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Text is the media to convey and transmit information. Braille is extremely important for vision impaired people to exchange 
information through reading and writing. A braille translator is crucial tool for aiding people to understand braille messages. 
In this paper, we implement character-based braille translator using ResNet, there are three versions of ResNet we implement 
for braille classifiers, including ResNet-18, ResNet-34, and ResNet-50. We also implement a word-based braille detector 
using a novel solution called Adaptive Bezier-Curve Network (ABCNet), which is a Scene Text Recognition (STR) method for 
detecting word-based text in natural scenes. A comparison is present to evaluate the performance of ABCNet. 
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1 INTRODUCTION 

Braille is designed for blind persons to operate through touch reading and writing. Braille normally contains 64 
characters. Each character is formed in a braille cell, made by six raised or flatten dots. Each cell has two 
columns of three braille dots managed in a shape of 3x2 matrix. The braille has two levels. The first level is for 
each cell which only represents one alphabet, number or special character. The second level allows a braille 
cell to represent a single word, prefix, or suffix [1]. As the braille is made for blind and visually impaired people, 
if others would like to share information with them by text, they need the knowledge of braille, and transfer the 
normal text messages into braille cells. But not everyone can well understand the braille characters, and there 
is a gap of written communication between two worlds. There are numbers of implementations for braille 
recognition using traditional image processing techniques, all have the similar processes including image 
acquisition, preprocessing (noise removal, image alignment) and cells segmentation. The methods for matching 
the segmented braille cells into related alphabets are various. One of the most popular techniques is to convert 
the cells into either 3x2 binary matrixes or a 6-bit binary values, then match with the existing records in a 
database to identify them.  
    There is a disadvantage of these matching methods which is that they only recognize well-defined braille 
characters. If the characteristic of a braille cell has changed due to distortion and unwanted noises, this might 
cause mismatching of the cells, or the method cannot identify the cell’s pattern. The alternative classification 
for matching the braille cells into corresponding alphabets is to use artificial neural networks (ANNs). An ANN 
is formed by a group of connected units or nodes for mathematical calculation called artificial neurons, 
mimicking the structure of a biological brain. A node can pass a signal to other nodes like a synapse in a brain. 
When a neuron receives various inputs from other neurons, the values will go through a nonlinear function, the 
sum of the values will be exported as its output and be passed to other neurons. The neurons in an ANN model 
are organized into layers, each layer has various transformations depends on its inputs. There are three basic 
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components in a neural network: Input layer, hidden layers and output layers. Signals (inputs) will travel through 
the network from the input layer to the last layer (output layer).  Wong et al. [2] has implemented a neural 
network with one hidden layer (contained seven radial basis function neurons) for converting seven braille 
characters into corresponding alphabets and symbols in 2003. Convolutional Neural Network (CNN or ConvNet) 
is a type of deep neural networks, mainly used for image classification and recognition. The main types of layers 
in a ConvNet are input layer, convolutional layers, pooling layers, and fully connected layer. Compared to ANN, 
a ConvNet is able to capture spatial features and offer parametric sharing, thus it is much feasible for analyzing 
visual imagery.  
    In this paper, we will introduce our literature review in Section 2. Our methods will be depicted in Section 3, 
our results are demonstrated in Section 4, our conclusion will be remarked in Section 4. 

2 LITERATURE REVIEW 

 
Convolutional neural network[3] was introduced at first. The model is well-known as LeNet-5, which applies 
gradient-based learning algorithm with ConvNet for document recognition. The gradient-based learning 
algorithms generate a decision surface for classifying high-dimensional patterns, thus it is very suitable for 
classifying handwritten characters. The architecture of LeNet-5 has two sets of convolutional layers and average 
pooling layers, one flattening convolutional layer. At the end of this network, two fully connected layers and one 
softmax classifier are responsible for the classification. A general ConvNet is structured by using three basic 
functions, convolution, activation and pooling. The input for ConvNet is an image with the width, height, and 
depth, for example, an image from the CIFAR-10 dataset has the size 32´32 with a depth of 3 which represents 
RGB channels [4]. 

There are a plenty of ConvNet models which have been created in the last decade, such as AlexNet, VGG-
Net, GoogLeNet, ResNet, etc. Each model has multiple versions and structures for handling a variety of types 
of classifications.  

The design of ResNet models was proposed [8]. As the development of deeper neural networks is growing 
fast, a converging degradation problem is occurred. When the depth of a network on the raise, the accuracy of 
the model gets saturated and degrades rapidly, and overfitting is not the reason for degradation. With more 
layers added into the network might bring higher training error to the model. The accuracies of VGG-18 (18 
layers) and VGG-34 (34 layers) are attained by classifying CIFAR-10 dataset, the results show that VGG-18 
was fully trained in 5 minutes and got 80% accuracy, VGG-34 spent 8 minutes for training and got 72% accuracy. 
Thus, ResNet was applied to solve this problem. 

