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Abstract 

Although numerous researchers have devoted much time and effort to the 

issue, generating a reliable and accurate cost estimate at an early stage of the 

development life cycle remains a challenge to software engineers. In recent 

years an increasing number of studies have turned their attention to the 

employment of machine learning, especially Artificial Neural Networks (ANNs), 

in performing such estimation activities. A Self-Organising Map (SOM) is a 

particular type of ANN that utilises a neighbourhood function that can be used 

as an unsupervised clustering tool. Its ability to project multi-dimensional data 

into a two-dimensional map makes the SOM appealing to software engineers. 

 

In addition, the vague and ambiguous nature of real world software data 

demands techniques that can handle fuzziness. Accordingly, researchers have 

introduced fuzzy logic approaches such as fuzzy sets, fuzzy rules, fuzzy 

inference and the associated fuzzy clustering techniques into the original area 

of neural networks. Following a thorough literature review, it was decided that 

Self-Organising Maps could be an appropriate candidate for estimation in 

software project management. In order to investigate our hypothesis we build 

predictive models using Self-Organising Maps and compare them with Linear 

Regression models. The Fuzzy C-means algorithm is utilized in our study to 

pre-process ambiguous and vague real world data, which also refines the 

clustering outcome. 

 

This study presents and analyses the results of three case studies that use 

data sets from different software projects. The findings indicate that Self-

Organising Maps surpass Linear Regression in all three cases (even when 

noise was introduced), both in terms of generating more accurate estimates 

and presenting easy-to-understand relationships among the project features, 

when compared to Linear Regression models. Alternative approaches and 

extensions are suggested in order to overcome the limitations of the study. 

Other recommended future study areas include, but are not limited to, exploring 

alternative approaches to forming Fuzzy Self-Organising Maps (FSOMs), 
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adopting new versions of the Fuzzy C-means algorithm, and investigating 

further the sensitivity of SOMs and FSOMs.  
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1 Introduction 

1.1 Brief Background and Research Objective  

Cost estimation in software project management generally refers to the 

prediction of the personnel effort required in development, and is part of the 

activity and schedule planning management tasks undertaken by software 

project managers (Kurbel 2008). Generating reliable and accurate cost 

estimates at an early stage of the development life cycle is an ongoing and 

significant challenge for software engineers. 

 

Factors such as developer fatigue, team dynamics, and the likely effect of new 

techniques and tools are among the variables that may be difficult to model in a 

quantitative sense, although experienced managers may be able to take these 

factors into account qualitatively. Such experience and knowledge are clearly 

vulnerable to loss. That is, if a manager who possesses significant project 

knowledge leaves an organisation, retaining his or her knowledge about the 

relationships between factors can be important for the organisation to stay in 

business. Even if they have recorded this information, managers may not be 

aware of appropriate methods for leveraging it in terms of effort prediction. 

 

One approach used to address this issue involves developing models based on 

historical data, by mining trends and patterns to estimate aspects of interest 

(including effort) based on factors (metrics) as accounting for specification size, 

developer expertise and experience, and code quality and complexity. 

However, model development and subsequent calibration are far less 

practicable for immature organisations which suffer from a lack of such an 

historical database. Gray & MacDonell (1997) found that fuzzy systems can be 

applied to software metrics in early estimation where sufficient information for 

more detailed models is not available or where data is only available in small 

quantities (or even not at all). They reach this conclusion after comparing a 

range of modelling techniques that could be suitable for predictive software 

metric model development, including least squares regression, robust 
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regression, neural networks, fuzzy systems (adaptive), hybrid neuro-fuzzy 

systems, and regression trees. 

 

More recently, Berlin, Raz, Glezer & Zviran (2009) compared linear regression 

and artificial neural networks (ANNs) and found that such methods are 

characterised by unclear and closed structure that make them complex and 

opaque. It is therefore difficult for a project manager without specialist 

mathematical knowledge to understand the common sense underlying the 

computation processes. The use of fuzzy models, and language close to the 

domain of project managers, may help to address this issue. 

 

Hsiao, Lin & Chang (2008) proposed a fuzzy membership function approach to 

transform verbal opinions into numbers. They conducted two experiments to 

compare the performance of this value-based measure with traditional 

variance-based methods and an entropy measure. They argued that the fuzzy 

membership-based consensus measure indeed improves performance, 

especially when a large number of people are involved in the decision making. 

To improve the ability of processing of numerical and categorical data in 

similarity measurement and to decrease uncertainty, Azzeh, Neagu & Cowling 

(2010) also employed Fuzzy set theory with Grey Relational Analysis (GRA) as 

a new formal Estimation by Analogy (EA) model. These studies serve to 

illustrate that fuzzy logic modelling may assist managers when producing 

predictions for software projects. 

 

MacDonell & Gray (2003) presented a fuzzy logic software toolset called 

FUZZYMANAGER that can effectively incorporate manager knowledge in a 

model either with or without historical data. The toolset consists of two 

modules: CLUESOME (CLUster Extraction for SOftware MEtrics) derives 

membership functions and rules, while FULSOME (FUzzy Logic for SOftware 

MEtrics) generates and refines the graphical output of membership functions 

and rule bases and then supports the prediction process via fuzzy inference. In 

two case studies, MacDonell & Gray (2003) demonstrated that in certain 

circumstances, the fuzzy logic approach not only outperforms linear regression 



 

 

Page 3  

 

in representing software project management relationships, but also is capable 

of dealing with uncertainty and vagueness in classification and prediction. This 

is due to the fact that fuzzy logic methods create models based on the existing 

management expertise and allow adjustment when new knowledge is gained.   

 

In a later paper, MacDonell (2005) described the empirical analysis of Kohonen 

self-organizing maps (SOMs) that utilise multiple attributes to create a model 

suitable for classification and prediction. As a neural-network based 

representation of data distributions, SOMs provide a two-dimensional 

visualization to expose the dispersion of artifacts/vectors and the 

interrelationships among factors. The author found that the SOM method was 

accurate and outperformed a corresponding regression model in classification 

and unbiased prediction in most runs of a software size prediction exercise. 

This suggests that SOM-based clustering may be a good candidate for 

modelling and prediction, as proposed in this research.  Considering that the 

traditional SOM fails to deal with uncertainties, Li, Kuo & Tsai (2010) integrated 

the SOM with the fuzzy c-means (FCM) algorithm (Jain, Murty & Flynn 1999). 

FCM is a popular fuzzy clustering algorithm, which Jain et al. (1999) applied to 

their intelligent decision-support model for clustering, visualization, and 

linguistic information processing. 

 

The studies described above reflect that traditional parametric models cannot 

handle complex data and uncertainty well. Furthermore, compared with other 

machine learning methods such as analogy and standard artificial neural 

networks, or statistical techniques such as regression, a fuzzy logic approach 

and associated techniques can deal better with imprecision, which is likely to 

be a factor in regard to project management data. Thus there is reason to 

assert that fuzzy logic modelling (fuzzy sets, fuzzy rules, and fuzzy inference) 

and associated techniques such as fuzzy clustering could be a more suitable 

approach in the domain of software project management estimation. 

 

The objective of this research is to assess the effectiveness of the Self-

Organising Maps (SOMs) algorithm and its enhanced version – the Fuzzy Self-



 

 

Page 4  

 

Organising Maps (FSOMs) algorithm – for clustering project management data. 

These clusters are then used to forecast the size (i.e. lines of code) of software 

artifacts or the effort required to produce them. In other words, the clusters can 

be used for software project estimation. Therefore this study addresses the 

following research question: 

“Is the Self-Organising Map an appropriate candidate for estimation 

in software project management?” 

 

 

1.2 Research Design 

In Information Systems research, presenting the accomplishment of an artifact 

or proposed framework with robust evidence from case studies can serve the 

purpose of demonstrating support or otherwise for a research hypothesis. Such 

an approach is embodied in the Design Science methodologies. For that 

reason, the Design Science Research Process (DSRP) model of Peffers, 

Tuunanen, Gengler, Rossi, Hui, Virtanen & Bragge (2006) has been utilised in 

this research. 

 

Specifically, this research pursues the evaluation of the Self-Organizing Map 

(SOM) and Fuzzy SOM (FSOM) in software project management. We adopt as 

a benchmark Linear Regression, which is one of the most commonly used 

statistical prediction techniques. To ensure a fair and complete comparison, we 

also create for each case study a model – namely Fuzzy Linear Regression – 

as the Fuzzified version of the original Linear Regression to parallel FSOM to 

SOM. 

 

Data sets from three software contexts are employed in our study in order to 

test our models: 1) the 4GL (i.e. Fourth-generation programming language) 

Systems data set, which was collected at the University of Otago in New 

Zealand; 2) the Desharnais data set, which is a publicly available data set for 

software engineering research; and 3) the Miyazaki data set, collected and 

published by the Fujitsu Large Systems Users Group. Prior to the construction 

of predictive models, correlation analysis is conducted in order to select 
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appropriate variables from the original data sets to avoid noise adversely 

affecting the estimation results. In order to assess the accuracy of models, a 

diversity of statistical approaches is utilized in the data analysis of prediction 

outcomes of SOM, FSOM, Linear Regression, and Fuzzy Linear Regression.  

 

 

1.3 Thesis Structure  

This thesis is structured as follows: the next chapter provides a literature review 

of previous research concerned with software project planning and general 

clustering techniques. Chapter 3 explains the research methodology using four 

examples, and highlights the application of the DSRP model in this research. In 

Chapter 4, a study of SOM considers its features and drawbacks, along with 

applications and extensions. Chapter 5 compares the approaches for 

constructing Fuzzy SOM and their applications. Chapter 6 reviews the benefits 

of Fuzzy C-Means as a clustering tool. Chapter 7 describes in detail the three 

data sets with variable selection. Information about tools for creating SOM and 

FSOM models is also provided in this chapter. Chapter 8 presents analyzed 

empirical evidence based on case studies that utilise the three data sets. 

Chapter 9 summarizes and synthesizes the case study results, Chapter 10 

points out the limitations of this research, and offers recommendations for 

future research. 
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2 Literature Review 

This chapter begins by reviewing contemporary project management estimation 

techniques, providing a clear understanding of the context for my study. It also 

provides justification for investigating a machine-learning approach and 

associated clustering techniques. This is followed by a survey of related 

clustering techniques, concluding with an evaluation of their suitability in a 

project management estimation context. This motivates the research question 

for this study, on the suitability of self-organizing maps. 

 

 

2.1 Software Project Planning 

According to the Project Management Institute (PMI) the activities involved in 

project management can be classified into five processes: initiating, planning, 

executing, monitoring and controlling, and closing a project. These processes 

can take place in a single project phase or occur cyclically throughout an entire 

project. In software development and maintenance projects, determining 

precise estimates of duration, cost and required effort at the beginning of the 

software life cycle is one important determinant of project success as such 

estimation has an impact on resource allocation and project feasibility (Corbel, 

2008). Underestimated costs can lead to forced investment with minimal or 

even no profit, while overestimated costs could cause unnecessary project 

cancellation. Estimation should also not be a one-shot activity: both Pfleeger 

(2001) and Sommerville (2007A) state that when more accurate project 

information is obtained or when project aspects change, the estimation needs 

to be refined. 

 

Generally, personnel effort is the biggest component of software project cost 

(Fleeter, 2001). It is determined by how many staff-days (some managers of 

larger projects would utilize months rather than days) will be necessary for 

carrying out the project. While it is essential to determine the required effort for 

completing a project, effort is the component with the highest degree of 

uncertainty among all the cost components. 
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Due to the nature of software development, most processes and activities have 

inter-relationships that imply that isolation is impossible. For instance, 

important factors that a manager seeks to control, such as time, cost and 

quality, are co-related and affected by various other factors in a complex 

manner. Therefore, managers need to pay attention to a large number of 

variables, and take into account their complicated interrelationships. Pfleeger 

(2001) identified several key factors that influence the estimate, such as system 

complexity, system size, project team capabilities and experience, the 

anticipation of changes in customer requirements, team size, available 

resources, and others. 

 

There are many different techniques used to perform estimation for software 

development projects. The Project Management Body of Knowledge (PMBOK) 

categorises them into three classes: expert judgment, empirical data modelling, 

and machine-learning (ML). 

 

 

2.1.1 Expert Judgment  

One of the most commonly used effort-estimation methods is expert judgment. 

Naturally, prediction accuracy when this approach is used depends on the 

experience, competence, perception, and motivation of the estimator(s) 

(Fleeter, 2001). Experts in relation to the proposed software development 

application and perhaps the software domain may be consulted and their 

individual cost estimates are then compared and discussed until an agreed 

estimation is reached (Sommerville, 2007B). In some cases this may involve 

weighting the estimates according to individuals‟ expertise. 

 

In a similar vein, analogy-based estimations are widely used as well. By 

analogy, the cost of the new project is estimated based on one or more finished 

projects. In addition, the method can be extended so that if system A and 

system B are similar, while the complexity or size of A is double that of B, then 

one can suppose A to cost double the cost of B. However, projects that appear 
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to be analogous could in fact be very different. Even if the differences between 

projects are identified, their influence on project cost may still be uncertain, as 

the relation between and project characteristics and cost is not always known. 

Furthermore, some factors other than those associated with the product being 

constructed may be influential. For instance, the larger the project team, the 

more time may be needed for communication and co-ordination. 

 

Besides its inherent subjectivity and variability, expert judgment also strongly 

relies on current data. To reflect the current practices, the data for expert 

judgment must be updated regularly. Moreover, as pointed out by Pfleeger 

(2001), most expert judgment techniques are far too simple and can ignore 

factors that have an impact on the effort needed for a project. 

 

Furthermore, MacDonell & Gray (2003) indicated that when experienced project 

managers leave an organisation, the knowledge they take with them may be 

crucial for project planning and could be difficult to replace. Especially in those 

organisations that are not mature in operation, such knowledge could even not 

be replaceable. Historical data can be utilized for model development, indexed 

for retrieval, and mined for trends and patterns; less mature organisations are 

categorized by the absence of such an historical database. Unfortunately, most 

modelling methods assume that such data exist. 

 

 

2.1.2 Software Metric Models 

A metric is defined by the IEEE Standard Glossary of Software Engineering 

Terms (Pressman, 2001, p.81) as “a quantitative measure of the degree to 

which a system, component, or process possesses a given attribute”. 

 

In a software development project, when the criteria of measurement are 

established, it can be fairly straightforward to gather direct measures such as 

cost and effort applied, product aspects including Lines Of Code (LOC), and 

other attributes. Nevertheless, product characteristics such as quality, 
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efficiency, complexity, functionality, reliability, and maintainability, have to be 

indirectly measured, as they are difficult to assess. 

 

Therefore, planners and project managers have been known to default to using 

LOC as it can be so easily counted. As a result a huge proportion of data 

predictions based on LOC exist in the literature, and LOC or KLOC (thousand 

lines of code) is one of the key inputs in many software estimation models. 

However, accurate estimates for LOC in advance of analysis and design are 

difficult to achieve. Furthermore, LOC measures cannot accommodate 

nonprocedural programming languages in an effortless manner and they tend 

to unfairly penalize shorter but well-designed programs. 

 

The Function Point (FP) metric that was first proposed by Albrecht in 1979 is 

derived from empirical relationships grounded in direct measures. Planners and 

project managers estimate whether a particular entry is complex, average, or 

simple with conventions established by internationally standardised function 

point methods. Similar to LOC, function points are used to standardize 

measures for software quality, productivity, and other project aspects. It is 

worth noting, however, that the determination of complexity is subjective to 

some extent. 

 

Originally, the function point measurement approach was designed for 

business information systems applications. Hence, it is inadequate for most 

engineering and embedded systems in contrast to information systems, which 

deliberately segregate function and control data dimensions. To remedy, a 

superset of the basic function point measure has been proposed. One of them 

is a feature point method that accommodates applications that have high 

algorithmic complexity. As a result, process control, embedded, and real-time 

software applications are amenable to quantification using the feature point 

approach. 
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2.1.3 Empirical Data Modelling 

In most software estimation models, the relationship between size, effort and 

cost and the elements that influence them are presented as equations. Effort is 

normally set as a dependent variable while several elements such as size, 

experience, and application types are the independent variables. LOC or FP is 

calculated by empirically derived formulas and the resultant values are plugged 

into the estimation model. As Pressman (2001) pointed out, since most 

estimation models are based on empirical data derived from limited project 

samples, it is necessary to exercise caution in regard to the scope of 

applicability of the results. The majority of these models utilize project size as 

their key element. Such an emphasis obviously places extensive reliance on 

the accuracy of size measurement given its role as the primary variable. Since 

estimations are normally demanded before a system is expressed as LOC, the 

models simply „shift‟ the challenge of effort estimation to one of size estimation. 

 

The original Constructive Cost Model (COCOMO) was created in the 1970s. 

