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Abstract 
 

Droughts are one of the most damaging natural hazards, and anthropogenic 

climate change will continue to impact drought sensitive sectors such as primary 

production, industrial and consumptive water users. Drought monitoring and early 

warnings are essential for the development of mitigating strategies. The overall aim of 

this thesis is to develop a methodology to project droughts and its severity in the future 

through a multi-scenario and multi-model approach using the latest Coupled Model 

Intercomaprison Project Phase5 (CMIP5) models. All sixteen regions of New Zealand 

are included in the analysis. To achieve the above objective, the analysis was initially 

carried out to select the most applicable meteorological drought index – Standardised 

Precipitation Index (SPI) for New Zealand. 

 Temporal changes in historic rainfall variability and the trend of SPI were 

investigated using non-parametric trend techniques to detect wet and dry periods across 

the regions of New Zealand. The first part of the analysis was carried out to determine 

annual rainfall trends using Mann-Kendall (MK) and Sen’s slope tests for the sixteen 

regions with long historical records (109 years) of the data set. For SPI trend analysis, it 

was observed that, results obtained showing significant trends; direction of SPI trends 

were similar to annual precipitation (downward and upward trends). In addition, the rate 

of occurrence of drought events were examined in the temporal trends. The fact that all 

regions showed positive slopes indicated that the intervals between events were 

becoming longer and the frequency of events was temporally decreasing. From the SPI 

trends, it was also observed that some of the regions over New Zealand will face more 

dry periods leading to increased drought occurrence. Information similar to this would 

be very important to develop suitable strategies to mitigate the impacts of future 

droughts. 

This main objective of this thesis is to assess the drought projections for the 

regions of New Zealand using General Circulation Models (GCMs) under two emission 

scenarios – Representative Concentration Pathways (RCP4.5) and RCP8.5 for three 

future periods (2010-2039, 2040-2069, 2070-2199). Drought severity and spatial extent 

are analysed for 12-month (SPI12) events. 

A novel concept centric on improving the GCM data was successfully derived 

for the regions using an innovative bias correction algorithm. This algorithm removes 

errors from climate models in comparison with historical observations. The quantile 
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mapping bias correction applied to the GCMs improved the rainfall projections thus 

reliable SPI values for the drought projections were generated.   

Drought projections vary substantially depending on the GCM, emission 

scenario, region, season and definition of drought. Overall, climate change enhances 

drought conditions across the study region, with marked increases projected for the 

northern islands under both emission scenarios; reductions in moderate droughts are 

projected for the regions in the South Island. The interannual variability of precipitation 

tends to enhance drought conditions caused by mean precipitation changes, or to 

moderate or reverse their reductions. Greater agreement in the direction of change tends 

to occur in the northern island regions. Projection ranges tend to increase with time and 

magnitude of warming. The implications of the large uncertainties include that decision-

making should be based on multi-scenario and multi-model results, and with 

consideration of drought definition. 

 Many parts of New Zealand have experienced their worst droughts on record 

over the last decade. With the threat of climate change potentially further exacerbating 

droughts in the years ahead; a clear understanding of the impact of droughts is vital. The 

information on the probability of occurrence and the anticipated severity of droughts 

will be helpful for water resource managers, infrastructure planners and government 

policy-makers with future infrastructure planning and with the design and building of 

more resilient communities. 
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Glossary 
 
 
 

Term Definition 

 

Bias Correction An approach that corrects the projected raw daily GCM output 

using the differences in the mean and variability between GCM 

and observations in a reference period. 

CORDEX The Coordinated Regional Downscaling Experiment (CORDEX) is 

a program sponsored by World Climate Research Program 

(WCRP) to develop an improved framework for generating 

regional-scale climate projections for impact assessment and 

adaptation studies worldwide within the IPCC AR5 timeline and 

beyond.  

CMIP The Intergovernmental Panel on Climate Change (IPCC) gathers 

and reviews global climate models as part of the international 

climate change Assessment Reports. The ensemble of the models 

are called the Climate Model Intercomparison Project. 

CMIP3 Coupled Model Intercomparison Project Phase 3 is a set of climate 

model experiments from 17 groups from 12 countries with 24 

models. The resulting dataset from the CMIP3 project is the 

largest and most comprehensive international global coupled 

climate model experiment. 

CMIP5 Coupled Model Intercomparison Project Phase 5 is a set of climate 

model experiments from 23 groups from 12 countries with 64+ 

models. The experiments are carried out with the latest emission 

scenarios. This is the most ambitious coordinated multi-model 

climate data experiment ever attempted. 

CRU Climate Research Unit is widely recognised as one of the world’s 

leading institutions concerned with the study of natural and 

anthropogenic climate change. It houses data at 0.5-degree 

resolution for parameters such as rainfall, temperature, radiation 

and cloud fraction for over 100 years. 

Drought An insidious hazard of nature that has prolonged period of 
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abnormally low rainfall in a given region leading to a shortage of 

water supply, whether atmospheric, surface water or ground 

water. 

Drought 
Severity 

The measure of relative dryness or wetness affecting water 

sensitive economies. It is categorised based on the index used to 

calculate the drought - normal, moderate, severe and extreme. 

GCM Numerical models (General Circulation Models or GCMs), 

representing physical processes in the atmosphere, ocean, 

cryosphere and land surface, are the most advanced tools 

currently available for simulating the response of 

the global climate system to increasing greenhouse gas 

concentrations.  

GHG is a gas in the atmosphere that absorbs and emits radiation within 

the thermal infrared range. This process is the fundamental cause 

of the greenhouse effect. The primary greenhouse gases are water 

vapor, carbon-di-oxide, methane, nitrous oxide and ozone. 

IPCC The Intergovernmental Panel on Climate Change is a United 

Nations body, founded in 1988, which evaluates climate change 

science. assesses research on climate change and synthesises it 

into major 'assessment' reports every 5–7 years. The IPCC itself 

is comprised of representatives from 194 governments who review 

the contents of reports before publication and have to agree the 

final text.  

Meteorological 
Drought 

Is defined usually as a below-normal rainfall over a period of time 

over a region. 

MK test Mann-Kendall test is a non-parametric way to use to detect if there 

is a monotonic upward or downward trend of the variable of 

interest over time. 

MME A multi-model ensemble, is a large number of climate model 

simulations created by using many different international Climate 

model. 

Projection An estimate or forecast of a future situation based on the present 

trends. 

RCP Representative Concentration Pathways are four greenhouse gas 

concentration trajectories adopted by the IPCC for its fifth 
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assessment report in 2014. 

Regridding Regridding is the process of interpolating from one grid resolution 

to a different grid resolution. This could involve temporal, vertical 

or spatial ('horizontal') interpolations. However, most 

commonly, regridding refers to spatial interpolation. 

SPI The Standardized Precipitation Index (SPI-n) is a statistical 

indicator comparing the total precipitation received at a particular 

location during a period of n months with the long-term rainfall 

distribution for the same period of time at that location. SPI is 

calculated on a monthly basis for a moving window of n months, 

where n indicates the rainfall accumulation period, which is 

typically 1, 3, 6, 9, 12, 24 or 48 months. The corresponding SPIs 

are denoted as SPI-1, SPI-3, SPI-6, etc. It is a widely-used index to 

characterize meteorological drought on a range of timescales. 

SRES Special Report on Emission Scenarios were constructed to explore 

future developments in the global environment with special 

reference to the production of greenhouse gases and aerosol 

precursor emissions. 
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Chapter 1 
 

Introduction 
 
 Extreme weather/climate events have significant environmental and societal 

impacts, and anthropogenic climate change has and will continue to alter their 

characteristics. Droughts (e.g. the 2003 European heatwave and drought; Fink et al., 

2004; Stott et al., 2004) are one of the most damaging natural hazards in human, 

environmental and economic terms (Sheffield and Wood, 2008b; Kirono et al., 2011). 

Regional changes in drought patterns in the 20th century have been observed (see 

Section 2.3) and their future changes have been simulated (see Section 2.4). Climate 

change is stimulating demand from public and private sector decision-makers, as well as 

other stakeholders, for better understanding of potential future drought characteristics. 

Such knowledge is the initial step to assessing the impacts of drought (Bordi et al., 

2009). It also has both strategic and policy implications by informing effective 

adaptation and planning strategies (Graham et al., 2007) for managing drought risks and 

impacts. 

Until recently, studies on the projections of extreme weather events, such as 

drought, have often been based upon a few general circulation models (GCMs), regional 

climate models (RCMs), and/or emission scenarios, partly due to availability. Only a 

few studies such as Burke, 2011 have considered the changes in drought under a 

perturbed climate using a large ensemble of simulations. In addition to the uncertainties 

due to climate modelling, droughts can be represented by a wide range of indices 

depending on the purpose of application, and events can be quantified in various ways 

(see Section 2.2). The different concepts and methods of representing drought events 

applied in different studies make inter-comparing results from different analyses 

challenging (IPCC, 2012).  

 Changes in the variability of variables are also an important consideration in a 

climate change as they may mask/moderate or exacerbate the direction and/or 

magnitude of an anthropogenic signal. For example, perturbations in interannual climate 

variability could have implications on the agriculture (Skuras and Psaltopoulos, 2012), 
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food production and forestry (Salinger, 2005); exacerbated precipitation variability 

could raise drought risks (Bates et al., 2008). Future interannual precipitation variability 

could enhance or alleviate changes in drought characteristics caused by mean 

precipitation changes, but their spatial and temporal effects have not been well studied. 

 Climate Change has the potential to increase drought risk by subjecting 

regions to levels of drought not previously experienced. Prior drought studies have 

identified that New Zealand will continue to experience droughts, and with climate 

change the frequency and length of droughts are likely to increase (National Institute of 

Water and Atmospheric (NIWA) Research), but have produced conflicting results with 

regards to future drought severity. Some of these disagreements are likely related to the 

coarse resolution of a single GCM under the CMIP3 programme and regional averaging 

tends to smooth extremes. This thesis investigates the problem of projection of drought 

for the regions of New Zealand using the latest CMIP5 dataset made available by the 

World Climate Research Programme (WCRP). 

 As vulnerability to drought has increased globally, greater attention has been 

directed to reducing the risks associated with its occurrence. The present study therefore 

seeks to answer the following questions: 

• Are there any trends in the climatic data? 

• Can we make projections of meteorological drought until 2100 using the most 

applicable meteorological drought index for the regions of New Zealand? 

 

 GCMs are widely applied in climate change studies. In spite of advanced GCMs 

and improved knowledge, considerable levels of uncertainty remain in climate change 

projections, particularly in relation to extreme events. Uncertainties arise not only from 

the various emission scenarios and GCMs, but also from the different classifications of 

drought (namely meteorological, agricultural, hydrological, socio-economic and 

ground- water droughts), and a number of indices have been developed to quantify them. 

This thesis aims to examine the drought projections for the regions of New Zealand 

using a high resolution (20km x 20km) bias corrected data, We also aim to prove the 

robustness of these projections by quantifying the effects of using different emission 

scenarios and GCMs. The aim of the study was achieved primarily by undertaking the 

following tasks: 

1. Reviewing drought index. 
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2. Analysing the rainfall and drought severity trends for the sixteen regions of New 

Zealand. 

3. Projecting meteorological drought by the end of the century (until 2099) using 

the Standardized Precipitation Index (SPI) tool for an accumulation period of 

12-months. 

The above task was executed by regridding the twenty-one (see Table 3.1) 

GCMs of different resolutions to 20km x 20km. Furthermore, the quantile mapping 

algorithm was implemented for bias correcting each of the regridded models with 

respect to observational data. Lastly, Multi Model Ensemble (MME) of GCMs were 

calculated under two emission scenarios, namely RCP4.5 (moderate emission scenario) 

and RCP8.5 (high emission scenario). The machine learning language R, ArcGIS and 

NCAR Command Language (NCL) has been used for calculations, spatial and temporal 

plots throughout this thesis. The significance of this research and possible outcomes are 

discussed in this section including its contributions. 

 Trend analysis facilitates the identification of any possible trends in climatic 

parameters which directly influences the occurrence of droughts. To date, no 

comprehensive research has been conducted on drought severity trends in New Zealand. 

Hence, whether there is a possible trend in the risk of occurrence of drought events will 

be determined. 

 Drought information is often too technical and difficult to understand by 

decision makers and end-users. This study aims to initially derive information about 

drought using precipitation information which can be understood easily by ordinary 

users. 

 The gaps in existing research will be addressed by not only examining the 

potential changes in drought characteristics due to climate change, but also the 

associated uncertainties in the projections through the application of a range of emission 

scenarios and GCMs. 

 Projecting drought severity in the long term (2070-2099) would provide 

essential information on drought and help the state/regional based organisations to plan 

and implement responses and mitigation measures. 
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1.1	Thesis	Structure	
 

 This thesis is presented in six chapters, including Chapter 1 which describes the 

background of the research, the aims and the research significance. Chapter 1 also 

formulates the research questions to be addressed and provides an overall picture of the 

research tasks undertaken in the thesis.  

 Chapter 2 provides an overview of the drought concept, the various 

classifications of drought and methods for their quantification. It presents the observed 

and projected changes in drought, along with the drivers of their occurrence. This 

chapter also discusses the various sources of uncertainties in climate modelling and the 

challenges in projecting future drought characteristics.  

 Chapter 3 describes the general methods applied in this study, the approach for 

identifying and measuring drought, the study area and regions.  

 Chapter 4 presents the results of preliminary analysis for the climatic data that 

has paved the way for the assessment of droughts using meteorological drought indices 

(i.e. Standardised Precipitation Index (SPI). 

 Chapter 5 investigates the trend by non-parametric tests of rainfall data for 

longer data lengths. This chapter also examines the spatial and temporal distributions of 

identified trends. Similar to the above analysis, this chapter provides the trend of dry 

periods using a selected meteorological drought index, namely the SPI and the temporal 

trends in drought events. 

Chapter 6 explores the spatial effects of climate change on meteorological 

drought characteristics for 12-month (SPI12) events. It also assesses the uncertainties 

that arise from emission scenarios and GCMs. 

 Chapter 7 summarises the key findings revealed from this thesis, and presents 

some concluding remarks about the policy implications and areas for future research. 
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Chapter 2 
 

Literature Review 
 

2.1	Introduction	
 
 
 Climate variability and extreme weather/climate events are of great concern as 

they produce disproportionately large climate-related damages (Katz and Brown, 1992; 

Easterling et al., 2000; Meehl et al., 2000). Studies have shown that there is growing 

confidence that human-induced climate change can alter/raise the risk of extreme events, 

which have implications for regional and local adaptation and risk reduction strategies 

(Meehl et al., 2000; Smith et al., 2009a; Berrang-Ford et al., 2011). This chapter 

describes the importance of drought events, and provides an overview of the drought 

concept, the various classifications of drought and methods for their quantification. The 

observed and projected drought trends are then presented, along with the drivers of 

drought and their variations. This chapter also discusses the various sources of 

uncertainties in climate modelling and the challenges in projecting future drought 

characteristics. 

