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Abstract 
 

In today’s digital (electronics) world, people’s desire for electronic goods that ease their 

life at work, and leisure is increasing the complexity of the products of the embedded 

systems industry. For example, MP3 players for listening to music and cell phones for 

communicating with people. 

The gap between the hardware and software parts of embedded systems is being reduced 

by the use of System Level Design Languages (SLDL) that can model both hardware and 

software simultaneously. One such SLDL is SpecC. 

In this thesis, a SpecC model of a Real Time Operating System (RTOS) is constructed. It 

is shown how RTOS features can be incorporated into a SpecC model. The model is used 

to develop an application involving a robot avoiding obstacles to reach its destination. 

The RTOS model operates similar to the actual RTOS in the robot. 

The application includes a testbench model for the robot, including features such as 

interrupts, sonar sensors and wheel pulses, so that its operation closely resembles the 

actual robot. The sensor model is programmed to generate the values from the four sensor 

receivers, similar to the behaviour of the sensors on the actual robot. Also the pulses from 

the wheels and associated interrupts are programmed in the model so that it resembles the 

interrupts and wheel pulses present on actual robot. 

Keywords: SLDL, SpecC, RTOS, robot, obstacle avoidance 
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1 Introduction  

In the embedded systems industry, design complexity continues to increase with man’s 

desire for more and more sophisticated electronic devices. According to "Moore's Law", 

the number of transistors on a silicon chip doubles every two years. As a result, electronic 

technology has grown to the extent of having millions of transistors on a chip. 

This has led designers to build complex systems. In designing such complex systems, 

achieving correct functionality is becoming more important and difficult than minimizing 

silicon area or program memory size. The performance of systems depends on the correct 

partitioning between hardware and software to obtain the best performance with low 

implementation cost.  

Because of this increasing complexity, there is a growing pressure for software and 

hardware engineers to work at higher levels of abstraction, using new methodologies, 

tools and languages which not only simplify their work but also help in the fast and 

accurate development of products. However, raising the level of abstraction means 

raising the level of abstraction in specification level, architecture level, communication 

level, components, tools, methods and methodologies. In other words, the higher 

abstraction level has to be achieved throughout the design process. 

Before the existence of System Level Design Languages (SLDL), when designing a 

system, software and hardware engineers used different languages like C, VHDL and 

Verilog, to develop the software and hardware parts of the system. Problems often arise 

during the system integration phase when hardware and software are combined. SLDLs 

allow both hardware and software to be modeled in the same language, allowing earlier 

detection of incompatibilities between hardware and software. 

There are several SLDLs available in the market with SpecC [1] and SystemC [2] being 

among the most popular. These SLDLs are both based on the C language so they are 

immediately usable by most embedded systems engineers. SpecC has the additional 

advantage of having a well-defined methodology and refinement rules. For this reason, 

SpecC was chosen for this application. 
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The SpecC language [3, 4] and the supporting SpecC methodology [5] do not distinguish 

between hardware and software, allowing both to be modeled with the same language in 

a single model program. As a result, the SpecC methodology automatically allows for 

software/hardware co-design. 

Without the SpecC methodology, the designers were facing difficulty in building systems 

remaining the prisoners of the past, while adaptation of SpecC methodology helps 

designers to work at higher abstraction levels creating new exciting systems and products 

eventually freeing designers out of the difficulty they faced.  

In this thesis, a SpecC model of a Real Time Operating Systems (RTOS) is constructed. 

Our RTOS model includes the semaphore, message box, queue and event flags. In the 

RTOS model, the memory manager feature is utilized to optimise memory usage for our 

application. The model [6] is used to develop a small application involving a robot 

avoiding obstacles to reach its destination. The application includes a testbench model for 

the robot, including features such as interrupts, sonar sensors and wheel pulses, so that its 

operation closely resembles the actual robot. The sensor model is programmed to 

generate the values from the four sensor receivers, similar to the behaviour of the sensors 

on the actual robot. Also the pulses from the wheels and associated interrupts are 

programmed in the model so that it resembles the interrupts and wheel pulses present on 

actual robot. All the features incorporated in this model make the model behave in a very 

similar way to the robot in the real world. 

Chapter 2 describes related work on this subject. Chapter 3 describes the SpecC 

methodology and language. Chapter 4 describes the RTOS, particularly intertask 

communications. Chapter 5 describes the SpecC model of the RTOS. Chapter 6 describes 

the robot application involving obstacle avoidance. Chapter 7 describes the SpecC model 

of the robot application. Chapters 8 and 9 describe the results and conclusions and, most 

importantly, what can be done in the near future. 
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2 Related Work 

A hierarchical approach with high levels of abstraction is used to deal with complex 

systems to reduce the number of components being managed. A hardware system, at 

transistor level composed of tens of millions of transistors, is reduced to thousands of 

components at register transfer level, and is further reduced to a few components 

including processing elements, memories and buses at system level. 

In a top down design methodology, the system level is said to be at the highest or top 

level of abstraction. The model gets refined as it moves down to lower levels. On the 

other hand, a bottom-up methodology starts using components at the lowest level. These 

components can be used to build more complex components at higher levels [7]. This is 

illustrated in Figure 1. 
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Using the top-down methodology, the specification of a system is a set of models and a 

set of transformations between the models that refines the design to the lowest level of 

abstraction. 

From Y-Chart [8], four levels of abstraction are 

a) System level 

b) Register-transfer level (RTL) 

c) Gate level 

d) Transistor level 

At each level, the designer works with a specific set of objects. The design process has to 

focus on more details of the system as it reaches lower levels of abstraction. 

At each level [8], the design object at that level can be described from three different 

views: 

a)  A behavioral view describes the functionality of the design in terms of concepts 

independent of implementation details. 

b) A structural view describes the design as a netlist of lower level components and 

their connectivity. 

c) A physical view describes the spatial layout of the lower level components on the 

chip, i.e. a floor plan of how the components and their interconnections are placed 

on the chip. 

C language is commonly used for embedded software applications. C based SOC 

(System On Chip) design approaches cover both hardware and software aspects using 

System Design Languages (SDL). There are various features of the C language, which 

are not appropriate for hardware, such as pointers and recursive calls. To provide explicit 

concurrency and other embedded system features, C based system level design languages 

such as SpecC and SystemC[2] are used. In this thesis, SpecC [5] is used in a design 

methodology at system level to model a real time operating system where a memory 

manager, event flags and various channels comprising of semaphores, message boxes and 

message queues are used for the communication. 
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[9] describes the extensions to the C language that are defined in SpecC and compares 

this approach with the library based approach of SystemC.  

[10] uses SystemC for hardware and C with RTOS for software to model an application 

involving synchronization of software execution with hardware clock events, and 

communication between the software model and the hardware model. In this thesis, the 

RTOS is modeled in SpecC, with synchronization and communication between tasks to 

make the application behave as required. 

[11] describes how to apply formal verification techniques to SpecC system descriptions. 

Formal verification is often used in the hardware design industry but is much more 

difficult to apply to high-level tools such as SpecC. [15] gives a description of system 

level design methodologies for SOC design and formal verification technologies for 

system level specification, using SpecC and its associated design methodology. [24] 

describes techniques for the verification of synchronization properties of SLDL designs. 

In this thesis, formal verification techniques have not been used. 

Various system level design languages and methodologies have been proposed in the past 

to address the issues involved in the system level design. These system level design 

languages deal with synthesizing the hardware part of the system.  

The Unified Modeling Language (UML)[12] is often used for software system design but 

this does not integrate easily with the hardware design. HardwareC[13] is one of the 

earliest C like Hardware Description Languages(HDL), having arbitrary length bit vector 

data types and an extended set of bit vector operators aimed at a rather low hardware 

level featuring inter-process communication by means of channels. SpecC[1] has features 

including constructs for state machines, arbitrary length bit vectors and channels, used for 

synchronization and communication between tasks. HandleC[14] is very similar to SpecC 

including the syntax for extensions but is not as popular as SpecC when it comes to 

language usage in the market. 

[16] uses SpecC to model a serial input/output device driver for the real time kernel 

μITRON4.0.This real time kernel is described in [17]. In this thesis we apply SpecC to 

model the MicroC/OS II RTOS [54]. 
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[18] provides a detailed definition of the semantics of the SpecC language including the 

wait, waitfor, par and try statements from the SpecC Language Reference Manual [3]. 

[19] describes the design of a SpecC model of an autonomous real time emulator for an 

electric drive system. Using the SpecC methodology, a specification model of the 

emulator is transformed to a communication model and implemented making the product 

ready for manufacturing. The model is verified by comparing it with the manufactured 

product. The DSP 56600 processor [20] was used in the application.  

In [21], the SpecC methodology is used to design control systems of power electronics 

and electric drives using DC motor drive with a control system based on DSP for motion 

control, ASIC for current control and three additional hardware components for I/0 

processes. In this thesis, for the robot application, SpecC is used to model MicroC/OSII 

RTOS features running on an Atmel Atmega 128 [22] microcontroller.  

[4] discusses the SpecC language and its methodology. This paper describes the 

semantics of the SpecC language [23] for hardware designers and software designers at 

system level design. Most of these SpecC language features are used in the thesis. 

