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ABSTRACT 

This paper introduces a novel Transductive Support Vector 
Machine (TSVM) model and compares it with the 
traditional inductive SVM on a key problem in 
Bioinfonnatics - promoter recognition. While inductive 
reasoning is concerned with the development of a model (a 
function) to approximate data from the whole pmhlem 
space (induction), and consecutively using this model to 
predict output values for a new input vector (deduction), in 
the transductive inference systems a model is developed 
for every new input vector based on some closest to the 
new vector data fmm an existing database and this model 
is used to predict only the output for this vector. The 
TSVM outperforms by far the inductive SVM models 
applied on the same problems. Analysis IS given on the 
advantages and disadvantages of the TSVM. Hybrid 
TSVM-evolving connections systems are discussed as 
directions for future research. 

1. INDUCTIVE & TRANSDUCTIVE INFERENCES 

Most of the leaming models and systems in artificial 
intelligence apply inductive inference where a model (a 
function) is derived from data and this model is fwther 
applied on new data. [I]. This is the case in the area of soft 
computing, [Z] [31 [4-71, and particularly - in neuro-fuzzy 
reasoning systems [S ,  91 [IO], and in support vector 
machines (SVM) [Illand in their numerous applications 
(see for example [IZ]). The model is created without 
taking into account any information about a particular new 
data vector. The new data would fit into the model to 
certain degree (an error is estimated). The model is in most 
cases a global model, covering the whole problem space. 
Creating a global model (function) that would he valid for 
the whole problem space is a difficult task and in most 
cases - it is not necessary. In some local leaming systems 
(see for example [I31 [14]) that include the evolving 
connectionist systems (ECOS) [I51 the global modcl 
consists of many local models (rules) that collectively 
cover the whole space and are adjusted individually on 
new data. The output for a new vector is calculated based 
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that best fits the new data, rather then - a global model 
used and new data tried to be matched into it without 
taking into account any specific information on where this 
new data point is located in the space. 

Transductive inference is concerned with the estimation of 
a function in single point of the space only, regardless of 
its dimensionality. For every new input vector xi that needs 
to be processed for a pmgnostic task, the closest Ns 
examples that form a set Di are derived from an existing 
data set D orland generated from an existing model M (if 
necessary) and a new model M is dynamically created 
from these samples to approximate the function in the 
locality of point xi only - Fig. 2. The system is then used to 
calculate the function value yi for this input vector. Fig. 2 
Transductive inference methods are efficient when the size 
of the available data set D is relatively small (according to 
[ I l l  a sample size is considered small if the ratio N/M < 
20, where N is the size of the data set D and Mis the VC. 
dimension - an estimate of the possible number of 
functions in the space for the defined problem and for the 
available data set). 

L 
Fig.2 A block diagram of a transductive inference system. 
An individual model A4 is trained for a new input vector 
$with data samples D, selected from a data set D, and 
data samples Do,, generated from an existing model. 

A simple transductive inference method is the k-nearest 
neighbor method (k-NN), where a new data vectorTis 
classified into one of the existing classes in the data 
samples from D based on the majority of classes among k 
nearest to the new vector samples, that form the setD,.  
The distance is measured as Euclidean distance or as 
another type of distance. In terms of prediction systems, 
the output value y ,  for the new vector: is calculated as 
the average value of the output values of the k-nearest 
samples from the data set D ,  . In a weighted k-NN 
method (WKNN) the output for a new vector is 

calculated based not on the majority in the setD,of the 
k-nearest samples, but also on their distance to 

Yi = C Y j  ' W j  (1) 
j=1,2, .... N, 

Many problems in Bioinformatics, and in Molecular 
Biology in particular, are characterized by a small data set 
sparsely distributed in a large dimensional space [12] 
where data samples are being added continuously. This 
type of problems would be suitable to solve with the use of 
transductive inference techniques. Such problems are: 
promoter recognition, microarray gene expression data 
classification, gene expression time course data modelling, 
and many more. The problem of promoter recognition is 
taken in this paper as a case study problem. The traditional 
inductive SVM (section 2) are compared with the novel 
transductive SVM introduced in section 3. Section 4 
presents some experimental results that demonstrate the 
superiority of the TSVM for the class of problems versus 
the inductive SVM, while section 5 discusses further 
development of the transductive SVM and hybrid systems 
for hioinformatics applications. 

