

Collaboration patterns of successful globally distributed

agile software teams: the role of core developers

Sherlock Anthony Licorish

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

2013

School of Computing and Mathematical Sciences

Primary Supervisor: Professor Stephen MacDonell

Secondary Supervisor: Dr. Andy Connor

i

Table of Contents

List of Tables.. iv

List of Figures ... v

Attestation of Authorship .. vii

Acknowledgements .. ix

Abstract .. xi

Chapter 1. Introduction and Background .. 1
1.1 Rationale for Research on Human Factors and Empirical SE 1
1.2 Main Motivations ... 2
1.3 Goals and Objectives .. 4
1.4 Scope, Assumptions and Boundaries ... 6
1.5 Research Design ... 8
1.6 Contributions and Published Work .. 12
1.7 Thesis Structure .. 15
1.8 Chapter Summary ... 16

Chapter 2. Literature Review .. 18
2.1 The Study of Human Factors .. 18
2.2 Team Composition, Psychology and SE Human Factors Frameworks 21
2.3 Globally Distributed Agile Software Development ... 24
2.4 The Study of Communication .. 26
2.5 Communication, Text, Language and Attitudes ... 29
2.6 Communication and SE Research .. 33
2.7 Wheel Structure Networks and Central Communicators 38

2.7.1 Attitudes and Team Roles ... 40
2.7.2 Changes in Attitudes and Knowledge Sharing.. 43
2.7.3 Attitudes, Knowledge Sharing and Task Performance 46

2.8 Chapter Summary ... 48

Chapter 3. Research Methodology and Design ... 50
3.1 Selecting a Research Method ... 51
3.2 Research Perspectives - Positivist versus Interpretivist 52
3.3 A Pragmatic Research Approach.. 54
3.4 Case Study Method and Study Design ... 56

3.4.1 Study Repository ... 61
3.4.2 Data Extraction and Pre-processing - Data Mining 65

3.4.2.1 Data Extraction and Pre-processing Procedures.................................... 68
3.4.3 Data Analysis (Technique 1) - Social Network Analysis 72

3.4.3.1 SNA and Other Quantitative Measures and Procedures 76
3.4.4 Data Analysis (Technique 2) - Linguistic Analysis 79

3.4.4.1 Behaviour and Attitude Analysis Measures .. 82

ii

3.4.4.2 Linguistic Analysis Procedures ... 85
3.4.5 Data Analysis (Technique 3) - Content Analysis 86

3.4.5.1 Forms of Content Analysis .. 87
3.4.5.2 Reliability and Validity Issues in Content Analysis 89
3.4.5.3 Creating a Reliable and Valid Protocol ... 90
3.4.5.4 Selecting a Unit of Analysis .. 92
3.4.5.5 Content Analysis Tools ... 93
3.4.5.6 Ethical Requirements of Content Analysts ... 93
3.4.5.7 Content Analysis in SE and IS Research ... 94
3.4.5.8 Use of Content Analysis in this Study ... 94

3.5 Process of Theorizing ... 101
3.6 Chapter Summary and Methodological Framework 107

Chapter 4. Results ... 110
4.1 Phase 1 – Social Network Analysis .. 110

4.1.1 Project Communication Patterns (RQ1) ... 110
4.1.2 Equity in Practitioners’ Communication (RQ2) 113
4.1.3 Importance, Task Performance and Formal Roles (RQ3, RQ4 and
RQ5)….. .. 119

4.2 Phase 2 – Linguistic Analysis and Directed CA (Static Analyses) 125
4.2.1 Attitudes (RQ6) ... 126
4.2.2 Enacted Roles (RQ7)... 130

4.3 Phase 3 – Linguistic Analysis and Directed CA (Longitudinal Analyses) 138
4.3.1 Attitudes (RQ8) ... 141
4.3.2 Knowledge Sharing (RQ9) and Becoming Team Hubs (RQ10) 144
4.3.3 Task Performance (RQ11) .. 149
4.3.4 Attitudes and Task Performance (RQ12) .. 151
4.3.5 Knowledge Sharing and Task Performance (RQ13) 153

4.4 Chapter Summary ... 154

Chapter 5. Discussion ... 157
5.1 Collaboration patterns (Phase 1) .. 157

5.1.1 Communication patterns (RQ1) .. 158
5.1.2 Equity in contribution (RQ2) .. 161
5.1.3 Active communicators importance (RQ3) .. 164
5.1.4 Active communicators task performance (RQ4)..................................... 167
5.1.5 Active communicators formal roles (RQ5) ... 169
5.1.6 Summary ... 172

5.2 The true role of core developers (Phase 2) ... 175
5.2.1 Differences in attitudes (RQ6) .. 175
5.2.2 Enacted roles (RQ7) .. 181
5.2.3 Summary ... 186

5.3 Changes in core developers’ attitudes, knowledge sharing and task
performance (Phase 3) ... 190

iii

5.3.1 Changes in attitudes (RQ8) ... 190
5.3.2 Changes in knowledge sharing (RQ9) .. 192
5.3.3 Becoming team hubs (RQ10) .. 195
5.3.4 Changes in task performance (RQ11) ... 196
5.3.5 Attitudes and task performance (RQ12) ... 197
5.3.6 Knowledge sharing and task performance (RQ13) 198
5.3.7 Summary ... 199

5.4 Chapter Summary and Explanatory Model .. 201

Chapter 6. Conclusions ... 204
6.1 Retrospections .. 204

6.1.1 Collaboration patterns (Phase 1) ... 204
6.1.2 The true role of core developers (Phase 2).. 208
6.1.3 Changes in core developers’ attitudes, knowledge sharing and task
performance (Phase 3) .. 211

6.2 Research Contributions .. 214
6.2.1 Contributions to Theory .. 214
6.2.2 Contributions to SE Literature .. 217
6.2.3 Contribution to Pragmatic Research in SE.. 220

6.3 Research Evaluation, Limitations and Threats ... 222
6.4 Research Implications .. 228

6.4.1 Implications for SE Practice ... 228
6.4.1.1 Software Project Governance .. 228
6.4.1.2 Collaboration and Process Tools ... 232

6.4.2 Implications for SE Research (Future Work) ... 234

References ... 237

Appendices .. 270
Appendix I. Median message per WI communicated over project phases (P1- P10)
 ... 270
Appendix II. Sociograms for of all ten Jazz teams (P1 – P10) 271
Appendix III. Interaction behaviours (counts) for the UE, Code and PM project
practitioners ... 272
Appendix IV. Percentages of interaction behaviours across the UE, Code and PM
project areas .. 272
Appendix V. Combined percentages of overall project interaction behaviours for core
developers ... 273
Appendix VI. Summary of project interaction for the core developers and others (for
Code project area (P7)) ... 273
Appendix VII. Summary of project interaction for the core developers and others (for
PM project area (P8)) .. 274
Appendix VIII. Descriptive statistics for core developers messages across the project
phases .. 274
Appendix IX. Aggregated interactions for core developers 275
Appendix X. Confidentiality Agreement .. 276

iv

List of Tables

Table 1. Constructivist versus Positivist research dichotomy ... 54

Table 2. Summary statistics for the selected Jazz teams ... 72

Table 3. Sample LIWC output variable information .. 81

Table 4. Sample MRC dictionary file ... 81

Table 5. LIWC linguistic measures ... 85

Table 6. Coding categories for measuring interaction .. 99

Table 7. Summary of research perspectives, questions and study techniques and
measures .. 107

Table 8. Descriptive statistics for combined teams’ (P1 – P10) communication 111

Table 9. Descriptive statistics for teams’ in-degree measures (P1 – P10) 115

Table 10. Social network measures for core developers and their team scores (P1 – P10)
 ... 120

Table 11. Activities performed by core developers .. 124

Table 12. Descriptive statistics for linguistic scores for core developers and others ... 127

Table 13. Results for linguistics analysis .. 127

Table 14. Results comparing differences in selected language usage for core developers
involved in multiple project areas ... 129

Table 15. Mean project area measures for messages, tasks, contributors and codes 132

Table 16. P1 (UE), P7 (Code) and P8 (PM) core developers’ formal roles 136

Table 17. Numbers of messages communicated by core developers 140

Table 18. Descriptive statistics for core developers’ linguistic measures across the
project phases .. 143

Table 19. Counts of core developers’ interactions (utterances) 148

Table 20. Percentage of overall task (WI) changes made by core developers over the
duration of their Project .. 150

Table 21. Summary of theoretical contributions ... 216

Table 22. Research evaluation taxonomy ... 222

v

List of Figures

Figure 1. Typical software risk items .. 21

Figure 2. Abstract representation of the wheel structure communication network 40

Figure 3. Case study model ... 57

Figure 4. Consolidated research questions .. 60

Figure 5. Components of the Jazz platform .. 62

Figure 6. Teams’ arrangement in Jazz .. 62

Figure 7. The data mining or knowledge mining process ... 66

Figure 8. Sample WI viewed via the RTC .. 68

Figure 9. Database model of the pre-processed and partially normalized Jazz data 70

Figure 10. Sociogram highlighting interaction patterns of team members 74

Figure 11. Section of Jazz communication network ... 75

Figure 12. Directed network graph for a sample Jazz team showing highly dense
network segments for practitioners “12065” and “13664” ... 76

Figure 13. Extended database model after Linguistic processing 86

Figure 14. The Content Analysis protocol development process 91

Figure 15. Initial coding process ... 100

Figure 16. Simple visual basic interface that was created for entering codes into the
Microsoft SQL database .. 100

Figure 17. Extended database model after Coding process .. 101

Figure 18. The methodological framework of this PhD ... 109

Figure 19. Mean messages per WI communicated over project phases (teams P1– P10)
 ... 113

Figure 20. In-degree measures for a sample Jazz team ... 114

Figure 21. Jazz sample team network (phases one (start) to four (end)) 118

Figure 22. Summary of social network measures for the ten project areas (P1 – P10) 119

Figure 23. Sample network graphs (sociograms) .. 123

Figure 24. Behaviour category (utterances) and number of occurrences for P1, P7 and
P8 .. 132

Figure 25. Percentages of overall team interaction (utterances) behaviours for the core
developers ... 134

Figure 26. Summary of project interaction (utterances) for the core developers and
others (for the UE team (P1)) .. 135

Figure 27. Aggregated interactions (utterances) for core developers 146

Figure 28. Detailed interactions (utterances) of core developers over project phases .. 147

Figure 29. Collaboration patterns of successful globally distributed agile software teams
 ... 174

vi

Figure 30. Collaboration patterns of successful globally distributed agile software teams
and the true role of core developers .. 189

Figure 31. Collaboration patterns of successful globally distributed agile software
teams, the true role of core developers and changes in core developers’ attitudes,
knowledge sharing and task performance ... 203

vii

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.

Sherlock Licorish

viii

In loving memory of
my father, Victor Emanuel Saul.

Gone but not forgotten!

ix

Acknowledgements

Multiple individuals have contributed directly and indirectly to this endeavour over the

past three years. While some have provided direct enrichment throughout the course of

this PhD, others have worked hard to remove obstacles, offered continuous

encouragement and other forms of support. These contributions, in no small way, have

led to the realisation of this thesis.

I am forever indebted to my primary supervisor, Professor Stephen MacDonell, who has

done everything possible to ensure that this experience was inspiring and pleasant.

Steve, your mentorship and guidance have provided the platform through which

challenges are now frequently seen as opportunities, thank you. Thanks also to my

secondary supervisor, Dr. Andy Connor, for guidance and advice.

I would like to express my gratitude to Dr. Jacqui Finlay, Frederik Schmidt and

Ofosuhene Apenteng for their help and support at various stages of this journey.

Thanks to Associate Professor Tony Clear and Dr. Robert Wellington for their early

critique and advice on the Confirmation of Candidature proposal. Others that have also

instilled a desire for, and commitment to excellence, that have shaped my scholarly

endeavours, and this PhD, particularly Jim Buchan, Anne Philpott, thank you.

Thanks to Professor Daniela Damian, Professor Didar Zowghi, Dr. James Skene and Dr.

Jacqueline Whalley from whose suggestions and criticism multiple mental impressions

have been formed over this journey.

I am very thankful to Dr. Kate Ehrlich of IBM Research for granting this work access to

the IBM Rational Jazz repository. Thanks also to the many IBM Rational Jazz software

practitioners for agreeing to release their development information from which the

software engineering process may be properly investigated. I trust that the output of this

research will inform your development practices.

I am grateful for the employment opportunities that were provided by SERL and SCMS,

AUT, in the form of Lecturing, Project Supervision, Tutoring and Research Assistant

roles. Thanks to Dr. Gisela Klette for the excellent BCIS R&D project coordination, and

the students for their positive reviews and confidence – you’ve made it easy.

x

Thanks to my fellow colleagues at SERL, AUT, and particularly Amjed Tahir, Bilal

Raza, Michael Bosu, Minjuan Tong and Waqar Hussain who have provided

encouragement and support, and multiple forums through which I could share and

receive knowledge along this journey.

It is with profound gratitude that I acknowledge the kind support of my family. I am

forever grateful to my wife, Mondy, and son, IJ, for their patience, and for sacrificing

their comforts in Guyana in support of my journey over the past three years. Thanks to

my mom, Norma who has always stood behind me and knew I would succeed. Thanks

to my sister, Deborah, who sowed the seed from which my competitive drive has

grown.

I would like to express my sincerest appreciation to friends in Guyana, particularly

Cleveland Sullivan, Lalchandra Rampersaud, Margaret Cummings, Mellisa Layne,

Rawle Joseph and Shawn Croney, who have done an exceptional job removing various

forms of obstacle, and providing assistance in order to limit the effects of possible

interruptions on my study outcomes.

Finally, I am extremely thankful to the Vice Chancellor of AUT for his financial

support through a Doctoral Scholarship award which has funded this PhD. Thanks also

to the Minister of Public Service, Guyana, H.E. Dr. Jennifer Westford for her travel

approval.

xi

Abstract

Agile global software development (AGSD) has become increasingly prevalent in the

last decade. AGSD occurs in environments that are inherently affected by elevated

incidence of team-related challenges and issues, and so a growing body of research has

centred on understanding teams that have overcome the challenges introduced by

distance, and have succeeded in delivering high-quality products. Opportunities to study

such teams are invaluable in terms of strengthening the AGSD knowledge base.

In particular, evidence captured in repositories and software logs, which are commonly

used for communication in AGSD settings, has provided novel insights into team

processes. One such observation is evidence of a centralised communication and task

performance pattern for both open source and closed source AGSD teams. While this

pattern has been noted, however, there has been little effort to understand the reason

behind this phenomenon. Previous research has shown that central individuals are

important to their teams’ performance, as they coordinate information flow. Thus,

understanding these members’ roles in, and contributions to AGSD contexts would add

significantly to the software engineering literature base considering the study of team

dynamics from communication logs and repository data. The research reported in this

thesis is a contribution to that literature base.

This research has used data mining techniques, social network analysis (SNA),

psycholinguistic analysis and directed content analysis (CA) under a pragmatic case

study design to study artefacts contributed by ten IBM Rational Jazz AGSD teams

comprising 146 software practitioners, in order to explain the collaboration patterns of

successful AGSD teams and how and why core developers contribute to AGSD team

dynamics.

Drawing on role theories, behavioural and organisational psychology, social motivation,

sociology and group interaction theories to delineate the novel findings from this case

study, it is revealed that: communication patterns established early in a software project

are maintained throughout; successful teams have highly connected communication

networks; core communicators are also core developers; successful AGSD teams are

social and task driven; formal role assignment does not pre-determine communication

and coordination actions; and core developers operate across roles – both organisational

and interpersonal. The results have shown that core developers’ task performance

xii

influences their need to communicate, and that core developers’ performance is linked

to the demands of their teams. Findings also established that core developers’ language

processes are related to their involvement in knowledge sharing and task performance.

These findings form the basis for initial conjectures of explanatory theories. This

research also extends the software engineering literature and AGSD knowledge base,

contributes insights for those intending to adopt a pragmatic approach in the study of

software repository data, provides directions for further research, and outlines

implications for software engineering practice.

In terms of software engineering practice, project managers are encouraged to plan for

inevitable variations in communication volume, to consider task assignment as a

mechanism to enhance knowledge redundancy and so reduce reliance on core

developers, to exercise flexible project governance in order to facilitate self-

organisation, to ensure a mix of social- and task-focused practitioners in AGSD teams,

to encourage team-wide participation when core developers are most active to maximise

team mentoring, to support core developers by surrounding them with other excellent

communicators, and to facilitate frequent communication by top task performers.

Emergent evidence in communication may also inform project diagnostics, and software

tools with features that manage coordination requirements and prioritise team

communication are likely to aid AGSD project governance and team performance.

1

Chapter 1. Introduction and Background

This chapter introduces the work that has been conducted for this PhD and is reported in

this thesis. In the first section (Section 1.1), the rationale for this study is provided,

including the justification for conducting empirical software engineering (SE) research,

and particularly, for studying human factors in SE - the focus of this work. The specific

motivations underpinning this research are provided in Section 1.2, including the

author’s personal motivation which was driven by anecdotal evidence and experiences

gained while working in multiple software practitioner roles, and gaps identified in the

research literature. Details of the study’s goals and the more finite objectives are

provided in Section 1.3, and the study scope, assumptions and boundaries are outlined

in Section 1.4. The research design is described in Section 1.5, where the research

epistemology, methods and techniques are briefly introduced. A summary of the overall

contributions of the work is provided in Section 1.6, including individual aspects that

have resulted in specific published works. An outline of the thesis structure is provided

in Section 1.7, and finally, Section 1.8 provides a summary of the details provided in

this chapter.

1.1 Rationale for Research on Human Factors and Empirical SE

Contention over software systems’ adequacy, project success rates and the adoption of

appropriate software process models have been ubiquitous and longstanding (Augustine,

Payne, Sencindiver, & Woodcock, 2005; Boehm, 2006; Siddiqui & Hussain, 2006).

Despite many recommendations in relation to specific software methodologies and tools

(Chin, 2004; Licorish, Philpott, & MacDonell, 2009b; Nerur, Mahapatra, & Mangalaraj,

2005), there remain questions over the outcomes of software development projects

(Charette, 2005; Standish Group, 2009). Previous evidence suggests that people factors,

such as communication issues and behavioural conflicts, underscore the causes of

collaborators’ (dis)satisfaction and inadequately performing software teams

(Abrahamsson et al., 2006; Acuna, Gomez, & Juristo, 2009; Rajendran, 2005; Verner &

Evanco, 2005; Walle & Hannay, 2009). Thus, it is a widely held view that studying

these topics would provide a suitable avenue through which researchers could

understand the software process and could offer (more) valuable recommendations for

process improvements.

2

In fact, beyond specific recommendations for more people-centric consideration, over

the last decade empirical research and evidence based software engineering (EBSE) has

become fundamental to the understanding of software development practices and

technologies (Benestad & Hannay, 2012; Heijstek, Kuhne, & Chaudron, 2011; Jaanu,

Paasivaara, & Lassenius, 2012; Siniaalto & Abrahamsson, 2007; Wohlin, 2002). The

view of proponents in the empirical software engineering space is that software

development practices and technologies are context-specific (Bird, Murphy, Nagappan,

& Zimmermann, 2011), and only through empirical avenues can these contextual

understandings emerge so that particular practices and technologies are leveraged

appropriately to provide value to the software engineering community. Outcomes and

understandings from empirical investigations often lead to teams’ empowerment and

provide insights and awareness for software development stakeholders (Bird et al.,

2011; Franca & Da Silva, 2009).

For instance, Zimmermann et al. (2010) investigated the features that made bug reports

most helpful to developers and found that steps to reproduce bugs, stack traces and test

cases are most helpful for locating defects during bug fixing; this information, however,

was rarely provided by testers. In terms of the potential utility of this finding for

software project governance, this observation may encourage testers to provide the

regularly omitted information in their reports which would likely reduce the time

developers spend attempting to replicate bugs, and may also inform additional

requirements for bug reporting tools. Failure prediction studies have also allowed

software teams to predict risky software features and prioritise testing, and have aided

the creation of plans for future maintenance activities (Bhat & Nagappan, 2006; Bird et

al., 2011; Nagappan & Ball, 2007). Studies have also considered under which

circumstances developers should work together given their need to coordinate and

communicate around specific software features (Bird, Nagappan, Gall, Murphy, &

Devanbu, 2009; Pinzger, Nagappan, & Murphy, 2008), providing team composition

recommendations. This latter theme is particularly relevant to this work, and in part,

motivates this study agenda, as considered in the next section (Section 1.2).

1.2 Main Motivations

Group dynamics and group maturity processes generally, and more specifically as they

apply to software development, provide the stimulation and curiosity that drive this

research project. Having had the exposure and privilege to work as a Programmer for

3

over four years and as an Information Systems Manager for three years, this researcher

has gained first-hand insights into how individuals and their roles change over time

when they are organised into or form groups. During this process it was noted that

deliverables from groups are affected by individuals’ (changing) behaviours over the

software project’s lifecycle. Additionally, it was observed that individuals’ interactions

and involvement in groups were linked to both their personal motivation and public

persona. Other personal group experiences, derived from involvement in the corporate

world, academia and social networks, have also informed this researcher’s interest in

and convictions about the complex and subtle contributions that individuals and group

dynamics bring to software development.

Such has been the keen interest in and attention to the details of groups that this

researcher is almost certain that there exist patterns in group dynamics that are

necessary for, and that can be intelligently harnessed towards, ensuring that software

projects succeed. If found, such patterns could be distilled and synthesised into models

to support the management of team behaviours and group dynamics based on rigorous

empirical research evidence. Such models would be especially useful for globally

distributed agile software developments given that such teams are often challenged with

reduced levels of awareness, group identification and shared understandings, due to

team members’ separation (Chang & Ehrlich, 2007; Jaanu et al., 2012).

Given these impediments, issues related to behavioural imbalance are likely to have a

negative impact on global teams’ performance , and particularly given the way negative

behavioural incidents are shown to affect both trust and team spirit (Feldt, Angelis,

Torkar, & Samuelsson, 2010). In fact, because of the growing attention given to global

and distributed software development, with many major market players such as

Microsoft, IBM and Oracle using this approach during the delivery of noteworthy

software releases (Yu, Ramaswamy, Mishra, & Mishra, 2011), it is imperative to

examine successful globally distributed software teams to understand the behavioural

configurations under which these teams perform best. Additionally, such teams are said

to adopt agile software development practices (Coram & Bohner, 2005), which are

inherently driven by people processes.

Recent research studies have placed significant emphasis on studying the

communication and coordination practices of software engineering teams, as noted in

the following examples: (Cataldo, Wagstrom, Herbsleb, & Carley, 2006; Damian,

4

Marczak, & Kwan, 2007; Ehrlich & Chang, 2006). Behavioural issues have also

attracted noteworthy attention in the literature due to the way they are posited to impact

individuals’ ability to engage during team work and their willingness and capacity to

communicate and form/sustain relationships in teams (Acuna & Juristo, 2004; Feldt et

al., 2010; Karn & Cowling, 2006; Wynekoop & Walz, 2000). However, little research

effort has been dedicated to studying the intricacies of globally distributed agile

software team dynamics, and particularly how core developers in these settings

influence their team’s performance. Therein lies an avenue for the work that is

performed here, the goals and objectives of which are presented next in Section 1.3.