Boehm selected size as the principal determinant of cost and adjusted the 

initial estimate according to several cost drivers reflecting aspects of the project, 

the development environment, the product, and attributes of staff. Boehm then 

created COCOMO II, which incorporates three sizing techniques to reflect the 

evolution of software development (Boehm & Valerdi, 2008). Instead of using 

LOC as its key input, COCOMO II reflected the futility of obtaining an accurate 

value for LOC in the early stages of the development cycle. In COCOMO II, 

planners and project managers start by determining prototypes for high-risk 

aspects including software and system interaction, user interface, performance 

and so on. In the early design stage, designers have to state alternative 

architectures and concepts of operation. Development begins in the post-

architecture stage when further details are unveiled, and many costly elements 

become more predictable. Most importantly, size can be more accurately 

estimated in terms of LOC or FP. 
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However, Boehm & Valerdi (2008) highlighted that COCOMO II does not cover 

some development styles, therefore additional COCOMO II related models 

were developed. Figure 2.1 below illustrates the COCOMO suite of models. 

 

Figure 2.1. The COCOMO Suite of Models of Boehm & Valerdi (2008) 

 

The software engineering field is continually being reinvented: consider 

structured methods, abstract data types, agile development processes, and 

emerging programming languages. Boehm & Valerdi (2008, p.80) suggested 

that modeling should prune the less relevant software engineering experiences 

while retaining the parts with durable value. 

 

 

2.1.4 Machine Learning Models 

In reviewing the literature it appears that traditional metrics and empirical 

(primarily statistical) data models cannot satisfy the needs of accurate software 

project planning in the ever-evolving software environment (e.g. see the review 

of Jørgensen & Shepperd, 2007). More and more researchers and practitioners 

have started to turn their attention to machine learning to leverage clustering 

and prediction algorithms that can be used to estimate aspects of their software 

projects (e.g. see Kocaguneli, Menzies & Keung, 2011). 
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Machine learning techniques are broadly used to automatically extract 

knowledge. Machine-learning approaches discussed in Muzaffar & Ahmed 

(2010) include rule induction, analogy, regression trees, evolutionary 

computation, Bayesian belief networks, artificial neural networks, and fuzzy 

logic. The setting of the parameters of the underlying techniques affect the 

classification or prediction accuracy of machine learning methods. In terms of 

model accuracy, MacDonell (2003) notes that the neural network is more 

effective for development effort estimation than case-based reasoning and rule 

induction methods. 

 

However, Dick, Meeks, Last, Bunke & Kandel (2004) highlighted that when 

identifying minority classes in a skewed data set machine learning algorithms 

tend to be less effective without preliminary treatment of the data (for instance, 

oversampling the minority class(es)). In addition, small variations from the 

overriding linear behaviour that could be the most important features, would 

generally be considered noise. On the other hand, Moreno, Ramos, García, & 

Toro (2008) pointed out that in general only one output variable is pursued in 

the use of machine learning techniques. Additionally, from a non-mathematical 

specialist perspective, the complex and closed structures of machine learning 

methods can make them difficult to interpret (MacDonell, 2005; Berlin, Raz, 

Glezer & Zviran, 2009). 

 

 

2.1.5 Software Quality 

Apart from delivering the proposed software on time and on budget, ensuring 

its quality and reliability is also vital in software project development. Especially 

for systems where software failures could cause severe consequences, the 

demand for software quality prediction remains paramount. 

 

One of the mechanisms to enhance software quality is to identify, locate and 

treat the causes of intolerable variations for software quality monitoring and 

control. The ongoing utility of quality measurements requires the collection of 

software metrics from different process phases of the software development. 
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Although different metrics determine different characteristics, many tend to be 

related not only to each other (through the common dimension of size) but also 

to the number of failures in a module. Therefore, models based on software 

metrics can identify the number of faults expected in potential error-prone 

modules, so that project managers pay more attention to high-risk modules 

when inspecting and prioritizing development effort and planning maintenance 

and reengineering activities. 

 

Typically, software quality classification models are trained with software 

measurements and defect (software quality) data from prior development 

experiences with similar projects. Such an approach presumes the organisation 

has had previous experience with similar project(s) and that defect data exist 

for all modules as training data. In such a case, models are based on 

supervised learning since the software quality measurement guides the training 

process. In software engineering practice, however, the measurements may be 

inaccurate, incomplete, or even unavailable. These situations may occur when 

the organisation does not have experience of developing a similar system or 

relevant and accurate software quality measurements from prior system 

releases. Moreover, when the organisation has no previous development 

experience of a similar system, inappropriate usage of measurement and 

defect data can occur in modelling.  

 

Since the supervised learning approach to software quality modelling is 

inapplicable due to the absence of defect labels and/or training data, labeling 

each program module as either fault-prone or not fault-prone relies on expert 

judgment, an approach that can become time-consuming, laborious and 

expensive. Particularly in the last decade several relevant studies have been 

carried out. As fault-prone modules that have similar measurements would be 

clustered together, unsupervised learning methods that can group modules by 

their software metrics value (while not needing knowledge of dependent 

variables as characterized by class labels) are more appropriate for model 

building.  
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Yuan, Khoshgoftaar, Allen & Ganesan (2000) presented a modelling technique 

that predicted the number of faults by fuzzy subtractive clustering, and then 

evaluated the model by module-order modelling. Instead of a quantitative 

approach with a crisp classification method, fuzzy logic started with the concept 

of a fuzzy set that had no clearly defined boundary and admitted a likelihood of 

partial membership. Membership functions of the fuzzy set mapped its 

appropriate value to the element of the domain. Generally, it is complicated to 

elicit fuzzy rules from software engineering experts. To offer an alternative, 

subtractive clustering produces fuzzy inference rules through clustering the 

training data automatically. Each fuzzy inference rule is represented as a 

cluster center. Moreover, a Gaussian membership function is then designed for 

each variable.  

 

Later, Zhong, Khoshgoftaar & Seliya (2004) developed a clustering-based and 

expert-based software quality estimation method for an interactive software 

quality evaluation system that involved software engineering experts in the 

process. Two different clustering methods (k-means and Neural-Gas) were 

studied and the authors found that the k-means algorithm runs much faster. At 

the same time, these authors (Seliya, Khoshgoftaar & Zhong (2005)) proposed 

a semi-supervised clustering scheme for software quality estimation with 

incomplete fault-proneness defect data. When comparing Neural-Gas 

clustering with expert-based labeling, the former scheme yielded better 

classification results. Furthermore, Seliya & Khoshgoftaar (2007) introduced a 

constraint-based semi-supervised clustering scheme that utilized a k-means 

algorithm for clustering modules that were already labeled as either fault-prone 

or not fault-prone by a software engineering expert.  

 

Dick, Meeks, Last, Bunke & Kandel (2004) were one of the proponents of fuzzy 

c-means clustering as it permitted ambiguity and noise that clearly reflected the 

reality of software failure analysis better. Likewise, Pedrycz & Succi (2005) 

established a user-friendly and straightforward two-phase hyper-box approach 

in which fuzzy c-means clustering from a collection of “seeds” of the hyper-

boxes were used in the first phase, then genetic algorithm “grown” (expanded) 



 

 

Page 15  

 

hyper-boxes were utilized in the second phase. Reported in Aroba, Cuadrado-

Gallego, Sicilia, Ramos & Garcia-Barriocanal (2008), a fuzzy-clustering based 

segmented model exhibited better predictive capabilities, presented higher 

explicative capabilities, and were able to aggregate estimation from different 

components of partial models.  

 

 

2.2 General Clustering 

In discriminant analysis (a form of supervised classification), a collection of pre-

classified training data are provided as labeled patterns so that the model can 

learn the descriptions of classes. However, in more exploratory pattern-

analysis and machine-learning situations (such as pattern classification, data 

mining, document retrieval, and image segmentation), there are few statistical 

models available, and the decision-maker must avoid making assumptions 

about the data. Therefore, clustering (i.e. unsupervised classification) that 

explores the interrelationships among the data based on similarity is more 

appropriate. The given collection of unlabeled patterns (usually represented as 

points in a multidimensional space, or vector of measurements) is grouped into 

meaningful clusters. Patterns within the same cluster are more similar to each 

other than patterns from different clusters. Labels for categorizing clusters are 

solely obtained from data, in other words, they are data driven (Jain, Murty & 

Flynn, 1999). 

 

 

2.2.1 Case-based Reasoning and Analogy-based Estimation 

In case-based reasoning, a method that mimics the process of decision making 

by an expert, stored observations that are the closest to a new one would be 

used for new value estimation. This approach has found favour is some prior 

research in software project management. Gray & MacDonell (1997) found that 

a case-based reasoning system outperformed FP and COCOMO models, and 

was close to the level of an expert. For this reason, they suggested that expert 

reasoning by analogy be used as a management support tool. Berlin, Raz, 

Glezer & Zviran (2009) also mentioned that a case-based approach named 
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ESTOR was reported to achieve significantly better performance than 

COCOMO and function point analysis on restricted samples of problems 

estimation. However, case-based reasoning systems are not without their 

problems: they are intolerant to irrelevant features and noise, and are also 

strongly influenced by the similarity function used in terms of performance.  

 

Although the approach seems to suit effort estimation well in principle 

(especially when the software product is poorly understood), analogy-based 

estimation still faces challenges such as the uncertainty of software attribute 

identification and measurement because of the involvement of human judgment. 

Another challenge is the variability of data set structures such as number of 

attributes, training data set size, missing values, nominal and ordinal scale 

attributes, outliers and collinearity (Azzeh, Neagu & Cowling, 2010). On the 

other hand, Huang, Chiu & Liu (2008) suggest applying suitable adjustment 

and weightings to improve the accuracy of analogy-based software effort 

estimation. 

 

Recently, Azzeh, Neagu & Cowling (2010) integrated Fuzzy modelling in Grey 

Relational Analysis (GRA) to form a new model called Fuzzy GRA. Because of 

the employment of the concept of absolute point-to-point distance between 

cases, GRA is considered as a simple form of case-based reasoning which 

flexibly models complex nonlinear relationships between cost drivers and effort. 

Fuzzy GRA comprises four main stages: data preparation, feature identification, 

case retrieval, and effort prediction. To reduce the uncertainty and imprecision 

inherent in attribute measurement, fuzzy set theory is used to provide a 

representation scheme and mathematical operations with a formal quantitative 

model to capture and handle vagueness in natural language. In addition, a 

fuzzy model is employed for moderating uncertainty or similarity degree 

between reference tuple and treatment. There are several limitations of the 

Fuzzy GRA model such as the absence of a linear search to find the best value 

of the distinguishing coefficient for each data set, and the demand for sufficient 

numbers of observations for constructing the fuzzy sets. 

 



 

 

Page 17  

 

 

2.2.2 Neural Networks 

Over the past three decades, neural networks have been used extensively in 

many software metric modelling studies for both classification and clustering. 

Neural networks are capable of representing complex non-linear relationships 

and approximate functions. The neural networks commonly used in this domain 

are “feed-forward” networks trained using the back-propagation algorithm.  

 

In back-propagation trained feed-forward neural networks the number of layers 

and neurons in each layer are first selected along with determination of how the 

neurons will be connected to each other, a transfer function, and parameters 

for the training algorithm. Then the network is trained by iteratively adjusting 

the weights between the input nodes and the output nodes to narrow down the 

gap between its predicted output and the actual output. To optimize the 

network‟s ability for generalization (which is measured by its predictive 

performance on unseen data), this process needs to be stopped before the 

training data has been completely learned. Since the architecture of the 

networks affect their performance, and also to ensure good generalisability, a 

range of architectures are normally tried and assessed by using a validation 

data set. 

 

Jain, Murty & Flynn (1999) summarized three important features of neural 

networks in pattern clustering: they 1) require quantitative features to represent 

patterns for processing numerical vectors, 2) incorporate parallel and 

distributed processing architectures, and 3) can operate as pattern normalizers 

and feature selectors with appropriate weights provided. Well-known examples 

of neural networks for clustering include k-means cluster analysis, vector 

quantization, and Self-Organizing Map (SOM). 

 

In a comparison of linear regression estimation models and models derived 

from Artificial Neural Networks (ANN), Berlin, Raz, Glezer & Zviran (2009) 

found that the ANN models did not outperform regression in many aspects. 

They suggested, however, that SOM could be a potential candidate for 
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outstanding prediction performance. 

 

 

2.2.3 Principal Components Analysis 

In some cases it is possible to enhance model interpretation by focusing on just 

some of the attributes in the data set, and in doing so the computational 

workload of automatic pattern recognition or classification can be concentrated. 

Another benefit of adopting feature reduction is enhancing the clustering 

algorithm performance by eliminating noise from a data set. Feature reduction 

techniques include Principal Components Analysis, Nonlinear Component 

Analysis, Independent Component Analysis and others (Dick, Meeks, Last, 

Bunke & Kandel, 2004).  

 

Principal Components Analysis (PCA) was first used in ecology, and it has 

become one of the most popular data set reduction methods in the past few 

decades. In Principal components analysis, points in the data set are treated as 

a feature space hyper ellipsoid with a few large axes and many small ones 

where the directions of the axes of the hyperactive ellipsoid and the length of 

these axes could be measured. 

 

With respect of its variable extraction procedure, PCA is considered as a 

standard statistical technique. Low dimension artificial variables (i.e. principal 

components) are exploited as criterion variables or predictors in PCA to 

represent a high dimension data set. Therefore, the non-parametric method of 

PCA can be found in not only neuroscience fields but also computer graphics 

fields such as image compression and face recognition. 

 

 

2.2.4 K-means Algorithm 

The k-means algorithm is widely adopted in cluster analysis as it is easy to 

implement, and its time consumption depends on the number of patterns. After 

analysis by k-means clustering, a set of n projects would be partitioned into k 

classes. Software projects in the intra-cluster space are analogous while the 
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projects in the inter-cluster space are disparate. The steps of the k-means 

clustering process are: 1) choosing k cluster centers to concur with k random 

patterns or points; 2) computing the mean vector of all software projects in each 

cluster as the cluster center of gravity; 3) assigning each project to the closest 

cluster center; and 4) repeating steps 2 and 3 until convergence criterion is met. 

Typical convergence criteria could be minimal reassignment or minimal 

decrease in squared error. 

 

There are variations of the k-means algorithm (Jain, Murty & Flynn, 1999). One 

variation allows the selection of a different criterion function altogether. Another 

variation facilitates the splitting and merging of the resulting clusters. Others 

attempt to provide an ideal initial partition, or to assist the algorithm to discover 

the global minimum value. 

 

For the sake of downsizing the dimensions of each effort driver for clustering 

software projects, Huang, Chiu & Liu (2008) adopted the k-means method and 

Scheffe‟s method in their data-clustering model construction. The k-means 

method was utilized for effort drivers with ratio scales whereas Scheffe‟s 

method was employed for effort drivers with nominal scales. Based on these 

effort drivers, all historical software projects were clustered into separate 

groups and Huang et al. (2008) then built their respective effort estimation 

models. 

 

 

2.2.5 Vector Quantization 

To relieve the burden of heavy computation, instead of comparing every data 

item with all of the other ones, classical Vector Quantization (VQ) uses a much 

smaller set of models to represent the set of all data items. In VQ, vector-

valued input data is clustered into a limited set of adjoining regions, and 

codebook vectors are used to represent each region as single model vectors. 

In the finest partitioning, the mean distance between each input data item and 

its respective closest codebook vector is minimised, hence the average 

quantization error is also minimized. In this sense, Kohonen (2008) interprets 
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the VQ learning principle as “Every input data item shall select and modify only 

the codebook vector that matches best with it, in such a direction that the 

degree of matching is increased”. In Somervuo & Kohonen (1999, p. 310), 

Learning VQ was used for the prototype sequences refinement to obtain 

optimal class separation. 

 

However, Kohonen (2008) pointed out two weaknesses of VQ: the codebook 

vectors may fail to reflect any structures of the data; and the optimum state may 

only be local rather than global. On the other hand, although the k-means 

algorithm in VQ generally minimizes the root mean square quantization error, 

Kohonen, Nieminen & Honkela (2009) found that SOM could present a smaller 

quantization error than VQ. 

 

 

2.2.6 Brief Comparison 

In practice, and returning focus to the domain of interest in this study, there are 

four major project management issues that may impact the selection of a 

clustering technique: availability/lack of adequate historical data, 

presence/absence of an experienced expert, knowledge/uncertainty of the 

software project, and ease/difficulty of understanding the technique. Thus, the 

following table (Table 2.1) appraises the clustering approaches from the 

software project management perspective. The preferred responses to the 

criteria in the context of software project management are as follows: Require 

history data? No/Yes; Rely on expert? Yes/No; Handle uncertainty? Yes; 

Visualize results..? Yes.  None of above approaches addresses these issues 

completely. Hence the self-organizing map that represents multidimensional 

data into a two-dimensional form is proposed as an alternative clustering 

technique here. The clusters then are to be used to create a fuzzy model of 

project estimation rules. In principle, this approach would meet the criteria as 

stated. 
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Table 2.1   

Comparison of Clustering Techniques 
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Require history data Yes Yes Yes Yes Yes Yes No 

Rely on expert No Yes No No No No No 

Handle uncertainty No No No No No No Yes 

Visualize results to help understanding Yes Yes No No Yes No No 

 

From the review of literature on the current state of project estimation research 

given in this chapter, it is clear that my research question is both relevant and 

novel. The next chapter describes and justifies the design of the research 

methods used to answer this question systematically and rigorously. 
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3 Research Methodology 

3.1 Information Systems Research 

The overall objective of Information Systems (IS) research is to acquire an 

understanding of how IS and the embedded Information Technology (IT) might 

be embraced by individuals, organisations and society with effectiveness and 

efficiency. 

