
Solution Spaces

Nadia Kasto§, Jacqueline Whalley§, Anne Philpott§ and David Whalley†

§School of Computing and Mathematical Sciences
AUT University

PO Box 92006, Auckland 1142, New Zealand
{nkasto,jwhalley,aphilpot}@aut.ac.nz

†Educational Consultant

Auckland
New Zealand

geowah@yahoo.com

Abstract
This paper explores the idea of solution space in the
context of novice programmers and code writing tasks. A
definition for solution space is provided and an analysis
of a series of code writing questions from a first year Java
programming course’s practical programming tests is
provided to measure the impact of solution space size on
the difficulty of a code writing question. We found that as
the solution space size increases so does the difficulty of
the question and that despite relatively high solutions
spaces we see a very limited set of these solutions as
student responses. Finally we conclude with some
conjectures about the possible causes for the trends that
we have observed. .
Keywords: novice programmers, code writing,
assessment, task complexity.

1 Introduction
“Writing high quality readable text does not come easily
to most young children. Many elementary teachers
express frustration at the apparent poor written products
emerging from their students.” (Beaglehole and Yates
2010). Similar themes have appeared in the computer-
science education literature: students don’t know how to
design programs, and they don’t know how to write
programs. Soloway and Sopherer (1989) suggested that
“students have difficulties in putting all the pieces
together” and “many problems arise from structure
composition problems”. Winslow (1996) supported this
view stating that, “Study after study has shown that
students have no trouble generating syntactically valid
statements once they understand what is needed. The
difficulty is knowing where and how to combine
statements to generate the desired result”.

It is generally accepted by teachers that many students
who are learning to write find the task easier if they are
given a more open task. This premise is supported by
Rogers’s learner-centered model of teaching (Rogers et
al. 2013). When they are allowed to write about a topic of
their own choice these students quickly decide what topic
they would like to write about and how they will go about
it. Some other students tend to flounder in such a large

Copyright © 2014, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian Computing Education
Conference (ACE2014), Auckland New Zealand. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol.148. Jacqueline Whalley and Daryl D’Souza, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

space and cannot decide how to get started. On the other
hand if the students are directed to write on a specific
topic set by the teacher, for example a grandparent's
birthday, some find that the restricted scope makes the
writing task easy for them while others have difficulty
engaging in a task that provides them with such limited
possibilities for writing. The reasons for finding a
particular writing task difficult may include: a lack of
personal experience- the students may never see their
grandparents-, a lack of interest in the topic, a strong
desire to write about a personally more motivating topic,
a perceived absence of an audience for the finished
product or a lack of the vocabulary needed to engage in
the topic set. In effect, some find that a large solution
space provides them with many opportunities and allows
them to make choices that result in effective writing.
Others find a large solution space daunting and have
difficulty making productive choices. What effects do
differences in the solution space of programming tasks
have on the ability of novice programmers to successfully
complete those tasks?

In programming there are many ways to tackle a fairly
small problem, and different students can produce
different solutions to the same problem. In a preliminary
small scale study Carbone (2007) found that when
students were given open programming tasks, tasks that
had many possible ways to approach the problem and
hence a large solution space, some students focused on a
wrong aspect of the task or pursued a wrong approach as
they lost track of the big picture. It seems reasonable to
assume therefore that solution space has some influence
on the difficulty of a novice programming task.

In a recent study that attempted to evaluate the
difficulty of questions presented in final examinations the
group of academics found it difficult to agree on the
difficulty of questions (Simon et al. 2012). The degree of
agreement between the academics in estimating difficulty
was only 40% so the inter-rater reliability was poor. This
finding indicates that it is difficult for educators to be
objective in their estimations of difficulty of assessment
items in computer programming. There is a tendency to
both under and overestimate the difficulty of these tasks.
Clearly there is a need for more objective measures of
difficulty for novice computer programming tasks.

2 The solution space conjecture
Our conjecture is that the difficulty of code writing tasks,
for novice programmers, is related to the size (and
possibly other dimensions) of the solution space for a
problem. We were also interested in whether or not the
number of solutions provided by students, the students’

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

133

solution space, to a code writing problem is influenced in
any way by the size of the problem’s solution space.

Luxton-Reilly et al. (2013) investigated the variation
in correct student solutions for problems. They defined
three different types of variation: variation in structure,
syntax (within a block) and presentation. For this research
solution space is defined as the set of structurally or
syntactically different solutions that provide a correct
answer for a specific code writing problem. The addition
of redundancies (for example, extra semicolons, empty if
or else statements) have not been counted as additional
solutions.

