit area or volume, or
per number of individuals. - Diversity - the richness given the relative
abundance of each species or group.
(iv) Ecosystem - Mass balance of nutrients.
(Adams and Brandt, 1990) from (Biological Monitoring 2000).

The next selection looks into the biomonitoring concepts, in New Zealand’s perspective.

3.2.3 New approaches for developing indicators; New Zealand’s perspective

Efforts by the New Zealand government (ministries, city and regional councils) as well as
academic institutions to develop environmental indicators have been significant, in effect
both have made considerable progress in introducing a systems approach to preserve

natural habitats.

Ministry for the Environment: The Ministry for Environment (MfE) takes responsibility

in reporting on the state of New Zealand environment, providing advice to the
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Government on practical implications of environmental laws and policies, and also on
environmental implications arising from other Government polices. The Ministry is also
responsible for initiating any necessary actions for improvements in environmental
management. However, most of the responsibilities on the day-to-day environmental
management rely on the local government, such as the regional councils. The significant
areas of policy on which MfE is responsible for resource management include land, air
and water quality; waste, hazardous substances and contaminated sites; protection of the
ozone layer; and climate change. The Ministry also contributes towards interdepartmental
work on biological diversity, marine environmental issues, energy and transport. It
consults with the local government, resource users, resources managers and the others,
likely to be affected by changes in policy or legislation and provides information, advice

and assistance in this regard (Ministry for the Environment 2002).

Recent efforts by MfE with an aim of developing a set of indicators for its
Environmental Performance Indicators programme for implementation in New Zealand
are outlined in (Ministry for the Environment 2002; Ministry for the Environment 2002;
Ministry for the Environment 2002). The Ministry is working on developing a set of
indicators based on a pressure-state-response (PSR) model with cause-effects-social
response logic, proposed by the Organisation for Economic Corporation and
Development (OECD) (Chapman 1999). This PSR model approach has been adopted
by many international institutions (see section 3.5 Contemporary ecosystem modelling

techniques).

Department of Conservation: The Department of Conservation (DoC) is responsible for
implementing policies for the conservation of the natural and historic heritage of New
Zealand. The following statement covers the areas declared as ‘conservation land’:

“... The Department manages or administers on behalf of New Zealanders:

national parks and forest parks

reserves and conservation areas

protected indigenous forests

protected inland waters and wild and scenic rivers

indigenous/native wildlife

non-commetcial freshwater fisheries

historic places on conservation land
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marine reserves and protecting marine mammals offshore islands set aside for

conservation.” (Department of Conservation 2002:1).

These listed categories cover only a third of the main land of this country thus the rest is
conserved by the Resource Management Act 1991. Most of the ‘conservation land’ is
steep, inaccessible, mountainous and climatically harsh and does not entirely represent
the major ecosystems of New Zealand. Nonetheless the Department’s mandate is to
preserve the whole country’s natural and historic resources on and off conservation land;
hence the conservation of private land is facilitated through the Resource Management
Act 1991. Through the statutory planning processes under this Act, the regional and
territorial local authorities administer the private land. The main purpose of this Act is to
promote sustainable management of natural and physical resources. The Act outlines
procedures for the recognition and protection of natural and historic values in the

preparation of policies and plans by the councils (Department of Conservation 2002).

Meanwhile ecologists and academic researchers also have made significant attempts in
developing effective and efficient environmental indicators for sustainable ecosystem
management. The new criteria show a shift, in that they place more emphasis towards
the protection of ecosystems (Norris 1999). The following guidelines (consisting of
three key elements) are set out for developing useful indicators to assess the
environmental conditions in New Zealand and Australia; an indicator should,
(i)  be more ecosystem specific, rather than focusing on human health as in the
past,
(i) be more focused on the actual issues or problems caused by physical,
chemical and biological stressors rather than on individual indicators and

(i)  be risk based.

The new approach aims to develop guideline ‘packages’ with key performance indicators
and trigger levels in these indicators, for each issue and wherever possible for each

ecosystem type.
The following are the requirements suggested for an effective environmental indicator

based upon (Norris 1999); it should,

(i)  be able to quantify and simplify the complex phenomena,
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(i)  have scientific validity, operational at appropriate geographic scales,
(i) be able to respond predictably to environmental changes,
(iv) be easy to understand and

(v)  be forward looking or predictive.

None of the conventional methods are able to precisely define the ecosystem response to
human activities in a simple, easily understandable format owing to lack of good design
with clearly set objectives (Nortis 1999). Mann (1982) was correct; the models of the
1980s gave ecologists insights into ecosystem complexities, but were not able to predict
ecosystem behaviour as needed for resource management purposes. Even after two
decades, the issues remain the same. This shows that the search for ideal environmental
indicators that could point out a more complex situation as seen in other fields, such as

GDP, still continues.

With that introduction to biomonitoring methods and issues in analysing human induced
environmental impact on natural habitats, in the next section traditional data analysis
methods, used by local and international researchers to study environmental and

biological systems separately or together, are elaborated upon.

3.3 Statistical methods for biomonitoring data analysis

Traditional statistical methods used for community based multivariate analysis to study
the relationships between environmental parameters and benthic organisms of marine

habitats are explained, based upon (Smith et al. 1988)

The multivariate analytical techniques simultaneously consider more than one single
dependent variable in the analysis, whereas univariate methods consider only a single
variable at a time. All methods discussed here are based on a model (figure 3.2) that
consists of three main steps:
(i) In the first step the biological data is analysed separately to determine the
community patterns in them.
(i) In the second step the environmental data is prepared in a format suitable for
use in the next step.
(iii) In the third and final step, the community patterns determined in the first

step are related to the environmental factors.
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Figure 3.2: Flow diagram showing the interrelationships between the methods used in community

biomonitoring of benthic organisms in a marine environment. Source: (Smith et al. 1988:252).

Step 1: Community patterns in the hypothetical biological data of benthic grab samples

taken at several points, along a chosen offshore transact at different depths, increased by

10 metres, are determined in this step with the use of dissimilarity index. Indices, such as

similarity or dissimilarity, can be used to quantify the community relationships between

pairs of samples. A pair of samples, consisting of similar species composition and

abundance will be assigned a relatively low dissimilarity value and conversely a relatively

high similarity value.

There are some shortcomings in this method; the most important issue is that after a

point the dissimilarity values approach an asymptote as the samples being compared

show greater amounts of biological change (Smith, 1988). At such a point, the
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dissimilarity index value reaches the maximum and the biological changes beyond this
point could not be measured by any further increase in dissimilarity. The procedures to
overcome these issues, such as step-across procedure and ZAD (Smith et al. 1988), only

add more complication to the already elaborate operations.

The use of the dissimilarity matrix to determine the community patterns has limited
interpretation values. Thus cluster analyses and ordination techniques' that utilise the
dissimilarity matrix as their starting point, are used to better delineate the community

patterns in the data (Smith et al. 1988).

Ordination analyses are generally used to display the biological patterns in a
multidimensional space based on the dissimilarity indices. The distance between any two
data points would be proportionate to their dissimilarity factor where the axes represent
the dimension of the space. The projections of the data points on the axes are scores

(Smith et al. 1988).

There are many ordination and classification (or clustering) methods used by ecologists
to analyse the correlations in community based biological and environmental data

(Palmer 2002; Palmer 2002).

Cluster analysis is considered to be complementing the ordination analysis (Palmer 2002).
Among the many cluster analyses, agglomerative hierarchical cluster analysis is often used
in benthic ecological studies. It involves successive pairings of the most similar groups
of samples based on the dissimilarity matrix. The paring is performed until all samples
form into a one large group, generally referred to as a ‘dendrogram’. A two-way

coincidence table facilitates the task of choosing the groups from a dendrogram.

Step 2: In the next step the environmental data is converted into formats for correlating
patterns with the biological data. The multivariate analytical methods used to correlate

the environmental and community patterns are data dependent and if used

19 Ordination techniques are useful operations on community data matrix. Ordination could be defined as
the arrangement of species and/or samples along gradients, consideting it as a synonym for multivatiate

gradient analysis (Palmer, M. 2002)
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inappropriately, may produce misleading, confusing, unstable or incomputable results

(Smith et al. 1988).

Principal component analysis (PCA) is an ordination technique in which a new
composite environmental variable is created from the original set of environmental
variables. This process is useful in eliminating the problems of data dependent
environmental variables. The scores on each PCA axis are new environmental variables.
Thus the meaning of these new scores could be studied from the correlations between
the original environmental variables and the scores for the axis, and it is important that

the new environmental variables from the PCA are interpretable.

Step 3: In this step, as environmental gradients are considered to cause changes in the
community, the community patterns expressed by the scores on the ordination axes will

be correlated with the environmental gradients.

So far the statistical methods used for ecological data analysis were looked at. These
multivariate community biomonitoring methods belong to the hypothesis testing class of
analysis. Conversely, data mining techniques belong to exploratory data analysis, the
exploration of novel patterns and relationships within the variables from raw data and
interpreting them. In consideration of the current need for modern tools to gain more
insight into ecosystem response with limited knowledge on the physical interactions of
natural processes, the latter could be argued as more appropriate for ecological data
analysis. The findings of exploratory analyses may then be used in hypothesis

postulation and testing.

In the next section some modelling techniques used to analyse environmental and

biological data are explained.

3.4 Ecological modelling

Modelling in ecology became popular and widely applied, since the early 1960s, their
growth and popularity being coincided with that of the computers (Mann 1982). Old
and the current ecological modelling technique could be classified into two major
categories: (i) gaining insights and (i) making quantitative predictions. The major

problem encountered in these old and current techniques is that they all either tend to
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oversimplify (by ignoring even the very important elements) or very often over
sophisticate (resulting in bulky and expensive models) (Schellnhuber 1999). This in turn
leads to difficulties in developing useful prediction models for resource management

purposes and is elaborated herein.

For instance, the numerical simulation model of energy flow, developed to study the
ecosystem process changes during the seasonal variations in Nargansett bay coastal
system and the like were found to be successful in some aspects (Mann 1982), the
advantages being,
(i) even though borrowed from engineering, they had been successful in gaining
better insights into the complex workings of natural systems.
(i) had given an opportunity to test whether a hypothesis was correct or to rule

it out.

Disadvantages
(i) even to develop and run such closed, non evolving models for hypothesis

testing purposes it required complicated formulae and procedures with every
minute detail, without which such systems could not be programmed to run
on computers. Unlike the engineering systems (where variations can be
measured and worked out with ultimate precision) the natural systems could
not be generalised because of the extensive spatial and temporal variations
observed within an environment and the non-linear stochastic, species
threshold response (Clark et al. 2001) (see chapter 1). These variations make
quantitative predictions practically impossible with the existing methods and
our limited knowledge on natural system processes.

(i)  they would not be used to predict or answer management questions,
involving large, long-term perturbations of human activities on open,
evolving systems, as these simulated systems were deterministic, closed and
non-evolving.

(i11) certain hypotheses would not be defined mathematically and there was no

way of testing them, as these models needed all involved steps defined.

Despite the above model limitations in predicting ecosystem behaviour, a popular class

of simulation models was designed and implemented with considerable success. Among
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them were the simulation models, used in cleaning up of the tidal portion of the River
Thames below London (Longhurst 1978.). The objectives of this study were:

(i)  to identify sources of pollution in the River Thames;

(if)  to establish the significance and effects of individual pollutants;

(i)  to develop a mixing equation for the estuary;

(iv) to forecast the effect of changes in balance of the system and to indicate

management criteria for the stewardship of the river.

The River Thames models, built using a few general concepts, were used to predict the
circumstances that would in turn, return the Thames to a well-oxygenated system. The
following was the summarised statement on the physical oceanography of the estuary
that pertained to the residence time of sewage effluent. ““... A particle of matter
introduced into the tidal water at London Bridge may flow 16 km downriver on the ebb-
tide and return 15 km on the flood and oscillate in this manner for between 6 weeks and
3 months before reaching water where there is a reasonable interflow with the North

Sea...” (Mann 1982:269).

Within a period of three years, the river was turned into a well-oxygenated system due to
actions taken following recommendations derived from simple modelling. A biological
survey carried out in 1957 showed no fish in the tidal reaches for many kilometres below
London. Following this, in the early 1960s, appropriate sewage treatment facilities were
designed, constructed and brought into use. By 1965 fishes were seen returning and by
1970, over 50 species had returned (mainly marine) in the lower half of the estuary near
London. This led analysts to conclude that the model had served its purpose, even
though the data collected during the rivet’s recovery period of fish species was different
to that of the predictions by the model. The success of the River Thames model has

been elaborated in many later studies (Mann1982).

Longhurst (1976) in (Mann1982), argued that despite the oversimplification of biological
oxygen in demand (BOD) and dissolved oxygen (DO) interactions on a validated
physical time-dependent model and integrated equations for the conservation of volume
and materials, the models had been successful in predicting the real situations. They
singled out a few easily handled variables that influenced the important properties of the
river’s ecosystem. Similarly, if such important properties and their indicators would be

identified, they could be successfully applied to analysing the long-term effects on an
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ecosystem and its biodiversity, for sustainable environment management (Mann 1982).
Further argued that ecosystem modellers should focus on developing theories and
models to establish the connection between the dynamics of populations and the
behaviour of ecosystems, similar to that of the statistical mechanics, which provides a

common connection between the motion of particles and the behaviour of a gas.

Clark et al. (2001) as well expressed a similar view in that argued that the slow ecosystem
responses that are invariably left out in the current ecological modelling techniques
should be included. The ‘large inherent uncertainty’ arising from strong nonlinearities
and stochasticity could not be explained as the impact on ecosystem being neutralised or
mitigated. Instead, the ‘slow variables’, that could be significant in ecological processes

should be identified and used for modelling ecosystems.

Conventional methods adopted to model the Earth’s ecosystems and to predict their
system dynamics, reviewed until now, seem to be aimed at handling either the
environmental or biological system changes alone. In the next section modern modelling

approaches developed to studying ecosystems with a systems approach are looked at.

3.5 Contemporary ecosystem modelling techniques

Scientific publications (Hammond et al. 1995; Hammond et al. 1995; Hammond et al.
1995; Clark et al. 2001; Clark et al. 2001; Harris 2002), reviewed in section 3.1 Need for
changes in environmental management, illustrate the phenomenal quest for new
approaches with integrated models, to inform sustainable environment management.
However, only Hammond et al. (1995) elaborated upon the pressure-state-response
(PSR) and information pyramid models, originally developed by the Dutch government
to assess the state, pressure and response of an environment. Details on the application
of a suite of indicators, within the PSR framework, to ecosystem modelling are discussed
herein and in chapter 7, based on a chapter titled ‘Environment indicators: a systematic

approach for sustainable development (Hammond et al. 1995).

The PSR framework and information pyramid models provide a means to transform
primary (raw) data sets into simple and easily interpretable environmental indicators,
especially for non-scientific users, such as stakeholders and the general public, whose

involvement has been emphasised in the preservation of our global ecosystem.
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The PSR model consists of the following:

1)  pressure indicators, as indicators of the stress on the environment or natural
resources. The indicators are designed to measure the various pressure
sources from human activities to discuss why it is happening,

i)  state indicators or indicators of changes, to measure the changes or trends in
the physical and biological system state of the natural world. They are
developed to discuss matters pertaining to what is happening to the state of

the environment or natural resources and

iif) response indicators to measure the responses resulting from the measures
and policies adopted to address the environmental issues or to discuss
matters pertaining to what we are doing about it and whether our response

activities have improved or worsen the issues.

The information pyramid (figure 3.3) consists of highly aggregated indices on the top of
the pyramid with the primary data, from monitoring programmes at the bottom. Based
on this pyramid structure raw data are transformed into concise indices, provided that
knowledge on the physical processes analysed is available. These indices are then used as
indicators of the state, pressure and response of ecosystem aspects at many levels, such
as community, sectoral and regional, as they are aggregation of raw data. The use of
environmental indicators for national and international decision-making procedures is

considered as important for the better use and management of our global ecosystem.

Indicators

Analysed

Primary data

Figure 3.3: The information pyramid. Source: (Hammond et al. 1995:1).
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Figure 3.4 The Pressure-State-Response framework indicators (Hammond et al. 1995:11).

Even though the amount of environmental monitoring data has increased over the last

six decades, there are wide gaps in them that inhibit the development of an information

base argued (Hammond et al. 1995). Further introduced a conceptual model (figure 3.4).

to overcome this problem and to direct the development of an information system in

easily understandable formats. Such information systems, in their structure consist of a

matrix of environmental indicators, developed within the PSR framework. For details on

matrices of environmental indicators adopted by WRI and the World Bank, see

appendices 3 and 4.

The World Bank’s matrix of indicators was developed based on an explicit model (figure

3.5) that illustrates the human interaction with the environment within the PSR

framework, recommended by OECD

and UNEP.

The issues in the matrix of indicators are classified into four major groups:

i)  source indicators

i)  sink of pollution indicators

i) life support indicators and

iv)  human impact indicators.
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Figure 3.5 A model of human interaction with the environment designed by the World Bank, Source:
(Hammond et al. 1995:15).

Life support indicators, the group that is relevant to this research, could be seen classified
into further three groups based upon (Hammond et al. 1995); biodiversity, oceans and
special lands (such as wetland). However, no aggregation process for the life support
indicators, within the PSR framework was set in place, at the time the report was written.
This points out the major drawback with this approach, in that the approach cannot be
used to develop indices unless sufficient knowledge on the physical processes involved is
available. These dubious indicator classes will be elaborated upon in chapter 7. In the
next section, literature reviewed on SOM applications in ecological data analysis are

elaborated upon.

3.6 Ecological modelling with SOM techniques

MOPED: Modelling Patterns in Environmental Data (MOPED) was developed by
NIWA. In MOPED SOM techniques are applied to mapping of patterns within
environmental data, such as species distribution and elevation of freshwater bodies.
SOMs are found to be successful in predicting the biological assemblages from the
available habitat data. They are used to predict the species that should be present in
certain streams, when their altitude is presented (Jowett 2001). In this application SOM

is used to find the missing values in the input vectors.
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In (Ce’re’ghino et al. 2001), SOMs are successfully applied to clustering the community
patterning in the regional distribution of 283 lotic macroinvertebrate species within data
consisting of four insect orders (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera =
EPTC) from the Adour-Garonne drainage basin of Southwest France, covering an area
of 116,000 km?). The aim of the research was to provide a stream classification based on
characteristic species assemblages using the occurrence of these species at 252 sampling
sites. SOMs were found to be successful in projecting this high dimensional data set
onto two-dimensional (U-matrix) display for easy visualisation while preserving the
topology of the input vectors. The SOM displays identified the characteristic EPTC
distribution underlying the spatial distribution within the raw data, which had no
information included in this regard. In this application, SOMs provided a means to
analyse the data with four orders (EPTC), covering a relatively larger region that
consisted of high mountain to plain and coastal areas whereas, previous studies had been
confined to a single taxonomic group (one insect order) and within a single valley or
mountain. The study also stated that the SOM classification of EPTC distribution could

be extended to detect environmental changes in the region.

In (Giraudel and Lek 2001) an attempt is made to compare the SOM based methods
with other conventional data analysis techniques. In this study, a few, more widely used
techniques of ordination, such as Polar ordination, Correspondence analysis (CoA),
Principle component analysis (PCA) and Non metric multidimensional scaling (NMDS),
were compared with SOM analyses, using data from upland forest in Wisconsin, in US.
The limitations observed with the above conventional methods are: strong distortions
with non linear species abundance relations, PCA’s horseshoe effect due to unimodal
species response curves, and CoA’s arch effect outliers, missing data, and disjoined data
matrix. The paper described the SOM algorithm, as fully usable for ecological data as a
complementary method to the existing classical techniques, especially for exploratory

data analysis to study community ordination.

River InVertebrate Prediction And Classification System (RIVPACS). The Environment
Agency researchers in England and Wales use this software, in which biological data
(macroinvertebrate samples collected from rivers and streams) from reference sites are

used to distinguish the extent of damage caused to indicator species in the polluted sites.
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Biological effects of both polluted and reference sites are compared using the
environmental parameters unlikely to be impacted (such as chemical and physical
characteristics). It is stated in the article that the river data mappings has given the
agency biologist insights into the inter-relationships between the river quality monitoring
species taxa, referred to as (BMWP). The system demonstrated advantages over
traditional river quality assessment systems and received positive feedback during the
initial testing by the end users. The software is now modified and used in Australia, New
Zealand and Canada as well to analyse rivers and streams (National River Health

Program 2002).

A survey on the applications of artificial intelligence in biological surveillance of river

(13

quality studies stated that “... An unsupervised-learning, the Self-Organising Map
(SOM), was shown to have considerable potential for diagnosing different types of
pollution....” (Murray-Bligh 1998) in RIVPACS; software used to predict the biotic
indices used for establishing the water quality index based on the distribution and

abundance of BMWP taxa (Murray-Bligh 1998).

AUSRIVAS: Australian Rivers Assessment System (AUSRIVAS) was first developed for
fresh water systems in Canberra by the National River Health Program (NRHP), to
assess river health, based on the British RIVPACS II program. The NRHP was formed
in response to the growing concern in Australia for maintaining ecological values

(National River Health Program 2002).

These research efforts show that SOMs can be applied to modelling ecological data
incorporating spatial variations at regional scales. In the next chapter, how SOMs could
be best applied to modelling ecological data at different scales (such as local, regional,
global) and levels (such as environmental, ecosystem), incorporating spatial as well as
temporal variations using the available data (from monitoring programmes and the
World bank’s statistical tables) are elaborated. SOM approaches are investigated for this
purpose based on their applications in industrial system process modelling and financial

data analysis.
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Summary

Strong moves, supported by scientists as well as national and international institutions, to
enforce changes in environmental management and initiatives for redirection in scientific
research, with an aim to improve co-ordination among a range of professionals were
elaborated. Various ecological modelling techniques (conventional and contemporary)
used to analyse environmental impact on natural systems were discussed. It is concluded
that there is an urgent need for new models, to analyse ecosystems and to predict their

behaviour to enforce sustainable environment development.

Chapters 2 and 3 revealed the literature reviewed for this research on ANNS, their
applications to real world problems, and ecosystem modelling techniques, including
SOM methodologies applied to ecological data analysis. The next chapter illustrates the
experimental methodology being examined in this research on how SOM methods could
be best applied to modelling ecosystem structure, functioning, its dynamics and
biodiversity by enhancing the already tested SOM methods, applied in community

ordination studies, only of selected systems and at particular levels.
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Experimental methodology

Scientific publications, reviewed in chapter 3 emphasise the need for novel ecosystem
modelling techniques and radical changes in resource management practices to prevent
our global ecosystem from environmental deterioration. In that context, co-ordination
among a range of professionals is needed, in particular between scientists, stakeholders
and the general public so that informed decisions on ecosystem use are made.
International institutions, such as World Resources Institute (WRI), United Nations and
Organisation for Economic Corporation and Development (OECD), reiterate the use of
a systems approach to inform sustainable environment management. The experimental
methodology being investigated in this research to model complex natural processes

using SOM methods, with a systems approach is elaborated.

SOM techniques are applied to modelling cryptic ecosystems in a manner, similar to that
applied in highly complex and diverse industrial process monitoring and control. SOM
analyses, successfully applied to integrated analysis of financial data, are also examined
for collective analysis of disparate data from environmental monitoring programmes and
economic systems, to study the effects of urbanisation on natural habitats. Based on the
evidence of earlier SOM applications to ecological data analysis at limited scales (see
chapter 2), it is assumed that quantitative analysis of environmental and biological
monitoring data using SOMs, could be further extended for modelling natural systems.
In this research, SOM methods are applied to modelling diverse ecosystems, not only
incorporating spatial, as in previous studies, but also temporal variations, at different
scales, and levels to gain insight into environmental ramifications of human influenced
activities. This could be a viable alternative to physically modelling cryptic ecosystems,
and analysing dissimilar data to study economic trade-offs on ecosystem functioning and

biodiversity loss.

4.1 SOM applications to real world problems

“The Self-Organizing Map (SOM) with its related extensions is the most popular artificial
neural network algorithm for use in unsupervised learning and data visualisation. Over

3,000 applications have been reported in the open literature, and many commercial
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projects employ the SOMs as the tool for solving hard real-world problems ... ”
(Allinson 2001:1). The SOM applications could be broadly classified into the following
basic categories based on (Deboeck 1998b):

®
(i)
(iii)
(iv)
)
(vi)
(vii)

Market and customer profiling

Customer scoring and behavior analysis

Financial and economic modelling

Medical application

Knowledge management and discovery in databases
Industrial process optimisation and quality control

Scientific research

Of the above listed SOM applications, financial and economic modelling and industrial

process optimisation and quality control, are of great interest to this research. The

following are the main steps of SOM applications in financial, economic and marketing

disciplines based on (Deboeck and Kohonen 1998a):

)

(i)
(iti)
(iv)
)
(vi)

(vii)

Define the purpose of analysis

Select data source and quality

Select data scope and variables

Decide on how each of the variables would be preprocessed

Choose relevant sample data sets that represent the available system

Select clustering and visualization method(s), giving more consideration for
the use of hybrid methods.

Determine parameters: in the case of SOM, desired display size, map ratio,

required degree of detail;

(viii) Tuning of output or map for optimal clustering and visualization;

(i)
()
(xi)
(xii)

Interpretation of results; checking the values of individual nodes and clusters;
Define or paste appropriate map labels;
Produce summary results that highlight the differences between clusters;

Documentation and evaluation of the results.

These steps are used as a guide in this research and for further details the original

publication (appendix 5) should be consulted. In the next section, the theory behind the

experimental methodology of this research is elaborated.
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4.2 SOMs for environmental and biological process modelling

The experimental methodology of this research is based on the fact that the dynamic
equilibrium of naturally evolving ecosystems (habitats) could be modelled using SOM
techniques, as applied in industrial process monitoring and control (see chapter 2). A
physical system change that instigates counter balancing changes in the biological system
in turn would cause a small shift in the whole systems equilibrium; continued changes
make the equilibrium dynamic. Similar complex, industrial system process dynamics is
successfully modelled using SOM methodologies. Hence, the approach to apply same
methods to modelling ecosystem dynamics should produce promising results as SOMs
have already been proven to be useful in depicting the biological assemblages of

freshwater and forest habitats (Ce re ghino et al. 2001; Giraudel and Lek 2001).

The possible SOM application to modelling the dynamic equilibrium of the Long Bay -
Okura Marine Reserve’s intertidal zone, is illustrated herein. The dynamics of this
system equilibrium depends on the changes its physical and biological systems may go
through, either induced by humans or owing to natural causes (figure 4.1). Hence, it is
possible to track the intertidal system dynamics using SOMs created with appropriate
measurable physical parameters and their corresponding biological indicators (that show
response to the chosen physical changes), and are investigated in this study. Using the
changes on a SOM, created with the system variable data, Simula et al. (1999) studied the
process dynamics of diverse and complex industrial systems, referred to as sensitivity
analysis (see section 2.3.4 Applications of SOMs in industrial process modelling). A
change in an environmental parameter that instigates a chain of reactions in the
biological system would move its current position (node) to a different one, in the SOM.
By following the changes on the SOM map, Long Bay intertidal zone dynamics could be
studied. The SOM component planes of the physical parameters and biological species
should enable the detection of potential indicators within the reserve’s coastal habitat.
Decision support systems with the environmental and biological parameters could be

developed to depict the system scenarios such as highly polluted or improving situations.

In consideration of above theory, SOM methodologies using ecological monitoring data
sets should be able to track diverse complex natural system dynamics without any
physical models, as used in industrial process monitoring and control. In cases where

knowledge on ecosystem dynamics is limited, map component planes could be studied to
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gain insights into the contributing factors, such as various human activities, or any

correlations within ecological parameters, and even with socio-economic indicators.

The Long Bay-Okura Marine Reserve's
intertidal zone; a small change in one
of its physical or biological system
parameters would move the systems
equilibrium from its current state to a
different one in the corresponding
direction.

v
Figure 4.1: Dynamic equilibrium of the Long Bay-Okura Marine Reserve’s intertidal ecosystem that

Different states, the Long Bay-Okura
Marine Reserve's intertidal zone
ecosystem can move into, depending on
the changes in its key parameters. At the
edges are the extreme states (such as
highly polluted) and any move in the
direction of a polluted state would indicate
the systems move towards such a
scenario.

depends on the changes its physical and biological systems may go through either induced by humans or

owing to natural canses or global variations. A small change in an environmental parameter will canse a

change in the biological system that would be reflected in its biological assemblage. Any such change would

move its position on the SOM, as seen in the industrial systems sensitivity analysis (see figure 2.6).
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The following are the assumptions made in the application of SOM techniques to

ecosystem modelling:

®

(i)

(i11)

(iv)

)

There is insufficient overlap to natural and industrial systems, as analysts of
both disciplines could not yet accurately elucidate or model the physical
process of these systems. Scientists do now agree that despite the significant
knowledge, gained in different advanced areas of environmental and other
scientific disciples, future research needs to be redirected to accurately predict
our global ecosystem response to human activities and natural causes, and to
aid sustainable environment management. This is discussed in the literature
review chapter, Ecological modelling: A review.

Financial examples (in section 4.6 SOM applications) with little prior
knowledge on the data were successfully analysed using SOM based tools,
hence the approach should produce good results with ecosystems. Again,
ecologists do not have a clear knowledge on the long-term effects of
environmental and biological processes; in particular on the effects of human
induced causes. Similar to the financial data analyses, SOMs of ecological
data could provide an alternative means to gain more insight into ecosystem
structure, functioning and biodiversity.

Historically, ecologists have been successful in applying engineering,
statistical and mathematical models to ecosystem modelling. These borrowed
models permitted ecologists to gain insight into many complex ecosystems
(Mann 1982). Similarly, the use of SOM modelling tools based on the
approaches of industrial process engineering could provide a means to track
the complex interactions within natural processes.

Ecological monitoring data sets are not analysed to their potential (Vant
1999) and the use of SOM based data mining approaches can enhance the
extraction of useful knowledge from the monitoring data. SOM based data
mining tools have enabled analysts of other disciplines and areas, such as
medicine (Shalvi and Declaris 2000), text mining (Sallis et al. 1998), financial
and commercial sectors (Deboeck and Kohonen 1998b), to extract useful
knowledge from raw data. Thus should produce success in ecological
monitoring data mining as well.

SOMs use numerical data, hence they could provide a form of quantitative

analysis, a method for converting abundant ecological data into useful
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information, fulfilling the urgent need, described to be a challenge (Vant

1999) in this field.

The following are the four types of SOM techniques experimented in this research for
modelling ecosystems:

(i)  cluster analysis,

(i) component dependency analysis,

(i)  decision support systems and

(iv) time series analysis or trajectory.

As this research is aimed at exploring the SOM based approaches for natural habitat
modelling, hybrid methods are not included for clustering and visualisation, however,
SOM results are validated based on their cluster statistics. Map parameters are decided
depending on the volume of data and clarity needed for the analysis. For clustering and
component analyses, few nodes and for trajectories more nodes are used. The best

results are achieved by fine tuning the maps on a trial and error basis.