 Drought is one of the most damaging natural hazards, in human, environmental 

and economic terms (Sheffield and Wood, 2008b; Kirono et al., 2011). It affects 

agriculture, irrigation and food production. Droughts also have implications for 

hydrological and ecological systems (Marsh et al., 2007; Vidal and Wade, 2009; Ciais 

et al., 2005; Gobron et al., 2005; Archer and Predick, 2008). Increasing drought 

conditions can lead to human health concerns, e.g. famine in northern Nigeria, as they 

could counteract the effects of the anticipated longer growing seasons (Quevauviller, 

2011; Tarhule and Woo, 1997). Droughts can also impact on ecosystem goods and 

services that include the loss of sequestered forest carbon and associated atmospheric 

feedbacks (Ciais et al., 2005; Allen et al., 2010). Global wildfire potential may also 

increase (Liu et al., 2010), e.g. more fires in the eastern Iberian Peninsula with dry 

summers (Pausas, 2004). 
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 Current management practices may be insufficient to cope with future changes 

in sustainability, quantity and quality of water resources, and many developments are 

planned in drought-prone areas (e.g. the Thames Gateway; Walden, 2009; Bates et al., 

2008). Drought by itself does not necessarily imply a disaster. While drought risk 

generally increases with warming and drying, local and global, social and 

environmental changes influence vulnerability (Dai et al., 2004; Iglesias et al., 2006; 

Garcı́a-Ruiz et al., 2011). Human activities such as over farming, excessive irrigation, 

deforestation, over-exploiting available water and erosion can alter the land’s ability to 

capture and hold water (Mishra and Singh, 2010). Climate change can be incorporated 

into existing disaster risk reduction and development planning strategies. For instance, 

improved water management, water pricing and water recycling policies may reduce the 

population exposed to water stress (Arnell, 2004a; Garcı́a-Ruiz et al., 2011). 

 Despite advances in science and improved technology, drought remains one of 

the major challenges of climate variability worldwide (Piao et al., 2010). Impact 

assessment and adaptation decisions require specific information about the spatial and 

temporal characteristics of drought risk (Loukas and Vasiliades, 2008; Mechler et al., 

2010). A better understanding of potential future drought evolution could facilitate the 

implementation of effective adaptation, preparedness and disaster risk reduction 

measures (Wilhite, 1997). 

 

2.2	Drought	
 

2.2.1 Drought as a Concept 
 
 Palmer (1965), Yevjevich (1967), Wilhite and Glantz (1985), Panu and Sharma 

(2002), Wilhite (2005), Paulo and Pereira (2006), WMO (2006), Mishra and Singh 

(2010) and Dai (2011) have comprehensively reviewed the concept of drought, which 

can be defined and understood in many ways. Sections 2.2.1–2.2.7 are based on these 

and other studies. 

Drought is a natural, temporary and recurrent feature of variability, characterised 

by a cumulative precipitation deficit from the long-term mean (Bordi et al., 2009; Vidal 

and Wade, 2009). The predominant driver is low precipitation, but high evaporation 

rates also play a role (van Lanen et al., 2007; Li et al., 2009). This universal 

phenomenon therefore needs to be considered as a relative, rather than an absolute, 
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condition; its characteristics also vary significantly from one region to another 

(Mpelasoka et al., 2008). The effects of rainfall deficiency may take weeks or months to 

become apparent. A prolonged and more spatially extensive meteorological drought 

may induce other types of drought (see Section 2.2.2). 

 

2.2.2 Drought Classifications, Characterisation and Indices 
 

A single drought event can span across different climate zones and affect various 

human activities (Fleig et al., 2006). A standard methodology for characterising 

droughts under different hydroclimatological and hydrogeological conditions would 

help monitoring and forecasting of regional episodes. However, each event has unique 

climatic characteristics, spatial extent and impacts. The wide range of geographical and 

temporal distribution of droughts (thus the varying concepts), their complexity and 

interdisciplinary nature, and differing perspectives held by various stake-holders, make 

the onset and end of a drought difficult to determine. Hence, a precise, systematic and 

universal drought definition is lacking (Heim Jr., 2002; Quiring, 2009a; 2009b). 

Definitions also vary according to the variable (e.g. precipitation, stream flow or soil 

moisture) used to describe the drought (Mishra and Singh, 2010). 

 Conceptually, a drought refers to a water shortage (the demand) relative to the 

supply that originates from the absence or reduction in precipitation due to atmospheric 

conditions. Droughts are commonly classified into meteorological, agricultural, 

hydrological and socio-economic droughts (AMS, 2004; see Sections 2.2.3–2.2.7). 

Meteorological drought is a more common and natural event, whereas agricultural, 

hydrological and socio-economic droughts emphasise the human or social aspects 

(WMO, 2006). The sequence begins with meteorological drought; persistent dry 

conditions may induce agricultural, hydrological and water resources droughts (Vidal 

and Wade, 2009). 

 Mishra and Singh (2011) discussed the various components and methodologies 

in drought modelling, including forecasting, probabilistic characterisation, spatio-

temporal analysis, the use of General Circulation Models (GCMs) and land data 

assimilation systems. Besides its scientific merits and ability to quantify events at 

different time scales, which requires a long time series, a “good” indicator should also 

be valuable and informative to decision makers (Mishra and Singh, 2010; Steinemann et 

al., 2005; Steinemann and Cavalcanti, 2006). 
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 Many statistical techniques exist for drought analysis (Panu and Sharma, 2002). 

As different types of drought may not occur simultaneously nor exhibit the same 

severity, they should be characterised separately (Fleig et al., 2006). Many studies have 

reviewed and/or evaluated the various indicators; some of these are mentioned in 

Sections 2.2.3–2.2.7 (e.g. Hayes, 1998; Byun and Wilhite, 1999; Heim Jr., 2002; 

Steinemann, 2003; Quiring, 2009b). Besides the classical drought definitions, drought 

analysis methods may be based on frequency/probability, regression and Moisture 

Adequacy Index (MAI) (Panu and Sharma, 2002). 

Drought is generally analysed using a time series of different variables on time 

scales that vary from months to years based on a threshold approach that originated 

from the theory of runs (Yevjevich, 1967; Dracup et al., 1980; Hisdal et al., 2003). This 

allows various statistical drought parameters, including frequency, duration, intensity 

and severity, to be determined. Figure 2.1 (from Mishra and Singh, 2010) presents a 

schematic diagram of a drought variable (Xt), which is intersected at several places by 

the truncation level (X0) that produces three drought events. A negative (positive) run 

occurs when all values of the timeseries of a drought variable (Xt) are below (above) the 

pre-determined threshold (X0). Drought initiation time (ti) specifies the start of the 

deficit period, i.e. when the drought begins; drought termination time (te) denotes the 

time when the drought ends. Drought duration (Dd) is defined as the number of 

consecutive time-steps with below-threshold values (Byun and Wilhite, 1999), i.e. the 

time period between the initiation and termination of a drought. While drought severity 

(Sd) indicates the cumulative departure from a threshold, drought intensity (Id) 

represents the averaged cumulative anomaly for that duration, i.e. the average 

magnitude of an event (Andreadis et al., 2005). With a gridded dataset, the components 

in Figure 2.1 enable the determination of the areal extent of droughts, which is 

important as it (together with duration) can influence the range and scale of impacts.  

Frequency analysis of critical events helps to determine design criteria in water 

resource projects (i.e. hydrological drought) and to select a cropping system or pattern 

(i.e. agricultural drought). Duration strongly correlates to severity, which is important 

for studying hydrological drought (Bonacci, 1993; Tarhule and Woo, 1997). Critical 

duration, even with lower severity, is important for agricultural drought (Panu and 

Sharma, 2002). Droughts can be spatially identified on a local, regional or national scale. 
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Figure 2.1: Drought characteristics using the run theory for a given threshold level. 
Source: Figure 1 in Mishra and Singh (2010).  
 
 The duration and location of a drought depends on a pre-defined threshold of a 

sequence (e.g. SPI or runoff time series) below which an event occurs. The threshold, 

either a constant or a function of time of the year, is of significant importance as it 

distinguishes the variable time series into “deficit” and “surplus”. It may be in absolute 

(e.g. deficit volumes in mm) or relative (e.g. the 80th percentile) terms. The former may 

be more meaningful for practitioners engaged in drought monitoring, forecasting and 

management operations, whereas the latter enables comparisons with other regions that 

have different hydro-climatic characteristics. Different thresholds (e.g. mean, median 

and percentiles) characterise events of different intensities, depending on the needs or 

applications and location (WMO, 2006). 

 

2.2.3 Meteorological Drought 
  

Meteorological drought typically refers to below-normal precipitation over a 

period of time over a region; it may also be described by temperature and 

evapotranspiration. It can develop quickly and end abruptly (Bordi et al., 2009). The 

high temporal and spatial variability of precipitation and insufficient observation 

stations can pose analytical challenges. 

 Meteorological indices include percentile ranking methods (e.g. quartiles and 

deciles; Gibbs and Maher., 1967), percent of normal precipitation, Consecutive Dry 

Days (CDD), Rainfall Anomaly Index (RAI; van Rooy, 1965), Effective Drought Index 

(EDI; Byun and Wilhite, 1999), and Standardized Precipitation Index (SPI; see Section 

4.2.2) (Mckee et al., 1993). 
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2.2.4 Agricultural Drought 
 

Agricultural drought is often characterised by insufficient moisture in the surface 

soil layers to support crop and forage growth, even with saturated deeper soil layers, 

through its control on transpiration and thus vegetative vigor (Sheffield and Wood, 

2008a), without referring to surface water resources. Factors that cause meteorological 

(Section 2.2.3) and hydrological (Section 2.2.5) drought events, differences between 

actual and Potential Evapotranspiration (PET), plant biology and physics, and soil 

properties (e.g. water-holding capacity), all influence soil moisture, which is determined 

by the fluxes of precipitation, evapotranspiration and runoff. However, precipitation 

amounts do not directly relate to soil infiltration. 

 Agricultural drought indices often combine precipitation, temperature and soil 

moisture to measure soil moisture and crop yield. Numerous indices exist, including a 

Soil Moisture Index (SMI), Normalised Difference Vegetation Index (NDVI), water 

balance, heat stress, Palmer Moisture Anomaly Index (Z-index, which also measures 

meteorological drought), Crop Moisture Index (CMI), Soil Moisture Anomaly Index 

and Palmer Drought Severity Index (PDSI) (Hayes et al., 2011; Palmer, 1965;  1968; 

Bergman et al., 1988). 

 The PDSI has been widely applied especially in the U.S. (Soulé, 1992; Kangas 

and Brown, 2007; Gutzler and Robbins, 2011). PDSI, although originally developed to 

monitor long-term meteorological events, is a soil moisture algorithm calibrated for 

relatively homogeneous regions, and has been extensively used to describe agricultural 

droughts (Panu and Sharma, 2002).  

 

2.2.5 Hydrological Drought 
  

Surface waters (e.g. lakes and streams) are used for many purposes, including 

hydropower, irrigation and drinking water supply. Hydrological drought is generally 

defined as a period of inadequate surface and subsurface water supplies for use of a 

given water resource management system (Bordi et al., 2009). Potential triggers include 

precipitation and/or soil moisture deficits (possibly due to more intense but less frequent 

precipitation), storage conditions, high evaporative losses, poor water management and 

erosion (Andreadis et al., 2005). It usually lags behind meteorological and agricultural 

events, develops slowly as it involves stored water that is depleted but not replenished, 

and persists longer (Dai, 2011; Hisdal and Tallaksen, 2003; Steinemann et al., 2005). 



[Literature	Review]	
	

 

 11 

Although surface and subsurface components recover slowly due to the long recharge 

periods, runoff may recover in response to precipitation more quickly than soil moisture.  

 Hydrological droughts may be reflected by the total water deficit or cumulative 

stream-flow anomaly based on streamflow, reservoir and lake levels. A new “composite 

index” based on streamflow, precipitation, reservoir levels, snowpack, and groundwater 

levels have been recommended (Hayes et al., 2011).  

 

2.2.6 Groundwater Drought 
  

Surface water drought may progress to groundwater drought, which is less 

extensively studied than other drought categories, particularly its spatial distribution 

(Peters et al., 2005; 2006; Mishra and Singh, 2010). It occurs when groundwater levels, 

storage and discharge decline with some combination of low precipitation, high 

evapotranspiration, low soil moisture content and thus reduce groundwater recharge. 

The propagation of groundwater drought from recharge to discharge and the influence 

of aquifer characteristics on the propagation has been studied (Peters et al., 2003; Peters 

and van Lanen, 2003). Abstraction and over exploitation may create/enhance a 

groundwater drought. 

 

2.2.7 Socio-economic Drought 
 
 Socio-economic drought characterises the supply and demand of some 

precipitation dependent commodity or economic good (e.g. water, livestock forage or 

hydroelectric power) that may affect society’s productive and consumptive activities 

(Dracup et al., 1980). Supply depends on precipitation or water availability, which 

fluctuates annually. Demand is a function of human use and often correlates positively 

with increasing population and development. Temporal and spatial scales of supply and 

demand should be considered when defining a socio-economic drought. It is worth 

noting that demand for freshwater resources could change over time even with an 

unchanged climate. For instance, demand could increase with an increase in 

development, or the construction of reservoirs could enhance resilience to future climate 

change. 
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2.2.8 Discussion 
 
 The choice of drought index determines the spatial patterns of drought 

characteristics (Soulé, 1992). The wide range of drought definitions discussed in this 

subsection implies that one or more indices may be consulted as each has its own 

advantages and weaknesses (Bonacci, 1993; Hayes et al., 2007). Drought definitions 

thus need to be region and application- or impact-specific, with the appropriate time 

scales chosen (Kangas and Brown, 2007). Nonetheless, few definitions adequately 

address drought impacts (Wilhite and Glantz, 1985). 

 

2.3	Past	Changes	in	Drought	
  

This subsection presents an overview of the historic changes in drought globally. 

While long-term global drought trends are complex and there are no emergent coherent 

patterns of behaviour, there have been regional-scale spatial and temporal variations 

(IPCC, 2012; Easterling et al., 2000). During the last 500–1000 years, North America, 

West Africa, and East Asia have experienced multi-year to multi-decade dry periods 

(Dai, 2011). 

Globally, the areas affected by severe drought increased slightly over 1900–

1995 (Dore, 2005). PDSI trends revealed drying along the Guinea Coast, southern 

Africa, parts of Canada, and southern and central Europe during 1900–1949 (Dai et al., 

2004). 

Global very dry (PDSI<−3.0) areas decreased by 7% over 1950–1972, but have 

increased by 12–30% since the 1970s, particularly in the early 1980s with an ENSO-

induced precipitation decline and surface warming. Since the mid-20th century, 

increased wetness occurred over the central U.S., Argentina and northern high-latitude 

areas whereas, in most of Africa, southern Europe, southeast Asia, and eastern Australia, 

(Dai et al., 2004; Dai, 2011; as shown in Figure 2.2) there were more frequent and 

intense drought. The U.S. and Europe had both increases in the percentage of areas with 

severe drought or moisture surplus (Huntington, 2006). Less frequent/intense or shorter 

droughts have occurred in central North America and northwestern Australia (IPCC, 

2012).  
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Figure 2.2: Trend maps for precipitation and scPDSI (scPDSI with PET estimated 
using the Penman-Monteith equation) and time series of percentage dry areas. Long-
term trends from 1950-2010 in annual mean a, observed precipitation and b, calculated 
scPDSI using observation based forcing. The strippling indicates the trend is 
statistically significant at the 5% level, with the effective degree of freedom computed. 
c, Smoothed time series of the drought area as a percentage of global land areas based 
on the scPDSI computed with (red line) and without (green line) the observed surface 
warming. Source: Figure 1 in Dai (2013). 

 

These studies have reported spatial and temporal variations in the drying and 

drought trends. Such differences may be associated with the different datasets used for 

drought analysis. Dai et al. (2004) used observed/historical precipitation and 

temperature datasets, whereas Sheffield and Wood (2008a) used soil moisture 

simulation from the Variable Infiltration Capacity (VIC) land surface hydrological 

model driven by a hybrid dataset of precipitation, near-surface meteorological and 
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radiation data derived from the National Centers for Environmental Prediction–National 

Center for Atmospheric Research (NCEP–NCAR) reanalysis and a suite of global 

observation-based products.  