2. INDUCTWE SVM 

Support vector machine is fint proposed by Vapnik and 
his group at AT\&T Bell ltboratories [26 ,[27 . For a 
typical learning task P ( x , y )  = P ( y  [ x 4 5  P ( s  , an 
inductive SVM leamer aims to build a decision function 
f, : X -+ {-1,+1} based on a training set s,r,n , 
which is 

73  

In SVM theory, the computation offL can be traced back 
to the classical structural risk minimization ( S a )  
approach, which determines the classification decision 
function by minimizing the empirical risk, as 

(3) 

whereh' and f represent the size of examples and the 
classification decision function, respectively. For SVM, 
the primary concem is determining an optimal separating 
hyper-plane that gives a low generalization error. Usually, 
the classification decision function in the linearly 
separable problem is re resented by m 2  

f x b  =sign(w.x+b)  (4) 
In SVM, this optimal separating hyperplane is determined 
by giving the largest margin of separation between 
different classes. It bisects the shortest line between the 
convex hulls of the two classes, which is required to 
satisfy the following constrained minimization, as 

1 P m  Minimize : - w w 
2 

Subject to :  y , ( w . x + b ) > l .  m a r  

2 
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For the linearly non-separable case, the minimization 
problem needs to be modified to allow misclassified &a 
points. This modification results in a soff margin classifier 
that allows but penalizes errors by introducing a new set of 
variables (:=, as the measurement of violation of the 
constraints. 

1 wm Minimize : - w w + C(cL 4i )k  3 ,=I 
I 

m m  Subject to : yi  ( w .  p(xi) + b) 2 1 - (i. 
where C and k are used to weight the penalizing 
variablest:=, , andyt(.) is a nonlinear function which maps 
the input space into a higher dimensional space. 
Minimizing the first term in Eq.(6)corresponds to 
minimizing the VC-dimension of the learning machine and 
minimizing the second term in Eq.(6}) controls the 
empirical risk. Therefore, in order to solve problem 
Eq.(6}). we must construct a set of functions, and 
implement the classical risk minimization on the set of 
functions. Here, a Lagrangian method is used to solve the 
above problem. Then, Eq.(6) can be written as 

Minimize: F(A)  = A  .1 - - A .  D . A  1 
2 (7) 

Subject to: A .  y =  & A _ <  C;A > 0 
whereA=(IZ,,A , A , ) ,  D = y , y l x r . x l  
classification and the decision function Eq. 
re-written as 

m m  for binary 

(3) can be 

(8) 
,=I 

3. INDUCTIVE SVM 
In contrast to above introduced inductive SVM learning, 
transductive SVM learning specially includes the 
knowledge of test set S,,, in training procedure [28], 

thus the above learning function Eq.(2) of inductive 
SVM can be reformulated as, 

f, = L(s,,a2n>s,at). 

m e r e  : s,,,, = (XI > Y ,  L(X, > Y ,  ),... Ax. 1 Y" 1 a * m *  a * (9) 

Therefore, in a linearly separable data case, to find a 
labelingyl', y i , A  ,y: of the test data, the hyperplane 

< $b >should separate both training and test data 
with maximum margin. 

.. .. 
2 (10) m m  

Subject to : y ,  (w. x, + b) t 1 

To be able to handle non-separable data, similar to the way 
in above inductive SVM, the learning process of 
transductive SVM can be formulated as the following 
optimization problem, 

Minimize Over 
* m  

(y;,y;,A , Y s . W , b , 4 , J  J n , C i * d f  6): 

m m  
m m  

Where c' is the effect factor of the query examples, 

and c'(,' is the effect term of ith query example in above 
objective function. To solve this optimization equation, 
algorithms can be referenced from [28],[29]. 