The notion that difficulty might be related to solution
space size is perhaps not a surprising idea. Academics
often consider the answers that we may get in response to
a code writing assessment and write a rubric that will help
accommodate those expected responses when marking
the students’ answers. However to our knowledge the
idea that solution space size may affect difficulty has not
previously been tested.

3 The data set
The data for this work was gathered from a first semester
Java programming course. The course was designed with
the assumption that the students have no prior knowledge
of computer programming. The course adopts a back to
basics procedural approach (similar to that suggested by
Reges (2006)) except that the learning is supported by an
in-house micro-world called Robot World in the BlueJ
IDE. Robot World was inspired by ‘Karel the Robot’
(Pattis 1981). For the majority of the course students do
not write their own classes but instead learn to
decompose their programs into methods. The advantages
of using micro-worlds as a tool for teaching novice
programmers are well documented. These advantages are
that they:
• reduce the complexity of a language by providing a

subset of a conventional language
• enable students to visualise the execution of the

program, giving immediate feedback and assisting
them in the debugging process (McIver and
Conway, 1996)

• increase the focus on problem solving and algorithm
design (Kölling, 1999).

• facilitate learning better than text-based (non-visual)
systems (Dougherty, 2007).

It is for these reasons that the traditional back to basics
approach was extended to include the micro world in a
simplified learning IDE as the teaching environment for
this course.

The eight code writing questions analysed in this study
were selected from a series of summative practical
programming tests held throughout the first semester of a
first year Java programming course. Sixty student
responses were analysed for each question. These
students had given ethical consent for their data to be
used and were representative of the entire cohort.

The questions analysed are provided in Appendix A.
These questions were selected from a larger body of
questions. These were questions which contained
concepts that had been taught to the students but which
were presented in a problem they had not seen before

although they had seen examples that were variations
(Thompson 2010) on the problem. An example scenario
is provided below.

Question 5 asked the students to work out the length of
two corridors and print out the length of the longer of the
two corridors provided. The corridors could be of any
length and may even be the same length. The students
were provided with images of one possible starting
scenario for the robot (Figure 1).

Figure 1: Question 5 the starting scenarios

The students were at a stage where they had been

taught and had practiced programming code that uses the
robot world methods, primitive data types, variables,
mathematical operators and logical operators. In addition
the following concepts relevant to this question had been
taught:

• iteration –while loops only
• selection – simple if/else statements
• summation and counting algorithms

This question was given to the students in a practical
programming test which followed a computer lab where
the students had worked on a problem that required them
to calculate the length of a single corridor. The same code
had been discussed in a lecture prior to the laboratory
session. In previous labs the students had been given
tasks that required them to write code that compared two
integers and print out the one with the highest value.

4 Determining the solution space
Solution space can be defined as the set of possible
structural and syntactical permutations that provide a
working solution without any discrimination of solutions
due to the quality of the solution.

Two instructors developed a set of solutions to a set of
first semester novice programming tasks. These sets of
solutions formed the minimum solution spaces. It should
be noted that each set is not necessarily the full set of all
possible solutions as identifying the set of all possible
solutions for a code writing task is an extremely complex
problem and it becomes more problematic as the size
and/or complexity of the code increases.

Even a relatively simple selection statement can
generate several possible solutions. For this reason we
define our solution space as at least a certain number of
solutions; there may be other solutions which have not
been identified.

The following discussion illuminates the way in which
we have determined solution space size with an exemplar.
Question 4 asks the students to write code that allows the

CRPIT Volume 148 - Computing Education 2014

134

robot to navigate through a spiral maze until they find a
beeper at which point the robot should stop. Robots can
only turn left. The students at this point have only learnt
about while loops so the problem’s solution space only
consists of solutions which contain a while loop. The
solutions identified by the instructors which form the
problem’s solution space are given in Table 2. This
problem’s solution space is comprised of least three
candidate solutions and therefore has a size of at least
three.

Solutions

while(isGroundClearAtRobot()) {
 while(isSpaceInFrontOfRobotClear()){

 moveRobotForwards();
}
 turnRobotLeft();

 }

 while (isSpaceInFrontOfRobotClear()){
 moveRobotForwards();
 if (isRobotFacingWall()){
 turnRobotLeft();
 }

 }

while (!isRobotFacingWall()) {
moveRobotForwards();
while(!isItemOnGroundAtRobot())
 && (isRobotFacingWall()) {
 turnRobotLeft();
}

}

Table 2: Solution space for Question 4

5 Results
Figure 2 shows that there is an obvious trend, for the
questions we have examined, between solution space and
question difficulty. The smaller the solution space the
easier the students found the question.