 

Throughout the systems development life cycle, then, practitioners 

conceptualize the problem to be solved in the feasibility study phase and 

represent it functionally in the requirements definition phase. Candidate 

solutions are considered in the systems design phase, followed by selection, 

construction and implementation of the most suitable solution. After evaluating 

the system with appropriate criteria in the testing phase, practitioners should 

acquire knowledge about how and why certain developed systems work or do 

not work (March & Smith, 1995).  

 

Thus, IS research not only serves the purpose of understanding why things 

take place in particular circumstances to boost theoretical knowledge, but also 

benefits individuals, organisations and society activities ultimately. In short, IS 

research is an applied research discipline which is based on the development 

and use of theory to answer practical problems (Adams & Courtney, 2004). 

 

Nunamaker, Chen and Purdin (1991) believed that some broad research 

domains like engineering and information systems need to adopt multiple 

methodologies to go through the concept-development-impact research life 

cycle, especially when an issue of the applications  is assessed by its intrinsic 

value. IS research concerned with object-oriented databases, electrical 

engineering and computer science demonstrates such a life cycle. 

 

Gregor (2006) identified five types of theory in IS research: Theories for 

analysing identify and specify characteristics of events, situations, and 

personnel and are based on observations. This class of theories is required in 
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the case when nothing or very little is known about the phenomena and 

relationships among them. Theories for explaining reveal “how things are or 

why they are as they are”, along with alternative insights. Theories for 

predicting predict outcomes but leave part of the system a “black box”. Theories 

for explaining and predicting (EP Theory) not only describe the theoretical 

constructs and underlying relationships to explain causes, but also provide 

prediction. In other words, EP theories identify what, when, how, why, and what 

will be. The last class is theories for design and action which is concerned with 

how to do something. Because the design theories identify the methods, 

principles of form and function, as well as justify theoretical knowledge, they 

can be found in constructive research, software engineering research, and in 

prototyping and systems development. 

 

Among these five classes of theories, Gregor (2006) pointed out that analytic 

theory is the foundation of all of the other types of theory. EP theory can be 

derived from both theory for explaining and theory for predicting. As design 

theory is strongly interrelated with the EP theory, it can be informed by all four 

other types of theories.  The work described here, which is centred on the 

systematic development and evaluation of an artefact, embodies theories for 

design and action. 

 

 

3.2 Research Frameworks 

Nunamaker, Chen & Purdin (1991) reviewed a variety of prior studies and 

presented a pattern of research relevant to software systems development. 

They noted that when observing a research domain one can find existing 

problems and form a hypothesis. The hypothesis can be confirmed and 

generalised into argument and evidence after analysis. Such a view can 

accommodate system development as providing “proof-by-demonstration” 

evidence to support or refute the hypothesis. They presented a 

multimethodological approach to information systems research that contains 

four research strategies: theory building, systems development 

experimentation, and observation, depicted in Figure 3.1. All of these phases 
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are essential; to complete the pursued research products, they need to 

communicate and interact with each other. 

 

Figure 3.1. The Multimethodological Research Approach of Nunamaker et al. (1991) 

 

In Figure 3.1, System Development is shown as the center of research that 

communicates with other methodologies, and each methodology complements 

and gives feedback to the others. The authors suggested using Theory Building 

to formulate hypotheses, design experiments and conduct observation. They 

also believe that results from Experimentation facilitated by System 

Development could refine theories and improve systems. 

 

Nunamaker, Chen & Purdin (1991) then provided four examples to demonstrate 

that System Development could provide basic knowledge of a research 

domain, help the researcher identify a problem, and modify a current system or 

build new component(s) and/or a system. This, they claimed, demonstrated that 

system development is an important part of a multimethodological approach for 

IS research. 
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Finally, they proposed a process for system development research that 

consists of the following steps: 

1. Construct a conceptual framework by formulating and justifying a research 

question that is significant; 

2. Develop a system architecture to present guidance to build the system; 

3. Analyse and design the system in order to provide a blueprint to implement 

the system; 

4. Build the system to prove the design and the functionalities of the system 

development research project; 

5. Experiment with, observe and evaluate the system. 

 

Drawing on the work of Nunamaker and others, Peffers, Tuunanen, Gengler, 

Rossi, Hui, Virtanen & Bragge (2006, p. 84) extended the approach: 

We sought to design a design science research process (DSRP) 

model that would meet three objectives: it would be consistent with 

prior literature, it would provide a nominal process model for doing 

DS research, and it would provide a mental model for presenting and 

appreciating DS research in IS. 

 

By assessing and comparing previous literature, the authors determined six 

activities in a nominal sequence as representing common process elements in 

design science research and illustrated them as shown in Figure 3.2. The 

activities are as follows:  

1. Problem identification and motivation, which refers to the need to identify a 

research issue and justify the importance of a solution. 

2. Objectives of a solution, which refers to the process of deriving the solution 

objectives from the research question. 

3. Design and development, which refers to the creation of an artifact. 

4. Demonstration, which refers to the means through which the artifact is able 

to be shown to address the issue effectively. 

5. Evaluation, which refers to the process of observing and measuring whether 

or not the artifact provides a solution to the issue.  
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6. Communication, which refers to the need to communicate the issue, the 

artifact and its usefulness. 

 

 

Figure 3.2. The Design Science Research Process (DSRP) of Peffers et al. (2006) 

 

Using two case studies, the authors demonstrated that the DSRP model is not 

only consistent with concepts discussed in previous literature regarding design 

science in IS, but also provides both a nominal process to perform DS research 

and a mental model through which to present DS research outputs. 

 

Peffers, Tuunanen, Gengler, Rossi, Hui, Virtanen and Bragge (2006) suggest 

that a researcher could initiate their work at any of the six steps (depending on 

the specific nature or the research) and move onwards. In the research 

reported in this thesis, the intent is to assess the utility of SOM as an 

instrument for size or effort estimation in software project management. 

According to Peffers et al. (2006, p. 92) this would be an instance where “the 

idea for the research resulted from observation of the problem or from 

suggested future research in a paper from a prior project.” As SOMs represent 

a conceptually different way to provide support for software project 

management, this research naturally starts with Activity 1: problem 

identification and motivation, and will follow the steps set out above through to 

the evaluation of the approach (on existing data sets) and the production of 

research outputs (both a thesis and associated intellectual materials). 
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3.3 Related Examples from Diverse Domains 

With the intention of studying the usage of SOM in ecological communities, 

Giraudel & Lek (2001) applied SOMs to a set of species abundance data, to 

examine the ordination of SOM against two linear ordination methods (Principal 

Components Analysis (PCA), and Correspondence Analysis (CoA)) as well as 

two nonlinear approaches: Non-metric Multidimensional Scaling (NMDS) and 

Polar Ordination (PO). Despite some drawbacks of the SOM algorithm, they 

found the visualization of sample units and species abundance provided by 

SOMs makes it a suitable exploratory technique that illustrates well the 

structures in ecological communities. 

 

MacDonell & Gray (2003) presented a fuzzy logic software toolset called 

FUZZYMANAGER that can effectively incorporate data and knowledge in a 

single model either with or without historical data. The toolset consists of two 

modules: CLUESOME (CLUster Extraction for SOftware MEtrics) derives 

membership functions and rules, while FULSOME (FUzzy Logic for SOftware 

MEtrics) generates and refines the graphical output of membership functions 

and rule bases and then supports the prediction process via fuzzy inference. In 

two case studies of comparing the fuzzy model with a regression model with six 

measures of accuracy, MacDonell & Gray (2003) demonstrated that in certain 

circumstances, the fuzzy logic approach not only outperforms linear regression 

in representing software project management relationships, but is also capable 

of dealing with uncertainty and vagueness in classification and prediction. This 

is due to the fact that fuzzy logic methods create models based on the existing 

management expertise and allow adjustment when new knowledge is gained.   

 

Previous studies of a single-staged Fuzzy Approximate Reasoning (FAR) 

technique found that it lacked effectiveness when working out complex 

decision-making problems, so Lee, Cho & Kim (2007) proposed a multi-staged 

fuzzy approximate reasoning to assure more robust results. The performance 

of their five step Self-Organizing FAR method (SOFAR) was evaluated against 



 

 

Page 28  

 

test data obtained from Takagi and Hayashi (1991) and a real data set 

acquired from a civil engineering task. According to the rigorous statistical test 

of comparing actual values and approximations by SOFAR and the 

benchmarking method proposed by Takagi and Hayashi (1991), Lee, Cho & 

Kim (2007) illustrated that the proposed SOFAR had the potential of 

recognising comprehensive fuzzy approximate reasoning and providing 

accurate and high quality control paths. 

 

Srinivas, Tripathi, Rao & Govindaraju (2008) introduced a two-level SOM-

based clustering approach for Regional Flood Frequency Analysis (RFFA).  

The performance of their approach was measured against canonical correlation 

analysis and regression analysis. The proposed approach was found to 

perform better in estimating flood quantiles at ungauged sites. The authors also 

discovered that four out of five validity indices (including Fuzziness 

Performance Index (FPI), fuzzy partition coefficient (VPC), fuzzy partition 

entropy (VPE) and normalised classification entropy (NCE)) were not directly 

related to properties of the data, although they had been used previously in 

hydrology-related research. The relatively new extended Xie–Beni index VXB,m, 

which takes into account the structure of the data and the fuzzy membership 

degrees, was considered as a convincing alternative for recognizing an optimal 

number of clusters. 

 

In summary, Giraudel & Lek (2001) showed SOM can be applied to the 

ecological community ordination with competitive advantages to conventional 

statistical methods. MacDonell & Gray (2003) demonstrated a novel promising 

solution for software project management estimation by applying fuzzy logic, 

fuzzy rules and fuzzy inference in a system with the intent to produce better 

prediction results. Its contribution to IS design science research is the 

FUZZYMANAGER toolset itself. While Lee, Cho & Kim (2007) extended the 

existing FAR approach, Srinivas et al. (2008) also adjusted the knowledge of 

cluster validity measurement after rigorous statistical examinations.  
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The next section discusses the role of experimentation within a design science 

framework, as well as its relevance to the implementation of the research 

design in this thesis. 

 

 

3.4 Experimentation 

To form new methods, theoretical frameworks or models, it is essential that 

research is founded on rigorous analysis and on the identification of consistent 

system behaviours. Nunamaker, Chen & Purdin (1991) argued that theories 

could be exploited to extend hypotheses, construct the basis for the conduct of 

systematic observations, and guide the design of experiments. Conversely, 

experimentation validates and helps refine the underlying theories. 

Experimentation is also concerned with the selection of research strategies and 

issues of acceptance and technology transfer.  Similarly, March and Smith 

(1995) believed an algorithm with best “worst-case” performance may not be a 

suitable algorithm for a particular goal; for this reason, metrics themselves 

ought to be scrutinised by experimental analysis and interpretation.  

 

According to Adams and Courtney (2004), experimentation is related to action 

research, which is a two stage process. Hypotheses are formulated by 

collaborative analysis based on the nature of the research domain then 

experimentation is utilised to introduce collaborative change. Such an 

approach is especially relevant when the intent is to develop a new tool or 

system and them deploy that system with an organisational context, with the 

likelihood of change that typically follows such deployments. 

  

Experimentation is considered as one of the typical methods used to evaluate 

designed artefacts as shown in Hevner, March, Park and Ram (2004). The 

experimental design evaluation methods here include: Controlled Experiment 

that studies the artifact in controlled environment for functional qualities, and 

simulation that execute the artifact with data. 
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The Design Science Research Process (DSRP) described in Peffers, 

Tuunanen, Gengler, Rossi, Hui, Virtanen and Bragge (2006), involves the 

employment of experimentation, simulation, case study, field studies and other 

suitable activities to demonstrate the efficacy of the artifact to carry out a task 

under certain circumstances.  Similar to the DSRP of Peffers et al. (2006), 

which is more or less a modified version of the multimethodological research 

approach of Nunamaker et al. (1991), Gregor (2006) categorized experiments 

with case studies, field studies, surveys, and other methods as the approaches 

for investigating aspects of the type of theory for explaining and predicting. 

 

Another modified version of the Nunamaker et al. (1991) framework is 

presented in Venable (2006). Experiments along with field studies, action 

research and simulation are the recommended techniques for Technology 

Evaluation, which interacts with Problem Diagnosis, Theory Building and 

Technology Invention/Design. In contrast to the Nunamaker et al. (1991) 

framework which is centred around System Development, the Venable (2006) 

approach places it central emphasis on Theory Building. 

 

In this study, as shown in Table 3.1, we first defined the research question 

based on a literature review and analysis as the application of Activity 1 in the 

DSRP model. Secondly, we look at the accomplishments and aspects of SOM 

and Fuzzy SOM (Chapters 4-6) to determine an in-principle answer to our 

research question. Then we simulate real-world use of the artifact in the Design 

and Development phase of the DSRP model. As Activity 4, we demonstrate the 

effectiveness and accuracy of SOM and FSOM in regard to software estimation 

by creating prediction models for three different data sets (Chapters 7 & 8).  

Finally, we analyse the outcomes of our empirical analyses and consider 

limitations as well as future study areas (Chapter 9) in our Evaluation, Activity 5 

of the DSRP model.  

 

Table 3.1 

Application of DSRP Model Activity 1-5 

DSRP DSRP Activity Description Chapter Chapter  
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Activity No. No. 

1 Problem identification & motivation 2 Literature Review 

2 Objectives of a solution 4-6 SOM, FSOM & Fuzzy C-Means  

3 Design and development 7 Model Design 

4 Demonstration 8 Model Evaluation and Comparison 

5 Evaluation 9 Conclusion 
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4 Self-organizing Maps 

This chapter discusses the theory and implementation of Self-Organizing Maps, 

including some constraints in their application. This discussion is then 

extended to the implementation and application of Fuzzy Self-Organizing 

Maps.in chapter 5. These chapters form the basis for the justification of the 

approach investigated in this thesis using Fuzzy Self-Organizing Maps. 

 

4.1 Self-organizing Map Clustering 

The Self-Organizing Map (SOM) is a generic name for a group of algorithms 

concerned with the clustering and visualization of large data sets first 

introduced by Kohonen (1981). The SOM represents a nonlinear clustering 

method that projects the distribution of input items from their original multi-

dimensional space onto a two-dimensional regular grid in an orderly manner. 

The mapping tends to preserve the density and the topological relations 

between input data points. 

 

As Kohonen (1999) pointed out, when the primary data are not relatable 

metrically, a process of evolutionary learning can generate ordered SOM 

models and optimize them by their probabilistic variation. The input data set 

can be either metric vector space which derives the analytical algorithms for 

the optimal mapping or just the manifold in which the vectorial samples are 

positioned. Therefore, the SOM performs a form of Vector Quantization (VQ) 

where the model vectors (i.e., codebook vectors in VQ) can potentially be 

utilised for deriving nodes of a network that fits the manifold of the samples. 

Due to the combination of generalised median of a set and the batch 

computation, the SOM is not limited to metric vector spaces. As long as the 

similarity or distance measured between the factors can be defined, any set of 

items can be projected onto a SOM grid (Somervuo & Kohonen, 2000). 

 

The projection is achieved by applying a matching process in contrast to 

traditional projection methods that represent each original sample separately, 

that is, the SOM identifies closest model vectors in some metric as a 
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generalised model for each input item. Such a collection of models is 

approximated for resembling all original input samples, and each will 

subsequently be associated with one of the grid units. In the optimised form, 

mutual similarity automatically determines the order of the model in the array, 

whereas the degree of difference increases with the distance of grid units in the 

array. In other words, more similar models are associated with adjacent nodes 

in the grid, less similar models are positioned farther away from each other.  

 

4.2 The Basic SOM Algorithm 

By extracting characteristic features or aspects of the data (i.e., finding the 

clusters of data), SOM can represent the topological relationships of high-

dimensional data items. An input item is initially identified with the 

corresponding best-matching unit. The classification of the input is hence 

assigned to the best-matching model. 

 

The SOM is composed by n-dimensional Euclidean vectors as the input layer 

, and a two-dimensional topologic map (i.e., grid) with specified number 

of neurons (a.k.a, nodes) as the output layer . Akin to most artificial 

neural networks, SOM operates in training and mapping modes. Throughout 

the training process, the output layer is produced and converged according to 

Equation (1): 

   (1) 

Here, i represent the spatial index of the grid node with which  is 

associated, whereas integer t defines a step in the sequence. At the same time, 

the neighbourhood function  defines the rates of the modifications at 

different nodes. Equation (2) is “the most applied choice for the neighborhood 

function” suggested in Kohonen (2008). 

