

Self-Organising Maps (SOMs)

in
Software Project Management

Lois Dai

 A thesis submitted to

Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

 2011

 School of Computing and Mathematical Sciences
Primary Supervisor: Professor Stephen MacDonell

Co-supervisor: Jim Buchan

i

Table of Contents

List of Figures ... iii

List of Tables .. iv

Attestation of Authorship ... v

Acknowledgements .. vi

Abstract.. vii

1 Introduction... 1

1.1 Brief Background and Research Objective.. 1

1.2 Research Design ... 4

1.3 Thesis Structure .. 5

2 Literature Review ... 6

2.1 Software Project Planning .. 6

2.1.1 Expert Judgment ... 7

2.1.2 Software Metric Models .. 8

2.1.3 Empirical Data Modelling .. 10

2.1.4 Machine Learning Models... 11

2.1.5 Software Quality .. 12

2.2 General Clustering .. 15

2.2.1 Case-based Reasoning and Analogy-based Estimation .. 15

2.2.2 Neural Networks .. 17

2.2.3 Principal Components Analysis .. 18

2.2.4 K-means Algorithm .. 18

2.2.5 Vector Quantization ... 19

2.2.6 Brief Comparison... 20

3 Research Methodology ... 22

3.1 Information Systems Research .. 22

3.2 Research Frameworks.. 23

3.3 Related Examples from Diverse Domains ... 27

3.4 Experimentation .. 29

4 Self-organizing Maps ... 32

4.1 Self-organizing Map Clustering .. 32

4.2 The Basic SOM Algorithm... 33

4.3 Diverse SOMs ... 35

4.4 Drawbacks of SOM ... 36

4.5 Application and Extension .. 38

5 Fuzzy SOM... 40

5.1 FSOM in Image Processing .. 40

5.2 Assorted FSOM Applications .. 42

5.3 FSOM in Decision Support Systems .. 43

5.4 Algorithms Selection ... 45

6 Fuzzy C-Means .. 50

6.1 Clustering ... 50

6.2 Crisp Clustering ... 50

6.3 Fuzzy Clustering.. 51

6.3.1 Fuzzy C-Means ... 52

6.3.2 Limitations of FCM... 53

6.3.3 Application of FCM .. 54

7 Model Design ... 55

7.1 Correlation Analysis .. 55

7.2 Data Sets ... 57

7.2.1 The 4GL Systems Data Set .. 57

7.2.2 The Desharnais Data Set ... 59

ii

7.2.3 The Miyazaki Data Set .. 62

7.3 Viscovery4 ... 63

7.4 Fuzzifier ... 64

8 Model Evaluation and Comparison ... 65

8.1 4GL Build1 ... 66

8.2 4GL Build2 ... 69

8.3 4GL Build3 & Build4 .. 70

8.4 Desharnais Build1 ... 71

8.5 Desharnais Build2 ... 73

8.6 Miyazaki Build1.. 75

8.7 Miyazaki Build2.. 78

9 Conclusion.. 81

9.1 Fuzziness... 81

9.2 Data Distribution .. 82

9.3 The Overtraining Issue.. 83

9.4 SOM and FSOM Maps .. 85

9.5 Summary ... 89

9.6 Summary of Findings .. 90

9.7 Limitations and Future Study .. 91

10 References ... 94

11 Appendices ..100

Appendix A. Training Sets and Recall Sets ...100

Appendix B. SOM and FSOM Maps of Variables and Clusters ...100

Appendix C. Evaluation of Effort Estimation Spreadsheets ..100

Appendix D. Comparison of Actual and Predicted Results ..100

Appendix E. Data Analysis Tables and Figures ..100

iii

List of Figures

Figure 2.1. The COCOMO Suite of Models of Boehm & Valerdi (2008) ... 11
Figure 3.1. The Multimethodological Research Approach of Nunamaker et al. (1991) 24
Figure 3.2. The Design Science Research Process (DSRP) of Peffers et al. (2006) 26
Figure 7.1. The User Interface of the Fuzzifier ... 64
Figure 8.1. Comparison of Actual and Predicted Results for 4GL Build1 ... 67
Figure 8.2. Sum of Absolute Errors of 4GL Build1 ... 68
Figure 8.3. Sum of Absolute Errors of 4GL Build2 ... 69
Figure 8.5. Comparison of Actual and Predicted Results for Desharnais Build1 ... 72
Figure 8.6. Sum of Absolute Errors of Desharnais Build1 ... 73
Figure 8.7. Sum of Absolute Errors of Desharnais Build2 ... 74
Figure 8.8. Comparison of Actual and Predicted Results for Desharnais Build2 ... 75
Figure 8.9. Comparison of Actual and Predicted Results for Miyazaki Build1 ... 76
Figure 8.10. Sum of Absolute Errors of Miyazaki Build1 ... 77
Figure 8.12. Sum of Absolute Errors of Miyazaki Build2 ... 78
Figure 8.11. Comparison of Actual and Predicted Results for Miyazaki Build2 ... 79
Figure 9.1. Sum of Absolute Errors Comparison for the Desharnais Data Set ... 84
Figure 9.2. Sum of Absolute Errors Comparison for Miyazaki Build1 Test 1&2 .. 85

iv

 List of Tables

Table 2.1 Comparison of Clustering Techniques ... 21
Table 3.1 Application of DSRP Model Activity 1-5 ... 30
Table 5.1 Comparison of DSS FSOM Algorithms .. 46
Table 5.2 Comparison of FSOM Algorithms ... 48
Table 7.1 Variables of 4GL Data Set (Adapted from MacDonell, 2005) ... 58
Table 7.2 Kendall's taub Correlation Coefficient of Variables of 4GL Data Set .. 59
Table 7.3 Variables of Desharnais Data Set .. 60
Table 7.4 Kendall's taub Correlation Coefficient of Variables of Desharnais Data Set................................... 61
Table 7.5 Variables of Miyazaki Data Set ... 62
Table 7.6 Kendall's taub Correlation Coefficient of Variables of Miyazaki Data Set 63
Table 8.1 Parameters of Eight Builds ... 66
Table 8.2 Bias of 4GL Build1 ... 68
Table 8.3 Bias of 4GL Build2 ... 70
Table 8.4 Mean of Absolute Errors of 4GL Builds .. 71
Table 8.5 Bias of Desharnais Build1 ... 73
Table 8.6 Bias of Desharnais Build2 ... 74
Table 8.7 Bias of Miyazaki Build1 ... 77
Table 8.8 Bias of Miyazaki Build2 ... 80
Table 9.1 Aspects of Training Data Sets vs. Models’ Performance .. 81
Table 9.2 Kendall’s taub Correlation between Absolute Margin & Average of Absolute Errors..................... 83
Table 9.3 Overall Performance Comparison .. 87

v

 Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written

by another person (except where explicitly defined in the acknowledgements),

nor material which to a substantial extent has been submitted for the award of

any other degree or diploma of a university or other institution of higher

learning.”

Yours sincerely,

(Lois DAI)

vi

Acknowledgements

“The fear of the LORD is the beginning of wisdom: and the knowledge of the

holy is understanding.”

Proverbs 9:10

First and foremost, I would like to express my deepest gratitude to my primary

supervisor Professor Stephen MacDonell, who has provided me with his

valuable guidance and extreme patience at every stage of the writing of this

thesis.

I also want to extend my appreciation to my secondary supervisor Mr. Jim

Buchan, for his enlightening instructions and impressive kindness that not only

guided me throughout the course of my study, but have also encouraged me to

continue with my study in the future.

Last but not least, I must thank my family and all friends, especially Mr. Baoyi

Liu and Mr. Andy Wong, for their selfless help and support.

vii

Abstract

Although numerous researchers have devoted much time and effort to the

issue, generating a reliable and accurate cost estimate at an early stage of the

development life cycle remains a challenge to software engineers. In recent

years an increasing number of studies have turned their attention to the

employment of machine learning, especially Artificial Neural Networks (ANNs),

in performing such estimation activities. A Self-Organising Map (SOM) is a

particular type of ANN that utilises a neighbourhood function that can be used

as an unsupervised clustering tool. Its ability to project multi-dimensional data

into a two-dimensional map makes the SOM appealing to software engineers.

In addition, the vague and ambiguous nature of real world software data

demands techniques that can handle fuzziness. Accordingly, researchers have

introduced fuzzy logic approaches such as fuzzy sets, fuzzy rules, fuzzy

inference and the associated fuzzy clustering techniques into the original area

of neural networks. Following a thorough literature review, it was decided that

Self-Organising Maps could be an appropriate candidate for estimation in

software project management. In order to investigate our hypothesis we build

predictive models using Self-Organising Maps and compare them with Linear

Regression models. The Fuzzy C-means algorithm is utilized in our study to

pre-process ambiguous and vague real world data, which also refines the

clustering outcome.

This study presents and analyses the results of three case studies that use

data sets from different software projects. The findings indicate that Self-

Organising Maps surpass Linear Regression in all three cases (even when

noise was introduced), both in terms of generating more accurate estimates

and presenting easy-to-understand relationships among the project features,

when compared to Linear Regression models. Alternative approaches and

extensions are suggested in order to overcome the limitations of the study.

Other recommended future study areas include, but are not limited to, exploring

alternative approaches to forming Fuzzy Self-Organising Maps (FSOMs),

viii

adopting new versions of the Fuzzy C-means algorithm, and investigating

further the sensitivity of SOMs and FSOMs.

Page 1

1 Introduction

1.1 Brief Background and Research Objective

Cost estimation in software project management generally refers to the

prediction of the personnel effort required in development, and is part of the

activity and schedule planning management tasks undertaken by software

project managers (Kurbel 2008). Generating reliable and accurate cost

estimates at an early stage of the development life cycle is an ongoing and

significant challenge for software engineers.

Factors such as developer fatigue, team dynamics, and the likely effect of new

techniques and tools are among the variables that may be difficult to model in a

quantitative sense, although experienced managers may be able to take these

factors into account qualitatively. Such experience and knowledge are clearly

vulnerable to loss. That is, if a manager who possesses significant project

knowledge leaves an organisation, retaining his or her knowledge about the

relationships between factors can be important for the organisation to stay in

business. Even if they have recorded this information, managers may not be

aware of appropriate methods for leveraging it in terms of effort prediction.

One approach used to address this issue involves developing models based on

historical data, by mining trends and patterns to estimate aspects of interest

(including effort) based on factors (metrics) as accounting for specification size,

developer expertise and experience, and code quality and complexity.

However, model development and subsequent calibration are far less

practicable for immature organisations which suffer from a lack of such an

historical database. Gray & MacDonell (1997) found that fuzzy systems can be

applied to software metrics in early estimation where sufficient information for

more detailed models is not available or where data is only available in small

quantities (or even not at all). They reach this conclusion after comparing a

range of modelling techniques that could be suitable for predictive software

metric model development, including least squares regression, robust

Page 2

regression, neural networks, fuzzy systems (adaptive), hybrid neuro-fuzzy

systems, and regression trees.

More recently, Berlin, Raz, Glezer & Zviran (2009) compared linear regression

and artificial neural networks (ANNs) and found that such methods are

characterised by unclear and closed structure that make them complex and

opaque. It is therefore difficult for a project manager without specialist

mathematical knowledge to understand the common sense underlying the

computation processes. The use of fuzzy models, and language close to the

domain of project managers, may help to address this issue.

Hsiao, Lin & Chang (2008) proposed a fuzzy membership function approach to

transform verbal opinions into numbers. They conducted two experiments to

compare the performance of this value-based measure with traditional

variance-based methods and an entropy measure. They argued that the fuzzy

membership-based consensus measure indeed improves performance,

especially when a large number of people are involved in the decision making.

To improve the ability of processing of numerical and categorical data in

similarity measurement and to decrease uncertainty, Azzeh, Neagu & Cowling

(2010) also employed Fuzzy set theory with Grey Relational Analysis (GRA) as

a new formal Estimation by Analogy (EA) model. These studies serve to

illustrate that fuzzy logic modelling may assist managers when producing

predictions for software projects.

MacDonell & Gray (2003) presented a fuzzy logic software toolset called

FUZZYMANAGER that can effectively incorporate manager knowledge in a

model either with or without historical data. The toolset consists of two

modules: CLUESOME (CLUster Extraction for SOftware MEtrics) derives

membership functions and rules, while FULSOME (FUzzy Logic for SOftware

MEtrics) generates and refines the graphical output of membership functions

and rule bases and then supports the prediction process via fuzzy inference. In

two case studies, MacDonell & Gray (2003) demonstrated that in certain

circumstances, the fuzzy logic approach not only outperforms linear regression

Page 3

in representing software project management relationships, but also is capable

of dealing with uncertainty and vagueness in classification and prediction. This

is due to the fact that fuzzy logic methods create models based on the existing

management expertise and allow adjustment when new knowledge is gained.

In a later paper, MacDonell (2005) described the empirical analysis of Kohonen

self-organizing maps (SOMs) that utilise multiple attributes to create a model

suitable for classification and prediction. As a neural-network based

representation of data distributions, SOMs provide a two-dimensional

visualization to expose the dispersion of artifacts/vectors and the

interrelationships among factors. The author found that the SOM method was

accurate and outperformed a corresponding regression model in classification

and unbiased prediction in most runs of a software size prediction exercise.

This suggests that SOM-based clustering may be a good candidate for

modelling and prediction, as proposed in this research. Considering that the

traditional SOM fails to deal with uncertainties, Li, Kuo & Tsai (2010) integrated

the SOM with the fuzzy c-means (FCM) algorithm (Jain, Murty & Flynn 1999).

FCM is a popular fuzzy clustering algorithm, which Jain et al. (1999) applied to

their intelligent decision-support model for clustering, visualization, and

linguistic information processing.

The studies described above reflect that traditional parametric models cannot

handle complex data and uncertainty well. Furthermore, compared with other

machine learning methods such as analogy and standard artificial neural

networks, or statistical techniques such as regression, a fuzzy logic approach

and associated techniques can deal better with imprecision, which is likely to

be a factor in regard to project management data. Thus there is reason to

assert that fuzzy logic modelling (fuzzy sets, fuzzy rules, and fuzzy inference)

and associated techniques such as fuzzy clustering could be a more suitable

approach in the domain of software project management estimation.

The objective of this research is to assess the effectiveness of the Self-

Organising Maps (SOMs) algorithm and its enhanced version – the Fuzzy Self-

Page 4

Organising Maps (FSOMs) algorithm – for clustering project management data.

These clusters are then used to forecast the size (i.e. lines of code) of software

artifacts or the effort required to produce them. In other words, the clusters can

be used for software project estimation. Therefore this study addresses the

following research question:

“Is the Self-Organising Map an appropriate candidate for estimation

in software project management?”

1.2 Research Design

In Information Systems research, presenting the accomplishment of an artifact

or proposed framework with robust evidence from case studies can serve the

purpose of demonstrating support or otherwise for a research hypothesis. Such

an approach is embodied in the Design Science methodologies. For that

reason, the Design Science Research Process (DSRP) model of Peffers,

Tuunanen, Gengler, Rossi, Hui, Virtanen & Bragge (2006) has been utilised in

this research.

Specifically, this research pursues the evaluation of the Self-Organizing Map

(SOM) and Fuzzy SOM (FSOM) in software project management. We adopt as

a benchmark Linear Regression, which is one of the most commonly used

statistical prediction techniques. To ensure a fair and complete comparison, we

also create for each case study a model – namely Fuzzy Linear Regression –

as the Fuzzified version of the original Linear Regression to parallel FSOM to

SOM.

Data sets from three software contexts are employed in our study in order to

test our models: 1) the 4GL (i.e. Fourth-generation programming language)

Systems data set, which was collected at the University of Otago in New

Zealand; 2) the Desharnais data set, which is a publicly available data set for

software engineering research; and 3) the Miyazaki data set, collected and

published by the Fujitsu Large Systems Users Group. Prior to the construction

of predictive models, correlation analysis is conducted in order to select

Page 5

appropriate variables from the original data sets to avoid noise adversely

affecting the estimation results. In order to assess the accuracy of models, a

diversity of statistical approaches is utilized in the data analysis of prediction

outcomes of SOM, FSOM, Linear Regression, and Fuzzy Linear Regression.

1.3 Thesis Structure

This thesis is structured as follows: the next chapter provides a literature review

of previous research concerned with software project planning and general

clustering techniques. Chapter 3 explains the research methodology using four

examples, and highlights the application of the DSRP model in this research. In

Chapter 4, a study of SOM considers its features and drawbacks, along with

applications and extensions. Chapter 5 compares the approaches for

constructing Fuzzy SOM and their applications. Chapter 6 reviews the benefits

of Fuzzy C-Means as a clustering tool. Chapter 7 describes in detail the three

data sets with variable selection. Information about tools for creating SOM and

FSOM models is also provided in this chapter. Chapter 8 presents analyzed

empirical evidence based on case studies that utilise the three data sets.

Chapter 9 summarizes and synthesizes the case study results, Chapter 10

points out the limitations of this research, and offers recommendations for

future research.

Page 6

2 Literature Review

This chapter begins by reviewing contemporary project management estimation

techniques, providing a clear understanding of the context for my study. It also

provides justification for investigating a machine-learning approach and

associated clustering techniques. This is followed by a survey of related

clustering techniques, concluding with an evaluation of their suitability in a

project management estimation context. This motivates the research question

for this study, on the suitability of self-organizing maps.

2.1 Software Project Planning

According to the Project Management Institute (PMI) the activities involved in

project management can be classified into five processes: initiating, planning,

executing, monitoring and controlling, and closing a project. These processes

can take place in a single project phase or occur cyclically throughout an entire

project. In software development and maintenance projects, determining

precise estimates of duration, cost and required effort at the beginning of the

software life cycle is one important determinant of project success as such

estimation has an impact on resource allocation and project feasibility (Corbel,

2008). Underestimated costs can lead to forced investment with minimal or

even no profit, while overestimated costs could cause unnecessary project

cancellation. Estimation should also not be a one-shot activity: both Pfleeger

(2001) and Sommerville (2007A) state that when more accurate project

information is obtained or when project aspects change, the estimation needs

to be refined.

Generally, personnel effort is the biggest component of software project cost

(Fleeter, 2001). It is determined by how many staff-days (some managers of

larger projects would utilize months rather than days) will be necessary for

carrying out the project. While it is essential to determine the required effort for

completing a project, effort is the component with the highest degree of

uncertainty among all the cost components.

Page 7

Due to the nature of software development, most processes and activities have

inter-relationships that imply that isolation is impossible. For instance,

important factors that a manager seeks to control, such as time, cost and

quality, are co-related and affected by various other factors in a complex

manner. Therefore, managers need to pay attention to a large number of

variables, and take into account their complicated interrelationships. Pfleeger

(2001) identified several key factors that influence the estimate, such as system

complexity, system size, project team capabilities and experience, the

anticipation of changes in customer requirements, team size, available

resources, and others.

There are many different techniques used to perform estimation for software

development projects. The Project Management Body of Knowledge (PMBOK)

categorises them into three classes: expert judgment, empirical data modelling,

and machine-learning (ML).

2.1.1 Expert Judgment

One of the most commonly used effort-estimation methods is expert judgment.

Naturally, prediction accuracy when this approach is used depends on the

experience, competence, perception, and motivation of the estimator(s)

(Fleeter, 2001). Experts in relation to the proposed software development

application and perhaps the software domain may be consulted and their

individual cost estimates are then compared and discussed until an agreed

estimation is reached (Sommerville, 2007B). In some cases this may involve

weighting the estimates according to individuals‟ expertise.