Figure 2: Solution Space Size (y axis left) and %

correct answers (y axes right) by question

The questions were selected to provide a progression
of programming concepts as they were delivered through
the course so move from code that is a simple sequence

of instructions to the robot, to selection and then to
iteration. As a consequence the questions become more
conceptually difficult.

Figure 3 shows the solution space size of each
problem and the solution space size of the students’
answers. For the last three problems the students’
solution space stays relatively constant but the difficulty
increases, and it increases at a rate that appears to be
related to the rate of increase in the actual solution space.
Difficulty maybe affected by what the students don’t
know. Because the students are novices presumably their
knowledge is limited and therefore they are unaware of
many of the possible solutions. Unlike writing in a natural
language, where a substantial proportion of the students
seem to benefit from the opportunities provided by a
more open/larger solution space, in computing it is quite
obvious that fewer students can cope with a situation
where they have a big solution space. Moreover, in
writing regardless of their level of writing and ability to
structure their writing many students find open tasks with
a larger solution space easier. In contrast in computing
students tend to find it more difficult to solve
programming problems that have a greater solution space.

Figure 3: Size of problem vs. size of student solution
space

6 Conclusions and future work
The Dreyfus Model of Skill Acquisition (Hunt 2008)
suggests that novices copy solutions so if the teaching
style provides patterns for solutions to a particular style
of code writing problem then it is possible that the task
maybe easier for the students regardless of the solution
space size. Moreover, the students’ available solution
space is likely to be influenced by factors such as the
instructor’s teaching focus, previously seen code and the
wording of the question itself.

For novice programmers the difficulty of a
programming task tends to increase as the solution space
increases. This relationship between difficulty and
solution space could be used to estimate the difficulty of
tasks set for students in computing labs or tests. A
difficulty metric based on minimum solution space size
should provide academics with a more consistent and
reliable way of determining the probable difficulty of
computing tasks designed for novice programmers. There
is no doubt that a difficulty measure that is more accurate

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

135

than the 40% agreement about difficulty levels (Simon et
al. 2012) achieved using the judgement of academics
familiar with the teaching of novice programmers is
desirable.

In natural language metrics the measures of difficulty
have usually been grouped so that the results are
presented in meaningful categories such as equivalent
grade levels or difficulty levels. Computing tasks for
novice programmers could also be grouped into
categories of difficulty to provide a quick and easy
estimation of the difficulty of a task. For example, for a
first semester of programming a minimum solution space
size of 1-4 = easy, 5-7 = medium and > 7 hard would
probably be appropriate. This of course could be
adjusted for subsequent courses and or standards for a
course.

One of the limitations of this preliminary work is the
need to increase the clarity and repeatability of the
minimum solution space size calculation. It may be that a
comparison of problem characteristics to typical solutions
space sizes could shed some light on useful heuristics.

7 References
Beaglehole, V.J. and Yates, G.C.R. (2010): The full stop effect:

Using readability statistics with young writers. Journal of
Literacy and Technology, 11(4), 53-82.

Carbone, A. (2007): Principles for designing programming
tasks: How task characteristics influence students learning of
programming. Melbourne: Monash University.

Dougherty, J. (2007): Concept visualization in CS0 using Alice.
Journal of Computing Sciences in Colleges, 22(3): 145-152.

Pattis, R.E. (1981): Karel The Robot: A Gentle Introduction to
the Art of Programming. John Wiley & Sons.

Hunt, A. (2008): Pragmatic Thinking and Learning: Refactor
Your Wetware (Pragmatic Programmers). Pragmatic
Bookshelf.

Kölling, M., (1999): Teaching Object Orientation with the Blue
Environment. Journal of Object-Oriented Programming, 12
(2): 14-23.

Luxton-Reilly, A., Denny, P., Kirk, D., Tempero, E. and Yu, S.
(2013): On the Differences Between Correct Student
Solutions. Proc. of Innovation and Technology in
Computer Science Education conference 2013, ITiCSE
'13, Canterbury, United Kingdom, 177-182

McIver L. and Conway, D. (1996): Seven deadly sins of
introductory programming language design. Proc.of the 1996
International Conference on Software Engineering Education
and Practice, 309–316.