In[25], a SpecC specification is used to synthesize a gate-level circuit using state-based 

logic synthesis.  

In[26], a SpecC model is used to evaluate scheduling algorithms to avoid the need to tune 

code later in the development process. 

Several abstract modeling techniques have been proposed including graphical finite state 

machines(Statemate)[27], DSP graphical programming[28] and synchronous 

programming languages such as Esterel [29]. In [30], a method for automatic software 

generation of system level design is given. In [31], a method for combining static state 

scheduling and dynamic scheduling in software synthesis is proposed. In [32], a 

technique for modeling fixed priority pre-emptive multi tasking systems based on 

concurrency and exception handling mechanisms provided by SpecC is shown. However, 

the model has limited support for inter task communication. In [33], a high level model 

called SoCOS is introduced as a high level RTOS model that supports software 

generation as well as hardware modeling.  
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In [34], a timed operating system simulation model was proposed to enable fast and 

accurate evaluation of software and hardware implementation of on-chip communication. 

They calculated execution delay values using a delay function and showed how the 

system model communicates when transforming from macro architecture level to micro 

architecture level. 

In [35], an RTOS model was proposed and used for a mobile application. 

[36] experiences challenges faced by C-like languages used for hardware synthesis. The 

major issues are identified as modeling concurrency and timing.  

There are several SLDLs for hardware modeling. Cones[37] is an automated synthesis 

system that connects C code into digital logic. HardwareC[5] supports hardware structure 

and structural hierarchy. TransmogrifierC[38] supports loops, conditional and integer 

arithmetic operators. SystemC[39] supports hardware and system modeling, handling, 

both combinational and sequential processes. C2Verliog[40] supports pointers, recursion, 

dynamic memory allocation and broadly supports ANSI C. Cyber[41] accepts a C variant 

behavior description language that contains hardware extensions but prohibits recursive 

functions and pointers. HandelC[42] supports constructs for parallel statements. 

BachC[43] supports explicit concurrency and rendezvous communication and supports 

arrays and not pointers. HardwareC, SystemC use process level constructs. HandleC and 

SpecC can also group concurrent statements. SystemC parallelism resembles Verilog and 

VHDL. Most of the languages cannot be easily extended to model software.  

[44] proposes a technique to check the functional equivalence of models before and after 

scheduling behaviors in the architecture level.  

[45] identifies the major design tasks generated at each level from the specification model 

to the implementation model. These tasks form the basis of the SpecC methodology used 

in this thesis.  

In [46], a new kernel is proposed that handles hardware and software modeling, using 

multiple heterogeneous models of computation. 

[47] describes a C-based methodology for hardware design and verification that uses C to 

HDL translation and then RTL-C to RTL-Verilog flow. 
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[48] examines the properties of different abstraction levels and models for system design. 

A JPEG encoder is designed to demonstrate the application of these techniques. In this 

thesis, we use these levels of abstraction to develop a model of an obstacle-avoiding 

robot. 

In [49], a methodology is proposed to perform early design stage validation of hardware/ 

software systems using a HW/SW interface simulation model.  

In [50], a methodology is proposed that focuses on methods to make the design flow 

smooth, efficient and easy by making use of three languages: SpecC at specification 

level, VCC at architecture level and SystemC at communication level. In this thesis, 

SpecC is used for all the three levels. 

[51] describes how C++ can be used for system modeling. The ideas in this paper have 

been developed into the SystemC SLDL. 

By taking advantage of the SLDL’s existing modeling capabilities, our RTOS model is 

simple to implement yet powerful and flexible, and it can be directly integrated into any 

system model. In [35], an RTOS was applied to the design of a voice codec for a mobile 

physical device. Their model did not include features such as time delays, latency and 

dead time. In the model in this thesis, the RTOS was applied to the design of software for 

a robot to navigate to reach its destination avoiding obstacles. It is shown that the RTOS 

model behaves in a very similar way to an actual robot. The modeling concepts can be 

applied to any other SLDL (such as SystemC) that includes support for event handling 

and time. 
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3 SpecC 

3.1 SpecC Methodology 

The SpecC methodology is a design methodology to implement an embedded system 

design from specification to implementation involving four levels of modeling. They are 

the specification model, architectural model, communication model and implementation 

model.  

The SpecC design flow shown in Figure 2[5] starts with the specification model of the 

desired system behavior. It is written by the user to specify the desired system 

functionality. The specification model is a purely functional model, free of any 

implementation details. In general, the specification is hierarchically composed of 

behaviors. The ordering of events in the system is based on causal relationships only and 

there is no notion of time. The Specification model describes how the system is going to 

respond to different inputs since we know its behavior. The behavior is purely functional 

without any timing or other information. 

The architecture model is an intermediate model created after architecture exploration. 

Architecture exploration selects a set of processing elements (PEs) and maps the 

computation behavior of the specification onto the PEs. The Architecture model 

represents this mapping, thus exposing the communication between the components to be 

implemented by the following communication synthesis task. In the architecture model, 

the system is described with a set of interconnected components, so we model how to 

assemble the system from its parts. Each system has its own response time. 

The communication model is the final output of the system level design process after 

architecture exploration implements computation on PEs and communication synthesis 

implements communication over the buses of the system architecture. The 

communication model represents the mapping of computation and communication onto 

PEs and buses respectively.  
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The communication model describes the system in terms of connections and 

communication protocols. Protocols are described in terms of wires changing values in 

real time. 

The implementation model is the result of scheduling the functionality mapped onto the 

PEs (both computation and communication functionality) into register transfers per clock 

cycle. Therefore, the implementation model is clock accurate at the register transfer level. 

The implementation model describes hardware in terms of register transfers executed in 

each clock cycle for custom hardware or in terms of the instruction sequence for software 
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3.2 SpecC Language 

SpecC is a system level design language. SpecC is a true super set of ANSI-C, so every C 

program is also a SpecC program. The SpecC language includes extensions for hardware 

design, which are added as a minimal, orthogonal set of concepts. It is a real language 

with its own keywords and grammar. A SpecC program consists of a set of behaviors, 

channels and interface declarations. 

A behavior is a class consisting of a set of ports, a set of component instantiations, a set 

of private variables and functions and a public main function. Through its ports, a 

behavior can be connected to other behaviors or channels in order to communicate.  

A behavior is called a composite behavior if it contains instantiations of child behaviors, 

otherwise it is called a leaf behavior. The functionality of a behavior is specified by its 

functions, starting with the main function. 

A channel is a class that encapsulates communication. It consists of a set of variables and 

functions, called methods, which define a communication protocol. A channel can be 

hierarchical i.e. it can have subchannels which perform lower level communication. A 

channel can model a semaphore, message or queue in software or physical connections in 

hardware. 

An interface represents the link between a behavior and a channel. An interface specifies 

the public methods that are defined in the channel. In order to define a channel, its 

interfaces must be defined first. 

In SpecC, “wait/notify” statements are used for synchronization. The semantics is that a 

“wait” statement suspends the current thread from execution until one of the specified 

events is “notified” by another thread.   

One key point in SpecC is the clear separation between communication and computation 

in system level descriptions used both for software and hardware development.  
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The communication between processes is done through channels and control mechanisms 

for communication are contained in the description of the channels. 

From SpecC source code, the SpecC compiler generates C++ code, which will then be 

compiled by a standard C++ compiler in order to produce an executable file for 

simulation. 

3.3 SpecC Scope 

SpecC was developed to represent four levels of abstraction i.e. specification, 

architecture, communication and implementation. There are other languages that can be 

used for some of these abstraction levels but SpecC can produce efficient, simple, and 

synthesizable output for all these levels, allowing a seamless top down design. 

SpecC supports agile System On Chip (SOC) design and smooth integration, for example 

for product on demand (POD) technology. SpecC is a starting point for the paradigm shift 

to Intellectual Property (IP) centric design by providing standardized encapsulation and 

interfacing for IPs, as well as attributes and models for IP databases. 

3.4 Computational Models 

A computational model is a formal model of the intended system. Computational models 

are commonly used in SOC design. They differ significantly in expressive power, 

features and complexity to simplify the problem and to give the required output. 

 The following are the computational models commonly used in system level design- 

• Finite State Machine(FSM) 

A FSM can be implemented easily in hardware as a controller consisting of a state 

register and a block of combinational logic. 
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• Data Flow Graph(DFG) 

This is the basic computational model where nodes of the graphs represent operations 

and arcs in the graph represent dependencies among those operations. 

• Finite State Machine with Datapath(FSMD) 

This model combines the features of the FSM and DFG representing control and 

computation used in behavioral synthesis. 

• Super-State Finite State Machine with Datapath(SFSMD) 

SFSMD is a FSMD with complex, multi-cycle states called super states. Each super 

state can be changed into several standard states where each state takes only one 

clock cycle during target implementation. Each super state is described in a standard 

programming language. 

• Hierarchical Concurrent Finite State Machine(HCFSM) 

Hierarchy and concurrency are very important concepts for embedded system design. 

Hierarchy eliminates the problem of state explosion in FSMs and concurrency 

describes multiple FSMs running in parallel in the same system. A popular example 

of the HCFSM model is Statecharts.  