    (2) 

On one hand,  and are monotonically decreasing function of t. on the 

other hand, c refers to the index of a particular neuron in the map.  

    (3) 

As the “winner”,  has the smallest Euclidean distance from . 

 



 

 

Page 34  

 

Equation (1) and (3) delineate recursive steps, when new data is added, 

Equation (3) determines the best-matching unit in the map. Then the models at 

this “winner” neuron and its spatial neighbours in the map would be modified 

base on Equation (1). With such a manner, the models are trained to match 

better with the input (Kohonen, 2008).  

 

In other words, each neuron as well as its neighbouring neurons learn to 

converge data with similar characteristics. The weight adjustment would not 

stop unless the map reaches a relatively steady state. Due to the topology 

preserving property of the map resulting from the training mode, new input data 

in the mapping mode can be clustered into adjacent regions on the map by its 

adjacent patterns. At the same time, the spatial relationships of the new input 

information could provide prediction on missing value of a particular Euclidean 

vector. 

 

For each mapped unit, the sum of squared distances or maximum distance to 

other sequences is used to determine the centremost member, which is the 

item with the smallest sum of generalised distances to other items belonging to 

the neighbouring nodes (Somervuo & Kohonen, 1999). As pointed out by He 

(2009), the neighbourhood function, which ensures that the training process 

does not get trapped into local minima, is one of the unique properties of the 

SOM algorithm. To minimize the chance of mis-convergence caused by trended 

data, input data is chosen from the training data pool at random. Not only the 

prototype vector of the winning neuron but also its close neighbours as 

calculated by the neighbourhood function are updated with each new input. 

Such a mechanism increases the total number of clustering iterations as the 

same data is being reiteratively picked up during the process. 

 

When data items belong to a finite number of predetermined classes, different 

models can be built to represent these classes with corresponding symbolic 

labels. Before associating an input item, nodes can also be calibrated 

according to the classes. Based on the node, the unknown input item is then 

classified and the most similar model of it is used to construct the map. 
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Kohonen (2008) mentioned two ways for calibrating models. When the number 

of input items is very large, the primary issue is to study how to associate each 

input data item to the various models. Then the identified model would be 

labelled based on where the majority of matches occur. If the number of input 

data items is small, the k nearest neighbour method is adopted. For each 

model, k input data items are selected to perform majority voting and labelling. 

The integer k is selected from the range of half a dozen to a hundred with the 

principle that k must be much smaller than the number of input items. 

 

4.3 Diverse SOMs 

Since SOMs have been applied to diverse applications, numerous versions of 

SOMs have been constructed. Most of these variations accept metric vectorial 

data, and their models are also vectors of the same dimensionality. Generally, 

a recursive algorithm is utilised for optimizing the models (Kohonen, 1999).  

 

Kohonen (2008) emphasised the need of extracting characteristic features from 

original data. Since natural variations in observations may be very broad, 

comparing objects directly may not support good identification. Unless the input 

item is described by statistical indicators, even structural elements like pixels or 

other pattern components are not appropriate to use as the input vector. On the 

other hand, by describing the input objects as a finite and rather small set of 

characteristic features, the dimensionality of the input data and the computing 

load can be radically reduced. As a result, the first step of constructing a SOM 

is to extract features for each item then use the vector derived from them as the 

input vector to the SOM. Generally, feature selection is based on heuristic 

rules. However, it is worth noting that sometimes mathematical functions or 

transforms of the input items, such as principal components, spectra, or other 

orthonormal basis vectors could be regarded as features.  

 

Any generalised distance function derived from the input items can be used in 

the construction of SOM. There are two main versions of SOM. Both versions 

initialize the model vectors either as random vectors, or as linear initialization, 

which is a regular two-dimensional sequence of vectors that allows much faster 
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convergence. At the same time, the stepwise corrective algorithm version 

includes the learning rate as a parameter that does not exist in the batch 

version. With the combination of linear initialization and batch computation, the 

batch wise training algorithm version produces the most distinctive and stable 

SOMs.  

 

 

It was noted in Somervuo & Kohonen (1999) that the averages in the batch 

training version can be assessed as generalised “medians” over batches of 

samples when the distance function is defined. In their comparisons of SOMs, 

Kohonen, Nieminen & Honkela (2009) found that if the set of input vectors in 

the batch training version was finite and the neighbourhood function was 

stable, the corrections will equal zero after a certain number of iterations. Such 

an exact termination of the learning process is very helpful for ensuring that at 

least a local optimum has been achieved precisely. Once an ordered SOM has 

been created, it can be used for either clustering the input items directly, or as 

a gateway or directory in the exploration of data items (Kohonen, 2008). 

 

 

4.4 Drawbacks of SOM 

It is evident that SOM is in principle a good candidate for clustering and 

visualizing multidimensional data sequences onto a direct, straightforward two-

dimensional graphic map in a fast computation fashion. However, in the past 

decade researchers have reported some downsides of the SOM. 

 

For instance, Flexer (2001) noticed that some empirical studies demonstrated 

that SOM performs equally to or worse than statistical approaches. SOM was 

further criticised for its lack of density model definition, the absence of objective 

error function optimization and for convergence not being guaranteed. When 

comparing to K-means clustering, Flexer found that SOM performed notably 

worse as the extra neighbourhood had a tendency to skew the obtained cluster 

centers. Even if the neighbourhood was set to zero at the end of training (which 

is suggested by theoretical as well as empirical results), SOM still performed 
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worse in Flexer‟s study in terms of mean squared error. 

 

Despite the employment of a non-zero neighbourhood at the end of training, 

SOM also performed significantly worse in terms of topology preservation. In 

Flexer (2001), the so-called chain-link problem (which consists of two 

intertwined 3-dimensional rings) was used for comparing Sammon mapping to 

SOM. The output maps clearly indicated the rigidity and the discretization of 

SOM‟s output space. Although the author used more output units than the 

available input vectors, he observed that the Sammon output map maintained 

the ring-like structures, whereas the SOM output-space bore the high risk of 

losing the entire structural information. Nonetheless, Sammon mapping is not 

only a rather slow and involved technique, but is also a fixed mapping in terms 

of both input and output. It has to recompute the whole mapping whenever an 

unknown input point is encountered, a point that in this study would represent a 

significant disadvantage. 

 

In Giraudel & Lek (2001), the SOM was compared to Polar Ordination (PO), 

Non-metric multidimensional scaling (NMDS), Principal components analysis 

(PCA), and effect Correspondence analysis (CoA). A few drawbacks of SOM 

were identified: 1) it cannot control the direction of the gradients; 2) the training 

process is computationally intensive and its duration depends on the learning 

parameters and the size of the map; 3) due to the repeatability of the method 

(i.e., as stated above, the same sample units could be randomly picked up 

more than once), the final maps might be different even with fixed learning 

parameters; and 4) the size and the shape of the map needs to be determined 

prior to its creation. 

 

When a set of inputs is obtained from the same cluster or category, the 

learning could get caught into local minima. To overcome such an issue, SOM 

randomly picks data from all available inputs. However, He (2009) showed that 

the side effect of this mechanism is an increased number of iterations as it also 

learns sparse data sets that are little or even negatively used in identifying 

clusters. 
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4.5 Application and Extension 

Kohonen (1999) introduced a new method based on the batch version of SOM. 

In this faster optimization method, a form of averaging replaced the 

probabilistic trials. As long as the fitness function between the data and the 

models is defined, the new method can interpret non-metric data distributions 

through descriptive models. Such a method can be considered analogous to a 

fast genetic algorithm that identifies input data under different circumstances by 

utilising a fitness function to indicate the survival value in different models. 

 

Instead of a single feature vector, Somervuo & Kohonen (1999) treated an 

entire feature vector sequence as a model to associate with each SOM node. 

By dynamic time wrapping that captures both input sequence differences and 

spatial variances of the feature vectors, and Learning Vector Quantization that 

fine tunes the prototype sequences to optimize class separation, the resulting 

SOM models can be used for pattern recognition and synthesis.  

 

Similarly, Somervuo & Kohonen (2000) presented an extension of SOM that did 

not convert data sequences into histogram vectors for clustering. As an 

alternative, it allowed the user to select similarity measures for the sequences. 

A collection of sequences that approximate the database contents was then 

automatically found by the theory of generalised median of symbol strings. This 

extension was applied for clustering and visualizing large protein sequence 

databases. 

 

More recently, Kohonen (2008) introduced a new finding where by the least-

squares fitting procedure, a linear mixture of a few best-matching models can 

represent input items more accurately. According to other recent literature, 

genetic algorithms can increase the convergence speed of conventional SOM. 

He (2009) thus proposed an efficient approach that uses genetic algorithms to 

refine training data before learning. The author emphasised that the purpose of 

the approach is to enable the input vector learning procedure to eliminate the 
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progression of irrelevant data and the outcome is able to represent the 

distribution of input data. 

 

For the last few decades, the SOM method has been widely applied in various 

fields such as statistical analysis, biomedical analysis, finance analyses, 

industrial analyses, and scientific analysis. Applications are diverse: some 

researchers implemented SOM with other algorithms as a vehicle to retrieve 

multimedia from very large databases. Some utilised SOM in the development 

of criminological computer-aided tracking applications. Li, Kuo & Tsai (2010) 

presented a framework that integrates fuzzy logic with SOM for crime trend 

patterns detection and analysis. At the same time, Yang (2009) applied SOM to 

acquire and reveal the connection between semantic metadata and tags of the 

Web pages. They also reported that SOM noticeably outperformed the k-

means algorithm.  

 

The next chapter introduces the notion of combining ideas from fuzzy logic with 

the SOM to implement a fuzzy SOM. The potential benefits of this mix of 

techniques are discussed and related to the project management estimation 

domain. Implementation options are also explored and the motivation for using 

Fuzzy C-Means for clustering in this thesis is discussed. More detail on the 

application of Fuzzy C-Means is provided in Chapter 6. 
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5 Fuzzy SOM 

Fuzzy Logic and Neural Networks are technologies that complement each 

other. Since Fuzzy Rule-Based Models make use of linguistic terms and if-then 

rules, they are relatively easy for human beings to comprehend. In contrast, 

Neural Networks come with efficient algorithms that can learn from data and 

feedback but are relatively more difficult to understand and interpret. Therefore, 

merging these two technologies could be potentially useful in cases where both 

learning from data and human understanding of models are needed. 

 

One of the most popular approaches is to combine the Fuzzy C-Means (FCM) 

algorithms with unsupervised learning. Bezdek, Tsao & Pal (1992) proposed a 

Fuzzy Kohonen Clustering Network (FKCN) which automatically adjusts both 

the learning rate in the competitive layer and the size of update neighbourhood 

during learning. Their results indicated that, in contrast to FCM, labelling errors 

in the KFCN were reduced accompanied with improved convergence. This 

model uses a scheme that decreases fuzziness and the size of the self-

organizing map (SOM) without applying the concept of an ordered map.  Other 

indicative examples of fuzzy SOM use are now considered. 

 

 

5.1 FSOM in Image Processing 

Due to the properties of visualization which benefit signal transmission, SOM is 

used frequently in pattern recognition. In particular, the Fuzzy Self-Organizing 

Map (FSOM) is widely adopted in image processing. Sum & Chan (1994) 

described an algorithm that merged FCM and SOM for image quantization. It 

was shown that such an algorithm satisfied the necessary condition of 

convergence. In an application in data compression, the root mean square 

error induced by FSOM was found to be smaller than that of SOM. At the same 

time, Vuorimaa (1994 A) reported that the root mean square error for the 

validation data set in their FSOM was only faintly worse than the one for the 

training set. This implied that the FSOM had good generalization capability with 

high accuracy and fast convergence. Vuorimaa (1994 B) also noted that the 

accuracy of the simulation results obtained with the FSOM was superior to 
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those achievable with fuzzy c-means clustering and a standard SOM when 

evaluated using the well-known IRIS data set.  

 

In their FSOM, Vuorimaa (1994 A&B) replaced the neurons of the SOM with 

fuzzy rules.  The fuzzy sets defined the fire area in the input space for the fuzzy 

rules. As the firing strengths of the fuzzy rules operate as the weights, a 

weighted average combines the output singletons of the fuzzy rules together. In 

other words, the structure of the FSOM is analogous to fuzzy logic controllers. 

The FSOM has just one default rule which covers all of the input space initially. 

By adding rules during the learning procedure, the user can control the number 

of fuzzy rules and consequently adjust the accuracy of the FSOM. 

 

The FSOM proposed in Vuorimaa (1994 A) is a three-step learning approach: 

1) establish the centers of the fuzzy sets according to the learning laws of 

SOM; 2) initialise the fuzzy sets and the outputs of the fuzzy rules; and 3) using 

an algorithm similar to Learning Vector Quantization 2.1, tune the fuzzy logic 

controller rather than fuzzifying the learning laws, and also tune the fuzzy sets 

while not just finding the best fuzzy rules. Because of the use of fuzzy set 

theory, the neuro-fuzzy systems can represent the learned information in a 

manner understandable by humans.  

 

Vuorimaa (1994 B) presented a Multiple Input, Multiple Output (MIMO) version 

of the FSOM for pattern recognition. Membership values in the FSOM not only 

provided the classification information, but also specified the validity of 

classification. When the functions were not weakly associated, the MIMO 

version of the FSOM could model several functions simultaneously. It was 

asserted that the MIMO version could be exploited as a general purpose 

function approximator. 

 

In order to overcome the perceived drawbacks of FKCN encountered in an 

image segmentation application (e.g. long convergence time, randomly 

initialised network weights, a fixed structure), Wang & Qi (1999) suggested an 

Adaptive Fuzzy Clustering Network model (AFKCN). The AFKCN is able to 
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derive an appropriate network structure and rational initial weights by 

investigating the grey distribution characteristics of an image. By replacing the 

“fuzzy concentration” operator with the “fuzzy intensification” operator, the 

convergence process of the network was accelerated and the computation cost 

per iteration was reduced through sample space conversion. 

 

Kuo, Chi & Teng (2001) proposed an FSOM neural network which incorporates 

fuzzy inputs, fuzzy weights and fuzzy set theory. Their experimental results 

demonstrated that the FSOM neural network could properly cluster the image 

parts based on their captured images. Its accuracy increased along with the 

size of the output array. Compared to FCM, the proposed approach could 

support a more precise decision but for slightly longer computational time, 

which was suitable for applications that favoured accuracy over speed. Another 

favourable aspect of the FSOM neural network was that no pre-specified 

cluster number was required. 

 

 

5.2 Assorted FSOM Applications  

A two-step method for automatic and adaptive rule extraction with FSOM was 

introduced by Nomura & Miyoshi (1995). A neural network called the "Fuzzy 

Inference Network (FIN)" was proposed for learning the trend of data. The 

learning result was represented as fuzzy rules for performing fuzzy inference 

with FSOM. The authors claimed their method was more effective in adaptive 

rule extraction than other methods with feed-forward neural networks like 

Radial Basis Function and Genetic Algorithm when the centers of input 

attribute vectors moved steadily while the distances between them remained 

constant. 

 

Kurd & Kelly (2007) defined a „neuro-fuzzy‟ model, which is based on the 

FSOM, called the Safety Critical Artificial Neural Network (SCANN). Their 

pattern classification case studies indicated the generalization performance of 

FSOM was radically better than Nearest Neighbour Networks and Learning 

Vector Quantization. The SCANN was found to perform well in different areas 
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such as fault diagnosis of a reactor, control of the inverted pendulum, system 

identification, and handling other non-linear problems. 

 

Another application of FSOM is solving the symmetrical Traveling Salesperson 

Problem (TSP) by finding a good solution. (The problem is that the salesman 

needs to start from a given city, visiting n cities only once and back to the origin 

city using the shortest route.) Chaudhuri, De & Chatterjee (2008) employed the 

2opt algorithm (which is an optimisation approach for the TSP) to enhance the 

solution generated by an FSOM. Fuzzy c-Means was deployed and the 

difficulty of selecting network parameters was resolved by FSOM. Learning 

speed and estimation accuracy were enhanced to a great extent by the 

adoption of single adjustment of the weights policy.  According to the numerical 

simulation, the solution produced by FSOM provided a more satisfactory 

solution than both the Lin-Kernighan Algorithm and the Evolutionary Algorithm 

for TSP when the number of cities increased. 

 

 

5.3 FSOM in Decision Support Systems 

In the past decade, more and more practitioners have employed clustering 

analysis methods as important aids in their decision support systems, 

embracing fuzzy logic due to its capability of modelling vague qualitative 

knowledge and imprecise data in linguistic terms (e.g. low, normal, high, very 

high), supporting human type reasoning and conveying uncertainty. Fuzzy Sets 

Theory is thus considered an appropriate candidate for analysing non-

quantifiable problems that rely on semantic judgments in real life. 