In a similar vein, analogy-based estimations are widely used as well. By

analogy, the cost of the new project is estimated based on one or more finished

projects. In addition, the method can be extended so that if system A and

system B are similar, while the complexity or size of A is double that of B, then

one can suppose A to cost double the cost of B. However, projects that appear

Page 8

to be analogous could in fact be very different. Even if the differences between

projects are identified, their influence on project cost may still be uncertain, as

the relation between and project characteristics and cost is not always known.

Furthermore, some factors other than those associated with the product being

constructed may be influential. For instance, the larger the project team, the

more time may be needed for communication and co-ordination.

Besides its inherent subjectivity and variability, expert judgment also strongly

relies on current data. To reflect the current practices, the data for expert

judgment must be updated regularly. Moreover, as pointed out by Pfleeger

(2001), most expert judgment techniques are far too simple and can ignore

factors that have an impact on the effort needed for a project.

Furthermore, MacDonell & Gray (2003) indicated that when experienced project

managers leave an organisation, the knowledge they take with them may be

crucial for project planning and could be difficult to replace. Especially in those

organisations that are not mature in operation, such knowledge could even not

be replaceable. Historical data can be utilized for model development, indexed

for retrieval, and mined for trends and patterns; less mature organisations are

categorized by the absence of such an historical database. Unfortunately, most

modelling methods assume that such data exist.

2.1.2 Software Metric Models

A metric is defined by the IEEE Standard Glossary of Software Engineering

Terms (Pressman, 2001, p.81) as “a quantitative measure of the degree to

which a system, component, or process possesses a given attribute”.

In a software development project, when the criteria of measurement are

established, it can be fairly straightforward to gather direct measures such as

cost and effort applied, product aspects including Lines Of Code (LOC), and

other attributes. Nevertheless, product characteristics such as quality,

Page 9

efficiency, complexity, functionality, reliability, and maintainability, have to be

indirectly measured, as they are difficult to assess.

Therefore, planners and project managers have been known to default to using

LOC as it can be so easily counted. As a result a huge proportion of data

predictions based on LOC exist in the literature, and LOC or KLOC (thousand

lines of code) is one of the key inputs in many software estimation models.

However, accurate estimates for LOC in advance of analysis and design are

difficult to achieve. Furthermore, LOC measures cannot accommodate

nonprocedural programming languages in an effortless manner and they tend

to unfairly penalize shorter but well-designed programs.

The Function Point (FP) metric that was first proposed by Albrecht in 1979 is

derived from empirical relationships grounded in direct measures. Planners and

project managers estimate whether a particular entry is complex, average, or

simple with conventions established by internationally standardised function

point methods. Similar to LOC, function points are used to standardize

measures for software quality, productivity, and other project aspects. It is

worth noting, however, that the determination of complexity is subjective to

some extent.

Originally, the function point measurement approach was designed for

business information systems applications. Hence, it is inadequate for most

engineering and embedded systems in contrast to information systems, which

deliberately segregate function and control data dimensions. To remedy, a

superset of the basic function point measure has been proposed. One of them

is a feature point method that accommodates applications that have high

algorithmic complexity. As a result, process control, embedded, and real-time

software applications are amenable to quantification using the feature point

approach.

Page 10

2.1.3 Empirical Data Modelling

In most software estimation models, the relationship between size, effort and

cost and the elements that influence them are presented as equations. Effort is

normally set as a dependent variable while several elements such as size,

experience, and application types are the independent variables. LOC or FP is

calculated by empirically derived formulas and the resultant values are plugged

into the estimation model. As Pressman (2001) pointed out, since most

estimation models are based on empirical data derived from limited project

samples, it is necessary to exercise caution in regard to the scope of

applicability of the results. The majority of these models utilize project size as

their key element. Such an emphasis obviously places extensive reliance on

the accuracy of size measurement given its role as the primary variable. Since

estimations are normally demanded before a system is expressed as LOC, the

models simply „shift‟ the challenge of effort estimation to one of size estimation.

The original Constructive Cost Model (COCOMO) was created in the 1970s.

Boehm selected size as the principal determinant of cost and adjusted the

initial estimate according to several cost drivers reflecting aspects of the project,

the development environment, the product, and attributes of staff. Boehm then

created COCOMO II, which incorporates three sizing techniques to reflect the

evolution of software development (Boehm & Valerdi, 2008). Instead of using

LOC as its key input, COCOMO II reflected the futility of obtaining an accurate

value for LOC in the early stages of the development cycle. In COCOMO II,

planners and project managers start by determining prototypes for high-risk

aspects including software and system interaction, user interface, performance

and so on. In the early design stage, designers have to state alternative

architectures and concepts of operation. Development begins in the post-

architecture stage when further details are unveiled, and many costly elements

become more predictable. Most importantly, size can be more accurately

estimated in terms of LOC or FP.

Page 11

However, Boehm & Valerdi (2008) highlighted that COCOMO II does not cover

some development styles, therefore additional COCOMO II related models

were developed. Figure 2.1 below illustrates the COCOMO suite of models.

Figure 2.1. The COCOMO Suite of Models of Boehm & Valerdi (2008)

The software engineering field is continually being reinvented: consider

structured methods, abstract data types, agile development processes, and

emerging programming languages. Boehm & Valerdi (2008, p.80) suggested

that modeling should prune the less relevant software engineering experiences

while retaining the parts with durable value.

2.1.4 Machine Learning Models

In reviewing the literature it appears that traditional metrics and empirical

(primarily statistical) data models cannot satisfy the needs of accurate software

project planning in the ever-evolving software environment (e.g. see the review

of Jørgensen & Shepperd, 2007). More and more researchers and practitioners

have started to turn their attention to machine learning to leverage clustering

and prediction algorithms that can be used to estimate aspects of their software

projects (e.g. see Kocaguneli, Menzies & Keung, 2011).

Page 12

Machine learning techniques are broadly used to automatically extract

knowledge. Machine-learning approaches discussed in Muzaffar & Ahmed

(2010) include rule induction, analogy, regression trees, evolutionary

computation, Bayesian belief networks, artificial neural networks, and fuzzy

logic. The setting of the parameters of the underlying techniques affect the

classification or prediction accuracy of machine learning methods. In terms of

model accuracy, MacDonell (2003) notes that the neural network is more

effective for development effort estimation than case-based reasoning and rule

induction methods.

However, Dick, Meeks, Last, Bunke & Kandel (2004) highlighted that when

identifying minority classes in a skewed data set machine learning algorithms

tend to be less effective without preliminary treatment of the data (for instance,

oversampling the minority class(es)). In addition, small variations from the

overriding linear behaviour that could be the most important features, would

generally be considered noise. On the other hand, Moreno, Ramos, García, &

Toro (2008) pointed out that in general only one output variable is pursued in

the use of machine learning techniques. Additionally, from a non-mathematical

specialist perspective, the complex and closed structures of machine learning

methods can make them difficult to interpret (MacDonell, 2005; Berlin, Raz,

Glezer & Zviran, 2009).

2.1.5 Software Quality

Apart from delivering the proposed software on time and on budget, ensuring

its quality and reliability is also vital in software project development. Especially

for systems where software failures could cause severe consequences, the

demand for software quality prediction remains paramount.

One of the mechanisms to enhance software quality is to identify, locate and

treat the causes of intolerable variations for software quality monitoring and

control. The ongoing utility of quality measurements requires the collection of

software metrics from different process phases of the software development.

Page 13

Although different metrics determine different characteristics, many tend to be

related not only to each other (through the common dimension of size) but also

to the number of failures in a module. Therefore, models based on software

metrics can identify the number of faults expected in potential error-prone

modules, so that project managers pay more attention to high-risk modules

when inspecting and prioritizing development effort and planning maintenance

and reengineering activities.

Typically, software quality classification models are trained with software

measurements and defect (software quality) data from prior development

experiences with similar projects. Such an approach presumes the organisation

has had previous experience with similar project(s) and that defect data exist

for all modules as training data. In such a case, models are based on

supervised learning since the software quality measurement guides the training

process. In software engineering practice, however, the measurements may be

inaccurate, incomplete, or even unavailable. These situations may occur when

the organisation does not have experience of developing a similar system or

relevant and accurate software quality measurements from prior system

releases. Moreover, when the organisation has no previous development

experience of a similar system, inappropriate usage of measurement and

defect data can occur in modelling.

Since the supervised learning approach to software quality modelling is

inapplicable due to the absence of defect labels and/or training data, labeling

each program module as either fault-prone or not fault-prone relies on expert

judgment, an approach that can become time-consuming, laborious and

expensive. Particularly in the last decade several relevant studies have been

carried out. As fault-prone modules that have similar measurements would be

clustered together, unsupervised learning methods that can group modules by

their software metrics value (while not needing knowledge of dependent

variables as characterized by class labels) are more appropriate for model

building.

Page 14

Yuan, Khoshgoftaar, Allen & Ganesan (2000) presented a modelling technique

that predicted the number of faults by fuzzy subtractive clustering, and then

evaluated the model by module-order modelling. Instead of a quantitative

approach with a crisp classification method, fuzzy logic started with the concept

of a fuzzy set that had no clearly defined boundary and admitted a likelihood of

partial membership. Membership functions of the fuzzy set mapped its

appropriate value to the element of the domain. Generally, it is complicated to

elicit fuzzy rules from software engineering experts. To offer an alternative,

subtractive clustering produces fuzzy inference rules through clustering the

training data automatically. Each fuzzy inference rule is represented as a

cluster center. Moreover, a Gaussian membership function is then designed for

each variable.

Later, Zhong, Khoshgoftaar & Seliya (2004) developed a clustering-based and

expert-based software quality estimation method for an interactive software

quality evaluation system that involved software engineering experts in the

process. Two different clustering methods (k-means and Neural-Gas) were

studied and the authors found that the k-means algorithm runs much faster. At

the same time, these authors (Seliya, Khoshgoftaar & Zhong (2005)) proposed

a semi-supervised clustering scheme for software quality estimation with

incomplete fault-proneness defect data. When comparing Neural-Gas

clustering with expert-based labeling, the former scheme yielded better

classification results. Furthermore, Seliya & Khoshgoftaar (2007) introduced a

constraint-based semi-supervised clustering scheme that utilized a k-means

algorithm for clustering modules that were already labeled as either fault-prone

or not fault-prone by a software engineering expert.

Dick, Meeks, Last, Bunke & Kandel (2004) were one of the proponents of fuzzy

c-means clustering as it permitted ambiguity and noise that clearly reflected the

reality of software failure analysis better. Likewise, Pedrycz & Succi (2005)

established a user-friendly and straightforward two-phase hyper-box approach

in which fuzzy c-means clustering from a collection of “seeds” of the hyper-

boxes were used in the first phase, then genetic algorithm “grown” (expanded)

Page 15

hyper-boxes were utilized in the second phase. Reported in Aroba, Cuadrado-

Gallego, Sicilia, Ramos & Garcia-Barriocanal (2008), a fuzzy-clustering based

segmented model exhibited better predictive capabilities, presented higher

explicative capabilities, and were able to aggregate estimation from different

components of partial models.

2.2 General Clustering

In discriminant analysis (a form of supervised classification), a collection of pre-

classified training data are provided as labeled patterns so that the model can

learn the descriptions of classes. However, in more exploratory pattern-

analysis and machine-learning situations (such as pattern classification, data

mining, document retrieval, and image segmentation), there are few statistical

models available, and the decision-maker must avoid making assumptions

about the data. Therefore, clustering (i.e. unsupervised classification) that

explores the interrelationships among the data based on similarity is more

appropriate. The given collection of unlabeled patterns (usually represented as

points in a multidimensional space, or vector of measurements) is grouped into

meaningful clusters. Patterns within the same cluster are more similar to each

other than patterns from different clusters. Labels for categorizing clusters are

solely obtained from data, in other words, they are data driven (Jain, Murty &

Flynn, 1999).

2.2.1 Case-based Reasoning and Analogy-based Estimation

In case-based reasoning, a method that mimics the process of decision making

by an expert, stored observations that are the closest to a new one would be

used for new value estimation. This approach has found favour is some prior

research in software project management. Gray & MacDonell (1997) found that

a case-based reasoning system outperformed FP and COCOMO models, and

was close to the level of an expert. For this reason, they suggested that expert

reasoning by analogy be used as a management support tool. Berlin, Raz,

Glezer & Zviran (2009) also mentioned that a case-based approach named

Page 16

ESTOR was reported to achieve significantly better performance than

COCOMO and function point analysis on restricted samples of problems

estimation. However, case-based reasoning systems are not without their

problems: they are intolerant to irrelevant features and noise, and are also

strongly influenced by the similarity function used in terms of performance.

Although the approach seems to suit effort estimation well in principle

(especially when the software product is poorly understood), analogy-based

estimation still faces challenges such as the uncertainty of software attribute

identification and measurement because of the involvement of human judgment.

Another challenge is the variability of data set structures such as number of

attributes, training data set size, missing values, nominal and ordinal scale

attributes, outliers and collinearity (Azzeh, Neagu & Cowling, 2010). On the

other hand, Huang, Chiu & Liu (2008) suggest applying suitable adjustment

and weightings to improve the accuracy of analogy-based software effort

estimation.

Recently, Azzeh, Neagu & Cowling (2010) integrated Fuzzy modelling in Grey

Relational Analysis (GRA) to form a new model called Fuzzy GRA. Because of

the employment of the concept of absolute point-to-point distance between

cases, GRA is considered as a simple form of case-based reasoning which

flexibly models complex nonlinear relationships between cost drivers and effort.

Fuzzy GRA comprises four main stages: data preparation, feature identification,

case retrieval, and effort prediction. To reduce the uncertainty and imprecision

inherent in attribute measurement, fuzzy set theory is used to provide a

representation scheme and mathematical operations with a formal quantitative

model to capture and handle vagueness in natural language. In addition, a

fuzzy model is employed for moderating uncertainty or similarity degree

between reference tuple and treatment. There are several limitations of the

Fuzzy GRA model such as the absence of a linear search to find the best value

of the distinguishing coefficient for each data set, and the demand for sufficient

numbers of observations for constructing the fuzzy sets.

Page 17

2.2.2 Neural Networks

Over the past three decades, neural networks have been used extensively in

many software metric modelling studies for both classification and clustering.

Neural networks are capable of representing complex non-linear relationships

and approximate functions. The neural networks commonly used in this domain

are “feed-forward” networks trained using the back-propagation algorithm.

In back-propagation trained feed-forward neural networks the number of layers

and neurons in each layer are first selected along with determination of how the

neurons will be connected to each other, a transfer function, and parameters

for the training algorithm. Then the network is trained by iteratively adjusting

the weights between the input nodes and the output nodes to narrow down the

gap between its predicted output and the actual output. To optimize the

network‟s ability for generalization (which is measured by its predictive

performance on unseen data), this process needs to be stopped before the

training data has been completely learned. Since the architecture of the

networks affect their performance, and also to ensure good generalisability, a

range of architectures are normally tried and assessed by using a validation

data set.

Jain, Murty & Flynn (1999) summarized three important features of neural

networks in pattern clustering: they 1) require quantitative features to represent

patterns for processing numerical vectors, 2) incorporate parallel and

distributed processing architectures, and 3) can operate as pattern normalizers

and feature selectors with appropriate weights provided. Well-known examples

of neural networks for clustering include k-means cluster analysis, vector

quantization, and Self-Organizing Map (SOM).

In a comparison of linear regression estimation models and models derived

from Artificial Neural Networks (ANN), Berlin, Raz, Glezer & Zviran (2009)

found that the ANN models did not outperform regression in many aspects.

They suggested, however, that SOM could be a potential candidate for

Page 18

outstanding prediction performance.

2.2.3 Principal Components Analysis

In some cases it is possible to enhance model interpretation by focusing on just

some of the attributes in the data set, and in doing so the computational

workload of automatic pattern recognition or classification can be concentrated.

Another benefit of adopting feature reduction is enhancing the clustering

algorithm performance by eliminating noise from a data set. Feature reduction

techniques include Principal Components Analysis, Nonlinear Component

Analysis, Independent Component Analysis and others (Dick, Meeks, Last,

Bunke & Kandel, 2004).

Principal Components Analysis (PCA) was first used in ecology, and it has

become one of the most popular data set reduction methods in the past few

decades. In Principal components analysis, points in the data set are treated as

a feature space hyper ellipsoid with a few large axes and many small ones

where the directions of the axes of the hyperactive ellipsoid and the length of

these axes could be measured.

With respect of its variable extraction procedure, PCA is considered as a

standard statistical technique. Low dimension artificial variables (i.e. principal

components) are exploited as criterion variables or predictors in PCA to

represent a high dimension data set. Therefore, the non-parametric method of

PCA can be found in not only neuroscience fields but also computer graphics

fields such as image compression and face recognition.

2.2.4 K-means Algorithm

The k-means algorithm is widely adopted in cluster analysis as it is easy to

implement, and its time consumption depends on the number of patterns. After

analysis by k-means clustering, a set of n projects would be partitioned into k

classes. Software projects in the intra-cluster space are analogous while the

Page 19

projects in the inter-cluster space are disparate. The steps of the k-means

clustering process are: 1) choosing k cluster centers to concur with k random

patterns or points; 2) computing the mean vector of all software projects in each

cluster as the cluster center of gravity; 3) assigning each project to the closest

cluster center; and 4) repeating steps 2 and 3 until convergence criterion is met.

Typical convergence criteria could be minimal reassignment or minimal

decrease in squared error.

There are variations of the k-means algorithm (Jain, Murty & Flynn, 1999). One

variation allows the selection of a different criterion function altogether. Another

variation facilitates the splitting and merging of the resulting clusters. Others

attempt to provide an ideal initial partition, or to assist the algorithm to discover

the global minimum value.

For the sake of downsizing the dimensions of each effort driver for clustering

software projects, Huang, Chiu & Liu (2008) adopted the k-means method and

Scheffe‟s method in their data-clustering model construction. The k-means

method was utilized for effort drivers with ratio scales whereas Scheffe‟s

method was employed for effort drivers with nominal scales. Based on these

effort drivers, all historical software projects were clustered into separate

groups and Huang et al. (2008) then built their respective effort estimation

models.

2.2.5 Vector Quantization

To relieve the burden of heavy computation, instead of comparing every data

item with all of the other ones, classical Vector Quantization (VQ) uses a much

smaller set of models to represent the set of all data items. In VQ, vector-

valued input data is clustered into a limited set of adjoining regions, and

codebook vectors are used to represent each region as single model vectors.

In the finest partitioning, the mean distance between each input data item and

its respective closest codebook vector is minimised, hence the average

quantization error is also minimized. In this sense, Kohonen (2008) interprets

Page 20

the VQ learning principle as “Every input data item shall select and modify only

the codebook vector that matches best with it, in such a direction that the

degree of matching is increased”. In Somervuo & Kohonen (1999, p. 310),

Learning VQ was used for the prototype sequences refinement to obtain

optimal class separation.

However, Kohonen (2008) pointed out two weaknesses of VQ: the codebook

vectors may fail to reflect any structures of the data; and the optimum state may

only be local rather than global. On the other hand, although the k-means

algorithm in VQ generally minimizes the root mean square quantization error,

Kohonen, Nieminen & Honkela (2009) found that SOM could present a smaller

quantization error than VQ.