• Program State Machine(PSM) 

PSM combines the features of HCFSM and SFSMD. The PSM model used for the 

SpecC language is easy to understand and sufficiently powerful for large complex 

designs as shown in Figure 3. 
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Figure 3 Program State Machine 
 

 

 

3.5  Comparison of SpecC with Other Languages 

Figure 4 [52] compares SpecC with other languages taking into account a set of system 

level language requirements. This is based on Table 1 that shows which languages fully 

support, partially support or do not support the language requirements. All these 

languages apart from SpecC have deficiencies for modeling embedded systems.  

PS1 

PS2 

PS5 

PS4 

PS3 

…… 
A=42 
While(A<100) 
{ 
b=b+A; 
if(b>50) 
c=c+A; 
} 
…….. 
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Table 1 Comparison of SpecC with Other Languages 
 

From the chart, it can be seen that the C, C++ and Java languages fully support composite 

data types. C++ and Java fully support exception handling and C partially supports 

exception handling. VHDL and Verilog fully support structural hierarchy, concurrency, 

synchronization and timing, Verilog fully supports exceptional handling but VHDL does 

not support exceptional handling. 

HardwareC is a hardware description language, which doesn’t support behavioral 

hierarchy, exception handling and partially supports timing which makes it less powerful 

than SpecC. 

Statecharts fully support behavioral hierarchy, concurrency, synchronization and state 

transitions, partially support exception handling and timing and does not support 

structural hierarchy whereas SpecC incorporates system language requirements not 

supported by Statecharts.      

SystemC is C++ based language, which is tedious to profile because of C++ library 

burden. There are no such limitations with SpecC. SystemC do not fully support 

behavioral hierarchy whereas SpecC fully supports it.  

                                                 System level language Requirements 

Languages 
Behavioral 
Hierarchy 

Structural 
Hierarchy Concurrency Synchronization 

Exception 
Handling Timing  

State 
Transitions 

Composite 
Data Types

C 0% 0% 0% 0% 50% 0% 0% 100%
C++ 0% 0% 0% 0% 100% 0% 0% 100%
Java 0% 0% 50% 50% 100% 0% 0% 100%
VHDL 0% 100% 100% 100% 0% 100% 0% 100%
Verilog 0% 100% 100% 100% 100% 100% 0% 100%
HardwareC 0% 100% 100% 100% 0% 50% 0% 0%
Statecharts 100% 0% 100% 100% 50% 50% 100% 0%
SpecCharts 100% 0% 100% 100% 100% 50% 100% 100%
SpecC 100% 100% 100% 100% 100% 100% 100% 100%
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In SystemC, variable and event can only be used either inside the modules or globally. 

On the other hand, SpecC supports scheduling using events and data transfer using 

variables without any constraint [53]. 

3.6  SpecC Vs VHDL 

 

Figure 5 Block Diagram of a Traditional Model and a SpecC Model 
                       

In the traditional model such as VHDL, two processors P1 and P2 are communicating via 

signals S1, S2 and S3. The processors P1 and P2 contain code for both communication 

and computation. Communication and computation are typically so mixed in the code 

that it is difficult for the programmer to separate them and work with them individually. 
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In the SpecC model, the two behaviors B1 and B2 are communicating via channel C1. 

The behaviors B1 and B2 perform computation and channel C1 performs communication. 

In order to communicate, behaviors call the functions (methods) provided by the 

connecting channel. This model separates computation and communication.  

3.7 Structural Hierarchy 

SpecC supports structural hierarchies of behaviors in which each behavior can itself 

contain a hierarchical network of behaviors and channels. 

The basic structure consists of:- 

• Top Behavior 

• Child Behaviors 

• Channels 

• Interfaces 

• Variables (Wires) 

• Ports 
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Figure 6 SpecC Model Showing Communication between two Behaviors Input and Output 
                                            

The example in Figure 6 shows the behavior App with two ports Inport and Outport, 

through which it can communicate with its environment. These ports are connected 

internally to child behaviors Input and Output. These child behaviors can communicate 

using the channels Cchar and Csync. Here, the port sw (switch) is an input of the Input 

behavior and the port led is an output of the Output behavior. The child behaviors Input 

and Output may also contain networks of behaviors and channels. The dashed line shows 

that the Input and Output behaviors run concurrently. 

 

3.8 Behavioral Hierarchy 

Behavioral hierarchy is where a parent behavior contains a number of child behaviors. 

Child behaviors in SpecC can either be executed sequentially or concurrently. Standard 

    Inport                                                                     Outport     
                                                                                            
 
App 

   sw   
 
 
Input 

                         led 
 
 
 Output 

Cchar 

Csync 

Start Done 

Start Done 
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sequential statements can specify sequential execution by calling main methods of the 

instantiated behaviors in the desired order or as a finite state machine (FSM) with explicit 

state transitions. Both Moore and Mealy type FSMs can be modeled with the SpecC fsm 

construct. Concurrent execution is either parallel (using the par construct) or pipelined 

(using the pipe construct). 

 

 

Figure 7 Diagram Representation of the Behavioral Hierarchy in SpecC 
           

In the behavior B seq, the child behaviors b1, b2, b3 run sequentially one at a time. 

In the behavior B fsm, the child behaviors b1, b2, b3, b4, b5, b6 represent states of a 

finite state machine. 

In the behavior B par, the child behaviors b1, b2, b3 run in parallel. 

In the behavior B pipe, the child behaviors b1, b2, b3 form a three-stage pipeline of 

behaviors. When the pipeline is started, only b1 is executed. When b1 completes, b2 

starts and the second iteration of b1 also starts, so b1 and b2 are executed in parallel. 

Finally, in the third and every other following iteration, all three-child behaviors are 

executed in parallel. This implements a pipeline execution.     
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3.9 Communication 

Communication is performed using variables or channels or hierarchical channels 

between behaviors. 

Variables represent shared memory or wires for communication. They can be accessed 

through the ports that are mapped onto them. 

A message can be passed between two behaviors using a channel. The communication 

functions of the channel are made available to behaviors through the interfaces of the 

channel. 

A channel within a channel gives rise to a hierarchical channel.  

3.10 Synchronization 

Synchronization is required to allow cooperation among concurrently executing 

behaviors. In SpecC, the built in type event serves as the basic data type for 

synchronization. An event is used with wait, notify and notifyone statements which all 

take lists of events as arguments. 

A wait statement suspends execution of the current behavior until another behavior 

notifies any event in the wait statement. Then execution of the waiting behavior resumes. 

The notify statement activates one or more events so that all the behaviors waiting on one 

of these events can resume their execution. 

The notifyone statement allows only one of the waiting behaviors to resume its execution.  
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3.11 SpecC Example 

In SpecC, Figure 6 can be written as follows: 
//interface contains function definitions helps in communication 
//of behaviors 
   interface ISendChar 

{ 
    void send(char v); 
}; 
interface IRecvChar 
{ 
    void recv(char *v); 
}; 
channel CChar()//Channel helps in transferring values among       
//behaviors 
implements ISendChar ,IRecvChar 
{ 
    char buf; 
    event e; 
    void send(char v) 
    {    
        buf=v; 
        notify(e); 
    } 
    void recv(char *v) 
    { 
        wait(e); 
        *v=buf; 
    } 
};  
interface ISend 
{ 
    void send(void); 
}; 
interface IRecv 
{ 
    void recv(void); 
}; 
channel CSync()// Channel looks after synchronization among    
//behaviors 
implements ISend ,IRecv 
{ 
    event e; 
    void send(void) 
    {    
        notify(e); 
    } 
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void recv(void) 
    { 
        wait(e); 
    } 
}; 
behavior Input(in unsigned char sw, in event Start, ISendChar 
cchar, IRecv csync) 
{  
 void main(void) 

{ 
  while(1) 

{ 
   wait(Start); 
              cchar.send(sw);//sw value is sent to Output        

//behavior 
   csync.recv(); 
  } 
 } 
};    
behavior Output(out unsigned char led, out event Done, 
IRecvChar cchar, ISend csync) 
{  
 void main(void) 
 { 
    char v1; 
    while(1) 
  { 

                   
cchar.recv(&v1);// value is received from Input    
//behavior   

   led = v1; 
   csync.send(); 
   notify(Done); 
  } 
 } 
};  
behavior App(in unsigned char Inport, out unsigned char 
Outport, in event Start, out event Done) 
{ CChar cchar; 

 CSync csync; 
 Input In(Inport, Start, cchar, csync);  
 Output Out(Outport, Done, cchar, csync);  
 void main(void) 

 { 
  par 

 { 
   In.main(); 
   Out.main(); 
   } 
  }  

};  
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/***************TestBench**********************/ 
behavior IO(out unsigned char inport, in unsigned char outport, 
out event start, in event done) 
{ 
 void main(void) 
     { 
  while (1) 

 { 
   printf("Input for switch: "); 

scanf("%c%*c",&inport);// values from the          
//keyboard 

   fflush(stdin);//keeps memory free 
   notify(start);  
   wait(done);  
   printf("Output from switch = %c\n", outport); 
  } 
 } 
}; 
behavior Main 
{ 
     unsigned char inport, outport; 
 event start, done; 
 IO io(inport, outport, start, done); 
 App app(inport, outport, start, done); 
 int main (void) 
 { 
        par 
           { 
   io.main();//simulates hardware input and output 
   app.main();//models application 
  } 
   return 0; 
 } 
}; 
/***************************************************/ 
 

In this example, the objective is for the value of the Inport input port to be passed through 

to the Outport output. In the behavior App, behavior Input and behavior Output run in 

parallel. The value of Inport is passed in from the testbench to the sw (switch) input of 

behavior Input. The testbench simulates the environment of the application. In the 

behavior Input, when event Start occurs then the value of sw is passed to the behavior 

Output using the channels CChar and CSync. 
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The channel CChar passes the sw value from behavior Input to behavior Output whereas 

the other channel CSync indicates the sw value has been successfully received by 

behavior Output. The Output behavior transfers the led value to the App behavior output 

port Outport. 