Simultaneously, neural network models, which have the advantages of learning 

in data-rich environments, are inherently nonlinear, have massive parallelism, 

robustness and are fault tolerant. Therefore, integrating fuzzy logic with neural 

networks provides certain advantages when handling uncertainty problems in 

recognition process and espousing learning function whilst constructing 

intelligent decision making systems. 
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A model for the analysis of credit card market segmentation that comprised 

three main modules was proposed by Chi, Kuo & Teng (2000). The first module 

utilised FSOM for projecting multi-dimensional fuzzy data onto two-dimensional 

topological network data. The second module employed FCM for capturing the 

membership of each possible cluster for all data on the two-dimensional 

network to provide credit card market information. The third module engaged 

the Back-Propagation Neural Network (BPN) for learning the relationship 

between the output pattern of each cluster and the two-dimensional 

membership functions. With such an approach, the speed of response could be 

improved as new information is acquired. 

 

To assure robust approximate reasoning results, a multi-staged fuzzy 

approximate reasoning system named SOFAR (Self-Organizing FAR) was 

proposed by Lee, Cho & Kim (2007). The proposed SOFAR was able to 

produce apposite fuzzy rules via SOM for each input-output data pair, as well 

as consider errors from both learning data and test data through back-

propagation driven parameter modifications. The SOFAR comprised five steps 

of multi-stage FAR mechanism: 1) preparation, 2) determination of fuzzy rule 

partitions, 3) membership learning for a fuzzy rule, 4) fuzzy rules learning, and 

5) decision making. 

 

A two-level SOM-based clustering approach for regional flood frequency 

analysis was presented in Srinivas, Tripathi, Rao & Govindaraju (2008). A two-

dimensional map was produced by using SOM in the first level. Then FCM was 

used to cluster the output nodes for discovering regions for flood frequency 

analysis. Prior assumptions regarding cluster number, cluster centers, and 

fuzzy memberships are necessary for converging to local minimum of the 

objective function. In order to guarantee optimal partitioning, five fuzzy cluster 

validation measures (namely fuzzy partition coefficient, fuzzy partition entropy, 

fuzziness performance index, normalised classification entropy, and extended 

Xie–Beni index) were computed.  
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Based on new distance measurement and update rules, Chen & Chen (2008) 

built a batch SOM algorithm for numeric and categorical data (NCSOM). To 

handle categorical data, it assigned the input vectors to map units with relative 

membership degrees by applying fuzzy set theory in SOM training. Hence the 

algorithm could work well with imprecision, uncertainty, and noisy 

environments. Considering that SOM can approximate the possible density of 

data by visualising partitive clustering algorithms with k-means, variants were 

combined with the SOM algorithms as a hybrid clustering approach to improve 

computational efficiency, data visualization, and data summarization. 

 

Recently, Li, Kuo & Tsai (2010) developed a framework for the detection and 

analysis of crime trend patterns from historical data.  Such a decision support 

model was based on FSOM because of its inherent superior learning 

performance and the ability of handling vague linguistic data. An FCM model 

was exploited for enhancing the learning rate and weight updating strategy of 

SOM. The issues of representing fuzzy time series (derived from temporal 

crime activity data), selecting the best-matching unit, and updating weights 

when training with crisp data were addressed in this framework. As a result, the 

proposed FSOM model facilitates the manipulation of fuzzy numbers as inputs, 

fuzzy similarity measurement, and fuzzy weight updating. 

 

 

5.4 Algorithms Selection 

Table 5.1 compares the algorithms employed in the decision support systems 

discussed in the previous section. It is evident that the Chi, Kuo & Teng (2000) 

approach and the Li, Kuo & Tsai (2010) approach take into account semantic 

terms such as “unimportant”, “very unimportant”, “intermediate”, “good”, and the 

like. Such a feature is essential for an application that is to support software 

project estimation. On the other hand, the Li, Kuo & Tsai (2010) approach also 

handles historical data in contrast to the Chi, Kuo & Teng (2000) approach that 

solely relies on fuzzy questionnaires that are filled out by experts.
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Table 5.1 

Comparison of DSS FSOM Algorithms 

Literature Chi, Kuo & Teng (2000) Lee, Cho & Kim (2007) Srinivas, Tripathi, Rao & 

Govindaraju (2008) 

Chen & Chen (2008) Li, Kuo & Tsai (2010) 

Model /  

Framework 

Market segmentation of credit 

card system 

SOFAR Regional flood frequency 

analysis system 

FNCSOM 

(Adapted from Chen & Chen, 

2008) 

Crime prevention system 

Step 1 

Preparation 

Collect human judgments by 

fuzzy questionnaire. Use 

semantic terms for scale 

interval. Then pre-process 

answers into fuzzy data set. 

Divide historical data into 

learning data set and test data 

set. 

 

 

 

--- 

Initialize the reference vectors of 

map units. 

Acquire data for 

investigation. 

Step 2 

Process 

Fuzzify input vectors and the 

connection weight vectors. 

Use FSOM to cluster the 

customer market. 

Use SOM to determine the 

number of fuzzy rule 

partitions. 

Use SOM to form a two-

dimensional map.  

Input the samples one at a time. 

Calculate the membership 

degrees between input vector 

and reference vectors. 

Use FCM to fuzzify 

standardised monthly crime 

volumes, and then convert 

to semantic term according 

to the best matching 

membership degree after 

defining the fuzzy sets. 

Step 3 

Process 

Apply FCM to acquire a more 

precise and reasonable 

clustering analysis, and to 

process the membership level 

of the vague data belonged to 

Calculate the neural network-

driven membership function 

for each fuzzy rule that has 

learning data set. 

Apply FCM to cluster the 

two-dimensional map. 

Update the reference vectors on 

numeric, nominal, ordinal 

variables separately at the end 

of each epoch over the training 

process. Replace old reference 

Train FSOM to cluster the 

fuzzify crime data. 
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each cluster. vectors with new ones. 

Step 4 

Process 

BPN accept the benefit-

seeking variables and the 

customer‟s personal data as 

input variables to produce 2D 

membership functions as 

output variables. 

Apply BPN for avoiding over 

learning phenomenon. 

Identify optimal number of 

cluster by five cluster 

validation measures. 

Repeat from Step 2 a few times 

until the solution can be 

regarded as steady. 

Extract information from 

time series database. 

Step 5 

Decision 

Making 

Use the relation between the 

input variables and output 

variable to train a BPN for 

making decision in marketing 

promotion. 

Calculate the final 

approximated value for input 

data. 

 

 

 

--- 

 

 

 

--- 

Analyse crime pattern. 
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Table 5.2 

Comparison of FSOM Algorithms 

Literature Chi, Kuo 

& Teng 

(2000) 

Lee, Cho 

& Kim 

(2007) 

Srinivas, 

Tripathi, 

Rao & 

Govindara

ju (2008) 

Chen & 

Chen 

(2008) 

Li, Kuo & 

Tsai (2010) 

Model / Framework Market 

segmentati

on of credit 

card 

system 

SOFAR Regional 

flood 

frequency 

analysis 

system 

FNCSOM Crime 

prevention 

system 

Create fuzzy rules from data  No Yes Yes Yes Yes 

Create fuzzy rules from 

expert knowledge 

Yes No No No Yes 

Create fuzzy sets (e.g. FCM) Yes Yes Yes Yes Yes 

Cluster the data (e.g. SOM) Yes Yes Yes Yes Yes 

Calculate membership 

degrees 

Yes Yes Yes Yes Yes 

Extract rule from temporal 

data 

No No No No Yes 

 

We evaluate these five methods as shown in Table 5.2 based on software 

project estimation scenarios. It is apparent that all five frameworks manage to 

handle uncertainty and visualize clustering results both of which would aid the 

software project manager in understanding a model and its meaning in context. 

However, the SOFAR mechanism in Lee, Cho & Kim (2007) is a fusion of fuzzy 

logic, SOM and neural network that entails the demand for a large data set, 

while in the case of software project management, data sets are relatively 

small. Similarly, the market segmentation model presented in Chi, Kuo & Teng 

(2000) involves the back-propagation neural network module that contrasts with 

our requirement. At the same time, the FNCSOM framework from Chen & Chen 

(2008) employs k-means variant and Learning Vector Quantization while we 

would prefer to avoid crisp projection.  

 

Considering that a SOM usually generates more units than real clusters, some 

researchers (Chi, Kuo & Teng (2000), Srinivas, Tripathi, Rao & Govindaraju 
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(2008) and Li, Kuo & Tsai, 2010) cluster the SOM output by fuzzy c-means 

algorithm to obtain better insight into the natural structures. As both the 

regional flood frequency analysis approach in Srinivas, Tripathi, Rao & 

Govindaraju (2008) and the crime prevention system introduced in Li, Kuo & 

Tsai (2010) provide high-quality examples of fuzzifying SOM, we have good 

reason to believe that adaptively adopting algorithms from these two 

approaches would benefit our software project estimation application. 
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6 Fuzzy C-Means 

6.1 Clustering 

Data clustering analysis is one of the most useful techniques for discovering 

relevant patterns, groups, and relationships and associations within a large 

volume of data. It plays an important part not only in pattern recognition, image 

processing and communication, but also in system modelling, data mining and 

other decision-making application areas. Generally, cluster analysis is a variety 

of techniques that segment a set of data into several nonempty subsets (a.k.a. 

clusters). Each cluster has its weighted average as the center of gravity.  

 

In the iterative clustering process, only cluster centers are moved (i.e. none of 

the data points are moved) in each step of partitioning the space while finding 

the better and better centers. The subdividing of the original data set is based 

on similarity metrics or probability density models; thus after clustering the 

mathematical similarity of intra-cluster observations is maximised and between 

data items for inter-cluster is minimised. One of the most commonly employed 

distance functions is Euclidian distance which measures mathematical 

similarity by computing the squared difference. When new data becomes 

available, the distance between the new data point and every cluster center will 

be calculated before adding the new data point to the cluster with minimum 

distance to its centre (Raju, Thomas, Kumar & Thinley, 2008). 

 

 

6.2 Crisp Clustering 

Clustering can be categorised into two general process types: Crisp clustering 

and Fuzzy clustering. In crisp clustering, each data point in the data set is 

assigned to one and only one cluster explicitly. Hence the boundaries of 

clusters are hard, crisp and have no overlaps (Bezdek, Ehrlich & Full (1984); 

Kannan, Devi, Ramathilagam & Sathya, 2010). 

 

The diverse variations of k-means clustering algorithms are the most well-

known and commonly used unsupervised partitioning techniques that are able 
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to classify crisp and highly structured data without prior information on the data 

distribution available. The letter „k‟ stands for the initially provided parameter 

that indicates the number of clusters in the outcome of partitioning. 

 

However, real world data is often characterised by vagueness and uncertainty 

and conventional crisp clustering algorithms are inappropriate for handling 

such challenges. Fuzzy clustering is a robust and flexible approach to dealing 

with natural data sets that consist of non-strict objects and have poorly defined 

boundaries that could result in overlapping cluster perimeters. Furthermore, 

Bezdek, Ehrlich & Full (1984) pointed that since the conventional approach 

fails to provide a mechanism to absorb deviant or indistinctive data, outliers are 

treated as noise and fall into the "unclassifiable" category. Partial membership 

to a fuzzy set can resolve this issue.  

 

 

6.3 Fuzzy Clustering 

Raju, Thomas, Kumar & Thinley (2008, p. 882) identify the following six 

characteristics of natural data: 

1) Not clearly known: Questionable; problematic 

2) Vague: Not definite of determined 

3) Doubtful: Not having certain information 

4) Ambiguous: Many interpretations 

5) Not steady: Varying 

6) Liable to change: Not dependable or reliable 

 

In other words, sharp and precise distinctions are difficult to make and the 

choice between options is left uncertain. Therefore, by allowing partial 

membership, the fuzzy sets theory became the ideal candidate for handling 

uncertainty and modelling imprecise and qualitative information. 

 

The concept of fuzzy set theory was introduced in Zadeh (1965). Membership 

of an object into a cluster is Boolean in crisp clustering, which means that it 

either belongs or does not belong to the cluster absolutely. Zadeh‟s concept 
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utilizes the membership function to calculate the distance between object and 

cluster centers to interpret the memberships.  

 

In contrast to the Boolean value of membership in crisp clustering, each data 

point in fuzzy sets has an associated degree of membership from 0 to 1 in 

every cluster. Such non-unique partitioning is fundamental in fuzzy clustering. 

The higher the value of the membership, the more similarity there is between 

the data point and that cluster. 

 

 

6.3.1 Fuzzy C-Means 

Fuzzy C-Means (FCM) clustering was proposed by Dunn (1973) and 

subsequently generalised and improved in Bezdek, Ehrlich & Full (1984). 

Before the name fuzzy c-means was introduced it was even known as fuzzy k-

means. This shows that FCM is comparable to k-means clustering in many 

ways. 

 

Fuzzy c-means clustering involves the computation of cluster centers and 

measuring the Euclidian distance between an object and the cluster centers. 

The calculation is repeated until the cluster centers are stable. In contrast to 

the traditional crisp clustering algorithms, FCM allows each data point to 

belong to more than one cluster by incorporating partial membership concepts 

of fuzzy set theory. The membership degree ranges between 0 and 1, and the 

sum of the memberships for each data point is equal (Bezdek, Ehrlich & Full, 

1984). 

 

FCM supports partial membership by forming overlapping clusters using a 

fuzzification parameter that establishes the degree of fuzziness of the clusters. 

The higher the parameter value, the more there is overlapping of clusters. 

When the parameter equals to 1, FCM acts as a crisp clustering algorithm. As 

a result, the embedment of fuzzy set theory enriches the traditional crisp 

clustering approach (Bezdek, Ehrlich & Full (1984); Raju, Thomas, Kumar & 
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Thinley, 2008).  Nowadays, the most widely used fuzzy clustering techniques in 

practice are FCM and its derivatives. 

6.3.2 Limitations of FCM 

Although it has been demonstrated that FCM outperforms crisp and 

probabilistic clustering algorithms in terms of handling vague and uncertain 

natural data, it does suffer from some limitations. 

 

As an unsupervised clustering algorithm, the clustering results of FCM need to 

be validated. Cluster validation examines how well the structure of the data set 

is reflected in the clustering results. The vital indicator of the structure is the 

number of clusters which is a user-initialised parameter that may be difficult to 

determine, especially pre-clustering, in real world practice.  

 

Past literature has proposed several validity indices such as the partition 

coefficient and classification entropy for FCM. More recent work contends that 

a validity index ought to consider the density within individual clusters as well 

as the separation between clusters. Nonetheless, most existing validity indices 

are inefficient for spotting the number of clusters when the boundaries of 

different clusters are overlapping. In Sun, Wang & Jiang (2004), a new 

algorithm is proposed that is able to automatically define the number of clusters 

with a validating index for overlapping data. 

 

Other stated drawbacks of FCM include: it fails to eliminate noise and outliers; 

it is poor in handling general crisp data sets due to the Euclidean distance 

emphasis on appraising dissimilarity; and it has high computational cost for 

large data sets due to the squared-norm for assessing similarity among data 

points and cluster centers. Kannan, Devi, Ramathilagam & Sathya (2010) 

introduce a Bray Curtis distance to reduce the negative impact of Euclidean 

distance on crisp data set handling and some fuzzy objective functions to 

reduce running time. Additional terms including a penalty term are also 

introduced to reduce the effect of noise and outliers in large data sets. 
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6.3.3 Application of FCM 

In the interval partitioning process of the Li, Cheng & Lin (2008) forecasting 

model, the authors deployed FCM clustering for generating unequally-sized 

intervals as it considers the density of data points, and for taking into account 

historical data. Similarly to software project estimation, the researchers 

attempted to use techniques including statistics and artificial neural networks to 

tackle the forecasting problem based on time series data segmented by fixed 

time intervals. Likewise, traditional approaches for creating time series 

forecasting models rely extensively on historical data, which can be sometimes 

imprecise, ambiguous and even incomplete.  

 

Instead of numeric values for traditional time series, fuzzy time series is 

represented as linguistic values under fuzzy logic theory and so it is capable of 

handling incomplete and vague data to take account of the uncertainty of real-

world data that hinders the accuracy of forecasting models. 

 

Based on the nature of SOM that was discussed previously and the examples 

of fuzzifying SOM in the last section, we apply FCM clustering to fuzzify our 

original data sets before creating SOMs, resulting in the use of FSOMs in the 

prediction of software project management attributes. 

 

The next chapter describes the implementation of FSOMs using an FCM 

clustering approach in a series of the experiments undertaken to generate 

models on three different datasets from the project management domain. The 

results of these experiments are then presented in chapter 8 and analysed in 

chapter 9. 
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7 Model Design 

7.1 Correlation Analysis 

In software project estimation, a large number of variables that characterise the 

system and its development may be available. In order to facilitate the creation 

of a stable and accurate prediction model, it is important to distinguish between 

independent and associated or correlated variables. Introducing inappropriately 

selected variables to the model not only complicates the process of prediction, 

but also could lead to misestimates being produced. 