1.3 Goals and Objectives

The primary goal of this work is to understand and explain the collaboration patterns of

successful globally distributed agile software teams, and how and why core developers

contribute to globally distributed agile team dynamics. These understandings should

extend previous theories and provide team composition, task assignment and

management recommendations for software project leaders. Since human actions are

performed within the confines of social systems, and such social systems are rooted in

specific controlled norms (Giddens, 1979), the more finite goals (the research questions

that address these goals are formally represented in Section 1.5) of this study are to

unearth how teams’ communication patterns change during a successful globally

distributed agile software project, to understand how core software developers operate

within structural teams, and how these teams operate as agents within organisational

structures. This latter goal involves explaining the true role of core developers and how

their attitudes, behaviours and task performance impact their project’s health as their

project progresses.

Such understandings and recommendations are likely to be most constructive if they are

garnered from highly effective and successful globally distributed agile software teams.

Of course, a more complete understanding would be provided by also considering failed

projects; however, data from such projects are not often available. While particular

mechanisms to solicit insights and experiences, such as interviews and questionnaires

(Damian, Izquierdo, Singer, & Kwan, 2007), may contribute towards the achievement

of this research goal, the outputs of this work would be most meaningful if they are

derived from the examination of teams’ artefacts used/produced during the execution of

an actual successful globally distributed agile software development project. This latter

5

requirement is particularly necessary in this study context because software practitioners

are known to provide socially desirable responses when completing questionnaires and

answering interview questions (Holden & Passey, 2010). Additionally, these individuals

are likely to operate within normative organisational boundaries when outsiders are

present (Goguen, 1993). Furthermore, is it also generally infeasible to gain access to

globally distributed agile software practitioners during software developments due to

the geographical spread of such teams. Thus, this work inspects software artefacts using

a multi-phase mixed method approach, to examine globally distributed agile software

teams’ dynamics during the delivery of successful software outcomes.

To address the goal outlined above, the specific objectives of this study are as follows:

1. To examine the way communication patterns of successful globally distributed

agile software teams change over the course of their project and to explore the

collaboration patterns of such teams, including the way team members’

interactions and task performance are distributed.

2. To establish how the most influential globally distributed agile software

practitioners (core developers) contribute to team dynamics; this includes how

these individuals contribute to actual software development activities and problem

solving while occupying their given roles.

3. To establish the true role of core developers, including how these members

contribute their social and intellectual capital, whether their attitudes differ from

those of other practitioners, and the actual roles they enact during a globally

distributed agile software development project.

4. To examine how the core developers contribute their social and intellectual capital

as their project advances; this includes examining whether core developers’

attitudes change as their project progresses, how core developers share knowledge

over the course of their project, the initial team arrangements that lead to core

developers becoming hubs in their teams, the way core developers contribute to

task performance over the course of their project, the way core developers’

contributions to task performance is linked to their attitudes and how core

developers’ contributions to task performance is linked to their contribution of

knowledge.

6

5. To advance theory for understanding human processes during software

development and to inform studies mining software repositories; to provide

models and methodological advice and encourage future work examining human

processes through the use of software artefacts (refer to the following section

(Section 1.4) for further details).

1.4 Scope, Assumptions and Boundaries

As explained above, this work aims to contribute to research and practice in globally

distributed agile software development. Given that globally distributed software teams

operate in dispersed contexts, these individuals often use tools to support their

communication and coordination activities (Yu et al., 2011). In fact, some globally

distributed software development teams have shown a preference for communicating

with text-based tools (e.g., email, blogs and instant messaging) as against through video,

audio and face-to-face mechanisms (Jaanu et al., 2012; Yu et al., 2011). Such tools

often provide persistent data storage, and so, are valuable sources of interaction

evidence from which software development human processes could be studied (Abreu

& Premraj, 2009; Bachmann & Bernstein, 2009). The utility provided by these

repositories is in fact noteworthy as research evidence has shown that a substantial

amount of developer time is spent on communication (Perry, Staudenmayer, & Votta,

1994) . Additionally, the unobtrusive nature of gaining access to repository artefacts

also provides researchers with added novelty. Answers related to why specific steps are

taken during the software development process, and how decisions are implemented, are

often evident in such artefacts, and particularly if the communication and collaboration

tools used during the software development process are the primary mechanism for

project coordination and control (Nguyen, Wolf, & Damian, 2008). As indicated in

Section 1.3, this research uses repository data to study globally distributed software

teams’ human processes. Accordingly, this work is conducted in conformance with the

following assumptions and boundaries:

1. This work assumes that the artefacts studied from the selected repository are

central to the coordination and management of the SDLC (Nguyen, Wolf, et al.,

2008), and communication evidence in these software artefacts reveals how, what

and why software practitioners communicate (Damian, Izquierdo, et al., 2007;

Singer, 1998) – from both behavioural and knowledge perspectives.

7

2. Although concepts from the hermeneutic theory of Ricoeur (1981) could be used

to artificially construct the physical environment from the virtual environment

(see further discussions on the application of Ricoeur (1981)’s work in Klein &

Myers (1999)), there is no such attempt in this project, nor is there any physical

involvement between the author of this work and the software practitioners being

studied.

3. This work assumes that theories and frameworks in management and role theories

(Belbin, 2002; Benne & Sheats, 1948), behavioural and organisational

psychology (Colomo-Palacios, Cabezas-Isla, Garcia-Crespo, & Soto-Acosta,

2010; Downey, 2009), social motivation (Geen, 1991; Inkpen & Tsang, 2005;

Levin & Cross, 2004), sociology (Hackman, 1986) and group interaction and

psycholinguistics (Pennebaker, Chung, Ireland, Gonzales, & Booth, 2007;

Pennebaker & King, 1999), provide adequate grounding for determining attitudes,

behaviours and knowledge sharing from artefacts.

4. This study examines artefacts that are contributed by many of the typical software

practitioners (programmers, team leaders, project managers, administrators, and

those occupying multiple roles) that are commonly involved during software

development. However, many of the findings and recommendations are aimed at

those responsible for software project governance (software project managers and

team leaders). The teams studied in this work are globally distributed and are

adopting specific agile practices through which multiple software outputs have

been successfully deployed (Frost, 2007). These software systems are

commercially accessible and were verified by clients as adequately usable. Details

around the clients’ feedback are available at http://www.jazz.net.

5. Given the incremental development stance inherent in agile methodologies

(Coram & Bohner, 2005), the individual project phases, although easily

identifiable in the repository, may not be consistent from team to team. However,

the research strives to assemble and consider all of the artefacts in the repository

that belong to individual teams, and the project is partitioned in a realistic way

that closely reflects the way a software project occurs over time.

6. Cultural differences and distance (geographical and temporal) may directly affect

software development teams’ performance (Espinosa, DeLone, & Lee, 2006), and

these variables may also have an impact on team members’ behaviours – which

in turn may lead to performance issues (Jaanu et al., 2012). However, research

8

examining the effects of cultural differences in global software teams has found

few cultural gaps and behavioural differences among software practitioners from,

and operating in, Western cultures, with the largest negative effects observed

between Asian and Western cultures (Espinosa et al., 2006). Given that the teams

studied in this work all operated in Western cultures, this work does not consider

the culture and distance dimensions of globally distributed agile software

development, and the way these might affect individual behaviours. Rather, this

work focuses on the social attitudes and knowledge contribution of software

practitioners and how these variables interplay during team work – by considering

practitioners, their roles and responsibilities, their teams’ structure and size, their

teams’ task portfolio, and the organization.

7. While the previous experiences of the author (discussed in Section 1.2) may

potentially bias the analyses and interpretations provided throughout this work,

the author’s past involvement with the software development process, and

software artefacts in general, are also likely to strengthen these analyses and

interpretations. Additionally, these experiences are likely to reinforce the

reliability and validity of this work. Further, in accordance with the

recommendation of previous theories, where necessary, the author’s views and

assessments are validated with established theories in the relevant field

(Neuendorf, 2002; Weber, 1990).

1.5 Research Design

In order to address the research objectives and provide the contributions outlined above,

this work utilises a pragmatic approach (Newman & Benz, 1998), employing a mixed

method case study design (refer to Chapter 4 for further details). Some aspects of the

work outlined above are confirmatory and quantitative in nature, and these are best

studied under the guise of a positivist framework (Onwuegbuzie & Leech, 2005),

whereas other aspects of the work are exploratory and are driven in a bottom-up fashion

by a more interpretivist or constructivist approach (Klein & Myers, 1999). Given that

this work uses repository data, quantitative approaches are employed for data reduction,

data cleaning and analysis of the quantitative data in the early part of the work

(Onwuegbuzie & Leech, 2005). The more qualitative aspects of the work are guided by

thematic analysis techniques, using a bottom-up approach, towards the provision of

initial theories (Onwuegbuzie, 2003). Quantitative measures are then used to identify

9

meta-themes and relationships among themes discovered through quantitative and

qualitative observations (see the work of Barcellini, Detienne, Burkhardt, & Sack

(2008) for example). These approaches are utilised to provide multiple insights and

strengths to the work under consideration here (Leech & Onwuegbuzie, 2009; Schultz

& Hatch, 1996). By using quantitative techniques to analyse themes revealed from

qualitative data analysis this study provides deeper levels of interpretation from this

aspect of the work. Additionally, qualitative aspects of the work help to explain

(Easterbrook, Singer, Storey, & Damian, 2008; Leech & Onwuegbuzie, 2009)

statistically significant findings revealed during the quantitative elements of the work,

as a means of providing triangulation for the methods and techniques selected (refer to

Chapter 4 for further details).

Given the case study design and the research objectives, this study utilises multiple units

of analysis, at the organisation, team, and individual levels (Runeson & Host, 2009). In

the first research phase, data mining principles (Han & Kamber, 2006; Tan, Steinbach,

& Kumar, 2006) are applied to the data collection and preliminary data exploration

activities. During this phase quantitative data analysis of the repository is conducted to

select appropriate cases and to uncover preliminary insights around how globally

distributed agile software teams’ communication changes over the course of the

software project. SNA techniques (De Laat, Lally, Lipponen, & Simons, 2007;

Willging, 2005) are also used to enable confirmatory analyses to be conducted during

this phase. This form of analysis is used to compare quantitative findings in this work

with those reported in previous studies (Mockus, Fielding, & Herbsleb, 2002; Nguyen,

Wolf, et al., 2008). Data analyses conducted through the use of SNA also inform the

case selection process (Crowston, Wei, Li, & Howison, 2006) and later explorations of

core developers’ behaviours and attitudes, and their knowledge sharing and task

performance processes. The research questions that are outlined to address these

objectives are (refer to Chapter 2 for further details):

RQ1. Do communication patterns change as the software project progresses?

RQ2. Is there equity in practitioners’ contributions to their project?

RQ3. Are active communicators more important to their teams’ collaboration?

RQ4. How are active communicators involved in task performance?

10

RQ5. Are practitioners’ formal role assignments related to their involvement in

project interactions and task performance?

Previous research has established that a few individuals in each team generally

dominate project communication and source code changes during software development

(Bird, Gourley, Devanbu, Gertz, & Swaminathan, 2006a; Cataldo & Herbsleb, 2008;

Cataldo et al., 2006; Shihab et al., 2009). Additionally, previous work has shown that

core developers occupy the centre of their teams’ information sharing actions, and they

are (therefore) critical to team performance (Bavelas, 1950). These members have also

been shown to influence their wider teams’ willingness to adapt to change and maintain

performance (Ruhnow, 2007). However, questions related to the reasons for these

members’ extraordinary presence, and understanding the actual roles (both formal and

informal) that core developers occupy in their teams, have not been answered. As noted

in Section 1.6, such answers could be invaluable for understanding the nature and

peculiarities of globally distributed agile software teams’ dynamics and informing the

process of assembling high-performing and cohesive teams.

In the second project phase of this research, extracted communication data is analysed

using linguistic analysis and directed content analysis techniques (Henri & Kaye, 1992;

Pennebaker et al., 2007; Pennebaker & King, 1999; Zhu, 1996). These approaches are

used in a more exploratory manner to study core developers’ behaviours and attitudes

and their enacted roles (Belbin, 2002). The following research questions are designed to

address these issues (refer to Chapter 2 for further details):

RQ6. Do core developers’ behaviours and attitudes differ from those of other

software practitioners?

RQ7. What are the core developers’ enacted roles in their teams, and how are

these roles occupied?

Similar to the analysis threads in the second phase just mentioned, linguistic analysis

(Pennebaker et al., 2007; Pennebaker & King, 1999) and directed content analysis

(Babbie, 2004) are conducted in a third research phase to study changes in core

practitioners’ attitudes and knowledge processes (Henri & Kaye, 1992; Zhu, 1996) and

the way these relate to these members’ actual contribution to software development

activities. Core developers maintain exceptional performance in both team

communications and task changes (Cataldo & Herbsleb, 2008; Shihab et al., 2010).

However, it is not clear how these individuals contribute to their teams’ process over the

11

course of their project, and how their organizational, interpersonal, intrapersonal and

management competencies sustain their project’s health. Additionally, there is

uncertainty around what team conditions, and over which project phase(s), core

developers are most important to their teams. Previous work has shown that

practitioners’ interaction patterns change over their project (Cataldo & Ehrlich, 2012;

Cataldo & Herbsleb, 2008; Cummings & Cross, 2003), and so longitudinal studies

should uncover details that could lead to explanations for software team dynamics more

fully. Evidence of how practitioners interact over the course of their project will inform

targeted team strategies and phase-specific interventions. In fact, previous calls for such

investigations of team dynamics have been made (Hinds & McGrath, 2006), as the

static view does not reveal fully what actually happens over the duration of a software

development project. Accordingly, the following questions are designed to study

changes in core developers’ behaviours and attitudes and knowledge sharing:

RQ8. Do core developers’ attitudes change as their project progresses?

RQ9. How do core developers share knowledge over the course of their project?

RQ10. What initial team arrangements lead to developers becoming hubs in their

teams?

Knowledge sharing studies have shown that individuals’ and teams’ willingness to

actively participate in knowledge sharing and team performance is linked to multiple

factors (Hinds & Pfeffer, 2003), and particularly social motivation (Inkpen & Tsang,

2005; Levin & Cross, 2004). Accordingly, core developers may be most happy to

perform during periods of positive and social behavioural climate (De Vries, Van den

Hooff, & De Ridder, 2006; Zakaria, Amelinckx, & Wilemon, 2004). Similarly, core

developers may also exhibit eagerness to perform during highly evaluative periods.

Studying these members’ attitudes and knowledge sharing behaviours and the way these

are linked to their involvement in their teams’ task performance would provide further

insights into globally distributed agile software teams’ dynamics. Thus, the following

questions are also answered in the third phase of this research (refer to Chapter 2 for

further details):

RQ11. How do core developers contribute to task performance over their project?

RQ12. Are core developers’ contributions to task performance linked to their

attitudes?

12

RQ13. Are core developers’ contributions to task performance linked to their

contribution of knowledge?

As noted above, each research phase builds on those that have preceded it, but it is also

common for patterns observed in a later phase to inform reviews and enhancements of

activities conducted in an earlier phase (e.g., analyses outputs of the SNA inform a

review of the cases that are selected during the preliminary data mining explorations). In

summary, during this multi-phase analysis, the research questions (RQ1 – RQ13)

outlined above are answered under the guidelines of the case study method and general

principles of pragmatism. The contributions that are derived from these explorations are

presented in the next section (Section 1.6).

1.6 Contributions and Published Work

In achieving the goals and objectives outlined in Section 1.3 above, this work provides

multiple contributions to both software engineering theory and practice. From a

theoretical perspective, this work extends research focusing on understanding human

processes during software development, and particularly, the body of literature that has

revealed evidence of how teams work through the use of software artefacts and

repository data (Ehrlich, Helander, Valetto, Davies, & Williams, 2008; Ehrlich, Lin, &

Griffiths-Fisher, 2007). This study also provides methodological advice and

recommendations for those extracting and examining software repository data (Nguyen,

Wolf, et al., 2008; Shihab, Bettenburg, Adams, & Hassan, 2010; Shihab, Zhen Ming, &

Hassan, 2009), and provides an extended taxonomy which offers an avenue through

which others may understand globally distributed agile software team dynamics and

core software practitioners’ attitudes and knowledge sharing behaviours (Licorish &

MacDonell, 2013a, 2013c). From a research design perspective, through this work

researchers are likely to gain grounded insights into pragmatism (Newman & Benz,

1998) and the implementation of multi-method research (Licorish & MacDonell,

2013a). Through theoretical lenses, secondary contributions of this work include

pointers and actual exemplars of the implementation of tested approaches from the

organisational psychology, management and role theories and social psychology

disciplines (Licorish & MacDonell, 2013a). Further, this work also provides specific

recommendations for future research, with a view to advancing software engineering

theory and providing additional understandings and advice for software development

practice (Licorish & MacDonell, 2013b, 2013c).

13

From a practice-based perspective, this work provides the following concrete

understandings and recommendations aimed at improving globally distributed agile

software team composition and task assignment processes:

1. Grounded evidence of, and explanations for, how globally distributed agile

software teams’ communications change over the course of their project and

details around the collaboration patterns of such teams, including the way team

members’ interactions and software changes are distributed (Licorish &

MacDonell, 2013c, 2013d).

2. Grounded evidence of, and understandings for, how the most active globally

distributed agile software practitioners (core developers) contribute to team

dynamics, particularly including explanations for how these individuals contribute

to actual software development activities and problem solving while occupying

given roles (Licorish & MacDonell, 2013b, 2013c).

3. Explanations of how core developers contribute their social and intellectual

capital, how their attitudes differ from those of other practitioners, and the actual

roles they enact during a globally distributed agile software project (Licorish &

MacDonell, 2013c) – these understandings are aimed at establishing why a

centralised pattern is seen for software teams’ communication and explaining the

true role of core developers.

4. Understandings of the way core developers’ attitudes change as their project

progresses, how core developers share knowledge over the course of their project,

the initial team arrangements that lead to core developers becoming hubs in their

teams, the way core developers contribute to task performance over their project,

the way core developers’ contributions to task performance are linked to their

attitudes, and how core developers’ contributions to task performance are linked

to their contribution of knowledge – these understandings are aimed at informing

project staffing and specific team configurations in support of the most active

software practitioners during the software development process.

5. Recommendations for extending collaboration and process support tools (Licorish

& MacDonell, 2013c, 2013d).

Through these understandings and recommendations software project leaders will be

informed about how to plan for the staffing of globally distributed agile software teams.

Project leaders and software engineering stakeholders will also understand the particular

14

characteristics of distributed agile group dynamics, how to assemble global teams with

appropriate behavioural configurations, and how to identify ‘software gems’ –

exceptional practitioners both in terms of task and team performance. Knowledge of the

means by which the most active practitioners become the centre of their project, and the

way attitudes and knowledge sharing behaviours are linked to these software

developers’ task performance, would help project leaders to identify software standouts

and aid with assembling high-performing and cohesive teams. Suggestions for new tool

features are also aimed at improving the software development process.

While this thesis presents a consolidation of the aforementioned contributions, more

granular outputs are contributed in the following published works:

1. Licorish, S.A., & MacDonell, S.G. Understanding the attitudes, knowledge

sharing behaviors and task performance of core Jazz developers: A longitudinal

study, Under second review with Information and Software Technology.

2. Licorish, S. A. and MacDonell, S. G. (2013) Self-organising roles in agile

globally distributed teams, in Proceedings of the 24th Australasian Conference on

Information Systems (ACIS 2013). Melbourne, Australia, ACIS, pp.TBC.

3. Licorish, S.A., & MacDonell, S.G. (2013) Adopting softer approaches in the study

of repository data: a comparative analysis, in Proceedings of the 17th International

Conference on Evaluation and Assessment in Software Engineering (EASE2013).

Porto de Galinhas, Brazil, ACM Press, pp.240-245.

doi:10.1145/2460999.2461035.

4. Licorish, S.A., & MacDonell, S.G. (2013) Differences in Jazz project leaders’

competencies and behaviors: a preliminary empirical investigation, in Proceedings

of the 6th International Workshop on Cooperative and Human Aspects of

Software Engineering (CHASE). San Francisco CA, USA, IEEE Computer

Society Press, pp.1-8. doi: 10.1109/CHASE.2013.6614725.

5. Licorish, S.A., & MacDonell, S.G. (2013) How do globally distributed agile

teams self-organise? Initial insights from a case study, in Proceedings of the 8th

International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE2013). Angers, France, SCITEPRESS, pp.227-234. doi:

10.5220/0004437001570164.

15

6. Licorish, S.A., & MacDonell, S.G. (2013) The true role of active communicators:

an empirical study of Jazz core developers, in Proceedings of the 17th

International Conference on Evaluation and Assessment in Software Engineering

(EASE2013). Porto de Galinhas, Brazil, ACM Press, pp.228-239.

doi:10.1145/2460999.2461034.

7. Licorish, S.A., & MacDonell, S.G. (2013) What can developers’ messages tell us?

A psycholinguistic analysis of Jazz teams’ competencies and behavior patterns, in

Proceedings of the 22nd Australasian Software Engineering Conference

(ASWEC2013). Melbourne, Australia, IEEE Computer Society Press, pp.107-

116. doi:10.1109/ASWEC.2013.22.

8. Licorish, S.A., & MacDonell, S.G. (2012) What affects team behavior?

Preliminary linguistic analysis of communications in the Jazz repository, in

Proceedings of the 5th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE). Zurich, Switzerland, IEEE Computer

Society Press, pp.83-89. doi:10.1109/CHASE.2012.6223029.

1.7 Thesis Structure

This thesis comprises six main chapters. The current chapter (Chapter 1) introduces the

thesis and provides background information about the work that is conducted during this

research project. Chapter 2 provides a survey of literature, including the rationale for

studying human factors, an introduction to theories around team composition,

psychology and software engineering human factors frameworks, a review of globally

distributed agile software developments and the study of communication, an outline of

the way attitudes are revealed from textual communication and a comprehensive review

of studies dedicated to the subject of communication in the software engineering

domain. This latter review has led to the identification of several research gaps (also

briefly introduced in Section 1.5 above), and accordingly, an outline of 13 research

questions (refer to Section 2.6 and Section 2.7).

Chapter 3 presents the research methodology and design, including a review of the

principles for selecting a specific research method or conforming to a particular research

epistemology (positivist and interpretivist), an introduction to the pragmatic approach

employed in this work, an outline of the case study method and the techniques that are

utilised during this work and a review of the theorising process. The process of

16

theorising particularly emphasises the way in which explanation theories are provided

through empirical investigations, the focus of this work (refer to Section 3.5).