So far the SOM approaches to be experimented for ecosystem modelling were
elaborated. In the next section, the generic practical limitations, encountered with
conventional data analysis methods of ecosystem modelling and the remedial measures
taken to overcome them are discussed. More details with regard to these issues will be

discussed in the relevant case study chapters

4.3 Environmental pollution modelling issues

The major issue with the currently used conventional data analysis methods for analysing
environmental pollution, is the detection of correlations between the observed
environmental and biological system changes within the monitoring data, especially in
establishing the exact cause of pollution (Sastry and Miller 1980:267). In most of the
conventional methods environmental data and biological data are analysed separately and
then the results (the gradients) of both analyses are compared for any correlation
between them (see chapter 3). However, such conventional methods with complex
statistical and mathematical formulae, such as Before-After-Contorl-Impact design
(BACI), are described to be incapable of establishing the link between the causal

processes and their environmental effects succinctly and unambiguously (Stewart-Oaten
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1996; Thrush et al. 1995). For instance, a study by Walker et al. (2000), where BACI

design methods were used to analyse the environmental and biological monitoring data

obtained from selected beaches, along the northeastern coast of Auckland in New

Zealand, failed to produce conclusive results. The aim of the monitoring programme

was to detect any deviation on the annual changes in the coastal population dynamics

and if so, to find whether its was a result of the urbanisation in near shore ot not.

The additional problems encountered in ecosystem modelling other than the major issue

discussed above, are:

@

(i)

(iif)

(iv)

)

(vi)

Dimension of the data sets: There is a need to reduce the dimensionality of
the data set without loosing useful information. This is seen to be impossible
with traditional ecosystem modelling methods (Thrush et al. 1995).

Inability to understand complex mathematical formulae: Models borrowed
from engineering consist of very complex formulae. They are difficult to
comprehend and also show limitations (Stewart-Oaten 1990).

Confidence problems in prediction: The currently used conventional models
have very high confidence measures that are beyond acceptable ranges.
These measures are introduced to overcome the gaps arising from our lack of
understanding on ecosystem structure and functioning (Thrush et al. 1995).
Difficulties in finding the effects of alternative approaches: The need to
predict potential ecosystem trade-offs with alternative approaches is
becoming more imperative for sustainable resource management, which is
found to be impossible with the existing methods.

Defining physical models owing to lack of fundamental knowledge (Ambrose
et al. 1990)

Defining properties of ecosystem. (Ambrose et al. 1996)

The following studies of SOM based approaches to ecosystem modelling using species

assemblage data, have been successful in overcoming the above stated limitations;

@

(i)

Giraudel and Lek (2001) analysed forest species composition data using
SOMs to look for any patterns in them. In this study no environmental data
was incorporated.

In (Ce’re’ghino et al. 2001) a stream classification based on characteristic

species assemblages was developed, again with SOMs, using data that
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(iif)

(tv)

consisted of 283 species at 252 sampling sites. The approach enabled the
analysts to study the spatial distribution of 282 lotic macroinvertibrates
species from four insect orders: Ephemeroptera, Plecoptera, Trichoptera and
Coleoptera = EPTC) in the Adour-Garonne drainage basin in south-western
France. The four major FPTC regions were characterised within the drainage
basin along with the theoretical species assemblages. The study established a
number of species characterising each region ranging from 45-159, also
correlated to the spatial difference in EPTC assemblages. The analysts intend
to use this technique as a means to compare the stability of theoretical
assemblages for biological surveillance, assuming that any change in the
species composition within a given EPTC region as a indication of changes in
the environment.

In (Jowett 2001), fresh water body attributes along with species were
modelled using a SOM based approach (MOPED). The SOM application,
developed to find the missing values of fish species for freshwater systems of
different altitudes, produced promising results. In effect, MOPED was able
to find the ideal species composition for a particular freshwater body when
ted with its altitude.

In (Walley et al. 2001; Walley and O'Connor 2001) SOMs are used to analyse
the river water monitoring data. The report concluded that the SOM
methods of classification/ diagnosis to be consisting of considerable potential
not only in river quality monitoring but also in other environmental fields.
Techniques similar to SOM clustering were utilised to depict the species
community changes of freshwater systems in (O'Connor and Walley 2001;
Walley et al. 2001). The system uses SOMs to produce information on the
extent of the pollution at a river site by comparing its biological assemblage
with that of similar unimpacted reference cites, using environmental

parameters unlikely to be affected.

See chapter 3 for details on these SOM applications.

4.4 Procedure for SOM applications in ecosystem modelling

The following are the steps (figure 4.2), followed to collectively analyse the

environmental and biological data of natural habitats analysed herein:
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(i)  Initially, the biological, physical/ environmental and economic system data

are preprocessed for time synchronisation and then combined into one file.

By doing this the problem of environmental readings not coinciding with

biological system readings is overcome.

(i) Missing values, such as missing data in biological sampling, are deduced by

interpolation based on domain expertise. In addition, software that is capable

of handling missing values is used for analysing incomplete fused data sets.

Physical system data

I

Biological system data

Socio-economic data

'

I

Preprocess
physical system data

Preprocess
biological system data

Preprocess
Socio-economic system
data

T~

Physical, biological and
socio-economic data

l

Create SOM maps

!

Tune SOM maps

I

Seek expert advice
Look for patterns

'

Interpret maps based on
expert advise

/

Confirm map results with
conventional methods
where ever possible

Figure 4.2: Flow chart showing the measures taken for collective analysis of environmental and biological

system data in this research.
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The SOM approaches based on the steps (figure 4.2) to overcome the problems with

conventional methods are further illustrated in detail in case study chapters.

So far the approaches and assumptions to apply SOMs to ecosystem modelling were
discussed. In the next section, Kohonen’s SOM principles and their applications in

industrial engineering and financial data analysis are elaborated.

4.5 Kohonen’s SOM algorithm

Kohonen’s SOMs (1982) are two layered, feed forward artificial neural nets based on an
unsupervised training algorithm that enables the output layer nodes to self organise
themselves to preserve the patterns of input vectors. The abstract relation between the
input (sensorial) signal and the synaptic adaptation of neurons was first mathematically
resolved by Tuevo Kohonen and the learning rule he put forward was a quite simple one,
named after him (see chapter 2). The neurons on the output layer are uniformly spread
out, functionally connected to their neighbouring nodes. Each node in the network has a
weight factor 7. The components of this vector represent the strength of the synapse
connections to the input neurons. In the SOM algorithm these weights can adapt
themselves in response to the input signals. During the training process, the nodes in
the output layer are presented with the same input signal »” and the node with the

strongest response is assigned as the winner.

The response of a node is defined as the distance | #»”- 5’ | between the vectors »”and
x’. The closer the weight vector #”of a node to the input vector x’, the greater the
response. Hence, Kohonen’s algorithm could be defined as follows:
(i) The winner node ¢’s weight »” is made more similar to the input vector x’.
(i)  All neighbours of ¢, found within a predefined distance to the winner node,

also change their weight vectors similar to that of .

This modification is proportional (factor a is referred to as the learning rate) to the
difference between the input vector »”, and the corresponding weight vector. Once the
training is completed the Kohonen’s net will become ordered with similar input vectors
of the original data being concentrated to the neighbouring nodes. In mathematical

terms this process could be defined as a non-linear, non-parametric regression. The
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corresponding error function E(»”) with an expectation value converging to a minimum

during the training process, could be defined as

E= /2/9[/ | “w;—x |2<§(px)dﬂx

Where 4, is the neighboring function of node 7 to the corresponding winner ¢ (x7), an

exponential function and g (x’), the density function of the vectors x” in the #-
dimensional data space. The Kohonen algorithm is obtained in a discrete data space by
computing the optimal weight vectors (for minimising I£ (»7)) by gradient descent

(Eudaptics software gmbh, 1998:114-115).

So far the motivation behind the hypothesis to experiment SOMs for ecosystem
modelling as applied in industrial systems and financial data analysis was explained. In

the next section, SOM applications from the latter two disciplines are outlined.

4.6 SOM applications

Possible SOM applications to ecosystem modelling based on industrial engineering and

financial data analysis methodologies are discussed below.

4.6.1 Cluster analysis

SOMs clustering abilities have been successfully applied to grouping of data classes in
financial data analyses by studying the clustering patterns, even when combined with
dissimilar data sets and are elaborated upon. This method is applied to analyse dissimilar

data sets of natural systems in case study chapters.

SOM cluster analyses (CAs) provide a useful tool for initial analysis (IA) (Serrano-Cinca
1998). In this study, the SOM clustering patterns within the economic indicators of
financial institutions, revealed the economic status of the institutions analysed. Data
obtained from financial information systems, such as data banks, was used in the SOM
analyses. IAs that are found to be useful in summarising and scrutinising large volumes
of multidimensional data sets as well as in serious analyses of model formulation are

often undervalued by academics and professional analysts.
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Figure 4.3 a: The Spanish Savings Banks have self-organised according to their geographical
distribution. b: Strategic groups. Source: (Deboeck and Kobonen 1998:6).

In (Serrano-Cinca 1998), the use of SOM techniques to study complex information on
Spanish saving banks, was discussed. In one of the five examples, SOM based IAs were
found to be successful in analysing the strategic positioning of Spanish saving banks and

in formulating a corporate strategy for these banks.

In the study, SOMs created with financial information published by The Spanish
Confederation of Saving Banks, enabled analysts to study the territorial pattern within
the complex data, which had no explicit codes in this regard. The strategic groups of
these saving banks differed in their operations and implementation strategies based on

the region they were located in.

SOMs (tigures 4.3 a & b) not only confirmed these ‘territorial” divisions, but also revealed
more facts, depicting greater precision such as divisions within the regions. This kind of
SOM feature extraction from raw data can be applied to modelling complex ecosystem
dynamics and are explored in case study chapters using ecological monitoring and

economic system data to study the effects of urbanisation on natural habitats.

By selecting appropriate environmental and biological variables, an ecosystems trends,
could be studied as applied in the European Union (EU) economic trends analysis. In a
different example of (Serrano-Cinca 1998), the economic convergence of the EU

member states was studied before the merger, using two distinct sets of dissimilar data.
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The EU merger was an historic event as far as the whole world was concerned and many
business institutions were interested in knowing about the economic situation of these
EU countries, in advance to the merger. Unlike the earlier example, in this analysis there
was an urgency to analyse the macro economic variables of different countries whose
accounting practices were different. To overcome this situation, initially, the
dissimilarities between pairs of countries were calculated as Euclidean distances within
the standardised macro economic variables proposed by the Maastrich Treaty, provided

by the EU, corresponding to 1995.

A second SOM map was created using company financial information that consisted
details on productivity, profitability, etc. of the EU member states, obtained from the
balance sheets and profit and loss accounts of these companies. Here again, it was found
to be impossible to create homogeneous financial information for comparison in an
international context, as the companies from different countries had had different
accounting practices. In fact, comparison of company financial information of such
different countries with different accounting practices was considered to be dangerous.
Hence, the analysts used information obtained from the BACH database that had
homogeneous financial data information of different countries, however, these variables
were different to the earlier study. The latter SOM of 16 financial ratios consisted of
company economic results in relation to the resources employed such as gross profit, net
profit and financial return, and their relative costs such as intermediate consumption,
personal costs and financial charges and their financial structure equity, indebtedness,
debt structure and provisions. Interestingly, the first and the second SOM maps showed

different cluster groupings.

The EU analyses gave details on how data with inconsistent labelling could be
collectively analysed for trends and features, inherent to the issues by studying the SOM
clustering patterns and groupings in the data. These approaches that enabled financial
analysts to overcome the limitations imposed by conventional data analysis methods
could be applied to modelling ecological data from different sources, at different scales
and levels. It could provide an alternative means to overcome the difficulties in
physically modelling the highly diverse and complex natural systems. The SOM
approaches can even used to overcome the issues encountered with the latest

information pyramid model approach within the pressure-state-response (PSR)
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framework (see chapters 2 & 7). Ecosystem processes (natural habitats) at different
geographic scales (such as within an area, region, national) and levels (such as individual
species, communities or environmental system) could be modelled, using SOMs, created
with fused data sets that consists of inconsistent labelling. As SOMs are capable of
clustering input vectors without knowing their class membership, ecological data can be
modelled even without comprehensive knowledge on the complex, interrelated
ecosystem reactions. SOM components could be used to gain useful information on
environmental and biological parameters by analysing the contributing factors of the
observed SOM clustering patterns in the fused data and the correlations within them. In
instances where data is not available on a daily basis, monthly averages or totals could be

used for the analysis and is experimented in case study chapter 7.

SOMs could be used to study the emerging trends at higher levels (such as global trends
in urbanisation and its effects on natural habitats) as used in stock market analysis. The
use of SOM techniques to study the patterns across emerging stock markets in 30
countries (figure 4.4) is discussed in (Deboeck 1998). In this analysis, SOMs were used
to study the patterns in the evolution of emerging stock markets by reducing the
dimensionality of the publicly available data (at the end of 1996) on fundamental and
technical indicators of the International Financial Corporation (IFC). In addition, SOM
maps were also created to compare some individual companies (such as banking,
telecommunication and construction companies) around the globe. Overall, Deboeck
(1998) illustrated how SOM techniques could be applied to grouping countries of similar

features using the similarities and dissimilarities between the various markets.

The SOM grouping of the emerging markets was described to be an important factor in
the allocation of assets between markets. It not only created improved benchmarks but
also reduced the maintenance cost of an emerging market investment portfolio. The
results of the SOM analyses were compared with those of classical asset allocation
strategies and described to have been demonstrated improvements on the return of the
portfolio. The classic methods were normally based on a single criterion, whereas in the

SOM analyses, many indicators were collectively analysed.

Similar to the emerging stock market analysis, SOM techniques using dissimilar data sets

could permit collective analysis of physical system changes and community dynamics to
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improve our understanding on trends and human relationships with natural habitats.

The clustering patterns of SOM maps created with fused data could unravel the common
and distinctive features of the natural systems analysed, even if the data has been
originally gathered by different groups of researchers. This is investigated in case study
chapter 5, where SOMs are examined to analyse the Long Bay-Okura Marine Reserve’s
intertidal data of physical and biological systems from different sources and in chapter 6,

with different monitoring sites along the northeastern coast of Auckland.

SOMs also permit for collective analysis of different sets of variables to study any
possible emerging trends that may arise from the current situation. Analysis on
clustering patterns and relationships in the observed data could help in developing new

hypotheses for further analysis.

A SOM application of financial data analysis at global scale is presented in (Deboeck
2002). The market groupings of countries with similar risk patterns on stock market
investment were studied using data containing financial, economic and stock market
information from 52 markets around the world. This approach is investigated in case
study chapter 7, using the World Bank data to study the global environmental trends
arising from urbanisation and its effects on biodiversity. If proven, the issues with the
currently used information pyramid and PSR concepts (see chapters 3 & 7) could be
overcome using SOM techniques as applied in financial data analysis; it as well confirms

the hypothesis of this research (chapter 1 & 4).

Figure 4.4: SOM of the weekly returns of 30 emerging markets, based on market price indices (market
capitalisation, market dividend yield and P/ E and P/ B rations for 1996). Source: (Deboeck
1998:91).
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It was concluded in (Deboeck 2002) that the SOM grouping of country risk indicators
and stock market characteristics were to be more logical than the Wall Street Journal’s
(WSJ) five groupings of the 52 countries. In addition it is argued in the article that
despite the fact that domain expertise plays a significant role for SOM methods to be
realistic, especially in variable selection and interpretation, still SOM results do provide a
better rationale than conventional methods. More importantly, SOM techniques are
ideal for exploratory data analysis in areas where prior knowledge is insufficient for

hypothesis postulation and testing.

Thesis case studies are aimed at analysing complex natural systems within an ecosystem
framework, using the available disparate monitoring data sets. The first two case studies
are based on intertidal (physical and biological system) monitoring data collected by AUT
undergraduates and sediment deposition rates with subtidal population dynamics data
gathered by the Auckland Regional Council. The original projects of both case studies
were undertaken to study the effects of urbanisation on marine life at Long Bay and the
latter was eventually extended to cover the northeastern coast of Auckland in New
Zealand. The SOM approaches are used to produce visual displays of these fused data
sets to look for hidden patterns (such as annual or any other variations resulting from the
urbanisation on North Shore), in them. The third case study is based on disparate global
data sets on urbanisation and biodiversity. The financial sector examples discussed,
showed that by changing the variables for SOM analyses, one could be able to visualise
the different patterns and their contributing factors along with the correlations, for the
observed patterns. This feature could be applied to distinguishing different groupings
within world countries and to study the reasons for such groupings as well as any

common factors in human influence and their effects on natural systems.

In consideration of the above, SOM analyses could be possibly used as a tool for
integrated data analysis of complex natural systems to study the effects of urbanisation
on natural habitats using dissimilar data at different levels and scales, as applied in
tinancial analyses. Conventional ecological data analysis methods including the complex
BACI and BACIPS series design methods are unsuccessful in discerning the
anthropogenic environmental effects from those of any natural causes (Soule and
Kleppel 1988; Osenberg and Schmitt 1996). Chapter 3 provided details of these studies,

pointing out the inadequacies with these conventional methods.
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4.2.3 Component dependency analysis

The component planes of SOM maps could be analysed to reveal the relationships
between the components used in the SOM analysis and is successfully applied in (Simula
et al. 1999), to a continuous pulp digester of a pulp mill. In this analysis, 11 temperature
sensor readings from the digester side covering a period of half year, were used as SOM
input vectors with one output on quality measurement, the keppa number. These
process variables were selected to study the correlation between the keppa number and
the digester temperatures. The influence of process temperature was known to be the

most important factor in the digester operation.

The component planes of this map are shown in figure 4.5. The black colour patches of
the temperature (# 1 - # 11) components depict high temperature and white
correspondingly low. Accordingly, high temperatures in the first eight measurements #1
- #8 (black spot in the middle of each plane) could be seen reflected in the last plane, the
keppa number by small values (white spot in the middle). The kappa number roughly
correlates (inversely) with the first eight temperature measurements. This enabled the
analysts to confirm the phenomenon, with clear explanations; when the cooking
temperature was high, the delignification reactions were fast and in turn reduced the

keppa number.

Temperature 1 Temperature 1 Temperature 3
Temperature 4 Temperature 5 Temperature 6
Temperature 7 Temperature 8 Temperature 9
Temperature 10 Temperature 11 Keppa number

Figure 4.5: Component planes of the continunous pulp digester. Source: (Simula et al. 1999:12)
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It was further concluded that the keppa number was also dependent upon factors that
were not included in the analysis, for instance the concentration of cooking chemicals
participating in the delignification reaction and keppa number variations could not be

explained.

SOMs are used to analyse the dominant variable in industrial systems. In (Eudaptics
software gmbh 1998), the dominant process variables of a simulated industrial process
were identified from the 16 analysed process variables (such as temperature, speeds and
pressure). Of the 16 components included in the analysis only four are shown in figure
4.6, of which three variables: EB1x Temperature, EHB Temperature and ESx Speed,
carry gently over the map windows. It was concluded that these were the dominant
variables of the above process. These three were stated that together defining a complete
order of the data space. In contrast, Ehm Temperature seems to be distributed non-
uniformly and was described to be a non major role player in the overall process

operation

Similarly, environmental and biological system variables could be collectively analysed to
establish any correlations between them. Component plane analysis on SOMs, created
using fused data sets of environmental and biological system data should reveal the
relationships between the two systems. Furthermore, could be experimented with
SOMs, created with biological system variable data (different species) to study the

dominant factors (indicator species) in them.
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Figure 4.6: Distribution of process variables in SOM map created with 16 contributing variables.
Source: (Eudaptics software gmbh 1998:51).
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A SOM map (Figure 4.7 a) was created using the macro economic data in the US
covering a period of twenty years. The vatiables used in the analysis were: S&P 500 /
CPI, Prime Rate, Treasury Bill (90D), Treasury Bond (30Y), S&P dividend, S&P P/E
ratio, Gold Price / CPI, CPI (rel. change) and unemployment. During the SOM training,

the priority of gold price was set to 0.0001 in order to associate it with the map.

In Viscovery (a commercial software developed based on Kohonen’s SOM algorithm),
by making the priority of a factor as 0.0001 (whose values are deemed totally dependent
on the other factors), this factor could be associated to the map’s other variables. Using
this SOM map, values of the dependent variable could then be predicted, such as the
gold price example from (Eudaptics software gmbh 1998).
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Figure 4.7 a: Distribution of US macro economic data on the SOM map created using 1 iscovery.
Sonrce: (Eudaptics software gmbh 1998:32,33 &>47).
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Figure 4. 7 b: Gold price component window of the SOM created with US macro economic data nsing
Viscovery. Source: (Eudaptics software gmbh 1998:33).
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The SOM clusters (figure 4.7) were used to analyse the different economical phases
during the analysed time period. In the gold price component window (figures 4.7 a &
b), gold prices at different economical phases are nicely separated into an area with high
values and an area with low values. This was described that the gold price to be totally
dependent upon other factors and be reasonably deduced from the other variables.
Hence, using the map data records with high gold price (such as selected area) were
filtered out. Further, using the map gold price was predicted based on other variables, in
which this was left out in the input vectors. If the high and low values were randomly
distributed over the whole map, the conclusion would not have suggested the gold price
to be related to the other variables. In the similar way, data records representing a time
series could be used to predict the values of a dependent variable. On the other hand, it
as well could be applied to modelling links between different variables or a combined
effect of certain variables, such as causal processes and the environmental effects and is
applied in case study chapter 7, to modelling the link between sedimentation rates and

subtidal community dynamics.

4.2.2 Decision support systems

In addition to the first two cluster analyses, discussed earlier in the chapter, Serrano-
Cinca (1998) further produced SOM maps to demonstrate the financial situation of
companies in a graphic and intuitive form by studying the synaptic weight of the maps.
In the map (figures 4.8 a & b), the variable that provokes the greatest response for each

neuron is shown by it synaptic weight.
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Figure 4.8 a: SOM showing each of its neurons with the firm that gives the strongest response. 1 to 36
are solvent firms. 37 to 74 contain information about the year prior to the occurrence of bankruptey. The
two main areas show the neurons with bankrupt companies and the ones with solvent companies. b - The

solvency map. Source: (Deboeck and Kohonen 1998:19).
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Using this graphic representation the main features of the SOM, were summarised and
then the whole map was eventually turned into a decision support system showing the

solvent and failed companies.

Financial data from Moody’s Industrial Manual from 1975 through to 1985 for a total of
129 US firms, of which 65 were bankrupt and the rest in solvent stages, was used for this
purpose in (Serrano-Cinca 1998). The SOM map (figure 4.5) shows how the two regions
were delineated with sufficient clarity, one corresponding to the solvent firms and the
other to the bankrupt firms. By finding the positioning of a company data in the map, its
financial situation could be revealed. This approach is applied to analysing polluted

scenarios/ areas of ecosystems in case study chapters 5 and 6.

4.2.4 Trajectories

With the use of SOM trajectories complex process dynamics has been successfully
studied in process industrial process monitoring and control (Simula et al. 1998; Simula
et al. 1999). These publications illustrate how SOM trajectories could be applied to
tracking the system process dynamics. A process control unit of a reactor, depicted in
relation to the output measurements at discrete times (figure 4.9) in (Eudaptics software
gmbh 2002) is discussed herein. The data that consisted of the different stages of a
particular reactor in an ordered way, was used to create the SOM map. The time series
analysis of the measurements on the process was seen to be useful in tracing the process
states in time. In occasions where data on faulty situations are difficult to obtain,
simulated values could be used and the process entry towards such adverse conditions

could be detected well ahead in time.

The theory behind these time series analyses is that in a SOM map, the current operating
point of the process would be assigned to the BMU for this current measurement vector.
Similarly, all input vectors would be assigned to their respective BMUSs. The trajectory of
the process dynamics on a topographically ordered map with labels on it could enable
analysts to track the process dynamics on a time series. By watching the animation of a
trajectory on the map, it is possible to detect the process entry towards any unfavourable
conditions. Time series analysis could be carried out at any time intervals, depending on

the availability of input vectors, such as at houtly, 24 hrs, monthly or on a yearly basis.
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In (Deboeck 1998:94) the evolution patterns of emerging stock markets of 30 countries
over time, was studied on SOMs (figure 4.10) using combined data sets of 1988, 1990,
1993 and 1996 SOMs
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Figure 4.9: SOM map showing how trajectories could be used to trace the process states in time. Source:
(Eudaptics software gmbh 2002).
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Figure 4.10: SOM showing the evolution patterns of emerging stock markets of 30 countries over time
using combined data sets of 1988, 1990, 1993 and 1996. Source: (Deboeck 1998:94).
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SOM maps created with measurable data of natural habitat monitoring programmes
could be used to create decision support systems to analyse scenarios and trajectories to
predict the system process entry towards ideal or polluted scenarios. SOM maps of
normal and simulated data on adverse conditions, such as highly polluted or high
temperature, could be used to analyse an ecosystems dynamics at desired intervals. This
approach could be applied to restrictions encountered with conventional methods that
require clear understanding of physical processes for modelling and prediction of natural
systems behaviour. It could as well used for transforming abundant data into useful

information for resource management purposes.

A SOM based neural network trained in (Harris 1993) with the vibration data recorded
from a machine operating under normal operation, was used for diagnosing faulty
conditions, such as detect the machine operation leading towards faulty conditions. The
entry towards faulty conditions was studied by calculating the increase in the error of the
input vectors. Similarly, using the error, methods could be developed to detect a natural

systems move towards unusual scenarios.

4.2.5 Software tools

There are software tools for SOM based exploratory data analytical methods, such as
clustering, visualisation, component plane analysis and trajectories, discussed in the
earlier sections. These software products are based on the basic SOM algorithm first
introduced by Kohonen (1982). Currently, there are three methods for the
implementation of SOM based approaches: (i) public domain software (ii) self-coded
software and (iif) commercial software packages with SOM capability. Self-corded
software packages are common in academic research applications. The following are the
software tools generally used by academics:

i) SOM_PAK: Was developed a few years ago by (Deboeck 1998). It is an
extensive program package that facilitates the main steps in SOM analysis
including selection of the map size and format, proper initialisation,
monitoring of computational process, analysis and interpretation of the
resulting mapping. It is a public domain software, available for scientific
research at hip:/ [ nuclens.hut.fi/ nnre/ nnre-programs.hinil

(i) Repository for Intelligent connectionist-Based Information Systems

(RICBIS) (Deng et al. 1999): RICBIS is aimed at creating a repository with
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software tools for the implementation of connectionist based intelligent
information systems, for academics.
(i) Viscovery: Commercial software developed by Eudaptics software gmph in

Austria (Eudaptics software gmbh 1998).

4.2.5.1 SOM_PAK

Corded by (Deboeck 1998), especially for scientific work and applications in UNIX
machines. Even though later an MS-DOS version was made available it could not be
used in Windows 95 or NT environments. Eventually due to the popularity of MatlLab
in scientific computing, SOM_PAK was rewritten in MatlLab (version 5) with many
additional facilities such as graphical user interfaces (GUIs) and improved display
formats for SOM visualisation. The MatlLab version of SOM_PAK is referred to as
SOM Toolbox, which is described to be complimenting to the SOM_PAK and could be

downloaded from /72p:/ [ mmm.cis.hut.fi] projects/ somtoolbox:

4.2.5.2 RICBIS

Of the many RICBIS modules, made available for academic use, a java applet developed
by (Deng et al. 1999) with abilities to cluster data using SOM and ESOM techniques are
used in this research. The applet also consists of tools for other projection methods such
as sammon projection and PCA. However, there are not any modules in RICBIS for

component plane or time series analysis.

4.2.5.3 Viscovery

Viscovery SOMine is a user friendly commercial software developed by (Eudaptics
software gmbh 1998) based on a modified Kohonen’s self-organising map algorithm,
namely Batch SOM, which is a robust variant of unsupervised neural networks. The
software was further enhanced with new scaling techniques and learning algorithms to
speed up the learning process. Last year, a fourth version with added facilities was
released. With the latest Viscovery version, up to fifty components could be analysed
and it also consists of better clustering abilities. Using Viscovery, multidimensional
numeric data sets could be projected on to a two dimensional display with a hexagonal
grid structure. During the training process the input vectors, the nodes on the gird

gradually adapt to the intrinsic shape of the input data distribution. Once the training
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process is over, the data represented in the trained SOM map could then be converted
into various different visualisation formats depending on the requirement. For instance,
cluster analysis for refining and evaluation of clusters, component plane analysis for
studying the correlations between components and trajectories for process monitoring.
At the same time, numerical statistics of a cluster or a node can also be retrieved on
demand through a new window for developing decision support systems. Labels could

be added to the map for easy reference.

Summary

The experimental methodology adopted to investigate SOM methods for modelling
highly complex and diverse natural systems without any physical models, using numerical
data alone, as modelled by industrial engineers and financial data analysts was explained.
SOM applications in complex industrial system modelling (control and monitoring) and
in initial analysis of financial information systems with multidimensional, disparate data
sets were discussed. The possibilities of using the SOM approaches to better understand
ecosystem structure, functioning and process dynamics, using environmental and
biological monitoring data are as follows:

(i)  Cluster analysis, (ii) component analysis and (iii) decision support systems to
look for potential relationships between environmental and biological data,
which is generally found to be difficult with conventional methods.

(i) Time series analysis (trajectory) to track ecosystem dynamics on SOMs
created with monitoring data.

(iv) Models for integrated data analysis, to investigate the correlations between
developmental, socio-economic and environmental parameters with
biodiversity indicators. Global statistical data, compiled by international

institutions are used in this analysis.

The next chapter illustrates the first case study of this research using AUT and NSCC
data from the Long Bay-Okura Marine Reserve in northern New Zealand. The examples
of the second case study utilise data from beaches, north of Auckland in New Zealand.
The final case study examines some possible ways of using SOM methods to analyse
global data on biodiversity, economics and socio-economic aspects, within an integrated
framework to study ecosystem functioning, use and economic trade-offs. Further details

on the experimental methodology will be discussed in the relevant chapters.
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Chapter 5

SOMs to analyse Long Bay-Okura Marine Reserve data

Chapter 4 gave details on the SOM techniques being experimented in this research for
modelling highly complex and often ‘cryptic’ ecosystems. Gaining more knowledge on
natural system processes (environmental and biological) to predict their response to a
range of human activities is seen as vital for sustainable environment management. The
main objective of this case study is, to analyse dissimilar ecological monitoring data sets
with a systems approach to distinguish complex ecosystem response to human influence

from that of natural causes.

The SOM methods are applied to ecosystem modelling, based on the approaches of
complex industrial system process dynamics modelling and financial data analysis, using
numerical data (see chapters 3 and 4) and could be divided into four major categories:

(i)  cluster analysis

(ii) dependent component analysis

(i) decision support systems and

(iv) trajectory (time series analysis).

5.1 Background

The Long Bay-Okura Marine Reserve was established in 1995 as a direct result of the
pressure imposed by the North Shore’s environmental groups and the general public
who were concerned over the massive environmental degradation at Long Bay.
Buckeridge (1999) described the environmental situation as “stochastic urban accretion
(SUA)”, in reference to the apparent lack of planning within city development. When
granting resource consent for proposed development, the authorities failed to give
required attention to the impact caused upon the surrounding environment. Poor
monitoring of environmental change and improper impact assessment on proposed
development have contributed to this situation. It is argued that an ever-increasing load
on the existing public utility systems is the main cause for the observable biodegradation
at the reserve. Buckeridge (1999) discusses how silt runoff and sewage infiltration
contribute to the degradation in biodiversity at Long Bay. Until very recently, no

measures were taken to improve the services such as ageing sewage, storm water systems
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and roading. The sewage and storm water systems are becoming increasingly overloaded
resulting in

(i) more wastewater pumping station overflows,

(i) storm water leaks into wastewater systems,

(i) storm water infiltration into wastewater systems and

(iv) wastewater leak into ground water.