Subject to : y i ( w . p ( x , )  + b) 2 1-6; 
Y : ( W .  p(x j  ) + 6 )  2 1 - 4; 

4. CASE STUDY PROMOTER RECOGNITION 

4.1. Promoter Recognition 

Only 2-5% of the human genome (the DNA) contains 
useful information what concerns the production of 
proteins. The number of genes contained in the human 
genome is about 40,000. Only the gene segments are 
transcribed into RNA sequences and then translated into 
proteins. The transcription is achieved through special 
proteins, enzymes called RNA polymerase, that bind to 
certain parts of the DNA (promoter regions) and start 
'reading' and storing in a mRNA sequence each gene code. 

Analysis of a DNA sequence and identifying promoter 
regions is a difficult task [30]. If it is achieved, it may 
make possible to predict, from a DNA information, how 
this organism will develop, or alternatively - what an 
organism looked like in retrospect [15]. The promoter 
recognition process is part of a complex process of gene 
regulatory network activity, where genes inieract between 
each other over time, defining the destiny of the whole cell 
D11. 

4.1. Data Sets 
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TSVM and SVM are trained in a supervised manner on a 
collection of promoter and non-promoter sequences. The 
promoter sequences are obtained from the Eukaryotic 
Promoter Database (EPD) http://www.epd.ish-sib.ch/. We 
have used 793 different vertebrate promoter sequences of 
length 250 bps contained in EPD Re1.65 and covering the 
region of 200 bps upstream of the transcription start site 
(TSS) and 49 bps downstream of the TSS.  These 250 bps 
long sequences represent positive training data. We also 
collected a set of non-overlapping human exon and intron 
sequences of length 250 bps each, from the Genehank, 
http://www.nchi.nlm.nih.gov/Genbank/GenbankOverview. 
html, Rel. 121. In total we used 800 exon and 4000 intron 
sequences. The training of the system is made on this set. 

Since heuristic approaches have been proven to be detect 
promoters with a very high level of specificity [38], it is 
highly preferable to make as few heuristically decisions as-*, 
possible, relying on an optimization process to find the 
best solution. In order to create a feature vector from 
promoter elements, we carried out an initial study on 
promoter vocahulary for feature encoding. 

4.3. Promoter Feature Encoding 

Our feature encoding is based on a promoter vocabulary in 
the meaning of promoter language. But our understanding 
of promoter vocabulary is very modest compared to our 
undcrstanding of the vocabulary of human being language. 
This is mainly due to basic pattems of promoter encoding 
have not yet heen identified; a standardized set of features 
for addressing the characteristics of promoter does not exit; 
nor are there rules defining how features are to be 
combined. 

Previous investigations on promoter recognition 
conceneated mainly on promoter encoding by a set of 
Motifs [32],[33]. Particularly interesting is the work of 
Matthias Scherf etc. [32]. Their research focused on 
classifying sequence in terms of two disjunct sets of 
IUPAC groups: a set of promoter-related IUPAC groups 
define the class "promoter", while a set of 
non-promoter-related W A C  groups defines the class 
"non-promoter". Similarly, we encode the promoter 
feature by judging the similarity between the query 
sequence and the basic promoter Motifs - promoter 
vocabulary, which is defined and optimized in two steps 
by K-NN classifier. 

in the first step, using Motif search engine provided by 
Genome Net http://motif.genome.ad.jp/, we extract a set of 
promotor IUPAC group and a set of non-promotor W A C  
group by conducting DNA motif searching on promoter 
training set and non-promoter training set (including exon 

and intron), respectively. To select the motifs with the 
most important characteristic of promoter, we set the 
searching cut score as 98. Next, we use a set of promoter 
JUPAC that is not contained in the non-promoter IUPAC 
as an initial promoter vocabulary. 

in the second step, a K-NN classifier is employed as a 
representative of Bayesian classifiers to judge how a 
promoter vocabulary response to bayesian classifiers on 
promoter recognition. Results are evaluated by 
three-folder cross-validation. Then, the set of promoter 
vocabulary is finally determined after a recursive selection 
procedure of one-by-one adding and removing examples 
according to the classification output of K-NN classifier. 