Chapter 4 presents the results of this work. These results are set out in three main

sections (Section 4.1, Section 4.2 and Section 4.3) in alignment with the incremental

research design introduced in Section 1.5 above. A similarly incremental approach is

used in the research discussion which is presented in Chapter 5. This thesis then

concludes with Chapter 6, which provides retrospections of the study results and

discussions, an outline of the study’s contributions, an evaluation of this research

project’s limitations and threats, and a summary of the work’s implications. Aspects of

the work not captured in the six main chapters (Chapter 1 – Chapter 6), particularly

additional illustrations and statistics, are included in the Appendices.

1.8 Chapter Summary

This chapter presented the introduction and background to this thesis. In Section 1.1 it

was noted that previous evidence suggests that investigations aimed at understanding

the human processes involved during software development are likely to provide value

for the software development community, perhaps much more so than those studies

aimed at providing tool support and software methodologies. Additionally, it was shown

that empirical software engineering studies would provide important contextual

explanations for software process improvements. This work is shown to conform to this

framework, and also employs an empirical approach to study globally distributed agile

software teams’ human processes. Section 1.2 noted that the drive to study human

issues is particularly fitting given the way such concerns are exacerbated in distributed

software development settings, due to reduced opportunities for team engagement.

Section 1.3 introduced the research goals of this work - to understand and explain the

collaboration patterns of successful globally distributed agile software teams, and how

and why core developers contribute to globally distributed agile software team

dynamics. This goal was decomposed into multiple granular sub-goals, and further, into

five study objectives in Section 1.3. These objectives are addressed through the study of

software artefacts as contained in a software repository. Studying this medium is

especially appropriate for this work given that globally distributed software teams use

this means for project communication, and such sources have been held to capture the

details of the software development process once it is used as (one of) the primary

means of communication.

17

In this regard, seven assumptions and boundaries were formulated in Section 1.4, and

the contributions of this work are assessed in this regard. The research design of this

work was introduced in Section 1.5, which showed that this thesis embraced both

positivism and interpretivism under the general principles of a pragmatic case study

design. Section 1.5 also briefly introduced 13 research questions; these are confirmatory

and exploratory, and underpin the pragmatic approach that is adopted in this study. The

work’s contributions were outlined in Section 1.6, and comprise those for software

engineering theory (i.e., for theoretical advancement, from a design perspective and

identification of avenues for future research), and software development practice

(recommendations for project governance and extending collaboration and process

support tools). Finally, an outline of the thesis structure is presented in the preceding

section (Section 1.7). This section indicates that this thesis comprises six main chapters,

which are also supported by a range of Appendices.

The second of these chapters (Chapter 2) is presented next, providing an advancement

of this research agenda. Chapter 2 considers the study’s literature review, and provides

an in-depth examination of the theories in support of this work.

18

Chapter 2. Literature Review

This chapter critically reviews prior research and considers various theories that are

relevant to the research themes addressed in this work. First, since this study considers

teams’ and individuals’ involvement during the software development process, Section

2.1 sets out the motivation for studying this issue. Section 2.2 then surveys research on

team composition, considering this subject from the perspective of sociology and

behavioural psychology. This section (Section 2.2) also considers the study of teams in

software engineering, and introduces the most relevant software engineering human

factors frameworks. The next section (Section 2.3) introduces the specific context of

globally distributed agile software development, providing explanations of how agile

practices are implemented by globally distributed software teams. This section (Section

2.3) also considers the particular relevance of communication in a globally distributed

agile software development setting. The following section (Section 2.4) outlines the

benefits that are gained in studying communication, introduces different communication

methods, and provides an introduction to the literature around software engineering

teams’ communication. Section 2.5 then reports theories regarding how attitudes are

revealed in communication, with particular emphasis on the way attitudes are

demonstrated in textual exchanges – the environment that is examined in this study.

Works dedicated to the study of software practitioners’ communication artefacts such as

electronic messages, change request histories, bug logs and blogs are then surveyed in

Section 2.6, and preliminary research questions are outlined at this stage. This survey

(in Section 2.6) reveals that the wheel structure communication pattern is evident for

most software teams, and so this structure and its implications are considered in detail in

Section 2.7. Through this detailed assessment, further research gaps are identified and

appropriate research questions are outlined throughout Section 2.7. This chapter then

comes to a close in Section 2.8 with a brief summary of the theories presented

throughout the preceding sections.

2.1 The Study of Human Factors

Software development involves interdependent individuals working together to achieve

favourable outcomes both in terms of team productivity and product quality. This

establishes the long-held nature of development as a team effort (Walz, Elam, & Curtis,

1993). However, since the emergence of software development as a discipline it has

been plagued with contradictions over the adoption of specific procedures and tools, as

19

well as inconsistencies in terms of projects’ success rates (Abrahamsson et al., 2006;

Boehm, 2006; Licorish, Philpott, & MacDonell, 2009a; Siddiqui & Hussain, 2006;

Standish Group, 2009). These outcomes result in extensive speculation over which

approaches and tools are more suitable, when, and for whom, and how they should be

used to provide maximum value for the software development community (Boehm,

2006; Boehm & Turner, 2003a, 2003b; Chin, 2004; Licorish et al., 2009b).

Nonetheless, despite on-going efforts to improve software development practices

through such initiatives, uncertainties over project success rates remain (El Emam &

Koru, 2008). This has led to a growing belief that software development performance

would improve more substantively if the human processes employed during this activity

were better understood and supported (Abrahamsson et al., 2006; Acuna et al., 2009;

Beranek, Zuser, & Grechenig, 2005; Capiluppi, Fernandez-Ramil, Higman, Sharp, &

Smith, 2007; Capretz & Ahmed, 2010; Cunha, Canen, & Capretz, 2009; Rajendran,

2005).

In fact, almost irrespective of the reports of software project failures (Standish Group,

1995, 2001), studying human-related issues would seem to be necessary given the

emphasis placed on individuals and interactions (Coram & Bohner, 2005) and

collaboration and coordination (Chang & Ehrlich, 2007) by the increasingly prevalent

software development approaches in use in both agile and global software development

settings (Abrahamsson et al., 2006; Acuna et al., 2009; Cataldo et al., 2006; Damian,

Izquierdo, et al., 2007; Damian, Kwan, & Marczak, 2010; Ocker & Fjermestad, 2008;

Rajendran, 2005).

In light of the above, there is a growing body of research studies dedicated to human

interaction, communication and coordination themes (Abreu & Premraj, 2009; Al-

Rawas & Easterbrook, 1996; Cataldo & Ehrlich, 2012; Damian, Izquierdo, et al., 2007;

De Vries et al., 2006; Ehrlich & Cataldo, 2012; Hayes Huffman, 2003; Herbsleb,

Mockus, Finholt, & Grinter, 2001; Howison, Inoue, & Crowston, 2006; Licorish &

MacDonell, 2012). This phenomenon is also aligned with the consensus of recent

evidence, which continues to indicate that a variety of human and social factors are

among the strongest determinants of software development project performance (e.g.,

refer to Abrahamsson et al.(2006) for details).

20

Outcomes of research on software risk management (Paul, 2008; Ropponen & Lyytinen,

2000; Schmidt, Lyytinen, Keil, & Cule, 2001; Zwikael & Ahn, 2010) converge with

those in mainstream software engineering regarding the relevance of human factors in

software project performance (Abrahamsson et al., 2006; Cataldo & Ehrlich, 2012;

Denning, 2012; Sach, Sharp, & Petre, 2011; Sharma & Kaulgud, 2011; Zhou &

Mockus, 2011). This convergence is highlighted in Figure 1, which presents the main

problem areas (risks factors) for software development (Paul, 2008; Ropponen &

Lyytinen, 2000; Schmidt et al., 2001; Zwikael & Ahn, 2010). As noted in Figure 1

(adapted from http://www.myglobalit.com/), while some risks relate directly to human

issues (e.g., “coordination issues” and “team conflict”), others may be perceived to be

less so (e.g., “inadequate testing” and “changing requirements”). However, on close

examination of the model in Figure 1, it may be deduced that regardless of the

technology or tool support, people factors stand at the centre of this activity (a concept

illustrated in Figure 1). In fact, even “technology issues”, or the oversight of these,

relate fundamentally to people and their conduct, whether through inadequate reporting

or the neglect of suitable contingencies.

Accordingly, studying the people processes involved during software development

should provide fruitful avenues for researchers to better understand software

development practices, and to offer recommendations for software project governance

and overall process improvements. The benefits of such research are evident in the body

of work dedicated to the study of software practitioners’ communication and

coordination practices, which has provided noteworthy understandings and

recommendations for software project control (Cataldo et al., 2006; Damian, Izquierdo,

et al., 2007; Damian et al., 2010; Ocker & Fjermestad, 2008). Software practitioners’

behavioural issues (e.g., personality and trust) have also attracted notable attention in

the literature. These works have offered suggestions for dealing with the impact of

individuals’ behaviour traits during team work (Feldt et al., 2010; Gallivan, 2001; Karn

& Cowling, 2006; Wynekoop & Walz, 2000; Zheng, Veinott, Bos, Olson, & Olson,

2002).

http://www.myglobalit.com/

21

Figure 1. Typical software risk items

This study follows this line of research, and draws on social network analysis

psycholinguistics and directed content analysis to study multiple aspects of globally

distributed agile teams’ behavioural dynamics. Given that this work uses principles

from psychology to study this subject, psychology and the most relevant software

engineering human factors frameworks are reviewed in the following section (Section

2.2) to provide contextual understanding for how these disciplines contribute to

software human resource management. This material is reviewed prior to introducing

the extant literature in the globally distributed agile software development space

(provided in Section 2.3).

2.2 Team Composition, Psychology and SE Human Factors
Frameworks

Team composition and individuals’ social and behavioural influences during group-

work are said to impact the outcomes of group tasks (Hackman, Morris, & Leonard,

1975; Zalesny, 1990). These issues have been considered from many perspectives,

including sociology and behavioural psychology relating to self-identity (Thomas &

Hynes, 2007), social identity (Blaskovich, 2008; Brown, 2000), social capital (Oh,

Labianca, & Chung, 2006), group emotion and group mood (Gummer, 2001; Smith,

Seger, & Mackie, 2007), emotional intelligence (Druskat & Wolff, 2001), and team

building (Katzenbach & Smith, 2001). According to the resultant theories, each

22

individual brings a unique set of knowledge and skills to their collaboration during

group work, which is influenced by participants’ social and behavioural qualities

(Watson & Michaelsen, 1988). Such qualities are said to determine how team members

interact and the likelihood of teams being cohesive and productive (Adams &

Anantatmula, 2010).

As a consequence, human resource management has leveraged psychology and

management theories in supporting the task of selecting individuals with appropriate

skill sets for positions (Beranek et al., 2005; Capretz & Ahmed, 2010; Pollock, 2009;

Stevens & Henry, 1997). In particular, although job advertisements in the software

development industry generally emphasise technologies (Colomo-Palacios et al., 2010;

Litecky, Arnett, & Prabhakar, 2004), most software development related positions

demand multiple capabilities, including intrapersonal, organisational, interpersonal and

management skills (e.g., see monster.com) (Acuna, Juristo, & Moreno, 2006; Colomo-

Palacios et al., 2010; Downey, 2009). Intrapersonal skills include judgement, innovation

and creativity and tenacity, while being self-organising and having knowledge of

specific environments (e.g., programming competences in Java or Microsoft

technologies) is characterised as organisational (Colomo-Palacios et al., 2010; Downey,

2009). Interpersonal skills comprise team work and cooperation and negotiating skills,

and management skills are related to planning, organisation and leadership (Acuna et

al., 2006). In relation to software groups or departments, roles may also relate to the

specific software process or methodology being utilised by teams (Downey, 2009). For

instance, a software department adopting Extreme Programming may define roles such

as programmer, tester, coach and so on (Highsmith, 2004). Additionally, sometimes

software roles may be performed arbitrarily by project members in which case these

environments require that team members possess general competency in many roles

(Capretz & Ahmed, 2010; Gorla & Lam, 2004). Thus, role arrangement and

competency requirements for individual software-related roles are somewhat subject to

specific organisational requirements and contexts (Acuna et al., 2006; Trigo et al.,

2010).

Apart from the consideration of capabilities in the human resource management area,

and in particular, the specific application of such capabilities to software positions,

software engineering as a discipline has also considered human involvement in software

development activities. For instance, the Software Engineering Institute (SEI) provides

the People-CMM to support the human dimensions of software development (Curtis,

23

Hefley, & Miller, 2001), the People Software Process (PSP) focuses on software

participants’ performance (Humphrey, 1997), the Soft System Methodology (SSM)

considers software organisations’ social systems (Checkland, 2000) and the Team

Software Process (TSP) (Humphrey, 1998) provides improvement guidance for

software teams. Overall, these models are all aimed at informing software practitioners’

development, and augmenting the process of skills and capabilities management and

software role assignment.

As noted above, agile methodologies also emphasise the people element in software

development (Beck, 2000; Chin, 2004; Cockburn & Highsmith, 2001; Pressman, 2009).

However, it has been argued that some of the benefits that derive from their use are

eroded when agile is implemented in a global software development context (the

environment studied in this work), due to communication barriers, lack of group

identification, and trust and culture issues that are introduced by team members’

separation (Chang & Ehrlich, 2007; Kamaruddin, Arshad, & Mohamed, 2012; Serce et

al., 2009). Given these impediments, consequences related to teams’ collaboration

dynamics, attitudes and knowledge behaviour imbalances are likely to have a negative

impact on global teams’ performance. This is particularly relevant for global software

developments given that unbalanced team configurations are said to affect overall team

performance and team spirit (Andre, Baldoquin, & Acuna, 2011; Feldt et al., 2010).

Given the growing attention given to global and distributed software developments,

with many market leaders such as Microsoft, IBM, Lucent and Oracle using this

approach during the delivery of major software releases (Herbsleb et al., 2001; Yu et al.,

2011), it is imperative to examine global software development teams to understand the

dynamics of successful teams, and the behavioural configurations under which these

teams perform best (Chang & Ehrlich, 2007; Serce et al., 2009). Understandings from

these conditions and outcomes would provide pointers for project governance that

others could seek to replicate.

Accordingly, this work systematically examines multiple issues under the team

dynamics umbrella. The first necessity in this regard is an understanding of the way

agile software development is performed in globally distributed settings. To this end,

literature that addresses globally distributed agile developments is reviewed in the next

section (Section 2.3).

24

2.3 Globally Distributed Agile Software Development

Geographically distributed work is becoming ubiquitous due to globalisation (Cataldo

& Herbsleb, 2008); and this trend has found favour in some software development

organisations (Bird, Nagappan, Devanbu, Gall, & Murphy, 2009; Herbsleb & Moitra,

2001; Nguyen, Wolf, et al., 2008). For instance, India’s software industry grew between

30% and 40% annually for the ten year period ending in 2004 due to their involvement

in global software ventures (Arora & Gambardella, 2005). Driven by the availability of

cheaper hardware, affordable software development talent pools, increased access to

communication infrastructure and technologies and the need to reduce the time-to-

market, many software companies have expanded and are growing their operations to

reach global markets (Karolak, 1999; McDonough, Kahn, & Barczak, 2001; Yu et al.,

2011). In keeping with this expansion, these companies are employing global software

development (GSD) approaches, where software teams operate across distances,

including over continents and national boundaries (Layman, Williams, Damian, &

Bures, 2006; Sahay, 2003). In some software development environments, GSD teams

work in a distributed manner within relatively close proximity; however, as with

distributed developments across national boundaries, they are unable to communicate

face-to-face on a regular basis (Layman et al., 2006).

The drive to deliver software releases in rapid succession in order to reduce the time-to-

market and gain greater market share demands that companies employing GSD use

iterative software development methodologies. Thus, agile methodologies are often

adopted by GSD organisations (Danait, 2005; Layman et al., 2006; Young &

Terashima, 2008), in an approach also referred to as Agile Global Software

Development (AGSD).

Compared to the relatively recent emergence of GSD, the concept of agility in software

development has been in existence for three decades (Koch, 2005). This software

development approach emphasises four values (as captured in the Agile manifesto):

individuals and interaction over processes and tools, working software over

comprehensive documentation, customer collaboration over contract negotiation, and

responding to change over following a plan (Coram & Bohner, 2005). Additionally,

agile proponents operate under 12 guiding principles (Koch, 2005). These values and

principles are said to deliver value to software organisations and customers, while also

leading to improved software quality and reduced risk.

25

In agile software development methodologies such as Extreme Programming (XP),

Scrum, the Crystal Families of Methodologies, Feature-Driven Development, Adaptive

Software Development, and Agile Modelling, there is a gradual surfacing of the

software design and requirements, which promotes a human-centric environment,

having persons interacting in a common space, employing a ‘speculate-collaborate-

learn’ approach (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003).

Although many success stories have been reported regarding the implementation of

agile methodologies in global software development contexts (or AGSD) (Danait, 2005;

Layman et al., 2006; Young & Terashima, 2008), this phenomenon has also been

reported to be quite challenging (Kamaruddin et al., 2012). In particular, team member

dispersion (including customers and clients (Earl, 1996)) in AGSD has been shown to

reduce the opportunities for informal (and face-to-face) communication (Carmel &

Agarwal, 2001; Cataldo, Bass, Herbsleb, & Bass, 2007; Herbsleb & Mockus, 2003a;

Jalali & Wohlin, 2010). This dispersion has also been shown to affect project oversight

and monitoring (Damian & Zowghi, 2003; Prikladnicki, Nicolas Audy, & Evaristo,

2003; Rudzki, Hammouda, Mikkola, Mustonen, & Systä, 2010), and temporal distance

has been reported to have a negative impact on team culture and trust (Dullemond,

Gameren, & Solingen, 2009; Lee & Yong, 2010). Changing requirements, and the

consequent need for team (re)orientation to maintain the shared understanding that

characterises agile software development, has also been deemed counterproductive for

AGSD (Prikladnicki et al., 2003; Tiwana, 2004). On the other hand, the delivery of

frequent software releases that is encouraged in co-located agile settings (Jones, 1996;

Larman & Basili, 2003) is also recommended in ASGD environments (Paasivaara &

Lassenius, 2003). Thus, AGSD project stakeholders are often required to be extremely

vigilant and skilled to maintain team performance (Al-Ani, Horspool, & Bligh, 2011;

Young & Terashima, 2008).

Due to the way AGSD teams operate in a distributed manner, individual team members

often rely heavily on communication technologies to support their team processes

(Abreu & Premraj, 2009; Bachmann & Bernstein, 2009; Yu et al., 2011). Of the many

risk items introduced above, this issue (project communication) in particular, is often

critical to AGSD teams’ performance (Carmel & Agarwal, 2001; French & Layzell,

1998; Herbsleb & Mockus, 2003a; Herbsleb et al., 2001; Kamaruddin et al., 2012;

Layman et al., 2006). Given that team communication is often recorded for persistence

in AGSD settings, such communications form a source that could provide novel details

26

into the software development process (Abreu & Premraj, 2009; Bachmann &

Bernstein, 2009). The rationale for project decisions, pointers for how AGSD teams

work, insights into the way such teams collaborate, and general details on AGSD team

dynamics are stored in distributed software teams’ communication logs. Thus, these

logs provide invaluable knowledge-bases for AGSD (Bachmann & Bernstein, 2009).

Such knowledge is particularly valuable when communication artefacts of successful

teams are examined, and these teams use such artefacts as one of the primary source of

team communication.

This work uses a sample of such artefacts to study globally distributed agile software

team dynamics and, in particular, the attitudes, roles and knowledge sharing behaviours

of core developers. The next section (Section 2.4) considers theories associated with the

study of communication (and particularly communications that are text-based) in order

to highlight the relevance of studying this subject. More generally, Section 2.4 provides

understandings of the different forms of communication media and the variables that are

used to measure their effectiveness.

2.4 The Study of Communication

Effective communication is critical to the outcomes of interactions, and good

communication is recognised as essential for building interpersonal relations; these

assertions are known to hold across numerous contexts. This intricate social

phenomenon is defined as the ability to exchange information and express and

comprehend thoughts, feelings and attitudes derived from those exchanges (Ivancevich

& Matteson, 2001). The various methods for communicating enhance the complexities

of this activity. Communication may occur in face-to-face settings, via addressed and

unaddressed written forms or over electronic communication media such as telephone,

video or computer-mediated channels.

Social presence and media richness are the variables commonly used when assessing the

effectiveness of different communication channels. According to Short, Williams, &

Christie (1976), social presence is used to categorise a communication medium based

on the level of physical presence that is conveyed during participants’ communication.

In the measurement of physical presence, Rice (1992) and Short et al. (1976) highlight

that timing, pauses, inflections, and non-verbal cues are significant attributes for

effective communication. Non-verbal cues are facial expressions, gazes, posture and

physical distance. Johansen (1977) and Reid (1977) also explain that social presence

27

may be measured by how communal (personal or warm) individuals feel while

communicating.

On the other hand, media richness refers to the capability of those communicating to

understand information conveyed via one or more channels in a specified timeframe

(Daft & Lengel, 1986). Rich communication transactions are able to overcome different

frames of reference and allow for clarification of issues in order to enable timely change

to communicating participants’ understanding. Therefore, communications that impede

or delay communicators’ understanding possess a lower degree of richness. Media

richness may be measured by a medium’s capability for instant feedback, the number,

nature and diversity of cues available to those communicating, the language options

available and the degree to which attention is focused on the communicators (Daft &

Lengel, 1986).

In view of this, when assessing the theories regarding presence introduced by Johansen

(1977) and Rice (1992), it may be inferred that non-verbal cues are significant

indicators of social presence. Thus, face-to-face communication would be higher in

presence when compared to video, telephone and computer-mediated communication

(CMC) such as text chat and email. In this regard, the opportunity for greater self-

awareness, reduced inhibition, and rapid responsiveness should be facilitated in face-to-

face settings, followed by video, telephone, text chat and email (in that order). Hence, it

would be rational to deduce (in principle) that interpersonal interaction would be most

effective in a setting of high social presence and media richness.

While face-to-face communication indeed provides an optimal environment for rich

communication and high levels of social presence during individual exchanges, text and

telephone communications also provide individuals with effective ways to communicate

and coordinate during teamwork. More than that, such forms of communication may

also afford individuals an opportunity to express themselves (Dabbish, Kraut, Fussell, &

Kiesler, 2005; Kennedy, McComb, & Vozdolska, 2011) without the need or desire to

self-regulate and temper their views and opinions. Early studies considering small

groups, which are common in agile software development, have provided general

support for this position. Prashant (1997) posited that individuals’ general willingness to

conform diminishes in computer chat and email settings due to reduced normative

pressure. The findings of Smilowitz, Compton, & Flint (1988) and Walther & Burgoon

28

(1992) also revealed less individual conformity and a greater willingness to self-disclose

in computer-mediated settings.