In addition, the different definitions and methodologies applied for drought 

quantification and computation (e.g. in the calculation of PDSI) can also contribute to 

some of the inconsistencies in the trends. Despite the variations in the trends found in 

different studies, drying and/or worsening drought conditions have consistently been 

found in Northern New Zealand. 

 

2.4	Projected	Changes	in	Drought	
 

This subsection presents an overview of the projected changes in drought under 

future climates globally. 

Compared to high precipitation extremes, projected trends for global dry events 

appear weaker and less consistent (Planton et al., 2008). Due to the range of definitions 

that correspond to different classifications of drought and inconsistencies in the model 

projections when based on different dryness indices (e.g. short- vs. long-term events), 

there is medium confidence in future drought projections (IPCC, 2012). Despite the 

considerable regional variations, studies generally suggest a net overall global drying 

trend is projected over the 21st century. 

 

 

 

 

 

 

 

 

 

Figure 2.3: The proportion of the land surface in drought each month. Drought is 
defined as extreme, severe, or moderate, which represents 1%, 5%, and 20%, 
respectively, of the land surface in drought under present-day conditions. In each case 
results from the three simulations made using the A2 emissions scenario are shown. 
Source: Figure 9 in Burke et al. (2006). 
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Over the 21st century, dry day frequency increases under A2 and A1B emission 

scenarios but varies little under B1 (Tebaldi et al., 2006). The area of land surface in 

extreme drought increases from 1–30% (present-day) to 30–50% (by 2100) under the 

A2 scenario, with slightly less frequent but much longer events (Burke et al., 2006; 

Bates et al., 2008; as shown in Figure 2.3). 

Using a drought risk index (based on a revised PDSI) that accounts for the effect 

of drought-disaster frequency, drought severity, production (yield) and extent of 

irrigation, results from 20 GCMs indicate that global drought disaster-affected areas 

increased from 15% (present-day) to 44% (2100) (Li et al., 2009). 

  The frequency of dry days are projected to increase (decrease) in sub-

tropical latitudes of northern and southern hemispheres (high-latitude northern 

hemisphere), according to nine GCMs (Tebaldi et al., 2006). Future droughts (on the 

annual time scale and based on both soil moisture anomalies and CDD) will intensify in 

southern and central Europe, central North America, Central America and Mexico, 

northeast Brazil, and southern Africa (IPCC, 2012). Decadal-mean scPDSI calculated 

using the ensemble-means from 22 GCMs suggest increasing aridity between the 1950s 

and 2090s over most of Africa, southern Europe and the Middle East, most of the 

Americas, New Zealand, and Southeast Asia; persistent droughts may also occur in the 

U.S. in the first half of the 21st century (Dai,  2011).  

 

2.5	Causes	of	Drought	and	its	Characteristics	
  

Meteorological droughts are mainly driven by precipitation and available energy; 

perturbations in the mean and/or the variability of either, or both, of these drivers can 

alter drought patterns (Burke, 2011). For instance, decreasing mean precipitation, 

increasing standard deviation of precipitation, increasing mean available energy and 

decreasing standard deviation of available energy tends to increase drought. The 

interactions between perturbations in precipitation, temperature, and hydrologic 

processes through their frequency, intensity, and seasonality (especially in snow-

dominated regions) makes it difficult to assess the relative importance of temperature 

and precipitation in changes in drought events (Sheffield and Wood, 2008b). 
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2.5.1 Natural Causes of Drought 
 

Global-scale atmospheric circulation changes can alter large-scale patterns of 

precipitation, temperature and cloudiness (Dai, 2011). Atmospheric circulation patterns 

that affect precipitation (which has a notable seasonality) are easier to distinguish than 

those responsible for spatial variations of drought, which tend to be more continuous 

(Vicente-Serrano, 2006). Changes in annual/heavy precipitation, or differences between 

precipitation and evapotranspiration cannot simply explain drought and flood changes, 

e.g. in some regions, both drought and flood frequencies increase with less frequent 

precipitation days but more frequent heavy precipitation days (Hirabayashi et al., 2008). 

 The inter-decadal and multi-decadal climate variability (Dore, 2005) and 

anomalous tropical sea surface temperatures (SSTs) (Hoerling and Kumar, 2003; Dai, 

2011) could weaken the East Asian summer monsoon (EASM) (Li et al., 2010). Some 

of the effects of the El Niño Southern Oscillation (ENSO), North Atlantic Oscillation 

(NAO) and other phenomenon are briefly described below. 

 ENSO is one of the major modes of climate variability. Since the late 1970s, a 

shift in ENSO towards more warm events, which corresponded with record high global-

mean temperatures, has severely altered drought-affected areas (Dore, 2005). More (less) 

short-term droughts have coincided with El Niño (La Niña) episodes (Sheffield et al., 

2009). El-Niño-like conditions promote drought in Australia, New Zealand, Indonesia, 

East China and South Africa (Salinger, 2005; Collier et al., 2008; Dai, 2011).  

 

2.5.2 Anthropogenic Influences 
 
 Although natural causes have contributed to some of the recent regional trends 

in dryness or drought, anthropogenic influences may have exacerbated or dampened 

these trends (Sheffield and Wood, 2008a). Human induced rapid warming since the 

1970s has increased atmospheric moisture demand and likely altered atmospheric 

circulation patterns (Schär and Jendritzky, 2004; Dai, 2011). According to the Clausius-

Clapeyron relation, warming implies higher atmospheric moisture-holding capacity, and 

where available, more water vapour for the precipitating weather systems (Alexander et 

al., 2006). The decreasing ratio between precipitation and precipitable suggests an 

enhanced global hydrological cycle (Dore, 2005; Huntington, 2006). On a global scale, 

this could be a result of strengthened horizontal moisture transports, assuming that 

atmospheric circulation remains constant (Held and Soden, 2006). This occurs as more 
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moisture (with increased atmospheric water vapour concentrations) is transported from 

areas where evaporation exceeds precipitation (P −E<0; e.g. in the sub-tropical oceans) 

to areas where precipitation exceeds evaporation (P −E>0; e.g. the higher latitudes) 

(Hegerl et al., 2013). Therefore, drying intensifies in areas where P −E<0 and wetting 

amplifies in areas where P −E>0.  

 Human-induced changes in global land precipitation could be a result of GHG 

and black carbon/sulphate aerosol emissions (Frieler et al., 2011), which have led to the 

global drying trend since 1952 (Burke et al., 2006). For instance, the Asian monsoons 

are affected by black carbon/sulphate aerosols (Ramanathan and Feng, 2009; Kuhlmann 

and Quaas, 2010). These, together with land use changes, have weakened the East Asian 

summer and winter monsoon, producing droughts in North China (Ding et al., 2007; 

Liu et al., 2009). Anthropogenic influences can also alter both runoff volume and 

distribution. Relatively small temperature/precipitation changes can have large impacts 

on runoff (Frederick and Major, 1997).  

 

2.5.3 Summary 
 
 This subsection has discussed some of the natural and anthropogenic drivers that 

can alter precipitation, temperature and runoff characteristics, thus modifying drought 

conditions. Natural causes of drought include changes in atmospheric circulation and 

modes of climate variability (e.g. ENSO and NAO) — the characteristics of which may 

also be modified by human activities. Humans can also influence drought patterns 

through greenhouse gas (GHG) and black carbon/sulphate aerosol emissions, as well as 

changes in land use and land cover, population and socio-economic activities. However, 

it may be difficult to distinguish between the effects of climate change and human 

activities. Furthermore, droughts have been produced by past large, widespread, abrupt 

climate changes, which may be triggered by human influences (Alley et al., 2003). 

Therefore, drought occurrence and changes in their characteristics can be a result of any 

combination of climatic and hydrological elements, land surface conditions, and 

anthropogenic activities. 

2.6	Uncertainties	in	Climate	Modelling	
 
 Despite advanced climate models and improved knowledge, considerable levels 

of uncertainty remain in climate change projections, particularly in relation to extreme 
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events such as future drought characteristics. Uncertainties on large spatial and longer 

temporal scales may be estimated (Vasiliades et al., 2009; Knutti, 2008). Uncertainties 

arise from future human activities and the associated response of the climate system. 

The former are represented by future GHG and aerosol emissions (Section 2.6.1); the 

latter are explored with different climate model parameters and structures (Sections 

2.6.2–2.6.11) and include natural climate variability (Section 2.6.12) (Seneviratne et al., 

2012). 

 

2.6.1 Forcing Uncertainty 
  

Human activities have influenced 20th-century temperature and precipitation 

trends (Stott, 2003; Zhang et al., 2007). Forcing uncertainty arises from non-climate 

factors that affect the climate system e.g. population changes (Arnell, 2004a). It is often 

examined by applying various scenarios of prescribed atmospheric GHG concentrations 

that may contain assumptions about future world economic and social development, and 

political decisions. A range of emission scenarios — notably the IPCC SRES 

(Nakicenovich and Swart, 2000) and Representative Concentration Pathways (RCPs; 

Moss et al., 2010) (see Section 3.4) — have been developed. The relative likelihood of 

these is difficult to determine (Tebaldi and Knutti, 2007; Knutti et al., 2010). 

Temperature-related impacts tend to scale with the amount of anthropogenic emissions 

and the associated global-mean temperature change (Arnell, 2003a; Tebaldi et al., 2006; 

Sheffield and Wood, 2008b). 

 

2.6.2 Initial Condition Uncertainty (ICU) 
 
 ICU arises from the initialisation of models (the initial state, or ensemble of 

states) from which they are integrated forward in time (Stainforth et al., 2007a). The 

incomplete knowledge of the current state of the system introduces macroscopic ICU, 

which affects the predicted state variable distributions that have relatively “large” 

slowly mixing scales; microscopic ICU is due to the imprecise knowledge of “small” 

rapidly mixing scales. While ICU may affect modelled climate distributions, it is the 

primary error source in weather forecasting (Collins and Allen, 2002). The initial ocean 

state provides the “memory” of the system, which may be useful on interannual time 

scales (e.g. the forecasting of ENSO), but it is less relevant for longer-term (decadal) 
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climate projections and multi-model simulations (Tebaldi and Knutti, 2007; Knutti et al., 

2010). 

 

2.6.3 Boundary Condition Uncertainty (BCU) 
 
 Boundary conditions are prescribed externally to the model, experiments of 

which are otherwise self-contained (Tebaldi and Knutti, 2007). External influences can 

cause climate change beyond the “noise” of climate variability (Collins and Allen, 

2002). These can be natural (the solar cycle or volcano eruptions; see Section 2.6.12), 

which may not be predictable in a deterministic sense or anthropogenic (GHG 

emissions; see Section 2.6.1). 

 

2.6.4 Model Imperfections 
 
 Model imperfection results from our limited understanding of, and ability to 

simulate the Earth’s climate (Stainforth et al., 2007a). Model imperfection takes two 

forms: inadequacy and uncertainty. 

 

2.6.4.1 Model Inadequacy 
 
 Even the most sophisticated models are unrealistic representations of many 

relevant aspects of the climate system (Stainforth et al., 2007a). Model inadequacy 

(structural uncertainties) relate to grid resolution (therefore particularly relevant for 

regional simulations) and missing/approximated processes that cannot be accurately 

described in the model (Knutti et al., 2010). Different choices made by modeling groups 

may be due to limited knowledge that includes incomplete understanding of 

deterministic processes, and limited resources to measure and obtain empirical 

information (see van Asselt and Rotmans, 2002). For example, the simulation of 

convection and its effect on the water vapour and cloud distribution within the 

atmosphere, feedback from vegetation change to climate change and land cover changes, 

aerosol (e.g. black carbon) effects on clouds and precipitation are often omitted or 

implicitly represented in climate models (Bates et al., 2008; Knutti et al., 2010). In 

addition, climate models exclude some natural processes (e.g. vegetation dynamics and 

wildfire) and anthropogenic forcing (e.g. irrigation, water diversion and land use that 
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directly affect drought occurrence), which are difficult to quantify, even historically 

(Sheffield and Wood, 2008b). 

 

2.6.4.2 Model Uncertainty 
 
 Model (parameter) uncertainty represents the impact of known uncertainties 

(Stainforth et al., 2007a). Processes to be included in a model and their parameterisation 

may be subjectively chosen based on expert knowledge and experience (Tebaldi and 

Knutti, 2007). Similar sets of primitive dynamical equations may be solved by different 

numerical algorithms. Different parameterisations contribute to diverging model 

responses due to different realisations of a given forcing scenario (Goodess et al., 2003a; 

Parker, 2010b), e.g. the grand ensemble of climateprediction.net (Stainforth et al., 2004) 

reveals climate sensitivities that range from below 2 K to over 11 K (Stainforth et al., 

2005).  

 

2.6.5 Multi-Model Ensembles (MMEs) 
 
 Simplifications, assumptions and parameterisation choices made during model 

construction lead to model and projection errors (Tebaldi and Knutti, 2007). Thus, it is 

impossible to designate a “best model” when simulation skill for mean precipitation, for 

instance, varies both temporally and spatially (Blenkinsop and Fowler, 2007a). Since 

each simulation provides a projected distribution, a multi-model approach can present 

the range of behaviour in the variables of interest across different models, and enables 

sensitivity analysis of the models’ structural choices (Stainforth et al., 2005; 2007b; 

Knutti et al., 2010). This may capture much of the uncertainty, and multi-model mean 

implicitly imply improved skill, reliability and consistency of model projections (CCSP, 

2008; Tebaldi and Knutti, 2007; Knutti et al., 2010). An ensemble of different models 

or model versions, MMEs, refers to a set of model simulations from structurally 

different models where each model has one or more initial condition ensemble (Tebaldi 

and Knutti, 2007). A multi-model approach has been recommended, possibly due to 

cancelling the offsetting errors in the individual GCMs although the exact reason 

remains unclear (Pierce et al., 2009; Reichler and Kim, 2008; Vrochidou et al., 2013). 

Stainforth et al. (2007b) provided an analysis pathway for how climate model 

ensembles may inform decisions.  
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    MME mean is often used and uncertainty is often represented by the standard 

deviation or some other measure of spread of individual model results; ensemble 

median may outperform ensemble mean (Gudmundsson et al., 2012a). Models can also 

be weighted; weighted averages may perform better if there is sufficient available 

information to derive the weights (Knutti et al., 2010). 

 

2.6.6 Challenges in Interpreting Multi-Model Projections 
 
 It is tempting to infer more from ensemble results as outcomes that are not 

simulated are similarly plausible (Parker, 2010a; 2010b). Since uncertainty in multi-

models are expected to widen with model development, increased physical realism and 

incorporation of additional processes or methods, current ensembles provides a lower 

bound on the maximum range of uncertainty, which may be constrained by the methods 

used to assess a model’s ability to inform us about real-world variables (Stainforth et al., 

2007a; Stainforth et al., 2007b). 

 Therefore, when constructing and interpreting MME climate results (in the form 

of climate change probability distributions or averages and measures of variability 

across models), a number of issues need to be considered (Stainforth et al., 2007a), as 

discussed below. 

 

2.6.7 Interpreting Multi-Model Ensemble (MME) Results 
 
 The ensemble mean could outperform single model results, can demonstrate 

characteristics that are not reflected in any single model, and may cause a loss of signal 

that has barely been addressed (Knutti et al., 2010). Uncertainty is often not adequately 

characterised (e.g. by standard deviation) due to the same biases in groups of GCMs 

(Chiew et al., 2009). Nevertheless, ensembles are valuable for understanding present-

day limitations (Stainforth et al., 2007a). 

 

2.6.8 Discussion 
 
 Model simulations have a number of limitations. GCMs generally reproduce the 

overall and broad geographic (e.g. spatial mean annual) patterns of observed climate 

trends (Arnell, 2004a; Milly et al., 2005). However, models may accurately simulate 

one metric but not another (Brekke et al., 2008; Foley, 2010). Projected precipitation 
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changes, which are important for impact modelling, are less spatially coherent weaker 

and more uncertain than temperature. Models have difficulties simulating precipitation 

response to large-scale climate variability.  