3.12 Timing 

Time is an important requirement for system level design languages. SpecC supports two 

types of timing specification. They are 

• Exact timing 

This is specified by use of the waitfor statement. The time delay is given in the form of 

an argument and must be of an integral constant type that is evaluated at compile time. 

• Timing constraints 

This is specified by use of the do-timing construct. The do statement specifies a set of 

labeled action statements and the timing block contains the actual timing constraints.  

The unit of time can be chosen arbitrarily, depending on the time scale of the application 

being modeled. 

3.13 Exception Handling 

 SpecC supports two types of exception handling. They are 

• Abort or Trap 

This is implemented by use of the trap keyword. 
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Figure 8 SpecC Abort 
 

In SpecC 
       behavior B1(in event e1,in event e2) 

  { 
B b,a1,a2; 
void main(void) 
{ 

try  
{ 

b.main(); 
} 
trap(e1) 
{ 

a1.main(); 
} 
trap(e2) 
{ 

a2.main(); 
} 

} 
   }; 

The try-trap construct, shown in Figure 8, aborts behavior b immediately when one of the 

events e1 or e2 occurs i.e. the execution of behavior b is terminated without completing 

its computation, and control is transferred to behavior a1 in case of event e1, or to 

behavior a2 in case of event e2. This type of exception is usually used to model the reset 

of a system. 
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• Interrupt 
 
This is implemented by use of the interrupt keyword. 

 

Figure 9 Interrupt In SpecC 
 
In SpecC 

behavior B1(in event e1,in event e2) 
{ 

B b,i1,i2; 
void main(void) 
{ 

try 
{ 
  b.main(); 
} 
interrupt(e1) 
{ 

i1.main(); 
} 
interrupt(e2) 
{ 

i2.main(); 
} 

} 
}; 
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The try interrupt construct shown in Figure 9, can be used to model interrupts. Here 

again, execution of behavior b is stopped immediately for event e1 or e2, and behavior i1 

or i2 respectively, is started to service the interrupt. After completion of interrupt 

handlers i1 or i2, control is transferred back to behavior b, and execution is resumed 

exactly at the point at which it was interrupted. 
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4 Real Time Operating System (RTOS) 

4.1  Definition 

“A RTOS is a program that schedules execution in a timely manner, manages system 

resources and provides a consistent foundation for developing application code” [54]. 

The application code using an RTOS could be for a small application such as a digital 

watch or for a large and complex application such as for navigation or an IPOD. 

In some applications, the RTOS can comprise of only a kernel, which provides 

scheduling, resource and management algorithms. In other applications, the RTOS can be 

a combination of various modules including a kernel, system files, I/O devices, device 

drivers, networking protocols and support libraries. In this thesis, we use the 

MicroC/OSII RTOS[54]. 

4.1.1 Kernel 

The Kernel is the core piece of the operating system. It is a piece of software responsible 

for the communication between hardware and software components. It is basically a 

housekeeping program that runs at the highest level, manages the computer’s resources 

and allows other programs to run. This involves tasks such as: 

• Memory Management 

• Process Management 

• Communication 
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4.2  Task  

A task is a small independent program that performs a specific activity. Each task is 

assigned a priority and its own stack area. 

Each task can be in any of the following states: 

• Dormant state 

The dormant state corresponds to a task that resides in memory but has not been 

made available to the kernel. 

• Ready state 

A task is said to be ready when it can execute but its priority is less than the running 

task. 

• Running state 

A task is said to be in running state when it has control of the CPU. 

• Waiting state 

A task is waiting when it requires the occurrence of an event to become ready. 

• Interrupted state 

A task is said to be in the interrupted state or ISR state when an interrupt has 

occurred and the CPU is in the process of servicing the interrupt. 

4.3  Intertask Communication 

It is necessary for tasks and Interrupt Service Routines (ISR) to communicate information 

to other tasks. This can be done in several ways: 

• Global variable 

• Semaphore 

• Message Mailbox 
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• Message Queue 

• Event Flags 

4.3.1 Global Variable 

When using global variables, each task or ISR must ensure that it has exclusive access to 

the variables. The only way to ensure exclusive access to common variables is to disable 

interrupts.  

In the MicroC/OSII RTOS, one is able to disable and enable interrupts by calling the 

macros OS_ENTER_CRITICAL ( ) and OS_EXIT_CRITICAL ( ) respectively. 

For example: 

OS_ENTER_CRITICAL(); 
    countright = 0; 
    countleft = 0; 
    OS_EXIT_CRITICAL(); 
4.3.2 Semaphore 

This is a key acquired by the code in order to continue with its execution. Semaphores are 

used to : 

• Control access to a shared resource 

• Signal the occurrence of an event 

• Allow two tasks to synchronize their activities 

The three operations performed on a semaphore are: 

• INITIALIZE (CREATE) 

• WAIT (PEND) 

• SIGNAL (POST) 

The initial value of the semaphore must be provided when it is first initialized. A 

semaphore is not available when its value is zero, and it is available when its value its 

positive. Its value is never negative. 
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A task desiring the semaphore performs a WAIT operation. If the semaphore is available, 

the value of semaphore is decremented and the task continues execution. If the 

semaphore is not available (value is 0) then the task desiring the semaphore is placed in 

the wait list for the semaphore.  

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for 

the semaphore then the value of semaphore is incremented. If any task is waiting for the 

semaphore then one of the waiting tasks is unblocked and made ready to run, and the 

semaphore value is not incremented. The task that receives the semaphore is the highest 

priority task waiting for the semaphore.  

The following diagram shows communication using a semaphore. 

 

Figure 10 Communication Using Semaphore 
 

4.3.3 Message Mailbox 

A message mailbox is a way of sending data from a task or ISR to another task. A task or 

an ISR can deposit a message into the mailbox through a service function provided by the 

kernel. One or more tasks can receive messages through the kernel. 

Each mailbox has a wait list of tasks waiting to receive messages through the mailbox. A 

task desiring a message from an empty mailbox is blocked and placed on the wait list 

until a message is placed in the message box by another task. 
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In general, the kernel allows the task waiting for a message to specify a timeout. If a 

message is not received before the time out expires, the waiting task is made ready to run 

and an error code is returned to it. When a message is placed in the mailbox, the waiting 

task with the highest priority is given the message. 

The Kernel provides mailbox services to  

• Create the mailbox 

• Allow tasks to deposit a message into the mailbox (POST) 

• Waits for message to be deposited into the mailbox (PEND). If the mailbox 

contains a message, the message can be extracted from the mailbox by the waiting   

task. 

 The Message mailbox is shown in Figure 11.  

 

Figure 11 Communication Using a Message Mailbox 
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4.3.4 Message Queues 

A message queue is a mailbox that can store more than one message. A task or an ISR 

can place a message into the message queue through a post service provided by the 

kernel. In the same way, one or more tasks can receive messages from the queue by 

calling the pend service provided by the kernel. 

As with the mailbox, each message queue is associated with a waiting list, in case more 

than one task wants to receive messages through the queue. A task desiring a message 

from an empty queue is blocked and placed on the waiting list until a message is placed 

in the queue by another task. In general, the kernel allows the waiting task to specify a 

timeout.  

If a message is not received before the timeout expires, the requesting task is made ready 

to run and an error code is returned to it. When a message is placed in the queue, the task 

with the highest priority is given the message. The queue delivers messages on a First In 

First Out (FIFO) basis. 

The message queue is depicted in Figure 12. 

 

Figure 12 Communication Using a Message Queue 
 

 
 
                                                          QUEUE 
   POST   PEND 
     
 
 
                                 
 

Task ISR/Task



 
 
                                                                                                                                       RTOS                                     

                                                               - 35 -   

4.3.5 Event Flags 

An event flag is process synchronization primitive in the operating system. An event flag 

is actually a group of flag bits, each of which is set on the occurrence of a particular 

event. An event flag has two possible states, set or cleared. The basic operations are: 

• Set event flag 

• Clear event flag 

• Wait for event flag 

When a task waits for an event flag, the task is blocked while the event flag is clear. 

Event flags allow a task to be blocked waiting for a combination of events. 

Additional synchronization operations are: 

• Disjunctive Synchronization (logical OR) 

The task waits for any of the specified event flags to be set. 

• Conjunctive Synchronization (logical AND) 

The task waits for all specified event flags to be set. 