While the preceding discussion considers communication in a general way, the effects

of social presence (or lack thereof) and media richness on communication and team

outcomes have been studied specifically in the software engineering and information

system domains. Cummings (2004), Herbsleb (1999) and Herbsleb, Mockus, Finholt, &

Grinter (2000) have all shown that lack of social presence and media richness affect

team members’ ability to communicate effectively, and group performance overall. In

contrast, more recent work reported by Nguyen, Wolf, et al. (2008) found that these

issues provided no barrier to the team members they studied when conducting group

tasks. Bird et al. (2009) also found negligible differences in the incidence of software

failures between distributed and collocated software development sites. In their study of

an agile global software development team Layman et al. (2006) found that textual

communication was considered to provide adequate means for project stakeholders to

maintain knowledge sharing and information transfer over the duration of the project,

and this method effectively substituted face-to-face communication. These latter results

could be interpreted to suggest that more recent communication technologies are

providing more effective support for software teams’ communication processes

(Calefato, Gendarmi, & Lanubile, 2009; Cheng et al., 2003; Frost, 2007), or that over

time software teams have developed and exhibited higher levels of creativity and

communication skills (Hall, Wilson, Rainer, & Jagielska, 2007; Lee, Trauth, & Farwell,

1995). That said, although there are mild disagreements concerning the modes and

methods of communication, and how these affect communication efficacy, the overall

benefits of communication cannot be overstated (Chang & Ehrlich, 2007).

Communication, regardless whether computer-mediated or face-to-face, signals team

members’ interaction and information exchange, and exploring these activities provides

an avenue to understand the intricate nature of actual group work (Damian, Izquierdo,

et al., 2007; Singer, 1998). For instance, it was discovered in previous research that

developers’ interactions during software projects are not a replication of those stated in

the development plan (Cataldo et al., 2006; Damian, Izquierdo, et al., 2007).

Additionally, empirical evidence has shown that software artefacts and software history

data are useful sources of interaction evidence (Aranda & Venolia, 2009). More

specifically, it has been posited that communication artefacts such as electronic

messages, change requests histories and blogs would provide a unique perspective on

29

activities occurring during the software development process (Cataldo et al., 2006;

Singer, 1998). As noted in Section 2.3, such a position is especially valid if these

artefacts are used as the only means of interaction during software development. Such

deductions provide general support for the work undertaken and reported in this study.

This work examines software teams’ collaboration and behavioural issues as are evident

through artefacts. Accordingly, the next step is to survey the application of appropriate

theories to guide this activity, and to inform the selection of an appropriate approach for

use in this work. This activity is considered in the following section (Section 2.5).

2.5 Communication, Text, Language and Attitudes

According to established linguistic theories it is possible to discern attitudes within

individuals’ communications (Mairesse, Walker, Mehl, & Moore, 2007; Pennebaker &

King, 1999; Pennebaker & Lay, 2002; Pennebaker, Mehl, & Niederhoffer, 2003).

Linguistic studies have shown that a person’s language use is stable over periods of

time, and that the way individuals communicate is influenced by their context and local

settings (Mehl & Pennebaker, 2003). Language use has also been studied as a function

of age (Pennebaker & Stone, 2003), gender (Mulac, Bradac, & Gibbons, 2001) and

emotional upheavals (Stone & Pennebaker, 2002). Earlier works examining language

use have also supported the viewpoint that there are unique variations in individuals

linguistic styles from situation to situation and linguistic analysis of textual

communication can reveal much about those communicating (Giles & Wiemann, 1993;

Hart, 1984; Oxman, Rosenberg, Schnurr, & Tucker, 1988; Pennebaker & King, 1999;

Pennebaker, Mayne, & Francis, 1997; Schnurr, Rosenberg, & Oxman, 1992; Spence,

Scarborough, & Hoff Ginsberg, 1978; Taylor, Reed, & Berenbaum, 1994). These

studies provide further compelling evidence that language use is contextual. So, for

instance, an individual is likely to express happiness and satisfaction in their

communication if they are fulfilled, while the opposite may be observed if they are

dissatisfied (Stone & Pennebaker, 2002).

These attitudes may be easily detected during face-to-face interactions (Funder &

Colvin, 1988; Gosling, Rentfrow, & Swann, 2003) where a high level of social presence

exists. However, in circumstances where there are lower levels of social presence (e.g.,

in textual communication environments), the reliability of such assessments may be

challenged (Blackman, 2002; Gill, Oberlander, & Austin, 2006). Particularly, in textual

settings, researchers engaging in behavioural assessment using linguistic cues have

30

reported mixed results (Gill & Oberlander, 2002; Hancock & Dunham, 2001). Gill &

Oberlander (2002) found behaviour patterns in text syntax, and these authors were also

able to link individuals’ personality traits to linguistic patterns when examining email

communication. In contrast, and so less compelling, Hancock & Dunham (2001)

reported a lesser degree of confidence in judging individual attitudes when studying

linguistic features in internet chat, due to the reduced amounts of impressions available

for analysis in text.

Support for the Gill & Oberlander (2002) findings was also provided in Gill et al.

(2006)’s later study. Other works considering individuals’ attitudes from a personality

perspective have provided support for linking behaviours to linguistic patterns. For

instance, Gill et al. (2006) conducted an experiment in which judges, after being briefly

introduced to personality theories, rated subjects’ personality following a short

examination of their written text. Strong and significant correlation was found between

judges’ prediction and subjects’ actual personality preferences. In particular, social

attitudes were very pronounced during these linguistic observations. This same study

found very little correlation between judges’ perceptions of, and participants’ actual

attitudes for individuals exhibiting Neuroticism (displaying negative traits), however.

Gill et al. (2006)’s findings for Neuroticism are also supported by the earlier results

(Gill & Oberlander, 2002) where Neuroticism was not as clearly detected in textual

communication when compared to attitudes that denoted Conscientiousness and

Agreeableness.

This low agreement for some attitudes is perhaps understandable given that the human

judges in these studies considered multiple language categories in each study subject’s

writing to derive a measure of personality (Gill et al., 2006; Hancock & Dunham, 2001).

In contrast, works examining individual linguistic dimensions to assess precise attitudes

have reported consistency between specific language use and individual traits (Giles &

Wiemann, 1993; Mehl & Pennebaker, 2003; Pennebaker et al., 2003; Taylor et al.,

1994). For instance, previous research has found elevated use of first person plural

pronouns (we) during shared situations and among individuals that share close

relationships, whereas relatively high use of self-references (e.g., I) has been linked to

individualistic attitudes (Pennebaker et al., 2003; Stone & Pennebaker, 2002). Thus,

individuals’ conversations reflect their internal feelings (Denning & Dunham, 2010).

Moreover, these traits are revealed in communication, regardless of the settings.

31

Although the evidence just provided does not mean that studying individuals’ attitudes

based on their textual communications is not without its challenges, and particularly

when the goal is to capture the meaning, motive and context around words usage

(Krauss & Fussell, 1996; Zeldow & McAdams, 1993), it is reasonable to deduce that

text environments may provide communication avenues for those less likely to

participate in ‘real’ (face-to-face) settings. These individuals are likely to

subconsciously express their true feelings, and textual settings are likely to result in

individuals’ reduced desire to self-regulate and temper their views and opinions

(Dabbish et al., 2005; Kennedy et al., 2011). In fact, because social individuals have a

strong desire to be sociable and are assertive and dominant (Trapnell & Wiggins, 1990),

their traits will likely result in their willingness to be expressive, humorous, persuasive,

and verbose, regardless of the environment. Conversely, the more cognitive and

conscientious individuals are said to be purposeful, achievement-oriented and organised

(McCrae & Costa, 1987), and are generally anticipated to communicate less, and their

patterns of communication are expected to be planned and schedule-oriented, task-

focused and less verbose. As such, even in textual and low intensity communication

environments, these (differences in) attitudes may be easily detected. Thus, studying

textual communications should provide a rich means for observing individuals’

attitudes.

As textual communication is a primary conduit for software teams’ knowledge-sharing,

particularly in agile globally distributed software development contexts (Jaanu et al.,

2012; Yu et al., 2011), and given that developers’ communication have been found to be

correlated with software development activities (Shihab et al., 2010), studying the

details of software practitioners’ textual communications during the performance of

various software development tasks should provide understandings of software team

dynamics. In particular, evidence for the way various types of team traits are promoted

as necessary for effective team collaboration could be validated through these means

(Chang, Yen, Chiang, & Parolia, 2013; Denning, 2012).

To this end, data repositories and archives recording software developers’ textual

communication activities have been used extensively to study software practitioners’

social behaviours (Ducheneaut, 2005; Mockus et al., 2002). While text analysis tools

have been used previously to understand and predict various aspects of software

development (Junior, Mendonca, Farias, & Henrique, 2010; Mockus & Votta, 2000;

Shihab et al., 2009), only a few studies in this domain have considered examining

32

attitudes from developers’ textual communication. At the time of this review (which

covered searches in the ACM Digital Library, IEEE Xplore, EI Compendex, Inspec,

ScienceDirect and Google Scholar) studies were discovered examining language use in

relation to group member dominance (Zhou, Burgoon, Zhang, & Nunamaker, 2004),

automatic personality recognition from speech (Polzehl, Moller, & Metze, 2010),

behavioural perception in human agents (Prabhala & Gallimore, 2005), and the linkage

of personality traits to posture and gesture (Ball & Breese, 2000). However, very few

studies were found to formally apply approaches from the behavioural sciences and

psycholinguistic space (Pennebaker et al., 2003; Stone & Pennebaker, 2002) to examine

the details in software developers’ communication logs (Rigby & Hassan, 2007).

Some researchers have studied the details of developers’ textual communication, using a

range of informal and mathematically-based approaches. For instance, Shihab et al.

(2009) used tag clouds to represent what GTK+ and Evolution open source software

(OSS) developers communicated about during their projects and noted that

conversations around bugs and patches dominated the discussions of both groups, and

specific development topics emerged for each team given the particular project focus

during the different project phases. Shihab et al. (2009) also found that the top

developers (those that communicated the most and made the most commits) referred to

others by their actual names (directly addressing contributors), an observation that was

linked to their status in the team. Shihab et al. (2010) found higher levels of use of

certain terms to be associated with specific development activities (e.g., the terms “new

feature” and “feature request” were found to be correlated with code addition, and

words including “patch” and “testing” correlated with code modifications). Mockus &

Votta (2000) used text analysis to classify changes as corrective or perfective in CVS

logs. Li et al. (2006) combined manual classification, text analysis and other machine

learning techniques to study bug descriptions.

Apart from the outputs produced in the course of this work (Licorish & MacDonell,

2012, 2013d), Rigby & Hassan (2007) are the only other researchers to have studied the

details of software attitudes from developers’ textual communications using formal

approaches from the psycholinguistic space. Through the use of psycholinguistic

analysis Rigby & Hassan (2007) revealed that once the top two developers signalled

their intentions to leave the Apache project their mailing list communications became

more negative and instructive, and they spoke mostly in the future tense and

communicated with less positive emotions, when compared to their earlier

33

communications. Their study also found variations in communication behaviour after

releases. In studying two releases Rigby & Hassan (2007) found that developers’

communication was optimistic after the first release, whereas the opposite was evident

after the second release. Such findings are insightful but are ‘one-off’ and point to the

need for further exploratory research.

While questions in relation to reliability and validity may be posed for studies

examining open source mailing lists, due to the way participants’ communications are

managed in this environment (i.e., anyone is able to post messages and report bugs to

such mailing lists) (Bachmann & Bernstein, 2009), studies such as that of Rigby &

Hassan (2007) have provided sufficiently useful discoveries to encourage linguistic

analysis of developers’ communication in other controlled environments.

Findings from such observations would provide useful insights about the software

development process. These issues are considered further in the next two main sections

(Section 2.6 and Section 2.7). In the first instance, Section 2.6 considers a larger survey

of the literature around software teams’ communication with a view to identifying

research gaps and some preliminary research questions for exploring this phenomenon

during a successful AGSD project. Section 2.7 then extends the literature assessment in

terms of teams’ centralised communication patterns in Section 2.6, and identifies further

research gaps to precisely outline the remaining research questions of this work.

2.6 Communication and SE Research

Previous research has established that the intricacies of team dynamics can be revealed

by studying members’ communication1 (Aranda & Venolia, 2009; Cataldo et al., 2006;

Rigby & Hassan, 2007; Singer, 1998). Research has also exposed linkages between

informal hierarchical communication structures and team performance for

geographically distributed teams (Hinds & McGrath, 2006). Furthermore, team

communication has been linked to coordination efficiency (de Souza & Redmiles, 2009)

and the quality of software output (Herbsleb & Roberts, 2006). Thus, as noted in

Section 2.4 and Section 2.5, studying the details in team communication can provide

valuable insights into the human processes involved during software development,

1 The terms “communication” and ‘interaction’ are used interchangeably throughout this thesis to mean
the exchange of information.

34

including the reasons for, and consequences of, communication and coordination

actions.

Given this, software repositories and software history data have emerged as valuable

sources of interaction and communication evidence (Aranda & Venolia, 2009; Bird,

Gourley, Devanbu, Gertz, & Swaminathan, 2006b; Cataldo & Ehrlich, 2012; Crowston,

Wei, Howison, & Wiggins, 2008; Datta, Kaulgud, Sharma, & Kumar, 2010; Datta,

Sindhgatta, & Sengupta, 2011; Ehrlich & Cataldo, 2012; Nguyen, Wolf, et al., 2008;

Shihab et al., 2009). Research findings from works examining such sources can be

considered particularly valid if the data that is examined represent the primary means of

interaction and team processes during software development – other validity-related

factors notwithstanding (Licorish & MacDonell, 2013c). Accordingly, previous

researchers have exploited process artefacts such as electronic messages, change request

histories, bug logs and blogs to provide unique perspectives on the activities occurring

during the software development process (Cataldo et al., 2006; Singer, 1998).

Particularly, OSS repositories and archives recording software developers’ textual

communication activities provided researchers with early opportunities to study

practitioners’ behaviours (Ducheneaut, 2005; Mockus et al., 2002), with recent work

tending also to examine commercial repositories (Cataldo & Herbsleb, 2008). A

selection of these studies is now considered.

Bird, Gourley, Devanbu, Gertz, & Swaminathan (2006a) employed clustering

algorithms to study CVS records and mailing lists and concluded that the more software

development an individual does the more coordination and controlling activities they

must undertake. The Debian mailing list was used by Sowe, Stamelos, & Angelis

(2008) to observe knowledge sharing among developers. These authors found that no

specific individual dominated knowledge sharing activities in the Debian project. Abreu

and Premraj (2009) observed the Eclipse mailing list and found that increases in

communication intensity coincided with higher numbers of bug-introducing changes,

and that developers communicated most frequently at release and integration time.

Crowston, Annabi, Howison, & Masango (2004) provided recommendations for using

team effectiveness and coordination theories to study artefacts from Sourceforge.

Crowston, Wei, Li, & Howison (2006) examined core developers of five small OSS

projects using multiple explanatory approaches, including Bradford’s law, and found

that the core group of developers comprised only a small number of the total

35

contributors. Crowston & Howison (2006) used SNA to verify the social structure of

122 OSS projects in the Sourceforge repository, 22 projects from the GNU Savannah

system and 56 projects from the Apache Software Foundation Bugzilla bug tracking

system. These authors found some OSS projects to be highly centralised, and this

pattern was especially pronounced for smaller projects. Additionally, it was revealed

that most of the OSS projects in these three repositories had a hierarchical social

structure, although there was more communication modularity in larger projects

(Crowston & Howison, 2006).

Pohl & Diehl (2008) used SNA to study artefacts produced by four developers of the

TOMCAT project and noted that developers’ engagements overlapped for development

and documentation activities. Using the GTK+ and Evolution OSS projects Shihab et al.

(2009) also established that only a small number of developers participated in internet

relay chat (IRC) meetings. Similarly, Shihab et al. (2010) found communication activity

to be correlated with software development activity when studying the GNOME project,

where what was communicated was reflected in source code changes. Shihab et al.

(2010) observed that the most productive developers contributed 60% of the project’s

communication, and their interaction levels remained stable over the project duration

when compared to lesser contributing participants. Yu et al. (2011) also found similar

patterns of communication when studying artefacts’ from the GNOME GTK+ project.

However, these authors caution about the limitation of the frequency-based analysis

approaches that they employed and recommended the use of techniques for studying

variations in developers’ actual language processes. Goguen (1993) had also previously

argued for the use of sociolinguistics to study artefacts in order to understand human-

related issues during software development.

In commercial settings (or closed source software (CSS)) the IBM Rational Jazz

repository has been used in the study of software practitioners’ interactions and

communications largely from a SNA perspective (Nguyen, Wolf, et al., 2008; Wolf,

Schroter, Damian, & Nguyen, 2009; Wolf, Schroter, Damian, Panjer, & Nguyen, 2009),

offering contradictory findings to those drawn from the OSS-based body of work.

Contrary to the findings reported by Shihab et al. (2009) and Shihab et al. (2010),

Nguyen, Wolf, et al. (2008) revealed that about 75% of Jazz’s core team members

actively participated in the project’s communication network. Additionally, these

authors found Jazz project teams to have very inter-connected social networks, requiring

few brokers to bridge communication gaps. These findings may be reflective of

36

software practitioners’ disposition in commercial settings, where team members’

motivation to contribute their knowledge is likely to be driven by greater (potentially

tangible) rewards when compared to those received in OSS environments.

However, in line with the evidence reported in the OSS context (Shihab et al., 2010;

Shihab et al., 2009), an earlier SNA study reported by Cataldo et al. (2006) also found

that central individuals contributed the most during software development. Cataldo et al.

(2008)’s study of IRC communication patterns in a large distributed system further

revealed a small group of developers acting as communication hubs, and these members

were also the most productive. This divergence in communication patterns noted for

Jazz teams and those of other OSS and CSS projects signals the need for further

confirmatory research.

Datta et al. (2011) used SNA to study the communication artefacts produced by a

distributed Scrum team using the Jazz platform and found that developers tended to

collaborate more as the project progressed. These authors noted that developers

collaborated much more via messages than they did working on actual software

development tasks. Similar evidence was revealed in a later study by Datta, Sindhgatta,

& Sengupta (2012).

In another SNA study of multiple IBM Rational Jazz teams’ communication, Ehrlich &

Cataldo (2012) discovered that developers performed better when they occupied central

positions in their specific team’s communication network. However, their performance

degraded when their networks were extended to multiple teams and across the entire

project. Additionally, Ehrlich & Cataldo (2012) revealed that those who were parties to

dense network segments demonstrated higher level of task performance. Cataldo &

Ehrlich (2012) also studied IBM Rational Jazz teams’ communication and revealed that

teams that operated in a hierarchical communication structure completed more tasks in

their iterations than those who worked in a small-world network communication

structure. However, those that demonstrated the small-world communication pattern

delivered higher quality software features.

Studies such as those of Bacchelli, Lanza, & Robbes (2010) and Antoniol, Ayari, Penta,

Khomh, & Gueheneuc (2008) have used rather more complex techniques to analyse

email and bug description information. In linking email communications to source code

using regular expressions and other information retrieval approaches Bacchelli et al.

37

(2010) found that the analysis approach using regular expressions in emails

outperformed more complex probabilistic and vector space models. Through the use of

decision trees, naïve Bayes classifiers and logistic regression, Antoniol et al. (2008)

were also able to classify bugs based on specific terms used in the textual descriptions

of such tasks. Further, works by Baysal & Malton (2007) and Pattison, Bird, &

Devanbu (2008) have discovered linkages between developers’ word use and actual

source code modifications.

In summarising the numerous studies just described , it is evident that a few have looked

to infer the semantics of practitioners’ dialogues from the text they communicated

(Antoniol et al., 2008; Bacchelli et al., 2010), while many others have provided

deductions based on communication frequency information (Abreu & Premraj, 2009;

Bird et al., 2006a; Ehrlich & Cataldo, 2012). As noted, while text analysis methods and

their associated tools, and particularly those that have been derived from

psycholinguistics, have been used previously to understand and predict some aspects of

software development (Junior et al., 2010), only a few studies in this domain have

considered examining teams’ internal behavioural processes based on their members’

textual communications (Rigby & Hassan, 2007). This is in spite of the fact, as noted by

Bacchelli et al. (2010), Baysal & Malton (2007) and Pattison et al. (2008), that natural

language analysis techniques have proved to be effective in generating understandings

of software developers’ attitudes from their language processes.

Questions regarding outcome reliability and validity have also been raised for studies

analysing OSS repositories, in terms of arriving at generalisable conclusions concerning

software process issues. Research evidence has reported poor data quality in some

repositories of OSS projects (Aune, Bachmann, Bernstein, Bird, & Devanbu, 2008; Bird

et al., 2006a; Rodriguez, Herraiz, & Harrison, 2012). For instance, in their study of the

Apache mailing list, Bird et al. (2006a) found it difficult to uniquely identify

developers’ records due to the volume of email addresses and aliases these individuals

used. Further confounding issues may also be encountered when studying OSS projects

because anyone is able to post messages and report bugs to their associated mailing

lists, whether or not those individuals are contributing to the project (Bettenburg et al.,

2007) or have a full understanding of the project.

Given these issues, coupled with the potential value of studying team interactions (noted

in Section 2.4 and Section 2.5), the gaps identified above, and the growing popularity of

38

AGSD teams (noted in Section 2.3), it is imperative that researchers examine the

contextual interactions and engagements of successful software practitioners, using

representative systems, if there is to be adequate comprehension of the unique nature of

these AGSD teams (Di Penta, 2012). As a first step in this regard, the following five

research questions (also outlined in Chapter 1) are designed to direct the initial

explorations of the collaboration patterns of successful globally distributed agile teams

and to verify or challenge previous research findings (Bird et al., 2006a; Cataldo &

Herbsleb, 2008; Cataldo et al., 2006; Shihab et al., 2009):

RQ1. Do communication patterns change as the software project progress?

RQ2. Is there equity in practitioners’ contributions to their project?

RQ3. Are active communicators more important to their teams’ collaboration?

RQ4. How are active communicators involved in task performance?

RQ5. Are practitioners’ formal role assignments related to their involvement in

project interactions and task performance?

Questions RQ1 – RQ 5 above are answered using quantitative analysis (including SNA)

techniques (refer to Section 3.4), and are largely aimed at confirming or refuting the

presence of the centralised pattern noted previously in distributed team communication

networks (Cataldo & Herbsleb, 2008; Shihab et al., 2010; Shihab et al., 2009). In

addition, these questions are directed to investigating the collaboration patterns of

successful globally distributed agile teams and providing direction for more specific

exploratory analysis regarding core developers. Additional research questions aimed at

providing insights into the way core developers contribute to their teams’ dynamics,

which may be derived through the use of deeper contextual analysis techniques, are

outlined in the following section (Section 2.7).

2.7 Wheel Structure Networks and Central Communicators

Previous research has generally established that a few individuals in a software

development team dominate project communication and source code changes (Bird et

al., 2006a; Cataldo & Herbsleb, 2008; Cataldo et al., 2006; Shihab et al., 2009).