2.2.6 Brief Comparison

In practice, and returning focus to the domain of interest in this study, there are

four major project management issues that may impact the selection of a

clustering technique: availability/lack of adequate historical data,

presence/absence of an experienced expert, knowledge/uncertainty of the

software project, and ease/difficulty of understanding the technique. Thus, the

following table (Table 2.1) appraises the clustering approaches from the

software project management perspective. The preferred responses to the

criteria in the context of software project management are as follows: Require

history data? No/Yes; Rely on expert? Yes/No; Handle uncertainty? Yes;

Visualize results..? Yes. None of above approaches addresses these issues

completely. Hence the self-organizing map that represents multidimensional

data into a two-dimensional form is proposed as an alternative clustering

technique here. The clusters then are to be used to create a fuzzy model of

project estimation rules. In principle, this approach would meet the criteria as

stated.

Page 21

Table 2.1

Comparison of Clustering Techniques

C
a
s
e
-b

a
s
e
d

R
e
a
s
o

n
in

g

A
n

a
lo

g
y
-b

a
s
e
d

E
s
ti

m
a
ti

o
n

N
e
u

ra
l
N

e
tw

o
rk

P
ri

n
c
ip

a
l

C
o

m
p

o
n

e
n

ts

A
n

a
ly

s
is

K
-m

e
a
n

s

A
lg

o
ri

th
m

V
e
c
to

r

Q
u

a
n

ti
z
a
ti

o
n

F
u

z
z
y
 L

o
g

ic

Require history data Yes Yes Yes Yes Yes Yes No

Rely on expert No Yes No No No No No

Handle uncertainty No No No No No No Yes

Visualize results to help understanding Yes Yes No No Yes No No

From the review of literature on the current state of project estimation research

given in this chapter, it is clear that my research question is both relevant and

novel. The next chapter describes and justifies the design of the research

methods used to answer this question systematically and rigorously.

Page 22

3 Research Methodology

3.1 Information Systems Research

The overall objective of Information Systems (IS) research is to acquire an

understanding of how IS and the embedded Information Technology (IT) might

be embraced by individuals, organisations and society with effectiveness and

efficiency.

Throughout the systems development life cycle, then, practitioners

conceptualize the problem to be solved in the feasibility study phase and

represent it functionally in the requirements definition phase. Candidate

solutions are considered in the systems design phase, followed by selection,

construction and implementation of the most suitable solution. After evaluating

the system with appropriate criteria in the testing phase, practitioners should

acquire knowledge about how and why certain developed systems work or do

not work (March & Smith, 1995).

Thus, IS research not only serves the purpose of understanding why things

take place in particular circumstances to boost theoretical knowledge, but also

benefits individuals, organisations and society activities ultimately. In short, IS

research is an applied research discipline which is based on the development

and use of theory to answer practical problems (Adams & Courtney, 2004).

Nunamaker, Chen and Purdin (1991) believed that some broad research

domains like engineering and information systems need to adopt multiple

methodologies to go through the concept-development-impact research life

cycle, especially when an issue of the applications is assessed by its intrinsic

value. IS research concerned with object-oriented databases, electrical

engineering and computer science demonstrates such a life cycle.

Gregor (2006) identified five types of theory in IS research: Theories for

analysing identify and specify characteristics of events, situations, and

personnel and are based on observations. This class of theories is required in

Page 23

the case when nothing or very little is known about the phenomena and

relationships among them. Theories for explaining reveal “how things are or

why they are as they are”, along with alternative insights. Theories for

predicting predict outcomes but leave part of the system a “black box”. Theories

for explaining and predicting (EP Theory) not only describe the theoretical

constructs and underlying relationships to explain causes, but also provide

prediction. In other words, EP theories identify what, when, how, why, and what

will be. The last class is theories for design and action which is concerned with

how to do something. Because the design theories identify the methods,

principles of form and function, as well as justify theoretical knowledge, they

can be found in constructive research, software engineering research, and in

prototyping and systems development.

Among these five classes of theories, Gregor (2006) pointed out that analytic

theory is the foundation of all of the other types of theory. EP theory can be

derived from both theory for explaining and theory for predicting. As design

theory is strongly interrelated with the EP theory, it can be informed by all four

other types of theories. The work described here, which is centred on the

systematic development and evaluation of an artefact, embodies theories for

design and action.

3.2 Research Frameworks

Nunamaker, Chen & Purdin (1991) reviewed a variety of prior studies and

presented a pattern of research relevant to software systems development.

They noted that when observing a research domain one can find existing

problems and form a hypothesis. The hypothesis can be confirmed and

generalised into argument and evidence after analysis. Such a view can

accommodate system development as providing “proof-by-demonstration”

evidence to support or refute the hypothesis. They presented a

multimethodological approach to information systems research that contains

four research strategies: theory building, systems development

experimentation, and observation, depicted in Figure 3.1. All of these phases

Page 24

are essential; to complete the pursued research products, they need to

communicate and interact with each other.

Figure 3.1. The Multimethodological Research Approach of Nunamaker et al. (1991)

In Figure 3.1, System Development is shown as the center of research that

communicates with other methodologies, and each methodology complements

and gives feedback to the others. The authors suggested using Theory Building

to formulate hypotheses, design experiments and conduct observation. They

also believe that results from Experimentation facilitated by System

Development could refine theories and improve systems.

Nunamaker, Chen & Purdin (1991) then provided four examples to demonstrate

that System Development could provide basic knowledge of a research

domain, help the researcher identify a problem, and modify a current system or

build new component(s) and/or a system. This, they claimed, demonstrated that

system development is an important part of a multimethodological approach for

IS research.

Page 25

Finally, they proposed a process for system development research that

consists of the following steps:

1. Construct a conceptual framework by formulating and justifying a research

question that is significant;

2. Develop a system architecture to present guidance to build the system;

3. Analyse and design the system in order to provide a blueprint to implement

the system;

4. Build the system to prove the design and the functionalities of the system

development research project;

5. Experiment with, observe and evaluate the system.

Drawing on the work of Nunamaker and others, Peffers, Tuunanen, Gengler,

Rossi, Hui, Virtanen & Bragge (2006, p. 84) extended the approach:

We sought to design a design science research process (DSRP)

model that would meet three objectives: it would be consistent with

prior literature, it would provide a nominal process model for doing

DS research, and it would provide a mental model for presenting and

appreciating DS research in IS.

By assessing and comparing previous literature, the authors determined six

activities in a nominal sequence as representing common process elements in

design science research and illustrated them as shown in Figure 3.2. The

activities are as follows:

1. Problem identification and motivation, which refers to the need to identify a

research issue and justify the importance of a solution.

2. Objectives of a solution, which refers to the process of deriving the solution

objectives from the research question.

3. Design and development, which refers to the creation of an artifact.

4. Demonstration, which refers to the means through which the artifact is able

to be shown to address the issue effectively.

5. Evaluation, which refers to the process of observing and measuring whether

or not the artifact provides a solution to the issue.

Page 26

6. Communication, which refers to the need to communicate the issue, the

artifact and its usefulness.

Figure 3.2. The Design Science Research Process (DSRP) of Peffers et al. (2006)

Using two case studies, the authors demonstrated that the DSRP model is not

only consistent with concepts discussed in previous literature regarding design

science in IS, but also provides both a nominal process to perform DS research

and a mental model through which to present DS research outputs.

Peffers, Tuunanen, Gengler, Rossi, Hui, Virtanen and Bragge (2006) suggest

that a researcher could initiate their work at any of the six steps (depending on

the specific nature or the research) and move onwards. In the research

reported in this thesis, the intent is to assess the utility of SOM as an

instrument for size or effort estimation in software project management.

According to Peffers et al. (2006, p. 92) this would be an instance where “the

idea for the research resulted from observation of the problem or from

suggested future research in a paper from a prior project.” As SOMs represent

a conceptually different way to provide support for software project

management, this research naturally starts with Activity 1: problem

identification and motivation, and will follow the steps set out above through to

the evaluation of the approach (on existing data sets) and the production of

research outputs (both a thesis and associated intellectual materials).

Page 27

3.3 Related Examples from Diverse Domains

With the intention of studying the usage of SOM in ecological communities,

Giraudel & Lek (2001) applied SOMs to a set of species abundance data, to

examine the ordination of SOM against two linear ordination methods (Principal

Components Analysis (PCA), and Correspondence Analysis (CoA)) as well as

two nonlinear approaches: Non-metric Multidimensional Scaling (NMDS) and

Polar Ordination (PO). Despite some drawbacks of the SOM algorithm, they

found the visualization of sample units and species abundance provided by

SOMs makes it a suitable exploratory technique that illustrates well the

structures in ecological communities.

MacDonell & Gray (2003) presented a fuzzy logic software toolset called

FUZZYMANAGER that can effectively incorporate data and knowledge in a

single model either with or without historical data. The toolset consists of two

modules: CLUESOME (CLUster Extraction for SOftware MEtrics) derives

membership functions and rules, while FULSOME (FUzzy Logic for SOftware

MEtrics) generates and refines the graphical output of membership functions

and rule bases and then supports the prediction process via fuzzy inference. In

two case studies of comparing the fuzzy model with a regression model with six

measures of accuracy, MacDonell & Gray (2003) demonstrated that in certain

circumstances, the fuzzy logic approach not only outperforms linear regression

in representing software project management relationships, but is also capable

of dealing with uncertainty and vagueness in classification and prediction. This

is due to the fact that fuzzy logic methods create models based on the existing

management expertise and allow adjustment when new knowledge is gained.

Previous studies of a single-staged Fuzzy Approximate Reasoning (FAR)

technique found that it lacked effectiveness when working out complex

decision-making problems, so Lee, Cho & Kim (2007) proposed a multi-staged

fuzzy approximate reasoning to assure more robust results. The performance

of their five step Self-Organizing FAR method (SOFAR) was evaluated against

Page 28

test data obtained from Takagi and Hayashi (1991) and a real data set

acquired from a civil engineering task. According to the rigorous statistical test

of comparing actual values and approximations by SOFAR and the

benchmarking method proposed by Takagi and Hayashi (1991), Lee, Cho &

Kim (2007) illustrated that the proposed SOFAR had the potential of

recognising comprehensive fuzzy approximate reasoning and providing

accurate and high quality control paths.

Srinivas, Tripathi, Rao & Govindaraju (2008) introduced a two-level SOM-

based clustering approach for Regional Flood Frequency Analysis (RFFA).

The performance of their approach was measured against canonical correlation

analysis and regression analysis. The proposed approach was found to

perform better in estimating flood quantiles at ungauged sites. The authors also

discovered that four out of five validity indices (including Fuzziness

Performance Index (FPI), fuzzy partition coefficient (VPC), fuzzy partition

entropy (VPE) and normalised classification entropy (NCE)) were not directly

related to properties of the data, although they had been used previously in

hydrology-related research. The relatively new extended Xie–Beni index VXB,m,

which takes into account the structure of the data and the fuzzy membership

degrees, was considered as a convincing alternative for recognizing an optimal

number of clusters.

In summary, Giraudel & Lek (2001) showed SOM can be applied to the

ecological community ordination with competitive advantages to conventional

statistical methods. MacDonell & Gray (2003) demonstrated a novel promising

solution for software project management estimation by applying fuzzy logic,

fuzzy rules and fuzzy inference in a system with the intent to produce better

prediction results. Its contribution to IS design science research is the

FUZZYMANAGER toolset itself. While Lee, Cho & Kim (2007) extended the

existing FAR approach, Srinivas et al. (2008) also adjusted the knowledge of

cluster validity measurement after rigorous statistical examinations.

Page 29

The next section discusses the role of experimentation within a design science

framework, as well as its relevance to the implementation of the research

design in this thesis.

3.4 Experimentation

To form new methods, theoretical frameworks or models, it is essential that

research is founded on rigorous analysis and on the identification of consistent

system behaviours. Nunamaker, Chen & Purdin (1991) argued that theories

could be exploited to extend hypotheses, construct the basis for the conduct of

systematic observations, and guide the design of experiments. Conversely,

experimentation validates and helps refine the underlying theories.

Experimentation is also concerned with the selection of research strategies and

issues of acceptance and technology transfer. Similarly, March and Smith

(1995) believed an algorithm with best “worst-case” performance may not be a

suitable algorithm for a particular goal; for this reason, metrics themselves

ought to be scrutinised by experimental analysis and interpretation.

According to Adams and Courtney (2004), experimentation is related to action

research, which is a two stage process. Hypotheses are formulated by

collaborative analysis based on the nature of the research domain then

experimentation is utilised to introduce collaborative change. Such an

approach is especially relevant when the intent is to develop a new tool or

system and them deploy that system with an organisational context, with the

likelihood of change that typically follows such deployments.

Experimentation is considered as one of the typical methods used to evaluate

designed artefacts as shown in Hevner, March, Park and Ram (2004). The

experimental design evaluation methods here include: Controlled Experiment

that studies the artifact in controlled environment for functional qualities, and

simulation that execute the artifact with data.

Page 30

The Design Science Research Process (DSRP) described in Peffers,

Tuunanen, Gengler, Rossi, Hui, Virtanen and Bragge (2006), involves the

employment of experimentation, simulation, case study, field studies and other

suitable activities to demonstrate the efficacy of the artifact to carry out a task

under certain circumstances. Similar to the DSRP of Peffers et al. (2006),

which is more or less a modified version of the multimethodological research

approach of Nunamaker et al. (1991), Gregor (2006) categorized experiments

with case studies, field studies, surveys, and other methods as the approaches

for investigating aspects of the type of theory for explaining and predicting.

Another modified version of the Nunamaker et al. (1991) framework is

presented in Venable (2006). Experiments along with field studies, action

research and simulation are the recommended techniques for Technology

Evaluation, which interacts with Problem Diagnosis, Theory Building and

Technology Invention/Design. In contrast to the Nunamaker et al. (1991)

framework which is centred around System Development, the Venable (2006)

approach places it central emphasis on Theory Building.

In this study, as shown in Table 3.1, we first defined the research question

based on a literature review and analysis as the application of Activity 1 in the

DSRP model. Secondly, we look at the accomplishments and aspects of SOM

and Fuzzy SOM (Chapters 4-6) to determine an in-principle answer to our

research question. Then we simulate real-world use of the artifact in the Design

and Development phase of the DSRP model. As Activity 4, we demonstrate the

effectiveness and accuracy of SOM and FSOM in regard to software estimation

by creating prediction models for three different data sets (Chapters 7 & 8).

Finally, we analyse the outcomes of our empirical analyses and consider

limitations as well as future study areas (Chapter 9) in our Evaluation, Activity 5

of the DSRP model.

Table 3.1

Application of DSRP Model Activity 1-5

DSRP DSRP Activity Description Chapter Chapter

Page 31

Activity No. No.

1 Problem identification & motivation 2 Literature Review

2 Objectives of a solution 4-6 SOM, FSOM & Fuzzy C-Means

3 Design and development 7 Model Design

4 Demonstration 8 Model Evaluation and Comparison

5 Evaluation 9 Conclusion

Page 32

4 Self-organizing Maps

This chapter discusses the theory and implementation of Self-Organizing Maps,

including some constraints in their application. This discussion is then

extended to the implementation and application of Fuzzy Self-Organizing

Maps.in chapter 5. These chapters form the basis for the justification of the

approach investigated in this thesis using Fuzzy Self-Organizing Maps.

4.1 Self-organizing Map Clustering

The Self-Organizing Map (SOM) is a generic name for a group of algorithms

concerned with the clustering and visualization of large data sets first

introduced by Kohonen (1981). The SOM represents a nonlinear clustering

method that projects the distribution of input items from their original multi-

dimensional space onto a two-dimensional regular grid in an orderly manner.

The mapping tends to preserve the density and the topological relations

between input data points.

As Kohonen (1999) pointed out, when the primary data are not relatable

metrically, a process of evolutionary learning can generate ordered SOM

models and optimize them by their probabilistic variation. The input data set

can be either metric vector space which derives the analytical algorithms for

the optimal mapping or just the manifold in which the vectorial samples are

positioned. Therefore, the SOM performs a form of Vector Quantization (VQ)

where the model vectors (i.e., codebook vectors in VQ) can potentially be

utilised for deriving nodes of a network that fits the manifold of the samples.

Due to the combination of generalised median of a set and the batch

computation, the SOM is not limited to metric vector spaces. As long as the

similarity or distance measured between the factors can be defined, any set of

items can be projected onto a SOM grid (Somervuo & Kohonen, 2000).

The projection is achieved by applying a matching process in contrast to

traditional projection methods that represent each original sample separately,

that is, the SOM identifies closest model vectors in some metric as a

Page 33

generalised model for each input item. Such a collection of models is

approximated for resembling all original input samples, and each will

subsequently be associated with one of the grid units. In the optimised form,

mutual similarity automatically determines the order of the model in the array,

whereas the degree of difference increases with the distance of grid units in the

array. In other words, more similar models are associated with adjacent nodes

in the grid, less similar models are positioned farther away from each other.

4.2 The Basic SOM Algorithm

By extracting characteristic features or aspects of the data (i.e., finding the

clusters of data), SOM can represent the topological relationships of high-

dimensional data items. An input item is initially identified with the

corresponding best-matching unit. The classification of the input is hence

assigned to the best-matching model.

The SOM is composed by n-dimensional Euclidean vectors as the input layer

, and a two-dimensional topologic map (i.e., grid) with specified number

of neurons (a.k.a, nodes) as the output layer . Akin to most artificial

neural networks, SOM operates in training and mapping modes. Throughout

the training process, the output layer is produced and converged according to

Equation (1):

 (1)

Here, i represent the spatial index of the grid node with which is

associated, whereas integer t defines a step in the sequence. At the same time,

the neighbourhood function defines the rates of the modifications at

different nodes. Equation (2) is “the most applied choice for the neighborhood

function” suggested in Kohonen (2008).

 (2)

On one hand, and are monotonically decreasing function of t. on the

other hand, c refers to the index of a particular neuron in the map.

 (3)

As the “winner”, has the smallest Euclidean distance from .

Page 34

Equation (1) and (3) delineate recursive steps, when new data is added,

Equation (3) determines the best-matching unit in the map. Then the models at

this “winner” neuron and its spatial neighbours in the map would be modified

base on Equation (1). With such a manner, the models are trained to match

better with the input (Kohonen, 2008).

In other words, each neuron as well as its neighbouring neurons learn to

converge data with similar characteristics. The weight adjustment would not

stop unless the map reaches a relatively steady state. Due to the topology

preserving property of the map resulting from the training mode, new input data

in the mapping mode can be clustered into adjacent regions on the map by its

adjacent patterns. At the same time, the spatial relationships of the new input

information could provide prediction on missing value of a particular Euclidean

vector.

For each mapped unit, the sum of squared distances or maximum distance to

other sequences is used to determine the centremost member, which is the

item with the smallest sum of generalised distances to other items belonging to

the neighbouring nodes (Somervuo & Kohonen, 1999). As pointed out by He

(2009), the neighbourhood function, which ensures that the training process

does not get trapped into local minima, is one of the unique properties of the

SOM algorithm. To minimize the chance of mis-convergence caused by trended

data, input data is chosen from the training data pool at random. Not only the

prototype vector of the winning neuron but also its close neighbours as

calculated by the neighbourhood function are updated with each new input.