Reges. S. (2006): Back to basics in CS1 and CS2.
SIGCSE Bulletin. 38(1): 293-297.

Rogers, C.R., Lyon, H.C., and Tausch, R. (2013): On
Becoming an Effective Teacher - Person-centered
Teaching, Psychology, Philosophy, and Dialogues with
Carl R. Rogers and Harold Lyon. London, Routledge:

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J., Clear,
T., deRaddt, M., D’Souza, D., Philpott, A., Skene, J. and
Warburton, G. (2012): Introductory programming:
Examining the exams. Proc. 14th Australasian Computing
Education Conference, Melbourne, Australia, 123: 61-70.

Soloway, E. and Spohrer, J. (1989): Studying the Novice
Programmer, Hillsdale, New Jersey, USA, Lawrence
Erlbaum Associates.

Thompson, E. (2010): Using the principles of variation theory to
create code writing problem sets. Proc. of the 11th Annual
Conference of The Higher Education Academy - Information
and Computer Sciences, Durham University, 11-16.
http://www.ics.heacademy.ac.uk/events/download.php?file=/
events/11th-annual-conf/proceedings/Proceedings_11th
_Annual_Conference.pdf. Retrieved 22 August 2013.

Winslow L., (1996): Programming Pedagogy -A Psychological
Overview. SIGCSE Bulletin, 28 (3): 17-22.

Appendix

1 For this question, the students are supplied with the
method header. They are asked to complete the
method body by writing a sequence of three
statements to make the robot drop the beeper it is
carrying, then move the robot forward one cell and
turn the robot left once.

2 For this question, the students are supplied with the
method header. They are asked to complete the
method body so that the robot turns left then if
there is no wall in the way moves forward one cell.

3 In this question, the students are provided with a
robot in a cell that contains a number of beepers.
The students are asked to write a method called
pickUpNBeepersCheckIfAll() that takes an integer
parameter, and makes the most recently created
robot pick up that number of beepers from the
beeper stack at its current location. You can
assume that there are enough beepers in the stack
for the robot to do this safely. The method should
return true if the robot has picked up all the
beepers at its current location, or false if there are
still beepers on the ground.

4 Complete the method navigateSpiral that moves
the robot through a spiral maze until it reaches a
beeper. The spiral will always have 6 passages but
they will be varying in length.

5 In this scenario there are interconnected two
corridors, they are always connected at the same
point (See Figure 1 for details). The length of each
of the corridors changes randomly each time the
robot world is created. A corridor number is
specified by the row of the world that the corridor
is in. The students are asked to:
Write a program that measures the length of both
corridors, and then displays the message
Corridor<m> is the longest. It is <n> long.
Where:
<m> is the number of the longest corridor.
<n> is the length of that corridor.
 If the corridors are the same length, the message
should specify corridor 0.

6

This question asks the students to write a method
called walk() that makes the robot walk through a
door to reach a beeper. The door that it must walk
through could be to the east or west or straight
ahead […up…]. A door will always be present.
The robot must only pass through the location in
front of the door once.

CRPIT Volume 148 - Computing Education 2014

136

http://www.ics.heacademy.ac.uk/events/download.php?file=/events/11th-annual-conf/proceedings/Proceedings_11th%20_Annual_Conference.pdf
http://www.ics.heacademy.ac.uk/events/download.php?file=/events/11th-annual-conf/proceedings/Proceedings_11th%20_Annual_Conference.pdf
http://www.ics.heacademy.ac.uk/events/download.php?file=/events/11th-annual-conf/proceedings/Proceedings_11th%20_Annual_Conference.pdf

7 In this scenario the robot starts off carrying 100
beepers, and there is also a pile of beepers at
position (0, 0). The robot should pick up those
beepers and count how many there are. Then the
robot should draw a square using the beepers by
dropping them. The length of the sides of the
square in beepers should be the number of beepers
picked up from position (0, 0). For example, if the
robot picks up 5 beepers then it should make a 5 by
5 square.

8 This question asks the students to write a method
called advanceRobot() that has two parameters a
Robot and a distance to travel (the number of cells
that the robot should advance). The robot should
only be able to move if it is alive and if the distance
to travel is positive if it is unable to move an
appropriate exception should be thrown. If the
robot encounters a wall before moving the full
distance it should stop rather than crashing. The
method should return true only if the robot moved
the full distance.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

137