Evidence has also shown that, even in environments with fixed and known task

assignments, specific individuals circumvent these pre-set arrangements to occupy the

centre of their teams’ activities (Datta et al., 2010). Such communication patterns

(illustrated in Figure 2) have been studied previously in other disciplines, including

39

management and organizational teams and virtual research and development (R&D)

groups (Ahuja, Galletta, & Carley, 2003; Guetzkow & Simon, 1955), and early works

investigating the effect of this phenomenon have shown that the existence of these

centralized patterns involving core group members is a positive sign for team

performance (Bavelas, 1950). In similarly seminal work, Leavitt established that central

individuals are vital to their teams’ performance as they coordinate information flow.

Central individuals are also seen as project leaders by others in the team, whether or not

they are the formal or nominal leaders (Leavitt, 1951), and groups with central

coordinators experience higher levels of group organization and task performance (in

terms of speed of task completion).

While there is therefore strong interest in identifying the presence of patterns within

software teams’ communication and coordination practices (Cataldo & Herbsleb, 2008;

Ehrlich & Cataldo, 2012; Shihab et al., 2010; Shihab et al., 2009) there has been

comparatively little effort directed toward understanding why these patterns exist

(Licorish & MacDonell, 2013c). In fact, evidence has revealed core communicators to

be core developers (Bird et al., 2006a; Cataldo & Herbsleb, 2008; Cataldo et al., 2006;

Shihab et al., 2009), an observation that should have encouraged analysis of these

members’ artefacts to uncover how they contribute to team dynamics and the way they

are able to manage this dual presence. However, the quantitative analysis approaches

that have dominated prior works considering software teams’ communication artefacts

are not intended to be able to reliably explain the reasons for these patterns (Di Penta,

2012; Goguen, 1993; Yu et al., 2011). Questions related to how central communicators

share knowledge during their project, the initial arrangements that lead to members

becoming hubs in their teams, and how the attitudes and traits these practitioners exhibit

might be linked to their involvement in task performance, have not been answered. Such

explorations will provide insights into the peculiarities of software team dynamics,

inform appropriate team configurations, and enable the early identification of ‘software

gems’ – exceptional practitioners in terms of both task and team performance.

Central communicators have also been previously referred to as active communicators,

core communicators, core members and core developers (Crowston et al., 2006; Ehrlich

& Cataldo, 2012; Rigby & Hassan, 2007; Shihab et al., 2009). In this study the terms

“central communicators” and “core communicators” are used interchangeably to refer to

the contributor(s) that occupy the centre of their team’s communication. This pattern is

40

illustrated in Figure 2. The term “core developers” refers to those that are both actively

involved in communication and task performance.

Figure 2. Abstract representation of the wheel structure communication network

This section outlines this work’s agenda that is aimed at addressing these questions

through the use of deeper contextual analysis techniques (refer to Chapter 3). Firstly,

summary theories regarding attitudes and team roles are provided in Section 2.7.1,

directed towards supporting some specific research questions aimed at investigating

core developers’ true roles in their teams. Section 2.7.2 then provides the rationale for

employing a longitudinal approach for studying the changes in core developers’

attitudes, knowledge sharing behaviours and task performance over their project.

Finally, Section 2.7.3 considers theories and questions aimed at investigating the

relationship between core developers’ attitudes and knowledge sharing behaviours and

their task performance.

2.7.1 Attitudes and Team Roles

As noted above, previous research has identified that an individual’s linguistic style is

quite stable over periods of time, and that text analysis programs are able to accurately

link language characteristics to behavioural traits (Mairesse et al., 2007; Pennebaker &

King, 1999). Additionally, evidence has shown that while some team behaviours are

desirable for maintaining a positive team environment, others have a negative impact on

teamwork (Chang et al., 2013; Denning, 2012). Given core developers’ central position

in their team communications and perceived leadership of their teams, these members’

expression of unconstructive attitudes would negatively affect their colleagues’

performance (Belbin, 2002; Benne & Sheats, 1948; Solomon, 2007). This is a

particularly critical issue for agile globally distributed software development contexts,

where individuals are already affected by distance and have few if any opportunities to

41

engage in face-to-face communication (Chang & Ehrlich, 2007; Espinosa et al., 2006) –

which are shown to stimulate trust (Al-Ani et al., 2011; Krebs, Hobman, & Bordia,

2006; Zigurs, 2003). A study of core developers’ expression of attitudes is also likely to

shed light on their commitment to team performance, and their effect on overall team

dynamics (Allen & Meyer, 1990; Morgan & Hunt, 1994).

Similarly, an assessment of the roles core developers actually enact during teamwork

would shed further light on their involvement in team dynamics. Roles are said to

reflect the particular rights, tasks, responsibilities, expectations and behaviours that

persons are expected to honour or fulfil (Bales, 1950b; Belbin, 2002). While the idea of

studying and relating participants’ behaviours to roles has attracted extensive research

in the psychology, sociology and management disciplines (Ashforth, 2001; Biddle &

Thomas, 1966; Hellriegel & Slocum, 2007), and there has also been some consideration

of this subject in software engineering (Acuna et al., 2006; Colomo-Palacios et al.,

2010; Downey, 2009), this subject is rarely studied for AGSD projects (refer to Section

2.2 for further details).

Research conducted within the psychology, sociology and management disciplines has

sought to inform the process of personnel assignment to jobs based on their traits and

natural preferences. According to these theories, social and team role principles may be

used to group individual behaviours and their personal interaction in teams, and each

individual’s behavioural style is correlated with their personal preference(s) for specific

roles (Belbin, 2002; Benne & Sheats, 1948; Jung, 1971). In fact, the group role concept

has been consistently validated by researchers, including Bales (1950b), Benne &

Sheats (1948), Margerison, McCann, & Davies (1986) and Woodcock (1989). One of

the earliest and most comprehensive group role models was presented by Benne &

Sheats (1948). In their study these authors identified both positive and negative group

behaviours in teams. They also discovered that team social interaction is one of the

main influential factors of success in group work. In total, Benne & Sheats (1948)

observed 26 functional roles grouped under three dimensions of individual behaviour in

teams solving problems: helpful and supportive behaviours (personal and social roles),

task concerned behaviours (task roles), and debate and conflict centred behaviours

(individualistic roles). Personal and social roles are said to contribute towards positive

group climate, promoting encouraging, harmonising and compromising traits, while task

roles are concerned with task success, contributing and initiating ideas and knowledge

towards task completion. Benne & Sheats (1948) explained that individualistic roles are

42

more self-focused, often seeking undue recognition, and are often confrontational.

Benne & Sheats (1948) noted, however, that all roles are important during group tasks

(including individualistic roles), that the requirements for certain roles vary during

different stages of teamwork, and that these roles should be adopted by various

individuals at different times for group members to provide maximum contributions to

the team and increase the likelihood of group success. For example, social roles may be

especially necessary during times of high intensity and stressful team work – providing

encouragement and support for team members – whereas task related roles may be most

effective during actual task analysis and brainstorming stages. Moderate levels of

individualistic roles may also be useful for maintaining high team standards through

critical and constructive debates.

In considering the quite detailed model developed by Benne & Sheats (1948) it is

notable that many other group role theorists have taken a slightly different perspective

on this work, summarising the number of role categories provided in this early study

and thereby providing more condensed models. This is evident in Bales (1950b)

consideration of only task and social behaviours in his model; Woodcock (1989)

considered 12 related roles; while Margerison et al. (1986) acknowledged nine. Another

similar model to that of Benne & Sheats (1948) that has received considerable attention

over many years for assigning team members to roles is the Belbin model (Pollock,

2009; Stevens & Henry, 1997). This model outlines nine roles for team success (Belbin,

2002), and stress the need for heterogeneity of roles during teamwork, somewhat in line

with Benne & Sheats (1948)’s position on the need for all roles.

Several of the studies introduced in Section 2.6 revealed that only a small number of

team members tend to dominate team communications (Cataldo & Herbsleb, 2008;

Shihab et al., 2010), and that software developers’ communication and coordination

activities are directly related to their involvement in software tasks (Bird et al., 2006a).

While numerous principles have been used to explain this pattern (e.g., Pareto principle

(Shihab et al., 2010), Small-world network (Cataldo & Ehrlich, 2012; Uzzi & Spiro,

2005) and Bradman’s law (Crowston et al., 2006)), previous research did not explore

the actual reasons for such patterns.

Previous work has shown that these individuals occupy the centre of their teams’

information sharing network and are critical to team performance (Bavelas, 1950).

These members have also been shown to influence their wider teams’ willingness to

43

adapt to change and maintain performance (Ruhnow, 2007). As noted above, however,

while this pattern has been noted, questions related to the reasons for these members’

extraordinary presence, and understanding the actual roles (both formal and informal)

that core developers occupy in their teams, have not been answered. Such answers could

provide explanations for the nature (and peculiarities) of agile globally distributed

software development teams’ dynamics. Knowledge and awareness of the ways in

which the most active practitioners contribute their social and intellectual capital to their

teams and project could help project leaders to identify exceptional software

practitioners, and inform the process of assembling high performing and cohesive

teams. Such findings could also inform the use of specific organizational arrangements

and team configurations in support of high performers. Furthermore, the output of these

explorations may lead to new requirements for collaboration and process support tools.

Therefore, the following questions (briefly introduced in Section 1.5) are outlined to

address these gaps:

RQ6. Do core developers’ behaviours and attitudes differ from those of other

software practitioners?

RQ7. What are the core developers’ enacted roles in their teams, and how are

these roles occupied?

2.7.2 Changes in Attitudes and Knowledge Sharing

Individuals’ interactions and active involvement (denoted here by individuals’ active

involvement in communication networks) are major influences on knowledge creation

and sharing during group work (O'Dell & Grayson, 1998; van den Hooff & de Ridder,

2004). The process of knowledge creation has been characterised as knowledge

donation and knowledge collection, both of which are said to contribute to the formation

of new knowledge (van den Hooff & Hendrix, 2004). In fact, it has been shown that

individuals who participate by donating their intellectual capital are no more important

than those who are able to get them to provide these contributions through adequate

questioning (Ardichvili, Page, & Wentling, 2003). Additionally, these two activities are

also posited to be influenced by cognitive and motivational factors (Hinds & Pfeffer,

2003). Cognitive factors are associated with skills and ability, whereas motivational

factors are related to one’s willingness to engage with other individuals in the

knowledge creation and sharing process (De Vries et al., 2006).

44

Knowledge creation and sharing, and the variables that influence these activities, are

particularly relevant to software development because of the knowledge-intensive

nature of the development process. Activities centred on software development are

intended to deliver a product (software) that is conceptual and intangible, with

requirements that are evolving and changing, often using leading technologies and

methods. As a result, dynamic knowledge sharing should be at the centre of the software

development process (Baddoo, Hall, & Jagielska, 2006; Hall, Jagielska, & Baddoo,

2007). Participants’ involvement in interactions and communication, and the influence

of these forms of engagement on teams’ performance, are the indicators used to capture

the evidence that knowledge sharing is occurring in these settings. In particular,

interaction, or lack thereof, has repeatedly been shown to influence the outcomes of

software team processes. This phenomenon is said to be a critical success factor for

software development activities (Hall, Wilson, et al., 2007), and studies assessing

software practitioners’ interactions have shown that team members’ active involvement

has a positive impact on team process. High levels of interactions have also been shown

to increase individual participants’ knowledge bases and enhance the likelihood of high

levels of team achievement (Herbsleb et al., 2001). Furthermore, high levels of

information exchange are also said to lead to improved product awareness, development

task success and innovation (Damian & Zowghi, 2003; Ehrlich & Chang, 2006;

Mumford & Gustafson, 1988).

While core developers (i.e., those practitioners that maintain exceptional performance in

both team communications and task performance) no doubt play integral roles in these

processes, it is not clear how these individuals contribute to their teams’ processes over

the course of their project, and how their organizational, interpersonal, intrapersonal and

management competencies sustain their project’s health. Additionally, there is

uncertainty around what team conditions, and over which project phase(s), core

developers are most engaged in their teams. Previous work has shown that practitioners’

interaction patterns change over the course of a project (Cataldo & Ehrlich, 2012;

Cataldo & Herbsleb, 2008; Cummings & Cross, 2003), and so longitudinal studies will

uncover details that should lead to explanations for software team dynamics more fully.

Evidence of how practitioners interact over the course of their project will inform

targeted team strategies and phase-specific interventions. In fact, previous calls for such

investigations of team dynamics have been made (Hinds & McGrath, 2006), as the

45

static or snapshot view does not reveal fully what actually happens over the duration of

software development projects.

The utility of a longitudinal approach in studying software teams has also been

demonstrated previously. For instance, Rowley & Lange (2007) applied the Tuckman

(1965) model of team development to study agile teams’ evolution2 and found the

forming, storming, norming and performing stages were somewhat cyclic, and specific

techniques and approaches were applicable to multiple stages of team development, as

against a linear team evolution. Ruhnow (2007) found that once core development team

members embraced specific tools and techniques during a software project it was easy

to get the extended team on board to use the same tools and techniques. This finding

endorses the viewpoint that understanding these core members could potentially bring

value to their wider teams, and provide insights relevant to overall project governance.

As noted previously, linguistic studies have shown that while individual language use is

stable over time, the way individuals communicate is also influenced by their context

and local settings (Mehl & Pennebaker, 2003). In software development settings,

negative and cynical team behaviours can have a negative impact on team harmony and

cohesion (Chang et al., 2013). This will in turn negatively affect team performance

(Espinosa, Slaughter, Kraut, & Herbsleb, 2007). The opposite is likely to occur in more

optimistic environments where teams share a single vision. Studies considering the

effect of group norms on individual willingness to share their intellectual capital have

indeed supported this reasoning (van den Hoof, de Ridder, & Aukema, 2004). Given

that core developers occupy the centre of their teams’ communication, are seen as

project leaders (whether or not they are assigned to formal leadership roles (Hinds &

McGrath, 2006)), and that they coordinate information flow and knowledge sharing

(Leavitt, 1951), an understanding of core developers’ attitudes and knowledge sharing

behaviours will be useful in informing strategies aimed at maintaining an optimistic and

positive team climate, and ultimately, positive team performance.

2 These authors studied evolution by considering changes in various aspects of software teams’ processes
over seven iterations (Rowley & Lange, 2007). This operationalization of evolution does not necessarily
reflect evolution in the true sense, which, according to the Oxford English Dictionary is “the process by
which different kinds of living organism are believed to have developed from earlier forms during the
history of the earth” (OED-Online). Thus, this work uses a similar approach to (Rowley & Lange, 2007),
but considers this approach to be the changes in core developers processes over time, as against their
evolution.

46

While changes in core developers’ activities have been studied, this subject has been

approached only from a quantitative perspective – typically involving numbers of code

commits and messages exchanged (Cataldo & Herbsleb, 2008; Robles, Gonzalez-

Barahona, & Herraiz, 2009). As noted above, there is now widespread recognition that

supplementing quantitative analyses with more exploratory investigations offers

avenues for outcome triangulation as well as the provision of additional insights into the

software development process (Di Penta, 2012; Easterbrook et al., 2008). In particular,

the early theory of SNA (which is often used for assessing teams’ interactions) was only

recommended for estimating interpersonal relationships during group work (Moreno,

1953). Erlin, Yusof, & Rahman (2008) and Jamali & Abolhassani (2006) highlighted

that while SNA theories indeed provide useful tools for assessing some aspects of social

structures, such as measures of centrality, cliques or sub-networks and density using

visualisations and mathematical analysis, such measures may not be so useful in

explaining the reasons for or consequences of social structures.

Revealing the process of how developers become core (through the use of deeper data

analysis approaches) could help project leaders to identify and encourage software gems

very early in their project. Some developers may occupy natural roles, such that,

regardless of the project environment, these individuals may function in a certain way

based on their natural preferences (Belbin, 2002). On the other hand, others may emerge

into specific roles given their teams’ demands and/or their specific task assignments

(Hackman, 1986; Hoda, Noble, & Marshall, 2010a). Knowledge and awareness of these

different developers and the way they work will help project leaders to identify software

development leaders early, and in assembling high performing and cohesive teams.

Accordingly, the following questions are provided (also briefly presented in Section

1.5) to study this issue:

RQ8. Do core developers’ attitudes change as their project progresses?

RQ9. How do core developers share knowledge over the course of their project?

RQ10. What initial team arrangements lead to developers becoming hubs in their

teams?

2.7.3 Attitudes, Knowledge Sharing and Task Performance

Software engineering research examining teams’ communication has focused primarily

on the use of social network related measures, and particularly measures related to

47

centrality and closeness (Bird et al., 2006a; Cataldo & Ehrlich, 2012; Datta et al., 2010;

Ehrlich & Cataldo, 2012; Hinds & McGrath, 2006; Zhou & Mockus, 2011). In fact, as

noted in Section 2.7.2, the studies that have concluded that just a few individuals

contribute the most to communication and task performance have generally used

frequency-based analysis techniques (Cataldo & Herbsleb, 2008; Cataldo et al., 2006;

Shihab et al., 2009), and while there have been some efforts to understand the

characteristics of core developers (Cataldo & Herbsleb, 2008; Robles et al., 2009), these

works did not probe the reasons underlying the ‘core developer’ phenomenon. While

frequency-based analysis techniques do enable the detection of certain patterns, and so

provide a partial understanding of software teams’ behavioural processes, there are

limitations on the effectiveness of these approaches in informing our understanding of

the deeper psychosocial nature of team dynamics (Di Penta, 2012).

Knowledge sharing studies have shown that the willingness of individuals and teams to

actively participate in knowledge sharing and contribute to team performance is linked

to multiple factors (Hinds & Pfeffer, 2003). For instance, knowledge sharing has been

linked to social motivation (e.g., trust (Inkpen & Tsang, 2005; Levin & Cross, 2004)),

rewards and incentives (Kalman, Monge, Fulk, & Heino, 2002), cognitive factors (De

Vries et al., 2006), and other organisational reasons (Szulanski, 2000). While there is

some uncertainty around the effects of incentives and rewards on individuals’ active

participation in knowledge sharing (Bock & Kim, 2002), social motivation theory has

proved to be generally effective for predicting participation in knowledge sharing

(Geen, 1991; Inkpen & Tsang, 2005; Levin & Cross, 2004). According to social

motivation theory, teams’ interpersonal interactions and norms have an impact on

individual members’ motivation to perform (Geen, 1991). Thus, certain supportive

behavioural norms at the team level are likely to encourage individual performance

(Quigley, Tesluk, Locke, & Bartol, 2007). This position may be especially valid given

that knowledge sharing is a social process (Bock & Kim, 2002).

Thus, core developers’ engagements in their teams’ knowledge sharing process and task

performance over their project may be linked to specific events and task arrangements

(Hackman, 1992). Particularly, when core developers operate during periods of positive

and social behavioural climate, these individuals may be most happy to perform (De

Vries et al., 2006; Zakaria et al., 2004). Similarly, in a more cognitive and evaluative

environment, core developers may exhibit eagerness to perform. Studying these

members’ attitudes and knowledge sharing behaviours, and the way these are linked to

48

their involvement in their teams’ task performance, would shed further light on agile

globally distributed teams’ dynamics.

Although it is understood that core developers are invaluable to their teams, beyond

simply liaison and task change roles (Cataldo & Herbsleb, 2008), there still remain

doubts regarding when these individuals are more or less likely to contribute the most to

task performance and when their teams are most likely to benefit from their knowledge

and experiences. These insights would be useful for understanding the specific traits of

less prudent team members that are likely to complement these core individuals.

Additionally, such understandings would inform specific project arrangements that can

enhance the satisfaction of core developers. Further, such answers would reveal how

software teams should be staffed during core developers’ less productive periods.

Answers to these questions will provide valuable insights for software project

governance. Psycholinguistics and directed content analysis techniques provided this

work an avenue to answer the following questions (also briefly introduced in Section

1.5):

RQ11. How do core developers contribute to task performance over their project?

RQ12. Are core developers’ contributions to task performance linked to their

attitudes?

RQ13. Are core developers’ contributions to task performance linked to their

contribution of knowledge?

2.8 Chapter Summary

This chapter has provided a survey of relevant theories in support of this research

project. Given on-going evidence of inadequately performing software teams, and

particularly after continuous interventions related to software methodologies and tools,

there has been a recent shift in focus towards understanding the human processes that

are involved during software development. This move is fitting given that most of the

risk issues revealed in the literature may be deemed people driven. This work also

studies the human issues involved during software development through the use of

techniques that are grounded in the psychology and social science paradigms. To

provide grounding for the work that is performed in this study, theories supporting team

composition, psychology and software engineering human factors frameworks were

49

reviewed. The AGSD concept was also introduced, and it was shown that agile

techniques conflict with the realities of globally distributed software development.

Given the reliance on communication technologies in AGSD environments, and textual

communication in general, the study of communication was considered, along with

approaches that consider the way attitudes are revealed in text. It was also observed that

studies that have examined software developers’ artefacts have provided multiple

insights through such means. However, while this form of communication is widely

investigated, studies examining software practitioners’ artefacts have largely used

quantitative and frequency-based analysis approaches. This represents a limitation to

the level of insights that is provided by these works, and particularly for the reason for

the centralised pattern that is noted for software teams’ communication networks.

Previous works have shown that core communicators are vital to their teams’

performance as they coordinate information flow, and these members are perceived as

project leaders. Thus, this work explores the collaboration patterns of successful

globally distributed agile teams to verify or challenge previous research findings. This

first step provides the platform for further in-depth examinations aimed at providing

insights into the actual role of core developers, and the way these members’ attitudes

and knowledge sharing behaviours change over the course of their project. Further, this

work also considers how core developers’ expressions of attitudes and their

involvement in knowledge sharing are linked to their task performance. These issues are

investigated through the research questions that were outlined in this chapter.

Now that the research gaps have been identified and the research questions specified,

attention moves to the research methodology. The following chapter (Chapter 3)

outlines the research methodology and design, including the techniques that are used for

data analysis and operationalization of the constructs introduced in the 13 research

questions.

50

Chapter 3. Research Methodology and Design

Studies in the SE discipline examining human processes through the analysis of

repository data have regularly employed frequency-based approaches (e.g., SNA) (Bird

et al., 2006a; Cataldo et al., 2006; Herbsleb et al., 2000). Such approaches are in line

with the way early SE studies frequently considered only the technical aspects of this

activity (Easterbrook et al., 2008; Glass, Vessey, & Ramesh, 2002). However, it is now

generally understood, and there is growing recognition in SE, that studying technical

aspects of the software process in isolation may present a limitation to the evidence that

such projects can provide (Johnson & Onwuegbuzie, 2004).