Such a mechanism increases the total number of clustering iterations as the

same data is being reiteratively picked up during the process.

When data items belong to a finite number of predetermined classes, different

models can be built to represent these classes with corresponding symbolic

labels. Before associating an input item, nodes can also be calibrated

according to the classes. Based on the node, the unknown input item is then

classified and the most similar model of it is used to construct the map.

Page 35

Kohonen (2008) mentioned two ways for calibrating models. When the number

of input items is very large, the primary issue is to study how to associate each

input data item to the various models. Then the identified model would be

labelled based on where the majority of matches occur. If the number of input

data items is small, the k nearest neighbour method is adopted. For each

model, k input data items are selected to perform majority voting and labelling.

The integer k is selected from the range of half a dozen to a hundred with the

principle that k must be much smaller than the number of input items.

4.3 Diverse SOMs

Since SOMs have been applied to diverse applications, numerous versions of

SOMs have been constructed. Most of these variations accept metric vectorial

data, and their models are also vectors of the same dimensionality. Generally,

a recursive algorithm is utilised for optimizing the models (Kohonen, 1999).

Kohonen (2008) emphasised the need of extracting characteristic features from

original data. Since natural variations in observations may be very broad,

comparing objects directly may not support good identification. Unless the input

item is described by statistical indicators, even structural elements like pixels or

other pattern components are not appropriate to use as the input vector. On the

other hand, by describing the input objects as a finite and rather small set of

characteristic features, the dimensionality of the input data and the computing

load can be radically reduced. As a result, the first step of constructing a SOM

is to extract features for each item then use the vector derived from them as the

input vector to the SOM. Generally, feature selection is based on heuristic

rules. However, it is worth noting that sometimes mathematical functions or

transforms of the input items, such as principal components, spectra, or other

orthonormal basis vectors could be regarded as features.

Any generalised distance function derived from the input items can be used in

the construction of SOM. There are two main versions of SOM. Both versions

initialize the model vectors either as random vectors, or as linear initialization,

which is a regular two-dimensional sequence of vectors that allows much faster

Page 36

convergence. At the same time, the stepwise corrective algorithm version

includes the learning rate as a parameter that does not exist in the batch

version. With the combination of linear initialization and batch computation, the

batch wise training algorithm version produces the most distinctive and stable

SOMs.

It was noted in Somervuo & Kohonen (1999) that the averages in the batch

training version can be assessed as generalised “medians” over batches of

samples when the distance function is defined. In their comparisons of SOMs,

Kohonen, Nieminen & Honkela (2009) found that if the set of input vectors in

the batch training version was finite and the neighbourhood function was

stable, the corrections will equal zero after a certain number of iterations. Such

an exact termination of the learning process is very helpful for ensuring that at

least a local optimum has been achieved precisely. Once an ordered SOM has

been created, it can be used for either clustering the input items directly, or as

a gateway or directory in the exploration of data items (Kohonen, 2008).

4.4 Drawbacks of SOM

It is evident that SOM is in principle a good candidate for clustering and

visualizing multidimensional data sequences onto a direct, straightforward two-

dimensional graphic map in a fast computation fashion. However, in the past

decade researchers have reported some downsides of the SOM.

For instance, Flexer (2001) noticed that some empirical studies demonstrated

that SOM performs equally to or worse than statistical approaches. SOM was

further criticised for its lack of density model definition, the absence of objective

error function optimization and for convergence not being guaranteed. When

comparing to K-means clustering, Flexer found that SOM performed notably

worse as the extra neighbourhood had a tendency to skew the obtained cluster

centers. Even if the neighbourhood was set to zero at the end of training (which

is suggested by theoretical as well as empirical results), SOM still performed

Page 37

worse in Flexer‟s study in terms of mean squared error.

Despite the employment of a non-zero neighbourhood at the end of training,

SOM also performed significantly worse in terms of topology preservation. In

Flexer (2001), the so-called chain-link problem (which consists of two

intertwined 3-dimensional rings) was used for comparing Sammon mapping to

SOM. The output maps clearly indicated the rigidity and the discretization of

SOM‟s output space. Although the author used more output units than the

available input vectors, he observed that the Sammon output map maintained

the ring-like structures, whereas the SOM output-space bore the high risk of

losing the entire structural information. Nonetheless, Sammon mapping is not

only a rather slow and involved technique, but is also a fixed mapping in terms

of both input and output. It has to recompute the whole mapping whenever an

unknown input point is encountered, a point that in this study would represent a

significant disadvantage.

In Giraudel & Lek (2001), the SOM was compared to Polar Ordination (PO),

Non-metric multidimensional scaling (NMDS), Principal components analysis

(PCA), and effect Correspondence analysis (CoA). A few drawbacks of SOM

were identified: 1) it cannot control the direction of the gradients; 2) the training

process is computationally intensive and its duration depends on the learning

parameters and the size of the map; 3) due to the repeatability of the method

(i.e., as stated above, the same sample units could be randomly picked up

more than once), the final maps might be different even with fixed learning

parameters; and 4) the size and the shape of the map needs to be determined

prior to its creation.

When a set of inputs is obtained from the same cluster or category, the

learning could get caught into local minima. To overcome such an issue, SOM

randomly picks data from all available inputs. However, He (2009) showed that

the side effect of this mechanism is an increased number of iterations as it also

learns sparse data sets that are little or even negatively used in identifying

clusters.

Page 38

4.5 Application and Extension

Kohonen (1999) introduced a new method based on the batch version of SOM.

In this faster optimization method, a form of averaging replaced the

probabilistic trials. As long as the fitness function between the data and the

models is defined, the new method can interpret non-metric data distributions

through descriptive models. Such a method can be considered analogous to a

fast genetic algorithm that identifies input data under different circumstances by

utilising a fitness function to indicate the survival value in different models.

Instead of a single feature vector, Somervuo & Kohonen (1999) treated an

entire feature vector sequence as a model to associate with each SOM node.

By dynamic time wrapping that captures both input sequence differences and

spatial variances of the feature vectors, and Learning Vector Quantization that

fine tunes the prototype sequences to optimize class separation, the resulting

SOM models can be used for pattern recognition and synthesis.

Similarly, Somervuo & Kohonen (2000) presented an extension of SOM that did

not convert data sequences into histogram vectors for clustering. As an

alternative, it allowed the user to select similarity measures for the sequences.

A collection of sequences that approximate the database contents was then

automatically found by the theory of generalised median of symbol strings. This

extension was applied for clustering and visualizing large protein sequence

databases.

More recently, Kohonen (2008) introduced a new finding where by the least-

squares fitting procedure, a linear mixture of a few best-matching models can

represent input items more accurately. According to other recent literature,

genetic algorithms can increase the convergence speed of conventional SOM.

He (2009) thus proposed an efficient approach that uses genetic algorithms to

refine training data before learning. The author emphasised that the purpose of

the approach is to enable the input vector learning procedure to eliminate the

Page 39

progression of irrelevant data and the outcome is able to represent the

distribution of input data.

For the last few decades, the SOM method has been widely applied in various

fields such as statistical analysis, biomedical analysis, finance analyses,

industrial analyses, and scientific analysis. Applications are diverse: some

researchers implemented SOM with other algorithms as a vehicle to retrieve

multimedia from very large databases. Some utilised SOM in the development

of criminological computer-aided tracking applications. Li, Kuo & Tsai (2010)

presented a framework that integrates fuzzy logic with SOM for crime trend

patterns detection and analysis. At the same time, Yang (2009) applied SOM to

acquire and reveal the connection between semantic metadata and tags of the

Web pages. They also reported that SOM noticeably outperformed the k-

means algorithm.

The next chapter introduces the notion of combining ideas from fuzzy logic with

the SOM to implement a fuzzy SOM. The potential benefits of this mix of

techniques are discussed and related to the project management estimation

domain. Implementation options are also explored and the motivation for using

Fuzzy C-Means for clustering in this thesis is discussed. More detail on the

application of Fuzzy C-Means is provided in Chapter 6.

Page 40

5 Fuzzy SOM

Fuzzy Logic and Neural Networks are technologies that complement each

other. Since Fuzzy Rule-Based Models make use of linguistic terms and if-then

rules, they are relatively easy for human beings to comprehend. In contrast,

Neural Networks come with efficient algorithms that can learn from data and

feedback but are relatively more difficult to understand and interpret. Therefore,

merging these two technologies could be potentially useful in cases where both

learning from data and human understanding of models are needed.

One of the most popular approaches is to combine the Fuzzy C-Means (FCM)

algorithms with unsupervised learning. Bezdek, Tsao & Pal (1992) proposed a

Fuzzy Kohonen Clustering Network (FKCN) which automatically adjusts both

the learning rate in the competitive layer and the size of update neighbourhood

during learning. Their results indicated that, in contrast to FCM, labelling errors

in the KFCN were reduced accompanied with improved convergence. This

model uses a scheme that decreases fuzziness and the size of the self-

organizing map (SOM) without applying the concept of an ordered map. Other

indicative examples of fuzzy SOM use are now considered.

5.1 FSOM in Image Processing

Due to the properties of visualization which benefit signal transmission, SOM is

used frequently in pattern recognition. In particular, the Fuzzy Self-Organizing

Map (FSOM) is widely adopted in image processing. Sum & Chan (1994)

described an algorithm that merged FCM and SOM for image quantization. It

was shown that such an algorithm satisfied the necessary condition of

convergence. In an application in data compression, the root mean square

error induced by FSOM was found to be smaller than that of SOM. At the same

time, Vuorimaa (1994 A) reported that the root mean square error for the

validation data set in their FSOM was only faintly worse than the one for the

training set. This implied that the FSOM had good generalization capability with

high accuracy and fast convergence. Vuorimaa (1994 B) also noted that the

accuracy of the simulation results obtained with the FSOM was superior to

Page 41

those achievable with fuzzy c-means clustering and a standard SOM when

evaluated using the well-known IRIS data set.

In their FSOM, Vuorimaa (1994 A&B) replaced the neurons of the SOM with

fuzzy rules. The fuzzy sets defined the fire area in the input space for the fuzzy

rules. As the firing strengths of the fuzzy rules operate as the weights, a

weighted average combines the output singletons of the fuzzy rules together. In

other words, the structure of the FSOM is analogous to fuzzy logic controllers.

The FSOM has just one default rule which covers all of the input space initially.

By adding rules during the learning procedure, the user can control the number

of fuzzy rules and consequently adjust the accuracy of the FSOM.

The FSOM proposed in Vuorimaa (1994 A) is a three-step learning approach:

1) establish the centers of the fuzzy sets according to the learning laws of

SOM; 2) initialise the fuzzy sets and the outputs of the fuzzy rules; and 3) using

an algorithm similar to Learning Vector Quantization 2.1, tune the fuzzy logic

controller rather than fuzzifying the learning laws, and also tune the fuzzy sets

while not just finding the best fuzzy rules. Because of the use of fuzzy set

theory, the neuro-fuzzy systems can represent the learned information in a

manner understandable by humans.

Vuorimaa (1994 B) presented a Multiple Input, Multiple Output (MIMO) version

of the FSOM for pattern recognition. Membership values in the FSOM not only

provided the classification information, but also specified the validity of

classification. When the functions were not weakly associated, the MIMO

version of the FSOM could model several functions simultaneously. It was

asserted that the MIMO version could be exploited as a general purpose

function approximator.

In order to overcome the perceived drawbacks of FKCN encountered in an

image segmentation application (e.g. long convergence time, randomly

initialised network weights, a fixed structure), Wang & Qi (1999) suggested an

Adaptive Fuzzy Clustering Network model (AFKCN). The AFKCN is able to

Page 42

derive an appropriate network structure and rational initial weights by

investigating the grey distribution characteristics of an image. By replacing the

“fuzzy concentration” operator with the “fuzzy intensification” operator, the

convergence process of the network was accelerated and the computation cost

per iteration was reduced through sample space conversion.

Kuo, Chi & Teng (2001) proposed an FSOM neural network which incorporates

fuzzy inputs, fuzzy weights and fuzzy set theory. Their experimental results

demonstrated that the FSOM neural network could properly cluster the image

parts based on their captured images. Its accuracy increased along with the

size of the output array. Compared to FCM, the proposed approach could

support a more precise decision but for slightly longer computational time,

which was suitable for applications that favoured accuracy over speed. Another

favourable aspect of the FSOM neural network was that no pre-specified

cluster number was required.

5.2 Assorted FSOM Applications

A two-step method for automatic and adaptive rule extraction with FSOM was

introduced by Nomura & Miyoshi (1995). A neural network called the "Fuzzy

Inference Network (FIN)" was proposed for learning the trend of data. The

learning result was represented as fuzzy rules for performing fuzzy inference

with FSOM. The authors claimed their method was more effective in adaptive

rule extraction than other methods with feed-forward neural networks like

Radial Basis Function and Genetic Algorithm when the centers of input

attribute vectors moved steadily while the distances between them remained

constant.

Kurd & Kelly (2007) defined a „neuro-fuzzy‟ model, which is based on the

FSOM, called the Safety Critical Artificial Neural Network (SCANN). Their

pattern classification case studies indicated the generalization performance of

FSOM was radically better than Nearest Neighbour Networks and Learning

Vector Quantization. The SCANN was found to perform well in different areas

Page 43

such as fault diagnosis of a reactor, control of the inverted pendulum, system

identification, and handling other non-linear problems.

Another application of FSOM is solving the symmetrical Traveling Salesperson

Problem (TSP) by finding a good solution. (The problem is that the salesman

needs to start from a given city, visiting n cities only once and back to the origin

city using the shortest route.) Chaudhuri, De & Chatterjee (2008) employed the

2opt algorithm (which is an optimisation approach for the TSP) to enhance the

solution generated by an FSOM. Fuzzy c-Means was deployed and the

difficulty of selecting network parameters was resolved by FSOM. Learning

speed and estimation accuracy were enhanced to a great extent by the

adoption of single adjustment of the weights policy. According to the numerical

simulation, the solution produced by FSOM provided a more satisfactory

solution than both the Lin-Kernighan Algorithm and the Evolutionary Algorithm

for TSP when the number of cities increased.

5.3 FSOM in Decision Support Systems

In the past decade, more and more practitioners have employed clustering

analysis methods as important aids in their decision support systems,

embracing fuzzy logic due to its capability of modelling vague qualitative

knowledge and imprecise data in linguistic terms (e.g. low, normal, high, very

high), supporting human type reasoning and conveying uncertainty. Fuzzy Sets

Theory is thus considered an appropriate candidate for analysing non-

quantifiable problems that rely on semantic judgments in real life.

Simultaneously, neural network models, which have the advantages of learning

in data-rich environments, are inherently nonlinear, have massive parallelism,

robustness and are fault tolerant. Therefore, integrating fuzzy logic with neural

networks provides certain advantages when handling uncertainty problems in

recognition process and espousing learning function whilst constructing

intelligent decision making systems.

Page 44

A model for the analysis of credit card market segmentation that comprised

three main modules was proposed by Chi, Kuo & Teng (2000). The first module

utilised FSOM for projecting multi-dimensional fuzzy data onto two-dimensional

topological network data. The second module employed FCM for capturing the

membership of each possible cluster for all data on the two-dimensional

network to provide credit card market information. The third module engaged

the Back-Propagation Neural Network (BPN) for learning the relationship

between the output pattern of each cluster and the two-dimensional

membership functions. With such an approach, the speed of response could be

improved as new information is acquired.

To assure robust approximate reasoning results, a multi-staged fuzzy

approximate reasoning system named SOFAR (Self-Organizing FAR) was

proposed by Lee, Cho & Kim (2007). The proposed SOFAR was able to

produce apposite fuzzy rules via SOM for each input-output data pair, as well

as consider errors from both learning data and test data through back-

propagation driven parameter modifications. The SOFAR comprised five steps

of multi-stage FAR mechanism: 1) preparation, 2) determination of fuzzy rule

partitions, 3) membership learning for a fuzzy rule, 4) fuzzy rules learning, and

5) decision making.

A two-level SOM-based clustering approach for regional flood frequency

analysis was presented in Srinivas, Tripathi, Rao & Govindaraju (2008). A two-

dimensional map was produced by using SOM in the first level. Then FCM was

used to cluster the output nodes for discovering regions for flood frequency

analysis. Prior assumptions regarding cluster number, cluster centers, and

fuzzy memberships are necessary for converging to local minimum of the

objective function. In order to guarantee optimal partitioning, five fuzzy cluster

validation measures (namely fuzzy partition coefficient, fuzzy partition entropy,

fuzziness performance index, normalised classification entropy, and extended

Xie–Beni index) were computed.

Page 45

Based on new distance measurement and update rules, Chen & Chen (2008)

built a batch SOM algorithm for numeric and categorical data (NCSOM). To

handle categorical data, it assigned the input vectors to map units with relative

membership degrees by applying fuzzy set theory in SOM training. Hence the

algorithm could work well with imprecision, uncertainty, and noisy

environments. Considering that SOM can approximate the possible density of

data by visualising partitive clustering algorithms with k-means, variants were

combined with the SOM algorithms as a hybrid clustering approach to improve

computational efficiency, data visualization, and data summarization.

Recently, Li, Kuo & Tsai (2010) developed a framework for the detection and

analysis of crime trend patterns from historical data. Such a decision support

model was based on FSOM because of its inherent superior learning

performance and the ability of handling vague linguistic data. An FCM model

was exploited for enhancing the learning rate and weight updating strategy of

SOM. The issues of representing fuzzy time series (derived from temporal

crime activity data), selecting the best-matching unit, and updating weights

when training with crisp data were addressed in this framework. As a result, the

proposed FSOM model facilitates the manipulation of fuzzy numbers as inputs,

fuzzy similarity measurement, and fuzzy weight updating.

5.4 Algorithms Selection

Table 5.1 compares the algorithms employed in the decision support systems

discussed in the previous section. It is evident that the Chi, Kuo & Teng (2000)

approach and the Li, Kuo & Tsai (2010) approach take into account semantic

terms such as “unimportant”, “very unimportant”, “intermediate”, “good”, and the

like. Such a feature is essential for an application that is to support software

project estimation. On the other hand, the Li, Kuo & Tsai (2010) approach also

handles historical data in contrast to the Chi, Kuo & Teng (2000) approach that

solely relies on fuzzy questionnaires that are filled out by experts.

Page 46

Table 5.1

Comparison of DSS FSOM Algorithms

Literature Chi, Kuo & Teng (2000) Lee, Cho & Kim (2007) Srinivas, Tripathi, Rao &

Govindaraju (2008)

Chen & Chen (2008) Li, Kuo & Tsai (2010)

Model /

Framework

Market segmentation of credit

card system

SOFAR Regional flood frequency

analysis system

FNCSOM

(Adapted from Chen & Chen,

2008)

Crime prevention system

Step 1

Preparation

Collect human judgments by

fuzzy questionnaire. Use

semantic terms for scale

interval. Then pre-process

answers into fuzzy data set.

Divide historical data into

learning data set and test data

set.

Initialize the reference vectors of

map units.

Acquire data for

investigation.

Step 2

Process

Fuzzify input vectors and the

connection weight vectors.

Use FSOM to cluster the

customer market.

Use SOM to determine the

number of fuzzy rule

partitions.

Use SOM to form a two-

dimensional map.

Input the samples one at a time.

Calculate the membership

degrees between input vector

and reference vectors.