 Models that reproduce the mean climate can necessarily perform well at 

replicating the observed climate extremes (McCrary and Randall, 2010; Williams et al., 

2010). A climate model that reasonably simulates present-day regional precipitation 

variability may produce less uncertain future drought projections (Burke, 2011). 

 

2.7	Challenges	in	Projecting	Future	Drought	Conditions	
 
 Droughts are one of the most damaging natural hazards in human, 

environmental and economic terms. Anthropogenic climate change has and will 

continue to alter their characteristics. A better understanding of potential future drought 

characteristics and the uncertainties associated with the various methodologies to derive 

them are vital for identifying effective measures to manage drought risks and any 

direct/indirect impacts. However, confidence in drought projections is constrained by 

definitional issues (see Section 2.2), lack of observational data and the limitations of 

climate models (IPCC, 2012). Some of the uncertainties associated with drought 

identification and quantification are presented in Section 2.2; those related to climate 

modelling are discussed in Section 2.6. Hence, it is important to characterise the 

uncertainties associated with future drought simulations (Vasiliades et al., 2009). 

 Projecting future climate remains very challenging. Present-day climate and its 

natural variability, climate change, and the sensitivity of drought metrics to these 

changes all define future drought changes. The strength of the change (signal) against 

the background of natural variability (noise) governs the detectability of any changes, 

and hence their statistical significance. A future shift in modes of climate variability 

remains uncertain. Moreover, climate change effects may not be felt in the near future at 

regional scales (Sheffield and Wood, 2008b). 

 Despite the limitations discussed in Section 2.7, GCMs are valuable tools for 

studying climate change and the related impacts as each simulation presents a “what-if” 

scenario (Stainforth et al., 2007a). However, GCMs were originally constructed for 

assessing the global climate system response to varying emissions and facilitating 

mitigation efforts, rather than informing an adaptation-type analysis (Kundzewicz and 

Stakhiv, 2010). They also differ in their design and outcomes. Since each model has its 
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own set of strengths and weaknesses, no one model is particularly good or bad, and a 

multi-model approach is desirable (Knutti, 2008; Alexander and Arblaster, 2009). 

 To evaluate the robustness of projections of Meteorological drought in New 

Zealand under climate change, the effects of applying different emission scenarios and 

GCMs from the Coupled Model Intercomparison Project (CMIP5) are explored in this 

thesis (particularly Chapter 3 and 6). In most cases, however, resource constraints have 

prevented the running of large ensembles of GCM experiments.  



 

 24 

 

Chapter 3 
 

Methodology 
 
  

This chapter presents the general methodology, including the GCMs, bias 

correction algorithm, study area and drought identification, applicable to Chapters 4–6. 

More specific details are elaborated in the individual sections. 

 

3.1	General	Circulation	Models	(GCMs)	
 
 General Circulation Models or GCMs are Numerical models, representing 

physical processes in the atmosphere, ocean, cryosphere and land surface, are the most 

advanced tools currently available for simulating the response of the global climate 

system to increasing greenhouse gas concentrations. While simpler models have also 

been used to provide globally- or regionally-averaged estimates of the climate response, 

only GCMs, possibly in conjunction with nested regional models, have the potential to 

provide geographically and physically consistent estimates of regional climate change 

which are required in impact analysis. (IPCC Data.org). GCMs and global climate 

models are used for weather forecasting, understanding the climate and forecasting 

climate change. 

 GCMs depict the climate using a three dimensional grid over the globe (see 

below), typically having a horizontal resolution of between 250 and 600 km, 10 to 20 

vertical layers in the atmosphere and sometimes as many as 30 layers in the oceans. 

Their resolution is thus quite coarse relative to the scale of exposure units in most 

impact assessments. Moreover, many physical processes, such as those related to clouds, 

also occur at smaller scales and cannot be properly modelled. Instead, their known 

properties must be averaged over the larger scale in a technique known as 

parameterization. This is one source of uncertainty in GCM-based simulations of future 

climate. Others relate to the simulation of various feedback mechanisms in models 

concerning, for example, water vapour and warming, clouds and radiation, ocean 

circulation and ice and snow albedo. For this reason, GCMs may simulate quite 
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different responses to the same forcing; simply because of the way certain processes and 

feedbacks are modelled. 

 From amongst 64 models, only 21 GCMs are used from the Coupled Model 

Intercomparison Project (CMIP5) to measure the projected change in temperature, 

precipitation and drought over New Zealand during the next century at a fine gridded 

scale. CMIP5 provides nearly 64 models (for temperature and precipitation) contributed 

by ~ 20 countries around the world (Taylor, 2012). These models are at a coarse 

resolution ranging from 0.9 (90 km) to 3.625 (362 km). The historical simulations start 

from 1950-2005 while the scenarios from 2006 to 2100. Numerous parameters are 

available for analysing, the only parameters considered for analysing the meteorological 

are temperature and precipitation. 21 models for precipitation are considered for the 

analyses in this study (see Table 3.1). 

 

Table 3.1: List of CMIP5 models and their spatial resolution 

Model Modeling Center Latitude 
Resolution(de

gree) 

Longitude 
Resolution 

(degree) 
bcc-csm1-1 
 

Beijing Climate Center, China 
Meteorological Administration 

2.812 2.812 

bcc-csm1-1-m 
 

Beijing Climate Center, China 
Meteorological Administration 

2.812 2.812 

CCSM4 
 

National Center for Atmospheric Research, 
USA 

0.942 1.250 

CESM1-CAM5 
 

Community Earth System Model, USA 0.937 1.250 

CSIRO-Mk3-6-0 
 

Commonwealth Scientific and Industrial 
Research Organization, Australia 

1.895 1.875 

FIO-ESM 
 

The First Institute of Oceanography, China 2.812 2.812 

GFDL-CM3 
 

NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.000 2.500 

GFDL-ESM2G 
 

NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.000 2.500 

GFDL-ESM2M 
 

NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

2.000 2.500 

GISS-E2-H 
 

NASA Goddard Institute of Space Studies, 
USA 

2.022 2.517 

GISS-E2-R 
 

NASA Goddard Institute of Space Studies, 
USA 

2.022 2.517 

HadGEM2-AO 
 

Met Office Hadley Centre, UK 1.241 1.875 

HadGEM2-ES 
 

Met Office Hadley Centre, UK 1.241 1.875 

IPSL-CM5A-LR 
 

Institute Pierre-Simon Laplace, France 1.897 3.750 

IPSL-CM5A-MR 
 

Institute Pierre-Simon Laplace, France 1.897 3.750 

MIROC5 The University of Tokya, National Institute 1.417 1.406 
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 for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

MIROC-ESM 
 

The University of Tokya, National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

2.857 2.813 

MIROC-ESM-
CHEM 
 

The University of Tokya, National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

2.857 2.813 

MRI-CGCM3 
 

Meteorological Research Institute, Japan 1.132 1.125 

NorESM1-M 
 

Norwegian Climate Centre, Norway 1.875 2.500 

NorESM1-ME 
 

Norwegian Climate Centre, Norway 1.875 2.500 

 

3.2	Emission	Scenarios	
 
 This thesis has examined the effects of a range of emission scenarios including 

the IPCC RCPs, as outlined below. 

 

3.2.1 Representative Concentration Pathways (RCPs) 
 
 The Representative Concentration Pathways (RCPs; Moss et al., 2010) represent 

the full range of potential future radiative forcing pathways that are considered to be 

feasible, which are compatible with the full range of stabilisation, mitigation and 

baseline emission scenarios available in the scientific literature. Unlike the SRES 

scenarios that were developed sequentially (i.e. from detailed socio-economic storylines 

which determine GHG emissions to radiative forcing), the RCPs were developed 

through the parallel approach, where important characteristics for scenarios of radiative 

forcings, such as the level of radiative forcing in the year 2100, was first identified. 

 Four individual modeling groups developed four independent pathways for the 

RCPs (Table 3.2) using integrated assessment models that combine economics, 

technology, and physical processes. The scenarios include a full suite of GHG 

concentrations, spatially explicit emissions for pollutant gases and aerosols, and 

spatially explicit land-use and landuse change information. The differences between the 

RCPs may be partly attributable to differences between models and scenario 

assumptions (scientific, economic, and technological), but cannot directly be interpreted 

as a result of climate policy or particular socioeconomic developments. 
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 Although the RCPs were not developed to mimic specific SRES scenarios, 

temperature projections for RCP8.5, RCP6 and RCP4.5 are similar to those for the 

SRES A1FI, B2 and B1 scenarios, respectively. Temperature estimates for the RCPs 

span a larger range than for the SRES scenarios, as the former span a large range of 

stabilisation, mitigation and non-mitigation pathways while the latter covers only non-

mitigation scenarios (Rogelj et al., 2012). 

 
Table 3.2: Representative Concentration Pathways (RCPs) 

 
RCP 

 
Description 

 
Developed by 

RCP 2.6 Peak in radiative forcing at ~ 3 W/m2 before 2100 and 
decline 

IMAGE 

RCP 4.5 Stabilization without overshoot pathway to 4 W/m2 at 
stabilization after 2100 

GCAM 
(MiniCAM) 

RCP 6.0 Stabilization without overshoot pathway to 6 W/m2 at 
stabilization after 2100 

AIM 

RCP 8.5 Rising radioactive forcing pathway leading to 8.5 
W/m2 in 2100. 

MESSAGE 

 

 There is no single “best model” for reproducing mean precipitation and drought 

statistics across New Zealand; model skills also vary temporally, even on the catchment 

scale (Blenkinsop and Fowler, 2007b). Projections of future climate inevitably contain 

uncertainty that is typically addressed by using a variety of scenarios to generate a range 

of possible outcomes. 

 Since there is no universal definition of drought (Section 2.2), one of the 

classifications studied in this thesis are meteorological events. Meteorological droughts 

have been quantified by the precipitation-only Standardised Precipitation Index (SPI; 

see Section 4.4.1) 

 

3.3	Bias	Correction	Algorithm	
 

Global Climate Models (GCMs) have been the primary source of information 

for constructing climate scenarios, and they provide the basis for climate change 

impacts assessments at all scales, from local to global. However, impact studies rarely 

use GCM outputs directly because climate models exhibit systematic error (biases) due 

to the limited spatial resolution, simplified physics and thermodynamic processes 

numerical schemes or incomplete knowledge of climate system processes. Errors in 

GCM simulations relative to historical observations are large (Ramirez-Villegas et al. 



[Methodology]	
	

 

 28 

2013). Hence, it is important to bias-correct the raw climate model outputs in order to 

produce climate projections 

Bias-Correction removes errors from data from climate models in comparison 

with historical observations. It relies on computation of differences between 

RCM/GCM and satellite-based estimates in regions with limited rain gauges. A more 

sophisticated approach for bias-correcting is needed for stochastic variables such as 

precipitation and solar radiation. This is because for example, GCM outputs are known 

to have a "drizzle problem", that is, too many low-magnitude rain events as compared to 

observations (Gutowski et al., 2003).  

 In order to appropriately bias-correct GCM output for monthly totals and wet-

day frequency, while ensuring realistic daily and interannual variability, we 

implemented the Quantile Mapping (QM) algorithm approach with the qmap library 

written for R statistical software (Gudmundsson, 2014). The quantile mapping 

algorithm removes the systematic bias in the GCM simulations and has the benefit of 

accounting for GCM biases in all statistical moments, though, like all statistical 

downscaling approaches, it is assumed that biases relative to historical observations will 

be constant in the projection period (Thrasher et al., 2013). 

 The so-called quantile-based mapping method (CDF matching) maps the 

cumulative distribution function (CDF) of the biased model outputs onto the 

distribution of observations. The approach imposes the following equivalence: 

 

 FOBS (y) = FMOD (x)                                         (3.1) 
 

 

where 𝐹(·) denotes the CDF of the observations (𝑂𝐵𝑆) and the modeled (𝑀𝑂𝐷) outputs. 

From where the bias corrected model output is obtained: 
 

                            Xadj =   (FMODh (x))                                       (3.2) 
 

where Xadj is the bias-corrected model output while denotes FMODh the CDF of the 

historical modeled simulations. Figure 3.1 illustrates a schematic of the CDF method for 

correction of the bias at an arbitrary point (𝑥 = 3.5, solid circle, selected for illustration 

purposes). 

The CDFs and their inverse can be estimated by fitting a distribution function to 

the data empirically or theoretically through parameter estimation. The theoretical 



[Methodology]	
	

 

 29 

distribution function fitted to the historical data is more likely to capture the extreme 

values of the projection compared to the empirical one. 

This study thereby enhanced the dataset of 21 CMIP5 GCMs by using a quantile 

mapping bias correction algorithm and the improved datasets were used for drought 

projections over the regions of New Zealand.  

 

 

 
Figure 3.1: Illustration of the CDF method for correction of the bias at 𝑥=3.5 (solid 
circle). Dashed line is the cumulative distribution function (CDFOBS) for the observation, 
cross-dashed line is the cumulative distribution function (CDFMODh) for the historical 
modeled variable, and solid star is an adjusted value (𝑥adj) based on the CDF method. 
Source: Figure 2 in Moghim, 2015. 
 

3.4	Time	scales	and	Study	Periods	
 

Different time scales may be useful for monitoring different drought 

classifications. A 3–6 month drought describes a surface water drought, whereas  

a 6+ month drought represents a water resource drought that could affect  

groundwater resources (Fowler and Kilsby, 2004; Blenkinsop and Fowler, 2007a).  

For meteorological events, SPI time scales of 7–12 months better represent river 

discharges.  

Short (3-month), medium (6-month) and long (12-month) droughts were studied 

here; meteorological events were denoted by SPI3, SPI6 and SPI12, respectively for the 

temporal characteristics of drought. Prior to SPI computation (for meteorological 

drought; Section 4.2.2) quantification (for hydrological drought; Section 5.3), a 3/6/12-

month lagged moving average of the raw monthly precipitation timeseries was derived. 

This accounts for conditions in the preceding months, as a drought is a cumulative 

precipitation deficit. 
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 Drought projections were characterised for the baseline period (1971–2000), 

and three future periods (2010-2039, 2040-2069, 2070-2199). The 30-year period was 

chosen in order to sample a range of (e.g. multi-year) events and a range of natural 

variability; a shorter time scale may result in zero drought events being identified in 

some cells of the study region (see Section 3.9) during 1971–2000, thus the percentage 

change in future events would not be able to be determined.  Hence, SPI time scales of 

12 months (SPI12) were studied for future drought projections. 

 

3.5	Drought	Identification	
 
 Meteorological droughts were characterised using a threshold approach (see 

Section 2.2.2): a meteorological event occurs when the value of the lagged moving 

average SPI series falls below the threshold. For meteorological events, the focus is on 

the severely or extremely dry conditions (see Table 4.1) — i.e. a drought was 

considered to begin when SPI≤−1.5. For SPIm (where m represents the time scale 

concerned), when the SPI values of over m consecutive months remained SPI>−1.5, an 

event terminated in the first month when the SPI value rises above SPI−1.5. Hence, two 

separate events occurred only when there were over m months of SPI>−1.5; persisting 

dry conditions (e.g. several years) with occasional wet periods that could only 

temporarily alleviate the drying were regarded as a single event, i.e. lower frequency 

despite extensive drought conditions.  

3.6	Drought	Parameters	
 
 As discussed in Section 2.2.2, precipitation deficit has been characterised by 

different parameters. This thesis has quantified meteorological and hydrological 

droughts by considering their severity and spatial extent. Drought severity for cell i 

represent the cumulative deficit from the threshold over a 30-year period, and is given 

by: 

                                                                                    (3.3)                    

 

    where X0 is the threshold, Xt is the drought variable at month t, and t = i and t = e 

represents the start and the end of the drought event, respectively (c.f. Figure 2.1). 