 

Pairwise correlation analysis is one of the most commonly used statistical 

approaches. It is used for the interpretation of strength of association of two 

variables in case-control studies (O‟Gorman & Woolson, 1995) in a wide 

variety of domains including psychiatric data analysis (Arndt, Turvey & 

Andreasen, 1999), and health psychology and epidemiology (Kraemer, 2006). 

In most cases the correlation coefficient is a unit-free measure ranging from −1 

to +1. When the correlation coefficient equals one, the two variables are 

strongly positively associated. The closer the coefficient to zero, the less the 

two variables are correlated. When the correlation coefficient equals to zero, 

one can say that the variables are not related (at least in terms of the measure 

being used). 

 

Among the often used statistical measures of association, Pearson‟s product 

moment correlation is commonly employed. However, the Pearson‟s r (rp) is 

only suitable for indicating linear relationships, and it can be gravely affected 

by even just one outlier. Moreover, in previous studies such as that reported by 

Croux & Dehon (2010), the classical Pearson correlation was reported to be 

lacking robustness as its influence function is unbounded.  

 

The potential presence of outliers and non-constant variance in software 

project datasets requires analysis and inferential techniques that can provide 

stabilised statistics with limited knowledge of the data distribution. Therefore, 

Spearman‟s rank correlation coefficient and Kendall‟s rank correlation 
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coefficient are the nonparametric procedures that researchers in this domain 

commonly consider. For instance, Grzegorzewski (2009) generalised the 

classical Kendall‟s rank-based nonparametric procedures to handle a fuzzy set 

in their mathematical model for preference systems with missing information or 

non-comparable outputs to measure association. 

 

Other researchers have compared the performance of Pearson‟s rp, 

Spearman‟s rs, Kendall‟s taub, and other correlations methods. In O‟Gorman & 

Woolson (1995), Kendall‟s taub was reported superior to the other methods with 

both correlated normally distributed variables and with log-normal variables, 

while it was just about equal to the other methods in the case of uncorrelated 

variables. Based on the result of their simulations (comprising fewer than 400 

cases and controls), O‟Gorman & Woolson report that Kendall‟s taub is a 

suitable exploratory procedure for variable selection in the early stage of a 

case-control study with a small to moderate sized data set, unless the 

candidate variables are independent or follow Bernoulli or normal distributions. 

 

Later, Arndt, Turvey & Andreasen (1999) demonstrated that Pearson‟s rp is 

unstable and performs poorly when outliers and non-constant variance are 

present. Kendall‟s correlation and Spearman‟s rs exhibit adequate protection 

against type I errors and are more consistent in these circumstances. However, 

instead of reflecting the population value, Spearman‟s rs is an inherently 

sample-biased statistic which tends to underestimate the true correlation, and 

the degree of divergence from the true value increases as the sample size 

decreases. Such a bias reduces its power during statistical testing. In contrast, 

Kendall‟s taub is favoured in terms of expressing the strength of associations, 

especially for small to moderate sample studies as it is unbiased. Arndt et al 

(1999) also noted that its use led to more stable and therefore more replicable 

results. Its tendency to produce a narrow confidence interval and to lend itself 

to straightforward interpretation also make the Kendall‟s taub superior from the 

statistical perspective. 
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Croux & Dehon (2010) examine the robustness of Kendall‟s taub, Spearman‟s rs 

and Quadrant correlation by a covariance matrix estimator in a simulation 

experiment. The results indicate that the influence functions of the Spearman‟s 

and Kendall‟s correlations are bounded and smooth, which confirms the 

general belief that nonparametric correlation methods are robust to outliers. In 

addition, taub and rs have high statistical efficiency and acceptable levels of 

gross-error sensitivity, but the Kendall‟s taub is preferable as it outperforms 

Spearman‟s rs from both perspectives. 

 

As pointed out previously, the size of data sets in software project estimation is 

generally small to moderate. Our purpose of using a correlation coefficient is 

for the selection of appropriate variable(s) to create models for estimation. 

Since the Kendall‟s taub is a simple yet efficient correlation and is favoured for 

revealing dependence of variables in ambiguous data sets it appears to be a 

good choice for this study. Also, with the advantage of small gross-error 

sensitivity and lower type I error, we consider Kendall‟s taub as the most 

appropriate statistical instrument for this activity. 

 

 

7.2 Data Sets  

7.2.1 The 4GL Systems Data Set 

The 4GL systems data set was collected over a period of five years. It contains 

70 observations of small- to medium-sized 4GL systems related to transaction 

processing, data retrieval and reporting, and file maintenance activities. These 

systems were built by groups of senior students at the University of Otago in 

New Zealand to meet the real requirements of external clients that are usually 

small businesses or departments of larger organisations.  

 

The 4GL data set includes variables that reflect the size of the data model, the 

functional decomposition chart, and the number of source statements. It was 

used for the demonstration of the viability of fuzzy logic modelling in software 

project management in MacDonell and Gray (2003), and for the assessment of 
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the performance of standard SOMs in MacDonell (2005). Table 7.1 illustrates 

the variables of the 4GL data set. 

Table 7.1 

Variables of 4GL Data Set (Adapted from MacDonell, 2005) 

 

By calculating the Kendall's taub correlation coefficient (Table 7.2), we found 

that ATTRIB, EDIT, NONMENU and FDCSIZE are significantly associated with 

system SIZE, which is one of the parameters that software project managers 

are keen to estimate. We select ATTRIB and NONMENU to construct our 

prediction models as ATTRIB reflects the feature of the database of the system 

while NONMENU is indicative of the functional capabilities of the application. In 

addition, EDIT shows strong correlations with other independent variables, 

likewise FDCSIZE is highly correlated to NONMENU. Therefore, adding EDIT 

and FDCSIZE into the creation of models is not likely to increase the accuracy 

of the prediction but would increase computational cost. 

Mnemonic  Variable Explanation 

ENT Entities 
Count of entities depicted in the entity-relationship 

diagram (ERD) 

RSHIP Relationships Count of relationships depicted in the ERD 

ATTRIB Attributes Count of attributes associated with the ERD 

MENU Menus 
Count of menu screens depicted in the Functional 

Decomposition Chart (FDC) 

EDIT Entry/Edit Count of data entry/edit screens depicted in the FDC 

REPORT Reports Count of reports depicted in the FDC 

NONMENU 
Non-menu 

functions Count of non-menu functions depicted in the FDC 

FDCSIZE FDC Size Count of all functions depicted in the FDC 

SIZE System Size 
Count of all non-comment source statements in the 

implemented system 
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Table 7.2 

Kendall's taub Correlation Coefficient of Variables of 4GL Data Set 

  

 ENT RSHIP ATTRIB MENU EDIT REPORT 

NON 

MENU 

FDC 

SIZE Size 

ENT 1 .857
**
 .525

**
 .296

**
 .547

**
 .145

*
 .425

**
 .428

**
 .359

**
 

RSHIP .857
**
 1 .499

**
 .291

**
 .496

**
 0.127 .379

**
 .394

**
 .335

**
 

ATTRIB .525
**
 .499

**
 1 .258

**
 .501

**
 .263

**
 .476

**
 .465

**
 .483

**
 

MENU .296
**
 .291

**
 .258

**
 1 .375

**
 .239

**
 .395

**
 .542

**
 .287

**
 

EDIT .547
**
 .496

**
 .501

**
 .375

**
 1 .259

**
 .704

**
 .680

**
 .508

**
 

REPORT .145
*
 0.127 .263

**
 .239

**
 .259

**
 1 .608

**
 .579

**
 .379

**
 

NONMENU .425
**
 .379

**
 .476

**
 .395

**
 .704

**
 .608

**
 1 .897

**
 .563

**
 

FDCSIZE .428
**
 .394

**
 .465

**
 .542

**
 .680

**
 .579

**
 .897

**
 1 .558

**
 

Size .359
**
 .335

**
 .483

**
 .287

**
 .508

**
 .379

**
 .563

**
 .558

**
 1 

 

7.2.2 The Desharnais Data Set 

The Desharnais data set was collected in a Canadian software house in the 

late 1980s by Jean-Marc Desharnais. It comprises data from 81 projects 

developed using three different programming languages. By respecting (non-

)linearity and heteroscedasticity, this data set is considered as representative 

of data sets of software projects. Table 7.3 presents the properties of the 

Desharnais data set. As a well-known publicly available data set, the 

Desharnais data set has been used in many project management studies. With 

the purpose of evaluating the potential of genetic programming and two other 

machine-learning approaches for building effort prediction models, Burgess & 

Lefley (2001) used the Desharnais data set to examine the accuracy and ease 

of use of the three techniques. In their investigation of a machine learning 

technique namely C4.5, which yields tolerance missing values, Song, 

Shepperd, Chen & Liu (2008) assessed the Desharnais data set using the 

Mann–Whitney test to inspect the accuracy of their cost prediction models. 

Another instance of use of the Desharnais data set is reported in Keung, 

Kitchenham & Jeffery (2008). As an alternative to data-intensive methods such 

as linear regression, analogy-based software cost estimation (a.k.a. Case-

Based Reasoning) is popular. The Keung, Kitchenham & Jeffery method 

employs Mantel‟s correlation randomization test to produce a method they refer 
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to as Analogy-X. In their study the Desharnais data set was used to 

demonstrate the advantages of using Analogy-X. 

 

Table 7.3 

Variables of Desharnais Data Set 

Variable Description Data Type 

ActualEffort 
Actual Effort measured in person-hours. A dependent 

variable. 
Discrete 

Duration 
Actual project schedule in months. A dependent 

variable. 
Discrete 

ExpEquip Team Experience measured in years. Ordinal 

ExpProjMan Manager Experience measured in years. Ordinal 

Transactions Count of basic logical transactions in the system. Discrete 

RawFPs PointsNonAdjust that equals to Transactions + Entities Continuous 

Adj Factor Function point complexity adjustment factor. Continuous 

Adj FPs Function points adjusted by the Adjustment factor. Continuous 

Dev Env Programming language. Categorical 

Year Fin Year project ended. Categorical 

Entities The number of entities in the systems data model. Discrete 

 

 

Table 7.4 presents the correlation coefficients among the Desharnais variables. 

It is clear that some of the independent variables have strong associations with 

ActualEffort, and as a project outcome we use it as the dependent variable in 

our model. Specifically, RawFPs, Adj FPs and Entities are strongly correlated 

to ActualEffort. Although RawFPs and Adj FPs show higher correlation 

coefficients, the count of Entities is easier to understand and more convenient 

to obtain. Taking into account the significant interrelationship amongst 

RawFPs, Adj FPs and Entities, we exploit Entities as the sole independent 

variable in our creation of a prediction model. 
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Table 7.4 

Kendall's taub Correlation Coefficient of Variables of Desharnais Data Set 

  ActualEffort Duration ExpEquip ExpProjMan Transactions RawFPs AdjFactor AdjFPs DevEnv Year Fin Entities 

ActualEffort 1.000 .427
**
 .177

*
 .073 .350

**
 .518

**
 .363

**
 .536

**
 -.279

**
 -.030 .470

**
 

Duration .427
**
 1.000 .248

**
 .189

*
 .284

**
 .426

**
 .163

*
 .419

**
 .016 -.056 .376

**
 

ExpEquip .177
*
 .248

**
 1.000 .334

**
 .053 .185

*
 .234

**
 .213

**
 -.125 -.135 .213

**
 

ExpProjMan .073 .189
*
 .334

**
 1.000 .089 .147

*
 -.048 .131 .230

**
 .051 .143

*
 

Transactions .350
**
 .284

**
 .053 .089 1.000 .629

**
 .306

**
 .616

**
 .072 .048 .215

**
 

RawFPs .518
**
 .426

**
 .185

*
 .147

*
 .629

**
 1.000 .330

**
 .911

**
 .014 .077 .589

**
 

Adj Factor .363
**
 .163

*
 .234

**
 -.048 .306

**
 .330

**
 1.000 .422

**
 -.178

*
 -.046 .223

**
 

Adj FPs .536
**
 .419

**
 .213

**
 .131 .616

**
 .911

**
 .422

**
 1.000 -.003 .077 .577

**
 

Dev Env -.279
**
 .016 -.125 .230

**
 .072 .014 -.178

*
 -.003 1.000 .322

**
 -.060 

Year Fin -.030 -.056 -.135 .051 .048 .077 -.046 .077 .322
**
 1.000 .009 

Entities .470
**
 .376

**
 .213

**
 .143

*
 .215

**
 .589

**
 .223

**
 .577

**
 -.060 .009 1.000 
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7.2.3 The Miyazaki Data Set 

Published in Miyazaki, Terakado, Ozaki & Nozaki (1994), the Miyazaki data set 

is a record of 48 systems in 20 companies managed by the Fujitsu Large 

Systems Users Group. It was used in the original study to demonstrate that the 

least squares of balanced relative errors (LBRS) is superior to the ordinary 

least squares method (given the presence of outliers in the data set). The 

original data set contains eight variables as shown in Table 7.5. 

 

Table 7.5 

Variables of Miyazaki Data Set 

 

It is evident that ESCRN is related to SCRN, likewise EFORM to FORM, as well 

EFILE to FILE. Both effort and lines of code are considered as dependent 

variables relevant to software project estimation. Hence, we selected SCRN, 

FORM, and FILE that are straightforward to count and understand. Taking into 

consideration that lines of code in fact can only be counted after the 

Mnemonic  Variable Explanation 

KLOC Lines of code in  

thousands 

Count of COBOL source lines, exclude comment 

lines, screen and form definition codes, and code 

copied by the COPY statement. 

MM Person Months Count of effort from systems design to systems test. 

An MM is defined as 160 hours of working time. 

SCRN Number of screens Count of different input or output screen formats. 

Screen formats are regarded as different only if 

data elements are different. 

FORM Number of forms Count of different form (report) formats. Form 

formats are regarded as different only if data 

elements are different. 

FILE Number of files Count of input, output, update, and storage files. 

Intermediate files are excluded. 

ESCRN Number of data 

elements in screens 

Count of total data elements in all the screens that 

are included in the number of screens (SCRN). 

EFORM Number of data 

elements in forms 

Count of total data elements in all the screens that 

are included in the number of forms (FORM). 

EFILE Number of data 

elements in files 

Count of total data elements in all the screens that 

are included in the number of forms (FILE). 
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development has been completed, we selected effort in person-months as the 

dependent variable. 

 

Kendall's taub correlation coefficients for the variables are smaller than 0.5 (see 

Table 7.6), which imply weak associations between them; therefore, we 

adopted all three independent variables to build the prediction model. 

 

Table 7.6 

Kendall's taub Correlation Coefficient of Variables of Miyazaki Data Set 

  SCRN FORM FILE Person Months 

SCRN 1 .264
**
 .207

*
 .466

**
 

FORM .264
**
 1 .315

**
 .353

**
 

FILE .207
*
 .315

**
 1 .396

**
 

Person 

Months 

.466
**
 .353

**
 .396

**
 1 

  

 

 

7.3 Viscovery4 

In our construction of clustering and prediction models, we used Viscovery® 

SOMine 4 to facilitate the creation of SOM and FSOM. As a tool that aims to 

fulfill academic research purposes, Viscovery® SOMine supports analysis of 

non-linear dependencies, parameter-free clustering, data association and 

recall, pattern recognition, and other tasks such as animated monitoring 

(Eudaptics, 1999). 

 

Kohonen‟s Batch-SOM, a robust variant of unsupervised neural networks, is 

employed to form Self-Organizing Maps with two-dimensional hexagonal grids. 

Each hexagonal unit, referred to as a “node”, represents a part of the 

numerical, multivariate source data set. The arrangement of the nodes reveals 

the neighbourhoods within the data set and the intrinsic shape of the data 

distribution can be represented by the landscape of the grid. 

 

 



 

Page 64  

 

7.4 Fuzzifier 

We adopt a fuzzifier which employs the basic Fuzzy C-Means algorithm to pre-

process our data set in order to obtain a fuzzy „version‟ of the original crisp 

data. Since we were using the same data (in different splits) to train and recall 

the models, thus we can consider them as fair comparisons. 

 

Figure 7.1. The User Interface of the Fuzzifier 

 

During our experiment, we found that the clustering options (both convergence 

accuracy and max iterations, as seen in Figure 7.1) do not have significant 

impact on our data sets. Therefore, we left them at the default values (which 

are 0.0001 for convergence accuracy and 10000 for max iterations), and only 

changed the  size of training sets for examining the sensitivity of our models 

(as the fuzzifier generates centroids based on the size of the fuzzified set). In 

this respect we used data sets comprising between 50-85% of the original data 

set size. Since fuzzy c-means clustering utilizes centroids to represent the 

original data set, the sum of training records and recall records is always 

smaller than the size of the original data set. 
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8 Model Evaluation and Comparison 

Our assessment primarily appraises the accuracy of the predictions of SOM 

and FSOM by using Linear Regression as a benchmark. To examine the impact 

of the fuzzy c-means clustering algorithm, we also create and assess a model 

referred to as Fuzzy Linear Regression. 