Use FCM to fuzzify

standardised monthly crime

volumes, and then convert

to semantic term according

to the best matching

membership degree after

defining the fuzzy sets.

Step 3

Process

Apply FCM to acquire a more

precise and reasonable

clustering analysis, and to

process the membership level

of the vague data belonged to

Calculate the neural network-

driven membership function

for each fuzzy rule that has

learning data set.

Apply FCM to cluster the

two-dimensional map.

Update the reference vectors on

numeric, nominal, ordinal

variables separately at the end

of each epoch over the training

process. Replace old reference

Train FSOM to cluster the

fuzzify crime data.

Page 47

each cluster. vectors with new ones.

Step 4

Process

BPN accept the benefit-

seeking variables and the

customer‟s personal data as

input variables to produce 2D

membership functions as

output variables.

Apply BPN for avoiding over

learning phenomenon.

Identify optimal number of

cluster by five cluster

validation measures.

Repeat from Step 2 a few times

until the solution can be

regarded as steady.

Extract information from

time series database.

Step 5

Decision

Making

Use the relation between the

input variables and output

variable to train a BPN for

making decision in marketing

promotion.

Calculate the final

approximated value for input

data.

Analyse crime pattern.

Page 48

Table 5.2

Comparison of FSOM Algorithms

Literature Chi, Kuo

& Teng

(2000)

Lee, Cho

& Kim

(2007)

Srinivas,

Tripathi,

Rao &

Govindara

ju (2008)

Chen &

Chen

(2008)

Li, Kuo &

Tsai (2010)

Model / Framework Market

segmentati

on of credit

card

system

SOFAR Regional

flood

frequency

analysis

system

FNCSOM Crime

prevention

system

Create fuzzy rules from data No Yes Yes Yes Yes

Create fuzzy rules from

expert knowledge

Yes No No No Yes

Create fuzzy sets (e.g. FCM) Yes Yes Yes Yes Yes

Cluster the data (e.g. SOM) Yes Yes Yes Yes Yes

Calculate membership

degrees

Yes Yes Yes Yes Yes

Extract rule from temporal

data

No No No No Yes

We evaluate these five methods as shown in Table 5.2 based on software

project estimation scenarios. It is apparent that all five frameworks manage to

handle uncertainty and visualize clustering results both of which would aid the

software project manager in understanding a model and its meaning in context.

However, the SOFAR mechanism in Lee, Cho & Kim (2007) is a fusion of fuzzy

logic, SOM and neural network that entails the demand for a large data set,

while in the case of software project management, data sets are relatively

small. Similarly, the market segmentation model presented in Chi, Kuo & Teng

(2000) involves the back-propagation neural network module that contrasts with

our requirement. At the same time, the FNCSOM framework from Chen & Chen

(2008) employs k-means variant and Learning Vector Quantization while we

would prefer to avoid crisp projection.

Considering that a SOM usually generates more units than real clusters, some

researchers (Chi, Kuo & Teng (2000), Srinivas, Tripathi, Rao & Govindaraju

Page 49

(2008) and Li, Kuo & Tsai, 2010) cluster the SOM output by fuzzy c-means

algorithm to obtain better insight into the natural structures. As both the

regional flood frequency analysis approach in Srinivas, Tripathi, Rao &

Govindaraju (2008) and the crime prevention system introduced in Li, Kuo &

Tsai (2010) provide high-quality examples of fuzzifying SOM, we have good

reason to believe that adaptively adopting algorithms from these two

approaches would benefit our software project estimation application.

Page 50

6 Fuzzy C-Means

6.1 Clustering

Data clustering analysis is one of the most useful techniques for discovering

relevant patterns, groups, and relationships and associations within a large

volume of data. It plays an important part not only in pattern recognition, image

processing and communication, but also in system modelling, data mining and

other decision-making application areas. Generally, cluster analysis is a variety

of techniques that segment a set of data into several nonempty subsets (a.k.a.

clusters). Each cluster has its weighted average as the center of gravity.

In the iterative clustering process, only cluster centers are moved (i.e. none of

the data points are moved) in each step of partitioning the space while finding

the better and better centers. The subdividing of the original data set is based

on similarity metrics or probability density models; thus after clustering the

mathematical similarity of intra-cluster observations is maximised and between

data items for inter-cluster is minimised. One of the most commonly employed

distance functions is Euclidian distance which measures mathematical

similarity by computing the squared difference. When new data becomes

available, the distance between the new data point and every cluster center will

be calculated before adding the new data point to the cluster with minimum

distance to its centre (Raju, Thomas, Kumar & Thinley, 2008).

6.2 Crisp Clustering

Clustering can be categorised into two general process types: Crisp clustering

and Fuzzy clustering. In crisp clustering, each data point in the data set is

assigned to one and only one cluster explicitly. Hence the boundaries of

clusters are hard, crisp and have no overlaps (Bezdek, Ehrlich & Full (1984);

Kannan, Devi, Ramathilagam & Sathya, 2010).

The diverse variations of k-means clustering algorithms are the most well-

known and commonly used unsupervised partitioning techniques that are able

Page 51

to classify crisp and highly structured data without prior information on the data

distribution available. The letter „k‟ stands for the initially provided parameter

that indicates the number of clusters in the outcome of partitioning.

However, real world data is often characterised by vagueness and uncertainty

and conventional crisp clustering algorithms are inappropriate for handling

such challenges. Fuzzy clustering is a robust and flexible approach to dealing

with natural data sets that consist of non-strict objects and have poorly defined

boundaries that could result in overlapping cluster perimeters. Furthermore,

Bezdek, Ehrlich & Full (1984) pointed that since the conventional approach

fails to provide a mechanism to absorb deviant or indistinctive data, outliers are

treated as noise and fall into the "unclassifiable" category. Partial membership

to a fuzzy set can resolve this issue.

6.3 Fuzzy Clustering

Raju, Thomas, Kumar & Thinley (2008, p. 882) identify the following six

characteristics of natural data:

1) Not clearly known: Questionable; problematic

2) Vague: Not definite of determined

3) Doubtful: Not having certain information

4) Ambiguous: Many interpretations

5) Not steady: Varying

6) Liable to change: Not dependable or reliable

In other words, sharp and precise distinctions are difficult to make and the

choice between options is left uncertain. Therefore, by allowing partial

membership, the fuzzy sets theory became the ideal candidate for handling

uncertainty and modelling imprecise and qualitative information.

The concept of fuzzy set theory was introduced in Zadeh (1965). Membership

of an object into a cluster is Boolean in crisp clustering, which means that it

either belongs or does not belong to the cluster absolutely. Zadeh‟s concept

Page 52

utilizes the membership function to calculate the distance between object and

cluster centers to interpret the memberships.

In contrast to the Boolean value of membership in crisp clustering, each data

point in fuzzy sets has an associated degree of membership from 0 to 1 in

every cluster. Such non-unique partitioning is fundamental in fuzzy clustering.

The higher the value of the membership, the more similarity there is between

the data point and that cluster.

6.3.1 Fuzzy C-Means

Fuzzy C-Means (FCM) clustering was proposed by Dunn (1973) and

subsequently generalised and improved in Bezdek, Ehrlich & Full (1984).

Before the name fuzzy c-means was introduced it was even known as fuzzy k-

means. This shows that FCM is comparable to k-means clustering in many

ways.

Fuzzy c-means clustering involves the computation of cluster centers and

measuring the Euclidian distance between an object and the cluster centers.

The calculation is repeated until the cluster centers are stable. In contrast to

the traditional crisp clustering algorithms, FCM allows each data point to

belong to more than one cluster by incorporating partial membership concepts

of fuzzy set theory. The membership degree ranges between 0 and 1, and the

sum of the memberships for each data point is equal (Bezdek, Ehrlich & Full,

1984).

FCM supports partial membership by forming overlapping clusters using a

fuzzification parameter that establishes the degree of fuzziness of the clusters.

The higher the parameter value, the more there is overlapping of clusters.

When the parameter equals to 1, FCM acts as a crisp clustering algorithm. As

a result, the embedment of fuzzy set theory enriches the traditional crisp

clustering approach (Bezdek, Ehrlich & Full (1984); Raju, Thomas, Kumar &

Page 53

Thinley, 2008). Nowadays, the most widely used fuzzy clustering techniques in

practice are FCM and its derivatives.

6.3.2 Limitations of FCM

Although it has been demonstrated that FCM outperforms crisp and

probabilistic clustering algorithms in terms of handling vague and uncertain

natural data, it does suffer from some limitations.

As an unsupervised clustering algorithm, the clustering results of FCM need to

be validated. Cluster validation examines how well the structure of the data set

is reflected in the clustering results. The vital indicator of the structure is the

number of clusters which is a user-initialised parameter that may be difficult to

determine, especially pre-clustering, in real world practice.

Past literature has proposed several validity indices such as the partition

coefficient and classification entropy for FCM. More recent work contends that

a validity index ought to consider the density within individual clusters as well

as the separation between clusters. Nonetheless, most existing validity indices

are inefficient for spotting the number of clusters when the boundaries of

different clusters are overlapping. In Sun, Wang & Jiang (2004), a new

algorithm is proposed that is able to automatically define the number of clusters

with a validating index for overlapping data.

Other stated drawbacks of FCM include: it fails to eliminate noise and outliers;

it is poor in handling general crisp data sets due to the Euclidean distance

emphasis on appraising dissimilarity; and it has high computational cost for

large data sets due to the squared-norm for assessing similarity among data

points and cluster centers. Kannan, Devi, Ramathilagam & Sathya (2010)

introduce a Bray Curtis distance to reduce the negative impact of Euclidean

distance on crisp data set handling and some fuzzy objective functions to

reduce running time. Additional terms including a penalty term are also

introduced to reduce the effect of noise and outliers in large data sets.

Page 54

6.3.3 Application of FCM

In the interval partitioning process of the Li, Cheng & Lin (2008) forecasting

model, the authors deployed FCM clustering for generating unequally-sized

intervals as it considers the density of data points, and for taking into account

historical data. Similarly to software project estimation, the researchers

attempted to use techniques including statistics and artificial neural networks to

tackle the forecasting problem based on time series data segmented by fixed

time intervals. Likewise, traditional approaches for creating time series

forecasting models rely extensively on historical data, which can be sometimes

imprecise, ambiguous and even incomplete.

Instead of numeric values for traditional time series, fuzzy time series is

represented as linguistic values under fuzzy logic theory and so it is capable of

handling incomplete and vague data to take account of the uncertainty of real-

world data that hinders the accuracy of forecasting models.

Based on the nature of SOM that was discussed previously and the examples

of fuzzifying SOM in the last section, we apply FCM clustering to fuzzify our

original data sets before creating SOMs, resulting in the use of FSOMs in the

prediction of software project management attributes.

The next chapter describes the implementation of FSOMs using an FCM

clustering approach in a series of the experiments undertaken to generate

models on three different datasets from the project management domain. The

results of these experiments are then presented in chapter 8 and analysed in

chapter 9.

Page 55

7 Model Design

7.1 Correlation Analysis

In software project estimation, a large number of variables that characterise the

system and its development may be available. In order to facilitate the creation

of a stable and accurate prediction model, it is important to distinguish between

independent and associated or correlated variables. Introducing inappropriately

selected variables to the model not only complicates the process of prediction,

but also could lead to misestimates being produced.

Pairwise correlation analysis is one of the most commonly used statistical

approaches. It is used for the interpretation of strength of association of two

variables in case-control studies (O‟Gorman & Woolson, 1995) in a wide

variety of domains including psychiatric data analysis (Arndt, Turvey &

Andreasen, 1999), and health psychology and epidemiology (Kraemer, 2006).

In most cases the correlation coefficient is a unit-free measure ranging from −1

to +1. When the correlation coefficient equals one, the two variables are

strongly positively associated. The closer the coefficient to zero, the less the

two variables are correlated. When the correlation coefficient equals to zero,

one can say that the variables are not related (at least in terms of the measure

being used).

Among the often used statistical measures of association, Pearson‟s product

moment correlation is commonly employed. However, the Pearson‟s r (rp) is

only suitable for indicating linear relationships, and it can be gravely affected

by even just one outlier. Moreover, in previous studies such as that reported by

Croux & Dehon (2010), the classical Pearson correlation was reported to be

lacking robustness as its influence function is unbounded.

The potential presence of outliers and non-constant variance in software

project datasets requires analysis and inferential techniques that can provide

stabilised statistics with limited knowledge of the data distribution. Therefore,

Spearman‟s rank correlation coefficient and Kendall‟s rank correlation

Page 56

coefficient are the nonparametric procedures that researchers in this domain

commonly consider. For instance, Grzegorzewski (2009) generalised the

classical Kendall‟s rank-based nonparametric procedures to handle a fuzzy set

in their mathematical model for preference systems with missing information or

non-comparable outputs to measure association.

Other researchers have compared the performance of Pearson‟s rp,

Spearman‟s rs, Kendall‟s taub, and other correlations methods. In O‟Gorman &

Woolson (1995), Kendall‟s taub was reported superior to the other methods with

both correlated normally distributed variables and with log-normal variables,

while it was just about equal to the other methods in the case of uncorrelated

variables. Based on the result of their simulations (comprising fewer than 400

cases and controls), O‟Gorman & Woolson report that Kendall‟s taub is a

suitable exploratory procedure for variable selection in the early stage of a

case-control study with a small to moderate sized data set, unless the

candidate variables are independent or follow Bernoulli or normal distributions.

Later, Arndt, Turvey & Andreasen (1999) demonstrated that Pearson‟s rp is

unstable and performs poorly when outliers and non-constant variance are

present. Kendall‟s correlation and Spearman‟s rs exhibit adequate protection

against type I errors and are more consistent in these circumstances. However,

instead of reflecting the population value, Spearman‟s rs is an inherently

sample-biased statistic which tends to underestimate the true correlation, and

the degree of divergence from the true value increases as the sample size

decreases. Such a bias reduces its power during statistical testing. In contrast,

Kendall‟s taub is favoured in terms of expressing the strength of associations,

especially for small to moderate sample studies as it is unbiased. Arndt et al

(1999) also noted that its use led to more stable and therefore more replicable

results. Its tendency to produce a narrow confidence interval and to lend itself

to straightforward interpretation also make the Kendall‟s taub superior from the

statistical perspective.

Page 57

Croux & Dehon (2010) examine the robustness of Kendall‟s taub, Spearman‟s rs

and Quadrant correlation by a covariance matrix estimator in a simulation

experiment. The results indicate that the influence functions of the Spearman‟s

and Kendall‟s correlations are bounded and smooth, which confirms the

general belief that nonparametric correlation methods are robust to outliers. In

addition, taub and rs have high statistical efficiency and acceptable levels of

gross-error sensitivity, but the Kendall‟s taub is preferable as it outperforms

Spearman‟s rs from both perspectives.

As pointed out previously, the size of data sets in software project estimation is

generally small to moderate. Our purpose of using a correlation coefficient is

for the selection of appropriate variable(s) to create models for estimation.

Since the Kendall‟s taub is a simple yet efficient correlation and is favoured for

revealing dependence of variables in ambiguous data sets it appears to be a

good choice for this study. Also, with the advantage of small gross-error

sensitivity and lower type I error, we consider Kendall‟s taub as the most

appropriate statistical instrument for this activity.

7.2 Data Sets

7.2.1 The 4GL Systems Data Set

The 4GL systems data set was collected over a period of five years. It contains

70 observations of small- to medium-sized 4GL systems related to transaction

processing, data retrieval and reporting, and file maintenance activities. These

systems were built by groups of senior students at the University of Otago in

New Zealand to meet the real requirements of external clients that are usually

small businesses or departments of larger organisations.

The 4GL data set includes variables that reflect the size of the data model, the

functional decomposition chart, and the number of source statements. It was

used for the demonstration of the viability of fuzzy logic modelling in software

project management in MacDonell and Gray (2003), and for the assessment of

Page 58

the performance of standard SOMs in MacDonell (2005). Table 7.1 illustrates

the variables of the 4GL data set.

Table 7.1

Variables of 4GL Data Set (Adapted from MacDonell, 2005)

By calculating the Kendall's taub correlation coefficient (Table 7.2), we found

that ATTRIB, EDIT, NONMENU and FDCSIZE are significantly associated with

system SIZE, which is one of the parameters that software project managers

are keen to estimate. We select ATTRIB and NONMENU to construct our

prediction models as ATTRIB reflects the feature of the database of the system

while NONMENU is indicative of the functional capabilities of the application. In

addition, EDIT shows strong correlations with other independent variables,

likewise FDCSIZE is highly correlated to NONMENU. Therefore, adding EDIT

and FDCSIZE into the creation of models is not likely to increase the accuracy

of the prediction but would increase computational cost.

Mnemonic Variable Explanation

ENT Entities
Count of entities depicted in the entity-relationship

diagram (ERD)

RSHIP Relationships Count of relationships depicted in the ERD

ATTRIB Attributes Count of attributes associated with the ERD

MENU Menus
Count of menu screens depicted in the Functional

Decomposition Chart (FDC)

EDIT Entry/Edit Count of data entry/edit screens depicted in the FDC

REPORT Reports Count of reports depicted in the FDC

NONMENU
Non-menu

functions Count of non-menu functions depicted in the FDC

FDCSIZE FDC Size Count of all functions depicted in the FDC

SIZE System Size
Count of all non-comment source statements in the

implemented system

Page 59

Table 7.2

Kendall's taub Correlation Coefficient of Variables of 4GL Data Set

 ENT RSHIP ATTRIB MENU EDIT REPORT

NON

MENU

FDC

SIZE Size

ENT 1 .857
**
 .525

**
 .296

**
 .547

**
 .145

*
 .425

**
 .428

**
 .359

**

RSHIP .857
**
 1 .499

**
 .291

**
 .496

**
 0.127 .379

**
 .394

**
 .335

**

ATTRIB .525
**
 .499

**
 1 .258

**
 .501

**
 .263

**
 .476

**
 .465

**
 .483

**

MENU .296
**
 .291

**
 .258

**
 1 .375

**
 .239

**
 .395

**
 .542

**
 .287

**

EDIT .547
**
 .496

**
 .501

**
 .375

**
 1 .259

**
 .704

**
 .680

**
 .508

**

REPORT .145
*
 0.127 .263

**
 .239

**
 .259

**
 1 .608

**
 .579

**
 .379

**

NONMENU .425
**
 .379

**
 .476

**
 .395

**
 .704

**
 .608

**
 1 .897

**
 .563

**

FDCSIZE .428
**
 .394

**
 .465

**
 .542

**
 .680

**
 .579

**
 .897

**
 1 .558

**

Size .359
**
 .335

**
 .483

**
 .287

**
 .508

**
 .379

**
 .563

**
 .558

**
 1

7.2.2 The Desharnais Data Set

The Desharnais data set was collected in a Canadian software house in the

late 1980s by Jean-Marc Desharnais. It comprises data from 81 projects

developed using three different programming languages. By respecting (non-

)linearity and heteroscedasticity, this data set is considered as representative

of data sets of software projects. Table 7.3 presents the properties of the

Desharnais data set. As a well-known publicly available data set, the

Desharnais data set has been used in many project management studies. With

the purpose of evaluating the potential of genetic programming and two other

machine-learning approaches for building effort prediction models, Burgess &

Lefley (2001) used the Desharnais data set to examine the accuracy and ease

of use of the three techniques. In their investigation of a machine learning

technique namely C4.5, which yields tolerance missing values, Song,

Shepperd, Chen & Liu (2008) assessed the Desharnais data set using the

Mann–Whitney test to inspect the accuracy of their cost prediction models.