(Couriel et al. 2000).

All of this results in increased amount of untreated water entering the sea, causing

degradation in coastal and marine biodiversity (Couriel et al. 2000).

Being New Zealand’s first urban marine reserve, setting up of the Reserve itself was
subjected to severe criticism from local land developers. Even though it was
controversial at the time, local authorities, academic and research institutions took
advantage of an opportunity to evaluate the effectiveness of the existing, aging
infrastructure (as part of the Resource Management Process). Research involving
biomonitoring and environmental monitoring carried out by staff and students of
Auckland University of Technology (AUT) and other institutions provide evidence of
environmental changes as the main cause for biodegradation. Their research and
monitoring programmes gave a formal approach to assess the effects of urban
development on marine life at the Long Bay-Okura Marine Reserve. The research
tindings emphasise that the current development practice on the North Shore is having a
deleterious effect upon the marine environment. This effect is ongoing and thus

unsustainable, if biodiversity is to be maintained.

5.1 Objective

The following are objectives of this case study being investigated for SOM applications
in ecosystem modelling using Long Bay-Okura Marine Reserve data;
(i)  to develop a means to visualise the reserve’s system dynamics using the
existing biological and environmental monitoring data from different sources.
(i)  to model the possible relationships within and between biological and
environmental system parameters again using the reserve’s monitoring data.
In this research, SOMs are explored to reveal the correlations between

physical, biological, economic and social aspects at different levels and scales

78



Soft systems analysis of ecosystenis

(regional, national, and global). Environmentally unsustainable
anthropogenic activities lead to certain conditions such as high biological
oxygen in demand (BOD), high nutrient levels (nitrate, ammonia, referred to
as eutrophic conditions) that affect the growth of marine organisms causing
an alternation in the ecosystem structure. Methods that are able to establish
the link between such causal processes and their environmental effects using
dissimilar data sets (that consist of inconsistent labelling) could provide an
approach to analysing these complex natural systems within an integrated
framework.

(i) to develop a decision support system by superimposing all SOM cluster
details, such as environmental parameter and bio cover ranges. This can be
used to visualise the scenarios within dissimilar monitoring data sets.

(iv) to establish a method to observe the process dynamics with the use of a
trajectory on a SOM, created with the monitoring data. The SOM clustering
map can distinguish the areas of different conditions, such as high Enzerococci
counts, monitoring station and the time these conditions were experienced.
The animation of a trajectory (time series analysis) on this map could show

the systems dynamics and its environmental effects on the wider system.

SOM trajectories could be used with simulated values to predict bio cover percentages
under different environmental conditions, such as sediment deposition rates or
development scenarios.  For this, data on sediment deposition has to be incorporated as
a component in the SOMs. By including simulated values that reflect highly polluted
scenarios, the systems entry towards these areas on a SOM trajectory could be used to
predict the environmental trends and their effects as applied to monitoring and control
of industrial system processes (see chapter 2). Similarly, SOM trajectories could also be
used to measure and make improvements on activities that tend to cause pollution.

They could also be applied to modelling coastal habitats, within a region, using dissimilar

data, collectively or individually at desired time intervals.

5.3 Data from Auckland University of Technology research projects

From 25 March 1999 to 4 April 2001 continuous monitoring of Reserve’s ecology was
carried out as part of undergraduate research programmes at AUT (Higgs 1999;

Snowdon 1999; Meyer 2000; Scharader 2000; Hecht 2001). The following tidal zones
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(figure 5.1) had slate tiles positioned along a transect from uppermost to upper sub tidal

Z0ones:

(i)  Lower supralittoral: S1

(i) Upper littoral: S2
(i) Mid littoral: S3

(iv) Lower littoral: S4

(v)  Upper sublittoral: S5

The five intertidal divisions have characteristic zoning of sciaphilic organisms (those

organisms that encrust the rock surfaces). Observations were made on a monthly basis

by taking photographs to monitor the colonisation patterns (Buckeridge and Tapp 1999);

Zone

Lower supralittoral-S1

Upper littoral-S2

Mid littoral-S3

Lower littoral-S4

Upper sub littoral-S5

AUT students analysed the bio cover on these slate tiles to study the sciaphilic

Key species observed on slate tiles

Chamaesipho columna
Chamaesipho columna
Epopella plicata
Austrominius nodestus
Crassostrea gigas
Pomatoceras caernlens
Cyanobacteria
Austrominius modestus
Pomatoceras caerulens
Xenostrobus pulex
Austrominius modestus
Balanus trigonus

Cyanobacteria

Corallina officinalis

colonisation dynamics over time by determining the percentages of different species (live

and dead) on the tiles (Higgs 1999; Snowdon 1999; Meyer 2000; Scharader 2000; Hecht

2001). The total bio cover percentages of sciaphilic colonisation were calculated based
on a chart (see appendix 4 for chart). No data was available on the upper sub littoral

(§5), as it was not included in the monitoring programme.
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Figure 5.1: Photograph showing the data collecting monitoring stations at the 1ong Bay-Okura Marine
Reserve, north of Auckland, New Zealand

A different group of AUT students (Scharader 2000) collected the following data to

measure the environmental changes in the Long Bay-Okura Marine Reserve caused by

urban developmental activities in near shore:

M
(i)
(1ii)
(iv)
)
(vi)
(vii)

Date

Place (Data collection monitoring stations)
Time

Temperature

Specific Conductivity (Sp Cond) [mS/cm]
Dissolved Oxygen [mg/1] / DO

Air temperature.

(viii) Special remarks

(ix)
()

(xi)
(xii)

pH

Ammonia [mg/]]
Nitrate [mg/]]
Turbidity [mg/1]

(xiii) High Tide
(xiv) BOD-5 [mg/]] (biological Oxygen in demand)

(xv)

Phosphate [mg/]]

The above-described data sets are analysed collectively and are explained in the next

section.
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5.4 Methodology

Using the SOM techniques, data collected by AUT research groups to analyse the
observed biodegradation and the environmental parameters, is analysed together with
NSCC Enterococei test results (in Enterococei count/100mls) to look for patterns and
relationships in these variables. The AUT data consists of information on the two
different studies, namely, physical and biological (sciaphilic colonisation) systems along

the chosen transect (figure 5.1).

The physical system parameters of the tidal zones, shown in figure 5.1 (81, S2, S3 and
S4), were monitored 5-6 times a month. Photographing of these plates to study the bio
cover was carried out once a month. This created gaps in the data sets as the physical
system data and photographing of the sciaphilic colonisation did not always coincide. In
order to overcome this problem the following measures were taken:

(i)  Missing values in the bio cover of sciaphilic colonisation data were filled with
interpolated values by looking into their growth sequence from the
photographs and based on domain expertise. For instance, bio cover on a
day in week 2 was determined as 10% if the bio cover during week 1 and
week 3 were 10%, assuming that no organisms grew and died in between or
the died ones were replaced by same number of new ones.

(i) An assumption was made that the changes in bio cover of live organisms on
the slates were in proportion to their growth rates, meaning that all organisms
on the plate were alive.

(i)  Visovery® SOMine lite version 2.1 by eudaptics software gmph package was

used as it could create maps even with a few missing values.

5.5 SOM results

SOM based analyses (cluster, component plane, decision support and trajectory) are

discussed herein.

5.5.1 Cluster analysis

Initially, a cluster analysis was carried out to see the clustering patterns in the S1-S4 slate
tile data. A SOM (figure 5.2 a) was created using Viscovery with 200 nodes, priority for

all components set to 1 and all other map creation parameters set to default values.
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Cluster S1 & S2 (Blue) S3 & S4 (Red)
Component Mean Mean
Temp C 18.04 17.66
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Biocover 473 36.22
Entrococei 29.6 98.5

Figure 5.2 a: SOM of the Long Bay-Okura Marine Reserve’s physical and biological system data with
all components. b: Graph showing the SOM clusters details ¢ SOM cluster details.
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Sub divisions (S1-S4) of the intertidal zone (figure 5.1) have different topography and

microclimate, thus possess characteristic zoning of sciaphilic organisms. Interestingly,

the SOM (figure 5.2) has picked up these environmental variations, categorising the data

into two distinct areas. It should be noted that S1 is the closest station to the land and as

the number increases exposure time to seawater increases. 'The SOM component

windows (figures 5.2 a) illustrate the relationships among the system variables.

Interpretations derived from this map are:

)

(i)

(i)

(iv)

The data collecting monitoring stations S1 and S2 (cluster A) are separated
from S3 and S4 (cluster B) by a diagonal line running from the upper right to
the lower left of the map except a few S3 and S4 data points in the S1 and S2
area and a few more crossovers along the separation line. No data on their
location was included in the map creation process, yet the self-organisation of
the SOM shows them separated into two categories, which confirms the
microclimatic conditions within this zone as distinguishable. Also shows
SOM feature extraction abilities from raw data.

The classification of S3 & S4 data in the S1 & S2 cluster of the map (25-Nov-
99 8§83, 27-Oct-99 S§3, 05-Oct-99 83, 27-Oct-99 §4, 25-Mar-99 S4, 06-Oct-
99 S4, 06-Oct-99 83, 28-Mar-01 S3 28-Mar-01 S4), indicates that during
these days S3 & S4 show similar attributes to S1 & S2 monitoring stations.
Component planes of specific conductivity (Sp Cond), pH, Nitrate, bio cover
and Ewntrococei count show a corresponding correlation to the clusters map,
implying that specific conductivity and pH are higher in S1 and S2
monitoring stations than in S3 and S4. Under normal conditions pH and
specific conductivity of S1 and S2 should be lesser than that of S3 and S4 as
the waters near land get more diluted and tend to exhibit attributes more
similar to that of freshwaters. Expert advice in this regard clarified the
unusual nature as being caused by the evaporation of water due to the high
temperatures experienced in S1 and S2, in turn resulting in higher
concentrations of salts, with increased pH and specific conductivity values.
By comparison, DO values are high in S1 & S2 area than in S3 & S4. DO
values depend on the temperature and amounts of nutrients (largely nitrogen)
in aquatic systems. DO levels in aquatic systems decrease with increasing
water temperature, however, temperature readings in this case are 18.04 at (S1

& S2) and 17.66 at (83 & S4). Hence, the biological decomposition of the
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(iv)

nutrients in coastal waters (such as nitrogen and phosphorus received from
runoff) could have possibly caused the lowering of DO in 83 & S4. During
the biological decomposition, ammonia is transformed into nitrates utilising
dissolved oxygen. High ammonia at S3 & S4 with (90 mg/1) and at S1 & S2
with (46.6 mg/1) supports the argument. Therefore it could be concluded
that the need for excess oxygen to breakdown the high ammonia into nitrate
in the former had resulted in low DO levels or hypoxia. Hypoxia, especially
below 5mg/1 could harm larval life stages of fish and shellfish species
(Wilcock and Stroud 2000). Sessile species will not survive.

Bio cover is higher in S3 and S4 than in the other two. This shows that the
conditions in S1 & S2 as unfavourable for the key species Chamaesipho
columna, Chamaesipho columna and Epopella plicata or the colonisation was
disturbed. Nonetheless, conditions in S3 & S4 seem to be favouring one or
more key species, Austrominius modestus, Crassostrea gigas, Pomatoceras caerulens,
Cyanobacteria, Austrominius modestus, Pomatoceras caerulens and Xenostrobus pulex:
of this division. From the SOM, no conclusion could be arrived, as to exactly
what species thrived under these conditions, as community structural details
were not included in the analysis. However, Buckeridge (1999) stated that it
is the cyanobacteria that seem to be flourishing at the reserve. The study
pointed out that in the past, on two different occasions between 1996-1999,
during warmer periods, high nutrient levels produced eutrophic conditions,
which in turn had affected the presence of E. plicata and the normally prolific
intertidal algae Corallina officinalis both resulting in cyanobactria colonies

dominating the reserve’s ecosystem.

5.4.2.2 Decision support system

By superimposing the interpretation details of the cluster map, a decision support system

(figures 5.3 ¢ & d) was developed to visualise the relationships between the collected

environmental and bio cover data. The following were derived from the SOM

component analysis and clustering details (figures 5.2 a & b):

®

S1 & S2 of SOM (figure 5.2 a) can be further divided into two major clusters
(clusters 2 & 3). The two show the subtle changes within the variables in this

littoral zones.
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(i)

(i)

(iv)

)
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S3 & $4, the left diagonal half is subdivided into four clusters (1, 4, 5 and 6 in
figure 5.3 a) with remarkable variations in ammonia and nitrate levels.

Cluster 4 shows the highest values for BOD (8.08ml/1), DO (8.17 mg/1) and
phosphate (0.12), reasonably high temperature, ammonia and ammonia/
nitrate ratio, indicating a polluted scenario within S3 & $4, at the reserve.
Cluster 5 consists of the lowest ammonia, nitrate and DO levels with the
highest temperature and Enfrococci values. The cluster also shows the highest
temperature and Enfrococei in the map; depicting the eutropic conditions
experienced during warmer periods as argued by Buckeridge (1999).

Clusters 4 and 5 reflect two different polluted scenarios observed in the

reserve during summer.
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Figure 5.3 a: SOM of 1 - 84 data with six clusters and components. b: SOM cluster details
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(vi) Cluster 5 with 19.61° C temperature and very low DO (1.5 mg/1) has the
highest Enterococci count (203.8), depicting a third polluted scenario of
summer at the reserve. Please note that Enferococci tests are carried out on
water samples from mid sea and not on water samples from the monitoring
stations. Still considered as an indicator for pollution in seawaters in this
study as by NSCC (North Shore City Council - 0800SAFESWIM). Figure
5.3 ¢, could be used as a look up table to analyse the reserve’s intertidal
divisions in that by finding the position of new data, the possible future
trends could be assessed for early warnings on the reserve’s ecosystem
changes.

(vii)  Cluster 6 shows the map’s lowest temperature and the highest ammonia,
faitly high nitrate, ammonia/nitrate ratio and Entrococci depicting a polluted

scenario at the reserve during winter times.

5.4.2.3 Dependent component analysis

The SOMs and their components of the individual monitoring stations can be used to
analyse the effects of urban development on the sciaphilic organisms (figure 5.4 a, b, c &
d) within each individual intertidal division. The environmental changes that cause
changes in the growth of these organisms in turn cause equilibrium shifts in the reserve’s
intertidal zone structure. These shifts could be revealed through the relationships in the
SOM created with physical and biological data. The following are the results derived
from the SOM dependent component analyses of the individual intertidal zone divisions

S1 to S4:

SOM (figure 5.4 a) of the S1 data collecting monitoring station (25 March 1999 to 11
April 2001):

(i)  Cluster 4 has the lowest ammonia/ nitrate ratio and the lowest DO in the
map. It also consists of the highest Enterococci counts. The data points
consist of 02-Nov-00, 10-Jan-01, 05-Nov-99 and 29-Nov-00.

(i)  Cluster 3 (14-Sep-99, 03-Feb-00, 07-Sep-99, 13-Dec-00, 16-Nov-00, 17-Jan-
01, 20-Dec-00, 23-Nov-00, 24-Jan-01, 3-Jan-01, 6-Dec-00 and 06-Oct-00) has

the highest values for ammonia, nitrate, ammonia/ nitrate ratio and DO.
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(iii) Clusters 3 & 5 have high ammonia/ nitrate ratios. The difference between

the two is the level of phosphorus, which may have caused the 0% bio cover

in cluster 3, whereas in cluster 5 bio cover is 15%.
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Figure 5.4 a: SOM of lower supralittoral S1 zone data. Map parameters used are: 200 nodes, priority

Jfor all components set to 1 and other parameters were set to default values.

SOM (figure 5.4 b) of the S2 data collecting monitoring station (25 March 1999 to 11
April 2001):
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(@)  Clusters 2 and 5 show the lowest ammonia/ nitrate ratio, however, only
cluster 2 shows low DO at 2.639mg/1 (harmful to aquatic life) and high
Entercocci count (214.3), whereas cluster 5 shows high DO (6.513) and high
turbidity (93.28 mg/1).

(i) Cluster 4 has the highest ammonia/ nitrate ratio (55.71/17.71) combined
with the highest DO (7.156 mg/l). It shows that the ammonia in this area

has not been decomposed into nitrates yet, leaving the DO values high.
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Figure 5.4 b: SOM of upper littoral S2 zone data. Map parameters used are: 200 nodes, priority for

all components set to 1 and other parameters were set to defanlt values.
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Figure 5.4 ¢: SOM of mid littoral §3 gone data. Map parameters used are: 200 nodes, priority for all

components set to 1 and other parameters set to default values.

SOM (figure 5.4 c) of the S3 data collecting monitoring station (25 March 1999 to 11
April 2001):
(i)  Clusters 2, 4 and 5 exhibit an unusually high ammonia, BOD and phosphorus
compared with the other littoral division of the zone. Cluster 4 shows very

high ammonia and turbidity with low temperature, showing rainy conditions.
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Clusters 2 and 5 show similar conditions, high BOD and Enfrococci counts

except that cluster 5 has the extremes. Cluster 5 has the lowest specific

conductivity within the reserve.

(i) Cluster 1 has the lowest ammonia/ nitrate ratio along with low DO.
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Figure 5.4 d: SOM of lower littoral S4 zone data. Map parameters used are: 200 nodes, priority for

all components set to 1 and other parameters set to defanlt values.
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SOM (figure 5,4 d) of the S4 data collecting monitoring station (25 March 1999 tol11
April 2001):
(i)  Ammonia, nitrate levels and the ratio are very low, compared to the other
intertidal divisions. Clusters 2 and 5 exhibit the lowest ratio along with low
DO and high Enterococci counts and phosphorus values. They also show low
bio cover within the division indicating that such conditions as harmful to
sciaphilic growth.
(i) Cluster 1 has the highest bio cover even though BOD is high as 5.7 ml/1.
(i) Clusters 3 and 4 similar attributes except for specific conductivity at 15.15,
2.85 ms/cm and BOD at 2.98, 4.72 ml/1.

5.4.2.4 Trajectories

The reserve’s ecosystem dynamics could be analysed with the use of a trajectory on the
SOM of §1-S4 monitoring station data. Shown in figure 5.5 is the trajectory depicting

the process dynamics of S1 monitoring station in the overall SOM of S1-84.

high temp

Figure 5.5 a: Trajectory of ST data on S1- S4 SOM. Map parameters used for creation of maps are:

200 nodes, priority for all components set to 1 and other parameters set to default values.
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Figure 5.5 b: Trajectory of ST data on S1- S4 SOM with 10 days per map

94



(1-10)
(11-20)
(21-30)
(31-40)
(41-50)
(51-60)

(61-69)

5-Mar-99, 10-Apr-99, 24-Apr-99, 15-May-99, 30-Jul-99, 10-Aug-99, 27-Aug-
99, 7-Sep-99, 14-Sep-99, 22-Sep-99,

23-Sep-99, 28-Sep-99, 5-Oct-99, 6-Oct-99, 12-Oct-99, 3-Oct-99, 20-Oct-99,
27-Oct-99, 5-Nov-99, 9-Nov-99,

10-Nov-99, 18-Nov-99, 25-Nov-99, 1-Dec-99, 25-Jan-00, 3-Feb-00, 25-Aug-
00, 14-Sep-00, 3-Oct-00, 6-Oct-00,

10-Oct-00, 12-Oct-00, 16-Oct-00, 17-Oct-00, 19-Oct-00, 24-Oct-00, 26-Oct-
00, 30-Oct-00, 2-Nov-00, 6-Nov-00,

8-Nov-00, 13-Nov-00, 16-Nov-00, 20-Nov-00, 23-Nov-00, 27-Nov-00, 29-
Nov-00, 30-Nov-00, 4-Dec-00, 6-Dec-00,

7-Dec-00, 11-Dec-00, 13-Dec-00, 14-Dec-00, 20-Dec-00, 27-Dec-00, 3-Jan-
01, 10-Jan-01, 17-Jan-01, 24-Jan-01,

7-Feb-01, 14-Feb-01, 28-Feb-01, 7-Mar-01, 14-Mar-01, 21-Mar-01, 28-Mat-

01, 4-Apr-01

Figure 5.5 ¢: Trajectory of ST data for the last 9 days on S1- $4 SOM, d: Days included in the SOM

trajectories of figures 5.5 b and c.

The SOM trajectories (figures 5.5 a-d) show how they could be applied to modelling the

reserve’s intertidal ecosystem dynamics. Time intervals (11-20), (31-40) and (41-50)

depict a smooth flow on the S1 data on the SOM of §1-84 data. In (11-20) 27-Oct-99

shows the trajectory moving towards low DO with high Enterococci area. The other

intervals do not show a smooth pattern as in the eatlier; this is because of the data gaps

that can be seen in figure 5.5 d. It could be stated that data collected on a regular basis

could be analysed to study the systems dynamics using SOM:s.
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5.5 Conventional analyses

Data collected from the Long Bay-Okura Marine Reserve for a period between 25 March
1999 and 11 April 2001, used in this case study, was originally collected for projects
carried out by student groups (Higgs 1999; Snowdon 1999; Meyer 2000; Scharader 2000;
Hecht 2001). Using these data sets the students carried out their own analyses to study
the reserve’s physical and biological system changes separately with conventional
methods. Hence, analysed these system data sets (of interdital divisions S1 to S4) along
the chosen transect (figure 5.1) by plotting against time separately and discussed the
trends in them during this period. Figures 5.6 a & b are examples of such graphs of the

physical and biological system data of plate S2.
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Figures 5.6 a & b: Graphs of the physical and biological system data of S2.
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Due to huge gaps in these data sets they could not be used to study the reserve’s
dynamics with a systems approach using conventional analyses. Because of this reason,
the reserve’s physical and biological system data sets, collected by AUT student groups,
NSCC and ARC have never been collectively analysed. However, (Higgs 1999;
Snowdon 1999; Meyer 2000; Scharader 2000; Hecht 2001) studied the physical and

biological systems by visually comparing the observed patterns in the graphs.

5.6 Discussion

SOMs can be used as an excellent tool for ecosystem modelling, as they are capable of
depicting spatial and temporal variations within the monitoring data. This was illustrated
by the segregation of S1 and S2 from S3 and S4, within the reserve’s intertidal littoral
divisions based on the system variables represented in numeric monitoring data, without
any direct information. The segregation of the reserve’s intertidal zones into two
distinctive areas shows SOM feature extraction, which can be used for modelling the
slow ecosystem variables that cannot be analysed using conventional methods. The
conventional methods have in fact led ecologists and decision makers to assume that
environmental effects as being mitigated or neutralised by the system (Clark et al. 2001)

(see chapter 3).

SOMs provide a means to collectively analyse the physical and biological systems changes
of a natural habitat with a systems approach. Relationships among the physical and
biological system variables of the reserve’s four intertidal littoral zones (S1 to S4) were
analysed with visual formats.

(i)  The lower supralittoral and Upper littoral (S1 and S2) zones showed low
ammonia/ nitrate ratios in compatison to the other two (S3 and S4) zones,
linking the biological decomposition of ammonia into nitrate using DO.

(i) The correlation between low bio cover and high BOD, DO, temperature,
phosphate and ammonia shows that the biodiversity is directly affected by the
physical changes in the mid and lower littoral zones (S3 and S4 within the
intertidal zone). The bio cover in lower supralittoral and Upper littoral zones
(S1 and S2) that shows no significant change over the period (even with
changing temperatures). This may have been due to either of the following:
a. time needed for settling of organisms as the S1 tile was reaffixed due to

vandalism, or
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b. the physical changes did not harm the biological system.
The former is considered the most likely.

(i) The S3 and S4 zones, during warmer periods, with high DO, BOD and
phosphate, seen with low bio cover, as opposed to the same zones with lower
temperature values, DO and BOD seen with high bio cover, confirm earlier
studies of the reserve’s seasonal variation. During warmer conditions, waters
entering the sea, with increased nitrogen wastes have led to algal and bacterial
booms and ultimately resulted in eutrophication, leading to structural changes
in reserve’s biological diversity (Buckeridge 1999).

(iv) In the S3 and S4 zones, high ammonia/ nitrate at low temperatures are seen

with increased bio cover, and also with increased Entreocci (105.5/100ml).

Using SOMs the different scenarios within the intertidal zone (S1 to S4 littoral divisions)
were analysed collectively and individually. The individual maps enabled the detection of
S3 as the division with the highest ammonia/ nitrate ratio within the intertidal zone.

This was indicated in the collectively analysed map, which had three distinctive clusters

within the S3 & S4 clustet.

SOMs could also be used to analyse ecosystem trends where full data sets are unavailable.
It should be noted that although BOD tests were not carried out in 1999, the SOM
generalisation abilities have clustered them, with appropriate BOD based on their other

available attributes.

5.7 Conclusion

SOM analyses provide a means to relate and analyse the environmental changes with
biological responses in visual formats. The patterns in the data could be analysed directly
linking the causal processes and the environmental effects within an ecosystem

framework.

The results support the hypothesis to apply SOM based complex industrial process
modelling to ecosystem processes (environmental and biological) with a systems

approach. The fused data of physical and biological systems used in this study had
missing values at critical points as different research groups had collected them on

different days. Not withstanding, the SOMs created with interpolated values were able to
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reveal the relationships among the variables and their changes. It should be noted that
any other constructive analysis could not be carried out on these fused data sets using
conventional statistical methods. Previous research groups carried out their own analyses
of data collected by themselves and studied the physical and biological systems

separately.

5.8 Future work

Efforts are being made to study the biological assemblages of the S1-S4 data collecting
monitoring stations at the Long Bay-Okura Marine Reserve with the use of SOM
techniques to reveal the trends in biodiversity over the years, since 1996 to present time.
Also adding rainfall data could reveal more relationships and insights into the interactions

between the discharge of nitrogen waste and Enferococci counts at the reserve.

Summary

The approach to use different SOM methods as used in highly complex, industrial system
dynamics modelling and dissimilar financial data analysis (based on the hypothesis
explained in experimental methodology chapter), produced promising results. In
particular, the cluster analyses, dependent component analyses and decision support
systems offered methods to collectively analyse numerical data sets of physical and
biological systems of the Long Bay-Okura Marine Reserve without any physical models.
In this example, the trajectories did not produce results similar to those of industrial
system process dynamics modelling. This was mainly due to the high time intervals of

the reserve’s fused data set, used in the case study.

The next chapter illustrates a second case study for this research, where data sets from
Auckland Regional Council, are analysed to further investigate the use of SOM methods
in coastal environmental and biological system modelling. These methods provide a
means for quantitative analysis in ecosystem dynamics modelling by relating the
urbanisation indicators (developmental activities) and their effects on the coastal
environment. The observed biodegradation from selected northeastern beaches of
Auckland, New Zealand is also studied using monitoring data. The examples of the next

chapter are at regional scales, wider than the example of this chapter.
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Chapter 6

SOM techniques in ecosystem modelling

The previous chapter illustrated SOM abilities to analyse a complex natural system, the
Long Bay-Okura Marine Reserve, north of Auckland, using dissimilar data sets. SOM
applications to analysing correlations between environmental parameters and biological
indicators within regional monitoring data from northern New Zealand are elaborated in
this chapter. The SOM results are then compared with those of the conventional
analyses carried out either in this research or from the respective reports by the

institutions originally gathered the data.

With the escalating human influenced environmental deterioration, the need for
enhanced techniques to model highly complex and diverse natural systems and to predict
their process dynamics appears to be critical for the continued wellbeing of humanity. A
large volume of past and recent scientific papers reviewed in chapter 3, reveal the issues
and the need for enhanced modelling techniques to analyse cryptic ecosystems. SOM
methods are investigated for ecosystem modelling in this research as applied in industrial
system modelling and financial data analysis based on eatlier SOM approaches in

ecological studies at limited scales and levels.

6.1 Background

The Auckland Regional Council (ARC), North Shore City Council (NSCC), National
Institute of Water and Atmospheric Research (NIWA), and the University of Auckland
(UoA) have been carrying out monitoring programmes for various purposes, such as to
monitor the water quality, to develop prediction models and to detect the effects of
urbanisation on the receiving coastal environment. These programmes are mainly aimed
at either gaining more knowledge or making predictions of the analysed ecosystems
under different developmental scenarios. Data sets collected through the monitoring
programmes by these local authorities as well as research and academic institutions on
the environmental and biological systems of the coastal habitats of northern New

Zealand are elaborated upon.



6.1.1 Data from city councils

ARC and its predecessors have been monitoring the water quality of freshwater streams

and saline harbour sites as part of their Long-Term Baseline (LTB) programme since the

mid 1980s to study the trends and effects of human activities on these water sources. Of

the documents released on this programme, in (Wilcock and Stroud 2000) a report on the

monitoring of 16 streams, 18 saline water sites in Manukau, Waitemata and Kaipara

Harbours, and seven lakes, is included. Of this LTB programme, only the saline water

quality data, sampled on a monthly basis from the 11 sites listed below, covering a period

of ten years, from May 1991 to December 2000 was made available for this research.

These beaches lie on the east coast and some within the Waitemata Harbour (figure 6.1),

north of Auckland:
6] Browns Bay
i)  Chelsea
(i)  Goat Island
(iv)  Henderson
(v)  Hobsonville
(vi)  Kaipara (Shelly Beach)

Kawau Bay
Mahurangi
Orewa

Ti Point
Wha

In addition, deep sea water samplings collected from different sites also have been

included in the monitoring data. The following are the numeric data elements included

in the ARC’s LTB programme:

®
(i)
(iii)
(iv)
)
(vi)
(vi)
(vii)
(ix)
(%)

(xi)
(xii)

Site

Site#

pH

Temperature (deg C)
Suspended solids (SS) (mg/1)
Turbidity (NTU)

Chloride (mg/1)

Salinity (ppt)

Total phosphorus (mgP/1)
Dissolved reactive
phosphorus DRP (mgP/1)
Nitrite (mgN/1)

Ammonia (mgN/1)

BOD (mgO/1)

Total Coliforms
(mpn/100ml)

Faecal Coliforms
(mpn/100ml)

Dissolved oxygen (DO %)
Dissolved oxygen (DO ppm)
Secchi disk depth*
Chloride*

Enterococci ME* (cfu/100mlL)
NO,*

NO; NO*

* Refers to the tests that were not carried out throughout the monitoring period
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Figure 6.1: Auckland saline water quality monitoring sites. Source (Wilcock and Stroud 2000:3)

Many regional and city councils carry out Entrococei tests on water samples taken from

beaches within their administrative confines. The Ministry of Environment (1999) and
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these state institutions consider this bacteria as the indicator most closely correlated with
health effects in New Zealand marine waters. The Ministry aims to have a running
median of less than 35 Enterococci per 100 mls of water, and less than 277 Enterococci per
single water sample. Beach water that exceeds two consecutive levels of 277 Enterococci
per 100 mls of seawater in a single sample is considered as unsafe for bathing (North
Shore City Council - 0800SAFESWIM). Enferococci bacterial levels are regarded as the

primary indicator of levels of pollution in this analysis.