Severity provides no information on the timing of the events. For hydrological events, 
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severity is equivalent to deficit volume in units of mm. Therefore, drought intensity 

represents the averaged magnitude and is denoted by: 

 

                                                                                  (3.4)  

 

3.7	Drought	Projection	Procedure	
 

Climate change will create many challenges and opportunities for New 

Zealand’s agriculture and forest industries. Productivity will increase in some areas and 

a wider selection of species will become suitable, but at the same time an increase in a 

number of potential threats could occur: high temperatures, drought, wind damage, fire 

risk, and increased insect and plant disease damage. Of these various threats, drought is 

the hazard that could have the largest effect on the New Zealand economy, and changes 

in extreme winds is the factor least understood at this time. 

 Projection of droughts for the future would point to a number of areas where 

future adaptation analysis and responses might be targeted. The changing nature of 

drought through the 21st century highlights that basing response on a historically 

determined understanding of what is normal will increasingly put Governments and 

farm managers in a weakened position to manage drought risk. As discussed in Section 

2.2, precipitation is the solo parameter of consideration for SPI. This study has 

implemented the following procedure for projecting droughts through the 21st century. 

Initially, projections are made for the bias-corrected MME precipitation under 

two emission scenarios for the periods mentioned in Section 3.4. 

 
 
 
 
 
 
 
 
 

 

SPI12 for the baseline and future periods under RCP4.5 and RCP8.5 scenarios 

were generated for the calculation of change in drought projection in percent. The 

outcome of this procedure is detailed in Chapter 6. 

Regridding the bias corrected models to 20kmx20km and Ensemble of 21 models is 
calculated using NCL code;  This code also writes out the Precipitation for three future 

periods along with the baseline. 
Precip (sc, tp) , Precip (bl) 

 
Where, Precip (sc) is the precipitation for the scenarios and Precip(bl) is the baseline 

precipitation 
tp = 1971-2000, 2010-2039, 2040-2069, 2070-2199 

sc = rcp4.5, rcp 8.5 
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		3.8	Study	Area	and	Regions	
 
 The study area defines a region at 41 oS 174 oE. New Zealand is in Oceania, in 

the South Pacific Ocean. New Zealand's climate is complex and varies from warm 

subtropical in the far north to cool temperate climates in the far south, with severe 

alpine conditions in the mountainous areas. Most areas of New Zealand have between 

600 and 1600 mm of rainfall, spread throughout the year with a dry period during the 

summer. Over the northern and central areas of New Zealand more rainfall falls in 

winter than in summer, whereas for much of the southern part of New Zealand, winter is 

the season of least rainfall. 

 Mean annual temperatures range from 10°C in the south to 16°C in the north of 

New Zealand. The coldest month is usually July and the warmest month is usually 

January or February.  

In New Zealand generally there are relatively small variations between summer 

and winter temperatures, although inland and to the east of the ranges the variation is 

greater (up to 14°C). Temperatures also drop about 0.7°C for every 100 m of altitude. 

There are 16 regions in New Zealand (see Figure 3.2). Seven regions namely – 

Canterbury, Marlborough, Nelson, Otago, Southland, Tasman and West Coast fall into 

the Sothern Part of the New Zealand while the remaining regions – Auckland, Bay of 

Plenty, Gisborne, Hawke’s Bay, Manawatu-Wanganui, Northland, Taranaki, Waikato 

and Wellington belong to the Northern Island of New Zealand. 

Monthly data obtained on a global scale is regridded to 20km x 20km resolution 

and are further processed in ArcGIS to truncate the dataset only for the region of study, 

shown in Figure 3.3. 

 

SPI tool calculates the drought for 3, 6, 12 and 24 month timescale for both baseline period 
and future periods, under RCP4.5 and RCP8.5. Only 12month time scale (SPI12) is used 

for projection of droughts. Projection of droughts is calculated as follows 
SPI12 (sc, tp)  - SPI12 (bl) 

                                                      _________________________       =   SPI12ch (%) 
SPI12 (bl) 

 
Where, SPI12ch (%) is the change in  drought projection,  SPI12 (sc,tp) is the 12month 

timescale SPIvalues for the scenarios and future time periods and SPI12(bl) is the 12month 
timescale SPIvalues for baseline  

tp = 1971-2000, 2010-2039, 2040-2069, 2070-2099 
sc = rcp4.5, rcp 8.5 
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Figure 3.2: Study area and regions. 

 

 Our region for truncation: 48 degrees south to 34 degrees south, 166 degrees 

east to 180 degrees east. Total 721 grids points are considered over the study region. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Grid points considered in the study area. 
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3.9	Summary	
 
 This chapter has outlined the emission scenarios, models, bias correction 

algorithm, projection procedure, drought identification, time scale and study area used 

in this thesis for generating rainfall and temperature timeseries. It has also described the 

identification and quantification of droughts as applied in Chapter 6. 

 As this study concerns drought monitoring and early warning, the 

meteorological drought index provides the best initial evaluation. Rainfall, evaporation, 

temperature, soil-moisture and other indicators have been used to calculate drought 

indices, but there is no doubt that the most useful and convenient single indicator is 

rainfall. Therefore, in Chapter4; Standardised Precipitation Index (SPI) is assessed to 

further investigate how well this index reflects drought conditions in the regions of New 

Zealand and to analyse temporal and spatial variation of drought characteristics. 
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Chapter 4 
 

Preliminary analysis of climatic data 
 
4.1	Introduction	
 
 
 As discussed in the previous chapter, drought indices (DIs) have been 

commonly used to quantify rainfall deficits, soil moisture and water availability and to 

assess drought severity (Morid et al., 2006; Mishra and Singh, 2010). New Zealand still 

lacks an appropriate drought assessment tool that can be used to define drought 

conditions and to predict future droughts. Therefore, this chapter focusses on the usage 

of drought index – SPI for use in this study in terms of how well it reflects drought 

conditions in New Zealand. A description of the data used and some preliminary 

analysis of the data are also presented in detail. As mentioned in Chapter 2, 

meteorological DI provide the best initial assessment for drought monitoring and early 

warning. For that reason, the Standardised Precipitation Index (SPI) was applied to the 

study area and the results evaluated (McKee et al., 1993). 

 The SPI was chosen due to its widespread application for describing and 

comparing actual drought events in other parts of the world. 

 

4.2	Spatial	and	Temporal	Variation	of	Annual	Climatic	Data	
 
 The study uses 109 years of monthly rainfall and temperature data from Climate 

Research Unit (CRU). The CRU data has been validated over the study region.  

Figure 4.1 shows characteristics of annual rainfall over New Zealand for the 

period 1901-2009. Annual rainfall over New Zealand varies from 1400 mm to 1900 mm. 

Table 4.1 and Figure 4.2 demonstrate the descriptive statistical analysis of annual 

rainfall data (y) for all 16 regions of New Zealand to examine its central tendency (mean) 

and variability (standard deviation). Standard deviation is an indicator of the variability 

of data around the mean. The coefficient of variation (CV) is the statistical measure of 
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the dispersion of data points in a data series around the mean. The CV is the ratio of the 

standard deviation to the mean of the data. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1: Characteristics of observed annual rainfall (mm) over New Zealand (1901-
2009). 
 

The various statistical moments used are given below: 

First moment (mean):  

                                                                                     (4.1) 

 

Second moment (variance): 

                                                       (4.2) 

 

n = number of years of record 

y̅ = mean annual precipitation data 

y = annual precipitation data 

s = standard deviation 

 

It is observed that the West Coast region receives the highest mean annual 

rainfall of 269 mm; while the lowest mean annual rainfall of 104 mm is noted over the 

Nelson and Marlborough regions (see Table 4.1) 
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Table 4.1: Descriptive statistics of annual rainfall 

 
Regions 

Annual rainfall 
Mean(mm) Standard deviation 

(mm) 
Coefficient of 

variation 
Auckland 117.67 17.96 0.15 
Bay of Plenty 144.14 13.29 0.09 
Canterbury 118.06 10.33 0.09 
Gisborne 147.90 11.52 0.08 
Hawke’s Bay 127.62 12.47 0.09 
Manawatu 124.45 14.52 0.12 
Marlborough 104.71 11.86 0.11 
Nelson 104.6 11.86 0.11 
Northland 138.61 17.63 0.12 
Otago 116.82 9.14 0.08 
Southland 168.34 12.87 0.08 
Taranaki 152.68 19.59 0.13 
Tasman 179.40 17.42 0.09 
Waikato 136.56 15.63 0.11 
Wellington 117.46 15.93 0.14 
West Coast 268.71 25.01 0.09 
 

Figure 4.2 depicts the spatial variations of annual rainfall over the regions of 

New Zealand. Standard Deviation over the regions vary from 9 to 25 (Figure 4.2(b)) 

with CV ranging between 8 to 15%. 

 

 

 

 

 

 

 

 

 

 

a) Mean annual rainfall (mm) 

 

 



[Preliminary	analysis	of	climatic	data]	
	

 

 38 

  

 

 

 

 

 

 
 
 

 
 
 
 
 

(b) Standard deviation (mm) 
 
Figure 4.2: Spatial variations in statistical parameters of annual rainfall across the 
regions of New Zealand. 
 

   Yearly average temperature over New Zealand is demonstrated in Figure 4.3. 

Annual mean temperature over New Zealand varies from 13.3 to 15.5 oC (see Figure 

4.3). 

 

 

 

 

 

 

 

 

 

Figure 4.3: Observed annual average temperature (oC) over New Zealand (1901-2009). 
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4.3	 Preliminary	 Analysis:	 Assessing	 Droughts	 Using	
Meteorological	Drought	Index	–	SPI	
 
 The climate of New Zealand has a strong maritime influence. Due to highly 

varied topography, climate is varied across the country. This part of the globe 

precipitates throughout the year except during summer months. On an average most of 

the regions receive between 620 mm to 1317 mm of precipitation annually. Since it is 

an island, the influence of Ocean curtails extremes in coastal temperature. High 

humidity is experienced especially in the upper North Island and many parts of the 

country throughout the year making summer feel warmer and winters cooler. (Source: 

Wikipedia).  

 Mean monthly rainfall over New Zealand for a period of 109 years (1901-2009) 

is demonstrated in Figure 4.4.  

 

 

  

 

 

 

 

 

 
Figure 4.4: Observed mean monthly rainfall over New Zealand for the period 1901-
2009. 
 
 Overall, rainfall is at a maximum in late winter and early spring (i.e. May - 

October) and a minimum in summer or early autumn (i.e. December – March). Mean 

monthly rainfall recorded over the 109 years is between 110 mm to 150 mm; with a 

maximum of 150mm in October and May. Except for February, the rest of the months 

receive a reasonable quantity of rainfall indicating the region to be mostly wet 

throughout the year. Thus, drought index is calculated based on the annual time period. 
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4.4	Drought	Index		
 

4.4.1 Standardized Precipitation Index (SPI) 
 
 
 The Standardized Precipitation Index (SPI) is one of most widely used drought 

indices in drought assessment. It has been applied to Africa, Australia, Europe , Central  

and North America, the Middle East  and other regions (e.g. Rouault and Richard, 2005; 

Bordi et al., 2001; López-Moreno and Vicente-Serrano, 2008; Bordi et al., 2009; 

Méndez and Magaña, 2010; Motha and Baier, 2005; Kangas and Brown, 2007; 

McCrary and Randall, 2010; Raziei et al., 2010).  

 The SPI was developed at Colorado State University in 1993 as an alternative to 

Palmer’s index (see Section 2.2.3), which addresses many of the PDSI’s weaknesses 

(Mckee et al., 1993; 1995). It measures meteorological events and is normalised to 

identify both dry and wet periods (Bordi et al., 2009) for any location with a long-term 

precipitation record (typically ≥30 years). Dry (wet) spells, represented by negative 

(positive) SPI values, are expressed in terms of precipitation deficit (surplus), percent of 

normal and probability of non-exceedance (Heim Jr., 2002), with one/two/three 

standard deviations occurring approximately 68%/95%/99% of the time (Hayes et al., 

1999). 

 A probability density function (PDF; e.g. Pearson Type III or Gamma) is fitted 

separately for each month of the lagged moving average precipitation timeseries to the 

frequency distribution of precipitation summed over the time scale concerned. Each 

PDF is then transformed into a standardised Gaussian distribution (Edwards and McKee, 

1997). Therefore, a percentile on the fitted distribution corresponds to the same 

percentile (Z-score) on the standard Gaussian distribution and the SPI value; the SPI 

represents a cumulative probability in relation to a reference period for which the 

probability distribution parameters are estimated (Wilhite, 2005). SPI normalises an 

anomaly both spatially (by considering the precipitation frequency distribution and the 

accompanying variation at the location) and temporally (as it can be computed at any 

time scale). The SPI for any given location (and duration) is expected to have a mean of 

zero and a variance of one, at least during the calibration period. Table 4.2 shows the 

categories of drought intensities; a drought is generally defined when SPI≤−1.0 and to 

end when the SPI becomes positive (Mckee et al., 1993).  
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The SPI is basically the transformation of the precipitation time series into a 

standardized normal distribution. The computation of the SPI index requires the 

following steps (McKee et al., 1993; Wu et al., 2007): 

 

1. Fit a cumulative probability distribution function (PDF) (gamma distribution) on 

aggregated monthly (k) precipitation series (say k = 12 months in this study). The 

gamma PDF (g(x)) is defined as: 

                                                                           (4.3) 

where β is a scale parameter; α is a shape parameter, which can be estimated using the 

method of maximum likelihood; x is the precipitation amount; and Γ(α) is the gamma 

function at α. The estimated parameters can be used to find the cumulative probability 

distribution function of observed precipitation events for the given month and particular. 

The cumulative distribution function (CDF), G(x) is obtained by integrating Equation 

4.3 and given in Equation 4.4. 

 

                                                       (4.4) 

where, 

                                                                           (4.5) 

 

 

                                                                                                           (4.6) 

 

 

                                                                                 (4.7) 

n = number of precipitation observations and x̅ refers to the sample mean of the data. 
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2. Transform the cumulative distribution function (CDF) to the CDF of the standard 

normal distribution with zero mean and unit variance, which is given as follows       

(Equation 4.8): 

                                              (4.8) 

 

This transformed probability is the SPI (see Figure 4.5). A positive value for SPI 

indicates that precipitation is above average and a negative value denotes below average 

precipitation. 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Example of equiprobability transformation from fitted gamma distribution 
to the standard normal distribution. 
 

 A drought event is defined as a period in which the SPI is continuously negative 

and reaching a value of -1.0 or less (McKee et al., 1993; Paulo and Pereira, 2006). 

Figure 4.6 presents a pictorial description of drought characteristics. McKee et al. (1993) 

used a classification system using SPI values as depicted in Table 4.2 to define drought 

intensities. 

The duration (d) is defined by the time between the beginning and the end (of 

negative SPI values); the drought severity (s) is the cumulative value of SPI within the 

drought duration, the intensity is the ratio between the magnitude and the duration of the 

event and lead-time is the number of months within a drought event before SPI ≤ -1 is 

reached. 
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Figure 4.6: Depiction of drought characteristics using the Standard Precipitation Index 
(SPI). Source: Figure 1 in Ganguli P and Reddy M J (2013). 
 

 

Table 4.2: Classification scale for SPI values 

 
 

4.5	Temporal	Characteristics	of	Droughts	in	New	Zealand	
 

Drought index SPI was applied to all 16 regions of New Zealand covering 3-

month, 6-month and 12-month time scales. Rainfall from 1901 to 2009 is considered for 

this method. Drought events are identified for all three time scales. The below panels 

depict the drought events for 3-month, 6-month and 12-month time scales over the 

Wellington region of New Zealand.  