Another instance of use of the Desharnais data set is reported in Keung,

Kitchenham & Jeffery (2008). As an alternative to data-intensive methods such

as linear regression, analogy-based software cost estimation (a.k.a. Case-

Based Reasoning) is popular. The Keung, Kitchenham & Jeffery method

employs Mantel‟s correlation randomization test to produce a method they refer

Page 60

to as Analogy-X. In their study the Desharnais data set was used to

demonstrate the advantages of using Analogy-X.

Table 7.3

Variables of Desharnais Data Set

Variable Description Data Type

ActualEffort
Actual Effort measured in person-hours. A dependent

variable.
Discrete

Duration
Actual project schedule in months. A dependent

variable.
Discrete

ExpEquip Team Experience measured in years. Ordinal

ExpProjMan Manager Experience measured in years. Ordinal

Transactions Count of basic logical transactions in the system. Discrete

RawFPs PointsNonAdjust that equals to Transactions + Entities Continuous

Adj Factor Function point complexity adjustment factor. Continuous

Adj FPs Function points adjusted by the Adjustment factor. Continuous

Dev Env Programming language. Categorical

Year Fin Year project ended. Categorical

Entities The number of entities in the systems data model. Discrete

Table 7.4 presents the correlation coefficients among the Desharnais variables.

It is clear that some of the independent variables have strong associations with

ActualEffort, and as a project outcome we use it as the dependent variable in

our model. Specifically, RawFPs, Adj FPs and Entities are strongly correlated

to ActualEffort. Although RawFPs and Adj FPs show higher correlation

coefficients, the count of Entities is easier to understand and more convenient

to obtain. Taking into account the significant interrelationship amongst

RawFPs, Adj FPs and Entities, we exploit Entities as the sole independent

variable in our creation of a prediction model.

Page 61

Table 7.4

Kendall's taub Correlation Coefficient of Variables of Desharnais Data Set

 ActualEffort Duration ExpEquip ExpProjMan Transactions RawFPs AdjFactor AdjFPs DevEnv Year Fin Entities

ActualEffort 1.000 .427
**
 .177

*
 .073 .350

**
 .518

**
 .363

**
 .536

**
 -.279

**
 -.030 .470

**

Duration .427
**
 1.000 .248

**
 .189

*
 .284

**
 .426

**
 .163

*
 .419

**
 .016 -.056 .376

**

ExpEquip .177
*
 .248

**
 1.000 .334

**
 .053 .185

*
 .234

**
 .213

**
 -.125 -.135 .213

**

ExpProjMan .073 .189
*
 .334

**
 1.000 .089 .147

*
 -.048 .131 .230

**
 .051 .143

*

Transactions .350
**
 .284

**
 .053 .089 1.000 .629

**
 .306

**
 .616

**
 .072 .048 .215

**

RawFPs .518
**
 .426

**
 .185

*
 .147

*
 .629

**
 1.000 .330

**
 .911

**
 .014 .077 .589

**

Adj Factor .363
**
 .163

*
 .234

**
 -.048 .306

**
 .330

**
 1.000 .422

**
 -.178

*
 -.046 .223

**

Adj FPs .536
**
 .419

**
 .213

**
 .131 .616

**
 .911

**
 .422

**
 1.000 -.003 .077 .577

**

Dev Env -.279
**
 .016 -.125 .230

**
 .072 .014 -.178

*
 -.003 1.000 .322

**
 -.060

Year Fin -.030 -.056 -.135 .051 .048 .077 -.046 .077 .322
**
 1.000 .009

Entities .470
**
 .376

**
 .213

**
 .143

*
 .215

**
 .589

**
 .223

**
 .577

**
 -.060 .009 1.000

Page 62

7.2.3 The Miyazaki Data Set

Published in Miyazaki, Terakado, Ozaki & Nozaki (1994), the Miyazaki data set

is a record of 48 systems in 20 companies managed by the Fujitsu Large

Systems Users Group. It was used in the original study to demonstrate that the

least squares of balanced relative errors (LBRS) is superior to the ordinary

least squares method (given the presence of outliers in the data set). The

original data set contains eight variables as shown in Table 7.5.

Table 7.5

Variables of Miyazaki Data Set

It is evident that ESCRN is related to SCRN, likewise EFORM to FORM, as well

EFILE to FILE. Both effort and lines of code are considered as dependent

variables relevant to software project estimation. Hence, we selected SCRN,

FORM, and FILE that are straightforward to count and understand. Taking into

consideration that lines of code in fact can only be counted after the

Mnemonic Variable Explanation

KLOC Lines of code in

thousands

Count of COBOL source lines, exclude comment

lines, screen and form definition codes, and code

copied by the COPY statement.

MM Person Months Count of effort from systems design to systems test.

An MM is defined as 160 hours of working time.

SCRN Number of screens Count of different input or output screen formats.

Screen formats are regarded as different only if

data elements are different.

FORM Number of forms Count of different form (report) formats. Form

formats are regarded as different only if data

elements are different.

FILE Number of files Count of input, output, update, and storage files.

Intermediate files are excluded.

ESCRN Number of data

elements in screens

Count of total data elements in all the screens that

are included in the number of screens (SCRN).

EFORM Number of data

elements in forms

Count of total data elements in all the screens that

are included in the number of forms (FORM).

EFILE Number of data

elements in files

Count of total data elements in all the screens that

are included in the number of forms (FILE).

Page 63

development has been completed, we selected effort in person-months as the

dependent variable.

Kendall's taub correlation coefficients for the variables are smaller than 0.5 (see

Table 7.6), which imply weak associations between them; therefore, we

adopted all three independent variables to build the prediction model.

Table 7.6

Kendall's taub Correlation Coefficient of Variables of Miyazaki Data Set

 SCRN FORM FILE Person Months

SCRN 1 .264
**
 .207

*
 .466

**

FORM .264
**
 1 .315

**
 .353

**

FILE .207
*
 .315

**
 1 .396

**

Person

Months

.466
**
 .353

**
 .396

**
 1

7.3 Viscovery4

In our construction of clustering and prediction models, we used Viscovery®

SOMine 4 to facilitate the creation of SOM and FSOM. As a tool that aims to

fulfill academic research purposes, Viscovery® SOMine supports analysis of

non-linear dependencies, parameter-free clustering, data association and

recall, pattern recognition, and other tasks such as animated monitoring

(Eudaptics, 1999).

Kohonen‟s Batch-SOM, a robust variant of unsupervised neural networks, is

employed to form Self-Organizing Maps with two-dimensional hexagonal grids.

Each hexagonal unit, referred to as a “node”, represents a part of the

numerical, multivariate source data set. The arrangement of the nodes reveals

the neighbourhoods within the data set and the intrinsic shape of the data

distribution can be represented by the landscape of the grid.

Page 64

7.4 Fuzzifier

We adopt a fuzzifier which employs the basic Fuzzy C-Means algorithm to pre-

process our data set in order to obtain a fuzzy „version‟ of the original crisp

data. Since we were using the same data (in different splits) to train and recall

the models, thus we can consider them as fair comparisons.

Figure 7.1. The User Interface of the Fuzzifier

During our experiment, we found that the clustering options (both convergence

accuracy and max iterations, as seen in Figure 7.1) do not have significant

impact on our data sets. Therefore, we left them at the default values (which

are 0.0001 for convergence accuracy and 10000 for max iterations), and only

changed the size of training sets for examining the sensitivity of our models

(as the fuzzifier generates centroids based on the size of the fuzzified set). In

this respect we used data sets comprising between 50-85% of the original data

set size. Since fuzzy c-means clustering utilizes centroids to represent the

original data set, the sum of training records and recall records is always

smaller than the size of the original data set.

Page 65

8 Model Evaluation and Comparison

Our assessment primarily appraises the accuracy of the predictions of SOM

and FSOM by using Linear Regression as a benchmark. To examine the impact

of the fuzzy c-means clustering algorithm, we also create and assess a model

referred to as Fuzzy Linear Regression.

Each build of the prediction models was executed in the followed steps:

I. Use the fuzzifier to process the original crisp data set for producing

training sets;

II. Match the fuzzified data with the original data and label them as the crisp

and fuzzy versions of the training set;

III. Pick out unfuzzified data, put them into a new data set and feed it to the

fuzzifer;

IV. Label the fuzzified data in the new data set as the recall set;

V. Use the crisp training set to create a SOM model and a Linear Regression

model;

VI. Use the fuzzy training set to build an FSOM model and a Fuzzy Linear

Regression model;

VII. Use the recall set to test the four different models constructed from the

same original data set;

VIII. Compare the predicted size or effort to the actual figure, and calculate the

error and absolute error of each software project in every model;

IX. Evaluate the four models based on the sum of absolute error and bias.

(Bias = Sum of error / Sum of actual size); and

X. Repeat these nine steps four times to avoid particular sample bias.

Hence, our analysis comprises five tests with very similar parameters (i.e.

number of variables, size of training set and size of recall set) in one single

build. Table 8.1 shows the parameters of all eight builds in our experiment.

Complete spreadsheets showing training sets and recall sets are provided in

Appendices on the enclosed disk. Detailed spreadsheets that assess the

estimation errors of the four models for every single data record can also be

found on the disk. Clearer views of the data analysis figures in Chapter 8 and

Page 66

Chapter 9, as well as generated SOM/FSOM maps. are also available on the

disk. Appendices in Section 11 indicate the relevant folders.

Table 8.1

Parameters of Eight Builds

Build Variables
Average Train

Set Size

Average Recall

Set Size

4GL Build1 2 42 20

4GL Build2 2 28 33

4GL Build3 4 45 20

4GL Build4 6 45 20

Desharnais Build1 1 48 24

Desharnais Build2 1 43 19

Miyazaki Build1 3 25 16

Miyazaki Build2 3 32 14

8.1 4GL Build1

As discussed previously, correlation analysis indicated ATTRIB and

NONMENU as the two vital variables that together reflect the functional

features of the software projects in the 4GL data set. Thus, we used these two

variables in our 4GL systems Build1. In this case, we selected 65% of the

original set (of 70 records) for the first fuzzified set. After the matching

procedure, 42 records were listed in the training set. Then the remaining 28

records were input to the fuzzifier to produce 75% of the data for the recall set.

As a result, the recall set contains 20 records after the second matching

procedure.

By comparing the actual and predicted size of each project in the recall set

(Figure 8.1), we found that the prediction results of SOM and FSOM pair up,

likewise Linear Regression and Fuzzy Linear Regression share almost exactly

the same result. At the same time, it can be noted that the size estimated by

SOM and FSOM share a very close trend with the actual size in this build.

Page 67

(Note that in this and subsequent analyses we provide indicative results in the

chapter, rather than providing all of the outputs. These can be found on the

enclosed disk.)

Figure 8.1. Comparison of Actual and Predicted Results for 4GL Build1

Page 68

On the other hand, the sum of absolute errors of each model in five tests

(Figure 8.2) illustrate that incorporating fuzzy c-means clustering prior to

creating SOM or Linear Regression models do generally improve the accuracy

of estimations in this build.

Figure 8.2. Sum of Absolute Errors of 4GL Build1

The other parameter we use to evaluate the models is bias. In this build, we

found that SOM and FSOM tend to overestimate the size except in Test1, while

the bias for Linear Regression and Fuzzy Linear Regression fluctuate more

than SOM and FSOM (Table 8.2). From the perspective of bias, we can say

that the FSOM model fits the data of this build best, and it also generated the

lowest errors overall.

Table 8.2

Bias of 4GL Build1

Test
Bias

SOM FSOM LR FLR

1 -0.45% -0.28% 1.14% 1.01%

2 3.72% 2.26% 3.64% 3.61%

3 3.01% 0.60% -4.16% -4.20%

4 2.55% 3.18% 3.73% 3.96%

5 2.26% 1.20% -0.46% -0.49%

Sum of Absolute Bias 11.99% 7.51% 13.13% 13.27%

Page 69

8.2 4GL Build2

In order to appraise the sensitivity of SOM and FSOM to sampling/split bias, we

kept ATTRIB and NONMENU as the two predictor variables and changed the

numbers of records in the training and recall sets. Instead of using 60% of the

original data in the training sets, we only used 40% in this build, which means

more records were left for the recall sets. As a result, we used for each test a

recall set comprising approximately 35 records.

From the comparisons of predicted size produced by four different models in

each test, we again found that the SOM and FSOM provide more accurate

forecasting result than Linear Regression and Fuzzy Linear Regression (Figure

8.3).

Figure 8.3. Sum of Absolute Errors of 4GL Build2

Compared to Build1 with 42 records in the training sets and 28 records in the

recall sets, we notice that in Build2 the bias between the actual and estimated

size from SOM and FSOM have a tendency to be smaller (Table 8.3).

Meanwhile, it is interesting to see that all four models present lager bias in

Test2 than other tests, although they all have smaller Sum of Absolute Errors.

We also notice that FSOM was found to be the best in terms of Sum of

Absolute Errors, whereas SOM presented the smallest bias in this build.

Page 70

 Table 8.3

Bias of 4GL Build2

Test
Bias

SOM FSOM LR FLR

1 0.27% 1.38% -1.52% -1.15%

2 -4.05% -2.76% -19.56% -18.33%

3 1.55% 0.23% -1.66% -0.77%

4 0.58% 1.49% -3.16% -2.43%

5 -0.85% -1.91% -8.26% -7.86%

Sum of Absolute Bias 7.30% 7.77% 34.17% 30.53%

8.3 4GL Build3 & Build4

In order to obtain a fuller insight into the sensitivity of SOM and FSOM, we fed

the models with 65% of the original data set as training sets and 29% of the

original set as recall sets in both Build 3 and Build 4. In Build 3, however, we

kept ATTRIB and NONMENU and added two other variables - ENT and

REPORT that have relatively higher correlations with SIZE. In Build 4, we took

away NONMENU and FDCSIZE as they are both derived from other variables

directly (NONMENU = EDIT + REPORT whereas FDCSIZE = MENU + EDIT +

REPORT). In other words, we adopted six elemental variables (ATTRIB, EDIT,

ENT, MENU, REPORT, and RSHIP) in Build 4.

The result showed that, the more inadequate variables we provided to the

models, the less accurate estimations they produced. We then computed the

Mean of Average Absolute Errors in Build 1, 3 and 4 to assess the impact of

these variations (Table 8.4). Build 2 was excluded from the table because it is

the only one that used 40% of the original data in the training set, against

others that used 60-64%. Here,

Average Absolute Errors = Sum of Absolute Errors / Recall set size, and

Mean of Average Absolute Errors = Sum of Average Absolute Errors/5

Page 71

Table 8.4

Mean of Absolute Errors of 4GL Builds

Build
Variable

s

Mean of Average Absolute Errors

SOM FSOM LR FLR

1 2 91 87 254 254

3 4 151 164 288 288

4 6 211 204 301 311

It appears that, as expected, all four models lost their precision when noise was

added into the process of creating models. Comparatively, Linear Regression

and Fuzzy Linear Regression are in this case steadier than SOM and FSOM

when enduring noise, although their results were still worse than those

achieved using SOMs.

8.4 Desharnais Build1

Considering the correlations among the variables (see Section 4.2.2) in the

Desharnais data set, Entities is the only independent variable used in our

construction of an effort forecasting model. Each test in this build uses 48

records (i.e. approximately 60% of original data set) in the training set and 24

records (i.e. approximately 40% of the data set) in the recall set.

As in the 4GL builds, the prediction results produced by SOM and FSOM follow

the actual effort significantly closely (illustrated by Figure 8.5). In contrast,

Linear Regression and Fuzzy Linear Regression only manage to indicate the

trend in the overall picture.

Page 72

Figure 8.5. Comparison of Actual and Predicted Results for Desharnais Build1

We can also argue that SOM and FSOM outperform Linear Regression and

Fuzzy Linear Regression in terms of Sum of Absolute Errors (Figure 8.6).

However, as the models are used to forecast effort, which is measured in

person-hours in the Desharnais data set, whether the prediction result is

accurate or not depends on the number of personnel in the particular project.

Also, we need to consider the error relative to the number of hours in each

project, i.e. the bias.

Page 73

Figure 8.6. Sum of Absolute Errors of Desharnais Build1

When appraising the bias of all four models (Table 8.5), it is evident that Linear

Regression and Fuzzy Linear Regression are inadequate for a data set that

presents features similar to those in the Desharnais data set. Also, the level of

acceptable bias depends on the project. In terms of bias SOM performed the

best in this build, in contrast to FSOM, and presented the lowest Sum of

Absolute Errors.

Table 8.5

Bias of Desharnais Build1

Test
Bias

SOM FSOM LR FLR

1 1.98% 2.35% 13.76% 13.43%

2 3.31% 1.85% -1.28% -1.26%

3 3.81% 3.20% 28.66% 28.35%

4 1.01% 0.79% 13.10% 12.08%

5 -1.07% 3.73% 19.16% 16.44%

Sum of Absolute Bias 11.18% 11.93% 75.96% 71.56%

8.5 Desharnais Build2

In the second build of the Desharnais data set the size of training data sets is

decreased from 48 to 43 (i.e. approximate 53% of the data set). The size of the

recall sets is decreased to 19 (i.e. approximate 24% of the data set). We found

Page 74

that Linear Regression and Fuzzy Linear Regression predictions match the

actual effort much better in Build2 than in Build1. In addition, the precision of

SOM and FSOM is improved (see Figure 8.7 and Figure 8.8).

Figure 8.7. Sum of Absolute Errors of Desharnais Build2

While examining the bias (Table 8.6), it can be seen that Linear Regression

and Fuzzy Linear Regression are overestimating the effort in every test by

nearly 19% at the maximum. Whereas the bias of SOM and FSOM prediction

results in this build are smaller than in Build1, it can also be seen that FSOM

achieved a very low 0.01% bias in Test 1 where SOM has a low bias. Overall,

SOM produced the smallest Sum of Absolute Errors in this build while FSOM

produced the lowest error from perspective of bias.

Table 8.6

Bias of Desharnais Build2

Test
Bias

SOM FSOM LR FLR

1 0.16% 0.01% 6.24% 6.11%

2 2.89% 2.46% 18.76% 18.62%

3 -1.62% -1.23% 13.37% 13.10%

4 1.14% -0.22% 7.34% 7.20%

5 1.74% 1.67% 9.38% 9.16%

Sum of Absolute Bias 7.55% 5.59% 55.09% 54.19%

Page 75

Figure 8.8. Comparison of Actual and Predicted Results for Desharnais Build2

8.6 Miyazaki Build1

In the first build that utilizes the Miyazaki data set, 25 out of the 48 original

records are used as a training set whilst 15 further records are used as a recall

set. Three variables - SCRN, FORM, and FILE - are selected in the build as

they are easy to understand and can be directly counted in the system.

Page 76

Figure 8.9. Comparison of Actual and Predicted Results for Miyazaki Build1

The trend lines in Figure 8.9 indicate that most of the prediction results deviate

from the actual results wildly. In this build, when the trend lines of SOM and

FSOM split, the gaps between them are more noticeable than they are for the

other two data sets, especially in Test3 and Test4. The Sum of Absolute Error

(see Figure 8.10) shows that SOM and FSOM are losing their superiority to

(but still outperform) Linear Regression and Fuzzy Linear Regression. This is

even clearer when appraising the bias.