The ResNet implements a deep residual learning framework in this model. Considered H(x) represents an 
underlying mapping that is fit for a few stacked layers, x denotes the input to the first layer, and the stacked 
nonlinear layers fit the mapping of F(x):=H(x)-x. The original mapping is described as F(x)+x. If an identity 
mapping is optimal, the loss rate will increase when x is changed, F(x) will approach to zero. A shortcut 
connection is employed for F(x)+x with a feedforward neural network. Based on stacks of residual blocks, the 
output of a hidden layer is passed to another layer without changes, this ensures the loss will not dramatically 
be risen in a deeper stacked network, thus the network is stacked into even 1,000 layers.   

For word-based braille recognition, the techniques will be involved with natural scene text detection and 
recognition. Scene text detection and recognition have attracted more attention in recent years. The texts within 
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natural scene have a diversity of font styles and sizes, ratios, shapes, and distortion that make the detection 
and recognition tasks become much difficult. Recently, there are a plenty of end-to-end models which are made 
for detecting arbitrarily shaped texts in natural scenes, such as Mask textspotter [9], TextNet [10], and 
TextDragon [11]. Although these methods have various problems, the segmentation-based methods require 
complex model pipelines, the character-based methods need many character-level annotations while training 
the models. These issues need expensive efforts while proceeding real-time detection tasks. The adaptive 
Bezier Curve Network (ABCNet) was proposed [12], which is an e2e trainable, single-shot, anchor-free 
convolutional neural network for detecting arbitrarily shaped text in natural scene. The ABCNet carries the hope 
of the team of creating a simple e2e model which efficiently spots arbitrarily shaped text in real time, the 
performance is good enough to compare with the state-of-art methods.  

In ABCNet, a novel solution was proffered to handle arbitrarily shapes and curved text by implementing 
Bezier curve adaption, adding alignment layer – BezierAlign into the network, which adds negligible computation 
cost into detection process. There are vast number of components in the network: Bezier curve detection, 
Bezier-align and recognition branch. 

That regression-based methods are more direct methods for detecting arbitrarily shaped text. The Bezier 
curve c(t) is represented by using Bernstein Polynomials [13]  

𝑐(𝑡) = ∑ 𝑏!𝐵!,##
!$% (𝑡), 0 ≤ 𝑡 ≤ 1,       (1) 

where n stands for polynomial degree, bi refers to the i-th control points, Bi,n(t) means the Bernstein basis 
polynomials: 

 	
𝐵!,#(𝑡) = .#&/𝑡

!(1 − t)#'! , 𝑖 = 0,… , 𝑛,      (2) 
where .#&/ stands for binomial coefficient. A cubic Bezier curve (n = 3 for instance) is suitable in most of the 
cases to fit the arbitrarily shaped text, the text detection is implemented with eight control points. For the model 
to learn the coordinates of all control points, it is necessary to generate the Bezier curve as the ground truths.  

For the points on the curved boundary {𝑝!}!$(# , pi stands for i-th annotation points. In order to generate the 
result c(t) in Equation (8), the transformation is needed as shown in eq.(3) 
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where m represents the total number of the annotated points on a boundary, t will be calculated by the ratio of 
the accumulative length to the polyline perimeter. By using Eq. (7) and Eq. (9), the original annotation will be 
converted into parameterized Bezier curve. After the curve is generated, a regression method is given to regress 
each target as shown in Eq.(4) 

∆+=	𝑏!+ −	𝑥*!#, ∆,=	𝑏!, −	𝑦*!#.     (4) 

In Eq. (4), xmin and ymin represent minimum values of x and y of the four vertexes. If the input feature map 
and control points of Bezier curve are formally given, the pixels from the rectangular output feature map in size 
of ℎ/0& ×𝑤/0&  is processed. For example, given 𝑔!  from output feature map in position (𝑔!1, 𝑔!2) , t is 
represented as 
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       (5) 

The points of upper Bezier curve boundary tp and lower boundary bp are calculated by using t and Eq. (7). 
The sampling points are indexed linearly by using tp and bp 

𝑜𝑝 = 𝑏𝑝 ∙ 3!&
2#$%

+ 𝑡𝑝 ∙ (1 − 3!&
2#$%

)     (6) 

In ABCNet, a light-weight recognition branch is implemented for improving execution speed. The branch 
contains six convolutional layers, one bidirectional LSTM layer [14], and one fully connected layer. 