Bacteria are derived from a range of authorised activities such as sewage and control,
storm water discharges, land use, sediment control, works in watercourse. Details on
these permits and other permits such as earthworks, vegetation removal, quarrying and
other activities in the coastal marine area are considered as indicators for developmental
activities. Data relating to these activities was obtained from the relevant local and

regional government authorities, such as building consent.

In addition to the saline water quality tests, ARC also carries out biomonitoring
programmes. Of particular interest to this research are the subtidal and intertidal
monitoring programmes carried out by UoA’s postgraduate and postdoctoral researchers
attached to the Leigh Marine Laboratory. The aim of the programme was to analyse the
rates of sediment deposition and their impact on species abundance and composition in
the coastal habitats from Waiwera to Campbells Bay (figure 6.11). An ARC report by
Walker et al. (2000) concluded that Long Bay and Campbells Bay were having the highest
sediment deposition rates among the monitored sites. Further, noted a continued lack of
bivalve recruitment, such as pipi and tuatua, at Long Bay and low numbers of these

species recorded across the six monitoring sites.

6.1.2 Data from NIWA'’s research

NIWA has produced models to predict the sediment runoff during the current and two
different future development scenarios at Long Bay. The two scenarios discussed in the
report were:
(i) mixed development: including areas of intense development (one dwelling
per 200 to 325 m?), a few areas at conventional densities (one dwelling per
600 m?) and major areas at large lots and lower rural residential densities (one

dwelling per 2000 m*and up).
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(i)  fully urbanised: with one dwelling for per 600 m”.
The study made predictions on the daily sediment generation for different return periods
(such as 0 to 30 years) and for different development stages (such as 10 and 20 years) and
is based upon (Green et al. 2000).

6.2 Objectives

The following are the objectives of this case study on the use of SOM techniques for
ecosystem modelling with data from the above illustrated coastal system, north of
Auckland:
(i)  to develop a visualisation means to analyse the environmental changes and
the observed biological responses such as population dynamics, and
(i) to study the relationships in the above data, in particular to establish any
relationships between the variables. This could be applied to analysing
ecosystem responses and trends between the causal process and the
environmental effects, in the form of patterns, structures and interactions
within the data. Using this approach environmental and biological system
data along with economic data could be modelled within an integrated

framework.

The first example illustrates the implementation of the SOM approaches investigated
here to analysing the I'TB programme data on beaches, north of Auckland. The second
example examines the possibilities of studying the correlations between ARC’s sediment
deposition rates and subtidal community dynamics from selected beaches of northeastern
coast, off Auckland using SOMs. Both examples analysed in this chapter consist of data
from larger areas than that of the Long Bay Okura Marine Reserve, studied in the eatlier

chapter.

Within an ecosystem, a change in the environmental or physical process is mediated
through parameters such as sediment deposition rates, chemical and physical property
changes of water. Such an environmental change invariably causes a chain of changes on
the biological system, which could be observed in the form of changes in biodiversity,
such as species composition, and species motility rates (at the community level).
Biological system changes could also be studied in the form of deformed organs, lesions,

pollutant accumulation in tissues (in individual organisms), and in cells from changes in
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DNA structures (at levels further below within an individual organism). Even though
many models and concepts of indictor species and community dynamics are capable of
detecting these changes, a need for methods to analyse the ecological data at ecosystem

level has been emphasised for sustainable environment management (see chapter 3).

6.3 ARC saline water quality data analysis

The ARC data on water samples, collected on a monthly basis from 11 beaches lying
northeast of Auckland (figure 6.1), through the L'TB saline water quality programme is
used in this section. The SOM analyses on this data to study the patterns in them are
explained. Following this, SOM results are compared with those of conventional data

analysis methods carried out on the same data.

6.3.1 Methodology

Initially, the SOM clustering patterns in the region’s beach water quality monitoring data
(LTB programme) are analysed based on their statistics. The trends in these beach water
quality data over a period of 19 May 1991 to 12 Dec 2000 are then analysed. Hence, the
types of SOM techniques experimented in this analysis are; cluster analysis, component
plane analysis, decision support system and time series analyses (trajectories) and could
be classified as initial exploratory data analysis. Finally, results of conventional analysis

are compared with that of SOMs.

6.3.2 Results and discussion

SOM maps were created with Visovery® SOMine lite version 4.0 by eudaptics software
gmph package. Due to the inconsistencies and gaps in the ARC’s saline water quality test
data, any other software could not be used for SOM analyses. Map creation parameters

are set to default values unless stated in the text.

6.3.2.1 Cluster and dependent component analyses

Initially, a SOM (figure 6.2 a & b) was created with 200 nodes, priority of all components
set to 1 and all other map parameters set to default values. The clustering patterns show
the monthly trends in the environmental parameters as water sampling has been carried

out once a month. The six different clusters in the SOM of the monitoring data coincide

with their geographical location without any such specific details being added in the data.
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Goat Island

Kaipara (Shelly Beach)

Cluster C1 c2 C3 C4 C5 C6
pH 8.191 809 8102 813 8166  8.078
Temp (deg C) 19.02 2007  13.64 1417 1641  17.68
SS (mg/1) 7.2 20.5 197 73 4 145.6
Turb (NTU) 2 7.1 6.8 1.8 0.6 457
Chloride (mg/1) 19653 18871 17495 19194 19855 17603
Salinity (ppt) 3272 3141 2979 3387 3307 2934
TP (mgP/1) 0.0308  0.0498  0.0442 0.0308 0.0187 0.1302
DRP (mgP/1) 00151 00216 0.0224 0.0192 0.0168 0.0208
Nitrate (mgN /1) 0.0091 00118 0.0371 0.0197 00111  0.035
Ammonia (mgN/]) 0022 0012 0018 0019 1837  0.032
BOD (mgO/1) 1.94 1.88 193 174 223 211
T Coliforms (mpn/100ml) 23 63 374 34 2 481
F Coliforms (mpn/100ml) 7 16 178 15 73 436
DO (%) 98.4 87.2 87.8 1052 1047 959
DO (ppm) 7.29 6.27 778 8.7 7.5 7.77
Secchi* 1.541 0928 093 1298 2042  0.569
CHLORO* 0.00304  0.00304 0.00431 0.00785 0.00221 0.00398
ENTER-ME* 2.67 483 1075 598 252 552
NO2* 0.00216  0.00224 0.00249 0.00344 0.00209 0.00213
NO3NO2* 0.0084  0.0075 0.0198 0.0234 0.0082 0.0136

Figure 6.2 a: SOM of saline water quality data form the 11 beach water sampling locations included in

ARC’s programme. b: Chart showing SOM cluster details.
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Figure 6.2 ¢: Component planes of the SOM (figure 6.2 a) of beach water quality monitoring data.
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Figure 6.2 d: Graph showing SOM (figure 6.2 a) cluster details of beach water quality monitoring
data. e: Graph showing the difference between clusters 1 and 4.

The following are the cluster analysis interpretations derived from the SOM and
component planes (figures 6.2 a, b & c) that illustrate the patterns within L'TB

monitoring programme data;
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@

(i)

(itf)

(iv)

Clusters 1, 4 and 5 show high secchi disc depth values and low values for
suspended solids and turbidity compared to other clusters. This means
that Goat Island, Ti Point, Kawau Bay, Mahurangi, Orewa, Browns Bay
and Deep sea waters seem to be better in quality in that were able to let
sunlight through deeper into water columns, compared with the waters of
Hobsonsville, Henderson, Whau, Chelsea and Kaipara (Shelly beach).
Clusters 1, 4 and 5 also show high chloride and salinity compared to the
other beaches. Of this group of clusters, cluster 5 consisting of Goat
Island data varies from the rest in that it has high ammonia, BOD and
secchi disk depth values. Clusters 1 and 4 consisting of Ti Point, Kawau
Bay, Mahurangi, Orewa, Browns Bay and Deep sea water, within them
vary in temperature, total, faccal coliform and Entercocei (see figure 6.2 b).
Clusters 2 and 3 consisting of Hobsonsville, Henderson, Whau and
Chelsea show similarities in many attributes except for temperature, total
and faecal coliform values in which they show remarkable variations.
Cluster 2 shows high temperature (20° C mean) and low total and faecal
coliform values (63 and 16 mpn/100ml), depicting patterns of summer,
whereas cluster 3 shows low temperature (16° C mean) along with high
total and faecal coliform values (374 and 178 mpn/100ml), depicting
wintry conditions.

Cluster 6 as well shows similar physical attributes to the above, however
in addition, it exhibits elevated values of faecal Coliform (73mpn/100ml).

All data points pertaining to Kaipara (Shelly beach) fall in this cluster.

SOM component planes could be used for comparative analysis of multidimensional data

with easily understandable visual displays. The SOM created with ARC’s LTB saline

water quality data of the 11 beaches can be seen as more effective in comparative analysis

of the beach water samples. For instance, all 20 attributes of the 11 beaches can be

viewed and studied in the SOM component planes (figure 6.2 ¢), in contrast to the time

consuming effort of analysing 11 into 20 graphs (similar to the ones in figures 6.8 a & b).

SOMs can be used to convert data into useful information without losing much of the

details in the raw data. SOM component planes (figure 6.2 ¢) show the 20 attributes

analysed on a single page. Each and every attribute values belonging to the beaches are
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shown as points on the plane. The scale below each plane shows the values. Hence, the
problems encountered in plotting multiple, highly varying ranges of numeric values on a

limited space are overcome.

For example, in the pH plane (figure 6.2 ¢ & f), the scale underneath the plane shows the
pH range of the 11 beaches ranging from 7.5 to 8.4. The blue patch in the plane shows
both the days and the beaches that had water samples with low pH values. In a trajectory
(time series analysis) data points closer to that point indicate the possibility of beach
sample data nearing this value. In figure 6.3, on 18 January 1995, the pH of Browns Bay
waters was 7.8, below the usual range. In a similar manner, other attributes may be

analysed from the same SOM (figure 6.2 c).

pH
V high Very high DO . J
BOD V high NO?
(04, Very high salinity
Very high
Ammonia C4
Very
high
ecohi high
eroco
Very
high DO C1
Very high splinity C3
High
Jemp |
C2
C6
. V high SS
Highie i & Turhidit
] T ] | ] |
7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4

Figure 6. 2 f: pH component plane of SOM (figure 6.2 a). The scale underneath the plane shows the

pH range of the 11 beaches ranging from 7.5 to 8.4
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Ammonia (mgN/I)

Figure 6. 2 g: Ammonia component plane of SOM (fignre 6.2 a).

In the same SOM (figure 6.2 c), details of ammonia levels of all the beaches in the region
are analysed. The red patch in the top left corner of this plane (figure 6.2 g) consists of
high concentrations of ammonia (2mgN) with Goat Island beach water samples. Also,
the component plane well displays the fact that Goat Island beach water samples have

the highest ammonia values.
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Figure 6. 2 b : Temperature component plane of SOM (figure 6.2 a). i: SOM component planes of
suspended solids (8), Turbidity and secchi disc depth values.

The temperature plane (figure 6.2 h) depicts both summer (15-25 deg C) and winter (10-
15 deg C) water temperature ranges. Furthermore, secchi disc depth, suspended solids

and turbidity planes (figure 6.2 i) show the correlations in these attributes.
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Figures 6.3 a & b: SOM of saline water quality data of the 11 beaches of ARC’s LTB programme

with a: with Browns Bay data and b: Chelsea data.
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Figure 6.3 ¢: Browns Bay data grouping details from the SOM of the 11 beach water sampling, included in ARC’s saline water guality monitoring programme.



Soft systems analysis of ecosystens

——C1
8 -=—-C2
C3

7
C4

6

AR A
1/ \

year year year year year year year year year year
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Figure 6.3 d: Graph of SOM cluster details (C1 to C4) showing Browns Bay’s annnal variations

within the monthly sampling of ARC’s saline water quality monitoring programme data.

The SOM with Browns Bay data labels (figures 6.3 a, ¢, d & e) illustrates the annual
variations in the water quality along this coast over the ten year period analysed.
@) Almost all the data points lie in the left upper half on the SOM, except
for the corner. Since 1991 onwards, increasing number of data points are
seen to be showing cluster 1 attributes. The annual trend in figures 6.3 c,
the data summary chart and 6.3 d, graph of Brown Bay clusters as well
confirm the trend. Browns Bay data summary graphs for cluster details
(tigures 6.3 e & f) show the range for each attribute analysed herein.
(i) More data points (May - Oct 1992 and April - October 1997 are seen in
cluster 4, where total and faecal coliform counts are higher than in

Cluster 1.

Labelled SOMs (figures A 6.1 - 6.11 of appendix 0) illustrate the positioning of individual
beach data points and their spread on the SOM of all 11 beach data.
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Browns Bay cluster 1
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Figure 6.3 d: Graph showing the physical attribute ranges in cluster 1of the SOM for Browns Bay data
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Browns Bay cluster 4
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Figure 6.3 e: Graph showing the physical attribute ranges in cluster 4 of the SOM for Browns Bay data
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6.3.1.2.2 Decision support systems
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Figures 6.4 a & b: Decision support system superimposed on a SOM of ARC’s saline beach water

quality monitoring data consisting of the 11 beaches, north of Aunckland.
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The map component labelling on the cluster map shows the general spread of the data
collected from the beaches analysed through the LTB saline water quality programme.
The map clustering has separated the data into four major groups that coincided with
their geographical locations (figures 6.4 a & b):

(i) Goat Island in the top left corner (cluster 5).

(i) Ti Point, Kawau Bay, Mahurangi, Orewa, Browns Bay and Depth (deep sea
water collected from different locations), all beaches monitored from
northeastern coast of Auckland fall in the top left half of the map (clusters 1
& 4). Cluster 1 describes the typical summer along the northeastern coast of
Auckland, whereas cluster 4 depicts the wintry conditions along these
beaches.

(i) Hobsonsville, Henderson, Whau and Chelsea in the Waitemata Harbour fall
in the right bottom half of the map (clusters 2 & 3). Here again, clusters 2
and 3 depict the warmer and wintry conditions at the Waitemata Habour.
Cluster 3 also exhibits higher total and faecal values, indicating high bacterial
discharge at the sites as concluded in (Wilcock and Stroud 2000).

(iv) Kaipara (Shelly beach, cluster 5) in the bottom right corner of the map has
the highest total and faecal coliform values, indicating that the Kaipara
Harbour gets the highest bacterial discharge of all the beaches included in the

monitoring programme, again confirms (Wilcock and Stroud 2000).

6.3.1.2.3 Time series (trajectory) analysis

The animation for the trajectory (figures 6.5 a & b) created on this SOM, using Browns

Bay data shows the water quality dynamics over this period along this beach.

11 September 1991, 13 September 1994, 11 October 1994, 18 July 1996, 12 October, 15
July 1995 (in winter) and 9 November 1994 (in summer) are getting closer to high
Eterococci patches. Similarly, using the respective beach data, water quality dynamics of
the other sites also could be analysed in a time series. The data used in this example
consists of monthly test results thus the trajectory does not look smooth as the
trajectories of industrial processes. By using environmental data sampled at shorter
intervals, such as houtly, daily, etc, ecologists could be able to follow the process

dynamics at closer intervals.
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Figures 6.5 a & b: SOM and component planes with the trajectory of Browns Bay data on SOM
created with ARC’s LTB saline water quality data from the 11 beach sites with 200 nodes and all

other map parameters set to default values.
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Figure 6.5 d: Trajectory of Browns Bay data on the SOM of ARC’s LTB saline water quality data

Srom the 11 beach sites with 200 nodes and all other map parameters set to default values.

The time series analysis carried out on Browns Bay data (figures 6.5 a - d) do not show a

smooth flow as the monthly sampling of LTB programme consists of remarkable

variations. SOM maps (figures 6.5 a & b) show the whole 10 year Browns Bay data on
the SOM of all the 11 beaches monitored. SOM trajectories (figures 6.5 ¢ & d) show the

animation of Browns Bay’s monthly and annual variations on the SOM of all beaches.

6.3.2 Conventional data analysis

A Cluster analysis on the saline water quality data was carried out, initially by variables

and then by sites to see the similarities among them using Minitab, a software package
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generally used by statisticians. The results of this analysis are displayed along with their
correlation coefficient distance tables (figure 6.6 a & b and 6.7 a & b). Even though
Minitab and SOM approaches produced the same results, the latter are seen to
outperform the conventional analyses, as SOMs are visual analyses in that they provide a
means to study the trends and variations within all 20 variables (attributes) of the 11

beaches monitored from year 1991-2000, in one SOM (figure 6.2).

S rilarity

3364

G9.09

4.5 —

100.00

Waratbles

Amalgamation Steps

Step Number of Similarity Distance Clusters New Number of obs.

clusters level level joined cluster in new cluster
1 12 99.71 0.006 7 13 7 2
2 11 87.62 0.248 7 12 7 3
3 10 82.84 0.343 5 6 5 2
4 9 68.00 0.640 5 7 5 5
5 8 63.54 0.729 4 10 4 2
6 7 60.43 0.791 5 11 5 6
7 6 59.90 0.802 3 5 3 7
8 5 58.60 0.828 1 2 1 2
9 4 56.80 0.864 3 4 3 9
10 3 56.58 0.868 1 3 1 11
11 2 56.46 0.871 8 9 8 2
12 1 53.64 0.927 1 8 1 13

Figure 6.6 a: Cluster analysis of variables (saline water quality data) b: correlation coefficient distance

table.
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Sirmilarity
36 -
g358 4
5TI

Ny

10000 - I 1

Yariables

Amalgamation Steps

Step Number of Similarity Distance Clusters New Number of obs.

clusters level level joined cluster in new cluster
1 10 99.98 0.000 4 7 4 2
2 9 99.93 0.001 9 1 2
3 8 99.87 0.003 4 10 4 3
4 7 99.86 0.003 1 8 1 3
5 6 99.79 0.004 6 11 6 2
6 5 99.64 0.007 1 4 1 6
7 4 99.42 0.012 2 6 2 3
8 3 99.42 0.012 2 5 2 4
9 2 97.73 0.045 2 3 2 5
10 1 90.36 0.193 1 2 1 11

Figure 6.7 a: Cluster analysis of saline water quality sites b: correlation coefficient distance table.

Wilcock and Stroud (2000) analysed the annual and seasonal variations in the L'TB saline
water quality monitoring programme data using statistical tests with non-parametric
techniques contained in WQSTAT PLUS. Using this programme, statistical calculations
such as median, normality, seasonally, trend and slope were generated and these values
were then compared with graphs of each and every attribute of individual beaches all
separately, covering a period 10 years. Similar graphs for pH values plotted against time

are shown in figures 6.8 a & b, for Browns Bay and Chelsea.
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Figures 6.8 a &b: Graphs showing the pH trends in saline water guality water sample at Browns Bay
and b: Chelsea from 19 March 1991 to 15 October 2000.

Wilcock and Stroud (2000) analysed the same monitoring data with conventional
methods. The report consists of 11 graphs for each and every attribute, making any
analysis of the big picture very difficult or impossible. On the contrary, SOMs were seen
to be useful in viewing the whole regional data covering a period of ten years in one map.
It is also possible to analyse the urbanisation along with the monitoring data and is

elaborated in the next section for Browns Bay.
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6.4 SOM analysis on integrated data

A SOM map (figure 6.9 a and b) was created with NSCC’s building consent data fused
with ARC’s saline water quality data for Browns Bay in order to explore SOM abilities
for modelling ecosystems with ecological and economic data within an integrated

framework. In this example, the building consent data is considered as an indicator of

developmental activities taking place on North Shore.

i s

12-0ct-95

8- Hon-29

/

C5

[-.Jan-09

Temp (deg CI|SS (mgfd)| T

b_conscent [ /pH

L

"Chloride (mog.Salinity (ppt)

i Bl
[T ]

0.007E 039 0028055 | 0.00510.0 . 14 17E2

i
[T

DO (ppm)| | Secchi®

e

m 1 m 1
il i

CHLORO*NEMTER-ME*| MNOZ* MNO3MNOZ*

I 1 1
el

] 13 A 2.7( 10001 0.033

4]
[T]

2 4| |0.00R0033| P.O03002

Figures 6.9 a & b: SOM and component planes of Browns Bay saline water quality monitoring data
with NSCC’s building consent data.
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Figure 6.9 ¢c: SOM cluster details of Browns Bay saline water quality monitoring data and NSCC's

building consent data

The building consent data was obtained as quarterly summaries whereas the saline water

quality sampling was carried out on a monthly basis. Owing to the different time

intervals, the two data sets could not be analysed integrated using conventional data

analysis methods. To overcome this problem the building consent data was equally

apportioned to the three respective months of that quarter and a SOM (figures 6.9 a & b)

was created using the fused data set to look for relationships between the building

consent data and saline water quality test results at monthly intervals. The following are

the interpretations arrived at from the SOM:
(i)  Cluster 5 in the bottom centre left with 17-May-99, 20-Apr-00, 19-Jun-00, 19-
May-00, 20-Jan-99 and 18-Apr-94 with high building consent values also
show the highest NO,NO, (0.01623), ammonia (0.033305 mg/1), nitrate

(0.01541 mg/1) and Enterococci count ( 3.17) values in the map.
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(i) Cluster 4 data, 14-Feb-94, 20-Mar-95, 29-Jan-93, 17-Feb-95, 26-Mar-93 at

20.42°C temperature, shows the typical summer scenario.

(i) Clusters 1, 2 and 3 describe three different wintry scenarios along the beach.

(iv) Within cluster 5, on18 April 1994 ammonia is seen with the highest value of

the whole SOM map.
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Figure 6.9 d: Graphs showing the cluster details of the SOM created with LTB water quality

monitoring data and NSCC'’s building consent data.
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Analysis on the individual graphs of each site’s attribute makes comparison among the
sites and their seasonal variations within the data laborious, whereas SOM displays
produce visual representation of the data, also depicting the spatial and temporal
variations within the monitoring data. More details of SOM advantages against
conventional methods are elaborated upon in section 6.6 conclusions. Building consent

data does not include the lapse or lead time involved in actual building construction and

consent approval.
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Figures 6.10 a & b: Graph showing a: building consent and b: Enterococci connt data against time.



Soft systems analysis of ecosystems

Amrnonia (rnghl/)

0.1
I\—{ 18 April 1994
0.09 -
0.08 A
0.07 -
15 July 1998 - 8 Dec 1999
0.05 -
0.05 -
0.04 1
0.03 |
N ’ /\W\—‘——
0.01 A
+*
i
N RN G S o= - ol S L - S - - SR S = - - L G- L O -5
.@'33 gzq #‘@7}* & fc?@fé-'\ o @5‘@&* o #‘@7}* o 7?@\7}* o §%\6\§§@:§5 Q'é‘@&* 4 #‘@7}* &
Rl o ’ffr{} \*ﬁ‘ﬁPf\?‘ q?ﬁ,’\‘?(‘f o *3"}(\' N"F@rﬂ' @,G-‘{LQ(@, ,SF\"P\W %2’@{95}5\ 7\"?“19(}?9( q‘;ﬁ
Terp (deg C)
Ell
14 Feb - April 1994
254
204 "\
*
15—\/ . f
*
10
5,
0+
7 5555388883533 88288388588085888888888388¢8738
5 S 5SS 8§ 5=8 §5>05§8530585558§8=8§8=%8 52385235258
= 232054 2054 305L 2051370543052 0052 5705<g0
i gACegAaNezeRiadidggRe gy teogrEodgLs

Figures 6.10 ¢ & d: Graphs showing ¢: ammonia and d: temperature data against time.

Graphs on building consent and Ewfercocci values of Browns Bay (figures 6.10 a & b)

show a correlation in the time period analysed.



Soft systems analysis of ecosystems

NOINOZT

0.0s

15 July 1995
0.07

0.06

0.05 19 June - 17 Aug 2000

0.04

0.03

002 4

0o 4

991
991
991
931
a2
932
a2
992
933
993
993
933
994
594
a4
994
935
995
9395
935
995
995
995
995
a7
Qa7
a7
a7
995
995
995
993
999
a9
999
a9
aoo

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
90542000 4
9/09/2000

Figure 6.10 e: Graph showing NO;NO, values against time.

In the next section, the second example of the chapter is elaborated upon.

6.5 ARC subtidal data Analysis

In 1998, ARC began conducting sub and intertidal biological monitoring programmes to
study the effects of urbanisation on the marine habitats of the Waitemata Harbour and
northeastern coasts of Auckland. The main aim of the programme was to analyse the
population dynamics (such as species composition changes in the monitoring data), to
study the environmental change and its effects on the coastal habitats under study.
Initially, the programme was limited to Long Bay only, but eventually was extended to
cover areas from Campbell Bay to Waiwera (figure 6.11), fulfilling the BACI design
method requirement; to see whether the Long Bay’s species composition changes were
confined only to its coastal systems, affected by the urbanisation in near shore.
Researchers of UoA based at the Leigh Marine Laboratory have been carrying out the
monitoring programmes for ARC, since 1998. For more information on the methods,

the original report (Walker et al. 2000) should be consulted.

6.5.1 SOM analysis and Methodology

Of the above monitoring data collected by UoA research staff, only the subtidal species

composition changes (consisting of 42 species count average data of 30 sites from six
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beaches Campbells bay, Torbay, Long Bay, Manly, Stanmore and Waiwera (figure 6.11)

along with sedimentation data are analysed with SOMs in this section.
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Figure 6.11: Map of the Hauraki Gulf with sites and areas where monitoring of subtidal (with asterisk)

and intertidal (with diamonds) communities was carried out during March 2000. Sonrce: (Walker et
al. 2000:5).
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The following were the main problems encountered with conventional ecological data

analysis methods based upon (Walker et al. 2000):

@

(i)

(iii)

Size of the data: Due to the presence of a large number of species in the
quadrants, analysis with standard ecological methods using conventional
statistical calculations produced large matrices, which caused difficulties in
studying the community patterns in the data. This is a common problem
faced by ecological data analysts (Giraudel and Lek 2001).

The researchers did not have any prior knowledge of any indicator species for
the sites studied, hence, analysed all the species collected.

Many of the species have zero at most of the sampled quadrants. However,
elimination of rare species in similar multi species biomonitoring solutions
invariably lead to false conclusions argued (Cao et al. 2002). Hence, Walker
et al. (2000) did not eliminate the rare species in their analysis and advised the

same in this research.

The following are the measures taken to overcome the above-motioned problems:

@

(i)

(iii)

(iv)

Viscovery® SOMine lite version 4.0 by eudaptics software gmph package is
used to create SOM maps as it has the capacity to handle up to 50 variables.
Initially the average counts of all 42 species, calculated from the collected
data covering a period of three years from 1999 to 2001 are used in the SOM
analysis. Species average count values are used in conventional multivariate
analyses, including (Walker et al. 2000), hence adopted in SOM analyses too.
Later, count average data on 25 species, selected by Walker et al. (2000) as
sensitive to environmental changes along the beaches analysed, is analysed
alone and then with sedimentation data from the same monitoring
programme. This is done to see whether these species could be used to
model coastal ecosystem changes caused by sedimentation arising from
urbanisation on North Shore. If proven this could facilitate the design of
biological indicators based on subtidal population dynamics to analyse the
effects of urbanisation on coastal and marine life at Long Bay and the other
beaches along the coast.

Sedimentation rates of less than 63 micron particles are included in the

studies as per expert advice obtained from the Leigh laboratory researchers.
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6.5.1.2 Results and discussion

Firstly, a SOM (figures 6.12 a and b) was created with the 42 subtidal species average
count data, from the 30 sites (5 sites from each of the six beaches selected along the
northeastern coast of Auckland), from 1999 to 2001. In order to look for the
correlations between sediment deposition rates (percentage of <63 micron
sedimentation) and subtidal population dynamics, another SOM (figures 6.13 a, b and ¢)
was created with these two data sets (the sedimentation data linked), which were actually
analysed separately in (Walker et al. 2000). However, the clustering patterns seen in these
two SOMs (figures 6.12a b ¢, 6.13 a b & c) without and with the percentages of
sedimentation (<63 microns) linked with the subtidal population dynamics show similar
patterns. This confirmed the correlation between the two data sets (the sedimentation
deposition rates and their effects on the subtidal population dynamics observed through
experiments along these beaches). SOMs displayed the variables on visual formats
through which the analysis was enhanced significantly. Viscovery’s ability to link a
component to the SOM (see chapter 4), in this case the sedimentation data with other
components (the species dynamics data), show potential for developing prediction

models on the subtidal population dynamics with NIWA’s simulated sedimentation data.

Cluster 2

2lls:
St
Cluster 1 Cluster 1
iwel

Figure 6.12 a: SOM of average count of all 42 species, for three years from 1999 to 2001. Map
parameters used are 50 nodes, priority of all components set to 1 and all other parameters set to defanlt

values. b: SOM with five clusters
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Figure 6.12 ¢: SOM component planes (with five clusters) of average connt data of all 42 species, for a
period of three years from 1999 to 2001.
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Figures 6.12 d & e: Graphs showing the cluster details of the SOM of 42 intertidal species average

count data d: three clusters and e: subdivisions of cluster 2 (2 A, B and C).
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Figures 6.13 a & b: SOM of the 42 species average count data with sedimentation data linked, from
1999 to 2001 a: with 3 clusters and b: with five clusters

The following is a summary of the observations seen in these two SOM maps (figures
6.12abc,6.13ab & ¢):

(i)  In both maps the clustering has picked up the annual variations among the
beaches. Clusters 1, 2 and 3 with many of year 2000, 2001 and 1999 data
respectively. Walker et al. (2000) also identified the consistent variations and
concluded that the monitoring frequency of subtidal samples as adequate to
incorporate natural variations. However, the percentage of 2001 beach sites
in cluster 2 is seen prominent than that of 2000 and 1999 in clusters 1 and 3
respectively. This leads to the conclusion that the deviation in year 2001 to
be more than that of annual. SOM cluster data superimposed on a GIS Arc
View 8.2 (figure 6.13 d) illustrates this fact.

(i)  When divided into five clusters, cluster 2 was further subdivided into three
clusters; 2A, 2B and 2C, all five sites of Campbells bay for year 2001 falling
in the left bottom corner, in cluster 2C. This shows that the inter beach

variations to be more than that of inter annual.
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Figure 6.13 ¢: SOM component planes of 42 intertidal species average connt data with sedimentation
data linked, from 1999 to 2001.
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In the next stage, SOMs were created with a summarised list of 25 species average count
data for the six beaches covered in the monitoring programme with (figures 6.14 a b & c)

and without sedimentation data (figures 6.15 a, b, and c).

1699 2000
c3 Stanmarn Waiwera

19
Wiy

1999 19399
Torbay Campbells

2001 20 200&

Stanmore Stan| Stanmare:
C1
2000
c2 Campbells c2
20
2001 Long 2001 ‘
Torbay 20 Torba

Tor g{ Tor
2001 2001 J 2000 19399 2 20 ooo 19949
Manly Waiwer Manly Longhay anly Waiwer; anly Longhay
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Figures 6.14 a, b & ¢: SOM created with a summarised list of 25 species average connt data with
sedimentation data. Map creation parameters: 50 nodes priority of all components set to 1 and all other
map parameters set to defanlt values. a: three cluster SOM, b: five cluster SOM and ¢: SOM

component planes.
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Figures 6.14 d & e: Graphs showing SOM cluster details d: three clusters and e: five clusters. The

SOM was created with a summarised list of 25 species average count data with sedimentation data.
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SOM component planes.
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Figures 6.15 d & e: Graphs showing SOM cluster details d: three cluster and e: five clusters. "The

SOM was created with a summarised list of 25 species average count data without sedimentation data.