Page 77

Figure 8.10. Sum of Absolute Errors of Miyazaki Build1

On the one hand, the SOM and FSOM forecasts display over 10% bias in most

situations. On the other hand, Linear Regression and Fuzzy Linear Regression

underestimate the effort in all tests by nearly 50% as shown by the maximum

bias (Table 8.7).

Table 8.7

Bias of Miyazaki Build1

Test
Bias

SOM FSOM LR FLR

1 15.98% 14.69% -11.60% -11.54%

2 -11.63% -8.06% -48.82% -48.53%

3 5.54% 0.81% -42.16% -42.15%

4 12.08% 15.43% -35.46% -25.94%

5 -9.02% -10.93% -40.52% -40.45%

Sum of Absolute Bias 54.25% 49.93% 178.54% 168.61%

Although strictly speaking SOM and FSOM achieve lower Sums of Absolute

Error and bias than Linear Regression and Fuzzy Linear Regression, with

Person-Month as the measure, biases that are close to 50% are clearly

unacceptable in effort estimation.

Page 78

8.7 Miyazaki Build2

In this build, we keep the same three variables as predictors but we increase

the size of the training set to 32 records and reduce the size of the recall set to

14 records.

It is surprising to see in Figure 8.11 that all four models perform much worse for

one particular project – J3. By assessing other projects that require similar

amounts of Person-Months, we found that J3 has much lower independent

variable values except for SCRN. Hence, we have a good reason to believe

that project J3 is an outlier.

At the same time, we notice in Figure 8.12 that SOM and FSOM perform less

accurately in this build, and their Sums of Absolute Error are closer to those of

Linear Regression and Fuzzy Linear Regression. However, FSOM is more

accurate than SOM here.

Figure 8.12. Sum of Absolute Errors of Miyazaki Build2

Page 79

Figure 8.11. Comparison of Actual and Predicted Results for Miyazaki Build2

By looking at the bias in Table 8.8, we might say that Linear Regression and its

enhanced version, Fuzzy Linear Regression in our case, are highly

inappropriate for estimating software projects that are similar to those evident

in the Miyazaki data set. Even though SOM and FSOM exhibit better

performance, the quality of the predictions is unstable as the biases fluctuate

sharply. Furthermore, when Person-Months is used as the unit for counting and

predicting the effort, project managers are more sensitive to bias.

Page 80

Table 8.8

Bias of Miyazaki Build2

Test
Bias

SOM FSOM LR FLR

1 38.58% 37.67% 38.73% 38.69%

2 1.06% -1.35% -55.41% -55.49%

3 28.93% 32.34% 33.75% 33.69%

4 3.98% 6.51% -13.80% -13.89%

5 -4.89% -8.09% -60.47% -60.50%

Sum of Absolute Bias 77.44% 85.95% 202.17% 202.25%

Page 81

9 Conclusion

9.1 Fuzziness

Since the size of recall sets used in the tests varies significantly, it is

inappropriate to evaluate the performance of these four models across builds

based on the Sum of Absolute Errors. In order to take into account the

influence of absent historical data, we used the Average of Absolute Errors and

Mean of Average Absolute Errors as indicators to illustrate the accuracy of

different prediction models. Here,

Average of Absolute Errors = Sum of Absolute Errors / Recall set size; and

Mean of Average Absolute Errors = Sum of Average of Absolute Errors / 5

A lower Mean of Average Absolute Errors indicates a more accurate model

(Table 9.1). In 4GL Build1 and Build2, all four models perform slightly less

accurately when the size of the training set is decreased from 65% of the

original data set to 40%. (4GL Build3 and Build4 are not included here as they

have different numbers of variables to 4GL Build1 and Build2.)

Table 9.1

Aspects of Training Data Sets vs. Models’ Performance

Build

Train

Set

Size

Total

Size
Percentage Variables

Mean of

Average Absolute Errors

SOM FSOM LR FLR

4GL B1 42 70 65% 2 91 87 254 254

4GL B2 28 70 40% 2 97 94 262 259

Variance 14 - - 0 -6 -7 -8 -5

4GL B3 45 70 64% 4 151 164 288 288

4GL B4 45 70 64% 6 211 204 301 311

Desharnais B1 48 81 59% 1 258 240 2411 2410

Desharnais B2 43 81 53% 1 192 221 2258 2257

Variance 5 - - 0 65 19 153 153

Miyazaki B1 25 48 52% 3 13.2 12.6 27.6 26.6

Miyazaki B2 32 48 67% 3 16.8 15.0 24.6 24.6

Variance -7 - - 0 -3.6 -2.4 3.0 2.0

When around 6% of the original Desharnais data set was removed from the

training set, all four models provided forecasts that were more accurate to

Page 82

varying degrees. However, when 15% of the original data set was added into

the Miyazaki training set, it is interesting to observe that the performance of

SOM and FSOM dropped whereas Linear Regression and Fuzzy Linear

Regression presented better estimation.

According to the assessment in Table 9.1, we conclude that both SOM and

FSOM lose their ability to accommodate ambiguous and vague data when they

are over-fed with historical records. They only become reasonably accurate for

test data sets that are extremely similar to the training set and are not

applicable for wider ranges of data that share the same features. However,

when the size of the training set is less than 50% of the original data set (which

is 4GL Build2 in our case) all four models lose their accuracy.

It is also important to point out that the degree of fuzziness considered here is

not extensive, especially in the 4GL and Miyazaki data sets. In these two data

sets, the difference between the original and fuzzified versions of the data are

only decimal digits, i.e. within (zero, 1). In contrast, the Desharnais data set has

higher degree of fuzziness than the other two data sets. In the Desharnais

builds, several original records were represented by one single fuzzified record

after fuzzification.

9.2 Data Distribution

In order to gain a better insight into the relationship of data distribution and

prediction accuracy, we calculated the Absolute Margin between actual

size/effort and predicted size/effort for each test. In here,

Absolute Margin = |Sum of actual value in fuzzy training set/Training set size –

Sum of actual values in recall set/Recall set size|

Thus, a higher Absolute Margin implies a more uneven data distribution split. At

the same time, a lower Average of Absolute Errors means a more accurate

model (as defined in Section 9.1). By analyzing the Kendall‟s taub correlation of

Page 83

the Average of Absolute Errors of the four models against the Absolute Margin

in each test, we found that there are associations most of the time (Table 9.2).

Table 9.2

Kendall’s taub Correlation between Absolute Margin & Average of Absolute Errors

Build SOM FSOM LR FLR

4GL Build1 .200 .200 .400 .400

4GL Build2 -1.000 -.800 -.800 -.800

4GL Build3 .400 .200 .200 .200

4GL Build4 .000 -.200 .000 .400

Desharnais Build1 .200 .200 .400 .400

Desharnais Build2 1.000 .400 -.400 -.400

Miyazaki Build1 .000 .400 -.400 .000

Miyazaki Build2 -.200 -.200 -.200 -.200

A number of these correlations are unexpected association. However, this can

be explained by the prediction models being sophisticated. Besides data

distribution, there are diverse factors affecting the accuracy of estimation, such

as the fuzziness of the data set, the selection of the independent variable(s),

the numbers of training cycles (in the case of SOM/FSOM), and so on. Our

hypothesis for further work is “the more even the data distribution the more

accurate the prediction model”. At the current stage, we do not have enough

strong evidence to support this assertion.

9.3 The Overtraining Issue

In our experiment, the relevance of the overtraining issue with neural networks

reported in previous studies is confirmed. In SOM and FSOM, the nodes of the

map are generated in the training process. A higher number of nodes requires

more training cycles, which implies more system capacity required and longer

time consumed.

In the Desharnais builds, apart from constructing the 10000 node maps for

comparison with Linear Regression and Fuzzy Linear Regression, we also

generated 8000 node maps. It can be seen from Figure 9.1 that in some tests

SOM and FSOM produce lower errors with 10000 nodes. Nonetheless, whether

Page 84

8000 or 10000 nodes are better can only be decided on a case by case basis

and is weakly associated to data distribution according to the Kendall‟s taub

correlation (see Table 9.1) for the Desharnais data set.

Figure 9.1. Sum of Absolute Errors Comparison for the Desharnais Data Set

We also selected Test1 and Test2 in Miyazaki Build1 to observe the influence

of the training process. In Test1, we generated 2000, 5000, 8000, 10000 and

20000 node maps, whereas 2000, 8000, and 10000 node maps were used in

Test2. A fully trained SOM/FSOM model offers better prediction although an

overtrained SOM/FSOM model would be less accurate than a fully trained one.

Therefore, we believe a fully trained SOM/FSOM model for Test1 is around

8000 nodes. Meanwhile, a fully trained FSOM model for Test2 is also around

Page 85

8000 nodes when a fully trained SOM model could have around 10000 nodes

or even more, as demonstrated in Figure 9.2.

Figure 9.2. Sum of Absolute Errors Comparison for Miyazaki Build1 Test 1&2

9.4 SOM and FSOM Maps

One of the most novel and significant aspects of SOM is the ability of projecting

multi-dimensional data into a two-dimensional map. In software project

management, we believe such a characteristic of SOM/FSOM could offer an

easy-to-understand straightforward representation of project features from

which managers could obtain useful knowledge and understanding of complex

problems. To inspect the relationships between the accuracy of estimation and

the maps, we utilised the Average of Absolute Errors in each test to calculate

the Difference and Absolute Difference of FSOM against SOM. Here,

Page 86

Difference = SOM Average of Absolute Errors – FSOM Average of Absolute

Errors; and

Absolute Difference = |Difference|

The minimum and maximum values of Average of Absolute Errors in Table 9.3

are also highlighted to indicate the best (in green) and worst (in pink)

performance of SOM and FSOM within every build.

We notice that FSOM performance is very comparable to that of SOM most of

the time, which means when SOM achieves its best (or worst) in a certain test,

FSOM also hits its peak (or dip) in that same test. The exceptions are in 4GL

Build3, 4GL Build4, and Desharnais Build2, where SOM and FSOM do not

perform best at the same time. In our experiment, no evidence was found to

show that there is any association among the accuracy of estimation (Average

of Absolute Errors), the difference between SOM and FSOM prediction

(Difference and Absolute Difference), and the presentation of the maps.

For instance, while the maps in 4GL Build1 Test2 are similar, yet SOM and

FSOM are at their worst and the Absolute Difference is the highest for the build.

When both achieved the minimum of Average of Absolute Errors with the

smallest Absolute Difference in 4GL Build2 Test2, the utility of the maps of

SOM are different to that of FSOM. Desharnais Build1 Test3 presents less

accuracy and the highest difference between maps. Miyazaki Build2 Test1 is

the worst in terms of accuracy, however, Absolute Difference is the minimum

for the build and maps are dissimilar.

Page 87

Table 9.3

Overall Performance Comparison

 Test1 Test2 Test3 Test4 Test5 Min Max
4
G

L
 B

1
 SOM Avg of AbsErr 84 127 85 96 62 62 127

FSOM Avg of AbsErr 76 116 77 93 73 73 116

Difference 7 11 8 3 -10 - -

AbsDifference 7 11 8 3 10 3 11

4
G

L
 B

2
 SOM Avg of AbsErr 102 78 102 105 97 78 105

FSOM Avg of AbsErr 105 76 90 110 87 76 110

Difference -3 2 12 -6 10 - -

AbsDifference 3 2 12 6 10 2 12

4
G

L
 B

3
 SOM Avg of AbsErr 205 140 141 131 139 131 205

FSOM Avg of AbsErr 218 123 144 176 161 123 218

Difference -13 17 -3 -44 -23 - -

AbsDifference 13 17 3 44 23 3 44

4
G

L
 B

4
 SOM Avg of AbsErr 208 219 196 202 229 196 229

FSOM Avg of AbsErr 170 198 175 199 278 170 278

Difference 39 21 21 3 -49 - -

AbsDifference 39 21 21 3 49 3 49

D
e
s
h

a
rn

a
is

B
1

SOM Avg of AbsErr 193 240 409 179 267 179 409

FSOM Avg of AbsErr 201 226 349 172 252 172 349

Difference -7 14 61 6 15 - -

AbsDifference 7 14 61 6 15 6 61

D
e
s
h

a
rn

a
is

B
2

SOM Avg of AbsErr 273 199 159 182 148 148 273

FSOM Avg of AbsErr 262 229 260 160 193 160 262

Difference 11 -30 -101 22 -45 - -

AbsDifference 11 30 101 22 45 11 101

M
iy

a
z
a
k
iB

1

SOM Avg of AbsErr 10 16 13.6 14.1 12.0 10.4 15.8

FSOM Avg of AbsErr 12 15 11.9 11.9 12.5 11.9 14.8

Difference -1.5 1.1 1.7 2.2 -0.5 - -

AbsDifference 1.5 1.1 1.7 2.2 0.5 0.5 2.2

M
iy

a
z
a
k
iB

2

SOM Avg of AbsErr 33 8 21.8 8.9 12.8 7.8 32.8

FSOM Avg of AbsErr 33 6 20.3 6.6 9.2 6.1 32.7

Difference 0.2 1.7 1.5 2.3 3.6 - -

AbsDifference 0.2 1.7 1.5 2.3 3.6 0.2 3.6

Figures 9.3-9.6 depict the maps produced in 4GL Build1 Test3 that are one set

of the regular outcomes in our experiment. While the maps of clusters in Figure

Page 88

9.3 and Figure 9.5 present multi-dimensional data in two-dimensional maps,

the maps of variables in Figure 9.4 and Figure 9.6 show three dimensions that

are variables in this case. The structures of maps for variables in SOM (Figure

9.4) are exactly the same to the structure of the map for clusters in SOM

(Figure 9.3), likewise maps in FSOM (Figure 9.6 & 9.5). In the maps for

variables, certain colours are used to represent the different values of each

variable. The relationship between colours and values are explained in the

scales (Eudaptics, 1999). Blue stands for low and red stands for high.

Figure 9.3. Map of Clusters in SOM of 4GL Build1 Test3

Figure 9.4. Maps of Variables in SOM of 4GL Build1 Test3

Page 89

Figure 9.5. Map of Clusters in FSOM of 4GL Build1 Test3

Figure 9.6. Maps of Variables in FSOM of 4GL Build1 Test3

It is evident that SOM and FSOM representations cluster the same set of data

differently in this test, as well as in most of the other tests, in spite of only minor

differences in the original and fuzzified values. Certainly, in some of the tests,

such as 4GL Build1 Test2 mentioned above, the structure of maps for variables

and clusters in SOM are analogous to maps in FSOM for the same test.

In other words, even though both SOM and FSOM do provide a fair

presentation of data distributions for dependent and independent variables,

one could not infer whether SOM or FSOM is more accurate by only looking at

the maps without consulting the recall outcome.

9.5 Summary

Based on the analysis of data presented in Table 9.1, we can assert that for the

data sets considered here SOM and FSOM outperform Linear Regression and

Page 90

Fuzzy Linear Regression in our experiment. This includes cases when noise or

overwhelming historical data are introduced into the models, i.e. the SOM and

FSOM are overtrained.

According to the differences presented in Table 9.3, FSOM performs better

than SOM in 65% (26 out of 40) of the tests. We can then assert that applying

the Fuzzy C-Means algorithm prior to creating SOM models improves the

accuracy of software project estimation in our experiment.

When predicting software size as in the 4GL data set, SOM and FSOM offer

more accurate estimations than Linear Regression. We could also argue the

levels of errors and biases are acceptable. When predicting effort, project

managers must appraise the estimation results carefully. In the Desharnais

data set, Person-Hours is the unit of measure for project effort. Therefore, we

could still claim the levels of error and bias of SOM and FSOM are tolerable

and recommend SOM/FSOM as a suitable prediction tool. However, when the

unit of measure of the project effort is in Person-Months as in the Miyazaki data

set, although the errors are statistically small, we could not recommend SOM

and FSOM as useful estimation tools. In this case, project managers should

cautiously evaluate the performance of SOM/FSOM given their bias.

Meanwhile, we also advocate a thorough correlation analysis to be carried out

before constructing prediction models because noise has an impact on

accuracy, especially for SOM and FSOM models. In our experiment, SOM and

FSOM perform better when the size of the training set is 50-60% (depending on

the data set) of the original data set. For that reason, we advise project

managers to rebuild each prediction model when significant amounts of new

data are acquired in order to achieve more accurate estimations.

9.6 Summary of Findings

This study has addressed the research question “Is the Self-Organising Map an

appropriate candidate for estimation in software project management?”

Page 91

In our case studies of three different software project data sets, compared to

Linear Regression benchmarks, SOM generally provides more accurate

estimations of software size and of the personnel effort required in software

development. The integration of fuzzy logic techniques, via Fuzzy C-Means in

our experiment, is helpful in handling vague and ambiguous real world data.

Hence, we regard SOM and FSOM as appropriate candidates for prediction in

software project management.

9.7 Limitations and Future Study

The foremost limitation of our experiment is that we only used Linear

Regression and its transformed version of Fuzzy Linear Regression as the

benchmark. Despite the fact that Linear Regression is one of the most

commonly used statistical analysis approaches for inference, the focus on the

conditional probability distribution restricts its applicability in circumstances that

demand the consideration of joint probability distribution. For software project

estimation that requires multivariate analysis, when evaluating the performance

of SOM and FSOM, project managers should also think about using some

alternative modelling methods that give quantitative outputs. For instance:

 Fuzzy inference, which is able to deal with ambiguous data by applying

fuzzy logic principles; or

 Support Vector Machine (SVM), which is a set of related supervised

machine learning methods for classification and regression analysis; or

 Other forms of Artificial Neural Networks (ANN) which offer non-linear

data modelling tools for relationship extraction and pattern recognition.

Another significant limitation is the manner in which each Fuzzy SOM was

created. In previous studies, researchers built FSOM using one of two main

approaches: either create the two-dimensional map using SOM then apply

FCM to cluster the map, or use FCM to fuzzify the original data before forming

the two-dimensional map. We utilised the latter method in our experiment, thus

future study on the former approach is recommended.

Page 92

In addition, the fuzzifier that we employed in this experiment implemented a

basic Fuzzy C-Means algorithm. As a technique that was developed some time

ago, the drawbacks of FCM are well known and researchers have extended the

basic Fuzzy C-Means algorithm into diverse enhanced versions. One of the

examples is a new version of FCM introduced by Kannan, Devi, Ramathilagam

& Sathya (2010). It is able to trim down noise and outliers in large data sets.

Bearing in mind the poor performance of SOM and FSOM with the outlier in the

Miyazaki data set, it may be that applying this improved version of FCM in

creating a Fuzzy SOM would benefit this particular case of software project

effort estimation.

Furthermore, we also propose a more thorough investigation of the Miyazaki

data set. Even though the SOM and FSOM models statistically outperformed

Linear Regression and Fuzzy Linear Regression in our Miyazaki data set builds,

the biases of SOM and FSOM are far beyond acceptable limits. In our

experiment, two out of three independent variables that were used to form the

models displayed low Kendall‟s taub correlation to the dependent variable –

effort in Person Months. Therefore, it would be useful to consider the use of

other combinations of variables in this model before revisiting the performance

of SOM and FSOM with the Miyazaki data set.