4.3.6 Memory Partitions 

The RTOS memory manager provides a simplified memory management system 

avoiding the use of the C malloc and free functions because they have unpredictable 

timing requirements. The memory manager maintains a pool of fixed size memory 

blocks. Tasks call a memory get function to obtain a memory block and a memory put 

function to release the memory block. 

4.4 Interrupts 

An interrupt is a hardware mechanism to inform the CPU that an asynchronous event has 

occurred. When an interrupt is recognized, the CPU saves the program context and jumps 

to a special subroutine known an interrupt service routine (ISR).  
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The ISR processes the event and after completion of the ISR, the context is restored, 

program returns to the interrupted task, resuming from where it was interrupted. If the 

interrupt unblocks a higher priority task then the ISR returns to this task instead.  

4.5  Clock Ticks 

The RTOS has a timer interrupt which occurs periodically called the clock tick. The time 

between interrupts is usually between 10 and 200ms. The clock tick interrupt allows a 

kernel to delay tasks for an integral number of clock ticks and to provide timeouts when 

tasks are waiting for events to occur. The faster the tick rate, the higher the overhead. The 

clock tick interrupt manages time delays and timeouts.  

In the MicroC/OSII RTOS, the function OSTimeDly( ) allows the calling task to delay 

itself for a number of clock ticks. The calling task is blocked and this forces the RTOS to 

execute the next highest priority task that is ready to run. The task that called 

OSTimeDly( ) is made ready to run when the time specified expires or if another task 

cancels the delay by calling OSTimeDlyResume( ). 
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5 SpecC Model of RTOS 

5.1 Semaphore In SpecC 

A task releases a semaphore by calling the semaphore post function. If a higher priority 

task is waiting for the semaphore then the waiting task is unblocked and the RTOS will 

resume execution of that task instead of returning to the calling task. If no task is waiting 

for the semaphore then the value of the semaphore is incremented and the calling task 

continues running. 

When used as a flag, the semaphore is initialised to zero. A task calls the post function to 

signal the flag and a task calls the pend function to wait for the flag. 

The RTOS also has an accept function that allows a task to acquire the semaphore, 

without being blocked if the semaphore is not available. 

The semaphore in SpecC is implemented as a channel as follows: 

interface ISendSem // send interface 
{ 
    void post(void); 
}; 
interface IRecvSem // receive interface 
{ 
    bool accept(void); 
    void pend(void); 
}; 
channel cSem(void) // channel definition 
implements ISendSem, IRecvSem 
{ 
    event e; 
    unsigned int n = 0; 
 
    void pend(void) // pend  
    { 
 if (n = = 0)// wait if semaphore is not available 
  { 
         wait e; 
  } 
        n--;// return when semaphore is available 
    } 
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    void post(void)  
    { 
  n++;//increment semaphore 
 notify e;//unblock waiting tasks 
    } 
    bool accept(void) 
    {  
 if (n > 0)// if semaphore is available 
 { 
     n--; 
     return(true); 
 } 
 else // semaphore is not available 
 { 
     return(false); 
 } 
    } 
}; 
The interface contains declarations of the channel functions (post, pend and accept) and 

the channel definition contains the definitions of the functions. 

In the channel, the variable n is the value of the semaphore. The functions pend, post and 

accept model the functions in the RTOS.   

5.2 Memory Manager In SpecC 

In SpecC, the memory manager channel is a counter whose value is the number of 

available memory blocks. The code is similar to a semaphore controlling access to a 

shared resource. The get function is similar to the semaphore pend function.A task calls 

the get function to obtain a memory block. The put function is similar to the semaphore 

post function.A task calls the put function to return a memory block to the memory 

manager. The get function returns the address of the memory block. It returns NULL if 

there is no memory block available. 

The memory manager in SpecC is implemented as a channel as follows : 

#define NUM_MEM_BLOCKS 10 
#define MEM_BLOCK_SIZE 100//memory size 
interface MemMgmt 
{ 
    void* get(void); 
    void put(void *mem); 
}; 
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channel cMem(void) implements MemMgmt 
{ unsigned int n = NUM_MEM_BLOCKS;// number of available channels 
    void* get(void)  
    { 
 void *mem; 
 if (n = = 0)// return NULL if no memory available 
 { 
 mem = NULL; 
 while (1); 
 } 
 else // get memory and return its address 
 { 
 mem = malloc(MEM_BLOCK_SIZE); 
 n--;// decrement memory block counter 
 } 
 return mem; 
    } 
    void put(void *mem) 
    { 
 if (mem != NULL)// check for valid memory address 
 { 
     free(mem); 
     n++;//increment memory block counter 
 } 
    } 
}; 
5.3 Message Box In SpecC  

A message box is used to pass a message to another task. This is different from a 

semaphore because data is transferred from one task to another. Usually the sending task 

places the message in memory obtained from the memory manager. The format of the 

message can be any data type. The address of the message is posted to the message box. 

The task that receives the message extracts the contents of the message, and then frees the 

memory by calling the memory manager’s put function. Note that the message box can 

only contain one message. The accept function allows a task to check the message box 

without being blocked when the message box is empty. 

The channel message box in SpecC is implemented as follows: 

interface ISendMbox //message box for sending messages         
{ 
    void send(void *message); 
}; 
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interface IrecvMbox//message box for receiving messages 
{ 
    void recv(void **message); 
    void accept(void **message); 
}; 
channel cMbox()//communication of sending and receiving of 
//messages 
implements ISendMbox ,IRecvMbox 
{ 
    unsigned long m,b; 
    void *buf = 0;// memory space  
    event e; 
    void send(void *message) 
    { 
 b = (unsigned long)buf; 
 m = (unsigned long)message; 
 if (buf == 0)//storing a message into memory 
 {    
         buf=message; 
         notify(e); 
 } 
    } 
    void recv(void **message) 
    { 
 b = (unsigned long)buf; 
 if (buf == 0) 
         wait(e); 
 b = (unsigned long)buf;// 
        *message=buf; 
 buf = 0; 
    } 
    void accept(void **message) 
    { 
 b = (unsigned long)buf; 
        *message=buf; 
 buf = 0; 
    } 
}; 
 



 
 
                                                                                                         SpecC Model of RTOS                                         

                                                               - 41 -   

5.4 Queue In SpecC 

A queue is also used to pass messages to another task. The difference between the 

message box and queue is that queue can store more than one message pointer at a time. 

The queue stores these messages in an array of pointers that can be read by the receiving 

task on a first in-first out basis. 

In SpecC, a queue is implemented as a channel as follows: 

interface i_receiver 
{ 
    void receive(void **d); 
}; 
interface i_sender 
{ 
    void send(void *d); 
}; 
#define QMAX 100 // maximum number of queues  
channel c_mem implements i_sender, i_receiver 
{ 
 void *queue[QMAX]; 
 int head=0, tail=0, count=0;//first element, last element 
//and count of no. of queues respectively   
     event         req, 
                  ack; 
     bool          v = false, 
          w = false; 
     void receive(void **d)  
     { 
  if (!count) 
  { 
     w = true; 
     wait req; 
     w = false; 
  } 
  *d = queue[head];//value coming out of the queue 
  count--; 
  head++; 
  if (head >= QMAX)//if the no. of first element greater 
//than max. no. of queues 
  head = 0; 
  if (v) 
   { 
  notify ack; 
   } 
     } 
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    void send(void *d) 
    { 
 if (count >= QMAX)//if no. of available queues is greater 
//than max. no. of queues 
 { 
  v = true; 
  wait ack; 
  v = false; 
 } 
 if (count < QMAX)//if no. of available queues is less 
//than max. no. of queues 
 { 
  queue[tail] = d;//queue receiving the value 
  count++; 
  tail++; 
  if (tail >= QMAX)// if the no. of last element greater 
//than max. no. of queues 
  { 
   tail = 0; 
  } 
  if (w) 
  { 
      notify req; 
  } 
 } 
    } 
}; 
 
 
5.5 Event Flag In SpecC 

An event flag gives us the information of the flag bits giving an indication what values 

are coming out of the message box to the behavior that helps us in calculations related to 

the robot’s movement. An event flag is implemented as a SpecC channel as follows: 

 
interface IEventFlag 
{ 
    unsigned int pend(unsigned int flags, bool consume); 
    void post(unsigned int flag); 
    unsigned int accept(unsigned int flags, bool consume); 
}; 
channel cEventFlag() implements IEventFlag 
{ 
    event e; 
    unsigned int n = 0; 
    unsigned int pend(unsigned int flags, bool consume)  
    { 
 unsigned int flag_rdy; 
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 if (n = = 0) 
 { 
            wait e; 
 } 
 flag_rdy = n; 
 n = 0;  
 return flag_rdy; 
    } 
    void post(unsigned int flag)  
    { 
 n = n | flag; 
 notify e; 
    } 
    unsigned int accept(unsigned int flags, bool consume) 
    { 
     unsigned int flag_rdy; 
 flag_rdy=n&flags; 
 if(flag_rdy!=0) 
 { 
  if (consume= =true) 
  { 
   n&=~flag_rdy;  
  } 
 } 
 return(flag_rdy); 
    } 
}; 
 
The model features described above, such as the semaphore, message box, queue, 

memory manager and event flag all function the same as in the MicroC/OSII RTOS. The 

operation of these features is generally compatible with the operation of any other RTOS 

and is therefore is of general use.
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6 Real Time Application – Robot with Obstacle Avoidance 

6.1 Hardware  

The technicians of Auckland University of Technology built the hedgehog robot. It has a 

detachable CPU board that can be replaced with any appropriate purpose built board 

using a microcontroller or FPGA. All programming interfaces go via this board. For this 

application, the CPU board uses an Atmel ATMega128L microcontroller. 