 

 

 

SPI Values Category/Intensity Cummulative Probability 

0 to -0.99 Normal 0.159-0.841 

-1.0 to -1.49 Moderate drought 0.067-0.159 

-1.5 to -1.99 Severe drought 0.023-0.067 

-2 and less Extreme drought 0.00-0.023 
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Figure 4.7: Drought events identified using SPI on a 3-month time scale for the 
Wellington Region. 

 
 
 

 

 

 

 

 

 

 

  

Figure 4.8: Drought events identified using SPI on a 6-month time scale for the 
Wellington Region. 
 

For the 12-month time scale the total number of drought events identified for 

each of the regions is demonstrated as a bar graph in Figure 4.10. Taranaki region has 

the maximum number of drought events (14) followed by Auckland with 12; Tasman 

region stands last with the least number of droughts events (6). 
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Figure 4.9: Drought events identified using SPI on a 12-month time scale for the 
Wellington Region. 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 4.10: Total number of drought events identified on a 12-month time scale for 
each region. 

 

4.6	Spatial	patterns	of	droughts	identified	using	the	SPI	
 

As the SPI provide a standardized classification of severity, this index was used 

to examine the severity of droughts for the historical data which spans over 109 years 

(1901-2009). The time series of the SPI is calculated on a time scale of 12 months. 
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According to the criteria of McKee et al. (1993), moderate, severe and extreme 

droughts correspond to the categories of -1.5 < SPI ≤ -1.0, -1.99 < SPI ≤ -1.5 and SPI ≤ 

-2.0, respectively. 

Figure 4.11 shows the spatial distribution of percentage of drought severity for 

the regions of New Zealand. Maximum probability of moderate drought is in Taranaki 

region (10% probablity), while Gisborne, Manawatu, Wanganui, Northland, Southland, 

Otago and West Coast show a probability of severe drought of 2%. Probability of 

extreme drought is more prominent in the Bay of Plenty, Gisborne, Hawke’s Bay, 

Waikato and  the Wellington regions (4%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.11: Spatial distribution of drought severity in percentage; moderate drought 
(top left panel), severe drought (top right panel) and extreme drought (bottom center 
panel). 
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4.7	Summary	
 
 This chapter has presented details of the spatial and temporal variation of annual 

climatic data and results from the preliminary analysis of the assessment of the droughts 

using a meteorological drought index. An analysis was carried out to evaluate and 

validate the method for the assessment of drought occurrences using data over sixteen 

regions of New Zealand. The SPI requires only rainfall data, which are usually available 

in most countries for many locations. 

 SPI do not rely on the arbitrary selection of threshold values and the 

classification of drought occurrence is clear and objective. They are also applied 

consistently across jurisdictions as the methodology has inbuilt standardisation of the 

specific indices. The SPI is able to identify the dry events of meteorological droughts 

successfully when applied to the data. It has been shown to be a good indicator and 

worthy of further examination for its use for drought monitoring, early warning and 

projection in the future.  

 Therefore, the SPI will be used for further analysis in this study (1) to analyse 

temporal and spatial trends in rainfall and drought characteristics in Chapter 5 and 

drought projections until the end of the century in Chapter 6. As meteorological drought 

drives agricultural and hydrological droughts, the focus in this study will be on the 

former. 

 It is important to identify trends in climatic variables as extreme events are 

becoming more common and severe due to climate change. Trend analysis will be 

carried out to determine any trend in annual rainfall which also includes the recent 

years’ conditions. It is important to determine any possible causes or explanations of 

increasing or decreasing trends that are observed. Therefore, the trend analysis of 

droughts using appropriate indices will be carried out in this current study. Chapter 5 

examines the trend in climatic parameters and drought using SPI. 
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Chapter 5 
 

Trend analysis of Rainfall and the 
Standardised Precipitation Index (SPI)  
 
5.1	Introduction	
 
 
 In recent years, a few studies have evaluated and assessed long-term trends in 

rainfall over New Zealand. They identified long-term decreases in rainfall over New 

Zealand for the period 1951-1996. This study however was one of the first national 

analyses of trends which concluded that 46 years was too short a period for measuring 

climate trends, particularly for rainfall (Salinger and Griffiths, 2001; Tommaso, 2015). 

 New Zealand rainfall is more variable than would be expected from similar 

climates elsewhere in the world (Salinger and Griffiths, 2001). Therefore, the aim of 

this chapter is to analyse the temporal changes in historic rainfall variability across the 

regions of New Zealand using data spanning over 109 years (1901-2009). To examine 

the recent trends and to assess the sensitivity of trends to the length of the time periods 

considered, the annual rainfall analysis was repeated using more recent data. The 

sequential Mann-Kendall test was applied to detect abrupt change in the annual rainfall 

series. Graphical outputs from this test give a visual observation of the trend’s 

beginning year. It is important to investigate the change of dry or wet conditions and the 

adaptive responses to extreme rainfall events within the context of climate change. 

Ganguli and Reddy (2014) performed a trend analysis of droughts based on SPI time 

series using non-parametric trend tests in western India. Subash and Ram Mohan (2011) 

investigated possible trends in monsoon rainfall and frequency of droughts using SPIs 

spanning 100 years (1906-2005) of records to assess rice and wheat productivity in 

India. This chapter will focus on the drought severity time series trend computed using 

the SPI. 

 Numerous approaches are used for analysing trends. Tests for the detection of 

significant trends in climatologic time series can be classified as either parametric or 
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non-parametric methods (Tabari et al., 2012). The purpose of trend tests is to determine 

if the values of a random variable generally increase (or decrease) over some period of 

time in statistical terms. As many climate time series data are not normally distributed, 

non-parameter tests are preferred over parameter tests (Karpouzos et al., 2010). One 

advantage of these tests is that the data do not have to fit any particular probability 

distribution to validate the tests. To name a few, the Mann-Kendall (MK), Spearman’s 

Rho (SR), Sen’s Slope Estimator, Seasonal Kendall and Sen’s T statistical tests are 

examples of non-parametric tests that have been applied to detect trends (Drapela and 

Drapelova, 2011; Paulo et al., 2012). 

 

5.1.1 Non-parametric tests 
 
 The Mann-Kendall (MK) test is used for determining monotonic trends and is 

based on ranks taking seasonality into account. This is a test for the correlation between 

a sequence of pairs of values. The significance of the detected trends can be obtained at 

different levels of significance (generally taken as 0.05). This technique has been 

widely used in rainfall, runoff and air temperature time series trend detection (Tabari et 

al., 2011; Soltani et al., 2012; Croitoru et al., 2012). The MK test is also recommended 

by the World Meteorological Organization (WMO) for non-parametric analysis of the 

significance of monotonic trends of hydrological or climatological variables (WMO, 

1988). 

 Sen’s slope (Q) estimator method accounts for the seasonality of the 

precipitation data. This method uses a simple non-parametric procedure developed by 

Sen (1968) to estimate the slope. The non-parametric tests are used to detect trends but 

do not quantify the size of the trend or change. Hence, the magnitude of the observed 

trend can be estimated with Sen’s slope estimator when significant (Helsel and Hirsch, 

2002; Paulo et al., 2012). 

 Several studies have used the Mann-Kendall test and Sen’s slope estimator to 

analyse trends and quantify the magnitude of change. These include Tabari et al. (2011), 

who examined the seasonal and monthly trends in the Penman-Monteith in Iran, 

Drapela and Drapelova (2011), who analysed the composition of precipitation in the 

north-eastern part of the Czech Republic and Croitoru et al. (2012), who analysed air 

temperature variability and trends in Romania. 
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5.1.2 Framework 
 

The main objective of this chapter is to determine the long-term trends of 

rainfall and SPI related to the risk of occurrence of a drought event. The identification 

of long-term trends in climatic variables is important in planning climate change 

adaptation measures and infrastructure design. The outline of the trend tests used in this 

current study is shown in Figure 5.1. The analyses were carried out using more than 100 

years of precipitation data. The MK test and Sen’s slope were applied to identify gradual 

trends in rainfall series. As for the SPI - time series trend, the MK test and Sen’s slope 

were used. 

 

 

 

 

 

 

 

 

 
Figure 5.1: Trend analysis framework 

 

5.2	Preliminary	Trend	Analysis	of	Annual	Precipitation	
 
 The climate of New Zealand has a strong maritime influence. Due to highly 

varied topography, climate is varied across the country. This part of the globe 

precipitates throughout the year except during summer months. On average most of the 

regions receive between 620 mm to 1317 mm of precipitation annually. Since it is an 

island, the influence of Ocean curtails extremes in coastal temperature. High humidity is 

experienced especially in the upper North Island and many parts of the country 

throughout the year making summer feel warmer and winters cooler. (Source: 

Wikipedia).  

Rainfall SPI 

Full Data Set 
(1901-2009) 

Mann-Kendall Test Sen’s Slope Test 

Trend 
Test 
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 Information on spatial and temporal variations of precipitation is essential in 

understanding the hydrological balance on a global or regional scale. The distribution of 

precipitation is extremely essential for water management in agriculture, power 

generation and drought-monitoring. The long-term precipitation patterns impacting 

availability of water with the possibility of increasing occurrences of droughts and 

floods may be influenced by the global climate changes (NIWA, 2016). 

A preliminary trend analysis was carried out over the region selected for this 

study. The CRU data was chosen for this trend analysis as a long rainfall data record 

was available spanning a period of 109 years. 

 

 
Figure 5.2: Trend in annual rainfall over New Zealand. 

 

Trends in annual rainfall series (more than 100 years of data) are determined by 

using two nonparametric trend tests (MK and Sen’s slope (Q)). Figure 5.2 presents the 

time series data of annual rainfall over New Zealand. Trend line (red dotted line) along 

with the linear trend equation is mentioned in the figure. Fitting a liner regression curve, 

the trend of rainfall over 109 years is 0.142mm. The positive sign indicates an increase 

in the rainfall trend over New Zealand. This finding further leads to investigate which of 

the sixteen regions show a significant trend. 
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5.3	Non-parametric	Trend	Tests	
 

5.3.1 Mann-Kendall (MK) Test 
 
 The MK test is used for determining monotonic trends and is based on ranks. 

This is a test for correlation between sequences of pairs of values. The significance of 

the detected trends can be obtained at different levels of significance (generally taken as 

0.05). This has been suggested by the World Meteorological Organisation to determine 

the existence of statistically-significant trends in climate and hydrologic data time series. 

The MK test statistics and the sign function are calculated using the formula: 

                                                                                  (5.1) 
 

                                                                                 (5.2) 
 

 where n is the number of data, x is the data point at times i and j (j > i). The 

variance of S is as follows 

                        (5.3) 

 

 where ti is the number of ties of extent i and m is the number of tied groups. For 

n larger than 10, the standard test statistic Z is computed as the MK test statistic as 

follows 

                                                                                  (5.4) 

 

 The presence of a statistically significant trend is evaluated using the Z value. 

Positive values of Z indicate increasing trends, while negative values show decreasing 

trends. To test for either increasing or decreasing monotonic trend (a two-tailed test) at 
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α level of significance, H0 should be rejected if |Z| > Z 1-α/2 , where Z 1-α/2 is obtained 

from the standard normal cumulative distribution tables. For example, at the 5% 

significance level, the null hypothesis is rejected if |Z| > 1.96. A higher magnitude of Z 

value indicates that the trend is more statistically significant. 

 

5.3.2 Sen’s estimator of slope 
 
 Sen’s slope estimator method accounts for the seasonality of the precipitation 

data. This method uses a simple non-parametric procedure developed by Sen (1968) to 

estimate the slope. The variance of the residuals should be constant in time. The 

equation used for calculating the slope of two rainfall records is as follows: 

 

                                            , for all combinations of j > k         (5.5) 
 

where, xj and xk are the rainfall values at times j and k, respectively, and Qi is the slope 

between data points xj and xk . 

  

Sen’s estimator of slope is the median of these N values of Qi. The N values of 

Qi are ranked from the smallest to the largest and the Sen’s estimator is computed by 

 

                                                                        (5.6) 
 

    A 100(1-α)% two-sided confidence interval for the slope estimate is obtained by the 

non- parametric technique based on the normal distribution (Drapela and Drapelova, 

2011). 

 

5.4	Trend	Analysis	of	Annual	Rainfall		
 
 The Z and Q statistics obtained from MK and Sen’s slope tests using the annual 

rainfall data are presented in Table 5.1. Overall no significant trends are shown for any 

of the regions except for Wellington. The regions namely – Bay of Plenty, Hawke’s Bay, 

Manawatu Wanganui, Marlborough, Nelson, Otago, Southland and Waikato show 
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statistically insignificant increasing annual precipitation trends with Z values ranging 

from 0.01 to 0.49. The slopes (mm/year) of the upward trend obtained for these regions 

are as tabulated in Table 5.1. Some of the regions such as Auckland, Canterbury, 

Gisborne, Northland, Tranaki, Tasman and West Coast show statistically insignificant 

decreasing trends in annual rainfall. The only region with an upward statistically 

significant trend with the Z values 1.14 is Wellington. 

 

Table 5.1: Z statistic values from MK and Q tests 

 
Regions 

1901-2009 
Z Q (mm/year) 

Auckland -1.156 0.098 
Bay of Plenty 0.461 0.276 
Canterbury -0.095 0.856 
Gisborne -0.201 0.183 
Hawke’s Bay 0.490 0.231 
Manawatu 0.772 0.142 
Marlborough 0.369 0.485 
Nelson 0.369 0.485 
Northland -0.997 0.146 
Otago 0.086 0.779 
Southland 0.230 0.688 
Taranaki -0.618 0.388 
Tasman -0.564 0.380 
Waikato 0.158 0.765 
Wellington 1.141 0.050 
West Coast -0.616 0.491 

*Results in boldface indicate significant trends 

 
Figure 5.3 demonstrates the spatial variation of trend in annual rainfall over New 

Zealand. A non-parametric trend analysis using the Mann-Kendall rank statistic is 

determined. Regions namely – Wellington, Manawatu-Wanganui, Hawkes Bay, Bay of 

Plenty, parts of Waikato, Marlborough and Southland show an increasing trend of 

annual rainfall. A trend test is performed at the 5% level of significance to signify the 

presence of a statistically significant trend. 
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Figure 5.3: Spatial trend in observed annual rainfall over New Zealand (1901-2009). 

 
It could therefore be said that the reduction at most of the regions is part of a 

short-term climatic cycle and not a decline in long-term rainfall. Therefore, it is difficult 

to predict whether extreme events or droughts will occur more frequently in the future, 

and great care is needed when interpreting results. For example, with short rainfall data 

series there may be a statistically significant trend, but the trend might not have been 

detected if a longer record had been considered. 

 

5.5	Discussion	of	Rainfall	Trend	Analysis	
 
 It was found that for any given long term trend study; a dataset of more than 

30years is essential (WMO, 1988; Salinger and Griffiths, 2001). A longer time scale 

would be useful for assessing climate variability and change and for studying slow 

responding receptors such as the impact on flora and fauna. Salinger et al. (2001) 

concluded that most of the regions of New Zealand show a decreasing trend except for 

Wellington, Blenheim, Timaru and Dunedin which correlates with the results of this 

thesis. In order to identify possible dry trends in the regions of New Zealand, a study 

using SPI for the same location is carried out. The SPI uses rainfall data and provides a 

normalised system to classify and represent dry and wet climates in the same manner as 

Sirdas and Sen (2003). Positive values imply that the observed rainfall is larger than the 

mean precipitation and vice versa (Morid et al., 2006). 
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 As mentioned in Section 5.1.1, the MK test was developed to detect monotonic 

change. When annual rainfall was analysed with the MK and Q tests for 109 years of 

data, only the Wellington region showed a significant positive trend.   