This view is supported by researchers in the Information Systems (IS) discipline, where

it has been repeatedly shown that there are sound reasons for studying deeper

organisational and behavioural issues (Klein & Myers, 1999; Ramesh, Glass, & Vessey,

2004), apart from the technical facets of IS. What is more, it has been shown that there

is no other way to undertake certain types of enquiry (such as to provide explanations

for the details of human and organisation processes and how these may be harnessed to

deliver maximum benefit for the software development community) than to engage the

more conventional research approaches as have been used and tested in other disciplines

(Klein & Myers, 1999; Vessey, Ramesh, & Glass, 2002). In fact, Vessey et al. (2002)’s

comprehensive survey of the IS research domain outlined that success in studying some

SE and IS issues that are intended to promote understanding of individual and

organisational phenomena may not be achieved without adequate understandings (and

expertise) of the techniques applied in the social and behavioural sciences, management

and psychology domains.

With grounding in these disciplines, this work utilises suitable methodologies to study

globally distributed agile team dynamics and, in particular, the attitudes, roles and

knowledge sharing behaviours of core developers. To this end, this chapter outlines how

appropriate research tools and techniques are selected in order to make the research

outputs and findings of this study relevant for SE theory and practice. The approaches

selected also ensure that the findings of this work are applicable to the issues under

consideration. As a preliminary step in this direction, this chapter firstly introduces the

way research methods are selected with an emphasis on SE research (Section 3.1).

Section 3.2 considers the primary research dichotomy (positivist and interpretivist), and

how these approaches influence the way research questions are formed and methods are

51

selected, towards highlighting how studies are linked to research processes and

paradigms. This step informs the next phase – the selection of an approach for guiding

the work undertaken in this project, which is subsequently introduced in Section 3.3.

The Case Study method – the approach chosen in this study – is then introduced in

Section 3.4. The subsequent section (Section 3.5) describes the process of theorising in

SE, with particular emphasis on the path chosen during the provision of conjectures that

may form the basis of explanation theories that this work provides. Finally, Section 3.6

presents a summary of the details and discussions provided throughout this chapter.

3.1 Selecting a Research Method

Selecting appropriate methods with which to conduct empirical SE research often poses

many challenges for researchers (Easterbrook et al., 2008; Lázaro & Marcos, 2006).

This may generally represent a lack of knowledge about the range of techniques

available and how these may be used. A simple way for researchers to address this

activity is to consider the phenomenon of interest (Lázaro & Marcos, 2006; Leech &

Onwuegbuzie, 2009). However, this issue is sometimes confounded by the

philosophical position (the way truth is perceived) of those undertaking research, which

also tends to influence the approaches that are selected for conducting research (Galliers

& Land, 1987).

The research questions (or the phenomena of interest) are often driven by the prevalence

or lack of theory in the specific domain (Newman & Benz, 1998). Typically, when there

are mature theories in the domain under consideration research questions are generally

aimed at verifying, testing and modifying these theories (e.g., Does the absence of

testers cause software project failure? Does project management tool use delay software

project delivery? and so on). In such instances the researchers’ main intent is to check

for relationships, and thus, their studies generally employ a positivist and quantitative

approach (Easterbrook et al., 2008; Lázaro & Marcos, 2006). On the other hand, where

there are little or no theories available, research questions are largely exploratory, aimed

at theory initiation or building (e.g., What are the actual tasks of software testers during

software development? How do the duties of software testers differ from those of

programmers during software development? and so on). Accordingly, these works

employ more constructivist and often qualitative approaches (Easterbrook et al., 2008;

Lázaro & Marcos, 2006).

52

As noted earlier, researchers’ beliefs (see further discussions in Section 3.2) also impact

the way they approach the research process (Leech & Onwuegbuzie, 2009). It has also

been highlighted that practical considerations of time, budget and access to data may

influence the study approach that is finally adopted by researchers (Easterbrook et al.,

2008). Access to data is particularly troublesome, especially when researchers aim to

assess what participants actually do, against what is self-reported. Another issue that

challenges researchers is the quality of data available for studying human issues. All of

these issues interplay during the consideration of appropriate methods.

Of the issues highlighted above, a common determinant used for selecting one research

approach over another is the way truth is perceived by the researcher (Easterbrook et al.,

2008; Onwuegbuzie & Leech, 2005). In fact, early theorists have even argued that

research should adopt an exclusive approach (either quantitative or qualitative) (Howe,

1988). However, in recent times it has become quite common for research to employ

multiple techniques (Fitzgerald & Howcroft, 1998). These issues are considered in the

next section (Section 3.2), and inform the selection of the methodology adopted in this

work.

3.2 Research Perspectives - Positivist versus Interpretivist

As just outlined, the philosophical perspective of researchers often drives the way truth

is perceived. Such perceptions are influenced by the distinctions made between

ontology and epistemology (Creswell, 2002). The ontological perspective considers the

nature of the world or reality, whereas, the epistemological stance explains the meaning

of human knowledge and how it is obtained (Bryman, 1984). To the positivist (also

called reductionist or purist) knowledge exists independent of individuals, and objective

and verifiable procedures may be used to help individuals understand parts of

knowledge, which may allow inferences to be made towards understanding the whole

(Onwuegbuzie & Leech, 2005). On the other hand, the constructivist (also called

interpretivist or situationalist), opposes the view that reality exists independent of

individuals, and so advance the position that understanding of the social world is

specific to the frames of reference of its examination (Klein & Myers, 1999). These two

positions (positivist and constructivist) shape the way methodologies are adopted by

researchers (refer to Table 1 for details – taken from Fitzgerald & Howcroft (1998)).

Positivists normally prefer to frame research around verifiable hypotheses or research

questions, and in the process, they tend to use methods such as experiments, surveys

53

and case studies that are quantifiable in nature (Hussey & Hussey, 1997). In contrast,

constructivists focus on how and why individuals make sense of the world, preferring to

be more exploratory in nature. Accordingly, researchers employing this approach

typically use methods such as exploratory case studies, ethnography, grounded theory or

anthropology to provide richer accounts of the phenomena (Klein & Myers, 1999) (refer

to Table 1 for details).

Both of these approaches possess strengths and weaknesses (Onwuegbuzie & Leech,

2005). While a theory-driven approach utilised for studies employing a positivist focus

may provide strength in the way findings are analysed (in relation to theories), deciding

on variables prior to the advanced stages of the research may result in researchers

ignoring important issues, which may limit the accuracy and applicability of the study

contributions (Easterbrook et al., 2008). Likewise, employing qualitative methodologies

provides its own challenges related to subjectivity and generalisability, especially in the

way multiple contradictory findings are reported in the study of a single phenomenon

(Onwuegbuzie & Leech, 2005) and the fact that data from qualitative studies and the

procedures employed during data interpretation are rarely made public (Constas, 1992,

p. 254).

Hence, strict adherence to a particular paradigm may result in limitations to the research

contributions. For that reason, it is often recommended that researchers should aim to

reduce the weaknesses inherent in both paradigms, while exploiting their strengths – by

employing a pragmatic approach (Leech & Onwuegbuzie, 2009; Onwuegbuzie &

Leech, 2005; Schultz & Hatch, 1996). Such an approach to research is generally

recommended for overcoming the shortcomings of individual techniques, and

unearthing deeper insights which may lead to more complete understandings of the

issues under consideration (Johnson & Onwuegbuzie, 2004; Leech & Onwuegbuzie,

2009). This approach involves collecting, analysing and interpreting both quantitative

and qualitative data during the investigation of a single observable ‘fact’ (Lázaro &

Marcos, 2006; Leech & Onwuegbuzie, 2009).

The move to combine approaches is in line with the viewpoint that conforming to a

specific epistemological perspective may delay the delivery of meaningful observations,

and that research methodologies represent tools and techniques that are used to help

with knowledge discovery through systematic and coherent enquiry (Fitzgerald &

54

Howcroft, 1998; Onwuegbuzie & Leech, 2005). This stance is also adopted in this

work, the details of which are discussed in the next section (Section 3.3).

Table 1. Constructivist versus Positivist research dichotomy

PARADIGM LEVEL

Constructivist Positivist

No universal truth. Understand and interpret from researcher’s
own frame of reference. Uncommitted neutrality impossible.
Realism of context important.

Belief that world conforms to fixed laws of causation.
Complexity can be tackled by reductionism. Emphasis on
objectivity, measurement and repeatability.

ONTOLOGICAL LEVEL

Relativist Realist

Belief that multiple realities exist as subjective constructions of
the mind. Socially-transmitted terms direct how reality is
perceived and this will vary across different languages and
cultures.

Belief that external world consists of pre-existing hard,
tangible structures which exist independently of an
individual’s cognition.

EPISTEMOLOGICAL LEVEL

Subjectivist Objectivist

Distinction between the researcher and research situation is
collapsed. Research findings emerge from the interaction
between researcher and research situation, and the values and
beliefs of the researcher are central mediators.

Both possible and essential that the researcher remain
detached from the research situation. Neutral observation of
reality must take place in the absence of any contaminating
values or biases on the part of the researcher.

METHODOLOGICAL LEVEL

Qualitative Quantitative

Determining what things exist rather than how many there are.
Thick description. Less structured and more responsive to needs
and nature of research situation.

Use of mathematical and statistical techniques to identify
facts and causal relationships. Samples can be larger and
more representative. Results can be generalised to larger
populations within known limits of error.

Exploratory Confirmatory

Concerned with discovering patterns in research data, and to
explain/understand them. Lays basic descriptive foundation.
May lead to generation of hypotheses.

Concerned with hypothesis testing and theory verification.
Tends to follow positivist, quantitative modes of research.

Induction Deduction

Begins with specific instances which are used to arrive at overall
generalisations which can be expected on the balance of
probability. New evidence may cause conclusions to be revised.
Criticised by many philosophers of science, but plays an
important role in theory/hypothesis conception.

Uses general results to ascribe properties to specific
instances. An argument is valid if it is impossible for the
conclusions to be false if the premises are true. Associated
with theory verification/falsification and hypothesis testing.

Field Laboratory

Emphasis on realism of context in natural situation, but precision
in control of variables and behaviour measurement cannot be
achieved.

Precise measurement and control of variables, but at
expense of naturalness of situation, since real-world
intensity and variation may not be achievable.

3.3 A Pragmatic Research Approach

This research adopts a pragmatic approach (Newman & Benz, 1998), where the research

problems under consideration drive the methods and techniques that are selected for this

project. Given the range of issues outlined in Chapter 2, conforming to a single

philosophical position, positivist or constructionist, would not be ideal for the work

conducted in this study (Onwuegbuzie & Teddlie, 2003). The research questions

derived in Chapter 2, and noted below in Figure 4, are largely exploratory in nature

(e.g., RQ6. Do core developers’ behaviours and attitudes differ from those of other

55

software practitioners?, RQ7. What are the core developers’ enacted roles in their

teams, and how are these roles occupied?), which is influenced by the state of research

for the phenomena under observation (refer to Section 3.2 for examples of the way such

research issues are addressed). While a substantial body of research has examined

software teams’ communication artefacts (Aranda & Venolia, 2009; Bird et al., 2006b;

Cataldo & Ehrlich, 2012; Crowston et al., 2008; Datta et al., 2010; Datta et al., 2011;

Ehrlich & Cataldo, 2012; Nguyen, Wolf, et al., 2008; Shihab et al., 2009), and the

centralised communication pattern has been observed for most software teams (Bird et

al., 2006a; Cataldo & Herbsleb, 2008; Cataldo et al., 2006; Shihab et al., 2009),

previous work has not investigated the reason(s) for this phenomenon. Previous

research has shown that these central individuals occupy the core of their teams’

information sharing network and are critical to team performance (Bavelas, 1950).

These members have also been shown to influence their wider teams’ willingness to

adapt to change and maintain performance (Ruhnow, 2007). Thus, RQ6 and RQ7 (refer

to Section 2.7.1) investigate the reasons for core developers’ extraordinary presence,

and provide understanding for the actual roles (both formal and informal) core

developers occupy in their teams. This aspect of the research is aimed principally at

theory initiation and building, and so employs more qualitative approaches to address

these objectives. This approach is similarly adopted for the research questions in

Section 2.7.2 and Section 2.7.3.

On the other hand, other aspects of the research are intended to verify or refute previous

quantitative research findings, such as those of Bird et al. (2006a), Cataldo & Herbsleb

(2008), Cataldo et al. (2006) and Shihab et al. (2009) (e.g., RQ1. Do communication

patterns change as the software project progresses?, RQ2. Is there equity in

practitioners’ contributions to their project?) (refer to Section 2.6), and in the process

provide confirmation or otherwise for these theories. This demands the utilisation of

techniques associated with a quantitative framework, and thus, such approaches are also

adopted in this work.

Given the data intensive nature of the work, quantitative measures are also used for data

reduction, data cleaning and the analysis of large samples of numeric data in the early

part of the work (Lázaro & Marcos, 2006; Onwuegbuzie & Leech, 2005) – in the

process providing confirmation for previous evidence reported (Bird et al., 2006a;

Cataldo & Herbsleb, 2008; Cataldo et al., 2006; Shihab et al., 2009) and preliminary

extensions of previous theories. The more qualitative aspects of the work are guided by

56

thematic analysis techniques, towards the provision of initial theories (Onwuegbuzie,

2003) – in consideration of the issues that have been overlooked in previous work.

Quantitative measures are then used to identify meta-themes and relationships among

themes revealed through both qualitative and quantitative observations (as per the work

of Barcellini, Detienne, Burkhardt, & Sack (2008), for example).

These approaches are utilised together to provide multiple strengths to the work under

consideration. In using quantitative techniques to analyse themes revealed from

qualitative data analysis, this study provides deeper levels of interpretation for the

exploratory aspects of the work. Additionally, qualitative aspects of the work help to

explain statistically significant findings discovered during the quantitative elements of

the work, and also act as a means of providing triangulation for the techniques selected.

These approaches, as utilised under the principles of the case study method, are outlined

in the next section (Section 3.4).

3.4 Case Study Method and Study Design

In light of the research issues and questions presented in Chapter 2 (see consolidated

research questions in Figure 4), and the subsequent discussions provided in Section 3.1,

Section 3.2, and Section 3.3 relating to the way research is conducted in SE and the

rationale for using the pragmatic approach selected in this work, this study utilises a

mixed method approach (Tashakkori & Teddlie, 1998). This approach is implemented

under a case study design, with the aim of contributing confirmations and initial

theories for explaining (Gregor, 2006) the nature of agile globally distributed software

teams’ dynamics and the true role of core developers, the way core developers’ attitudes

and knowledge sharing behaviours change over their project, and the relationship

between core developers’ attitudes and knowledge sharing behaviours and their

involvement in task performance (see the discussion on the process of theorising in

Section 3.5). Findings from these enquiries provide contributions to software

engineering theory and practice.

According to Yin (2003), case studies are used to investigate contemporary issues in

real settings. In particular, Yin posited that this method is generally suitable when there

are unclear boundaries between phenomena and context (Yin, 2003). Thus, this method

provides an avenue to understand how, when, and why events occur (Flyvbjerg, 2006),

in line with the objectives of this study. Exploratory aspects of the case study are used

57

to provide initial theories, while previous theories are assessed using more confirmatory

methods (Easterbrook et al., 2008).

A case study may employ purposive sampling in order that relevant cases are selected

for observation (Yin, 2003). Sometimes the most representative cases are selected, but

abnormal cases may also provide interesting observations (Flyvbjerg, 2006). Such a

mixed approach is used during this work’s case selection process, and deliberate efforts

are employed to ensure that interesting variations in the repository are captured during

data sampling (refer to Section 3.4.2 for further details). Additionally, while it is not

unusual for a case study to be conducted using one case, research employing multiple

cases provides stronger claims for validity (Easterbrook et al., 2008). While one large

case organisation is used during this work (IBM Rational Jazz – see discussions in

Section 3.4.1), multiple teams are investigated as individual cases, and an embedded

case approach is also used to study individual practitioners in each team (refer to Figure

3 for illustration).

Figure 3. Case study model

Depending on the type of case study methodology that is adopted (whether positivist or

constructivist) appropriate data collection and analysis techniques are utilised, where

positivist studies use mostly quantitative techniques (Yin, 2003), while constructivists

use qualitative data and associated techniques (Walsham, 1993). As noted in Section

3.3, this work utilises both approaches (quantitative and qualitative) to fulfil the study

aims and objectives. The unit of analysis provides the basis for how data is collected

and analysed, whether at the company level, project level, team level or individual level

58

(Easterbrook et al., 2008). This study utilises multiple units of analysis, at the company

level, team level and individual level (Runeson & Host, 2009). Thus, the analysis and

findings in this work are provided accordingly – firstly at the level of the team and

organisation, and then at the level of the individual. At times discussions are also

provided at the individual level and then extrapolated to the team and organisation, and

over project phases.

Research in SE and IS has utilised the case study method to investigate a range of issues

(and many of these studies have been described in the previous chapter). Bird,

Nagappan, Devanbu, Gall, & Murphy (2009) employed the case study method to

investigate the impact of distributed development on software quality. The single case

design was also employed by Nagappan, Murphy, & Basili (2008) to observe the effect

of organisation structure on software quality. A longitudinal multi-case design was

employed by McGann & Lyytinen (2008) in the examination of the way improvising

affects software evolution. Gaye, Butler, & Finnegan (2010) utilised the case study

method to study coordination mechanisms in a global software team at a Fortune 100

telecommunication company, using a single case design. Finally, the single case design

was also utilised by Moe, Dingsoyr, & Dyba (2010) to investigate teamwork challenges

in self-organising teams.

The approaches implemented by studies such as McGann & Lyytinen (2008) and

Nagappan et al. (2008) and the guidelines outlined by Yin (2003) and Runeson & Host

(2009) provide foundation for the work conducted in this study, and inform the way this

research project is designed along with the techniques that are selected for collecting,

analysing and interpreting the data representing specific properties of the population

under consideration.

The study is conducted using a multi-phase approach, using both confirmatory and

exploratory analysis techniques, where each phase builds on the other (refer to Figure 4

for consolidated research questions under each research phase). Since this study uses

archival data, data mining principles are used for data collection, pre-processing and

preliminary data exploration (refer to Section 3.4.2). Extracted data are then further

explored and analysed using SNA (refer to Section 3.4.3). These activities are

conducted in the first research phase, for confirmatory analysis (Phase 1), to provide

insights into the collaboration patterns of successful globally distributed agile teams (in

answering RQ1 – RQ 5, refer to Figure 4).

59

Linguistic Analysis (refer to Section 3.4.4), Content Analysis (refer to Section 3.4.5),

and statistical analysis techniques are then applied to the pre-processed data in two

further rounds of exploratory analyses. Static/project snapshot analyses are first

conducted in a second research phase (Phase 2) to provide new insights into the true

role of core developers. This undertaking is aimed at answering the second set of

research questions (RQ6 and RQ7) in Figure 4 to provide explanations from which

initial explanatory theories could be generated (refer to Section 3.5 for details).

Longitudinal analyses are then conducted in a third research phase (Phase 3) to provide

further understandings of the changes in core developers’ attitudes, knowledge sharing

and task performance and the relationship between these variables. This phase of

analyses is aimed at answering the final set of research questions (RQ8 – RQ13) in

Figure 4 towards extending the insights from the second phase (Phase 2).

The following sections provide a description of the data repository that is extracted and

explored during this work (Section 3.4.1), and elaborations of the techniques and

procedures utilised to fulfil the study’s agenda (see Section 3.4.2, Section 3.4.3, Section

3.4.4 and Section 3.4.5, respectively).

60

Figure 4. Consolidated research questions

61

3.4.1 Study Repository

The repository that is selected for examination in this work is called IBM Rational Jazz

(based on the IBMR RationalR Team ConcertTM (RTC)3). Jazz, created by IBM, is a

fully functional environment for developing software and managing the entire software

development process, including project management, project communication and

coding (Frost, 2007) (see a breakdown of the components of the Jazz platform in Figure

5, see http://www.jazz.net for further details). In fact, collaboration and awareness

support is the premise on which Jazz was built, where IBM’s idea was to integrate all

aspects of software development in one toolset (Herzig & Zeller, 2009) and provide

unhindered project awareness for team members. In this regard, this software includes

features for work planning, software builds, code analysis, bug tracking and version

control functionalities in one system (Rich, 2010). Traceability for these different

features is provided by the tool’s reporting functionalities. Changes to source code in

the Jazz environment are only allowed as a consequence of earlier tasks created, such as

a defect, a task or an enhancement request. Features and artefacts are tracked using

work items (WIs), and a WI represents a single task4 classified as one of the

aforementioned. Defects are tasks related to bug fixing, design documents,

documentation or support for the RTC online community are labelled as tasks, while

enhancements are related to new functionality or the extension of system features

(Ehrlich & Cataldo, 2012). Team member communication and interaction around WIs

are captured by Jazz’s comment or message functionality. During development at IBM,

project communication, the content explored in this study, was actually enforced

through the use of Jazz itself (Nguyen, Wolf, et al., 2008).

IBM has afforded this work an opportunity to study an instance of the Jazz repository

(via the IBM Academic Initiative) comprising a large amount of software development

process data from planning, development and management activities across the United

States, Canada and Europe. This release includes teams’ artefacts that were created

during the development of the now commercially available RTC. In Jazz, specific teams

are responsible for various aspect(s) or component(s) of the overall Jazz project (e.g.,

Jazz Community Portal or Jazz Visual Studio Client). It is also not uncommon for team

members to work across many teams occupying different roles (see an illustration of the

3 IBM, the IBM logo, ibm.com, and Rational are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.
4 The terms “task” or “WI” are used interchangeably during this work to refer to a software feature.

62

way artefacts and teams’ members are arranged in the Jazz repository in Figure 6). Each

team has multiple individual roles, with a project leader responsible for the management

and coordination of the activities undertaken by the team (Ehrlich & Cataldo, 2012).

Project leaders report progress to a project management committee (PMC), which

formulates and oversees the project goals.

Figure 5. Components of the Jazz platform

Figure 6. Teams’ arrangement in Jazz

Jazz teams use the Eclipse Way (agile-based) methodology for guiding the software

development process (Frost, 2007). This methodology outlines iteration cycles that are

six to eight weeks in duration, comprising planning, development and stabilising

phases. IBM Rational software engineers note that agile practices form the core of the

Eclipse Way methodology, and that the agile tenets “iterative, reflect, adapt,

incremental, feedback” were central to the way they developed the RTC (refer to

http://www.ibm.com/developerworks/rational/library/edge/08/jul08/vanVelzen/ for a

relevant article by Jazz Solution Architect Ton van Velzen). During Jazz development,

63

builds are executed after project iterations; also called project milestones. All

information regarding the software process (project management, tracking and planning,

project coordination and communication and software building (coding)) is stored in a

server repository, which is accessible through a web-based or Eclipse-based (RTC)

client interface (Wolf, Schroter, Damian, Panjer, et al., 2009).

While the criteria for software project success generally relate to projects being

completed on time, on budget and with the required features and functionality (Standish

Group, 2009), others assert that measures related to software projects’ impact on the

development organization, post-release customers’ reviews, and actual software usage

are also relevant project success indicators (Espinosa et al., 2006). Accordingly, given

the impact IBM Rational products (included in the Jazz repository) have had on IBM

and many other organizations, with over 30,000 companies using these tools, and that

these products have been positively reviewed and tested by those companies, it is

contended here that Jazz teams are successful (see http://www.jazz.net for details).