143



Soft systems analysis of ecosystems

The interpretations derived from the SOMs of 25 species with sedimentation (figures
6.14 a b & ¢) and without sedimentation data (figures 6.15 a, b, and c) are:

(i) Data points were separated into 3 major clusters with the year 2001 data in
the left side on both maps, (with and without sedimentation data). Similarly,
most of the year 1999 points were gathered in the centre along with the year
2000 data in the right side of the maps. Stanmore 1999 is seen alone in one
cluster. This shows that the annual variations among the subtidal population
dynamics along these beaches can be differentiated by SOM cluster analyses.

(i) When divided into five clusters, year 2001 cluster got further divided into
three divisions. It could be interpreted that the variations among beaches in
year 2001 as higher than that of experienced in the eatlier years.

(i) Of the five beaches Campbells bay 2001 and Long bay 2001 fall into different
clusters. All the other sites Manly, Torbay, Stanmore and Waiwera for 2001

fall into one cluster. In figure 6.12 b, all 5 sites of Champbells bay fall in 2C

Arrows in figure 6.14 b show the trajectory for each and every beach over the three year

period monitored.

Finally, a SOM map (figures 6.16 a & b) was created with sedimentation data linked, by
setting the priority of this component to 0.0001. This would enable making predictions
on the effects of sedimentation on the population dynamics of these subtidal habitats
(see chapter 4 Gold price prediction analysis). The following are the interpretations
arrived at from this map:
(i)  When the SOM map was divided into ten and fourteen clusters (figures 6.16
e and f), the clustering showed a good correlation to five species average
count data: Echinoderms: Patiriella regularis, Evechinus chloroticus, Stegnaster
inflatus, and a sponges species Tethya anrantium . Macroalgae Carpophyllum
Slexcuosum showed a negative correlation to an extent.
(i) A few more species showed positive response during the year 2001. Macro
algae Carpophyllum maschalocarpum, Carpophyllum plumosum, Sargassum sinclairii,
Zonaria turneriana along with herbivorous gastropods Twurbo smaragdus, Trochus

viridus, Predatory whelk Thais orbita, Cookia sulcata and Cantharidus purpurens.
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Figures 6.16 a, b and ¢: SOM created with a summarised list of 25 species average count data with
sedimentation (<63 microns) data linked. Map creation parameters: 50 nodes priority of sedimentation
set 10 0.0001 and all other components set to 1 and all other map parameters set to defanlt values. a:
three cluster SOM, b: five cluster SOM and c: SOM component planes.
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Figures 6.16 ¢ & f: SOM created with a summarised list of 25 species average count data with
sedimentation (<63 microns) data linked. e: ten cluster SOM, f: fourteen cluster SOM and ¢: SOM

component planes.

In order to confirm the correlations between the observed sediment deposition rates and
the subtidal species average count data from the above SOM analyses, significance tests
were carried out and the following species showed significant correlation at less than

0.05p value;

)

Correlations: % ave<63(mio, tot ave(g/d), Blue nudi, Buccinulum, C.opalas, C.vir...

Flex mash Sarg Thalis, Thais, Trochus, Turbo, Zon

Flex -0.250 0.159 -0.045 -0.157 0.172 -0.114 0.026 -0.130
0.025 0.158 0.674 0.140 0.104 0.284 0.805 0.220

mash 0.535 0.120 0.208 0.057 0.039 0.149 0.322 -0.084
0.000 0.289 0.049 0.593 0.717 0.162 0.002 0.433

Sarg 0.301 -0.120 0.118 -0.008 0.010 -0.062 0.084 -0.081
0.007 0.287 0.269 0.944 0.929 0.559 0.431 0.449

Thais 0.253 0.156 0.132 0.175 0.095 0.136 0.150 0.003
0.023 0.167 0.214 0.098 0.372 0.201 0.159 0.977

Trochus 0.312 -0.032 -0.055 -0.094 0.137 -0.031 0.227 -0.158
0.005 0.778 0.608 0.381 0.197 0.773 0.031 0.137

Turbo 0.395 0.099 0.100 -0.014 0.115 0.086 0.224 -0.079
0.000 0.382 0.351 0.897 0.281 0.422 0.034 0.457

zon 0.502 0.092 0.148 -0.036 0.097 -0.052 0.361 -0.080
0.000 0.416 0.163 0.733 0.364 0.623 0.000 0.454

Of the several subtidal species that exhibited negative association with sedimentation in
the SOM analyses, only one macro algal species Carpophyllum flexuosum was confirmed by

the significance test. However, macro algae Canpophyllum maschalocarpum, Sargassum
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Sinclairii, Zonaria turneriana along with herbivorous gastropods Turbo smaragdus, Trochus
viridus Predatory whelk Thais orbita were verified of having positive correlation with

increased sediment deposition percentages observed through SOMs.

A SOM and an ESOM (figure 6.17 a & b) were created with RICBIS using 42 species
average count data along with sediment deposition rates. In the maps annual variations
within the 30 beach sites could be observed. Year 2001 data points on the right of the
SOM look more dissimilar than in the earlier years (1999 & 2000). In the ESOM (figure
6.17b) year 2001 points look scattered all over the map.

In the SOM (figure 6.17a) year 1999 data points look more similar, falling into one
cluster at the left bottom corner, year 2000 sites could be seen breaking up into two
clusters and for 2001 completely broken into two distinctive clusters. This could be
interpreted that the population change in the subtidal community for year 2001 as

different to that of the annual variations in the previous years.

Year 2000 Year 2001

S0M visualisation : Iglgl

Figure 6.17 a: SOM created with 42 subtidal species community changes along with sedimentation
values using RICBLS
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ESDM Spanning Tree: Weight vector set + Sammon proj.

Figure 6.17 b: ESOM created with 42 subtidal g)m'@l changes along with sedimentation

values using RICBLS

SOM visualisation

=]

Figure 6.17 ¢: SOM created with 42 subtidal species-community changes using RICBIS.
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ESDM Spanning Tree: Weight vector set + Sammon proj.

Figure 6.17 d: ESOM created with 42 subtidal species community changes using RICBIS.

On the maps, created with the species data alone without the sedimentation values
(figures 6.17 ¢ & d) years 1999 and 2000 fall into one cluster and year 2001 data fall into a
different cluster. It suggests that the subtidal population dynamics for year 2001 as

different from that of the previous two years.

6.5.2 Conventional data analysis

As part of the research, in addition to the SOM analyses so far discussed, the data on
subtidal population dynamics and sediment deposition rates were analysed separately
using conventional data analysis methods. Simple bar graphs plotted on the subtidal
species average counts and sediment deposition data against time (figures 6.18 a & b) are
worthy of mention. The graphs do not distinguish the annual variations within this data,
however, illustrate a striking variation on species communities of all beaches for year
2001, coinciding with increased sedimentation rates. The increased percentages of <63
microns of the total sedimentation from November 2000 onwards have a good
correlation to the unusual subtidal population dynamics of the beaches monitored in the

ARC’s programme.
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Walker et al. (2000) concluded that the rigorous data analysis methods used in their
design to be capable of detecting the effects increased sedimentation from that of annual
variations with continued monitoring of intertidal population dynamics. Also made

suggestions for using Evechinus chloroticus as a possible biological indicator in the future.
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Figures 6.18 a & b: Graphs plotted for sedimentation and subtidal community changes in the beaches

monitored off northeastern coast of Auckland.
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6.6 Conclusion

The results of this case study, to apply complex industrial system modelling with SOM
techniques to ecosystem modelling show potential. SOM analyses provide a means to
relate and study the environmental changes with the observed biological responses such
as population dynamics, in visual formats even with regional scale monitoring data. The
patterns in the data can be analysed directly linking the causal process and the
environmental effects on biological systems dynamics at ecosystem level even combined

with economic data, within an integrated framework.

All the variables in ARC’s LTB programme data on saline water quality of east coast and
the Waitemata Harbour were analysed separately with 2 D graphs in (Wilcock and Stroud
2000), in the sense a graph for each and every attribute overall 21 graphs for every single
beach. The SOMs created for this research with the same sets of data are able to show
the patterns in the saline water quality data (21 x11 graphs); the regional scale data could
be analysed in one SOM. They revealed the annual and seasonal trends among the
monitored beaches and more importantly at a particular site as well as across the region,
such as similarities and dissimilarities within the monitoring data were apparent in the
SOMs. The example showed that SOMs are capable of modelling the spatial and
temporal variations within the monitoring data as the SOM clustering classified the
different beach data into different clusters, for instance Goat island into top left corner
and Kaipara into right bottom corner. Goat Island data, clustered into one corner of the
SOM, shows that this beach as different to other beaches analysed, considered as a

reference site in (Wilcock and Stroud 2000).

The SOM created with developmental activities (such as building consent data)
combined with the saline water quality data of Browns Bay showed promising results for
integrated analysis of dissimilar data sets. Similarly, data from other aspects, economic
and other developmental activities could be analysed within an integrated framework to

analyse trade-offs at different scales and levels, even with dissimilar data sets.

Studies carried out prior to the ARC’s subtidal population dynamics monitoring
programme, had also stated that the sediment deposition generated by earthworks was
increasing at Long Bay, since last two years (Walker et al. 2000). It was also noted that

there was an observable variation in the biodiversity of the coastal environment, caused
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either by natural causes or induced by increased sedimentation. None of the earlier
research effects was able to exactly detect the subtidal population dynamics or its cause
either. The SOM maps created with the same set of data were able to differentiate the
annual variations in biodiversity from those owing to increased sedimentation rates,

through visual formats.

ARC’s biomonitoring programme carried out by UoA is expected to continue at least for
another few years as it is based on BACI design (Walker et al. 2000). Even with
extensive information on the habitat species, before and after an impact occurs, it is
extremely difficult to establish the correlation between the biological system changes and
the environmental impact using the BACI and other more complex design methods used
in the series, argued (Thrush et al. 1995; Osenberg 19906) (see chapter 3). The reasons for
this are, apart from the variability seen in species threshold response and other impact
reciprocating mechanisms, the extent of an environmental impact could vary significantly

within the analysed ecosystem due to spatial and temporal variations.

SOMs are capable of modelling the spatial as well as temporal variations using the
available subtidal community monitoring data. SOMs created with RICBIS also depicted
the clustering patterns within the beach sites from the biomonitoirng data. The SOMs
and ESOMs distinguished the sediment induced population dynamics from that of
annual variations. Hence, the case study results prove SOMs techniques as a useful tool
for ecosystem modelling with a quantitative approach using the available data, and

abilities to overcome the inadequacies with conventional data analysis methods.

6.7 Future work

NIWA has produced models showing the possible sediment generation under different
future development scenarios on North Shore (Green et al. 2000). Further research is
intended to use SOMs and the same hypothesis to investigate possible techniques to
predict the population dynamics for NIWA’s predicted sedimentation data. Prediction is
possible in Viscovery by associating the related variable/s in the data set with the SOM.
In the case of subtidal community changes, associating it with the current sedimentation
rates and then creating new SOMs for extending the correlation between the two sets of

components is a possible way of predicting the environmental effects on the biodiversity.
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Summary

The second case study of this research to examine how best SOM methods could be
applied to modelling ecosystem processes at regional scales and to an extent along with
economic data, within an integrated framework, produced promising results and showed
potential for future use. The various SOM methods utilised in the case study elaborated

the application of SOM feature extraction in ecological data analysis.

The saline water quality example showed how SOM clusters could be effectively used to
carry out a comparative analysis on the available data. Component plane analyses
showed how SOM components, visual representations of the multidimensional, disparate
data sets could be applied to studying the correlations within the different variables of
fused data sets. Also the example illustrated SOMs capabilities in detecting the spatial

variations within the monitoring data, seen to be impossible by traditional methods.

The subtidal community biomonitoring example illustrated, SOM abilities to explore
correlations among variables, in particular between environmental parameters and
biological indicators, which are generally found to be extremely difficult if not

impossible, even with the use of rigorous traditional statistical methods.

In the next chapter SOMs are applied to ecosystem modelling with global data to look
for patterns at a further wider scale than in this chapter. The shortcomings with the
contemporary ecosystem modelling methods, such as pressure-state-response and
information pyramid models, and the pilot projects already implemented for this purpose
by the Dutch government (also adopted by various international institutions and Ministry

for Environment in New Zealand) will be discussed in detail.
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Chapter 7
SOM techniques to analyse global data

The last two chapters provided details on case studies that examined the use of SOM
methods, utilising large volumes of data sets with inconsistent labelling from a single site
and at regional scales. Potential applications of Kohonen’s SOM techniques to
modelling biological and environmental systems within an integrated framework are
being investigated in this research. Chapter 6 illustrated the efficient use of SOM
methods with ecological monitoring (biological and environmental) and development
related (building consent) data of an area, in analysing the correlations in them. In this
chapter, data sets at higher levels and wider scales are analysed with SOMs to study the
patterns in them. The main objective is to detect global trends in the effects of
urbanisation on biodiversity based on data compiled by international institutions. Many
environmentally concerned institutions (national and international, such as Organisation
for Export Corporation and Development (OECD), the World Bank, World Resources
Institute (WRI) and Ministry for the Environment in New Zealand), have embarked on
activities to developing methods and formulating legislation to save ecosystems from
massive environmental deterioration. The next section gives a background on the case

study being analysed herein.

7.1 Background

The World Bank’s matrix of environmental indicators was developed based on an explicit
conceptual model within a pressure-state-response (PSR) model framework, to measure
the human interaction with the environment (see chapter 3.). The matrix indicators
(appendix 3) are categorised into four major issues. They are:

(i)  source indicators

(i)  sink or pollution indicators

(i) life support indicators and

@iv) human impact indicators.

As the Wortld Bank’s matrix of indicators is structured based on the PSR framework, data
on these indicators could be directly used for quantitative analysis of ecosystems using

SOMs. Data tables and reports released by the World Bank and WRI for the above
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stated issues are available for public access (Hammond et al. 1995¢; World Bank 2002d;
World Bank 2002a; World Bank 2002¢; World Bank 2002b). SOMs were created with
different combinations of the World Bank’s data tables to analyse the global trends in

developmental activities and their impact on biological diversity.

7.2 Objective

The following are the objectives of this case study using the World Bank’s statistical data:

(i)  to further investigate the SOM based approaches to analyse the effects of
human interaction on our global ecosystem in which many living beings
coexist in a dynamic equilibrium. Methods that can detect an equilibrium
shift towards any undesirable direction by tracking the systems dynamics,
within the available statistical data of different countries, could be of use to
study the global ecosystem trends.

(i) to explore SOM approaches to analyse disparate global data on biological and
environmental changes along with economic and social aspects within an
integrated framework (or with a systems approach). These approaches could
be applied to economic trade-off analysis by collectively analysing different
combination of data sets, to explore the relationships among the chosen

variables without any physical models.

7.2 Contemporary indicators for ecosystem analysis

The PSR indicator framework, first introduced by the Dutch government to analyse
diverse ecosystems has been adopted by many international institutions, such as OECD,
UNDP, WRI, and the World Bank despite the hassles involved in the aggregation
process. In this section, PSR model framework and the information pyramid based

aggregation processes are explained using the sink or pollution indicators.

7.2.1 Sink or pollution indicators

In the PSR approach, different aggregation methods are used to produce composite
indices to measure the state, pressure and response of an environment (see chapter 7).
The aggregation processes, based on the information pyramid model, are used to reduce
a number of primary indicators/ data pertaining to an issue, into a single composite index

per issue. Similarly, all primary indicators are converted into composite indices i.e. GDP.
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In the Netherlands, environmental indicators, developed based on the PSR indicator
framework, have been tested with considerable success despite the complex calculations
involved in the aggregation process. These indicators have been applied to gauging the
state, pressure, and response of the environment and natural resources with an aim to
support ecosystem functioning and biodiversity for human wellbeing. The following are
the indicators listed by the Dutch government as the six main human activities that
primarily alter the character of the earth’s physical and biological systems:

(i)  Climate change indicator

(i) Ozone depletion indicator

(i) Acidification indicator

(iv) Eutrophication indicator

(v) Toxics dispersion indicator

(vi) Solid waste disposal indicator

Of this six listed issues, ozone depletion indicator is further described to see as how the
first level indicators are aggregated to produce the final single composite index for
pollution. Initially, the ozone depletion indicators are aggregated, depending on the
extent of damage caused to the ozone layer, by giving a weight to the next level of
aggregated indicator. For instance, the damage caused by Halon 1301 to the ozone layer
is ten times more than that of the substances categorised as CFC-11. The weighted,
summation of ozone depletion indicators is estimated as ozone depletion equivalents.
Accordingly, the estimation for 1980 was 20,000 units and by 1991 it dropped to 8,721
units. This shows an indication of 56 % improvement on the environment’s state by
ozone depletion substance emission over this period (figure 7.1). The Dutch
government policy target was to reach nearly complete termination of producing ozone
depletion substance by the year 2000. Similarly, all other five environmental issues from
such material/ substance emissions, relating to the state indicators were calculated and

analysed using 2D graphs (figures 7.1-7.3).

These six already aggregated indices were then further aggregated into a single composite
pollution index to obtain the overall state in the use of environment as a sink. The
weighting for aggregation of these six environmental issues, in relation to their
contribution was calculated based upon the gaps between the current values of indicators

and their respective long-term policy target for sustainability. The longer the gap the
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more the value assigned to that indicator in the aggregation. Using the annual composite

index values, from 1980 to 1991, the trend in the state of the environment as a sink or

pollution state over this period was analysed (figure 7.4).
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Figure 7. Ozone Depletion Indicator
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Figure 11. Solid Waste Disposal Indicator
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Figures 7.1, 2 & 3: Climate change and ozone depletion indicators, 7.2: Acidjfication and

A s E R T U

eutrophication indicators and 7.3: Toxic dispersion and solid waster disposal indicators (Hammond et

al. 1995¢).
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Figure 12. Composite Pollution Index
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Figure 7.4: Composite pollution index (Hammond et al. 1995¢).

Even though the specific problems with regard to pollution from emissions would vary
from country to country, environmental indicators could be devised to suit their own
country’s requirements using this approach (Hammond et al. 1995¢). It is noted here
that the Ministry for the Environment (MfE) in New Zealand too, has introduced
legislation to develop a set of indicators based on the PSR model framework for future
use (Chapman 1999; Ministry for the Environment 2002a; Ministry for the Environment
2002¢; Ministry for the Environment 2002b). However, there is a major constraint in
this approach, which is, unless the physical process of an ecosystem issue is known there

is no way of aggregating the primary data/ indicators to form the composite index.

7.2.2 Biodiversity indicators

The major issue encountered in the initial development of indicators for biodiversity is
examined in this section. In the World Bank’s list of matrix, there are a few undefined
issues (Hammond et al. 1995d). Of those undefined issues, a particular item that is also
of great interest to this research is the biodiversity. The following are the details of the

matrix elements for biodiversity listed by WRI and the World Bank, based on the PSR

framework:
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Figure 7.5a: Biodiversity in WRI matrix (Hammond et al. 1995b).
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Figure 7.5b: Biodiversity in the World Bank’s matrix (Hammond et al. 1995b)

Indicators of biodiversity can be considered as a proxy for measures of fundamental life
support functions (Hammond et al. 1995a) despite the constraints encountered in
developing them. Biodiversity is considered to play a significant role in ecosystem
functioning, by providing supportt to all life on the Earth, such as oxygen production,
water purification and many more. However, the spatial variations within an ecosystem
pose a major constraint in devising a set of indicators for biodiversity at wider scales (see
chapter 3), even the PSR framework approach has not been useful in this effect. Some
suggestions made by Hammond et al. (1995a) to overcome this problem are discussed
herein as they are applied to SOM analyses in this case study: The suggestions are:

1)  Policies to preserve biodiversity should be directed at ecosystem or habitat
level for which measure of biodiversity change could be made at species level
cither by counting species or listing endangered species. With the recent
advances in DNA studies, genetics and ecological modelling, it possible to
measure the diversity in life at various levels, such as gene, species and
ecosystem. Despite the fact that all these are capable of reflecting the
important elements of the Earth’s biological heritage, many interactive

processes, critical to all life take place at ecosystem level. Thus, measures to
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iif)

1v)

study the preservation of biodiversity should be carryout at this level with a

systems/ holistic approach.

To associate the human impact on ecosystems (that could be measured in

terms of changes in human activities, such as cutting of forests), with

monitoring of ecosystem changes (that could be measured in terms of

biological population dynamics). As ecosystems can be roughly studied

corresponding to their geographical units, the administrative responsibility for

conservation and land management activities as well should be assigned to

these units.

To use the following widely reported factors that are considered as useful in

devising biodiversity indicators within the PSR model framework,

a. list of endangered species and

b. statistics on wilderness areas, both as state indicators.
Statistics on percentage of land legislated for conservation/ protected could
be considered as response indicators. None of the above could be used as
pressure caused from human activities on ecosystem state. This is because
the changes in biodiversity arising from human activities vary significantly
even within an ecosystem due to variations in species response (often
described as threshold and non-linear) and population dynamics (described
in terms of species richness and evenness). Such variations can only be
mapped spatially, such as digital maps, in terms of currently available
methods.

To extract national level summaries on the relationships among various
human activities and biodiversity from Geographical Information Systems
(GIS) to analyse the spatial distribution of a particular ecosystem. There are
digital maps featuring the spatial distribution of vegetation types or other
markers of broad ecosystem type with the basic physical data on land type
and microclimate, including the location and intensity of various human
activities. These primary data could be used to create concise indicators of
biodiversity, as the more recent GISs allow for integration of other data sets
and manipulation of the same for further analysis and extraction of
information at higher levels.

To use the indirect measures on human induced pressure from GISs, instead

of the direct measures that are difficult to obtain. There are many countries
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with spatial distribution of data in some indirect measures (for instance,
human population distribution, and the presence of roads or infrastructure),
already superimposed on digital maps. These could be used as a time series
analysis to study the effects of human activities in ecosystem biodiversity.
Some of the human activities that create direct pressure on ecosystems, such
as clearing of forests, filling in wetlands, overharvesting (firewood or
overgrazing of domestic animals), introduction of exotic species and
pollution or diversion of water, cannot be measured easily. To overcome this
problem, indirect measures, such as population increase, could be used to
analyse the direct pressure imposed by humans.

vi)  To use the latest GISs parameters as indicators of non-linear variables, such
as vulnerability or the threshold of a varying pressure, within an ecosystem.
The spatial variations within an ecosystem may significantly affect the extent
of an impact. Hence, using an GIS, the measures of inherent sensitivity that
are dependent on the distribution of geographical and biological parameters
such as soil type, climate zones, slope and proximity to waterways could be
analysed quantitatively along with the current degree of modification in the
area, such as habitat fragmentation or soil erosion and risk pressure. By
combining the pressure and vulnerability data on digital maps, the region’s
ecological thresholds could be established and used as an indicator of relative

risk of degrading biodiversity throughout the ecosystem.

Based on the above suggestions, WRI in collaboration with the World Conventional
Monitoring Centre, RIVM, Conservation International and the Institute for Sustainable
Development began work on preparing maps of preliminary pressure, sensitivity and
ecosystem risks for a few African countries using the already developed digital maps.
Originally, these maps of population distribution and infrastructure were developed for

these African countries as a development planning tool (Hammond et al. 1995a).

The recent suggestions and developments in ecosystem dynamics modelling to
incorporating biodiversity were outlined in the section. Many international institutions
have constantly expressed their concern over the escalating human activities, deleterious
to the environment. They also have embarked on efforts to develop biodiversity

indicators based on the PSR model framework despite the above discussed drawbacks.
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In the next section, how SOM techniques could be best applied to studying the pressure
trends in biodiversity at ecosystem level is described. The main aim is to analyse the
effects on biodiversity due to human activities at global scales using the statistical data

compiled by the World Bank and WRI.

7.3 Methodology

In this case study, data on the pressure and state of biodiversity are collectively analysed
using SOMs, to see the patterns in them. Human activities, such as urbanisation and
deforestation are used as the pressure indicators and threaten species are used as the state
indicators, as suggested in the PSR framework. As the global statistical data tables
compiled by the World Bank were classified based on the PSR model approach,
collectively analysing them was found to be relatively easy, compared to the eatlier two
case studies. Visovery® SOMine lite version 4.1 by eudaptics software gmph package

was used as it could create maps even with a few missing values.

7.4 Results and discussion

The SOM results of two examples with global data are explained. In the first example,
atmospheric concentrations of greenhouse gases are analysed. In the second,
urbanisation and biodiversity data are studied based on the PSR model framework

without any aggregation processes.

7.4.1 SOM analysis on greenhouse and ozone-depleting gases

Global warming of greenhouse gases is a major factor that contributes significantly
towards environmental degradation. It is also a widely recognised issue by many
professionals, such as scientists, policymakers and even the general public. The total
global, atmospheric concentrations of greenhouse and ozone-depleting gases, estimated
for 1980 to1998 time period, consist of two main categories and are based upon (Carbon
Dioxide Information Analysis Center Data 2000-2001). The two categories are:
(i)  Chlorofluorocarbons: CFC-11 (CCI3F), CFC-12 (CCI2F2), and CFC-113
(C2CI3F3).
(i) Total gaseous chlorine: Calculated by multiplying the number of chlorine
atoms in a unit of the chlorine-containing gases by their concentrations.

Chlorine acts as a catalyst in the destruction of ozone.
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Figure 7.6 a: SOM created with atmospheric concentration data of greenhouse and ozone-depleting gases,
Sor a period of 18 years. b: Component planes of the SOM and c: Histogram of the same data.
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Using this data on atmospheric concentrations of greenhouse and ozone-depleting gases,
for a period of 18 years, a SOM map (figures 7.6 a & b) was created with 100 nodes and
all other map creation parameters set to default values. A histogram of the same data is
shown in figure 7.6 c. The SOM cluster maps as well as the component planes (figure
7.6 b) show an effective means to analyse the multidimensional data and this is explained

herein.

SOM component planes (figure 7.6 b) depict the vectors in easily understandable
formats. For instance, carbon dioxide plane (figures 7.6 b and d) illustrates the
atmospheric concentration of carbon dioxide over 1980-1998. The scale beneath the
plane shows the range (3.4 E2 — 3.7 E2, which is 340- 370 concentration units) depicted
in that space. Similarly, other planes and their corresponding scale depict the ranges

covered within the same space for other gases.

In the cluster map, vectors of each and every data point may be visualised. The mean
values for each cluster (such as in figure 7.6 e) are used in the interpretation of the map.
On the contrary, comparative analysis of gases, using the histogram (figure 6.7 c), looks
cumbersome because of the number of gases and the period analysed, especially the very
small differences between the shorter bars cannot be visualised with accuracy. With
SOMs, where similar data points are grouped together, patterns and trends in the gas
emission data, spanning a period of 18 years can be collectively analysed; using the cluster

statistics even minor details could be compared.

Carbon_dioxide
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Cluster 2 1990
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1992 1991 Cluster 3
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Figure 7.6 d: SOM Component plane of atmospheric carbon dioxide concentration from 1980-1998.

The scale shows the atmospheric carbon dioxide range 339-367 in concentration units.
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The following are the interpretations arrived at from this map (figure 7.6 a and b):

@

(i)

(iii)

(iv)

Cluster 5, consisting of 1980 and 1981 shows the lowest volumes for all gases

except for methane and nitrous oxide.

Cluster 3, consisting of 1982 - 84, with low volume of all gases, except for

CFC 11 and 12, released in reasonably high volumes.

Cluster 1, covering a period of four years from 1985 to 1988, exhibits values

same as cluster 3, except for CFC 12 and 113 both of which show

considerable increase than the eatlier time period.

Cluster 2, consisting of 1986, 1987 and 1988 exhibits the release of very high
volumes of methane, CFC- 11, 12 and CFC-113.
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(v)  Cluster 4, consisting of 1991 - 1995 exhibits the release of very high volumes
of CFC gases, especially 113.

The atmospheric concentrations of these gases were very low during the 1980-84 period.
From 1985, the concentrations of methane and CFC have shot up and steadily increased
till 1998. However, there had been a reduction on methyl chloroform and carbon

tetrachloride concentrations during 1996 to1998 period.

The example illustrated how SOMs could be used to analyse without having to calculate
their contribution towards the issue as carried out in the PSR and information pyramid
models. In fact data relating to pressure, response and economic outcome as well could

be studied using SOMs and will be elaborated in the next section.

7.4.2 SOMs in global data on rural environment and land use

A SOM map (figure 7.6 a and b) was created using the following data of land use
changes, to study the global trends and patterns in different countries on their rural
environment and land use in years 1980 and 2000 along with their annual growth (World
Bank Report 2001a):
(i)  Rural population: Total percentages in 1980 and 2000 along with percentage
of average annual growth between 1980-2000.
(i)  Rural population density: People per sq.km of arable land in 1999.
(i) Land area: Thousand sq.km in 1999.
(iv) Land use: Percentages of arable land in total land area in 1980 and 1999,
percentages of permanent cropland out of total land area in1980 and 1999

and percentages of other land area out of total land area in 1980 and 1999.

The total population figures are World Bank estimate. Data on land area and land use
are from Food and Agriculture Organisation’s (FAQ’s) electronic files, published in its
Production Yearbook. FAO gathers these data from national agencies through annual
questionnaires and national agricultural censuses (World Bank Report 2001a). A SOM
was created with the pressure factors affecting the state of biodiversity from the World
Bank data with 100 nodes and all other map parameters set to default values to look for
any major deviations in these two years, 1980 and 2000. The following are the

interpretations derived from the six cluster SOM map (figures 7.7a and b):

166



Soft systems analysis of ecosystems

iif)

1v)

Cluster 6 consists of Australia, Brazil, Canada, Russian Federation, United
States and China show the highest land area (mean) along with the lowest
petcentages of cropland and people/ 1000 sqgk land 1999. These countries
show the lowest percentages for the latter two variables because of their
high land area. The only difference between China and the rest of the
countries in this cluster is that China has the percentage of rural population
58.05 and 49.19 for 1980 and 2000 respectively, whereas for all the other
countries it is low.
Cluster 1 consists of Algeria, Argentina, Armenia, Austria, Azerbaijan,
Bolivia, Bosnia & Herzegovir, Chile, Colombia, Congo Republic, Ecuador,
Finland, Gabon, Georgia, Hong Kong-China, Iran Islamic Republic, Iraq,
Ireland, Israel, Japan, Jordan, Kazakhstan, Korea Democratic Republic,
Liberia, Libya, Mauritania, Mexico, Mongolia, Morocco, Mozambique, New
Zealand, Nicaragua, Norway, Oman, Panama, Peru, Saudi Arabia, Sierra
Leone, Singapore, Slovenia, Sweden, Switzerland, United Arab Emirates,
Uruguay and Venezuela RB. The variations between clusters 1 and 6 are:

a)  cluster 1 countries have low total land area nonetheless have high

percentage of other land area, high as cluster 6.
b)  cluster 1 is densely populated in that its people/ 1000 sqk land is as
mush as three times more than that of cluster 6.