3 OUR METHODS 

 
For character-based braille classification, we take use of a dataset associated with the project AI4SocialGood. 
The dataset contains 1,404 images of braille characters, there are 27 classes of braille characters 
corresponding to 26 English alphabets and space symbol. The sizes of the images are various from 91´96 to 
509´598. The characters are printed having various colors, brightness of backgrounds, having added noises.  

For preprocessing, we have completed data augmentation for enhancing the robustness of the model, 
rotating each image in random angle within the range [-45°,45°], combining the rotated images with original 
dataset, the final dataset contains 2,808 images. OpenCV was used to import the images, and resize them into 
52´52, then normalize the pixels to 0-1 (pixel value divided by 255). The processed data will be randomly 
shuffled and separated into training set, test set, and validation set. Training set has 2,248 records with batch 
size of 40, test set has 280 records with batch size of 10, and validation set has 280 records with batch size of 
10 as shown in Fig.1. 

 

Figure 1: The samples of original images and rotated images. The images from left to right represent English 
letters A, B, C, D, E. 
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Pertaining to this project, we chose ResNet-18, ResNet-34, and ResNet-50 for the trials. The sizes of the 
images are not very big; thus, we test whether a deeper network can perform better than a shallower one. The 
structures of the chosen models will follow the structures in Table 1. We set 27 outputs classes for the last linear 
fully connected layer.  We created the models from scratch using PyTorch framework, and only used the Dataset 
I for training, testing and validation.  

The experiments were conducted using a laptop, the models were trained by GPU for time saving and 
efficiency. For meta-parameters, we set the learning rate as 0.001, each model takes 20 epochs of iterations. 
The loss function for model convergence is cross entropy loss function as shown in equation (9), M represents 
the number of classes, y represents a binary indicator (1 or 0) if a class label c is classified correctly for 
observation o, p stands for the predicted probability observation o of class c. The optimizer for models is Adam 
optimization algorithm. 

𝐿 = −∑ 𝑦/,4log	(𝑝/,4)5
4$(      (7) 

For evaluating the models, training and validation losses are used for evaluating the convergence of the 
models during training and validation. The accuracies are overall accuracies of the models. The model time 
consumptions are recorded for the purpose of comparisons. Precession, Recall, and F1 values are used as the 
metrics to show how models work: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 67
67897

      (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 67
6789:

      (9) 
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    (10) 

The word-based ABCNet model was implemented by using ResNet-50 and Feature Pyramid Network (FPN) 
[12]. The detection branch capitalizes on RoIAlign with 5 feature maps as 1/8, 1/16, 1/32, 1/64 and 1/128 
resolution for utilizing with input imag. Bezier-Align as 3 feature maps with 1/4, 1/8. And 1/16 ratios. The images 
of word-based dataset are collected from the internet public resources. Due to the time limitation, there are only 
250 images in total, with 200 images as training set, 30 as validation set, and 20 as the test set.   

4 RESULTS 

The losses of ResNet-18 and ResNet-50 are converged rapidly from the second or third iteration, the loss of 
ResNet-34 starts converging from the 5-th iteration, the difference might be caused by the model initial 
initialization where the weights and the bias values are initialized into random values following the Gaussian 
distribution. Overall, the losses of all models are converging nicely, the training loss and validation loss of 
ResNet-18 dip to 0.0058 and 0.2114, ResNet-34 losses slash to 0.0365 and 0.2342, and for ResNet-50, the 
losses are dropped to 0.082 and 0.195. 

Table 1: Results of multiple deep learning models 

Model Type Accuracy Training Error Validation Error Time Used/secs 

ResNet18 98.2143% 0.0058 0.2114 590.8 
ResNet34 97.5% 0.0365 0.2342 1043 
ResNet50 96.4286% 0.082 0.1950 3638 
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Table 2. Evaluation metrics for all three models with precision, recall and F1 score. 

Model Type Precision Recall F1 

ResNet18 0.97 0.855 0.91 
ResNet34 0.93 0.72 0.81 
ResNet50 0.92 0.77 0.83 

 
Table 1 shows the accuracies of three models. ResNet-18 has the highest accuracy 98.2143%, and accuracy 

of ResNet-34 has slightly down to 97.5%, and ResNet-50 has the lowest accuracy of 96.42%. As the model 
becomes deeper, it takes more time for training, 9 minutes for training ResNet-18, 17 minutes for ResNet-34 
and one hour for ResNet-50.  