 Although this study did not seek to determine any possible causes or 

explanations for the increasing or decreasing trends that were observed, the results 

presented herein will be useful as a benchmark for further analysis of the effect of 

climate change. 

 

5.6	Preliminary	Trend	Analysis	of	Drought	Severity	
 

To determine whether this region has experienced a wet or dry period, the trend 

analysis technique for the time scale 12-months of SPI was applied to all the regions 

considered in this study and the results are given in Figure 5.4 - Figure 5.8.  

Figure 5.4 – 5.8 shows the time series of SPI for each region on a 12-month time 

scale and the trend lines (red) for the period 1901-2009. Seven regions out of sixteen 

show a decreasing trend. The slopes (Q) were computed and the results are consistent 

with the results of the MK test. The values of the slope range from -0.001 to -0.004. The 

range of slope varies from 0.001 to 0.007 for the regions with an increasing trend.  
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Figure 5.4: Time series of SPI on a 12-month time scale and the trend line in red for 
Auckland (top panel), Bay of Plenty (center panel) and Canterbury (bottom panel) 
regions. 
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Figure 5.5: Time series of SPI on a 12-month time scale and the trend line in red for 
Gisborne (top panel), Hawkes Bay (center panel) and Manawatu-Wanganu (bottom 
panel) regions. 
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Figure 5.6: Time series of SPI on a 12-month time scale and the trend line in red for 
Marlborough (top panel), Nelson (center panel) and Northland (bottom panel) regions. 
 

In Figure 5.6, Northland region shows three severe and one extreme drought 

events. The region was hit by an extreme drought in the year 1982. Over the 109 years 

(1901-2009) drought events show a decreasing trend. The Marlborough and Nelson 

region  show an  upward trend but the intensity of drough is far below that of Northland. 
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Figure 5.7: Time series of SPI on a 12-month time scale and the trend line in red for 
Otago (top panel), Southland (center panel) and Taranaki (bottom panel) regions. 
 

The Southland region was hit by an extreme drought event in the year 1968 which is 

well captured in the observational (CRU) data. (Figure 5.7). Severity of drought events 

in this region falls into the second category (-1.99 < SPI ≤ -1.5 ).  The Taranaki region 

experienced 14 drought events of which only one was a severe drought in the year 1916, 

the rest of the events are moderate drought.
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Figure 5.8: Time series of SPI on a 12-month time scale and the trend line in red for 
Tasman (topmost panel), Waikato (top panel), Wellington (center panel) and West 
Coast (bottom panel) regions. 
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Temporal trends shown in Figure 5.4 – Figure 5.8 also examine the rate of 

occurrence of drought events. The regions showed positive slopes indicating that the 

intervals between events are becoming longer and the frequency of events were 

temporally decreasing. 

Similar to annual rainfall, trends in drought severity series were determined by 

using the MK and Sen’s slope (Q) tests. The Z statistics obtained from the MK and Q 

tests on a 12-month time scale of SPI for all the regions are presented in Table 5.2 and 

Figures 5.9. 

 
Table 5.2: Z statistic values from MK and Q tests 

 
Regions 

1901-2009 
Z Q (mm/year) 

Auckland -0.0048 0.075 
Bay of Plenty 0.0040 0.041 
Canterbury -0.0003 0.879 
Gisborne -0.0008 0.421 
Hawke’s Bay 0.0044 0.034 
Manawatu 0.0057 0.026 
Marlborough 0.0037 0.143 
Nelson 0.0037 0.143 
Northland -0.0041 0.119 
Otago 0.0018 0.507 
Southland 0.0030 0.260 
Taranaki -0.0018 0.442 
Tasman -0.0021 0.378 
Waikato 0.0015 0.533 
Wellington 0.0077 0.001 
West Coast -0.0015 0.521 

*Results in boldface indicate significant trends 

 

Four of the regions, namely – Bay of Plenty, Hawkes’s Bay, Manawatu-

Wanganui and Wellington display a significant increasing trend. However, Auckland, 

Canterbury, Gisborne, Northland, Taranaki, Tasman and West Coast regions show a 

decreasing trend with no significance. The slope of the SPI trend is estimated by the 

application of a Q test. The slope value ranges from 0.001 to 0.879 (Table 5.2). The 

results are consistent with Figure 5.3, where Northand also exhibits the highest 

decreasing trend. 
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Figure 5.9: Spatial distribution of trend for the regions of New Zealand. 

5.7	Summary	
 

The objective of this chapter was to analyse the temporal changes in historic 

rainfall variability and the trend of SPI values across sixteen regions in New Zealand. 

The first part of the analysis was carried out to (1) determine annual rainfall trends 

using the non-parametric Mann-Kendall (MK) trend test with long historical records. 

 The second part of the analysis included a trend analysis of dry/wet periods 

based on a SPI time series using more than 100 years of data. Using a full data set the 

result obtained was - out of sixteen regions seven showed decreasing trends. However, 

The SPI time series analysis gave similar trend direction to the annual precipitation time 

series analysis in showing downward and upward trends. 

It should be noted that, for the annual precipitation trend analysis, it was the 

accumulation of rainfall amount for the twelve months of each year. In this study, more 

than 100 values in the annual time series were used for each region. In contrast, SPI is a 

continuing index of certain duration (in this case the duration was selected to be 12 

months) using a monthly precipitation data set. This monthly precipitation data set 

varies with time; that is, in each month, a new value is determined from the previous i 

months (where i in this study was 12 months). Hence, the results for annual 

precipitation trend  provide information on whether rainfall patterns show an increase or 

decrease at a particular region. On the other hand, the SPI trend identifies wet (increase) 
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or dry (decrease) conditions with a single index. Therefore, it is essential to use an 

appropriate methodology to develop suitable strategies to mitigate the impacts of future 

droughts and properly understand past droughts to be able to project the future wherever 

possible. Chapter 6 attempts to examine the projection of meteorological drought over 

New Zealand using a higher resolution data and the associated uncertainties in the 

projections. 
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Chapter 6 
 

Projections of meteorological droughts and 
uncertainties 
 
6.1	Introduction	
 
 Over the 20th century, climate change could shift and widen the precipitation 

distribution, increasing the risk of both flood and drought events, and may alter the 

characteristics of future dry and wet spells in New Zealand. The common view is that 

precipitation will decrease (increase) in New Zealand (Salinger and Griffiths , 2001; 

Gao et al., 2006; NIWA, 2016). 

 Warming may increase the drought-affected area globally, including more 

severe events. Although there are different classifications of drought (Section 2.2) 

depending on the nature of the water deficit and the study objective, precipitation is the 

fundamental driver of drought and analysing future precipitation characteristics is 

crucial in drought risk assessment, especially when considering meteorological droughts 

(Bordi et al., 2009; Panu and Sharma, 2002; Osuch et al., 2016). Many studies have 

focused on the hydrological aspects (such as river discharge and low flow regimes) 

rather than assessing meteorological events (Vasiliades et al., 2009). Yet, the 

application of meteorological drought indices require less input data, which in turn 

limits the additional uncertainties arising from the availability, quality, resolution and 

parameterisations of data/models. Furthermore, Hisdal et al. (2001) found good 

agreement between precipitation deviations and drought trends. Therefore, this chapter 

focuses on meteorological drought assessment.  

Our incomplete understanding of the behavior of the climate system has led to 

the development of various emission scenarios and GCMs. Studies with equally 

weighted multi-models generally outperform the single models (Weigel et al., 2010). 

However, projections for both mean and extreme precipitation are often uncertain in 

both the direction and magnitude of change (Kjellström et al., 2011; Blenkinsop and 

Fowler, 2007a;b; Burke and Brown, 2008). Changes in the seasonal distribution of 



[Projections	of	meteorological	droughts	and	uncertainties]	
	

 

 66 

precipitation and drought occurrence will significantly affect water resource 

management. Although drought studies (e.g. NIWA, 2016) have attempted to address 

this through a multi-model and multi-scenario analysis using the CMIP3 models, the 

number of climate models and emission scenarios applied are often limited, and few 

have explored uncertainty in drought projection using large simulation ensembles (e.g. 

Burke and Brown, 2008). 

 Using the SPI (Section 4.4.1), this chapter examines the drought projections 

under climate change on New Zealand’s meteorological drought on a 12-month (SPI12) 

events, and assesses their robustness based on precipitation scenarios simulated using 

two emission scenarios and twentyone GCMs (Sections 3.1– 3.2).  

 

6.2	Methodology	
 

6.2.1 Standardized Precipitation Index (SPI) 
 
 Vicente-Serrano et al. (2010) proposed the multi-scalar Standardised 

Precipitation Evapotranspiration Index (SPEI), the computation of which is 

mathematically similar to the SPI. The SPEI uses precipitation and temperature data, 

and can be compared to the self-calibrated Palmer drought severity index (sc-PDSI) as it 

is based on a normalisation of the simple water balance developed by Thornthwaite 

(1948). The SPI, rather than the SPEI, has been adopted in this thesis as a measure of 

meteorological drought (which typically refers to rainfall deficit). 

 In summary, the SPI is useful for monitoring drought (and wetness) on multiple 

time scales and comparing climatic conditions of areas governed by different 

hydrological regimes (Bordi et al., 2009; section 4.4.1) 

 

6.2.2 Taylor Diagram 
 
 Multiple models considered in this study are evaluated with the Taylor diagram. 

The closeness of a pattern (or a set of patterns) matching observations is well illustrated 

by Taylor (2001). One can quantify the similarities between two patterns in terms of 

statistical measures, such as – their correlation, centred root-mean-square difference and 

the standard deviation at a glance. Taylor diagram for rainfall is shown in Figure 6.1. 

Colour circles represent the 21 CMIP5 models while the ensemble of these models 

(MME) is represented by a star sign, the observed data (CRU) lie at the point marked. 
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Models with higher correlation, least RMSE and with much variance (standard 

deviation) as observed are considered as the best performing models. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Taylor diagram for rainfall spanning the period (1901-2009) for New 
Zealand. Colour circles represent models while the star represents the ensemble of 21 
models. 
 

Figure 6.1 suggests that the models are spread with higher RMSE and lower 

correlation between 0.3 to 0.8. However, the ensemble of the models seems to be close 

to the observation. Thus, we consider the multi-model ensemble (MME) for projecting 

droughts over New Zealand by the end of the century (2099).  

 

6.2.3 Bias Correction 
 
 The quantile mapping bias correction (Section 3.3) was applied for improving 

the CMIP5 rainfall projections which serves as the input data for the SPI calculation and 

thereafter projection of droughts. 

A quantile mapping bias correction algorithm was applied to all twenty-one 

models. Figure 6.2 shows the CDF for observation, GCM historic and GCM future 

precipitation data. The Bias for each of the 21 models is tabulated in Appendix A, Table 

A1. 
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Figure 6.2: Cummulative distribution functions for a set of observed, GCM simulated 
historic, and GCM projected future precipitation data. 
 
 

6.3	Drought	Analysis	
 

Drought identification, the parameters (i.e. drought severity) used and the time 

scales considered, along with study area/regions are detailed in Sections 3.6–3.9.  Long 

(SPI12 time scale) droughts, defined as SPI≤−1.0 (a moderate/severe/extreme drought, 

Table 4.1), were studied. Climate change effects were determined by comparing results 

in 2010–2039, 2040-2069 and 2070–2099 to those in 1971– 2000. Drought severity was 

derived for each of the regions within the study area. Regional severities are presented 

for analysis in Sections 4.4–4.6. 

 

6.4	Future	Changes	in	Drought:	Spatial	Variation	
 
 This section presents the projected changes in drought parameters until the 21st 

century climates. Firstly, the moderate and higher emission scenarios - RCP4.5 and 

RCP8.5 is used to demonstrate the spatial variations in the simulated changes in drought 

severity across the study region. 

 Figures 6.3 to 6.6 show the drought severity on a 12-month time scale, along 

with their percentage changes until the 21st century projected by the MME for two 

scenarios – RCP4.5 and RCP8.5. Midterm (2040-2069) and longterm (2070-2099) 

projections are shown in Figures 6.3 – 6.6, while for the shorterm (2010-2039) under 
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both moderate and higher emission scenarios are given in Appendix A, Figure A2 and 

A3. 

Under the moderate emission scenario (RCP 4.5) the projected change in 

drought severity over New Zealnd and it’s regions by midterm (2040-2069) is as seen in 

Figure 6.3. The southern tip of NewZealand is more prone to moderate and severe 

drought events  and the probability of its occurrence is projected to be in the range of 

100 to 300 %.  Northernmost regions such as Auckland, Bay of Plenty, Gisborne, 

Northland and Waikato are projected to experience a decrease in the occurances of 

moderate as well as severe drought (Figure 6.3; top left and right panels) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 6.3: Projected change in drought severity on a 12-month time scale (top left 
panel – moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2040-2069 w.r.t baseline period (1971-2000) under moderate 
emission scenario, RCP 4.5. 
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Figure 6.4: Projected change in drought severity on a 12-month time scale (top left 
panel – moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2070-2099 w.r.t baseline period (1971-2000) under moderate 
emission scenario, RCP 4.5. 
 

In contrast to the projected change in drought severity over New Zealnd and it’s 

regions by midterm (2040-2069), in the longterm (2070-2099) shown in Figure 6.4, the  

southern tip of NewZealand are projected to experience a low probabilty of moderate 

and severe drought event occurance. Northland would be vulnerable to moderate 

droughts with a probabilty of 500%.  Projected droughts in the extreme category is 

largely seen to occur in the Northern region – Northland, Auckland, Bay of Plenty, 

Gisborne, Waikato and Wellington (Figure 6.4; bottom center panel).  
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Figure 6.5: Projected change in drought severity on a 12-month time scale (top left 
panel – moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2040-2069 w.r.t baseline period (1971-2000) under moderate 
emission scenario, RCP 8.5. 
 

From the above series of figures, it is evident that the moderate droughts are 

increasing as compared to severe and extreme. This result correlates very well with the 

global trend shown in Figure 2.3 (Bruke et.al (2006)). Under the moderate emission 

scenario (RCP4.5) – Northland region shows a 400% increase with respect to baseline 

period by the end of century (2070-2099). Under the higher emission scenario (RCP 8.5) 

– Northland and Hawke’s Bay project higher percentage increase in moderate drought. 

Projected extreme drought is the highest for Northland region, this result is an important 

finding of this work. NIWA (2016) has considered evapotranspiration and soil moisture 
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in their study which also has pointed the same region to be vulnerable to drought by 

2099. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.6: Projected change in drought severity on a 12-month time scale (top left 
panel –moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2070-2099 w.r.t baseline period (1971-2000) under RCP8.5. 
 

6.5	Projection	Range	
 
 Uncertainties in climate change projections create a significant challenge to how 

scientific information can be used in practical applications (Blenkinsop and Fowler, 

2007a). As the Figures suggest, projected drought characteristics and changes are highly 

influenced by the choice of emission scenario and GCM but they also enable some 

generalisations to be made. 
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6.6	Sources	of	Uncertainty	
 
 The range of emission scenarios and GCMs applied in the present study has 

enabled the assessment of their relative contribution in the total variance of the drought 

projections. Emission scenario uncertainty produces varying degrees of future radiative 

forcings. GCM uncertainty arises when different GCMs respond differently to the same 

radiative forcings, producing a range of global temperature warming and a range of 

geographical and seasonal patterns of precipitation changes. 