Cluster 2 consists of Afghanistan, Angola, Burkina Faso, Cambodia, Chad,
Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Honduras, Kenya, Lao
PDR, Lesotho, Madagascar, Malawi, Mali, Myanmar, Namibia, Nepal,
Niger, Papua New Guinea, Senegal, Somalia, Sudan, Swaziland, Tajikistan,
Tanzania, Turkmenistan, Uzbekistan, Vietnam, Yemen Republic, and
Zimbabwe. The countries in this cluster show the highest rural population,
78.32 and 70.35 in 1980 and 2000 respectively and at the same time, high
annual growth and because of this reason differ from cluster 1.
Cluster 4 consists of Burundi, Costa Rica, CoteD'lvoire, Cuba, Dominican
Republic, El Slvadoe, Ghana, Greece, Guatemala, Haiti, Indonesia, Italy,
Jamaica, Lebanon, Malaysia, Philippines, Portugal, Puerto Rico, Rwanda,
Spain, Sri Lanka, Trinidad And Tobago, Tunisia and Uganda. These
countries show high to medium percentages of crop land (8.96 and 10.30)

as well as rural population (59.14 and 49.26) for 1980 and 2000.
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Figure 7.7 a: SOM created using land use change data that are suggested as the state indicators of
biodiversity (Hammond et al. 1995a).

168



Soft systems analysis of ecosystems

DP%80-90 |(GDP%90-00| [ Ag%80-90 | | Ag%90-00 Industry%80-SIndustry%90-00
2 ropsop | | = WM | N

;"" —————— i R 1| = |z m._;g

i i | [ 1 | | |
AR R
93 65|27 97| |14 -1 12

Ser%90-00

| =2

R-pop-% 1980 B-pop—% 2000

el =

[ 1 i 1| N
P T
4

48 92

Ave-Ann-grcpeople-land-thousLand-thous_Arable-land! cropLand%land1980

| MAII
"

. o

\
7021 -2890 17377

t_plants97 prot_area99(sgk%totalarea99
= o Ees o=

C1 Cc2 C3 C4 C5 Co

R-pop-%01980 4224 7832 4413 59.14 4815  31.99
R-pop-%2000 31.12 70.35  36.27 49.26 4247  26.81
Ave Annual growth 1980-00% 0.015 2.081 -0.206 0.558 -0.124 0.25
People/land-1000 sqgk ‘99 306 375 174 579 249 109
Land area 1999 1000 sqk 658 572 262 208 396 10005

Arable-land%/ Land Area 1980 6.95 731 2816 18.82 51.73 9.14
Arable land% Land Area 1999 7.25 8.44  27.79 192 4948 9.37

Per_cropland%land1980 1.06 0.53 2.2 8.96 2.09 0.37
Per_cropLand%land1999 1.19 0.77 231  10.36 2.66 0.45
otherl.and%1980 91.9 92.1 69.6 72.2 46.1 90.5
otherlLand%1999 91.5 90.8 69.9 70.4 479 90.1

Figure 7.7 b: Component planes of SOM created with land use change data that are suggested as the
state indicators of biodiversity (Hammwond et al. 1995a).
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Cluster 3 consists of Albania, Belarus, Belgium, Croatia, Estonia, France,

Germany, Korea Republic, Latvia, Macedonia FYR, Netherlands, Nigeria,
Pakistan, Slovak Republic, Syrian Arab Republic, Thailand, Togo, Turkey,
United Kingdom and Yugoslavia Federal Republic. These countries show
low to medium of all variables. They also show the lowest average annual

growth of rural population, which is in negative (-0.206)

b. Cluster 5 consists of Bangladesh, Bulgaria, Czech Republic, Denmark,

Hungary, India, Lithuania, Mauritius, Moldova, Poland, Romania and
Ukraine with attributes same as cluster 3, except for high percentages of

arable area and low percentages of other land in 1980 and 2000.
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Figure 7.7 ¢: Graphs showing the cluster details of rural population and percentage of arable land/

total land.
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The percentages of rural population are less in 2000 than in 1980 for all six clusters.
However, clusters 3 and 5 show, negative average annual growth in rural population
during the period between 1980-2000. As far as the land use changes is concerned, in all
clusters, mean percentage of cropland/total land is high in 1999 than in 1980, however,

total arable land show a different scenario, cluster 3 with less mean percentage for 1999.

7.4.3 SOM analysis on global biodiversity data

SOM analysis was carried out on the following table of indicators compiled by the World

Bank to study the global trends in biodiversity for year 2000/ 2001:

(i) Forest area: Forest area in thousand square km for the year 2000, obtained
from the FAO’s report on the state of the World’s Forests 2001,

(i)  Average annual deforestation: Average annual deforestation from 1990 to
2000 in square km and percentage of decline in forest area during the same
time period, obtained from (World Bank Report 2001b). The report
considers deforestation to be a major cause for biodiversity loss.

(i) Biodiversity: Data on the status of threatened species, gathered from global
scale surveys, carried out on certain selected groups of organisms. Such
knowledge on an area’s threatened species is considered to be an indicator of
its biodiversity loss as well as a meaningful alternative indicator of the area’s
species richness. In ecological studies measures of species richness is
considered to be the most straightforward approach for describing the
biodiversity of an area. Sampling of plots is usually carried out to produce
the estimation of small plants and animals, as these analyses are time-
consuming, involving manipulation of large amounts of data. The following
is a summary of the groups analysed in the global surveys for threatened
species:

a. Mammals: Based upon the estimate, 45 percent of mammal species
remain to be assessed.

b. Birds: The only group of which the status of all species has been assessed.

20 This information was based on a survey, stated to be the latest global forest assessment and the first ever
to use a uniform global definition for forests. In addition, percentage of forest area cover of the total land
area in year 2000 too, was used to indicate the remaining forest area of a nation. The forest cover data

included the natural forest and plantation as such the figures for deforestation might give an underestimate

of the disappearance of natural forests in some countties.
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c. Higher plants™: The first ever comprehensive listing of threatened species
of plants on a wotld scale was produced by the World Conservation
Union’s (IUCN) 1997 red list of threatened plants. Based on the list,
nearly 34,000 plant species, 12.5 percent of the total plants are threatened
with extinction. This report is a result of more than 20 years’ work by
botanists from all over the world.

d. Nationally protected areas: The World Conservation Monitoring Centre
(WCMC) has compiled the protected area and threatened species (within
certain species groups) details in different countries. However, cross-
country compatibility of the WCMC data is subject to anomalies, due to
the differences in taxonomic concepts and coverage adopted by different
countries.

(World Bank Report 2001b)

A SOM map (figures 7.8 a, b and c¢) was created using the above discussed data set with

100 nodes and all other map parameters set to default values.
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Figure 7.8 a: SOM created with deforestation and biodiversity data from (World Bank Report 20010b).

2! Higher plants are the native vascular plant species. Source (World Bank Report 2001b)
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protected area 1999
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2013
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0.264
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Figures 7.8 b & ¢: SOM cluster details and graph of deforestation and biodiversity data from (World

Bank Report 2001D).

Initially, the map was classified into three major clusters and the interpretations arrived at

are discussed below:

@) Cluster 3 countries Colombia, Ecuador, Peru, India, Mexico, South Africa,

Indonesia, Australia, Brazil, China, United States and Canada exhibit the

highest world values for all variables analysed except for the percentage of
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(i)

(iii)

(iv)

deforestation (0.264) despite their average annual deforestation for
1990/2000 time period. This is because these countries have very large total
land areas compared to that of other countries. The cluster also shows the
world highest number of mammal, plant and bird species. Threatened plant,
bird and mammal species also are high in these countries, including the
world’s highest values. This cluster could be future divided into two:

a. 3A countries Colombia, Ecuador, Peru, India, Mexico, South Africa,
Indonesia and Brazil are in the high end of the ranges for all attributes
except for forest area (1932, 2196 sqk) and threatened plants (189, 808).

b. 3 B countries, China, Australia, United states and Canada show the
highest values of forest area and threatened plants. Percentage of
protected/ total land for 1999 in these countries are 6.54, 7.96, 11.81
and 10.07 respectively.

Cluster 2 of this map consists of Angola, Paraguay, Zimbabwe, Sudan,

Zambia, Nigeria, Cote, Rwanda, Burundi, Haiti, Mauritania, Myanmar

Papua, Cameroon, Uganda, Nicaragua, Sierra Togo, El West, Niger,

Malaysia, Ghana Guatemala, Malawi, Benin, Congo, Bolivia Tanzania,

Kenya, Costa Panama, Central, Guinea, Venezuela, Argentina Thailand,

Ethiopia Nepal, Mozambique, Philippines, Vietham and Madagascar. It

shows medium values for all attributes except for percentage of deforestation

1990-2000, which is at 1.848 the highest in the whole map. Within this

cluster, Brazil shows the highest forest area. Indonesia has the highest

threatened species for all categories. The cluster can be further divided into

two;

a. 2A countries consist of values at the high end of the range for all
attributes except for the percentage of deforestation 1990-2000.

b. 2B on the lower end of the spectrum.

Cluster 1 consists of all other countries and has the lowest values for all

attributes.

The total species numbers as well as threatened species have a corresponding

correlation to forest area. This could be interpreted as confirmatory of the

theories adopted by WRI to use forest area data to represent species diversity

and loss
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Figure 7.8 e: Component planes of SOM created using deforestation and biodiversity data from the
World Bank report (World Bank Report 2001b) with five clusters.
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Component Cluster 1 Cluster 2A  Cluster 2B Cluster 3A Cluster 3B
Forest area(sqk) 50 261 17 1932 2196
%FA/total land 24.85 36.94 12.52 40.51 23.87
Ave annual def 90-00 -43 2059 538 4725 -4121
% in def 90-00 -0.39 0.983 3.844 0.505 -0.281
Mammals 96 82.7 256.3 146 345.9 314.4
threat m 2000 10.6 27.6 7.7 63.4 46.4
t birds 96 221 658 372 1160 704
t birds 2000 8.3 22.3 5.8 67.6 42.9
h plants 97 3094 8453 3227 31741 18928
t plants 1997 118 227 58 1010 1914
prot area 1999 21 50 13 189 808
% prot atea/total 7.84 7.99 5.49 9.83 9.1
35000
——Forest area(sgk) —=- %FAltotal land
30000 { —4—Ave annual def 90-00 % in def 90-00
—*—Mammals 96 —e—threat m 2000
25000 4 ——t birds 96 —— t birds 2000
H plants 97 t plants 1997
200000 o prot area 1999 —— % prot area/total
15000 |
10000 |
5000 |
0 -—’Mﬁ:\
Cluster 1 Cluster 2A Cluster 2B Cluster 3A Cluster 3B
5000 |
-10000

Figures 7.8 f & g: SOM cluster details and graph of deforestation and biodiversity data from (World
Bank Report 2001b).
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Figure 7.9 a: SOM created with 100 nodes and other map parameters set to defanlt values using the

World Bank data on deforestation and the number threatened species.

In order to study the relations between the state and response of biodiversity, only the
following indicators stated in (Hammond et al. 1995a) from (World Bank Report 2001b)
were used to create a SOM map with 100 nodes and all other map parameters set to
default values:
(i) List of endangered species from these group of organisms: mammals, birds,
and higher plants as a state indicator for biodiversity
(i) Statistics on wilderness, such as forest area and decline in forest area, also
considered as a state indicator for biodiversity.
(i) Statistics on percentage of protected area of total land area as a response

indicator
Of the six components (figure 7.9 b), except for the average annual deforestation 1990-
2000 all other variables show a corresponding correlation in that all the components

leaving the former consist of similar high and low areas.

It should noted that the average annual deforestation 1990-2000 values are misleading as

some countries classify plantation as reforestation (World Bank Report 2001b).
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Figure 7.9 b: Component planes of SOM created with World Bank data on deforestation and number
threatened species. ¢: SOM cluster details and d: graph showing the difference in clusters 1 to 4.
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The interpretations derived from the map (7.9 a, b & c) are:

@

(i)

(iii)

(iv)

Cluster 4 countries of the SOM, consisting of Indonesia and Brazil are seen
with the highest values for forest area, average annual deforestation, threaten
mammals and birds for year 2000. They are seen to be less responsive in
terms of protected areas, as would be seen in figures 7.9 b-e.

Cluster 3 consists of China, Canada, Russian and Australia with the second
highest values for forest area and threatened plants and the highest protected
area for 1999, the values being 598, 916, 613 and 603 sqk respectively. These
countries also show negative values for deforestation. It should be noted that
forest area includes actual forest areas as well as areas under plantation.
Hence, deforestation negative values could be due to areas of plantation.
Cluster 2 counties, India, Mexico, Colombia, Peru, Philippines, United States,
Malaysia, Tanzania, Kenya, Madagascar, Papua New Guinea, Ecuador, Japan,
Congo, Argentina, Thailand, Vietnam and New Zealand show similar
attributes as cluster 4 countries, but with lesser values. Hence, exhibit the
second worst state in terms of threaten species in all three categories for
2000.

All other countties fall into cluster 1, with the lowest values for all variables

except for deforestation.

Cluster 3 countries consists of high threaten plants. Cluster 1 countries show low

threatens mammal and bird species while cluster 4 countries show high values for these

species. Clusters 2 and 3 show medium threaten species for these two categories.

1800
——threat m 2000
1600 7+t birds 2000 120
1400 { - tplants 1997 100 | T threatm 2000
1200 -t birds 2000
1000 - 80 1
800 | 60 |
600 - 40
400 -
200 201 ,
/-_/ -
0 T T T O
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 7.9 ¢: Graphs showing SOM cluster details of the World Bank data on deforestation and

number threatened species.
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7.4.3 SOMs to analyse composite global data

Data on urbanisation and biodiversity used in the above SOM analyses were combined to
develop a new SOM map to see the patterns between development and biodiversity.

The variables included in the SOM (figure 7.10 a and b) were developmental activities,
Gross Domestic Product (GDP), agriculture, Industry and manufacturing services from

(World Bank Report 2002) with biodiversity indices and rural development data, which

were analysed separately earlier in this chapter.

Figure 7.10 a: SOM created with development and biodiversity data compiled by the Word Bank
(World Bank Report 2001a; World Bank Report 2001b; World Bank Report 2002) with 100

nodes and all other map parameters set to defanlt values.
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Figure 7.10 b: SOM component planes of development and biodiversity data.
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Component Cluster 1 Cluster 2 Cluster 3 Cluster 4
GDP%80-90 1.93 2.16 5.84 3.12
GDP%90-00 2.79 0.83 4.62 1.68
Ag%80-90 2.93 0.79 3.33 2.67
Ag%90-00 2.35 0.34 2.01 0.12
Industry%80-90 1.9 2.55 7.33 2.56
Industry%90-00 2.27 0.18 5.79 0.14
Manu%80-90 2.17 2.3 9.56 2.29
Manu90-00 2.06 -0.43 6.12 2.67
Ser%80-90 2.1 2.85 6.26 3.31
Ser%90-00 2.27 2.57 4.9 2.27
R-pop-%1980 53.53 48.78 75.18 27.15
R-pop-%2000 43.72 41.68 63.31 22.35
Ave-Ann-growth1980-00% 0.809 0.206 1.167 0.215
people-land-thousand-sqk1999 271 268 737 51
Land-thous_sq_km1999 687 214 944 9761
Arable-land%lLandAreal1980 6.88 28.16 15.08 9.08
Arable-land%l.andAreal1999 7.39 26.47 15.24 8.74
Per_cropLand%land1980 0.92 4.93 1.28 0.43
Per_cropLand%land2000 1.02 5.41 1.75 0.43
otherlLand% 1980 92.1 66.9 84 90.5
otherlLand%2000 91.5 68.1 83.3 90.8
ForestA(sqk) 194 40 210 3895
%total_land 31.78 23.57 23.82 37.86
ave_ann_def90/00 1081 93 123 3471
%decline_fo90/00 0.228 0.483 0.236 0.075
threat_ma/2000 17.7 11.8 28.8 46.1
t_birds2000 15.4 8 25.6 51.1
t_plants97 195 175 178 1677
prot_area99(sqk) 44 13 73 674
%ototalarea99 8.11 8.63 7.02 7.47

Figure 7.10 ¢: Cluster details of SOM created with nrbanisation and biodiversity data
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Figure 7.10 d: Graph showing the cluster details of SOM created with urbanisation and biodiversity data
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The following are the interpretations arrived at from this map:

@

(i)

(iif)

(iv)

Cluster 4 consisting of Russian Federation, Brazil, United States, Canada and
Australia show medium GDP, average annual percentage growth of
Agriculture, Industry, Manufacturing and Services in 1980 to 1990 and 1990
to 2000 time periods. These counties also show medium to high numbers of
mammals, birds, higher plants and high number of threatened species of the
same. It can also be seen that they have large areas of protected land, but
when converted into percentage of total land area these countries have low
percentages. Only variable that is low in this cluster is the percentage of
decline in forestation because of their high total land area.

Cluster 3 countries, Papua New Guinea, Cambodia, LaoPDR, Lesotho,
Yemen Repbulic, Pakistan, Kenya, Nepal, Eritrea, Egypt WrabRep,
Thailand, China Indonesia, Swaziland Tanzania, Chad Mongolia, Botswana,
Oman, Korea Republic, Puerto Rico, Vietnam, Mauritius, Bangladesh and
India show high GDP (both in 1980-90 and 1990-2000), agriculture,
manufacture, rural population, people/ 1000 sqk land (737 the map highest),
average annual growth in rural population and percentage decline in forest
(1990-2000). The cluster has high values of threaten species for all three
categories.

Within this cluster 3, China and Indonesia in one node show the highest
GDP, highest values of mammals and birds for 1996 and the highest rates of
threatened species for both in the year 2000. These two counties also have
enjoyed the highest GDP for both years with high industry, manufacturing
and percentage of average annual deforestation (1990/2000). It could be
stated that their GDP growth has come at the expense of biodiversity.
Cluster 2 countries, Azerbaijan, Kyrgyz, Turkmenistan, Kazakhstan
Tajikistan, Netherlands, Armenia, Moldavia, Ukraine, United Kingdom,
Croatia Macedonia FYR, Latvia, Belgium, Estonia, Belarus, Bulgaria
Lithuania, Romania, Germany, Georgia, Czech Republic France, Denmark
Hungary, West Bank And Gaza, Slovak, Poland, Nicaragua, Yugoslavia,
Turkey, Guatemala, Albania, Cuba, Portugal Spain, CostaRica, Nigeria
Togo, Dominican Republic, Italy, Lebanon Trinidad AndTobago, Ghana,
Tunisia, Greece, Syrian Arab Republic, Coted' Ivoire, Jamaica, Uganda,

Malaysia, Philippines, Sri Lanka, El Haiti, Rwanda and Burundi show low to
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medium GDP, agriculture, industry, services, rural population, forest and
total land. However, they have high (268) people/1000sqm land (1999),
compared with that of cluster 1’s 51.

(v) Cluster 1 counties, Argentina, Iran, Iraq Saudi, Kuwait, Uruguay, Ireland
Israel, Jordan, United Arab Emirates, Colombia, Ecuador Venezuela, New
Zealand, Chile, Algeria, Libya, Mexico South Africa, Peru, Singapore,
Panama, Japan, Sweden, Hong Kong, Norway, Congo Liberia, Bolivia,
Gabon, Finland, Switzerland, Austria, Sierra Somalia, Paraguay, CongoRep,
Slovenia, Angola Uzbekistan, Central Africa, Zambia, Bosnia And
Herwgovir, Korea, Mauritania Niger, Guinea-Bissau, Cameroon,
Madagascar, Namibia, Zimbabwe, Honduras, Ethiopia, Mali, Afghanistan,
Malawi, Gambia, Senegal, Benin, Myanmar, Papua New Guinea Sudan,
Burkina Faco, Morocco and Mozambique show low to average values for all
the attributes analysed.

(vi) Variables attributing to the growth of development have a corresponding,

correlation in the time intervals (1980/1990 & 1990/2000) analysed.
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Figure 7.10 e: Graph showing the cluster details based on developmental activities.
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The SOMs of combined data gave a means to look for patterns in these indicators
without any aggregation. From the SOM maps, the major contributing factors in the
fused data set can be distinguished and if necessary more priority could be given during
the training process so that they carry more weight in the clusters map. On the other
hand, indicators of the pressure, state and response of an ecosystem could be analysed to
see the correlations, patterns, and trends in them. As SOM are visual analyses they can
indicate whether the state of an ecosystem is improving or getting worse as well as the
relationships between the pressure and state for the observed trends when used with

appropriate data sets.

7.5 conclusion

The examples used in this chapter showed how SOM analyses could be applied to
studying multidimensional disparate data sets at global scales, within an integrated
framework with the available knowledge on the data being analysed. They even can be
applied to learning more information, in particular the relationships between the
pressure, state and response indicators of diverse ecosystems using data from statistical

tables.

Summary

The third case study of this research attempt to experiment the use of SOM methods, as
used in industrial process modelling and financial analysis produced good results. It
illustrated a sensible approach for the implementation of the current approaches such as
the PSR and information pyramid concepts, even with issues of limited knowledge. Data
within PSR framework could be analysed with SOMs, alleviating the problems faced in
the calculation of appropriate weights for indicator aggregation. The chapter illustrated
the use of SOMs to analyse disparate global data of biological and developmental
activities along with economic as well as social interests within an integrated framework,
in particular to analyse the economic trade-offs on the present and future decisions

contemplated by resource managers.

SOM methods could be used to collectively analyse multidimensional data sets with little

prior knowledge, to learn about the relationships, structures and trends across scales
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using the available data, as required in recent environmental projects, such as the
Millennium ecosystem assessment (MEA). The previous two chapters along with this
third case study gave details on how SOM techniques could be best applied to tracking a
systems dynamics in ecosystem modelling, using ecological monitoring data without any
physical models. SOMs provided a means to analyse highly complex and diverse
ecosystems incorporating their spatial and temporal variations using the abundant

numerical data sets, collected by academic, state and research institutions.
The next chapter analyses the benefits of SOM applications to environmental sciences as

well as the advantages and disadvantages with the different software used in this research

for the implementation of SOM techniques.
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Chapter 8

Results and discussion

SOM based approaches (cluster analysis, dependency analysis, decision support system
and time seties analyses/ trajectories) are investigated for exploratory data analysis in
biological and environmental sciences, as applied in highly complex industrial system
process modelling and financial data analysis. Chapter 4 gave details of the approaches
adopted for investigation in the research. The last three chapters described case studies
and the results arrived at, by using SOM techniques to model extremely complex, highly
diverse, naturally evolving ecosystems. Modelling is also possible at different scales
(regional and global) and levels (environmental, biological and ecosystem). The overall
results on the use of SOM techniques to model various ecosystems are revealed in this
chapter. In addition, the reasons for suggesting SOM methods to bridge the gaps in the

existing ecological data analysis methods are explained in detail.

8.1 Ecological data analysis and ecosystem modelling

In general, the existing conventional ecological data analysis methods are increasingly
seen to be inadequate in the sense, they are unable to inform resource management of
environmental conditions or any major threats to ecosystem functioning. The highly
sophisticated, professional design methods of ecology, such as BACI, BASIPS are
complicated, rigorous and yet incapable of distinguishing the effects of environmental
impact, whether due to human activities or natural causes. However, not only the
detection of such environmental effects and their causes, but also the prediction of
deleterious effects are stressed and reiterated to created a better human-environment
relationship that protects natural habitats along with their biodiversity. The same issues
have been emphasised over and over again since the late 1980s. A large volume of

literature is reviewed in chapter 3, providing details from different scientific perspectives.

The need for reliable environmental impact analysis and prediction models has never
been so great; anthropogenic degradation of the environment continues to increase and
also the kind and severity of human influence causing them. The demand on
ecosystems, such as natural resources and produces, continues to escalate at

unprecedented proportions due to the exponential growth of the world population,
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imposing more pressure on the degraded and overexploited natural systems (Reid 2000).
Scientists, ecologists and many national and international institutions have expressed
their concerns over the issues and taken remedial measures to address them. UN’s
MEA, EPA’s STAR programmes and WRI’s efforts are a few recent attempts that have
resulted from this (Environmental Protection Agency; Bierbaum et al. 2001; Ministry for

the Environment 2002a; Ministry for the Environment 2002b).

A better, co-ordinated effort on decisions affecting ecosystems is seen as imperative for
humanity’s wellbeing in the long run. Scientists and stakeholders need to work together
to predict ecosystem responses, so that natural habitats sustain human activity, was
elaborated upon in chapter 3. But in the past, environmental impact assessment (EIA) of
conventional statistical methods has caused wrangling between environmentalists and
land developers over the approval of proposed development (Buckeridge 1999). Often
arguments are based on the soundness of conventional ecological assessment methods
(Mapstone 1996). Stakeholders encourage as many as possible developmental activities
as these invariably improve a nation’s current socio-economic status by generating
employment and revenue. Blanket restriction on development could cause undue
hardship by eliminating even the environmentally non-harmful ones, and vzce versa could
affect future generations with massive environment degradation and loss to biological
diversity. As supported by a number of scientific papers reviewed in the thesis, it has
become necessary to distinguish the human induced environmental impact from that of

natural and global variations, such as spatial, temporal and climate change.

The following are the questions set out for investigation through this research, to fulfil
the need for better methods in ecosystem modelling:

@) How could SOM methods be best applied to unravel the structure of highly
diverse, extremely complex and naturally evolving ecosystems, and to predict
their system dynamics

(i)  Could this approach be applied for the conversion and dissemination of
disparate (i.e. ecological and socio-economic) data sets to a wider
community, to preserve various ecosystems along with their innate

biodiversity and functioning for human wellbeing?
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The three case studies experimented in this research show that SOMs could be used for
ecosystem modelling in an efficient and very constructive manner. SOM methods
provide an approach for the conversion of abundant monitoring data (at different levels
and scales), into meaningful information in visual formats. They are useful in modelling
diverse ecosystems including their biodiversity and environmental changes with spatial
and temporal variations, using disparate data, such as biological, environmental as well as
economic data, at ecosystem level within an integrated framework. The case study
results on the investigation of how best SOM methods could be utilised for ecosystem

modelling are elaborated upon.

8.2 Use of SOMs in Long Bay Okura Marine Reserve data

In the Long Bay Okura Marine Reserve analysis, the use of SOM techniques provided a
means to collectively analyse the reserve’s ecological monitoring data along with NSCC'’s
Enterococci data.  These data sets were collected and analysed separately by AUT students
and NSCC staff to study the reserve’s ecosystem (physical and biological) changes and

the beach water quality at Long Bay respectively.

The SOMs also revealed the non-linear relationships between the input vectors. As
SOM can display the input vectors on two-dimensional formats, they could be used
assess the environmental impact needed by resource managers for decision making on

future development and present practices.

The SOM clustering was found to be useful in analysing the Long Bay Reserve data.
They showed SOM approaches to be capable of delineating intricate patterns, even in
disparate data sets collected at irregular intervals. The detection of correlations among
environmental and biological variables was found to be relatively easy on the SOMs
created with the fused data sets, from different sources with inconsistent labelling and

missing values.

The dependent component plane analysis proved SOM abilities to relate the reserve’s
physical and biological processes within the intertidal zone. The component planes were
useful in discerning the major contributing variables for the observed physical system
changes and their effects on the sciaphilic colonisation at the reserve. For instance, the

SOMs portrayed the eutropic conditions observed in the reserve, from the raw data.
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The difficulties in incorporating spatial and temporal variations, especially in analysing
the effects of environmental impact over large areas using conventional methods could
be overcome with SOM approaches. The SOM clustering that distinguished the
different intertial, littoral zones (S1-S4) from the Reserve data showed its potential to

model spatial variations within the monitoring data.

The time series analyses or trajectories on SOMs showed how temporal variations and
their dynamics within the reserve’s monitoring data could be modelled for prediction
purposes. However, the trajectories of Long Bay Reserve data were not as regular as
seen in complex industrial system dynamics modelling examples, as the reserve data was

intermittent, not producing a smooth flow in the trajectory.

8.3 Use of SOMs in council monitoring data

The use of SOM techniques in ARC’s LTB saline water quality provided an approach to
comparative analysis on beaches across a region, north of Auckland using the available
data. SOMs project the input vectors on two dimensional formats, which are capable of
displaying the non-linear relationships and spatial variations in the data even without
knowing the class memberships in them. In an earlier study by (Wilcock and Stroud
2000), each and every attribute of the data was analysed separately with several two
dimensional graphs for every single beach water sampling, which made comparative

analysis of the beaches very difficult.

SOM analyses gave a means to study the relationships between the sedimentation
deposition rates with the subtidal marine habitat population dynamics of selected beaches
between Campbells Bay and Waiwera, northeast of Auckland. The biological data set of
species average count produced complex matrices of numerical values (Walker et al.
2000). Analysing such complex matrices of data is a common problem faced in
multivariate analyses by ecologists (Giraudel and Lek 2001). Furthermore, the
multivariate analytical methods generally used by ecologists to correlate the
environmental and community patterns are data dependent and may produce misleading,
confusing, unstable or incomputable results (see chapter 3). The SOM analyses
(implemented with RICBIS and Viscovery, a commercial data depiction software) not
only distinguished the annual variations from that of sediment induced changes on the

subtidal population dynamics. They also provided a quick and simple means to establish
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the link, within the monitoring data only spanning a period of three years and with
inconsistent labelling. The detection of such correlations, such as determining whether
an impact was due to human influenced or of natural causes, has been difficult if not
impossible, as the impact of an ecosystem may or may not co vary with the ecological
impact within an ecosystem, due to the following reasons:
(i)  the spatial variations of the ecosystem, and the effects of the extensively
varying impact (such as urbanisation) being analysed (Thrush et al. 1995).
(i) many species typically exhibit a non-linear, threshold response to a physical
environmental change (Raimondi and Reed 19906).
(i) biological system responses are slow, subtle and are often mistaken as ‘no

response’ by many conventional data analysis methods (Clark et al. 2001).

In the subtidal community population dynamics example, the species that were found to
be potential indicators by fine tuning the cluster maps; one among the identified species

in (Walker et al. 2000) is, Evechinus chloroticus

Even though some of these results were derived using standard statistical analyses,
because of the complexity in the conventional methods, stakeholders and the general
public have limited the use of these findings in their decision making processes
(Buckeridge 1994). But in the SOM method approach, data sets are mapped onto easily
understandable, visual displays, providing a means to visualise the correlations among the
various causes and their resulting effects. As multidimensional data sets can be directly
projected onto two-dimensional displays, SOM maps also provide a more plausible

approach than the existing conventional methods.

Using conventional MDS clustering methods (Walker et al. 2000) failed to detect any
constructive patterns in the monitoring data sets. It is stated in the report that the MDS
clustering methods carried out by them had failed to reveal any constructive patterns in
the community structure on the species abundance data for years 1999-2000. This may
be because the MDS methods used did not show any useful patterns, or the analysts were
not able to interpret them. MDS clustering was projected onto two-dimensional displays
using the famous Bray-Curtis similarity matrices calculated on 4™ root transformed

species abundance data. The multivariate community analyses were used to determine
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the community structure patterns, undetectable by univariate methods carried out by the

analysts (Walker et al. 2000). This drawback was overcome by SOMs in the case study.