Thus, this study provides reflections of successful agile globally distributed software

team dynamics.

Beyond Jazz (Nguyen, Wolf, et al., 2008; Treude, 2010), many tool repositories have

been used previously in the observation of software processes and metrics (Bachmann

& Bernstein, 2009; Bird et al., 2006a; Dutoit & Bruegge, 1998; Edwards, Puckett, &

Jolly, 2006; Zimmermann & Nagappan, 2008). These studies have mostly employed

OSS repositories in their enquiries (Bachmann & Bernstein, 2009), or have provided

evidence derived largely from analytical and mathematical procedures, particularly

SNA (Datta et al., 2010; Nguyen, Wolf, et al., 2008) and other frequency-based

measures (Shihab et al., 2010). For instance, Zimmermann & Nagappan (2008) used

SNA to identify defect prone binaries, Bird et al. (2006a) employed SNA to study the

developers’ communication and coordination activities, Datta et al. (2011) also

employed SNA to study the evolution of developers’ collaboration, and finally, Shihab

et al. (2010) used frequency-based techniques to study the communication patterns of

OSS developers. Among the works examining software artefacts, studies have used

repositories of projects such as Apache (Bird et al., 2006a), Eclipse (Abreu & Premraj,

2009), GNOME (Bachmann & Bernstein, 2009), Netbeans (Bachmann & Bernstein,

2009), OpenOffice (Bachmann & Bernstein, 2009), FreeBSD (Spinellis, 2006),

Windows Vista (Nagappan et al., 2008), Windows Server 2003 (Zimmermann &

64

Nagappan, 2008, 2009), Linux (Dempsey, Weiss, Jones, & Greenberg, 2002) and

student projects (Dutoit & Bruegge, 1998; Edwards et al., 2006).

Commercial software organisations such as IBM and Microsoft seldom make their code

history or project data publicly available. Thus, as is evident above, OSS repositories

are often exploited to study process issues (Bachmann & Bernstein, 2009; Bird et al.,

2006a). As noted previously, there are numerous challenges in using these repositories,

related to the reliability and validity of the data available in these stores (Rodriguez et

al., 2012). Research evidence has reported poor data quality in repositories of OSS

projects (Aune et al., 2008; Bird et al., 2006a). In the Bird et al. (2006a) study of the

Apache mailing list they found it difficult to uniquely identify developers’ records due

to the volume of email addresses and aliases these individuals used. Additionally,

linking communication to source code entries presented many challenges for these

researchers because of the different tools that were utilised during the project. For

example, Subversion or Bugzilla may manage the code repository, while

communication around software artefacts may be managed using a mailing list

repository (Herzig & Zeller, 2009). Challenges associated with linking artefacts were

also reported by Aune et al. (2008) in their study of Eclipse. Further issues may also be

encountered when studying OSS repositories due to the way these projects are managed,

because anyone is able to post messages and report bugs to such mailing lists, whether

those individuals are contributing to the project or otherwise (Bettenburg et al., 2007;

Bird et al., 2006a).

While careful use of data mining techniques may reduce the effects of these issues,

threats to the validity and reliability of data analysed from these repositories are still

likely to remain. In contrast, commercial data archives such as Jazz (studied in this

work) have been reported to provide reliable process data (Bachmann & Bernstein,

2009; Nguyen, Wolf, et al., 2008). This is due to the use of well-defined and enforced

software processes by these projects’ host organisations. Additionally, since these

datasets are not publicly accessible, only registered users are allowed to post messages

and report bugs on such projects. In fact, during development at IBM Rational, project

communication, the theme under investigation in this research, was enforced through

the use of Jazz (Nguyen, Wolf, et al., 2008). Thus, the opportunity to study software

human factors from this repository is invaluable, and provides an avenue for examining

rich and reliable artefacts. Additionally, while previous studies have shown that

communication among team members is affected in distributed software development

65

(see Herbsleb & Mockus (2003a) for example), a study examining this issue in the Jazz

project has found no effect of distance on communication and project outcomes

(Nguyen, Wolf, et al., 2008). This finding suggests that the Jazz environment effectively

supported distributed software development, and evidence in this repository should

indeed capture a comprehensive view of team processes.

However, in studying Jazz, one of the challenges relates to extracting and mining the

data in this repository. Mining Jazz has been posited to be a highly complex activity,

compared to mining OSS repositories (Herzig & Zeller, 2009; Nguyen, Schroter, &

Damian, 2008). This complexity is linked to the tool’s architectural and data storage

requirements. Data mining principles have been generally recommended for addressing

this challenge (Nguyen, Schroter, et al., 2008; Wolf, Schroter, Damian, & Nguyen,

2009), and so are utilised in this work. This issue is considered briefly in the following

section (Section 3.4.2), a review of which informed the selection of specific techniques

for accommodating the data extraction and pre-processing activities conducted during

this study.

3.4.2 Data Extraction and Pre-processing - Data Mining

Data mining or knowledge mining is a discipline which combines statistics, artificial

intelligence, pattern recognition and database management to facilitate knowledge

extraction from large data sets (Han & Kamber, 2006; Tan et al., 2006). The motivation

for the emergence and growth of this data mining resides in the fact that as computer

hardware has become relatively inexpensive many industries have computerised their

operations, which allows for the accumulation of massive data stores due to the many

means available for rapid data collection (Tan et al., 2006). This abundance of data and

the potential to gain knowledge by understanding patterns within (as illustrated in

Figure 7 below), which may not be entirely evident through routine examination, have

driven research into tools and techniques (considered under the data mining discipline)

that facilitate knowledge extraction from large data sets (Larose, 2005).

Such tools and techniques have found utility in many organisations, for reasons

including marketing research, population census trends, fraud detection and

surveillance, science and engineering, games, traffic management, economics, health

care and space research (Gorunescu, 2011; Han & Kamber, 2006; Tan et al., 2006).

Under these areas data mining techniques have supported the prediction of future events

and the description of data patterns (Han & Kamber, 2006). Prediction is normally

66

supported by classification and regression schemes, whereas clustering, association rule

discovery and sequential pattern discovery provide descriptions of association and

correlation (Gorunescu, 2011).

Figure 7. The data mining or knowledge mining process

For prediction and description measures to be accurate and provide high quality results,

the data available for mining must be of a similarly high standard (Tan et al., 2006). In

fact, applying data mining software such as Weka, KNIME, RapidMiner (these

examples are freely available) to large data sets without employing data preparation

measures to maintain data quality may lead to erroneous conclusions and potentially

costly failures (Larose, 2005). Thus, in order to preserve or even enhance the standard

and quality of data, which in turn may help in the discovery of more representative and

valid results, many data pre-processing measures are employed. Data pre-processing,

which has been described as the most challenging activity of the data mining exercise

(Rodriguez et al., 2012), includes data cleaning, data integration and data transformation

(Han & Kamber, 2006). Data cleaning involves detecting and removing noise from the

data by modifying incorrect values and filling in missing values through estimation, or

sometimes removing those instances or records altogether. Sometimes data cleaning

may also involve identifying and removing outlier values (Tan et al., 2006). Data

integration involves merging possibly many data sources into one large data source, and

data transformation involves normalising and aggregating the data to improve the

performance and accuracy of data mining algorithms.

In fact, data aggregation is often necessary in order to reduce the scale of the problem

space so that mining algorithms perform efficiently. This activity potentially involves

removing irrelevant data attributes, selecting a subset of the features, creating new

67

attributes that are better able to represent data objects, and changing data scales so that

the smallest number of attributes are used during mining (Han & Kamber, 2006).

Similarly, sampling may reduce the processing overhead required, while also allowing

preliminary data exploration (Tan et al., 2006). When executing data mining algorithms,

sampling could typically be of the forms: simple random sample (with or without

replacement), cluster sample and stratified sample (Tan et al., 2006). For simple random

sampling there is equal probability of selecting every record, while cluster sampling

involves separating the repository into groups of records before applying the simple

random sample method to select a number of clusters. Stratified sampling involves

separating the data into partitions called strata, after which simple random sampling is

employed on each stratum. Relevant artefacts may also be selected using purposive

sampling strategies for more in-depth enquiries (refer to Section 3.4 for further

discussion on purposive sampling).

These sampling techniques may be augmented by exploratory data analysis (EDA)

(Larose, 2005). EDA denotes human involvement in the detection of patterns that are

not necessarily captured by data analysis tools (Tukey, 1977). EDA utilises descriptive

statistics, visualisation, clustering and anomaly detection (Tukey, 1977). Summary

statistics may be used to investigate the general properties of the data, and particularly

its distribution. Visualisation is the representation of data in visual form to facilitate

analysis and identification of any relationships among attributes (Tan et al., 2006).

Techniques for visualisation include histograms, box plots, scatter plots, contour plots,

and matrix plots (Larose, 2005). Like summary statistics, computational methods such

as cluster analysis and factor analysis can also be employed in data exploration to

investigate correlation and multivariate measures. Multidimensional array

representation (supporting On-Line Analytical Processing (OLAP)) may also be used

for data analysis and presentation (Tan et al., 2006). All of these EDA techniques

provide support for anomaly detection (Larose, 2005).

Although a complete investigation of data mining itself is beyond the scope of this

work, specific aspects of data mining supported the activities involved in this research

in terms of extracting, preparing and exploring the data under observation. In fact, it is

largely recommended that data mining techniques be employed when extracting and

preparing data from large repositories (Larose, 2005) – one of the activities undertaken

in this work.

68

3.4.2.1 Data Extraction and Pre-processing Procedures

Data cleaning and transformation techniques (just mentioned) were utilized to enhance

the representativeness of the data under consideration and to help with the assurance of

data quality, while EDA techniques (including histograms and scatter plots) were

employed to investigate data properties and for anomaly detection. As a result of these

activities all records with inconsistent formats and data types were identified and

removed, for example: integer columns with empty cells (resulting in the removal of

122 records from a total of 36,672). To verify that none of the 122 records were actually

valid, these records were cross checked using the RTC (refer to Figure 8 for the typical

view of a WI when accessed through the RTC), and this exercise validated that these

records were not useful. Scripts were also written to remove all HTML tags and foreign

characters from the textual data (including comments and work item descriptions).

Figure 8. Sample WI viewed via the RTC

A Java program was created to leverage the IBM Rational Jazz Client API to extract

team information and development and communication artefacts from the Jazz

repository. These included:

69

• Work Items (or Software Tasks) and history logs – in Jazz each software task is

represented as a WI (refer to Section 3.4.1 for details), and a change history log is

maintained for each WI.

• Project Workspaces or Project Areas – each Jazz team is assigned a workspace

(also called a project or team area). The workspace contains all the artifacts

belonging to the specific team.

• Contributors and Teams – a contributor is a practitioner contributing to one or

more software features, multiple contributors form teams. For the actual role

information extracted from the repository, the Team leads (component lead) are

responsible for planning and architectural integration of components. Admins

(including roles related to integration, administration and configuration) are

responsible for configuration and integration of artifacts. Project managers (PMC)

are responsible for project governance. Those occupying the Programmer

(contributor) role contribute code to features. Finally, those that occupied more

than one of these roles were labeled Multiple.

• Comments or Messages – communication around WIs is facilitated by Jazz’s

comment functionality. Messages ranged from as short as one word (such as

‘thanks’), to up to 1055 words representing multiple pages of communication.

These are arranged by date sequentially for each WI, similar to messages on a

bulletin board (see Figure 8 for illustration).

A total of 36,672 resolved WIs (36,550 pre-processed) and history logs created between

June, 2005 and June, 2008 were extracted from the Jazz repository. These work items

belonged to 94 project workspaces that each comprised more than 25 WIs. This volume

of data was considered sufficient to support the study’s investigations. The project

workspaces contained the work of 474 active contributors belonging to the five different

roles noted above. For the 94 project areas, comments (or messages) – the primary data

source for this research – were also extracted, totalling 116,020. The data extracted from

Jazz were imported into a Microsoft SQL relational database management system to

facilitate efficient data management (see the database model of the pre-processed and

partially normalized Jazz data in Figure 9). Although there was some redundancy in the

Work Item table that was created (for some fields including: Type, Severity, Priority,

and so on - see Figure 8 for the full list of WI fields), this was not an issue of concern in

this research as there was no need to conduct additions, deletions or modifications (or

70

any performance-related transactions) to any of the records stored in this table. Thus,

further division of the Work Item table into smaller tables (to reduce redundancy) was

not necessary.

Figure 9. Database model of the pre-processed and partially normalized Jazz data

In line with the multi-case study design outlined above, purposive sampling was used in

the case selection process (Yin, 2003). The goal was to select a range of cases that

represented the scope and breadth of the various teams in the repository, for example:

some team areas are labelled as documentation, user experience, development or

coding, and project management-based activities. Thus, initially all the tasks (WIs)

undertaken by ten of the 94 project teams (shown in Table 2) were selected for

examination. The team areas selected represent both information-rich and information-

rare cases in terms of numbers of messages (refer to Table 2). These cases also represent

development activities (planned in multiple iterations) that were of varied durations,

from short (59 days or two iterations) to long (1014 days or 17 iterations), with varying

levels of communication density. Selected teams’ artefacts amounted to 1201 software

development tasks, carried out by 394 contributors (and comprising 146 distinct

members from the 474 total contributors), with 5563 messages exchanged around the

1201 tasks.

Social network analysis measures and graphs were also used to inform the data

sampling, and particularly for studying the patterns of interaction in order to inform data

saturation (refer to Section 3.4.3 for details). For the artefacts from the ten teams, during

71

social network analysis it became clear that the cases selected were representative of

those in the repository in relation to team members’ communication and engagement in

task (feature) changes. Project communication and engagement for all ten teams was

heavily skewed around only few members, and data saturation was achieved after

analysing the team artefacts in the third case (Glaser & Strauss, 1967; Licorish &

MacDonell, 2013d) (see Section 3.4.3 and Appendix II for further details). This initial

pattern of concentration around a few individuals in each team workspace provided

preliminary confirmation for the wheel structure pattern regularly noted in Chapter 2,

and set the tone for the particular detailed analysis of core developers.

Beyond the data saturation observed, the sample of (ten) teams’ artefacts selected is

considered to be adequate for the type of inquiries conducted during this work

(Creswell, 1998), particularly as all the study cases were selected from a single data

source (Kuzel, 1992), and multiple analysis approaches (both top-down and contextual)

were applied to a large number of messages (5563 altogether). Additionally, Romney,

Weller, & Batchelder (1986) showed that samples representing the work of just four

individuals (the sample in this study comprised 146 distinct practitioners) could render

highly accurate information if those individuals were very competent in the domain

under investigation, as it was posited for Jazz developers given the high level of their

tools’ usage and the positive reviews these tools received (noted in Section 3.4.1).

Data collected are analysed using social network analysis techniques, linguistic

procedures, and content analysis processes, in a multi-phase approach (refer to Section

3.4). (Note that SNA was also used to inform the case selection process and to confirm

that the cases selected were adequate.) These aspects of the research design are

considered in the following three sections (Sections 3.4.3, Section 3.4.4 and Section

3.4.5 respectively), starting with a review of the SNA techniques in Section 3.4.3.

72

Table 2. Summary statistics for the selected Jazz teams

Team ID Task (WI)
Count

Software Tasks
(Project/Team Area)

Total Contributors – Roles Total
Messages

Period (days)
– Iterations

P1 54 User Experience – tasks
related to UI development

33 – 18 programmers, 11 team
leads, 2 project managers, 1
admin, 1 multiple roles

460 304 - 04

P2 112 User Experience – tasks
related to UI development

47 – 24 programmers, 14 team
leads, 2 project managers, 1
admin, 6 multiple roles

975 630 - 11

P3 30 Documentation – tasks
related to Web portal
documentation

29 – 12 programmers, 10 team
leads, 4 project managers, 1
admin, 2 multiple roles

158 59 - 02

P4 214 Code (Functionality) – tasks
related to development of
application middleware

39 – 20 programmers, 11 team
leads, 2 project managers, 2
admins, 4 multiple roles

883 539 - 06

P5 122 Code (Functionality) – tasks
related to development of
application middleware

48 – 23 programmers, 14 team
leads, 4 project managers, 1
admin, 6 multiple roles

539 1014 - 17

P6 111 Code (Functionality) – tasks
related to development of
application middleware

25 – 11 programmers, 9 team
leads, 2 project managers, 3
multiple roles

553 224 - 13

P7 91 Code (Functionality) – tasks
related to development of
application middleware

16 – 6 programmers, 7 team
leads, 1 project manager, 1
admin, 1 multiple roles

489 360 - 11

P8 210 Project Management – tasks
under the project managers’
control

90 – 29 programmers, 24 team
leads, 6 project managers, 2
admins, 29 multiple roles

612 660 - 16

P9 50 Code (Functionality) – tasks
related to development of
application middleware

19 – 10 programmers, 3 team
leads, 4 project managers, 2
multiple roles

254 390 - 10

P10 207 Code (Functionality) – tasks
related to development of
application middleware

48 – 22 programmers, 12 team
leads, 2 project managers, 1
admin, 11 multiple roles

640 520 - 11

∑ 1201 394 contributors, comprising
175 programmers, 115 team
leads, 29 project managers, 10
admins, 65 multiple roles

5563

3.4.3 Data Analysis (Technique 1) - Social Network Analysis

Social Network Analysis (SNA) may be used to quantify aspects of network structures

in order to support pattern identification in social networks (De Laat et al., 2007). This

technique employs mathematical analysis and pictorial representations of the patterns of

interaction and relationships among individuals – and potentially other components –

during group processes (Willging, 2005). Concepts such as cohesion, equivalence,

power and brokerage are used to explain the characteristics of network actors (Scott,

2000). Of these concepts, the most important mathematical measurement for SNA is

cohesion, measured by density and centrality. Density provides an overall measurement

of the connectedness of the network (Scott, 2000), whereas centrality (also called degree

or degree centrality) denotes the level of individual interaction (Wasserman & Faust,

1997). Visualisation of interaction networks, also called sociograms, is often used for

uncovering interaction patterns and the flow of information that may not be so evident

73

from numerical values (Wasserman & Faust, 1997). In these visualisations, individuals

are represented by nodes, and their associations are illustrated through lines that connect

these nodes. An examination of a sociogram will unveil who is communicating (or not),

who is most central to the team, which members are acting as hubs or brokers, and so

on.

Figure 10 shows a simple sociogram with four different network segments (a, b, c, and

d) to illustrate how visualisations support the detection of interaction patterns among

individuals. In Figure 10(a) the solid blue member has a degree centrality of 6 because

(s)he is directly connected to 6 other individuals. When compared to the other

individuals in this network segment (whose degree centrality ranges between 2 and 3),

this is the most central member in this group of communicators. In Figure 10(b) the

solid green node (member) forms the link (hub or bridge) between two network

segments (Figure 10(a) and Figure 10(c)), while in Figure 10(c) the solid red node,

although playing the role of bridge for segments Figure 10(c) and Figure 10(d), has a

degree centrality of 1 in Figure 10(c), and is the weakest communicator in both Figure

10(c) and Figure 10(d). The most dense network segment is seen in Figure 10(d) where

all members have a degree centrality of between 5 and 6 (with 6 being the highest

possible degree centrality). In this network segment (Figure 10(d)), the solid black

member has a density of 1 (the maximum value for the density measurement as further

described in Section 3.4.3.1).

SNA has been shown to have value in many domains, including security (Dekker,

2002), political science (Mendieta, Schmidt, & Ruiz, 1997), education and

communication (Aviv, Erlich, Ravid, & Geva, 2003), as well as in software engineering

(Cataldo et al., 2006; Wolf, Schroter, Damian, Panjer, et al., 2009). While it is generally

recommended that caution be shown when explaining the consequences of social

network patterns due to the many reasons people may interact (Aral & Walker, 2011) –

whether the reason be due to peer authority, social pollution or otherwise –

collaboration in professional software engineering settings is generally linked to work

task execution, and active collaboration has been shown to have a positive impact on

team productivity (Damian & Zowghi, 2003; Ehrlich & Chang, 2006). Thus, SNA

techniques provided utility for this work, and are used to identify unique interaction

patterns among software tasks and key software practitioners. Apart from confirming

previous evidence, these techniques also informed the other stages of the data analysis

74

(refer to Section 3.4.4 and Section 3.4.5), and the case selection process (noted in

Section 3.4.2.1).

Figure 10. Sociogram highlighting interaction patterns of team members

In line with this study’s units of analysis outlined above, interaction patterns around

individuals and teams are of primary interest during the SNA observations. These units

are central to the way the patterns identified are interpreted. Firstly, a task-based

sociogram was created from all the tasks and comments extracted from the Jazz

repository during the data extraction and pre-processing phase (refer to Section 3.4.2

above for further explanation of the data extraction and pre-processing activities that

were conducted). For this social network a software task represented a unit of work, and

the messages communicated by the practitioners solving the software task represented

the collaboration and interaction that was aimed at completing the specific task. During

the construction of the Jazz project sociogram, tasks (WIs) and comments formed the

network nodes, and edges connected these nodes – such that an individual commenting

on a software task represented a simple graph with two nodes and one edge; see Wolf,

Schroter, Damian, Panjer et al. (2009) for further reading on constructing task-based

social networks. By qualitatively examining these Jazz network visualisations, it was

indeed confirmed that the Jazz repository was partitioned based on teams areas (see

Figure 11 for a section of the overall Jazz sociogram with visualisations of teams’ and

practitioners’ interaction patterns), and various members acted as hubs across the

75

different teams which made the overall Jazz network highly connected. Quantitative

measurements confirmed the variations in connection density around various network

segments noted through qualitative observations (and these are presented in Chapter 4).

This evidence informed the data pre-processing and data normalisation process, and

supported preliminary observations made during the execution of standard queries and

EDA (noted in Section 3.4.2).

Figure 11. Section of Jazz communication network

Given these preliminary observations coupled with the ability to query the Jazz data by

team area (as per the database model shown in Figure 9), sociograms were created that

represented all the tasks addressed by specific teams and the communication around

these tasks. However, finer grained qualitative examination of these graphs proved

challenging due to the volume of network connections in each team area. This issue was

encountered previously by those examining graph readability (Ghoniem, Fekete, &

Castagliola, 2005; Henry & Fekete, 2007). In order to make the network visualisations

more meaningful, the teams’ sociograms were reconstructed using directed social

networks, and network edges belonging to distinct contributors on individual software

tasks were merged and colour coded; edge colour moved from red to brown (between

one to five messages), brown to green (between six to ten messages) and then to a more

76

pronounced green (eleven or more messages). The network vertices also represented

either a class image denoting a task or a contributor’s unique identification number (see

Figure 12 for a sample Jazz sociogram that was created using this procedure).

Constructing the teams’ aggregated networks in this way does not represent a limitation

to the study design as the goal of this aspect of the work was to identify unique

interaction patterns among software tasks and key software practitioners, and

information flow and interaction in the Jazz environment (or indeed any real world

project) is directed (Datta et al., 2010).