 

Each build of the prediction models was executed in the followed steps: 

I. Use the fuzzifier to process the original crisp data set for producing 

training sets; 

II. Match the fuzzified data with the original data and label them as the crisp 

and fuzzy versions of the training set; 

III. Pick out unfuzzified data, put them into a new data set and feed it to the 

fuzzifer; 

IV. Label the fuzzified data in the new data set as the recall set; 

V. Use the crisp training set to create a SOM model and a Linear Regression 

model; 

VI. Use the fuzzy training set to build  an FSOM model and a Fuzzy Linear 

Regression model; 

VII. Use the recall set to test the four different models constructed from the 

same original data set; 

VIII. Compare the predicted size or effort to the actual figure, and calculate the 

error and absolute error of each software project in every model;  

IX. Evaluate the four models based on the sum of absolute error and bias. 

(Bias = Sum of error / Sum of actual size); and 

X. Repeat these nine steps four times to avoid particular sample bias. 

Hence, our analysis comprises five tests with very similar parameters (i.e. 

number of variables, size of training set and size of recall set) in one single 

build.  Table 8.1 shows the parameters of all eight builds in our experiment. 

 

Complete spreadsheets showing training sets and recall sets are provided in 

Appendices on the enclosed disk. Detailed spreadsheets that assess the 

estimation errors of the four models for every single data record can also be 

found on the disk. Clearer views of the data analysis figures in Chapter 8 and 
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Chapter 9, as well as generated SOM/FSOM maps. are also available on the 

disk. Appendices in Section 11 indicate the relevant folders.   

 

Table 8.1 

Parameters of Eight Builds  

Build Variables 
Average Train 

Set Size 

Average Recall 

Set Size 

4GL Build1 2 42 20 

4GL Build2 2 28 33 

4GL Build3 4 45 20 

4GL Build4 6 45 20 

Desharnais Build1 1 48 24 

Desharnais Build2 1 43 19 

Miyazaki Build1 3 25 16 

Miyazaki Build2 3 32 14 

 

 

 

8.1 4GL Build1 

As discussed previously, correlation analysis indicated ATTRIB and 

NONMENU as the two vital variables that together reflect the functional 

features of the software projects in the 4GL data set. Thus, we used these two 

variables in our 4GL systems Build1. In this case, we selected 65% of the 

original set (of 70 records) for the first fuzzified set. After the matching 

procedure, 42 records were listed in the training set. Then the remaining 28 

records were input to the fuzzifier to produce 75% of the data for the recall set. 

As a result, the recall set contains 20 records after the second matching 

procedure. 

 

By comparing the actual and predicted size of each project in the recall set 

(Figure 8.1), we found that the prediction results of SOM and FSOM pair up, 

likewise Linear Regression and Fuzzy Linear Regression share almost exactly 

the same result. At the same time, it can be noted that the size estimated by 

SOM and FSOM share a very close trend with the actual size in this build.  
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(Note that in this and subsequent analyses we provide indicative results in the 

chapter, rather than providing all of the outputs. These can be found on the 

enclosed disk.) 

 

Figure 8.1. Comparison of Actual and Predicted Results for 4GL Build1 

 



 

Page 68  

 

 

 

On the other hand, the sum of absolute errors of each model in five tests 

(Figure 8.2) illustrate that incorporating fuzzy c-means clustering prior to 

creating SOM or Linear Regression models do generally improve the accuracy 

of estimations in this build. 

 

 

Figure 8.2. Sum of Absolute Errors of 4GL Build1 

 

The other parameter we use to evaluate the models is bias. In this build, we 

found that SOM and FSOM tend to overestimate the size except in Test1, while 

the bias for Linear Regression and Fuzzy Linear Regression fluctuate more 

than SOM and FSOM (Table 8.2). From the perspective of bias, we can say 

that the FSOM model fits the data of this build best, and it also generated the 

lowest errors overall. 

 

Table 8.2 

Bias of 4GL Build1 

Test 
Bias 

SOM FSOM LR FLR 

1 -0.45% -0.28% 1.14% 1.01% 

2 3.72% 2.26% 3.64% 3.61% 

3 3.01% 0.60% -4.16% -4.20% 

4 2.55% 3.18% 3.73% 3.96% 

5 2.26% 1.20% -0.46% -0.49% 

Sum of  Absolute Bias 11.99% 7.51% 13.13% 13.27% 
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8.2 4GL Build2 

In order to appraise the sensitivity of SOM and FSOM to sampling/split bias, we 

kept ATTRIB and NONMENU as the two predictor variables and changed the 

numbers of records in the training and recall sets. Instead of using 60% of the 

original data in the training sets, we only used 40% in this build, which means 

more records were left for the recall sets. As a result, we used for each test a 

recall set comprising approximately 35 records. 

 

From the comparisons of predicted size produced by four different models in 

each test, we again found that the SOM and FSOM provide more accurate 

forecasting result than Linear Regression and Fuzzy Linear Regression (Figure 

8.3). 

 

 

Figure 8.3. Sum of Absolute Errors of 4GL Build2 

 

Compared to Build1 with 42 records in the training sets and 28 records in the 

recall sets, we notice that in Build2 the bias between the actual and estimated 

size from SOM and FSOM have a tendency to be smaller (Table 8.3). 

Meanwhile, it is interesting to see that all four models present lager bias in 

Test2 than other tests, although they all have smaller Sum of Absolute Errors.   

 

We also notice that FSOM was found to be the best in terms of Sum of 

Absolute Errors, whereas SOM presented the smallest bias in this build. 
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 Table 8.3 

Bias of 4GL Build2 

Test 
Bias 

SOM FSOM LR FLR 

1 0.27% 1.38% -1.52% -1.15% 

2 -4.05% -2.76% -19.56% -18.33% 

3 1.55% 0.23% -1.66% -0.77% 

4 0.58% 1.49% -3.16% -2.43% 

5 -0.85% -1.91% -8.26% -7.86% 

Sum of  Absolute Bias 7.30% 7.77% 34.17% 30.53% 

 

 

 

8.3 4GL Build3 & Build4 

In order to obtain a fuller insight into the sensitivity of SOM and FSOM, we fed 

the models with 65% of the original data set as training sets and 29% of the 

original set as recall sets in both Build 3 and Build 4. In Build 3, however, we 

kept ATTRIB and NONMENU and added two other variables - ENT and 

REPORT that have relatively higher correlations with SIZE. In Build 4, we took 

away NONMENU and FDCSIZE as they are both derived from other variables 

directly (NONMENU = EDIT + REPORT whereas FDCSIZE = MENU + EDIT + 

REPORT). In other words, we adopted six elemental variables (ATTRIB, EDIT, 

ENT, MENU, REPORT, and RSHIP) in Build 4.  

 

The result showed that, the more inadequate variables we provided to the 

models, the less accurate estimations they produced. We then computed the 

Mean of Average Absolute Errors in Build 1, 3 and 4 to assess the impact of 

these variations (Table 8.4). Build 2 was excluded from the table because it is 

the only one that used 40% of the original data in the training set, against 

others that used 60-64%. Here,  

 

Average Absolute Errors = Sum of Absolute Errors / Recall set size, and 

Mean of Average Absolute Errors = Sum of Average Absolute Errors/5 

 



 

Page 71  

 

Table 8.4 

Mean of Absolute Errors of 4GL Builds 

Build 
Variable

s 

Mean of Average Absolute Errors 

SOM FSOM LR FLR 

1 2 91 87 254 254 

3 4 151 164 288 288 

4 6 211 204 301 311 

 

It appears that, as expected, all four models lost their precision when noise was 

added into the process of creating models. Comparatively, Linear Regression 

and Fuzzy Linear Regression are in this case steadier than SOM and FSOM 

when enduring noise, although their results were still worse than those 

achieved using SOMs.  

 

 

8.4 Desharnais Build1 

Considering the correlations among the variables (see Section 4.2.2) in the 

Desharnais data set, Entities is the only independent variable used in our 

construction of an effort forecasting model. Each test in this build uses 48 

records (i.e. approximately 60% of original data set) in the training set and 24 

records (i.e. approximately 40% of the data set) in the recall set. 

 

As in the 4GL builds, the prediction results produced by SOM and FSOM follow 

the actual effort significantly closely (illustrated by Figure 8.5). In contrast, 

Linear Regression and Fuzzy Linear Regression only manage to indicate the 

trend in the overall picture. 
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Figure 8.5. Comparison of Actual and Predicted Results for Desharnais Build1 

 

We can also argue that SOM and FSOM outperform Linear Regression and 

Fuzzy Linear Regression in terms of Sum of Absolute Errors (Figure 8.6). 

However, as the models are used to forecast effort, which is measured in 

person-hours in the Desharnais data set, whether the prediction result is 

accurate or not  depends on the number of personnel in the particular project. 

Also, we need to consider the error relative to the number of hours in each 

project, i.e. the bias.  
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Figure 8.6. Sum of Absolute Errors of Desharnais Build1 

 

When appraising the bias of all four models (Table 8.5), it is evident that Linear 

Regression and Fuzzy Linear Regression are inadequate for a data set that 

presents features similar to those in the Desharnais data set. Also, the level of 

acceptable bias depends on the project. In terms of bias SOM performed the 

best in this build, in contrast to FSOM, and presented the lowest Sum of 

Absolute Errors. 

 

Table 8.5 

Bias of Desharnais Build1 

Test 
Bias 

SOM FSOM LR FLR 

1 1.98% 2.35% 13.76% 13.43% 

2 3.31% 1.85% -1.28% -1.26% 

3 3.81% 3.20% 28.66% 28.35% 

4 1.01% 0.79% 13.10% 12.08% 

5 -1.07% 3.73% 19.16% 16.44% 

Sum of  Absolute Bias 11.18% 11.93% 75.96% 71.56% 

 

 

 

8.5 Desharnais Build2 

In the second build of the Desharnais data set the size of training data sets is 

decreased from 48 to 43 (i.e. approximate 53% of the data set). The size of the 

recall sets is decreased to 19 (i.e. approximate 24% of the data set). We found 
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that Linear Regression and Fuzzy Linear Regression predictions match the 

actual effort much better in Build2 than in Build1. In addition, the precision of 

SOM and FSOM is improved (see Figure 8.7 and Figure 8.8). 

 

 

Figure 8.7. Sum of Absolute Errors of Desharnais Build2 

 

While examining the bias (Table 8.6), it can be seen that Linear Regression 

and Fuzzy Linear Regression are overestimating the effort in every test by 

nearly 19% at the maximum. Whereas the bias of SOM and FSOM prediction 

results in this build are smaller than in Build1, it can also be seen that FSOM 

achieved a very low 0.01% bias in Test 1 where SOM has a low bias. Overall, 

SOM produced  the smallest Sum of Absolute Errors in this build while FSOM 

produced the lowest error from perspective of bias. 

 

Table 8.6 

Bias of Desharnais Build2 

Test 
Bias 

SOM FSOM LR FLR 

1 0.16% 0.01% 6.24% 6.11% 

2 2.89% 2.46% 18.76% 18.62% 

3 -1.62% -1.23% 13.37% 13.10% 

4 1.14% -0.22% 7.34% 7.20% 

5 1.74% 1.67% 9.38% 9.16% 

Sum of  Absolute Bias 7.55% 5.59% 55.09% 54.19% 
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Figure 8.8. Comparison of Actual and Predicted Results for Desharnais Build2 

 

 

 

8.6 Miyazaki Build1 

In the first build that utilizes the Miyazaki data set, 25 out of the 48 original 

records are used as a training set whilst 15 further records are used as a recall 

set. Three variables - SCRN, FORM, and FILE - are selected in the build as 

they are easy to understand and can be directly counted in the system.  
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Figure 8.9. Comparison of Actual and Predicted Results for Miyazaki Build1 

 

The trend lines in Figure 8.9 indicate that most of the prediction results deviate 

from the actual results wildly. In this build, when the trend lines of SOM and 

FSOM split, the gaps between them are more noticeable than they are for the 

other two data sets, especially in Test3 and Test4. The Sum of Absolute Error 

(see Figure 8.10) shows that SOM and FSOM are losing their superiority to 

(but still outperform) Linear Regression and Fuzzy Linear Regression. This is 

even clearer when appraising the bias. 
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Figure 8.10. Sum of Absolute Errors of Miyazaki Build1 

 

On the one hand, the SOM and FSOM forecasts display over 10% bias in most   

situations. On the other hand, Linear Regression and Fuzzy Linear Regression 

underestimate the effort in all tests by nearly 50% as shown by the maximum 

bias (Table 8.7). 

 

Table 8.7 

Bias of Miyazaki Build1 

Test 
Bias 

SOM  FSOM  LR FLR 

1 15.98% 14.69% -11.60% -11.54% 

2 -11.63% -8.06% -48.82% -48.53% 

3 5.54% 0.81% -42.16% -42.15% 

4 12.08% 15.43% -35.46% -25.94% 

5 -9.02% -10.93% -40.52% -40.45% 

Sum of  Absolute Bias 54.25% 49.93% 178.54% 168.61% 

 

Although strictly speaking SOM and FSOM achieve lower Sums of Absolute 

Error and bias than Linear Regression and Fuzzy Linear Regression, with 

Person-Month as the measure, biases that are close to 50% are clearly 

unacceptable in effort estimation. 
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8.7 Miyazaki Build2 

In this build, we keep the same three variables as predictors but we increase 

the size of the training set to 32 records and reduce the size of the recall set to 

14 records. 

 

It is surprising to see in Figure 8.11 that all four models perform much worse for 

one particular project – J3. By assessing other projects that require similar 

amounts of Person-Months, we found that J3 has much lower independent 

variable values except for SCRN. Hence, we have a good reason to believe 

that project J3 is an outlier. 

 

At the same time, we notice in Figure 8.12 that SOM and FSOM perform less 

accurately in this build, and their Sums of Absolute Error are closer to those of 

Linear Regression and Fuzzy Linear Regression. However, FSOM is more 

accurate than SOM here. 

 

 

Figure 8.12. Sum of Absolute Errors of Miyazaki Build2 
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Figure 8.11. Comparison of Actual and Predicted Results for Miyazaki Build2 

 

By looking at the bias in Table 8.8, we might say that Linear Regression and its 

enhanced version, Fuzzy Linear Regression in our case, are highly 

inappropriate for estimating software projects that are similar to those evident 

in the Miyazaki data set. Even though SOM and FSOM exhibit better 

performance, the quality of the predictions is unstable as the biases fluctuate 

sharply. Furthermore, when Person-Months is used as the unit for counting and 

predicting the effort, project managers are more sensitive to bias. 
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Table 8.8 

Bias of Miyazaki Build2 

Test 
Bias 

SOM FSOM LR FLR 

1 38.58% 37.67% 38.73% 38.69% 

2 1.06% -1.35% -55.41% -55.49% 

3 28.93% 32.34% 33.75% 33.69% 

4 3.98% 6.51% -13.80% -13.89% 

5 -4.89% -8.09% -60.47% -60.50% 

Sum of  Absolute Bias 77.44% 85.95% 202.17% 202.25% 
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9 Conclusion 

9.1 Fuzziness 

Since the size of recall sets used in the tests varies significantly, it is 

inappropriate to evaluate the performance of these four models across builds 

based on the Sum of Absolute Errors. In order to take into account the 

influence of absent historical data, we used the Average of Absolute Errors and 

Mean of Average Absolute Errors as indicators to illustrate the accuracy of 

different prediction models. Here, 

 

Average of Absolute Errors = Sum of Absolute Errors / Recall set size; and 

Mean of Average Absolute Errors = Sum of Average of Absolute Errors / 5 

 

A lower Mean of Average Absolute Errors indicates a more accurate model 

(Table 9.1). In 4GL Build1 and Build2, all four models perform slightly less 

accurately when the size of the training set is decreased from 65% of the 

original data set to 40%. (4GL Build3 and Build4 are not included here as they 

have different numbers of variables to 4GL Build1 and Build2.) 

 

Table 9.1 

Aspects of Training Data Sets vs. Models’ Performance 

Build 

Train 

Set 

Size 

Total 

Size 
Percentage Variables 

Mean of  

Average Absolute Errors 

SOM FSOM LR FLR 

4GL B1 42 70 65% 2 91 87 254 254 

4GL B2 28 70 40% 2 97 94 262 259 

Variance 14 - - 0 -6 -7 -8 -5 

4GL B3 45 70 64% 4 151 164 288 288 

4GL B4 45 70 64% 6 211 204 301 311 

Desharnais B1 48 81 59% 1 258 240 2411 2410 

Desharnais B2 43 81 53% 1 192 221 2258 2257 

Variance 5 - - 0 65 19 153 153 

Miyazaki B1 25 48 52% 3 13.2 12.6 27.6 26.6 

Miyazaki B2 32 48 67% 3 16.8 15.0 24.6 24.6 

Variance -7 - - 0 -3.6 -2.4 3.0 2.0 

 

When around 6% of the original Desharnais data set was removed from the 

training set, all four models provided forecasts that were more accurate to 
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varying degrees. However, when 15% of the original data set was added into 

the Miyazaki training set, it is interesting to observe that the performance of 

SOM and FSOM dropped whereas Linear Regression and Fuzzy Linear 

Regression presented better estimation. 