SOM clustering results could be incorporated with GISs for easy viewing. The SOM
clustering results incorporated into a GIS, such as Arc View, version 8.2 showed how

SOM cluster results could be incorporated with GISs.

8.4 Use of SOMs in global data

The results achieved through the third case study of this research aimed at investigating
the use of SOM techniques in ecosystem modelling at higher levels and scales are
reviewed in this section. The main aim of the case study was to produce an approach, to
detect global trends in the effects of urbanisation on the global ecosystem and its
biodiversity using statistical numeric data. It has the potential to bring the three main
participants (scientists, stakeholders and the general public) needed together to preserve
ecosystems for future generations. Conventional methods do not create a common trust
among the main participants; they neither encourage integrated, interdisciplinary
environmental research nor provide a means to implement the triple bottom line (TBL)
and similar model concepts (Harris, 2000). The twentieth century research efforts of
gaining in-depth knowledge with a fragmented image of nature has been blamed for this

(Bowler 1992).

Unavailability of predictive models of ecosystem response to human influence or inability
to invent such models is seen as a major factor for the recent global environmental
degradation. The historic approach of sectoral management and the resulting inevitable
response management has led to the regional environmental problems becoming global,
such as habitat destruction, local species extinction, emission of greenhouse and CFC

gases and overfishing.

As the world population continues to escalate at unprecedented proportions, the demand
on natural resources and biodiversity as well continues to increase. The need to preserve
severely failing natural systems for future generations seems greater than ever. The
requirement for understanding diverse ecosystems to improve human-environment

relationship has led to redirection on research efforts towards introducing
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interdisciplinary approaches with innovative integrated data analysis and modelling

techniques.

Chapters 3 and 7 discussed how we deal with environmental issues is crucial for human
wellbeing in many ways i.e. economics, social status, future prospects. The socio-
economic status of a region, a nation and ultimately the natural systems of this planet
depends on how we deal with these issues in our daily life. This resulted in the
development of the TBL, 4Es (economics, ecology, ethics and engineering) (Buckeridge
1994) and many more concepts, which set out rules for implementation of
environmentally sustainable development. These concepts were considered as a useful
means as they permit only the developments that would not change the natural
ecosystem functioning. However, implementation of such concepts has never been easy.
The current EIA practices in many countties cause wrangling between environmentalists
and land developers (Mapstone 1996). The twentieth century’s fragmented image of
nature (Bowler 1992) has widened the gap between different professionals. The mistrust
between these professionals does not encourage co-ordinated effort for sustainable
environmental management (Harris 2002). The reliability of scientific findings and
predictions are questioned because of the knowledge divide and the qualitative
interpretations of scientific reports that are increasing criticised as overstating, such as

marine dessert, or understating, such as no observable deviation, the ecosystem damage

(Ambrose et al. 1996; Mapstone 1996; Buckeridge 1999; Harris 2002).

Natural processes are complicated with many subdued and slow interrelated reactions
and compensating mechanisms (Clark et al. 2001). Despite the advances achieved by
scientists and ecologists over the decades, the issues remain the same (see chapter 3).
Indeed, the more we learn about ecosystem processes the greater the complexity in
modelling them. Because of this model uncertainties found in traditional methods tend

(13

to undermine their use. “... given the variety of ways in which regions can differ, it is
unlikely the model uncertainties will disappear. Indeed it is unlikely that we will ever
have an exactly correct model. Thus formal inference will need to include both
diagnostic checks to exclude plausible models that do not fit the data, and rough

measures of model uncertainty from those not excluded...” (Stewart-Oaten 1996b:129).

SOMs give a plausible quantitative approach making use of large amounts of monitoring
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data sets; incorporating spatial and temporal variations along with any other deviations

that may exist within the ecosystem being analysed.

While the constraints for environmentally unsustainable activities continue to increase,
the need for improved procedures for detection and interpretation of environmental
impact becomes ever greater. The recent advances achieved in many research disciplines
are capable of detecting the critical ecological changes at a range of levels such as DNA,
gene and tissues. However, methods to measure the deviations at ecosystem level were
recommended to analyse natural system for sustainable environmental management; as
many of the important changes that affect ecosystem functioning, occur at this level
(Hammond et al. 1995). In chapter 3, it was shown that new approaches adopted should
be combined with logic and some form of scientific reasoning; described by the field
ecologists as more academic field experiments. The perceived lack of rigor in
environmental monitoring against the academic ecological experimentation has been
expressed to be a difference between ‘applied’” and “pure’ science for a long time now
(Underwood 1996; Harris 2002); considered as a reason for the lack of proper
communication between scientists and others. Nevertheless, it is important to
distinguish the good from bad practices instead of arguing about pure and applied.
Ecologists should be more responsive in adopting new methods that could convince
stakeholders and the public. If not, decisions on resolving environmental issues may

continue to be more expensive and dominated by the more stochastic processes of law

(Lester 1990).

The efforts made by the Canadian and the Dutch governments resulted in the
establishment and use of environmental indicators based on the PSR model. The World
Bank and WRI as well have devised lists of environmental indicators (see appendices 3
and 4 for details) based on this model. The MfE in New Zealand initiated programmes
to develop an indicator system based on this model (). In the PSR indicator system,
primary data from various sources are first aggregated to produce a set of indicators,
which are then further aggregated to produce a set of indices with concise information
based on the information pyramid (see chapters 3 and 7). Ultimately, the indices on the
top of the pyramid are made easy for use in decision making processes, similar to the

indices of other disciplines, such as GDP. However, complex calculations based on how
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these indicators contribute to the final index need to be worked out. Hence, unless
explicit knowledge on physical processes is available the approach cannot be applied.

In chapter 7, it was shown that with the use of SOM techniques, PSR indicators or even
disparate raw data sets could be analysed revealing the many non-linear relationships
within them. As SOMs directly map the numerical data, they provide a method of
quantitative analysis on the complex ecosystem process state, pressure and response
without any physical models as used to study the dynamics of industrial system
processes. SOMs as well provide an approach for the implementation of indicator
aggregation based on the information pyramid and PSR models even without explicit
physical process knowledge. In issues, where knowledge is limited for calculating the
weights of the different components to create aggregated or composite indices SOMs
seems to be an excellent tool for converting the data into concise information. SOMs
are useful in identifying the contributing variables in initial data analyses, with options for
studying correlations among disparate data sets as there is no need to understand the
physical process involved in this regard. Biological, environmental as well as economic

data could be analysed at ecosystem level, within an integrated framework.

SOMs can even be useful for analysing issues concerning biodiversity for which
indicators have not been developed by WRI and the World Bank (appendices 3 and 4).
The analysts were working on approaches to overcome the issues by making use of the
ecosystem variations, such as soil type, integrated into GISs, already developed for use in
other areas, such as developmental planning in some South African countries, fire
services with varying risk factors in the US. Chapter 7 provided sufficient details on the
use of SOM techniques, to analyse the issues without proper indicators. For easy
viewing, SOM clustering could be integrated to a GIS, as carried out in case study two,
where SOM clustering results on the subtidal population dynamics and sediment

deposition data were incorporated to a GIS software Arc View 8.2.

SOMs can also be used to analyse the contributing factors for index aggregation based on
the information pyramid concept. In the information pyramid approach adopted by the
Wortld Bank and WRI, primary data/ indicators are converted into condensed
information by adding all factors, multiplied by their respective contribution towards the

issue (see chapter 7, for details on the aggregation of weighted data/ indicators). With
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the use of SOM components, indicators of unknown contribution towards the final

effect can be studied even without explicit knowledge on the issue being analysed.

SOMs can be used to detect water quality trends on the coastal habitats through the
monitoring data as in freshwater systems. The predictive models, such as RIVPACS,
AUSRIVAS have been successfully used for assessing river health in Britain and
Australia. Even though AUSRIVAS system was primarily developed for lotic
environments, efforts are currently being made to extend it by widening its scope,
focusing further into estuarine and wetland environments (National River Health
Program 2002). The current level of knowledge on coastal and marine systems is
significantly limited, let alone the complexity, which involves oceanography, climate and
atmospheric variations. Thus SOMs could be an ideal tool as they are capable of

analysing systems with little prior knowledge using measurable variables; as seen in initial

financial data analysis, explained in chapter 3.

8.5 Conclusion

The results of the research attempt to investigate the use of SOM techniques in
biological and environmental process modelling proved the approach as practical. The
hypothetical approach examined to apply different SOM methods, similar to their use in

complex industrial process dynamics and financial analysis produced promising results.

The SOM techniques experimented with case studies from biological and environmental
sciences gave evidence of a quantitative analytical approach useful in many aspects. The
approach bridges the existing gap, critical for the conversion of multidimensional
disparate data sets into concise information for use by resource managers. The
conventional methods are often suited for hypothesis testing; confirmatory statistical
methods, such as null hypothesis, confidence intervals and regions. Hypothesis tests are
generally more rigorous, objective way of decision making and are not suitable for
exploratory analysis of environmental monitoring data (Stewart-Oaten 1996a). As our
current knowledge on ecosystem behaviour is limited, mainly in the context of human
activities, postulation of hypotheses and testing them seem very difficult, in fact it is a
different practice altogether and will not permit to harness the knowledge embedded in

the widely available environmental and biomonitoring data.
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The variations observed among and within ecosystems cause major constraints to model
them with the existing methods. Especially the spatial and temporal variations observed
within an ecosystem, along with genetic variations exhibited within a species cause the
formulation of a global ecosystem model not at all practical. The response or threshold
variations exhibited by different species within a region further complicates modelling. A
similar dilemma faced in industrial process system modelling was successfully overcome
with the use of SOM techniques. It provided an approach for exploratory data analysis
and this was applied in this research for ecosystem modelling. The results provided
sufficient potential for use to analyse highly varying, equally complex ecosystems.

The use of SOM techniques in case study chapters 5, 6 and 7, illustrated how SOM based
approaches could be best applied at different levels and scales i.e. sites, regions, national
and global, to analyse ecosystem dynamics. In particular, SOMs were seen to be very
useful in analysing the effects of urbanisation and human activities on the environment
and its biodiveristy. They were also found to be very useful in converting large amounts
of desperate, redundant, numeric data into meaningful information, understandable by

various professionals and the public as well.

Of the software used in this research Viscovery (Eudaptics software gmbh 1998;
Eudaptics software gmbh 2002) was found user friendly and enabled the researcher to
fine tune and analyse much complex data sets. It outperformed other software of public
access and academic use because of its ability to handle data even with some missing
values. However, RICBIS clustering was found to be useful in distinguishing the annual
subtidal community changes from those of stimulated by sedimentation in near shore,

within the available monitoring data between 1999 and 2001.

A major disadvantage encountered in the use of SOMs as a data mining tool is that
domain expertise plays a major role in making the results meaningful. Discretion of data
elements depending on the aim of the analysis is vital and without domain expertise any

such analysis could not be made meaningful.

SOM limitations for prediction purposes can be overcome. They can be used for
predicting interpolated values within the available data without any constraints, but not

for extrapolation of values as the number of nodes used in the creation of SOMs cannot
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be changed. The SOM limitations for extrapolation purposes could be overcome by the
following methods:
(i) by adding simulated values in advance, nodes for accommodating the
abnormal scenarios in the output display could be made possible or
(i) by studying the error values, by calculating the deviations for the new values,
that were not within the original SOM ranges. The new values are normally

added to the nearest possible nodes, with high approximation errors.

Summary

Opverall, the research results show that the use of different SOM techniques (cluster
analysis, dependent components analysis, decision support systems and time series
analysis/ trajectory) for biological and environmental process dynamics modelling
without any physical models, to be possible and promising for future use. SOMs were
found effective in ecosystem modelling using numeric data. Many constraints faced in
conventional ecological analysis methods could be overcome by SOMs i.e. data reduction
could be achieved very quickly, without losing much of its important information to
better visualise the complex and multidimensional data, revealing hidden patterns. SOMs
provide a means to analyse data without knowing its class membership. This is a very
useful feature to analyse disparate data sets (ecological, social and economic data), as
human knowledge on ecosystem response is limited-not sufficiently comprehensive for
the ‘rich picture’ needed to adequately map all the valuable information that exists for any

single ecosystem.

SOM methods can be classified as a useful quantitative analytical approach with a great
potential for meaningful, rational interpretation of monitoring data sets. They are
capable of revealing more information from the input vectors (i.e. numeric data),
compared to any other, currently available conventional data analysis methods. They can
be used as an effective and quick approach for exploratory data analysis, prior to analysis
using conventional methods such as statistical hypothesis testing methods. SOM
methods can serve as a useful tool for initial data analysis of large amounts of numerical
data where prior knowledge is limited. They are particularly suitable for analysis of
environmental and biomonitoring data, separately and collectively even if integrated with

socio-economic data with a systems approach.
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This thesis proves that SOM techniques could be applied to modelling of not only the
natural systems complexity with spatial variations but also its functioning and dynamics,
incorporating temporal variations as well and to overcome the constraints with
conventional methods as applied in other disciplines such as industrial process modelling

and financial data analysis
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Glossary

Artificial neural networks (ANNSs): Biologically inspired networks of neurons used for
information processing to incorporate heuristics into conventional

algorithmic computational processing.

Biogeocenosis: “a combination on a specific area of the Earth’s surface of atmosphere,
mineral strata, soil, vegetation, animal and microbial life, water -
possessing its own specific type of interactions of these components and
interchange of their matter and energy among themselves and other

natural phenomena...”(Mackey 2003)

Biological responses: A chain of changes eventually causing an action or movement in a

living organism.

Complex: The many interrelating components and mechanisms those make the final
outcome of the system process, difficult to understand and to predict

upon system behaviour under differing conditions.

Correlation: A causal, complementary, parallel, or reciprocal relationship, especially a
structural, functional, or qualitative correspondence between two

comparable entities from http:/ /www.dictionary.com

Data mining: A term exclusively used to describe the extraction of knowledge stage in
the whole knowledge discovery process. Data mining is also referred as

exploratory data analysis.

Dispersion models: Dispersion models for prediction purposes are useful in the diagnosis
of harmful pollutant depositions under certain conditions. They cannot
be used to predict the pollutant effects as they do not utilise biological

information that can be interpreted as susceptibility.

Ecosystem: “A biological community zermed as the biological system in the research and the

physical environment, which in turn termed as the physical/ environmental systen
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associated with it”. (Concise Science Dictionary 1991) (Attention of italics

for the clarification of this research).
Exploratory data analysis: same as data mining.

Higher plants: The native vascular plant species are referred to as higher plants (World

Bank Report 2001).

Knowledge Engineering: A term used to refer the academic research in developing
models, methods and basic technologies for representing and processing

knowledge and building intelligent knowledge-based systems

Knowledge discovery: A term used to describe the whole process of the extraction of
knowledge (knowledge means relationships and patters between data
elements). It has recently become a multi disciplinary approach,
involving machine learning, database technology, expert systems and data
visualisation, all possibly contributing to the extraction of new knowledge

from raw data.

Ordination techniques: Operations on community data matrix to visualise the
arrangement of species and/or samples along gradients, considering it as

a synonym for multivariate gradient analysis (Palmer 2002; Palmer 2002)

Projection methods: A data visualisation method for representing the input data in a
chosen low dimensional space, where certain properties of the structure

of original data are preserved as faithfully as possible.

Rotations: “(Mathematics) A transformation of a coordinate system in which the new
axes have a specified angular displacement from their original position

while the origin remains fixed” from http://www.dictionary.com

Self-organising map (SOM): SOM is a connectionist paradigm of feed forward artificial
neural networks with an unsupervised algorithmic training. They are
capable of projecting multidimensional input vectors on a low
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dimensional, topology preserving output display of self-organising

neurons.

Species: A taxonomic category, subordinate to a genus (or subgenus) and superior to a
subspecies or variety. It is composed of individuals possessing common
characters distinguishing them from other categories of individuals of the
same taxonomic level. In taxonomic nomenclature, species are
designated by the genus name followed by a Latin or Latinised adjective

or noun. (On-line Medical Dictionary 2002)

Translation: “(Kinematics) Motion in which all the points of the moving body have at
p g y
any instant the same velocity and direction of motion; -- opposed to

rotation” from http://www.dictionary.com
Trophic levels: The various levels used to define the different organisms in an ecosystem

based on their positions in food chains, by which nutrients and energy

move round the ecosystem in loops and cycles.

Chapter 1: Introduction



Appendix 1
What are neural networks used for?

Their applications are almost limitless but they fall into several main categories.
Classification
Business
- Credit rating and risk assessment, Insurance risk evaluation, Fraud detection
*Insider dealing detection, Marketing analysis, Mail shot profiling
- Signature verification, Inventory control
Engineering
Machinery defect diagnosis, Signal processing, Character recognition
* Process supervision, Process fault analysis, Speech recognition
Machine vision, Speech recognition, Radar signal classification
Security
* Face recognition, Speaker verification, Fingerprint analysis
Medicine
* General diagnosis, Detection of heart defects
Science
*Recognising genes, Botanical classification, Bacteria identification
*Modelling
Business
* Prediction of share and commodity prices,. Prediction of economic indicators
Engineering
“Transducer linearisation, Colour discrimination, Robot control and navigation
*Process control, Aircraft landing control, Car active suspension control
* Printed Circuit auto routing, Integrated circuit layout, Image compression
Science
*Prediction of the performance of drugs from the molecular structure.
 Weather prediction, Sunspot prediction
Medicine
*Medical imaging and image processing
Forecasting
- Future Sales, Production Requirements, Market Performance

* Economic Indicators, Energy Requirements, Time Based Variables.

Novelty Detection

- Fault Monitoring, Performance Monitoring, Fraud Detection,
*Detecting Rare Features

- Different Cases.

Web address: http://www.ncs.co.uk/nn_intro.ht
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Matrix of environmental indicators adopted by WRI

Issues

Climate change

Ozone depletion

Eutrophication

Acidification

Toxic contamination
Utrban environment
quality

Biodiversity

Waste

Water resources

Forest resources

Fish resources

Soil degradation

Oceans/ coastal zones

Environmental index

Pressure

(GHG) emissions

(Halocarbon)

emissions; production

(N, P water, soil)

emissions

(SO2, NO,, NH3)
emissions
(POC, heavy meal)

emissions

(VOC, NOy, SO,)

emissions

Land conversion; land

fragmentation

Waster generation
municipal, industrial,
agricultural

Demand/ use
intensity residential/
industrial/ agricultural

Use intensity

Fish catches

Land use changes

Emissions; oil spills;

depositions

Pressure index

State

Concentrations

(Chlorine) concentrations;

O3 column

(N, P, BOD)
concentrations
Deposition;
concentrations
(POC, heavy meal)

concentrations

(VOC, NOy, SO,)

concentrations

Species abundance

composition to virgin area

Soil/ groundwater quality

Demand/ supply ratio

Area degr. Forest;

use/sustain. Growth ratio

Sustainable stocks

Top soil quality

Water quality

State index

Response

Energy intensity;

env measures
Protocol sign.;CFC
recovery; Fund
contribution
Treatment connection;

investments,/ costs

Investments; sign
agreements
Recovery hazardous

waste; investment/ costs

Expenditures; transport

policy

Protected areas

Collection rate; recycling

investments,/ cost

Expenditures; water

pricing; savings policy

Protected area
forest, sustain.
Logging

Quotas
Rehabilitation/
protection
Coastal zone
management;
Ocean protection

Response index

Matrix of environmental indictors, Source: Environment Indicators. (Hammond,

Adriaanse et al. 1995).



Appendix 3

Matrix of environmental indicators adopted by the World Bank

Fizure 4. Matrix of Environmental Indicators

1. Source Indicators
1. Agriculture
a. Land Quality

b. Other
2. Forest

3. Marine Resources
4. Water
5. Subsoil Assets

a. Fossil Fuels
b. Metals & Minerals

Value Added/Gross Output
Human-Induced Soil Degrad.

Land Use Changes, Inputs for
EDP

Contaminants, Demand for
Fish as Food

Intensity of Use

Extraction Rate(s)
Extraction Rate(s)
Extraction Rate(s)

Cropland as % of wealth
Climatic Classes & Soil
constraints

Area, volumes, distribution;
value of forest

Stock of Marine Species

Accessibility to Pop.
(weighted % of total) .
Subsoil assets % wealth ¢
Proven Reserves

Proven Reserves

Rural/Urban Terms of Trade

In/Output ratio, main users;
recyc. rates

% Coverage of Int'l
Protocols/Conv.

Water efficiency measures

Material balances/NNP

Reverse Energy Subsidies
In/Output ratio, main users;
recyc. rates

IL Sink or Pollution
Indicators
1. Climate Change
a. Greenhouse Gases
b. Stratospheric Ozone
2. Acidification

3. Eutrophication

4. Toxification

Emissions of CO*

Apparent Consumption of
CFCs
Emissions of SOx, NOx

Use of Phosphates(P),
Nitrates(N)

Generation of hazardous
waste/load

Atmosph. Concentr. of

Greenhouse Gases
Atmosph. Concentr. of CFCs

Concentr. of pH, $Ox, NOy in
precipitation

Biological Oxygen Demand,
P, N in rivers

Concentr. of lead, cadmium,
etc. in rivers

Energy Efficiency of NNP
% Coverage of Int'l
Protocols/Conv.
Expenditures on Pollution

Abatement
% Pop. w/waste treatment

% Petrol unleaded

III. Life Support Indicators
1. Biodiversity

2. Oceans

Land Use Changes

Threatened, Extinct species
% total

3. Special Landste g W) [ ..o visetsiionssiimiioniassiomis

Habitat/NR

Protected Areas as %
Threatened

IV. Human Impact Indicators
1. Health

a. Water Quality

b. Air Quality

¢. Occupat'l Exposures etc.
2. Food Security & Quality
3. Housing/Urban

4. Waste

5. Natural Disaster

Burden of Disease
(DALYs/persons)

Energy Demand

Population Density
(persons/km?)
Generation of industrial,
municipal waste

Life Expectancy at birth

Dissolved Oxygen, faecal
coliform
Concentr. of particulates,
503, etc.

Accumulation to date

% NNP spent on Health,
vaceination
Access to safe water

% NNP spent on Housing

Exp. on collect. & treatmt.,
recyc. rates

Source: The World Bank
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Appendix 5
Data mining with self-organising maps: Main steps
Electronically reformatted version

DATA MINING WITH SELF-ORGANIZING MAPS: PART 1:
MAIN STEPS By Guido Deboeck, Ph.D*

Many articles and courses outline principles and the details of algorithms that can be
used for data mining e.g. neural networks, genetic algorithms, fuzzy logic. They
emphasis technique rather than practice This article summarizes "best practices" in
data mining, clustering and visualization of large multi-dimensional data sets in
finance, economics or marketing. These best practices are based on the lessons
learned from many applications presented in Visual Explorations in Finance with self-
organizing maps (Springer-Verlag,1998), lessons extracted from many papers
presented at neural net conferences and the expertise from people who have several
years of hands-on experience in applying neural networks in finance and economics.
The process described here for data analysis, clustering, visualization, and evaluation
can be applied to many applications. As an illustration we will use self-organizing
maps(SOM), which is a technique based on unsupervised neural networks that uses
competitive learning in order to create a reduced two dimensional representation of a
large multi-dimensional data set. Part II of this article will apply the steps outlined
here to the problem of assessing country credit risks based on economic, financial and
stock market data.

Main steps

The financial, economic and marketing applications of self-organizing maps outlined
in Visual Explorations in Finance with self-organizing maps show that there are no
specific procedures or optimal methods for applying SOM that are valid for all
applications. Similar to the design of other neural network models, to create a self-
organizing map, is still an art more than a science. Like for many other approaches the
"engineering" aspects of SOM , e.g. for selection of a SOM array; the scaling of the
input variables; the initialization of the algorithm; the selection of the neighborhood
size, the learning rate; the interpretation and color coding of the map, are easy to
obtain. However these are not sufficient for the entire process of data analysis. Hence,
we present here a series of steps that details the process of data mining rather than the
application of any specific algorithm or technique.

Box 1: Main steps in clustering and visualization of data

Step 1. Define the purpose of the analysis;

Step 2. Select the data source and -quality;

Step 3. Select the data scope and variables;

Step 4. Decide how each of the variables will be preprocessed;

Step 5. Use relevant sample data that are representative for your system;

Step 6. Select the clustering and visualization method(s);

consider the use of hybrid methods;

Step 7. Determine parameters : in case of SOM the desired display size, map ratio,
the required degree of detail;

Step 8. Tune the output or map for optimal clustering and visualization;



Step 9. Interpret the results, check the values of individual nodes and clusters;
Step 10.Define or paste appropriate map labels;

Step 11.Produce summary results that highlight the differences between clusters;
Step 12.Document and evaluate the results.

1 Define the purpose of the analysis

Without proper definition of the goals and objectives for the design of a neural
network model, supervised or unsupervised, it will be difficult to assess the
effectiveness of the outcome. Neural net models can be designed for many different
objectives. As shown in several applications the main objectives for design of a neural
network or self-organizing map in our case can be for

(1) classification, clustering, and/or data reduction;

(i1) visualization of the data;

(ii1) decision-support;

(iv) hypothesis testing;

(V) monitoring system performance;

(vi) lookup of (missing) values;

(vii) forecasting.

If clustering and visualization are the main objectives, various alternative
visualization and clustering methods should be considered. Several traditional
statistical methods for clustering and data visualization exist. Combining traditional
statistical methods with neural network techniques like SOM may generate better
results than the use of one technique by itself. It may also be useful to determine a
priori how much data reduction is desired. If decision-support is the main objective
then it is essential to define precisely what decisions need to be supported, what is the
scope of these decisions, and what is their time frame. For example, predicting the
direction of a market is quite different from predicting future price levels.

If hypothesis testing is the main objective one needs to define a priori what
hypotheses will be tested and what will be the standard for acceptance or rejection.
For example, when applying neural networks to banking data the hypothesis may be is
there a significant difference between the various banking institutions in various
markets around the world. If monitoring systems performance is the objective the
goals of the monitoring process need to be defined e.g. monitoring for quality
purposes, fault detection, standard compliance. If forecasting is the objective, it is
important to spell out what is the forecasting window, the desired accuracy, how will
the performance be evaluated. For example, for what time window are the predictions
for, should the predictions be accurate in terms of the level or just the direction; will
the price predictions be evaluated in terms of the percentage of correct predictions or
in terms of the cumulative profit or loss achieved by implementing the predictions in a
given period.

2. Select the data source and data quality

Thee importance of using high quality data can not be underestimated. It is important
that the data comes from reputable sources. Good sources of high quality financial
and economic data are - national and international agencies (e.g. government
statistical offices, the United Nations, specialized agencies of the UN, World Bank,
IMF, and the like), - well-established information services (e.g. Bloomberg, Reuters,
Telerate, Knight-Ridder, Standard & Poor), or - data base providers (e.g. Value Line,
Morningstar, DRI, Moody's, American OnLine, CompuServe etc.) and many others.



Data that is freely available on the web may or may not be of high quality. It is
therefore advisable to be skeptical about what is freely offered on the web.

3. Select the data scope and variables

To define the data scope in relation to the objectives of the study is important for any
kind of analysis. Neural network techniques based on learning techniques and
competitive learning in particular may cause laziness and or attempts to "through in
the kitchen sink", i.e. use all the available data on a particular subject rather than a
selective set relevant to the objectives of the study. Furthermore it is important to use
domain expertise, or to collaborate with those that have such expertise. For example,
when studying structures in investment data, credit risk data, poverty data, proper
analyses cannot be done without domain knowledge. One should also be careful in the
selection of the appropriate indicators. Once the data scope has been properly defined,
some important tips to remember in selecting variables to be included in the analysis
are

* do not get wed to your data, learn to discriminate, discard and delete

» select only those variables that are meaningful in relation to the objectives

» select the variables that are most likely to influence the results

» consider to use combinations of variables, such as ratios, time-invariants etc.

* use domain expertise or involve in the analysis people who have domain expertise

* do not assume that the data is normally distributed

» adding of one or more irrelevant variables can dramatically interfere with the cluster
recovery

* omission of one or more important variables may also affect the results.

4. Decide how each of the variables will be preprocessed

Pre-processing of data is important particularly in neural network design. When
preprocessing data for clustering the pre-processing may specifically involve data
standardization, -transformations, and setting of priorities. The main reason for data
standardization is to scale all data to the same level. Often the data range of each
variable varies from column to column. If no preprocessing is applied this may
influence the clustering and the ultimate shape of the output map. There are many
ways in which data can be standardized. The most are to standardize all data based on
the standard deviation. Other methods are to standardize on the basis of the range e.g.
7= [x - min(x)] / [max(x)-min(x)]. Some studies have shown that standardizing the
data based on the range can be superior in certain cases, in particular if the variance

is much smaller than the range. Data transformations can be applied to any or all
variables to influence the importance and/or influence of each variable on the final
outcome. Transformations may also be used to ,,equalize* the histograms. Two typical
data transformations are logarithmic and sigmoid. The former squeezes the scale for
large values, the latter takes care of outliners. Applying data transformations redefines
the internal representation of each variable and should be applied with caution.
Setting the priority of a variable to a value greater or lower than one has the same
effect as changing the standardization explicitly. By giving a priority to a variable you
can provide a weighting of the variables in the mapping process. For example, if in
the selection of investment managers, the 'launching date' of a mutual fund is
considered less important, then this variable can be given a low priority.



5. Use relevant sample data representative for your system

Training a neural network on a set of sample data will yield better results when using
random initial input vectors. By selecting representative input vectors for the training
of a SOM map one reduces noise and can obtain a sharper map. This map then can be
used for testing on all the remainder input data sets. Furthermore, depending on the
applications, the use of input vectors that represent outliners may be of crucial
importance for training a SOM. Outliners provide contrasts and can sharpen the
differences between clusters. However, this can be to the cost of sensibility for the
other parts of the map. If outliners are not representative, they should of course be
eliminated.

6. Select the clustering and visualization method(s); consider the use of hybrid
methods

In this article we focus on SOM however combining SOM with other methods can
yield better results. For example, a hybrid system of SOM and genetic algorithms can
improve the performance of trading models; overlaying the results from SOM on top
of principal component analysis can improve visualization; combining SOM with a
Geographic Information System can improve interpretation. In financial, economic
and marketing applications combining SOM with other statistical methods is common
practice. A SOM map by itself provides a topological representation of the data which
needs to be translated in operational or actionable outcomes. Financial analysts,
economists and certainly marketing professionals will want to know what are the
main features of the clusters, how they differ from each other, and how to use the
newly found structures or patterns for forecasting or decision-support. Thus a SOM
map by itself can not be a final outcome.

7. Determine the desired display size, shape, and the required degree of detail
Bigger maps produce more detail; input vectors are spread out on a larger number of
nodes. Smaller maps can contain bigger clusters or more input vectors can cluster on a
smaller set of nodes. Which is better ? This will depend on the application and the
usage of the map. Smaller is not necessarily better. More detail may be desirable in
some cases. In general, smaller numbers of nodes stand for higher generalization, and
this may also be useful if the data contains much noise. Higher numbers of nodes
normally yield nicer map images but must not be over-interpreted in later use. The
key in determining the size of the map will be how the map will be used. A simple
analogue would be to compare the use of a country atlas with that of highway or street
maps. If using SOM for lookup of information a larger SOM map may be more
esirable; however when using SOM to select investment opportunities or investment
managers a smaller map that clusters managers and investment opportunities in five to
seven categories may be more optimal.