 Burke and Brown (2010) reported that simulated warming-induced 

meteorological drought changes for the UK are indistinguishable from natural 

variability or projection uncertainty. Nevertheless, similar to the present findings, many 

studies also found climate model (GCM/RCM) uncertainty (particularly GCM and their 

representation of changes in the large-scale circulation) to dominate in all lead times, 

especially for precipitation (Orlowsky and Seneviratne, 2013). Variance due to natural 

internally-generated variability  and emission scenarios in precipitation projections are 

more important for the first and last few decades, respectively (e.g. Dubrovsky et al., 

2005; Lioubimtseva and Cole, 2006; Beniston et al., 2007; Blenkinsop and Fowler, 

2007a;b; Giorgi and Lionello, 2008; Vidal and Wade, 2009; Burke et al., 2010; Kyselý 

et al., 2010). 

 In the baseline for instance, different combinations of emission scenario and 

GCM patterns may generate different precipitation decline rates with warming. Greater 

warming could produce a larger discrepancy in the exponential/linear functions. 

Nevertheless, the fractional contribution of this element remains small. 

 

6.7	Summary	
 
 This chapter has projected drought as well as characterised the spatial changes in 

meteorological drought over the regions of New Zealand for the baseline period 1971–

2000 and three future periods, 2010–2039, 2040-2069 and 2070–2099 with a higher 

resolution data (20km x 20km). Firstly, the CMIP5 model data was regridded to 20km x 

20km using the bilinear interpolation method. Secondly, the regridded data was bias 

corrected using the quantile mapping algorithm. Further on, drought was measured by 

the SPI, which involves relatively simple calculations and data requirements; drought 

was defined as SPI≤−1.0. Precipitation scenarios, simulated by MME (twenty-one 
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GCMs) under 2 emission scenarios were used. Geographically- and climatically-

averaged drought severity and spatial extent for 12-month events were analysed. 

 The projected drought changes generally reflect the precipitation changes 

simulated as seen in Appendix A, Figure A1. Since SPI is transformed from 

precipitation accumulated over a given period. Results vary substantially depending on 

the GCM, emission scenario and region. Projected changes increase with larger forcing. 

 Neither the emission scenarios nor the models were weighted, and each emission 

scenario and model pattern was assumed to be independent and equally plausible. The 

assumption that all the emission scenarios were equally likely is due to the difficulty in 

estimating the levels of emissions in future, as well as the incomplete understanding of 

how the climate system would respond to these emissions. 

One of the most striking findings of this study was the vulnerability of the 

Northland and Hawke’s Bay regions to moderate droughts under the high emission 

scenario (RCP8.5) for all three future periods, 2010–2039, 2040-2069 and 2070–2099. 

These regions need a comprehensive risk management strategy for dealing with drought.  

 It is worth noting that increasing drought conditions in regions that already 

suffer from the hazard maybe of less concern compared to regions that do not currently 

experience their effects. Since orographically-induced fine scale structures are often 

absent in GCM-simulated precipitation scenarios, detailed climate change impact 

studies would require high resolution models with a better representation of topography 

(Giorgi and Lionello, 2008; Räisänen et al., 2004; Gao et al., 2006; NIWA 2016). 

Local/regional drought impact assessments would require the use of locally appropriate 

drought indices and consideration of processes and practices currently excluded from 

the climate models (e.g. irrigation). The diverse meteorological drought response to 

climate change found here implies the need for policy-relevant research on climate 

change impacts and robust adaptation decisions that consider a wide range of expression 

of modeling uncertainty, or risk-based information (e.g. by considering frequency 

distributions of climate change impacts) rather than deterministic information. 
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Chapter 7 
 

Conclusion and Future Work 
 

Drought is a routine and dominant feature of the New Zealand climate and many 

parts of the country suffer from frequent droughts. Significant droughts have occurred 

in the past years. These frequent droughts have severely stressed water supply systems 

and the communities that depend on them, and adversely impacted the economy by 

affecting primary production. The frequency, intensity and duration of droughts may 

increase due to anthropogenic climate change, emphasising the need for drought 

management and mitigation. As vulnerability to drought increases, greater attention 

should be directed to reducing the impacts and risks associated with its occurrence. 

 The frequently used drought index was first reviewed in this study in Chapter 4. 

As the aim of this study was drought projection and early warning, the meteorological 

drought index was chosen as the prime indicator of drought. An assessment of the 

popular meteorological drought index was conducted to investigate how well these 

drought indices replicate historical droughts in the regions of New Zealand. This initial 

study used monthly precipitation data from CRU. Based on this study, a meteorological 

drought index, namely the Standardised Precipitation Index (SPI), was selected for 

further scrutiny. 

 Precipitation or rainfall is the primary factor which controls the formation and 

persistence of droughts and floods. Therefore, the interpretation and understanding of 

the trend behaviour of rainfall and dry/wet events are important. The first part of the 

analysis was carried out to determine annual rainfall trends using non-parametric tests, 

namely the Mann-Kendall (MK) and Sen’s estimator of slopes with long historical 

records (more than 100 years) of the data set as in Chapter 5. Further, the same data was 

used to investigate the sensitivity of trends to the length of the continuous time period 

considered. This information is vital for climate change authorities in New Zealand to 

determine any shift in climatic patterns, and is also important when planning climate  

change adaptation measures and civil infrastructure design. The second part of the 
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analysis was carried out to perform a trend analysis of wet and dry periods based on the 

SPI time series. 

 This thesis aimed to project drought over New Zealand by the end of the century, 

as well as the associated uncertainties in the methodologies for drought quantification 

and climate change projection, through a multi-scenario and multi-model approach. In 

this study, droughts are characterised by drought severity. This chapter highlights the 

main results, their policy implications and knowledge gaps. 

 This thesis builds on existing literature by systematically analysing some of the 

uncertainties in drought projections under a changing climate. As discussed in Section 

1.1, few studies have examined the climate-change-induced changes in drought using a 

large ensemble of simulations; the meteorological drought analysis in Chapter 6 is 

based on simulations projected by two emission scenarios and 21 general circulation 

models (GCMs).  

 

7.1	Key	Findings	
 
 Drought characterization using SPI provides a standardized classification of 

severity, thus exhibiting advantages over other indices. The use of the SPI is 

satisfactory for assessing and monitoring meteorological droughts in the regions of New 

Zealand. Given the importance of rainfall and its criticality in assessing droughts, the 

SPI was selected for further analysis of its use in drought assessment. 

 There is long-term temporal variation of climatic data over New Zealand. A few 

conclusions based on the trend analysis techniques applied to rainfall data and the SPI 

values calculated: 

 Trend analysis is performed at a 5% level of significance to signify the presence 

of a statistically significant trend. The analysis resulted in an overall non-significant 

trend for most of the regions except for Wellington. Regions namely – Bay of Plenty, 

Hawke’s Bay, Manawatu Wanganui, Marlborough, Nelson, Otago, Southland and 

Waikato show statistically insignificant increasing annual precipitation trends.  

Similar to rainfall, when SPI trends were analysed using MK and Sen’s slope -  

Four of the regions, namely – Bay of Plenty, Hawkes’s Bay, Manawatu-Wanganui and 

Wellington display a significant increasing trend. However, Auckland, Canterbury, 

Gisborne, Northland, Taranaki, Tasman and West Coast regions show a decreasing 

trend with no significance. 
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Under the moderate emission scenario (RCP4.5) – Northland region showed a 

400% increase with respect to baseline period by the end of century (2070-2099). Under 

the higher emission scenario (RCP 8.5) – Northland and Hawke’s Bay project higher 

percentage increase in moderate drought. Projected extreme drought is the highest for 

Northland region, this result is an important finding as a study of NIWA (2016) also has 

pointed the same region to be vulnerable to drought by 2099. 

 

7.2	Policy	Implications	
 
 This study seeks to develop an improved understanding of potential changes in 

drought under future climates, which could facilitate the development and 

implementation of more effective drought management and climate change adaptation 

measures. 

 The diverse meteorological drought response to climate change simulated in this 

study implies that findings based on a single scenario/model could be highly misleading. 

Substantial research and considerable improvements in climate models are needed 

before climate projections can be applied directly and effectively in adaptation planning 

and design, e.g. water management, as suggested by the range of projected changes in 

drought characteristics found in this thesis. Uncertainties in climate change projections 

or the risk information supplied to decision-makers are unlikely to decrease in the near 

future (Knutti, 2008; Todd et al., 2011). Even with a perfect climate model, future 

changes in non-climatic pressures such as demographic and economic development, 

natural forcings (solar and volcanic activity), and natural internal variability mean that 

climate change and meteorological projections would remain highly uncertain, 

especially at the regional scale. Therefore, policy relevant research on climate change 

impacts and robust adaptation decisions should be based on a multi-scenario and multi-

model approach; they also need to consider a wide range of expressions of modeling 

uncertainty, or risk-based information (e.g. by considering frequency distributions of 

climate change impacts) rather than deterministic information (Gosling et al., 2011a). 

 Although the degree of uncertainty in future projections of drought, for example, 

may create challenges in the development of appropriate adaptation measures, many 

organisations have experience in working in the face of various kinds of uncertainty 

(Todd et al., 2011; Stainforth et al., 2007a). 
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 Despite the limitations, climate models simulate numerous processes and 

feedbacks; large ensembles, as applied in this study, enhance our understanding of the 

range of possible model behaviour in response to different emission scenarios 

(Stainforth et al., 2007b). They can also help to identify the areas where results depend 

strongly on model assumptions, thus providing guidance for future model development 

Much resources have been allocated to climate research and model development, such 

as the variables and spatial/temporal scales of interest, but these should be shaped by the 

needs of the end users and policy-makers if the goal is to benefit society. More 

emphasis is needed on extracting the data and information that is decision and policy-

relevant, and to explore how to make the best use of the model results so that they add 

value to decision making, e.g. by working with stakeholders and to provide guidance on 

how to use/interprete the data and information (Knutti, 2008). Each simulation presents 

a “what-if” scenario; appropriate interpretation and accurate communication of such 

information and uncertainties, even in qualitative terms, is therefore crucial and can 

have substantial value in the design of robust adaptation strategies that reduce 

vulnerability to both climate variability and change (Pappenberger and Beven, 2006; 

Stainforth et al., 2007a;b). 

 

7.3	Limitations	and	Further	Work	
 
 Specific limitations and areas for further research are presented in the relevant 

chapters. This subsection outlines some of the limitations of the study approach adopted 

in this thesis and provides some general directions for future work. 

 Analysis in this thesis has focused on relative drought. Given that drought is a 

phenomenon relative to the local conditions that can occur in virtually all climate 

regimes, including in cold regions, it needs to be considered in a relative, rather than an 

absolute, sense. Nevertheless, the application of a fixed absolute drought threshold (say, 

20 mm of precipitation) for the entire study region would allow the identification of the 

more “drought-prone” areas. Therefore, an absolute drought analysis could provide 

useful information for large-scale management practices and could aid resource 

allocation. Also, the projected changes in drought characteristics presented here, as well 

as the SPI computation, are based on the reference period of 1971–2000; the choice of 

another baseline (e.g. 1961–1990) could lead to different results. 
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 A caveat of this study is the separate characterisation of drought severity and 

spatial extent. This could be improved in future work by assessing the spatio-temporal 

characteristics of droughts simultaneously through a severity–area–duration analysis, 

which relates the area of each drought to its severity (Andreadis et al., 2005; Sheffield 

et al., 2009; Philip et al., 2015). Alternatively, Perez et al. (2011) presented two 

methodologies (non-contiguous and contiguous drought area analyses) for analysing the 

spatio-temporal development and characteristics of large-scale meteorological droughts 

using gridded timeseries of meteorological data. 

 This study could therefore be extended to investigate the effects of climate 

change in relation to specific impact sectors such as agriculture, using locally 

appropriate drought indices such as those covered in Section 2.2. Such analysis may 

need to be carried out on a local or regional scale with the aid of higher resolution 

models that have better representation of topography; processes and practices that are 

often excluded from the climate models (e.g. irrigation) may also need to be considered 

(Räisänen et al., 2004; Gao et al., 2006). 

 Although this thesis has explored the effects of several sources of uncertainty on 

drought projections under future climates, results obtained here under-represent the true 

uncertainty as other sources of uncertainty have not been examined. For example, 

meteorological droughts have only been represented by the precipitation only 

Standardised Precipitation Index (SPI); the application of another meteorological 

drought index may produce different results. 

 A study by Huntingford et al  (2009) states that the source of uncertainty has 

been estimated to be ˜40% of that of the physical climate properties (e.g. equilibrium 

climate sensitivity and global heat capacity), thus could be explored further in the 

meteorological and hydrological drought analyses. 

 The application of gridded outputs at 0.2o x 0.2o resolution has been investigated 

in this thesis. Hence, results presented in this thesis could be compared to those based 

on regional climate change simulations such as the CORDEX (Coordinated Regional 

Climate Downscaling Experiment) initiative from the World Climate Research Program 

(http://www.meteo.unican.es/en/projects/CORDEX). Drought analyses carried out here 

have been based on the monthly precipitation timeseries. However, the daily resolution 

is important in operational monitoring of drought development and decision-making in 

agriculture and water resource management (Lu, 2011), especially on a local or regional 

scale, as a drought-affected region may return to normal condition with only one day of 
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intense rainfall. Another area of further research could be to compare the meteorological 

drought results to those derived from the Palmer Drought Severity Index (PDSI), as 

well as the standardised precipitation evapotranspiration index (SPEI), for instance, as 

both of these methods account for temperature effects. Moreover, both meteorological 

and hydrological drought events have been defined based on the threshold of SPI−1.5; 

this study could be extended by studying the changes in drought for a more extreme SPI 

category (e.g. SPI−2.0) and compared with the results obtained here. 

 Given that the uncertainties associated with future drought projections are 

unlikely to be constrained in the near term, it is worth exploring how the findings in this 

study could contribute to the development and implementation of drought risk 

assessment and management practices, as well as societal vulnerability assessments, to 

reduce the adverse impacts of droughts under a changing climate. Working closely with 

stakeholders, such as policymakers, water resource managers and others, would help to 

determine how this study could be further developed to address the drought/water 

resource issues within an integrated framework, based on their needs.
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Table A1. Bias of CMIP5 models with respect to CRU 

Model Bias 
bcc-csm1-1 
 

0.95 

bcc-csm1-1-m 
 

0.96 

CCSM4 
 

1.08 

CESM1-CAM5 
 

0.93 

CSIRO-Mk3-6-0 
 

0.9 

FIO-ESM 
 

0.84 

GFDL-CM3 
 

0.89 

GFDL-ESM2G 
 

1.01 

GFDL-ESM2M 
 

1.02 

GISS-E2-H 
 

0.94 

GISS-E2-R 
 

0.93 

HadGEM2-AO 
 

0.87 

HadGEM2-ES 
 

0.89 

IPSL-CM5A-LR 
 

0.80 

IPSL-CM5A-MR 
 

0.82 

MIROC5 
 

0.97 

MIROC-ESM 
 

1.10 

MIROC-ESM-CHEM 
 

1.08 

MRI-CGCM3 
 

0.76 

NorESM1-M 
 

0.82 

NorESM1-ME 
 

0.85 
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Figure A1. CMIP5 model ensemble Annual precipitation change (%) projected over 
New Zealand for 2010-2039, 2040-2069 and 2070-2099 with respect to the baseline 
period (1971-2000) for RCP 4.5 and RCP 8.5 emission scenarios. 
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Figure A2. Projected change in drought severity on a 12-month time scale (top left 
panel – moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2010-2039 with respect to baseline period (1971-2000) under 
moderate emission scenario, RCP 4.5. 

 

 

 

 

 

 



[APPENDIX	A]	
	

 

 99 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3. Projected change in drought severity on a 12-month time scale (top left 
panel – moderate drought, top right panel – severe drought and bottom center panel – 
extreme drought) for 2010-2039 with respect to baseline period (1971-2000) under 
moderate emission scenario, RCP 8.5. 
 
 
 
 
 
 
 
 
 
 

	