  

  
          

      Figure 13 Side View of  Robot     Figure 14 Top View of Robot  
 
            
        
     
           

    

         
   

 

 

                   
Figure 15 Front View of Robot                                 Figure 16 Back View of Robot  
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6.1.1 Motor Driver 

The robot has two driven wheels, each with its own motor. There are two inputs for each 

motor connected to two outputs of the micro. In total, there are four motor connections:  

Left Motor:      Drive      PB5 (OC1A)  

   Direction PA6  

Right Motor:    Drive  PB6 (OC1B) 

   Direction PA7 

The motors can be driven by pulse width modulation signals providing fine control of the 

motor speeds. 

6.1.2 Wheel Pulse Generators 

There are two independent optical wheel pulse generators, one on the left and one on the 

right wheel. Each pulse generator produces 24 pulses per rotation of a wheel. 

The outputs of the wheel pulse generators are connected to: 

Left Wheel         PD0 (INT0) and PD4 (IC1) 

Right Wheel       PD1 (INT1) and PE7 (IC3) 

The wheel pulse generators are connected to external interrupts (INT0, INT1) allowing 

the pulses to be counted in an interrupt service routine. The wheel pulse generators are 

also connected to input capture inputs (IC1, IC3) allowing the time between pulses to be 

measured. 

6.1.3 Sonar System 

The Hedgehog has two boards mounted at the front, on top of the battery box. The upper 

one is the sonar transmitter, which has two ultrasonic speakers (left and right) operating 

at a frequency of 40 Khz. 

The ultrasonic pulses sent from these are reflected back (by objects in front of the 

Hedgehog) and then received by four ultrasonic microphones (2 left, 2 right) on the sonar 

receivers (1 left, 1 right), which are mounted on the board underneath. 
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The field of vision from left to right sensor is 110◦ and is symmetrical. The left and right 

receivers are 66mm apart and turned outwards 22.5◦. Their angle of view is about 75◦. 

The outputs from the Sonar Receivers are connected to: 

Left Close:      PA0  

Left Far:          PA1  

Right Close:    PA2  

Right Far: PA3  

 

The possible states of the sonar receivers are shown below: 

                               Possible valid states   
    
   Left Receiver  Right Receiver             Condition Possible states 
Close Far Close Far  Yes/No 
Low Low Low Low No object detected Yes 
Low High Low Low Far object detected left  No 
Low Low Low High Far object detected right  No 
Low Low High High Close object on right Yes 
High High Low Low Close object on left Yes 
High High High High Close object on left & right Yes 
Low High Low High Far object on left & right Yes 
High High Low High Close object on left No 
     Far object detected right    
Low High High High Close object on right No 
        Far object detected left    

Table 2 Possible Sonar Receiver States 

 

6.1.4 Serial Port 

The name "serial" comes from the fact that a serial port "serializes" data. That is, it takes 

a byte of data and transmits the 8 bits in the byte one bit at a time. The advantage is that a 

serial port needs only one wire to transmit the 8 bits (while a parallel port needs 8). The 

disadvantage is that it takes 8 times longer to transmit the data than it would if there were 

8 wires. Serial ports lower cable costs and make cables smaller.  
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Before each byte of data, a serial port sends a start bit, which is a single bit with a value 

of 0. After each byte of data, it sends a stop bit to signal that the byte is complete. It may 

also send a parity bit.  

Serial ports are bi-directional. Bi-directional communication allows each device to 

receive data as well as transmit it at the same time. Serial devices use different pins to 

receive and transmit data. 

Serial ports rely on a special controller, the Universal Synchronous and Asynchronous 

Receiver/Transmitter (USART), to function properly. The USART takes a byte and 

transforms it into serial form for transmission through the serial port. 

The serial port pins on the Hedgehog robot are: 

Serial Out:         TxD0 

Serial In:            RxD0  

6.2 Software  

6.2.1 PWM for Motor 

Pulse width modulation (PWM) is a powerful technique for controlling analog circuits 

with a processor's digital outputs. PWM is employed in a wide variety of applications, 

ranging from measurement and communications to power control and conversion.  

By controlling analog circuits digitally, system costs and power consumption can be 

drastically reduced. Many microcontrollers and DSP’s already include on-chip PWM 

controllers, making implementation easy.  

PWM is a way of digitally encoding analog signal levels. Through the use of high-

resolution counters, the duty cycle of a square wave is modulated to encode a specific 

analog signal level. The PWM signal is still digital because, at any given instant of time, 

the signal is either fully on or fully off. The voltage or current source is supplied to the 

analog load by means of a repeating series of on and off pulses. The on-time is the time 

during which the DC supply is applied to the load and the off-time is the period during 

which, that supply is switched off.  
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Within the resolution due to the number of bits controlling the PWM signal, any analog 

value between fully on and fully off can be encoded with PWM.  

In the ATMega128 microcontroller, each timer/counter has its own Timer/Counter 

Register (TCNT) and Output Compare Register (OCR). The Output Compare Register is 

compared with the Timer/Counter value at all times. The result of the compare used by 

the waveform generator produces a PWM signal. 

In the robot, a 10-bit PWM mode was used. 

6.2.2  Input capture and Overflow Interrupts 

The Timer/Counters also have an input capture unit that can capture external events 

indicating time of occurrence. When a specified edge occurs on the Input Capture Pin 

(IC), a capture will be triggered. When a capture is triggered, the value of the counter 

(TCNT) is written to the Input Capture Register (ICR). The Input Capture Flag (ICF) is 

set at the same time as the TCNT value is copied into the ICR Register. If enabled, the 

input capture flag generates an input capture interrupt. 

When using the input capture interrupt, the ICR Register should be read as early in the 

ISR (interrupt service routine) as possible, because if the processor has not read the 

captured value in ICR before the next event occurs, ICR will be overwritten with a new 

value giving an incorrect capture result. 

In the program, interrupt [TIM1_CAPT] void LeftInputCapture(void) used on left wheel 

and interrupt [TIM3_CAPT] void RightInputCapture(void) used on right wheel helped in 

getting the count of pulses from the two wheels. Sometimes due to the time lag between 

the pulses of the two wheels, it leads to problem of overflow of pulse values from one of 

the two wheels that pose a problem in calculating the position of the robot. To avoid the 

situation, interrupt [TIM1_OVF] void LeftOverflow(void) used for left wheel and 

interrupt [TIM3_OVF] void RightOverflow(void) used for right wheel helped in retaining 

the overflow of values out of the two wheels. 
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6.2.2.1 Glitches in Exceptional Handling of Interrupts 

While working on SpecC, I found out there is something wrong with the exceptional 

handling of interrupts as shown per the book i.e. SpecC compiler didn’t allow nested 

interrupts in a main function especially for my application. 

For example 

int main (void) 
 { 
  setup.main(); 
  printf("Operation: starting\n"); 
  try 
  { 
   operate.main(); 
  } 
  interrupt (eLeft) 
  { 
   intLeft.main(); 
  } 
  interrupt (eRight) 
  { 
   intRight.main(); 
  } 
  return 0; 
 } 
}; 
 

In this case, when an event eLeft or eRight is notified, an interrupt occurs and behavior 

operate is stopped immediately in its execution. The appropriate interrupt behavior such 

as intright and intleft, is then executed. Once the interrupt behavior finishes, the main 

behavior operate can resume its execution right from the point where it was stopped. 
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But SpecC compiler didn’t allow the above code in my case as I was using interrupts as 

counters to the wheels of a robot and threw errors on the screen so I had to make some 

changes which is shown below in the code provided: 

 
 int main (void) 
 { 
  setup.main(); 
  printf("Operation: starting\n"); 
  try 
  { 
   operate.main(); 
  } 
  interrupt (eInt) 
  { 
   isr.main(); 
  } 
  return 0; 
 } 
}; 
 

In this case, when an event eInt is notified, an interrupt occurs and behavior operate is 

stopped immediately in its execution. The appropriate interrupt behavior such as isr, is 

then executed. Once the interrupt behavior finishes, the main behavior operate can 

resume its execution right from the point where it was stopped.  

In the function isr, I used a variable intFlag, which takes care off the counters of the 

wheels of the robot thereby taking care of the problem and it worked well with the 

compiler. The source code can be seen in the appendix. 

6.2.3 Sensor Polling 

Polling is to check the status of an input or memory location to see if a particular external 

event has occurred. Here, polling is done on the sonar sensors to get values on the sensor 

receivers of the robot. To avoid obstalces, the robot movement goes into different states 

depending on the values of the sonar recievers. 
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6.2.4 Serial Data Transmission 

In the robot application, the serial port is used to transmit messages containing the 

position of the robot, sonar values and motor parameters to a computer screen, to help us 

monitor the robot operation. From the serial output, we are able to tell whether the robot 

is functioning as required. 