8. Tune the output or map for optimal clustering and visualization

Once a SOM has been trained you can inspect the map by looking at the number of
nodes that contain input vectors, the mean values of the nodes and clusters, the
number of clusters that were created, and the number of matching input vectors for
each cluster. Fine-tuning a map can be done by increasing or reducing the cluster
threshold and/or the minimum cluster size. A larger cluster threshold or higher
minimum cluster size will reduce the number of clusters, it will increase the coarse-
ness of the clustering. Lowering the cluster threshold will show more details of the
map.



9. Interpret the results, check values of individual nodes and clusters,

Once a topological representation of the data is created, it is important to check the
validity of the map. This can be done in several ways. Again domain expertise will be
a key ingredient. A simple check may consist in printing a list of the input vectors
sorted by node or cluster of the map. Another one may be to calculate some simple
summary statistics on each cluster. Depending on which software tool is used the
mean values of the clusters may be even displayed on the screen. In this case the user
can interactively check each cluster and judge whether the summary values make
sense. Comparisons of values among nodes and clusters will then allow the user to
decide on how more detailed the map needs to be, which data transformation could be
needed, how to fine-tune the priority of some components, or what the generalization
capability of the map eventually may be. In other words, an interactive capability to
check the values for nodes and clusters is important in order to allow the process to be
dynamic and to incorporate the user's domain expertise and knowledge about the data.

10. Define or pasting appropriate map labels

The importance and difficulty of defining appropriate labels has been discussed in
many articles. When using SOM to classify countries, states or cities, or when using
SOM to cluster investment opportunities, companies, or banks the labels to be used
are obvious: each input vector can be extended with an appropriate or abbreviate
name of the country, state, city, security, company or bank it represents. When using
SOM for process control labeling may be restricted to a few input vectors, picking on
those that represent failures, or idle states. When using SOM to classify wines or
whiskeys, multiple labels may be necessary to identify the country, region, vineyard
or distillery. In sum, flexibility in automatic labeling of nodes or clusters from the
input data vectors is of crucial importance. This automatic labeling capability is of
particular importance for finance, economic and marketing applications.

11. Produce a summary of the map results that highlight the differences between
clusters

The production of summary statistics may be automatic or manual depending on
which software tool is used for SOM. Newer software packages have built-in
capabilities for automatic production of summary statistics. This has advantages over
software tools that do not provide any post-processing capability. In finance,
economics and marketing, post-processing of SOM results, information extraction of
value added, and how SOM results can be used is very important. A post-processing
capability that allows to create summary statistics for each node and each cluster
showing at the minimum the mean, standard deviation, minimum, maximum value,
and the sum of the input vectors is a great advantage.

12. Document and evaluate results

For SOM to be useful in finance, economics and marketing, it is essential to
demonstrate its value added. "Look Mom what a nice picture I made" will just not fly
in boardrooms, management meetings or strategic marketing sessions. When we
applied supervised neural networks to create financial models, we measured the value
added by measuring the performance (return), the risks, and the portfolio turnover of
the models; we compared results with those of benchmarks (e.g. performance of
human traders, or models based on more traditional methods). Return is usually
compared to risk to obtain the risk-adjusted return. This risk adjusted return can be
compared to a benchmark (e.g. the risk-adjusted return of the Standard and Poor



500). By adding portfolio turnover one can take into account the costs of trading. The
higher the turnover the higher the transaction costs. The tradeoff between risk-
adjusted return and costs then provides a measure of effectiveness of trading models.
The quality of an unsupervised neural net model can and should be measured on the
basis of (i) the number of clusters; ii) the quality of clustering; (iii) the stability of
clustering (as measured by the similarity or lack of similarity obtained by varying the
testing data set). If we assess unsupervised neural net models in this way we are likely
to find that there are many tradeoffs between quantity, quality, and stability of the
clusters. It is then be up to the user to determine what is the best combination in the
light of the objectives of the study. Some applications may demand maximum data
reduction (minimum number of clusters), and can live with coarse map quality and
low stability; other applications may demand refined maps (i.e. sharp differences
between clusters), good stability, but do not require a lot of data reduction. For
example, in macro-economic analyses, analyses of world development indicators,
environmental conditions, analyses of global poverty and the like, maximum data
reduction may be most desired because the maps would be mainly used for policy
formulation and macro decision-support. In other applications such as mapping
opportunities for options and future trading, fund manager selection, client
segmentation, product differentiation, or market analyses, much finer differentiation
between clusters may be desired.

There is a vast domain of research and innovation to be done in this area, in particular
in developing standards and a standard method for measuring the value added of
clustering using self-organizing maps in financial, economic and marketing
applications. * Guido Deboeck is an expert on advanced technology and its
applications for financial engineering and management In the past twenty years he has
been a leading innovator and advisor on technology to the World Bank in
Washington. He holds an MA and Ph.D. degrees in Economics from Clark University.
E-mail:gdeboeck@erols.com
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Appendix 6

SOM maps of ARC’s saline water quality data
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Figure A 6.1: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Chelsea data.

Chelsea: Most of the data points lie in the right bottom diagonal half of the map, an area
where pH is between 7.9-8.25, chloride ranging from high to medium 15,056-20,261, DO
with high to medium values, DRP with a high range from 0.012 - 0.042 and BOD around
1.5. But on 12 August 1998 and 17 May 1999 the site has experienced the highest
Enterococci count and on 24 May 1993, the highest chloride levels at 0.013.

On 15 July 1998, the site has recoded the highest DRP value in the map and is seen in
the high NO;NO, area. However no data is found in very high BOD, Ammonia and

secchi disk area.
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Figure A 6.2: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Depth data.

Depth: The Depth data represents bottom water columns (5-10 meters from the surface)
of seawater samplings collected from different locations. Depth data was available only
for a period of three years from 13 January 1998 to 12 December 2000. Within this
petiod on two occasions (1 August 2000 and 12 March 1998) the site has experienced
very high NO;NO, levels.

15 July 1998 and 12 August 1998 are seen closer to the high Enferococci area on the right

top corner of the map.
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Figure A 6.3: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Goat Island data.

Goat Island: Goad Island is described to be the effective reference site with the best
water quality and least variability of the 11 saline sites included in ARC’s L'TB monitoring
programme (Wilcock and Stroud 2000b). In the SOM map most of the Goat Island data
fall in the top left corner showing the highest BOD, Ammonia and secchi disk values.
Further, it could be noticed that 12 August 1998, 13 October 2000, 15 July 1998 and 29
September 2000 data points fall in the top right corner, with the highest values of
NO;NO,. The highest value for Enferococci count (148) could be observed on the 15
September 1999.
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Figure A 6.4: SOM map of the saline water quality data from the 11 beach water sampling locations;

included in ARC’s programme with Henderson data.

Henderson: All the data points fall in the right bottom diagonal half of the map, most of

them falling in very high NO;NO,, high Entercocci count area and on 22 May 1996, the

site has experienced the highest turbidity and high total coliform values of the map. 27

November 1997 fall in the top left corner in the high BOD, high ammonia and high

secchi disk value patch. 15 July 1998, 27 April 1991, 22 May 1992, 01 August 2000, 19
June 2000 are 24 May1993 are seen in the high NO;NO, area.
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Figure A 6.5: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Hobsonville data.

Hobsonville: Data spread shows a pattern similar to that of Henderson. All data points
fall in the left bottom triangle. However, no data point could be found in the high total
coliform and turbidity area in the left bottom corner. On 1 May 1991 and 27 October
1996 site values have deviated from the general trend. 27 April 1991 and 15 July 1998
are found in the very high NO;NO, area.
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Figure A 6.6: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Kaipara (Shelly Beach) data.

Kaipara (Shelly Beach): Most of the data points fall in the bottom right corner of the
map, where total coliform and turbidity show the map’s highest values. However, certain
months have shown deviations from the general trend: 10 January 1994, 14 February

1995, 10 March 1994, 20 April 1993, 14 May 1996, 08 April 1994 and 08 February 1994

Some months are seen in close to high Enferococci count area: 15 July 1992, 16 June 1992,

11 September 1992, 13 August 1992, 19 July 1993, and 06 September 1994
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Figure A 6.7: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Kawan Bay data.

Kawau Bay: Most of the data points fall in the top right diagonal half of the map with
some points in the very high DO and salinity patch, except for 15 July 1998 with very
high NO;NO,. No data could be found in the top left corner where ammonia, BOD
and secchi disk values show the map’s highest values. Some data fall into areas outside

the general trend; 21 march 1996, 11 February 1998 and 14 March 1994.
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Figure A 6.8: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Mabhurangi data.

Mahurangi: All the data points for Mahurangi fall in the top right diagonal half on the
map. No data points fall in the top left or bottom right corners. 15 July 1998 is seen in
the very high NO;NO, area.

14 March 1994, 21 March 1996, 24 February 1997, 01December 1992,11 February 1998,

20 February 1996, 17 February 1995, 20 March 1995 and 29 Jan 1993 are seen deviating

from the normal trend.
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Figure A 6.9: SOM map of the saline water quality data from the 11 beach water sampling locations;
included in ARC’s programme with Orewa data.

Orewa: Most of the data points fall in the top left diagonal half of the map. Still no
points are seen in the top left corner. 15 July 1998 is seen in a high NO;NO, area.

Here again a few data points fall outside the general trend; 17 February 1995, 29 January
1993, 20 February 1996, 01 December 1992, 11 February 1998, 14 March 1994, 21
March 1996, 18 January 1995, 18 January 1995, 18 October 1993, 18 January 1995, 15
October 1996 and15 July 1998
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Fignre A 6.10: SOM map of the saline water quality data on the 11 beach water sampling locations;

included in ARC’s programme with Ti Point data.

Ti Point: Most of the data fall in the top left diagonal half except for 15 July 1998 falling
in the high Enterococci count area. Also 08 September 1998 and 17 August 1992 are seen
in the high NO;NO, area.

Some data points fall outside the general trend; 17 February 1995, 29 January 1993, 21
March 1996, 20 February 1996, 11 February 1998, 14 March 1994, 18 January 1995, 23
March 1992, 13 August 1999, 22 April 1993, 15 October 1996, 23 June 1993, 20
September 1993, 14 August 1995, 22 July 1993 and 18 September 1997.
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Fignre A 6.11: SOM map of the saline water quality data on the 11 beach water sampling locations;
included in ARC’s programme with Whau data.

Whau: All data fall in the right bottom diagonal half of the map, except for 27 November
1996 and 01 June 1992 falling in the very high DO area. 14 January 1994 and 18
October 1993 are seen in the very high suspended solids, turbidity and high total
coliform area. 22 May 1992, 27 April 1991, 15 July 1998 and 24 May 1993 are seen in the
high NO3NO2 area. Three points are seen outside the general trend: 01 June 1992, 27
November 1996 and 18 April 1994.

It is interesting to note that on 15 July 1998 all the beaches have experienced high
NO;NO, values except for Ti Point and Depth, which show high Enferococci count on
this day.
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Appendix 7

Significance tests on % <63 micron sediment rates of total sedimentation

These are all the correlations with their p-values, between all variables i.e. sedimentation

and subtital community changes. Correlations with p-values less that 0.05 are considered

as significant.

Correlations: % ave<63(mio, tot ave(g/d), Blue nudi, Buccinulum, C.opalas, C.vir

% ave<63 tot ave( Blue nud Buccinul C.opalas C.virgat Canth Cellana
tot ave( -0.288
0.010
Blue nud 0.093 0.083
0.412 0.463
Buccinul -0.052 -0.036 -0.027
0.647 0.754 0.804
C.opalas 0.137 0.085 -0.019 -0.108
0.226 0.454 0.860 0.312
C.virgat -0.011 0.054 -0.029 0.198 -0.178
0.920 0.636 0.785 0.062 0.093
Canth 0.258 -0.052 0.147 -0.031 0.180 -0.017
0.021 0.647 0.166 0.771 0.090 0.872
Cellana =-0.077 -0.004 -0.027 -0.038 -0.016 -0.254 -0.202
0.499 0.969 0.801 0.723 0.881 0.016 0.057
Cookia 0.079 0.000 0.165 -0.057 0.079 -0.044 0.278 0.112
0.488 0.997 0.120 0.592 0.460 0.682 0.008 0.293
Cosci 0.077 0.068 -0.070 0.196 -0.095 0.134 0.012 0.007
0.500 0.548 0.512 0.064 0.376 0.209 0.914 0.949
Crypto 0.044 -0.171 -0.096 0.190 -0.057 -0.053 -0.028 0.230
0.698 0.129 0.367 0.073 0.593 0.619 0.792 0.029
Cushion -0.084 -0.209 0.059 0.090 -0.011 -0.045 -0.009 -0.049
0.458 0.063 0.580 0.401 0.916 0.674 0.934 0.647
Cystop 0.404 -0.096 0.078 -0.189 -0.083 -0.034 0.167 -0.118
0.000 0.398 0.466 0.074 0.438 0.751 0.116 0.269
Ecklonia 0.111 -0.055 -0.029 -0.018 -0.039 0.107 -0.020 -0.102
0.329 0.627 0.786 0.868 0.717 0.314 0.854 0.338
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plum 0.212
0.045
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0.460
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0.594
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0.286
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0.722
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0.376
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0.318
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0.068
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0.329
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0.577
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.053
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Murex Murex (no
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.058
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.512
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.019
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.046
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.855

.032
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.036
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.274
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.026
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.247
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.916

.103
.335

.068
.524
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.916

.011



0.916

T.aur -0.051
0.630

Thais 0.095
0.372

Trochus 0.021
0.841

Turbo 0.190
0.072

Whelk -0.011
0.916

Wonderin -0.011
0.916

zon 0.236
0.025

Orange s

Others *
*

P. angus *
*

Penion *
*

Plagusia *
*

Plocamiu *
*

plum *
*

Sarg *
*

Slippery *
*

Sol Asid *

-0.084
0.429

-0.143
0.179

0.114
0.286

-0.089
0.406

0.129
0.226

Others

.094
.380

.045
.672

.029
.785

.037
.730

.038
722

.038
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.113
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.921

.020
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.413
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.061
.570
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.419
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.855
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.085
.424

.152
.154

.013
.900

.004
.972

.054
.614

.078
.467

.040
.709

.265
.012

Penion Plagusia Plocamiu

.026
.810

.011
.916

.055
.604

.123
.247

.011
.916

.103
.335

.026
.810

.032
.763

.160
.131

.026
.810

.027
.798

.113
.287

.010
.929

.011
.916

.103
.335

.916

.051
.630

.091
.395

.023
.827

.050
.639

.011
.916

.011
.916

.055
.607

plum

.099
.355

.021
.847

.261
.013

.916

.051
.630

.095
.372
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.642

.054
.610

.011
.916

.011
.916

.062
.563

Sarg

.032
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.089
.406



Stegnast

Stichopu

T. ingal

T.aur

Thais

Trochus

Turbo

Whelk

Wonderin

zon

.013
.905

.020
.854

.571
.000

.076
.474

.051
.636

.018
.868

.099
.351

.020
.854

.020
.854

.089
.404

Slippery Sol Asid Stegnast

Sol Asid

Stegnast

Stichopu

T. ingal

T.aur

Thais

Trochus

-0.103
0.335

-0.068
0.524

-0.011
0.916

-0.011
0.916

-0.051
0.630

0.095
0.372

-0.050
0.642

.064
.551

.025
.818

.095
.372

.042
.698

.100
.349

.079
.458

.068
.524

.158
.137

.234
.027

.079
.458

.066
.535

Stichopu T.

.068
.524

.011
.916

.011
.916

.329
.002

.091
.395

.032
.762

.034
.751

.011
.916

.011
.916

.063
.555

.011
.916

.051
.630

.091
.395

.050
.642

.018
.867

.026
.810

.026
.810

.187
.078

.048
.657

.106
.322

.091
.393

.437
.000

.026
.810

.188
.076

ingal

.051
.630

.091
.395

.091
.391

.068
.524

.011
.916

.011
.916

.051
.630

.281
.007

.174
.100

.013
.902

.011
.916

.011
.916

.059
.580

.aur

.048
.651

177
.096

0.049
0.648

-0.055
0.604

-0.055
0.604

-0.166
0.118

-0.031
0.775

0.030
0.782

0.266
0.011

-0.055
0.604

0.078
0.467

0.203
0.055

Thais

-0.133
0.212

-0.079
0.461

0.010
0.929

0.132
0.216

0.009
0.933

-0.143
0.179

0.163
0.125

0.157
0.140

0.010
0.929

0.043
0.689

0.122
0.253

Trochus



Turbo -0.055 -0.143 -0.119 -0.053 -0.057 -0.124 -0.063 0.274
0.604 0.179 0.264 0.621 0.596 0.246 0.552 0.009

Whelk -0.011 0.033 -0.068 -0.011 -0.011 0.234 0.095 -0.050
0.916 0.757 0.524 0.916 0.916 0.027 0.372 0.642

Wonderin -0.011 -0.103 -0.068 -0.011 -0.011 -0.051 0.095 0.013
0.916 0.335 0.524 0.916 0.916 0.630 0.372 0.906

zon -0.047 -0.145 0.075 -0.063 -0.057 0.139 0.140 0.247
0.661 0.172 0.484 0.555 0.593 0.191 0.189 0.019

Turbo Whelk Wonderin
Whelk -0.054

0.611
Wonderin 0.011 -0.011

0.919 0.916

zon 0.474 -0.048 -0.095
0.000 0.650 0.372

Cell Contents: Pearson correlation

P-Value
These are the correlations and p-values from the second Leigh data set.

Correlations: ave tot_sed, less63sedi, % less 63 se, C.opalas, C.virgata, Canth,

ave tot less63se % less 6 C.opalas C.virgat Canth Cellana Cookia
less63se -0.383
0.117
% less 6 —-0.242 0.687

0.334 0.002

C.opalas 0.239 0.187 0.279
0.340 0.457 0.262

C.virgat -0.174 -0.029 0.352 -0.192
0.489 0.908 0.152 0.446

Canth -0.285 0.699 0.650 0.299 0.234
0.252 0.001 0.004 0.228 0.350

Cellana -0.115 -0.079 -0.198 -0.086 -0.205 -0.087
0.650 0.755 0.431 0.735 0.416 0.733

Cookia -0.023 0.183 0.575 -0.115 0.100 0.239 -0.043
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.649



P. angus 0.

.003

Penion -0.

0.

Plagusia -0.
0.

Plocamiu O.

0.

plum 0.
0
Sarg -0.
0

Slippery -0.
.803

Sol Asid -0.
.721

Stegnast -0.
.169

Stichopu -0.
.521

T. ingal O.
.079

0
T.aur 0.
0
Thais -0.
0
Trochus 0.
0
Turbo -0.
0
Whelk -0.
0

Wonderin O.

652

222

3717

061l
810

100
693

014

.956

082

. 745

063

090

339

162

424

060

.813

173

.492

102

.686

051

.842

313

.206

100

.421
.082

.004
.988

.372
.129

.032
.898

.345
.161

.078
.757

.003
.991

.185
.461

.203
.418

.098
.699

.328
.184

.017
.948

.364
.138

.336
.173

.240
.338

.041
.873

.495
.037

.097
.702

.404
.096

.398
.102

LT
.000

.372
.128

.077
.763

.064
.799

.055
.828

.042
.867

.380
.120

.276
.268

.532
.023

.704
.001

.636
.005

.059
.815

.398

.086
.735

.059
.817

.454
.059

.059
.817

.193
.443

.090
.723

.059
.817

.254
.310

.013
.960

.059
.817

.059
.817

.113
.655

.141
.576

.098
.698

.144
.570

.059
.817

.187
.457

.080
.752

.130
.607

.136
.590

.553
.017

.610
.007

.089
.726

.092
.718

.025
.921

.126
.620

.181
.473

.351
.153

.414
.088

.088
.728

.326
.187

.106
.676

.242
.332

.166
.509

.355
.148

.055
.827

.681
.002

.522
.026

.166
.509

.226
.366

.054
.830

.166
.509

.166
.509

.006
.982

.391
.109

.492
.038

.519
.027

.166
.509

.055

.125
.621

.086
.735

.189
.453

.086
.735

.233
.352

.002
.992

.686
.002

.041
.870

.109
.665

.086
.735

.086
.735

.141
.576

.206
.412

.287
.248

.215
.392

.086
.735

.168
.506

.115
.649

.128
.612

.910
.000

.415
.087

.351
.153

.115
.649

.178
.481

.381
.118

.115
.649

.115
.649

.351
.153

.619
.006

.678
.002

.297
.232

.115
.649

.910



0.693
zon 0.140
0.579
Cosci
Crypto 0.119
0.639
Cushion 0.236
0.346
Cystop -0.049
0.846
Ecklonia 0.100
0.694
Eve 0.209
0.405
Flex -0.075
0.768
Glossoph 0.010
0.970
Haust -0.191
0.449
Maori 0.139
0.581
mash 0.045
0.859
Melantha -0.605
0.008
Micre -0.067
0.793
Murex 0.010
0.970
Murex(no 0.010
0.970

Orange s

0.

0.
0.

898

425
079

Crypto

.218
.384

.460
.055

.185
.463

.286
.251

.367
.134

.368
.133

.475
.046

.207
.411

.100
.692

.164
.514

.170
.500

.114
.653

.114
.653

0.

0.
0.

102

777
000

Cushion

.275
.270

.318
.198

.073
774

.372
.128

.170
.499

.273
.273

.358
.144

.469
.050

.042
.870

.090
.723

.342
.165

.307
.215

0.

0.
0.

817

668
002

0.

0.
0.

590

195
439

Cystop Ecklonia

.347
.158

.132
.601

.128
.613

.462
.054

.341
.166

.326
.187

.360
.142

.054
.831

.069
.787

.188
.455

.462
.054

.184
.464

.033
.896

.034
.895

.273
.272

.270
.279

.595
.009

.384
.116

.107
.672

.214
.395

.390
.109

0.

0.
0.

827

669
002

Eve

.496
.036

.070
.782

.059
.815

.207
.411

.131
.606

.158
.531

.083
.743

.109
.668

.123
.628

0

-0
0

.735

.233
.352

0.

0.
0.

000

3717
123

Flex Glossoph

.458
.056

.132
.600

.361
.141

.233
.351

.015
.953

.367
.135

.019
.939

.044
.863

.088
.729

.202
.422

.376
.124

.086
.736

.510
.030

.059
.817

.059
.817



Others

P. angus

Penion

Plagusia

Plocamiu

plum

Sarg

Slippery

Sol Asid

Stegnast

Stichopu

T. ingal

T.aur

Thais

Trochus

Turbo

Whelk

0.
.956

014

.010
.970

.104
.681

.010
.970

.008
.975

.070
.782

.139
.583

.012
.964

.022
.931

.010
.970

.010
.970

.043
.865

.109
.666

.010
.968

.033
.898

.160
.525

.429
.075

.114
.653

.280
.260

.114
.653

.077
.761

.276
.268

.114
.653

.086
.735

.415
.087

.114
.653

.114
.653

.163
.519

.003
.991

.162
.520

.025
.921

.368
.133

.421
.082

.056
.825

.061
.811

.170
.499

.448
.062

.207
.409

.178
.481

.218
.384

.016
.950

.299
.229

.307
.215

.580
.012

.298
.229

.322
.192

.513
.030

.141
.576

.365
.136

.049
.847

.046
.856

.170
.500

.325
.189

.429
.076

.023
.928

.234
.350

.301
.225

.145
.566

.462
.054

.148
.557

.246
.325

.307
.215

.328
.184

.072
LT

.323
.191

.233
.352

.155
.539

.211
.400

.571
.013

.168
.506

.040
.875

.361
.141

.018
.943

.047
.854

.390
.109

.228
.363

.438
.069

.502
.034

.392
.108

.196
.436

.099
.696

.109
.668

.468
.050

.109
.668

.157
.534

.091
.720

.032
.901

.158
.530

.579
.012

.025
.923

.123
.628

.138
.586

.514
.029

.197
.433

172
.495

.964
.000

.129
.611

.105
.679

.325
.188

.371
.130

.291
.241

.317
.200

.044
.863

.236
.345

.412
.089

.008
.974

.044
.863

.112
.658

.343
.163

.114
.651

.185
.461

.458
.056

.086
.735

.059
.817

.454
.059

.059
.817

.429
.076

.199
.428

.059
.817

.531
.024

.013
.960

.059
.817

.059
.817

.288
.247

.141
.576

.264
.290

.419
.084

.059
.817



Wonderin 0.010
0.970

zon 0.005
0.984

Haust

Maori -0.380
0.119

mash -0.375
0.125

Melantha 0.322
0.192

Micre 0.059
0.817

Murex 0.088
0.729

Murex (no 0.088
0.729

Orange s *
*

Others *
*

P. angus -0.323
0.191

Penion 0.088
0.729

Plagusia 0.194
0.441

Plocamiu 0.088
0.729

plum -0.411
0.090

Sarg -0.514
0.029

Slippery 0.088
0.729

.114
.653

.153
.544

Maori

.054
.831

.017
.946

.069
.785

.202
.422

.202
.422

.000
.000

.202
.422

.222
.375

.202
.422

.024
.924

.469
.050

.202
.422

-0
0

-0
0

.170
.499

.230
.359

mash

.249
.319

.432
.073

.152
.548

.137
.587

.216
.390

.186
.461

.447
.063

.325
.189

.982
.000

.473
.047

.143
.572

0.170
0.500

0.385
0.115

Melantha

0.006
0.980

-0.086
0.736

-0.086
0.736

-0.125
0.622

-0.086
0.736

-0.189
0.454

-0.086
0.736

-0.221
0.379

-0.014
0.957

-0.086
0.736

0.211
0.400

0.413
0.089

Micre

-0.001
0.996

-0.001
0.996

-0.142
0.575

-0.193
0.443

0.690
0.002

-0.193
0.443

0.525
0.025

0.318
0.199

-0.001
0.996

-0.109
0.668

-0.169
0.503

.371
.130

.101
.691

-0.059
0.817

0.225
0.370

Murex Murex (no Orange s

-0.059
0.817

-0.086
0.735

-0.059
0.817

-0.130
0.608

-0.059
0.817

-0.167
0.509

0.146
0.563

-0.059
0.817

.686
.002

.059
.817

.130
.608

.059
.817

.149
.554

.150
.553

.059
.817



Sol Asid -0.302
0.224

Stegnast 0.455
0.058

Stichopu 0.088
0.729

T. ingal 0.088
0.729

T.aur 0.113
0.655

Thais -0.144
0.569

Trochus -0.229
0.360

Turbo -0.446
0.063

Whelk 0.088
0.729

Wonderin 0.088
0.729

zon -0.203
0.418

Others

P. angus *
*

Penion *
*

Plagusia *
*

Plocamiu *
*

plum *

Sarg

.372
.129

.110
.663

.202
.422

.202
.422

L2777
.265

.055
.828

.062
.806

.252
.314

.202
.422

.202
.422

.152
.547

P. angus

.086
.735

.189
.453

.086
.735

.193
.443

.074
.769

.210
.402

.180
.475

.137
.587

. 447
.063

.519
.027

.871
.000

.865
.000

.143
.571

.325
.189

.820
0.

000

.109
.667

.165
.513

.086
.736

.086
.736

.283
.255

.206
.413

L2772
.275

.219
.382

.086
.736

.086
.736

.214
.393

-0.530
0.024

0.173
0.494

-0.193
0.443

-0.001
0.996

-0.084
0.739

0.113
0.654

0.149
0.555

0.326
0.186

0.105
0.677

-0.193
0.443

0.643
0.004

Penion Plagusia Plocamiu

.130
.608

.059
.817

.180
.474

.154

.130
.608

.484
.042

.117

0.174
0.490

0.012

-0.054
0.830

-0.364
0.138

-0.059
0.817

-0.059
0.817

-0.288
0.247

-0.141
0.576

-0.134
0.597

-0.151
0.550

-0.059
0.817

-0.059
0.817

-0.153
0.544

plum

0.495

.058 *
.819 *
.128 *
.613 *
.059 *
.817 *
.000 *

* *
.259 *
.299 *
.061 *
.810 *
.007 *
.980 *
.147 *
.560 *
.059 *
.817 *
.059 *
.817 *
.168 *
.506 *

Sarg Slippery



Slippery

Sol Asid

Stegnast

Stichopu

T. ingal

T.aur

Thais

Trochus

Turbo

Whelk

Wonderin

zon

Sol Asid Stegnast Stichopu T.

Stegnast -0.
0.
Stichopu -0.
0.
T. ingal O.
0
T.aur -0.

137
588

115
650

058

.819

222

.376

.939

.086
.735

.124
.624

.172
.495

.086
.735

.686
.002

.378
.122

.059
.817

.054
.832

.220
.381

.086
.735

.086
.735

.195
.437

.013
.960

.128
.613

.454
.058

-0.059
0.817

-0.023
0.929

0.338
0.170

-0.059
0.817

-0.059
0.817

0.441
0.067

-0.141
0.576

-0.175
0.489

-0.155
0.538

-0.059
0.817

-0.059
0.817

-0.177
0.483

-0.059
0.817

-0.288
0.247

-0.130
0.608

-0.438
0.069

0.427
0.077

-0.130
0.608

-0.130
0.608

-0.062
0.807

0.310
0.211

0.317
0.200

0.372
0.128

0.454
0.059

-0.130
0.608

0.601
0.008

ingal

0.259
0.299

.961

.059
.817

.024
.926

.364
.138

.059
.817

.059
.817

.288
.247

.466
.051

.584
.011

.114
.652

.059
.817

.000

.255
.308

.aur

-0.177
0.482

-0.181
0.473

-0.149
0.554

-0.393
0.107

0.440
0.067

0.794
0.000

0.861
0.000

-0.174
0.490

0.174
0.490

0.831
0.000

Thais

-0.117
0.643

0.241
0.335

-0.142
0.574

-0.153
0.546

0.150
0.553

-0.109
0.666

0.459
0.055

0.187
0.458

0.298
0.230

-0.106
0.675

0.012
0.961

0.343
0.163

Trochus

0.024
0.926

-0.013
0.960

-0.059
0.817

-0.059
0.817

-0.106
0.677

-0.141
0.576

-0.166
0.510

-0.146
0.563

-0.059
0.817

-0.059
0.817

-0.167
0.507

Turbo



Thais 0.084
0.740

Trochus 0.128

0.614
Turbo 0.207
0.411
Whelk -0.146
0.564

Wonderin 0.024
0.926

zon -0.104
0.680

0.247
0.324

-0.379
0.121

-0.299
0.228

0.549
0.018

-0.364
0.138

-0.181
0.473

Whelk Wonderin

Wonderin -0.059
0.817

zon -0.152
0.546

Cell Contents:

* NOTE * All values in column are identical.

0.255
0.308

P-Value

.141
.576

.164
.516

.149
.556

.059
.817

.059
.817

171
.498

Pearson correlation

.061
.810

.007
.980

.147
.560

.059
.817

.059
.817

.168
.506

.139
.582

.427
.077

.462
.054

.077
.762

.288
.247

.252
.313

.427
.077

.165
.513

.466
.051

.466
.051

.316
.202

.789
.000

.228
.363

.584
.011

.737
.000

.149
.555

.114
.652

.706
.001