 

According to the assessment in Table 9.1, we conclude that both SOM and 

FSOM lose their ability to accommodate ambiguous and vague data when they 

are over-fed with historical records. They only become reasonably accurate for 

test data sets that are extremely similar to the training set and are not 

applicable for wider ranges of data that share the same features. However, 

when the size of the training set is less than 50% of the original data set (which 

is 4GL Build2 in our case) all four models lose their accuracy. 

 

It is also important to point out that the degree of fuzziness considered here is 

not extensive, especially in the 4GL and Miyazaki data sets. In these two data 

sets, the difference between the original and fuzzified versions of the data are 

only decimal digits, i.e. within (zero, 1). In contrast, the Desharnais data set has 

higher degree of fuzziness than the other two data sets. In the Desharnais 

builds, several original records were represented by one single fuzzified record 

after fuzzification.   

 

 

9.2 Data Distribution 

In order to gain a better insight into the relationship of data distribution and 

prediction accuracy, we calculated the Absolute Margin between actual 

size/effort and predicted size/effort for each test. In here,  

 

Absolute Margin = |Sum of actual value in fuzzy training set/Training set size – 

Sum of actual values in recall set/Recall set size| 

 

Thus, a higher Absolute Margin implies a more uneven data distribution split. At 

the same time, a lower Average of Absolute Errors means a more accurate 

model (as defined in Section 9.1). By analyzing the Kendall‟s taub correlation of 
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the Average of Absolute Errors of the four models against the Absolute Margin 

in each test, we found that there are associations most of the time (Table 9.2).  

 

Table 9.2 

Kendall’s taub Correlation between Absolute Margin & Average of Absolute Errors 

Build SOM FSOM LR FLR 

4GL Build1 .200 .200 .400 .400 

4GL Build2 -1.000 -.800 -.800 -.800 

4GL Build3 .400 .200 .200 .200 

4GL Build4 .000 -.200 .000 .400 

Desharnais Build1 .200 .200 .400 .400 

Desharnais Build2 1.000 .400 -.400 -.400 

Miyazaki Build1 .000 .400 -.400 .000 

Miyazaki Build2 -.200 -.200 -.200 -.200 

 

A number of these correlations are unexpected association. However, this can 

be explained by the prediction models being sophisticated. Besides data 

distribution, there are diverse factors affecting the accuracy of estimation, such 

as the fuzziness of the data set, the selection of the independent variable(s), 

the numbers of training cycles (in the case of SOM/FSOM), and so on. Our 

hypothesis for further work is “the more even the data distribution the more 

accurate the prediction model”. At the current stage, we do not have enough 

strong evidence to support this assertion. 

 

 

9.3 The Overtraining Issue 

In our experiment, the relevance of the overtraining issue with neural networks 

reported in previous studies is confirmed. In SOM and FSOM, the nodes of the 

map are generated in the training process. A higher number of nodes requires 

more training cycles, which implies more system capacity required and longer 

time consumed.  

 

In the Desharnais builds, apart from constructing the 10000 node maps for 

comparison with Linear Regression and Fuzzy Linear Regression, we also 

generated 8000 node maps. It can be seen from Figure 9.1 that in some tests 

SOM and FSOM produce lower errors with 10000 nodes. Nonetheless, whether 
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8000 or 10000 nodes are better can only be decided on a case by case basis 

and is weakly associated to data distribution according to the Kendall‟s taub 

correlation (see Table 9.1) for the Desharnais data set. 

 

 

 

Figure 9.1.  Sum of Absolute Errors Comparison for the Desharnais Data Set  

 

We also selected Test1 and Test2 in Miyazaki Build1 to observe the influence 

of the training process. In Test1, we generated 2000, 5000, 8000, 10000 and 

20000 node maps, whereas 2000, 8000, and 10000 node maps were used in 

Test2. A fully trained SOM/FSOM model offers better prediction although an 

overtrained SOM/FSOM model would be less accurate than a fully trained one. 

Therefore, we believe a fully trained SOM/FSOM model for Test1 is around 

8000 nodes. Meanwhile, a fully trained FSOM model for Test2 is also around 
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8000 nodes when a fully trained SOM model could have around 10000 nodes 

or even more, as demonstrated in Figure 9.2. 

 

 

Figure 9.2.  Sum of Absolute Errors Comparison for Miyazaki Build1 Test 1&2  

 

9.4 SOM and FSOM Maps 

One of the most novel and significant aspects of SOM is the ability of projecting 

multi-dimensional data into a two-dimensional map. In software project 

management, we believe such a characteristic of SOM/FSOM could offer an 

easy-to-understand straightforward representation of project features from 

which managers could obtain useful knowledge and understanding of complex 

problems. To inspect the relationships between the accuracy of estimation and 

the maps, we utilised the Average of Absolute Errors in each test to calculate 

the Difference and Absolute Difference of FSOM against SOM. Here,  
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Difference = SOM Average of Absolute Errors – FSOM Average of Absolute 

Errors; and  

Absolute Difference = |Difference| 

 

The minimum and maximum values of Average of Absolute Errors in Table 9.3 

are also highlighted to indicate the best (in green) and worst (in pink) 

performance of SOM and FSOM within every build.  

 

We notice that FSOM performance is very comparable to that of SOM most of 

the time, which means when SOM achieves its best (or worst) in a certain test, 

FSOM also hits its peak (or dip) in that same test. The exceptions are in 4GL 

Build3, 4GL Build4, and Desharnais Build2, where SOM and FSOM do not 

perform best at the same time. In our experiment, no evidence was found to 

show that there is any association among the accuracy of estimation (Average 

of Absolute Errors), the difference between SOM and FSOM prediction 

(Difference and Absolute Difference), and the presentation of the maps.  

 

For instance, while the maps in 4GL Build1 Test2 are similar, yet SOM and 

FSOM are at their worst and the Absolute Difference is the highest for the build. 

When both achieved the minimum of Average of Absolute Errors with the 

smallest Absolute Difference in 4GL Build2 Test2, the utility of the maps of 

SOM are different to that of FSOM. Desharnais Build1 Test3 presents less 

accuracy and the highest difference between maps. Miyazaki Build2 Test1 is 

the worst in terms of accuracy, however, Absolute Difference is the minimum 

for the build and maps are dissimilar. 
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Table 9.3 

Overall Performance Comparison 

  Test1 Test2 Test3 Test4 Test5 Min Max 
4
G

L
 B

1
 SOM Avg of AbsErr 84 127 85 96 62 62 127 

FSOM Avg of AbsErr 76 116 77 93 73 73 116 

Difference 7 11 8 3 -10 - - 

AbsDifference 7 11 8 3 10 3 11 

4
G

L
 B

2
 SOM Avg of AbsErr 102 78 102 105 97 78 105 

FSOM Avg of AbsErr 105 76 90 110 87 76 110 

Difference -3 2 12 -6 10 - - 

AbsDifference 3 2 12 6 10 2 12 

4
G

L
 B

3
 SOM Avg of AbsErr 205 140 141 131 139 131 205 

FSOM Avg of AbsErr 218 123 144 176 161 123 218 

Difference -13 17 -3 -44 -23 - - 

AbsDifference 13 17 3 44 23 3 44 

4
G

L
 B

4
 SOM Avg of AbsErr 208 219 196 202 229 196 229 

FSOM Avg of AbsErr 170 198 175 199 278 170 278 

Difference 39 21 21 3 -49 - - 

AbsDifference 39 21 21 3 49 3 49 

D
e
s
h

a
rn

a
is

B
1
 

SOM Avg of AbsErr 193 240 409 179 267 179 409 

FSOM Avg of AbsErr 201 226 349 172 252 172 349 

Difference -7 14 61 6 15 - - 

AbsDifference 7 14 61 6 15 6 61 

D
e
s
h

a
rn

a
is

B
2
 

SOM Avg of AbsErr 273 199 159 182 148 148 273 

FSOM Avg of AbsErr 262 229 260 160 193 160 262 

Difference 11 -30 -101 22 -45 - - 

AbsDifference 11 30 101 22 45 11 101 

M
iy

a
z
a
k
iB

1
 

SOM Avg of AbsErr 10 16 13.6 14.1 12.0 10.4 15.8 

FSOM Avg of AbsErr 12 15 11.9 11.9 12.5 11.9 14.8 

Difference -1.5 1.1 1.7 2.2 -0.5 - - 

AbsDifference 1.5 1.1 1.7 2.2 0.5 0.5 2.2 

M
iy

a
z
a
k
iB

2
 

SOM Avg of AbsErr 33 8 21.8 8.9 12.8 7.8 32.8 

FSOM Avg of AbsErr 33 6 20.3 6.6 9.2 6.1 32.7 

Difference 0.2 1.7 1.5 2.3 3.6 - - 

AbsDifference 0.2 1.7 1.5 2.3 3.6 0.2 3.6 

 

 

Figures 9.3-9.6 depict the maps produced in 4GL Build1 Test3 that are one set 

of the regular outcomes in our experiment. While the maps of clusters in Figure 
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9.3 and Figure 9.5 present multi-dimensional data in two-dimensional maps, 

the maps of variables in Figure 9.4 and Figure 9.6 show three dimensions that 

are variables in this case. The structures of maps for variables in SOM (Figure 

9.4) are exactly the same to the structure of the map for clusters in SOM 

(Figure 9.3), likewise maps in FSOM (Figure 9.6 & 9.5). In the maps for 

variables, certain colours are used to represent the different values of each 

variable. The relationship between colours and values are explained in the 

scales (Eudaptics, 1999). Blue stands for low and red stands for high.  

 

 

Figure 9.3. Map of Clusters in SOM of 4GL Build1 Test3 

 

 

Figure 9.4. Maps of Variables in SOM of 4GL Build1 Test3 
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Figure 9.5. Map of Clusters in FSOM of 4GL Build1 Test3 

 

Figure 9.6. Maps of Variables in FSOM of 4GL Build1 Test3 

 

It is evident that SOM and FSOM representations cluster the same set of data 

differently in this test, as well as in most of the other tests, in spite of only minor 

differences in the original and fuzzified values. Certainly, in some of the tests, 

such as 4GL Build1 Test2 mentioned above, the structure of maps for variables 

and clusters in SOM are analogous to maps in FSOM for the same test.  

 

In other words, even though both SOM and FSOM do provide a fair 

presentation of data distributions for dependent and independent variables, 

one could not infer whether SOM or FSOM is more accurate by only looking at 

the maps without consulting the recall outcome. 

 

 

9.5 Summary 

Based on the analysis of data presented in Table 9.1, we can assert that for the 

data sets considered here SOM and FSOM outperform Linear Regression and 
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Fuzzy Linear Regression in our experiment. This includes cases when noise or 

overwhelming historical data are introduced into the models, i.e. the SOM and 

FSOM are overtrained. 

 

According to the differences presented in Table 9.3, FSOM performs better 

than SOM in 65% (26 out of 40) of the tests. We can then assert that applying 

the Fuzzy C-Means algorithm prior to creating SOM models improves the 

accuracy of software project estimation in our experiment. 

 

When predicting software size as in the 4GL data set, SOM and FSOM offer 

more accurate estimations than Linear Regression. We could also argue the 

levels of errors and biases are acceptable. When predicting effort, project 

managers must appraise the estimation results carefully. In the Desharnais 

data set, Person-Hours is the unit of measure for project effort. Therefore, we 

could still claim the levels of error and bias of SOM and FSOM are tolerable 

and recommend SOM/FSOM as a suitable prediction tool. However, when the 

unit of measure of the project effort is in Person-Months as in the Miyazaki data 

set, although the errors are statistically small, we could not recommend SOM 

and FSOM as useful estimation tools. In this case, project managers should 

cautiously evaluate the performance of SOM/FSOM given their bias.  

 

Meanwhile, we also advocate a thorough correlation analysis to be carried out 

before constructing prediction models because noise has an impact on 

accuracy, especially for SOM and FSOM models. In our experiment, SOM and 

FSOM perform better when the size of the training set is 50-60% (depending on 

the data set) of the original data set. For that reason, we advise project 

managers to rebuild each prediction model when significant amounts of new 

data are acquired in order to achieve more accurate estimations. 

 

 

9.6 Summary of Findings 

This study has addressed the research question “Is the Self-Organising Map an 

appropriate candidate for estimation in software project management?” 
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In our case studies of three different software project data sets, compared to 

Linear Regression benchmarks, SOM generally provides more accurate 

estimations of software size and of the personnel effort required in software 

development. The integration of fuzzy logic techniques, via Fuzzy C-Means in 

our experiment, is helpful in handling vague and ambiguous real world data. 

Hence, we regard SOM and FSOM as appropriate candidates for prediction in 

software project management. 

 

9.7  Limitations and Future Study 

The foremost limitation of our experiment is that we only used Linear 

Regression and its transformed version of Fuzzy Linear Regression as the 

benchmark. Despite the fact that Linear Regression is one of the most 

commonly used statistical analysis approaches for inference, the focus on the 

conditional probability distribution restricts its applicability in circumstances that 

demand the consideration of joint probability distribution. For software project 

estimation that requires multivariate analysis, when evaluating the performance 

of SOM and FSOM, project managers should also think about using some 

alternative modelling methods that give quantitative outputs. For instance: 

 Fuzzy inference, which is able to deal with ambiguous data by applying 

fuzzy logic principles; or  

 Support Vector Machine (SVM), which is a set of related supervised 

machine learning methods for classification and regression analysis; or  

 Other forms of Artificial Neural Networks (ANN) which offer non-linear 

data modelling tools for relationship extraction and pattern recognition. 

 

Another significant limitation is the manner in which each Fuzzy SOM was 

created. In previous studies, researchers built FSOM using one of two main 

approaches: either create the two-dimensional map using SOM then apply 

FCM to cluster the map, or use FCM to fuzzify the original data before forming 

the two-dimensional map. We utilised the latter method in our experiment, thus 

future study on the former approach is recommended. 
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In addition, the fuzzifier that we employed in this experiment implemented a 

basic Fuzzy C-Means algorithm. As a technique that was developed some time 

ago, the drawbacks of FCM are well known and researchers have extended the 

basic Fuzzy C-Means algorithm into diverse enhanced versions. One of the 

examples is a new version of FCM introduced by Kannan, Devi, Ramathilagam 

& Sathya (2010). It is able to trim down noise and outliers in large data sets. 

Bearing in mind the poor performance of SOM and FSOM with the outlier in the 

Miyazaki data set, it may be that applying this improved version of FCM in 

creating a Fuzzy SOM would benefit this particular case of software project 

effort estimation. 

 

Furthermore, we also propose a more thorough investigation of the Miyazaki 

data set. Even though the SOM and FSOM models statistically outperformed 

Linear Regression and Fuzzy Linear Regression in our Miyazaki data set builds, 

the biases of SOM and FSOM are far beyond acceptable limits. In our 

experiment, two out of three independent variables that were used to form the 

models displayed low Kendall‟s taub correlation to the dependent variable – 

effort in Person Months. Therefore, it would be useful to consider the use of 

other combinations of variables in this model before revisiting the performance 

of SOM and FSOM with the Miyazaki data set. 

 

Since we believe project managers could benefit from using the two-

dimensional maps that offer straightforward representations of data, we 

suggest a further empirical study of the relationships between the accuracy of 

estimation and the presentation of SOM and FSOM maps, as perceived by 

project managers. This would allow project managers to determine under what 

circumstances FSOM is more or less appropriate than SOM for the estimation 

of a particular project or set of projects. We also encourage investigation of the 

hypothesis: “the more even the data distribution is the more accurate the 

prediction model would be”. 

 

Finally, understanding the relationship between the training set and the fully 

optimized size of SOM/FSOM (i.e. the best number of nodes) is an area that is 

worth future study. Without doubt, the optimised SOM and FSOM achieve their 
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best outcomes in terms of resulting in the lowest prediction errors than they do 

at other sizes. 
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11  Appendices 

 

Appendix A. Training Sets and Recall Sets 

Eight excel files of training sets and recall sets are provided in this appendix. 

One file includes five tests for one build. Please refer to the enclosed disk for 

the image files. 

 

Appendix B. SOM and FSOM Maps of Variables and Clusters 

This appendix includes SOM and FSOM maps generated in the eight builds. 

Please refer to the enclosed disk for the image files.  

 

Appendix C. Evaluation of Effort Estimation Spreadsheets 

This appendix is comprised by eight files that appraise the estimation errors of 

the four models in every single data records. Please refer to the enclosed disk 

for the Excel files.  

 

Appendix D. Comparison of Actual and Predicted Results 

This appendix contains eight line charts from the eight builds that compare 

actual and predicted results. Please refer to the enclosed disk for the image 

files.  

 

Appendix E. Data Analysis Tables and Figures 

The file in this appendix provides overall data analysis in detail. Please refer to 

the enclosed disk for the Excel file. 