Based on the selected promoter vocabulary(hj]E,, for 

one DNA sequencexof IengthL , its similarity reflexed 
on the ith word of vocahularyH can he computed as, 

. ., L/(lh,l+d) 

,-* si = C/hi I - L c s ( h ; , x j , 5 )  (12) 
, id 

Where LCS denotes the'computation of longest common 
sequence [l], 6 is matching interval of sequence alignment, 
andg is gap penalty. 

In the third step, to reduce the classification difficulty, an 
ensemble of SVMs on promoter versus intron and SVMs 
on promoter versus exon is modeled by using the strategy 
of majority voting [34]. Fig. 3 is the structure of S V M  
ensemble. Due to the larger dataset of intron, the number 
of SVMs in ensemble on promoter versus intron is greater 
than the number of SVMs on promoter versus exon. 
TSVM and ISVM are tested in tum for comparison. 

Input$ 

I I MajarityVoring ' 

Fig. 3 The structure of SVM ensemble for promoter 
recogniti0.n 

4.4. Comparison Results of TSVM versus ISVM 

To evaluate the results using the approach of 3-fold 
cross-validation, we used 80\% of sequences in each class 
for training, while the left 20\% was kept for evaluation. 
We divided the training set into three disjunctive sets. 
From these sets, three different training sets are built by 

' 
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Method 

ISVM: Ex1 (que: 1 jeg:2,3) 

Ex3(que:3,reg: 1,2) 
Ex2(que:Z,reg: 1,3) 

Average 
TSVM:Exl (que: 1 ,reg:2,3) 

ExZ(que:Z,reg: 1,3) 
Ex3(que:3,reg:1,2) 
Average 

joining two of the sets in twn, while the third set was 
used as a test set. 

For the convenience of results comparison, we follow the 
evaluation schema of Ficken 1351 to consider the true 
positive (TP) and false positive (FP) of system. Table. 1 
shows the comparison result of TSVM versus ISVM for 
promoter recognition. As we can see, the TSVM leads to 
an improved performance on promoter recognition, 
raising coverage from 50% for ISVM to 79%, and TPFP 
from 0.27 to 1.13 as well. It indicates that tsansductive 
inference performs much better than inductive inference 
because it makes use of the information about the 
distribution of unlabelled data. 

5. CONCLUSlON 

We compared tsansductive SVM and inductive SVM on 
promoter recognition. During this procedure, we first 
collected promoter motifs by performing motif searching 
on both promoter dataset and non-promoter dataset, and 
from which we select promoter motifs with stiongest 
response to bayesian classifier as promoter words to 
make up of the promoter vocabulary. Next, we used this 
vocabulary as a codebookldictionasy, and extract 
promoter features for SVM classification by performing 
a LCS searching in this codebook. We demonstrated that 
TSVM performs better than ISVM on a specific 
promoter recognition task with a ready both training and 
test dataset, which indicates the special usage of 
trunsductive leaming compared to inductive leaming. 
However, datasets in practice are not always available in 
advance. They are usually provided as a data stream. It 
follows that we cant have the information of unlabelled 
data included in our model training. Thus it will be 
difficult to use Transductive models like TSVM as a 
general online classifier. To deal with this limitation, we 
think, evolving systems like Hybrid evolving TSVM can 
be a direction in OUT futures work. 

TP TP FP TP/FP Accuracy 
of toral matclies (%I 

(%I 
81 64.8 298 0.27 51 
69 65.2 273 0.2s 43 
92 63.3 317 0.29 58 
81 64.4 296 0.27 51 
126 85.9 98 1.28 79 
132 83.9 126 1 .I4 8 3  
119 84.2 110 1.08 75 
126 84.6 111 1.13 79 
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