6.3 Position Calculation 

The position of the robot is calculated from the pulses generated by the right and left 

wheels. The robot position is calculated as its x and y co-ordinates and the heading 

(direction) in which the robot is pointing.  

The position is recalculated whenever the wheels generate pulses. From the dimensions 

of the robot, it is calculated that a wheel moves d=7.11mm for each wheel pulse. Due to 

time delays before performing this calculation, several wheel pulses may occur for each 

calculation.  
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The position calculation is one of two cases: 

Case I: When the number of right wheel pulses (n) is equal to the number of left wheel 

pulses (m), the robot moves in a straight line. 

Suppose O is the origin and robot is at point A with co-ordinates (x1,y1) and heading θ. 

The new position B(x2,y2) is given by : 

x2 =x1+n*d*cos θ  

y2=y1+m*d*sin θ  

The heading θ does not change. 
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Figure 17 Position of robot when pulses from wheels are equal 
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Case II: When the number of right wheel pulses is not equal to the number of left wheel 
pulses 
 
Suppose the left wheel moves from A to B, the right wheel moves from E to F and the 

midpoint between the wheels moves from C to D. The initial robot position is C (x1, y1) 

and heading θ.  

Let  

l= number of pulses from left wheel 

r= number of pulses from the right wheel 

d= distance moved by wheel for each pulse 

sep= seperation of wheels 

We assume the robot moves in an arc whose centre is at P as shown in Figure 18. The 

radius PC of this circle is R and the angle subtended at the centre of the circle is φ. Then: 

Δθ=φ 

R=((l+r)/(l-r))*(sep/2)  (1) 

(r*d)-(l*d)=sep* φ  (2) 

By arranging the terms in (2), we get 

φ=(d/sep) *(r-l)  (3) 

 

 

 

 

 

 

 

 



 
 
                                                                                                         Real Time Application                                         

                                                               - 54 -   

Using the values of R and φ from equations (1) and (3) we get the values of new position 

of the robot as : 

Δx= x1-(R*sinθ)+ (R*sin(θ+ φ)) 
Δy= y1-(R*cosθ)- (R*cos(θ+ φ)) 
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Figure 18 Position of robot when pulses from wheels are not 
equal 
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6.4 Obstacle Avoidance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The robot uses the state machine shown in Figure 19 to move towards the target 

while avoiding obstacles. The robot enters the state machine in the Stopped state. If 

the robot is not at the target, then it rotates to point towards the required target 

position and moves towards the target.  If an obstacle is encountered, the robot 

rotates to point parallel to the obstacle and moves forward a fixed distance before 

rotating towards the target position again. This procedure is necessary because the 

robot sonar sensors can only detect obstacles in front of the robot. 

The states operate as follows:  

• Stopped 

In this state, the robot remains stopped if it within 10cm (TARGET_ERROR) of the 

target position. Otherwise the robot goes to the Rotate_To_Target state.  

• Rotate_To_Target 

The robot rotates until it is pointing to within 10 degrees (HEADING_ERROR) of the 

target. If there is an obstacle then the robot goes to the Rotate_Away_Obstacle state, 

otherwise it goes to the Move_To_Target state.   

 
 

 
                                                                            dr > TARGET_ERROR                                                                                         

 dr <=        
TARGET_ERROR 

              dbrg < 
                                                                                                                                   HEADING_ERROR  
 
                                          ds > STEP_DISTANCE 
 
                        Obstacle 

               
   
                          No Obstacle       Obstacle 
            
 

       
       

Stopped 

Rotate _Away_Obstacle

Rotate_To_Target

Move_To_Target 

Move Forward 

Figure 19 State Machine for Obstacle Avoidance 
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• Move_To_Target   

The robot moves forward towards the target. The TARGET_ERROR has been set to 

10 cm so the robot goes to the Stopped state when it is within 10cm of the target 

position. If the robot detects an obstacle then it goes to the Rotate_Away_Obstacle 

state.   

• Rotate_Away_Obstacle  

The robot rotates until the sonar sensors do not detect an obstacle. Then the robot 

goes into the Move Forward state. 

When the left sonar receiver detects an obstacle, the right motor is stopped so the 

robot rotates right. When the obstacle disappears, the robot goes to the MoveForward 

state. Similarly, when the right sonar receiver detects an obstacle, the left motor is 

stopped until the obstacle disappears and the robot goes to the MoveForward state. 

If both receivers detect an obstacle, the robot starts rotating towards the target 

destination and continues to rotate in this direction until the obstacle disappears. Then 

the robot goes into the MoveForward state. 

• MoveForward 

In this state the robot is attempting to get round an obstacle. The robot moves 

forward 50 cm (STEP_DISTANCE) then goes to the Rotate_To_Target state. This 

procedure is necessary because the robot cannot detect obstacles to the side.  
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7 SpecC Model of the Robot Application 

7.1 Specification Model 

In the specification model, there is one behavior that represents the entire robot control 

system. The inputs and outputs of this behavior are the system inputs and outputs. For the 

hedgehog robot the inputs are the sensor values and the counter pulses from the left and 

right wheels, and the outputs are the motor speed and direction values and the serial 

output. The model also includes the testbench behaviors. A diagram of the robot 

controller specification model (without the testbench) is shown in Figure 20. 
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Figure 20 SpecC Specification Model 
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7.2 Architecture Model 

In the Architecture Model, the system is divided into tasks and the system behavior now 

contains these task behaviors as sub-behaviors. Each task is represented by a different 

individual behavior. Values are passed between these sub-behaviors as global variables in 

the main system behavior. 

 The Hedgehog robot application uses several structures to do this: 

• struct Counters contains values of the number of pulses for the left and right 

wheels, 

• struct Position contains values of  the X and Y co-ordinates of the robot and the 

heading (orientation) and 

• variable Sonar contains values received from the sonar system. 

These global variables allow communication between the task sub-behaviors.  
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Figure 21 Architecture Model 
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7.2.1 Software Tasks 

In order to make robot move to reach its destination avoiding obstacles coming into its 

way, the application has six main tasks. They are   

• Input Capture and Overflow Interrupts 

• Sonar Sensor 

• Vehicle Location 

• Calculate Movement 

• Motor Control 

• Serial Transmit 

Input Capture and Overflow Interrupts 

These interrupts count the wheel pulses and measure the time between pulses from the 

left and right wheels. 

Sonar Sensor 

This task periodically reads the values of the sonar receivers. 

Vehicle Location 

This task calculates the position of the robot from the pulses generated by the two wheels. 

Calc Movement 

This task implements the state machine for obstacle avoidance using the sonar values and 

position of the robot.  

Motor Control 

This task controls the PWM outputs to the wheel motors. When the robot is moving in a 

straight line, it uses the time between pulses to adjust the PWM values to equalize the 

right and left wheel speeds. 
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Serial Transmit 

The values of the motor speeds and the position values of the robot are sent to the Serial 

Transmit task and the values are transmitted to a computer screen for diagnostic 

purposes. 

 
7.3 Communication Model 

In the Communication Model, communication channels replace the global variables. 

Communication between task behaviors is performed through channels representing the 

semaphores, message boxes, queues and event flags of the RTOS. To optimize memory 

utilization the communication model also uses the RTOS memory partition feature. This 

is modeled as a channel from which task behaviors can get memory for messages and to 

which memory can be returned when the message has been received. Eventflags are used 

to allow the Vehiclelocation, CalcMovement and Motor Control tasks to block for 

combination of events. 
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Figure 22 Communication Model 
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7.3.1 Task Interaction 

Pulse counts generated by interrupts from the right and left wheels are sent to the Vehicle 

Location task to calculate position of the robot. The sonar receiver values are periodically 

obtained by the Sonar Sensor task and position values from the Vehicle Location task are 

passed to the CalcMovement task for the state machine. The CalcMovement task sends a 

short-term target position and the other motor control values to the Motor Control task. 

The Motor Control task also receives the measured time between pulses from the Input 

Capture interrupts. All the tasks can send messages to the Serial Transmit task. 

These interactions are shown in Figure 23, along with the RTOS features (semaphores, 

message boxes, queues and event flags) used to implement them. The event flags allow 

the receiving task to wait for combinations of events. 
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 Figure 23 Task Interaction 
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7.4 Implementation Model 

In the implementation model, the software and hardware parts of SpecC that are 

separated out in the architecture model are brought together and implemented on target 

hardware. In this thesis, only the software side has been developed so the implementation 

model consists of the software implementation of the SpecC model.  

Here all the behaviors in the SpecC communication model are transformed to tasks in the 

RTOS. The obstacles and inputs defined in the SpecC testbench are removed as the real 

world environment of the robot replaces them. The communication channels using 

semaphores, messageboxes, queues and eventflags in SpecC are replaced by the 

corresponding RTOS features and function calls. The interrupts modeled in SpecC are 

replaced by interrupt service routines with C code implementation.   

7.5 SpecC Testbench 

The SpecC model must contain a testbench to simulate the external inputs of the system 

being modeled. The testbench consists of behaviors that perform this simulation. These 

behaviors use the system outputs to calculate values for the system inputs. 