Since we believe project managers could benefit from using the two-

dimensional maps that offer straightforward representations of data, we

suggest a further empirical study of the relationships between the accuracy of

estimation and the presentation of SOM and FSOM maps, as perceived by

project managers. This would allow project managers to determine under what

circumstances FSOM is more or less appropriate than SOM for the estimation

of a particular project or set of projects. We also encourage investigation of the

hypothesis: “the more even the data distribution is the more accurate the

prediction model would be”.

Finally, understanding the relationship between the training set and the fully

optimized size of SOM/FSOM (i.e. the best number of nodes) is an area that is

worth future study. Without doubt, the optimised SOM and FSOM achieve their

Page 93

best outcomes in terms of resulting in the lowest prediction errors than they do

at other sizes.

Page 94

10 References

Adams, L. A., & Courtney, J. F. (2004). Achieving relevance in IS research via the

DAGS framework. Paper presented at the Proceedings of the 37th Annual Hawaii

International Conference on System Sciences, 2004. Retrieved from

doi:10.1109/HICSS.2004.1265615

Arndt, S., Turvey, C., & Andreasen, N. C. (1999). Correlating and predicting

psychiatric symptom ratings: Spearmans r versus Kendalls tau correlation. Journal

of Psychiatric Research, 33(2), 97-104. Retrieved from doi:10.1016/S0022-

3956(98)90046-2

Aroba, J., Cuadrado-Gallego, J. J., Sicilia, M.-A., Ramos, I., & Garcia-Barriocanal, E.

(2008). Segmented software cost estimation models based on fuzzy clustering.

Journal of Systems and Software, 81(11), 1944-1950. Retrieved from

doi:10.1016/j.jss.2008.01.016

Azzeh, M., Neagu, D., & Cowling, P. I. (2010). Fuzzy grey relational analysis for

software effort estimation Empirical Software Engineering, 15(1), 60-90. Retrieved

from doi:10.1007/s10664-009-9113-0

Berlin, S., Raz, T., Glezer, C., & Zviran, M. (2009). Comparison of estimation methods

of cost and duration in IT projects. Information and Software Technology, 51(4),

738-748. Retrieved from doi:10.1016/j.infsof.2008.09.007

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering

algorithm. Computers & Geosciences, 10(2-3), 191-203. Retrieved from

doi:10.1016/0098-3004(84)90020-7

Bezdek, J. C., Tsao, E. C. K., & Pal, N. R. (1992). Fuzzy Kohonen clustering

networks. Paper presented at the IEEE International Conference on Fuzzy

Systems, 1992. Retrieved from doi:10.1109/FUZZY.1992.258797

Boehm, B. W., & Valerdi, R. (2008). Achievements and Challenges in Cocomo-Based

Software Resource Estimation. IEEE Software, 25(5), 74-83. Retrieved from

doi:10.1109/MS.2008.133

Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort

estimation? A comparative evaluation. Information and Software Technology,

43(14), 863-873. Retrieved from doi:10.1016/S0950-5849(01)00192-6

Chaudhuri, A., De, K., & Chatterjee, D. (2008). A Study of the Traveling Salesman

Problem Using Fuzzy Self Organizing Map. Paper presented at the IEEE Region 10

and the Third international Conference on Industrial and Information Systems,

2008. Retrieved from doi:10.1109/ICIINFS.2008.4798469

Chen, N. (2005). Fuzzy Classification Using Self-Organizing Map and Learning Vector

Quantization Data Mining and Knowledge Management, 3327/2005, 41-50.

Retrieved from doi:10.1109/FSKD.2008.149

Chen, N., & Chen, A. (2008). A Fuzzy and Hybrid Clustering Framework Using Self-

Organizing Map. Paper presented at the FSKD '08. Fifth International Conference

on Fuzzy Systems and Knowledge Discovery, 2008. Retrieved from

doi:10.1109/FSKD.2008.149

Chi, S.-C., Kuo, R.-J., & Teng, P.-W. (2000). A fuzzy self-organizing map neural

network for market segmentation of credit card. Paper presented at the 2000 IEEE

International Conference on Systems, Man, and Cybernetics. Retrieved from

doi:10.1109/ICSMC.2000.886571

Page 95

Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall

correlation measures Statistical Methods & Applications, 19(4), 497-515. Retrieved

from doi:10.1016/S0950-5849(01)00192-6

Dick, S., Meeks, A., Last, M., Bunke, H., & Kandel, A. (2004). Data mining in software

metrics databases. Fuzzy Sets and Systems, 145(1), 81-110. Retrieved from

doi:10.1016/j.fss.2003.10.006

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in

Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57.

Retrieved from doi:10.1080/01969727308546046

Eudaptics. (1999). Viscovery® SOMine Version 4.0 – User's Manual: Eudaptics

software gmbh.

Flexer, A. (2001). On the use of self-organizing maps for clustering and visualization.

Intelligent Data Analysis, 5(5), 373.

Giraudel, J. L., & Lek, S. (2001). A comparison of self-organizing map algorithm and

some conventional statistical methods for ecological community ordination.

Ecological Modelling, 146(1-3), 329-339. Retrieved from

doi:10.1016/j.fss.2003.10.006

Gray, A. R., & MacDonell, S. G. (1997). A comparison of techniques for developing

predictive models of software metrics. Information and Software Technology, 39(6),

425-437. Retrieved from doi:10.1016/S0950-5849(96)00006-7

Gregor, S. (2006). The nature of theory in information systems. Management

Information Systems Quarterly, 30(3), 611-642.

Grzegorzewski, P. (2009). Kendall‟s correlation coefficient for vague preferences. Soft

Computing - A Fusion of Foundations, Methodologies and Applications, 13(11),

1055-1061. Retrieved from doi:10.1007/s00500-008-0378-9

He, N. (2009). A Fast Self-Organizing Map Algorithm by Using Genetic Selection.

Paper presented at the Third International Symposium on Intelligent Information

Technology Application, 2009. IITA 2009. . Retrieved from

doi:10.1109/IITA.2009.291

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. Management Information Systems Quarterly, 28(1), 75-106

Retrieved from http://www.jstor.org/pss/25148625

Holz, H. J., Applin, A., Haberman, B., Joyce, D., Purchase, H., & Reed, C. (2006).

Research methods in computing: what are they, and how should we teach them?

Paper presented at the Working group reports on ITiCSE on Innovation and

technology in computer science education, Bologna, Italy. Retrieved from doi:

10.1145/1189215.1189180

Hsiao, W.-F., Lin, H.-H., & Chang, T.-M. (2008). Fuzzy consensus measure on verbal

opinions. Expert Systems with Applications, 35(3), 836-842. Retrieved from

doi:10.1016/j.eswa.2007.07.040

Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the

accuracies of software effort estimates from clustered data. Information and

Software Technology, 50(9-10), 879-888. Retrieved from

doi:10.1016/j.infsof.2008.02.005

Page 96

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. ACM

Computing Surveys, 31(3), 264. Retrieved from doi:10.1145/331499.331504

Jorgensen, M., & Shepperd, M. (2007). A Systematic Review of Software

Development Cost Estimation Studies. IEEE Transactions on Software

Engineering, 33(1), 33-53. Retrieved from doi:10.1109/tse.2007.256943

Kannan, S. R., Devi, R., Ramathilagam, S., & Sathya, A. (2010). Some robust

objectives of FCM for data analyzing. Applied Mathematical Modelling, 35(5), 2571-

2583. Retrieved from doi:10.1016/j.apm.2010.11.020

Keung, J. W., Kitchenham, B. A., & Jeffery, D. R. (2008). Analogy-X: Providing

Statistical Inference to Analogy-Based Software Cost Estimation. IEEE

Transactions on Software Engineering, 34(4), 471-484. Retrieved from

doi:10.1109/TSE.2008.34

Kocaguneli, E., Menzies, T., & Keung, J. (2011). On the Value of Ensemble Effort

Estimation. IEEE Transactions on Software Engineering, PP(99), 1-14. Retrieved

from doi:10.1109/tse.2011.111

Kohonen, T. (1981). Automatic Formation of Topological Maps of Patterns in a Self-

Organizing System. Paper presented at the Proceedings of the 2nd Scandinavian

Conference on Image Analysis. Retrieved from citeulike-article-id:793951

Kohonen, T. (1999). Fast Evolutionary Learning with Batch-Type Self-Organizing

Maps Neural Processing Letters, 9(2), 153-162. Retrieved from

doi:10.1023/A:1018681526204

Kohonen, T. (2008). Data Management by Self-Organizing Maps In Computational

Intelligence: Research Frontiers, 5050/2008, 309-332: Springer Berlin / Heidelberg.

Retrieved from doi:10.1007/978-3-540-68860-0_15

Kohonen, T., Nieminen, I. T., & Honkela, T. (2009). On the Quantization Error in SOM

vs. VQ: A Critical and Systematic Study In Advances in Self-Organizing Maps,

5629/2009, 133-144: Springer Berlin / Heidelberg. Retrieved from doi:10.1007/978-

3-642-02397-2_16

Kraemer, H. C. (2006). Correlation coefficients in medical research: from product

moment correlation to the odds ratio. Statistical Methods in Medical Research,

15(6), 525-545. Retrieved from doi:10.1177/0962280206070650

Kuo, R. J., Chi, S. C., & Teng, P. W. (2001). Generalized part family formation

through fuzzy self-organizing feature map neural network. Computers & Industrial

Engineering, 40(1-2), 79-100. Retrieved from doi:10.1016/S0360-8352(00)00073-5

Kurbel, K. E. (2008). Software Project Management In The Making of Information

Systems, 473-531: Springer Berlin Heidelberg. Retrieved from doi:10.1007/978-3-

540-79261-1_8

Kurd, Z., & Kelly, T. P. (2007). Using fuzzy self-organising maps for safety critical

systems. Reliability Engineering & System Safety, 92(11), 1563-1583. Retrieved

from doi:10.1016/j.ress.2006.10.005

Lee, K. C., Cho, H. R., & Kim, J. S. (2007). A self-organizing feature map-driven

approach to fuzzy approximate reasoning. Expert Systems with Applications, 33(2),

509-521. Retrieved from doi:10.1016/j.eswa.2006.05.031

Page 97

Li, S.-T., Cheng, Y.-C., & Lin, S.-Y. (2008). A FCM-based deterministic forecasting

model for fuzzy time series. Computers & Mathematics with Applications, 56(12),

3052-3063. Retrieved from doi:10.1016/j.camwa.2008.07.033

Li, S.-T., Kuo, S.-C., & Tsai, F.-C. (2010). An intelligent decision-support model using

FSOM and rule extraction for crime prevention. Expert Systems with Applications,

37(10), 7108-7119. Retrieved from doi:10.1016/j.eswa.2010.03.004

MacDonell, S. G. (2003). Software source code sizing using fuzzy logic modeling.

Information and Software Technology, 45(7), 389-404. Retrieved from

doi:10.1016/S0950-5849(03)00011-9

MacDonell, S. G. (2005). Visualization and analysis of software engineering data

using self-organizing maps. Paper presented at the 2005 International Symposium

on Empirical Software Engineering, 2005. Retrieved from

doi:10.1109/ISESE.2005.1541820

MacDonell, S. G., & Gray, A. R. (2003). Applying Fuzzy Logic Modeling to Software

Project Management. In T. M. Khoshgoftaar (Ed.), In Software Engineering with

Computational Intelligence (pp. 17-43). Boston MA, USA.

March, S. T., & Smith, G. F. (1995). Design and natural science research on

information technology. Decision Support Systems, 15(4), 251-266. Retrieved from

doi:10.1016/0167-9236(94)00041-2

Miyazaki, Y., Terakado, M., Ozaki, K., & Nozaki, H. (1994). Robust regression for

developing software estimation models. Journal of Systems and Software, 27(1), 3-

16. Retrieved from doi:10.1016/0164-1212(94)90110-4

Moreno, M.N., Ramos, I., García, F.J. & Toro, M. (2008). An association rule mining

method for estimating the impact of project management policies on software

quality, development time and effort. Expert Systems with Applications, 34(1), 522-

529. Retrieved from doi:10.1016/j.eswa.2006.09.022

Muzaffar, Z., & Ahmed, M. A. (2010). Software development effort prediction: A study

on the factors impacting the accuracy of fuzzy logic systems. Information and

Software Technology, 52(1), 92-109. Retrieved from

doi:10.1016/j.infsof.2009.08.001

Nomura, T., & Miyoshi, T. (1995). An adaptive rule extraction with the fuzzy self-

organizing map and a comparison with other methods. Paper presented at the

Proceedings of ISUMA - NAFIPS '95 The Third International Symposium on

Uncertainty Modeling and Analysis and Annual Conference of the North American

Fuzzy Information Processing Society. Retrieved from

doi:10.1109/ISUMA.1995.527713

Nunamaker, J. F., Chen, M., & Purdin, T. D. M. (1990). System Development in

Information Research. Journal of Management of Information System, 7(3), 89-106.

O'Gorman, T. W., & Woolson, R. F. (1995). Using Kendall's tau b Correlations to

Improve Variable Selection Methods in Case-Control Studies. Biometrics, 51(4),

1451-1460. Retrieved from http://www.jstor.org/stable/2533275

Pedrycz, W., & Succi, G. (2005). Genetic granular classifiers in modeling software

quality. Journal of Systems and Software, 76(3), 277-285. Retrieved from

doi:10.1016/j.jss.2004.06.018

Page 98

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., et al.

(2006). The Design Science Research Process: A Model for Producing and

Presenting Information Systems Research (DESRIST 2006) Paper presented at

the First International Conference on Design Science Research in Information

Systems and Technology (DESRIST 2006), Claremont, California. Retrieved from

http://www.mendeley.com/research/the-design-science-research-process-a-model-

for-producing-and-presenting-information-systems-research/

Pfleeger, S. L. (2001). Planning and Managing the Project. In Software engineering:

theory and practice (2
nd

 Edition) (pp. 77-134). Upper Saddle River, NJ: Prentice

Hall.

Pressman, R. S. (2001). Managing Software Projects. In Software engineering: A

practitioner's approach (5
th
 Edition) (pp. 53-241). New York, NY: McGraw-Hill.

Raju, G., Thomas, B., Kumar, T., & Thinley, S. (2008). Integration of Fuzzy Logic in

Data Mining to Handle Vagueness and Uncertainty. In Advanced Intelligent

Computing Theories and Applications. With Aspects of Artificial Intelligence, 5227,

880-887: Springer Berlin / Heidelberg. Retrieved from doi:10.1007/978-3-540-

85984-0_106

Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis of Unlabeled

Program Modules With Semisupervised Clustering. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 37(2), 201-211.

Retrieved from doi:10.1109/TSMCA.2006.889473

Seliya, N., Khoshgoftaar, T. M., & Zhong, S. (2005). Analyzing software quality with

limited fault-proneness defect data. Paper presented at the Ninth IEEE

International Symposium on High-Assurance Systems Engineering, 2005. HASE

2005. Retrieved from doi:10.1109/HASE.2005.4

Somervuo, P., & Kohonen, T. (1999). Self-Organizing Maps and Learning Vector

Quantization for Feature Sequences Neural Processing Letters, Volume

10(Number 2 / October, 1999), 151-159. Retrieved from

doi:10.1023/A:1018741720065

Somervuo, P., & Kohonen, T. (2000). Clustering and Visualization of Large Protein

Sequence Databases by Means of an Extension of the Self-Organizing Map In

Discovery Science, 1967/2000, 76-85: Springer Berlin / Heidelberg. Retrieved from

doi:10.1007/3-540-44418-1_7

Sommerville, I. (2007 A). Project management. In Software engineering (8
th
 Edition)

(pp. 92-113). Edinburgh: Pearson Education Limited.

Sommerville, I. (2007 B). Software cost estimation. In Software engineering (8
th

Edition) (pp. 92-113). Edinburgh: Pearson Education Limited.

Srinivas, V. V., Tripathi, S., Rao, A. R., & Govindaraju, R. S. (2008). Regional flood

frequency analysis by combining self-organizing feature map and fuzzy clustering.

Journal of Hydrology, 348(1-2), 148-166. Retrieved from

doi:10.1016/j.jhydrol.2007.09.046

Sum, J., & Chan, L.-W. (1994). Fuzzy self-organizing map: mechanism and

convergence. Paper presented at the IEEE World Congress on Computational

Intelligence. IEEE International Conference on Neural Networks, 1994. Retrieved

from doi:10.1109/ICNN.1994.374408

Page 99

Sun, H., Wang, S., & Jiang, Q. (2004). FCM-Based Model Selection Algorithms for

Determining the Number of Clusters. Pattern Recognition, 37(10), 2027-2037.

Venable, J. R. (2006). The Role of Theory and Theorising in Design Science

Research. Paper presented at the First International Conference on Design

Science Research in Information Systems and Technology (DESRIST 2006)

Claremont, California. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.2475&rep=rep1&typ

e=pdf

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE

Transactions on Neural Networks, 11(3), 586-600. Retrieved from

doi:10.1109/72.846731

Vuorimaa, P. (1994 A). Fuzzy self-organizing map. Fuzzy Sets and Systems, 66(2),

223-231. Retrieved from doi:10.1016/0165-0114(94)90312-3

Vuorimaa, P. (1994 B). Use of the Fuzzy Self-Organizing Map in pattern recognition.

Paper presented at the Proceedings of the Third IEEE Conference on Fuzzy

Systems, 1994. IEEE World Congress on Computational Intelligence. Retrieved

from doi:10.1109/FUZZY.1994.343837

Wang, L., & Qi, F. (1999). Adaptive fuzzy Kohonen clustering network for image

segmentation. Paper presented at the IJCNN '99. International Joint Conference on

Neural Networks, 1999. Retrieved from 10.1109/IJCNN.1999.833498

Yang, H.-C. (2009). Automatic generation of semantically enriched web pages by a

text mining approach. Expert Systems with Applications, 36(6), 9709-9718.

Retrieved from doi:10.1016/j.eswa.2009.02.022

Yuan, X., Khoshgoftaar, T. M., Allen, E. B., & Ganesan, K. (2000). An application of

fuzzy clustering to software quality prediction. Paper presented at the 3rd IEEE

Symposium on Application-Specific Systems and Software Engineering

Technology, 2000. Retrieved from doi:10.1109/ASSET.2000.888052

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. Retrieved

from doi:10.1016/S0019-9958(65)90241-X

Zhong, S., Khoshgoftaar, T. M., & Seliya, N. (2004). Unsupervised learning for expert-

based software quality estimation. Paper presented at the Eighth IEEE

International Symposium on High Assurance Systems Engineering, 2004.

Retrieved from doi:10.1109/HASE.2004.1281739

Page 100

11 Appendices

Appendix A. Training Sets and Recall Sets

Eight excel files of training sets and recall sets are provided in this appendix.

One file includes five tests for one build. Please refer to the enclosed disk for

the image files.

Appendix B. SOM and FSOM Maps of Variables and Clusters

This appendix includes SOM and FSOM maps generated in the eight builds.

Please refer to the enclosed disk for the image files.

Appendix C. Evaluation of Effort Estimation Spreadsheets

This appendix is comprised by eight files that appraise the estimation errors of

the four models in every single data records. Please refer to the enclosed disk

for the Excel files.

Appendix D. Comparison of Actual and Predicted Results

This appendix contains eight line charts from the eight builds that compare

actual and predicted results. Please refer to the enclosed disk for the image

files.

Appendix E. Data Analysis Tables and Figures

The file in this appendix provides overall data analysis in detail. Please refer to

the enclosed disk for the Excel file.