Table 2 shows the evaluation metrics of the models. The metrics of precision, recall and F1 are used to 
measure the classification performance. ResNet-18 has the highest precision, recall and F1 value as 0.97, 
0.855 and 0.91. The F1 values of ResNet-34 and ResNet-50 are 0.81 and 0.83 which are lower than 18 layers 
model, the performance of ResNet-34 and ResNet-50 are the same regardless of the 0.02 difference between 
these two models. ResNet-18 has a better performance compared to the deeper networks. This may be due to 
that the image sizes of the dataset are not very big, all images are resized in 52´52, noises were added into 
the images, which have similar sizes compared to braille dots, applying the data for training models, the deeper 
model might generate the errors from classifying the noises into braille characters. The ResNet models contain 
convolutional layers to prevent the images getting too small during the process of convolution. Another possible 
reason might be the deeper network contains more parameters than a shallow one. ResNet-50 has 2,355k 
parameters and ResNet-18 has 1,118k parameter only. 

All the evaluation metrics are generated by using our own models, ResNet-18 was employed for a test of 
recognizing our own handwritten braille characters. we write the word “hello” onto a plain paper. The braille 
words are shown in Fig. 3, the image was taken by using a smartphone. After stored the image into a laptop, 
the words are segmented into five single characters. The segmented images are input into ResNet-18 for 
classification. 

 

 

Figure 2: Our handwritten braille word “Hello”. 
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Figure 3: The output of character classification after segmented handwritten characters. 

There are two tests of classification conducted as shown in Figure 4. The segmented characters in the first 
line are captured in absolutely vertical angle with no tilt, the characters in second line are captured with slightly 
tilted to the left, which are identified by using dash lines. The predicted labels and true labels of each characters 
are shown on the images. The results for both tests are with 100% accuracy, the characters are correctly 
identified as the corresponding English alphabets. 

 

Figure 4: Loss curves for training ABCNet, cls_loss represents classification loss, reg_loss shows localization 
loss 

After trained with the word-based braille dataset, ABCNet has 5,000 iterations of training. The loss curves 
are shown in Figure 5. The total loss is 0.73, the classification loss is 0.029, and localization loss is 0.6. Due to 
the amount of collected images is very limited, the final losses are acceptable. 
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Table 3: Evaluation Metrics for ABCNet in detection and e2e. 

Model  Precision Recall H-mean (F1-score) 

ABCNet Detection only 0.83 1.0 0.9 
E2E only 0.41 0.5 0.45 

FOTS Detection only 0.55 0.64 0.71 
E2E only 0.27 0.35 0.39 

 

Table 3 shows the final metrics. All the metrics have performed very well. The results of these metrics only 
have 0.41, 0.5, and 0.45, the reason why the final values have not reached ideal values is that the training data 
is not sufficient enough. A comparison on FOTS was conducted, which was trained with 1,000 epochs by using 
the same dataset. Compared to ABCNet, the detection and e2e results of FOTS are lower, and the time 
consumption for training FOTS using the same dataset is longer than ABCNet. The reason why FOTS gives 
worse results than ABCNet is that the iteration of training is not enough, if there are 5000 epochs as same as 
ABCNet, the results are much better. 

5 CONCLUSION AND FUTURE WORK 

Implementing character-based braille recognition using ConvNet is witnessed very efficiency. Different from 
traditional image processing techniques, deep neural networks use noises in the images to train the classifier, 
allow the model having the ability to detect and classify braille characters with high accuracy. As the traditional 
techniques limit the images in absolute vertical, ConvNet allows the images to rotate an angle, and classify the 
characters into correct corresponding letters. The design of residual block in ResNet models allows the losses 
to be controlled in deeper networks, this is proved by the test results, the training loss of ResNet-50 only 
increases 0.0762 compared to ResNet-18, the validation loss of ResNet-50 is less than ResNet-18. The overall 
accuracies of three tested ResNet models are very stable, only have 1%~2% difference. The word-based braille 
translator using ABCNet gives us the opportunity to translate the braille word.   

There are few limitations of the project. The original plan is taken ResNet-101 into the controlled trails. But 
with the limitation of the hardware where the GPU has 6GB of memory, it is not enough to train a ResNet-101 
with training batch size of 40, validation batch size of 10, and test batch size of 10. The second limitation is the 
results of the ACBNet are all implemented based on static images, we have not the tests in real time. 

In future, we will continue collecting the word-based braille images and added them into the dataset to uplift 
the performance. Also, further experiments for real-time detection are needed, we will set up a suitable camera 
as the source of real-time input and implement the real-time scene text detection for translating the braille words 
from natural scenes [15,16,17,18,19, 20,21]. 
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