The sonar input behavior contains the main portion of the testbench is also the main 

portion of the whole simulation having information about the location of obstacles and 

the characteristics of the sonar sensor system and uses the calculated location of the robot 

to periodically generate values for the sonar inputs. Similarly, the wheel pulse input 

behavior uses the wheel speed to calculate the time between wheel pulses, and generates 

simulated interrupts at the appropriate times. 

 In the Specification Model, the testbench main functions 

init.main();     // testbench initilization 

setup.main(); //  application initilization  
while (1) 
{ 
  
 input.main();  // calculates testbench inputs 
 operate.main();// application 
 output.main(); // handles testbench controls  
} 
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Parallel execution of behaviors in system specification is achieved by par statement. 

In Architectural Model, the task Operate used in the testbench would make other tasks 

sonarinput, intleftinputcapture, intrightinputcapture, sonarsensor, calc_movement, 

vehiclelocation, motorcontrol,serialtransmit and intserialtransmit run in parallel which in 

SpecC is changed to : 

par 
{ 
 sonarinput.main();//testbench sonar receiver values 
 intleftinputcapture.main();//testbench left wheel pulse 
 intrightinputcapture.main();//testbench right wheel pulse 
 sonarsensor.main();//sonar sensor values from 4 receivers 
 calc_movement.main();//maneuvering of the robot  
 vehiclelocation.main();//distance calculations 
 motorcontrol.main();//looking out robot speed and direction  
     serialtransmit.main();//transmitting messages on the CPU 
 intserialtransmit.main(); 
} 
 
In Communication Model, the task Operate used in the testbench would make other tasks 

sonarinput, intleftinputcapture, intrightinputcapture, sonarsensor, calc_movement, 

vehiclelocation, motorcontrol, serialtransmit, intserialtransmit, incNow run in parallel 

which in SpecC is changed to: 

  
par 
{ 
 sonarinput.main(); 
 intleftinputcapture.main(); 
 intrightinputcapture.main(); 
 sonarsensor.main(); 
 calc_movement.main(); 
 vehiclelocation.main(); 
 motorcontrol.main(); 
 serialtransmit.main(); 
 intserialtransmit.main(); 
 incNow.main();//providing behavioral time information  
} 
 
The task SonarInput used in SpecC provides details about the obstacle, how the receiver 

of the sensor would get values to be used in movement of robot.    
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7.5.1 Testbench Sonar Input model  

In SpecC, I used structures to construct the model of the obstacle as 

#define NUM_OBSTACLES 2 
struct Point 
{ 
 float x; 
   float y; 
}; 
struct Quad 
{ 
 struct Point p[5]; 
}; 
struct Quad obs[NUM_OBSTACLES] = 
{{{{-0.3, 0.5}, {0.3, 0.5}, {0.3, 0.7}, {-0.3, 0.7}, {-0.3, 
0.5}}},{{{0.3, 1.0}, {1.0, 1.0}, {1.0, 1.3}, {0.3, 1.3}, {0.3, 1.0}}}}; 
 
This in real time is taken care off by the sensors. 

The obstacles are defined in the program code as polygons. The co-ordinates of the 

corners of the obstacle polygons are defined in the input module. 

The Sonar sensors are modeled as shown in Figure 22. The dimensions used in this model 

have been obtained experimentally. The sonar system detects an obstacle when any 

boundary line of the sensor pattern intersects any edge of an obstacle. The obstacles are 

all large enough that this guarantees detection. 

While working with robot in the real environment, Sonar sensors present on the robot 

take care of the values received by the sensor and robot avoids the obstacle as per the 

user but in SpecC, user himself has to sort out a way to achieve change the values of the 

sensor as well. 

Sensors are represented by a shape as F’B’G’A’ and FBGA in SpecC shown in Figure 24 

nearly similar to the specifications of the sensors in the real time environment. Assuming 

the receivers at the far end of robot would turn on when the robot reaches 15cm away 

from the obstacle and the receivers at the near end of robot would turn on when the robot 

reaches 5cm away from the obstacle and using the formula for finding intersection of two 

straight lines that is of obstacle and sensor and the position of the robot, sonar receiver 

values were generated.  
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7.5.2  Testbench Wheel Pulse Input Model 

This part of the testbench model uses the motor speeds and dimensions of the wheels to 

calculate the time between pulses from wheel and generates pulse inputs at the 

appropriate time. 

 

7.5.3 Testbench Output Model 

For this application the output function displays serial port message on the computer 

screen. 

7.6 Software Execution 
 
The SpecC language is easy to learn for anyone familiar with the C programming 

language. SpecC has additional features for modeling embedded systems. In addition the 

user must write testbench code that drives the SpecC model to run an application in the 

desired manner. 

To execute SpecC using Windows, it is necessary to use Cygwin, a Linux like 

environment for Windows to run the SpecC compiler. 
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  B’   
 
 
                      
 
         DE=0.104m 
         F’F=0.066m 
  F’E=EF=0.033m 
          ∟AFB =75● 

      ∟A’F’B’=75●  
   FAGB=F’A’G’B’ 

       F ’          E           F 
 
 
 

D

Figure 24 Robot Model In SpecC for Sonar 
Sensor Calculations
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8 Results 

This research describes the design of a SpecC model of a robot avoiding obstacles. Using 

the SpecC methodology, a specification model of the robot is transformed to an 

architecture model and then to a communication model. The model is verified by 

comparing it with the actual robot performance.  

In the communication model, most of the essential features of the RTOS have been 

incorporated. The research shows the interaction of the major design tasks (behaviors) 

generated at each level from the specification model to the communication model, and 

the refinement of communication elements (global variables and channels) as the model 

was developed. In this research, a state machine was used to make the robot avoid 

obstacles, taking into account various elements such as the sonar inputs, the root location 

and the desired target position.  

 

8.1 Robot Manoeuvring Pictorial Representation 

The Figure 25 below shows the path followed by the robot avoiding the obstacles to 

reach its target destination. The two blocks (shown in red) are the obstacles and the line  

(shown in blue) is the path of the robot traveled avoiding the obstacles. 

 
Figure 25 Example of Obstacle Avoidance 
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8.2 Testing the Model 

The SpecC model has been tested by implementing the model in C code on the Hedgehog 

robot. The performance of the Hedgehog robot was then compared with the SpecC model 

performance. 

Typical results are shown in Figures 26 and 27. The robot was required to travel forward 

3 metres, avoiding two obstacles as shown in the figures. The robot paths are shown in 

each case.  

 

 

 

 

 

 

 

 

 

Figure 26 SpecC Model Performance Figure 27 Actual Robot Performance 
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9 Conclusions and Future Work 

In summary, this research has developed a model of a RTOS with the SpecC SLDL and a 

real-time application in which a robot avoids obstacles to reach its destination. The model 

gives similar results to the actual robot. This research has produced satisfactory results 

and hence the methodology adopted is potentially promising for future work. 

This research shows how the SpecC SLDL can be used to model a RTOS incorporating 

essential features and model a small real time application for robot obstacle avoidance. 

The SpecC model depicts the real world application and allows the exploration of 

different architecture and communication methods. It is very difficult for a programmer 

to model an application in SpecC to make it function as it would in the real time 

environment. It was challenging to control every aspect that was involved, and this 

research has made every effort to minimize any biases or flaws, which could greatly 

affect the results. The model functions similar to the application in the real world but not 

exactly the same.   

Further work is required to complete the model of the MicroC/OS-II RTOS using SpecC. 

We have not modeled all the features of the RTOS, although most could be modeled in 

the same style as we have presented here. 

We have also not considered the important feature of timing, which would allow 

exploration of the time taken to run tasks and RTOS operations. An accurate timing 

model would allow investigation of the responsiveness of systems using the RTOS. It is a 

vital feature for the engineer as it reveals where most of the time is being consumed in 

the behaviors. This provides information that will identify which behaviors need to be 

improved for the application to run as required. This may necessitate some behaviors 

being shifted from software to hardware. 

Differences between the SpecC model performance and the actual robot performance are 

caused by the dynamics of the robot that have not been included in the SpecC model. For 

example, at present the model assumes the motor speed changes as soon as the PWM 

output to the motor is changed. The model should also include some random variation in 

the timing of the wheel pulses, as this is a significant issue in controlling the robot. 
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In future, an FPGA could be used as the controller. The SpecC model could be converted 

to a hardware description language such as VHDL or Verilog to build an application and 

test it on FPGA. 

The FPGA could include a processor element running the software part of the 

implementation with the hardware part being in the same FPGA. 
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Appendix 

Companion CD 

This thesis includes a CD that contains all the source code for the SpecC models. It is 

assumed that you have a Microsoft Windows 95, 98, NT, 2000, or XP computer system 

running on an 80x86, and Pentium-class, or AMD, processor. 

To run the executable files, you need to have the Cygwin environment that can be freely 

downloaded from the website http://www.cygwin.com/ 

Insert the CD into your CD-ROM drive, and execute the file tb.exe in Cygwin. These are 

executable files for the specification model, architectural model and communication 

model in appropriate folders. The files with an extension of .sc are the SpecC files that 

can be viewed using a text editor.  

When the executable is run, you will see a continuous flow of messages that describes 

how the robot is moving to avoid the obstacles to reach its destination.    

 

 