Figure 12. Directed network graph for a sample Jazz team showing highly dense network
segments for practitioners “12065” and “13664”

3.4.3.1 SNA and Other Quantitative Measures and Procedures

Apart from the visualisation of individuals’ and teams’ interactions using sociograms,

other complementary SNA measures (introduced above) were also utilised to study Jazz

teams’ collaboration patterns. These measures and procedures are as follows:

• Density varies between 0 and 1, so that a task or individual that attracted

interaction from all the members in a team would have a density of 1, while those

with no interaction would have a density of 0. The network density measure is

used to study the team networks’ connectedness and practitioners’ level of

interactions during Jazz development (e.g., a practitioner that communicated on

20 out of their team’s 50 tasks would have a density of 0.4). Individuals involved

in highly dense communication network segments have been shown to dominate

coordination and collective action (Reagans & Zuckerman, 2001), and are seen as

most important to their teams (Zhong, Huang, Davison, Yang, & Chen, 2012).

77

This measure is also used to select core developers, as was done in previous work

(Crowston et al., 2006). To this end a classification threshold is employed

following a similar approach as used by (Crowston et al., 2006), so all

contributors whose density measure was ≥ 0.33 (i.e., they communicated on a

third or more of their team’s tasks) are selected and grouped as ‘top contributors’

or ‘core developers’.

• Centrality measures for In-degree and Closeness are used to study how

connected teams and their contributors’ were during their project and levels of

interaction. These measures are also use to assess how accessible individuals were

in the teams’ networks, as has been considered by others (Bird et al., 2006a; Datta

et al., 2010). In-degree denotes the number of connections that point towards a

vertex and is used to provide measures for the number of unique messages (edges)

generated by individuals during Jazz development. Practitioners’ numbers of

unique messages (edges) in their network graphs are also aggregated to provide a

measure for the number of distinctive contributors to communication during the

teams’ developments. Closeness measures the shortest distance between nodes.

While in-degree accounts for the immediate links around a vertex, closeness

measures both direct and indirect connections (Datta et al., 2010; Hanneman &

Riddle, 2005). So, the lower the closeness measure for a given node the more

reachable that node is to the other members in the network (Hanneman & Riddle,

2005). Such nodes are likely to play an important role in maintaining network

connectivity, and are generally regarded as powerful (Hanneman & Riddle, 2005).

This measure is used to evaluate the strength and accessibility of the teams’

networks and of individual team members.

• Various approaches have been used over many years to measure individual-level

performance in software tasks. Productivity-related measures such as lines of

code per unit of effort (Curtis, 1981), time taken to complete development tasks

(Espinosa et al., 2007) and the number of task changes completed (Cataldo &

Herbsleb, 2008) are among those used previously to measure performance.

Among others, Cataldo and Herbsleb (2008) argued that measures based on lines

of code may not be reliable in instances where there is variability in developers’

coding styles (i.e., some developers are more verbose than others). The time taken

to complete development tasks may vary for developers when there are many

feature inter-dependencies (e.g., a developer may start working on a feature that

78

needs to use classes that are under development by another developer, and thus

may be delayed). Therefore, this work use the relative number of task (WI)

changes as indicative of the performance of developers in software tasks (Cataldo

& Herbsleb, 2008; Shihab et al., 2010). A developer was considered to change a

task if they created, modified, or resolved that task, as has been utilised in prior

studies (Cataldo & Herbsleb, 2008; Ehrlich & Cataldo, 2012).

• From the cases selected it is noted that software tasks were planned in multiple

iterations for each team area (P1 – P10 in Table 2), and for further discussion

around the way the Jazz project is organized see Ehrlich & Cataldo (2012).

However, Table 2 also shows that the actual number of iterations varied across the

team areas (e.g., P3 tasks were completed in two iterations, whereas P5 tasks were

executed in 17 iterations). Therefore, to normalise the teams’ task data in order to

examine any changes in practitioners’ interactions over project duration, each

team’s tasks and artefacts are divided into four equal quarters (start, early-mid,

late-mid, and end) (Licorish & MacDonell, 2012, 2013d).

• The various team areas (and software tasks) are used to uniquely identify the

nature of the software development activities; e.g., those working on P1 and P2

in Table 2 were undertaking tasks that are labeled as User Experience related

functionalities (Licorish & MacDonell, 2013d).

• Formal team role information (e.g., Programmer, Team lead, Project manager

and Admin) and data regarding practitioners’ responsibilities extracted from the

Jazz repository are used in comparing practitioners’ formal roles with their

involvement in their teams’ interactions, their enacted roles and task engagement

(Licorish & MacDonell, 2013c).

The NodeXL tool is used to support the SNA-related aspects of this study, enabling the

production of network visualisations and the calculation of the metrics that are

introduced above. NodeXL is an open source software tool used to model data drawn

from social media sources, such as email, discussion forums, wikis and blogs, to support

the understanding of interactions and relationships created through the use of these

media (Hansen, Shneiderman, & Smith, 2011; Smith et al., 2009). Other such tools

include Unicet and NetDraw (see http://www.insna.org for other SNA tools). NodeXL

is widely used for constructing sociograms and studying communication and interaction

79

(Datta et al., 2011; Sharma & Kaulgud, 2011), in line with the research objectives of

this study.

While of interest and utility in their own right, the results obtained from the SNA are

also triangulated through deeper linguistic analysis. The mechanisms and frameworks

that are used in this regard are reviewed next. The next section (Section 3.4.4) is

dedicated to introducing linguistic analysis techniques and outlining how a specific

approach is selected for use during this research.

3.4.4 Data Analysis (Technique 2) - Linguistic Analysis

It has been established in the previous chapter that linguistic analysis of textual

communication can reveal much about those communicating. This provides a rationale

for the analysis of Jazz project developers’ messages in this research. There are many

candidate approaches for analysing attitudes and behaviours from textual data. In

reviewing the literature in the psycholinguistic space, it is observed that the Linguistic

Inquiry and Word Count (LIWC) software and the Medical Research Council (MRC)

Psycholinguistic Database are most frequently adopted for this form of analysis

(Coltheart, 1981; Gill & Oberlander, 2003; Mairesse et al., 2007). Both utilise

established dictionaries in the text analysis process and so may be regarded as top-down

approaches (Nowson & Oberlander, 2006). In addition to the LIWC tool and MRC

database, there are more qualitative techniques that may be deemed data driven or

bottom-up approaches. These data driven approaches rely on the data itself to provide

the dimensions for classification, as against grouping data based on already available

feature sets or dictionaries, as found in top-down approaches. These data driven

approaches are said to capture the specific context in which words are used, often via n-

grams (Damerau, 1993), and statistical analysis is used to test for significance.

Given that this study is aimed at examining communication artefacts to investigate

software practitioners’ attitudes as evident in 5563 messages, utilising a data driven

approach is not practical due to its resource-intensive nature. More importantly, this

study is not intended to create psycholinguistic theories, but rather to explore the

attitudes and behavioural patterns evident during successful agile globally distributed

software development activities. Further, previous studies verifying individuals’

attitudes and behavioural issues using textual communication have successfully

employed dictionary-based approaches (Coltheart, 1981; Rigby & Hassan, 2007). Thus,

80

the most frequently used top-down approaches are reviewed here to justify the selection

of the specific technique that is employed during this research.

As noted above, one of the most frequently employed linguistic analysis approaches, the

LIWC, is a software tool created after four decades of research using data collected

across the USA, Canada and New Zealand (Pennebaker et al., 2007; Pennebaker &

King, 1999). Data collected in creating the LIWC tool spanned many areas of life,

including emotional writing, control writing, research articles, blogs, novels and normal

conversations (and data collection is an on-going exercise). This tool captures over 86%

of the words used during conversations (comprising around 4500 words) and is

available in many languages. In the tool, words are grouped based on specific types,

such as negative emotion, social words, positive emotion, quantifiers, and so on (refer to

Table 3 below (Pennebaker et al., 2007) for a sample of the tool’s linguistic categories).

Written text is submitted as input to the tool in a file which is then processed and

summarised based on the LIWC dictionary. Each word in the file is searched for in the

LIWC dictionary, and specific scales are incremented in accordance with the word

category, after which a file is returned to the user containing the summary output. The

tool’s output data include the percentage of words captured by the dictionary, standard

linguistic dimensions (e.g., pronouns and negation), psychological categories and

function words (e.g., negative and social) and personal dimensions (e.g., work and

leisure).

The MRC database, on the other hand, contains psycholinguistic information for around

9240 imagery rating words (Coltheart, 1981; Wilson, 1987). This tool works in a similar

way to the LIWC, scoring text for the numbers of letters, phonemes and syllables,

words written in specific categories, sample counts, verbal frequency, concreteness,

imaginative words, and others, as derived from the 1963 Oxford dictionary and

Edinburgh Associative Thesaurus. As with the LIWC, this tool returns summary

statistics including the mean and standard deviation of the variables just described for

the input text. The MRC database was designed to support psycholinguistic, language

processing and cognitive simulation research, with its dictionary comprising a number

of small language databases (see the Sample of the dictionary file in Table 4, (Coltheart,

1981; Wilson, 1988)).

81

Table 3. Sample LIWC output variable information

Category Abbreviation Examples Words in Category

Linguistic Processes

1st pers singular i I, me, mine 12

1st pers plural we We, us, our 12

2nd person you You, your, thou 20

Prepositions prep To, with, above 60

Conjunctions conj And, but, whereas 28

Negations negate No, not, never 57

Quantifiers quant Few, many, much 89

Personal Concerns

Work work Job, majors, xerox 327

Achievement achieve Earn, hero, win 186

Leisure leisure Cook, chat, movie 229

Home home Apartment, kitchen, family 93

Psychological Processes

Social processes social Mate, talk, they, child 455

Positive emotion posemo Love, nice, sweet 406

Negative emotion negemo Hurt, ugly, nasty 499

Anxiety anx Worried, fearful, nervous 91

Anger anger Hate, kill, annoyed 184

Table 4. Sample MRC dictionary file

Column Name Property Occur

41-43 AOA Age of Acquisition 3503

44 TQ2 Type 44976

45 WTYPE Part of Speech 150769

46 PDWTYPE PD Part of Speech 38390

47 ALPHSYL Alphasyllable 15938

48 STATUS Status 89550

49 VAR Varient Phoneme 1445

50 CAP Written Capitalised 4585

51 IRREG Irregular Plural 23111

| WORD the actual word 150837

| PHON Phonetic Transcription 38420

| DPHON Edited Phonetic Transcription 136982

| STRESS Stress Pattern 38390

According to linguistic theories, it is possible to discern attitudes within individuals’

textual communications (Giles & Wiemann, 1993; Hart, 1984; Oxman et al., 1988;

Pennebaker & King, 1999; Pennebaker et al., 1997; Pennebaker et al., 2003; Schnurr et

al., 1992; Spence et al., 1978; Taylor et al., 1994). As noted previously, extensive prior

research has revealed that an individual’s linguistic style is quite stable over time, and

that text analysis programs are able to accurately link language characteristics to

individual behaviours (Mairesse & Walker, 2006; Mairesse et al., 2007; Pennebaker &

82

King, 1999; Pennebaker & Lay, 2002). Language use has also been studied as a

function of age (Pennebaker & Stone, 2003), gender (Mulac et al., 2001) and emotional

upheaval (Stone & Pennebaker, 2002). In sum, these studies provide compelling

evidence that language use is contextual, such that the way in which individuals

communicate is influenced by their context and local settings. While previous studies

have also found correlation between individuals’ language use and their attitudes

through the use of the LIWC and MRC tools (Mairesse et al., 2007; Yee, Harris, Jabon,

& Bailenson, 2010), research has found the LIWC scales to be more accurate than those

of the MRC in support of assessing behaviours from communication (Mairesse &

Walker, 2006). In addition, the LIWC has also found wider support in terms of being

linked to attitudes in the psycholinguistic literature, when compared to the MRC

database (Li & Chignell, 2010; Mairesse et al., 2007; Yee et al., 2010). Consequently,

this study has employed this tool to examine software practitioners’ attitudes and

behaviours based on the language expressed in their messages.

Immediate benefits provided to this study by using the LIWC tool are related to validity

and reliability. As noted previously, studies in the psycholinguistic area have repeatedly

tested this instrument for analysing behaviours from text (Mairesse et al., 2007;

Pennebaker & King, 1999). Additionally, findings from enquiries undertaken in this

study assess the suitability of the LIWC tool for analysing software practitioners’

textual communication data. The specific measures that are selected for studying

software practitioners’ behaviours and attitudes are set out in Section 3.4.4.1, and these

align with the study focus and questions described in Chapter 2. The procedures utilised

during this study are subsequently introduced in Section 3.4.4.2.

3.4.4.1 Behaviour and Attitude Analysis Measures

In terms of behaviours and attitudes, the LIWC tool’s various dimensions are said to

capture the psychology of individuals by assessing the types of words they use

(Pennebaker et al., 2007; Pennebaker & King, 1999). In fact, although it may be argued

that counts of words may not capture the specific contextual meaning of word usage

(Krauss & Fussell, 1996; Zeldow & McAdams, 1993), when taken together the usage of

such words can indicate an individual’s temperament, their language composition

preferences, their psychological traits (Pennebaker & King, 1999) and their moods

(Denning, 2012). For example, consider the following two sample comments:

83

1. “I dislike the way the customer service team works, especially the delay they

cause me. This delay will no doubt affect my overall performance-appraisal when

I am assessed towards the end of the year.”

2. “We are aiming to have all the patches ready by the end of this release; this will

provide us some space for the next one. Also, we are extremely confident that

similar bug-issues will not appear in the future.”

In the first comment the author is expressing dissatisfaction at the treatment received

from another department, and is worried about the potential negative consequences this

treatment will cause. Here the words “I”, “my” and “me” are indicators of self-focus,

words such as “dislike” are associated with negative feelings, and “end” denotes some

form of temporal reference. Words such as “performance-appraisal” are not captured by

the LIWC dictionary, and as such the summary output for the text above would be the

same whether the author was referring to achievement at sports, or work on a software

feature. Although such omissions may be interpreted as presenting a limitation, this is

not the case here given that the study context is known to be software development; and

what is of interest, and is being captured by the tool, is evidence of attitude, demeanour

and behaviour.

In the second comment the author is expressing optimism that the team will succeed,

and in the process finish ahead of time and with acceptable quality standards. In this

quotation, the words “we” and “us” are indicators of team or collective focus, “all”,

“extremely” and “confident” are associated with certainty, while words such as “some”

and “appear” are indicators of tentative processes. As in the use of the words

“performance-appraisal” in the first comment, words such as “bug-issues” and

“patches” are not included in the LIWC dictionary and would not affect the context of

its use – whether it was to indicate a fault in software code or a problem with one’s

immunity to a disease. Thus, in terms of the assessment of practitioners’ behaviours and

competencies, the LIWC tool’s output is not adversely affected by the specialized

nature of the vocabulary associated with a specific discipline, or the specific meaning

with which these words are used.

Rigby & Hassan (2007) have demonstrated the utility of the LIWC tool during their

study of developers’ messages from the Apache OSS mailing list. Among their findings,

these authors’ revealed major changes in the top two developers’ attitudes once they

decided to leave the Apache project. Additionally, the wider team of Apache developers

84

also expressed different attitudes over project releases (Rigby & Hassan, 2007), at one

time expressing more optimism and being more cynical on another occasion.

During the early stages of this research the LIWC tool was also used in a preliminary

study of three different Jazz teams to reveal cues for the ways these different teams

might work (Licorish & MacDonell, 2012). In this study variance in behaviours was

found among those undertaking different forms of software tasks, which it was believed

may be linked to differences in the project portfolio. However, this initial study was

largely exploratory and only a small sample of artefacts were examined, which limited

this study’s inferences (Licorish & MacDonell, 2012).

Whereas Rigby and Hassan (2007) looked at the behaviour expressed in the language of

the top four contributors of the Apache project and also the team’s behaviour after two

releases, core developers’ behaviours and attitudes are studied in this research and are

compared to those of their lesser active counterparts. This work also examines whether

core developers’ attitudes change over the duration of their project, and how these

members’ attitudes are linked to their task performance. Behaviours and attitudes are

examined along multiple linguistic dimensions (provided in Table 5). Furthermore,

artefacts that are studied in this research are taken from a representative software

repository, comprising a total of 146 unique contributors (from 474 total Jazz

practitioners), 5563 messages and over 1200 software tasks (WIs) and associated

history logs (refer to Table 2). Table 5 provides a summary of the LIWC linguistic

categories that are considered during this research, along with brief theoretical

justifications (with some also included in Chapter 2) for their inclusion.

85

Table 5. LIWC linguistic measures

Linguistic
Category

Abbreviation
(Abbrev.)

Examples Reason for Inclusion

Pronouns I I, me, mine, my, I’ll, I’ve,
myself, I’m

Individuals favouring more collective group processes
may demonstrate this trait through their language use
(Pennebaker & Lay, 2002). Previous research has found
elevated use of first person plural pronouns (we) during
shared situations and among individuals that share close
relationships, whereas, relatively high use of self-
references (I) has been linked to individualistic attitudes
(Pennebaker et al., 2003; Stone & Pennebaker, 2002).
First person singular and plural pronoun linguistic
dimensions are considered here to represent self-focused
attitudes or shared group processes among members. Use
of the second person pronoun (you) may signal the degree
to which members rely on (or delegate to) other team
members or their general awareness (Pennebaker et al.,
2003) of others and their activities.

we we, us, our, we’ve, lets, we’d,
we’re, we’ll

you you, your, you’ll, you’ve, y’all,
you’d, yours, you’re

Cognitive
language

insight think, believe, consider,
determined, admitted, idea

Software teams were previously found to be most
successful when many group members were highly
cognitive and were natural solution providers (Andre et
al., 2011). These traits also previously correlated with
effective task analysis and brainstorming capabilities.
These linguistic dimensions are included so that this work
can analyse communication artefacts to assess the
cognitive aspects of team members.

discrep should, prefer, needed,
problem, regardless,

tentat maybe, perhaps, apparently,
chance, appears, hopeful

certain definitely, always, extremely,
absolute, certain

Work and
Achievement
related
language

work feedback, goal, boss, overtime,
program, delegate, feedback,
duty, meeting

Individuals most concerned with task completion and
achievement are said to reflect these traits during their
communication. These individuals are most concerned
with task success, contributing and initiating ideas and
knowledge towards task completion (Benne & Sheats,
1948). Work- and achievement-related communications
are analysed to assess those most concerned with task
completion.

achieve accomplish, attain, closure,
resolve, obtain, finalize, fulfil,
overcome, solve

Leisure,
social and
positive
language

leisure club, movie, cinema, entertain,
gym, golf, party, jog, film

Assessment of the use of leisure terms, the opposite to
work, is used to measure the relative frequency of off-task
interactions within teams. Individuals that are personal
and social in nature are said to communicate positive
emotion and social words and this trait is said to
contribute towards an optimistic group climate, promoting
encouraging, harmonizing and compromising traits
(Benne & Sheats, 1948; Zhu, 1996). These linguistic
dimensions are used to study those that express social
team behaviours (van den Hoof et al., 2004).

social give, buddy, love, explain,
friend, hey, inform, meet, pal

posemo beautiful, relax, perfect, glad,
eager, fantastic, luck, impress,
proud

Negative
language

negemo afraid, bitch, hate, suck, dislike,
shock, sorry, stupid, terrified

Negative emotion may affect team cohesiveness and
group climate. Those expressing significant negative
emotion are also said to have a tendency to be unfulfilled
or dissatisfied and to show excessive anger (Denning,
2012; Goldberg, 1981). This linguistic dimension is used
to study those members that contribute negatively to team
behavioural climate (Chang et al., 2013; Denning, 2012) .

3.4.4.2 Linguistic Analysis Procedures

In order to analyse practitioners’ behaviours and attitudes, all of the 5563 comments in

Table 2 were first exported from Microsoft SQL into a text (.txt) file. A Java program

was then created to parse the exported text file, creating new text files for each of the

comments (so there were now 5563 new files). The LIWC program was then executed

through a batch call, using all 5563 new files as input. These files were then analysed in

terms of the linguistic dimensions in Table 5, and returned in one LIWC result archive.

The LIWC result archive was then imported into the Microsoft SQL relational database,

86

where each comment was linked to its corresponding LIWC analysis record, extending

the database design (refer to Figure 9) as shown in Figure 13. These data were then

queried and analysed, the results of which are provided in Chapter 4. The results from

this aspect of the work are supplemented with qualitative (bottom-up) observations.

This analysis is conducted using content analysis techniques, as outlined in the next

section (Section 3.4.5).

Figure 13. Extended database model after Linguistic processing

3.4.5 Data Analysis (Technique 3) - Content Analysis

Content Analysis (CA) is a technique commonly used by social scientists to study the

content of recorded human communication (Babbie, 2004). From its early adoption, CA

has also been used in the humanities to study the meaning, authenticity or authorship of

texts. Therefore, in this section CA is investigated under the more established

perspectives of authors from the humanities and social science disciplines.

Holsti (1969) explained that CA may be used to describe trends in communication

content, relate known characteristics to a source, and compare content to standards.

Fundamentally, as Harold Laswell, a popular communication theorist, outlined, content

analysts use communication in seeking answers to questions such as “who says what, to

whom, why, to what extent and with what effect”. This technique was developed by

Alfred Lindesmith in 1931 to provide an alternative view for exploring, evaluating and

analysing meaning, besides testing hypotheses, and was later supported by Glaser and

87

Strauss in the 1960s in their variant of this methodology known as Grounded Theory

(Glaser & Strauss, 1967).

Content analysts are able to systematically and objectively study and identify properties

in large amounts of information (Berelson, 1952). Krippendorff (2004) suggests that a

valid and robust CA must consider six questions:

1. Which data are analysed?

2. How are the data defined?

3. What is the population from which the data are drawn?

4. What is the context relative to which the data are analysed?

5. What are the boundaries of the analysis?

6. What is the target of the inferences?

These questions, along with consideration of how CA has been used in SE and IS

research, and the use of CA in this study, are addressed in the following eight

subsections (Subsections 3.4.5.1 to 3.4.5.8). Firstly, the different forms of CA are

explored in Section 3.4.5.1 to inform the selection of a specific approach for use in this

study. The research is then informed by an examination of the theories around the CA

process, including reliability and validity issues in CA (Section 3.4.5.2), the process for

creating reliable and valid protocols (Section 3.4.5.3), selecting the unit of analysis

(Section 3.4.5.4), the use of CA tools (Section 3.4.5.5) and ethical requirements in CA

(Section 3.4.5.6). A brief survey of SE and IS studies that have employed CA

techniques is presented in Section 3.4.5.7 to demonstrate the appropriateness of these

techniques for studying communication in the way it is approached during this study.

Finally, this section closes with a discussion of the procedures that were implemented

during the CA phase of this work in Section 3.4.5.8.

3.4.5.1 Forms of Content Analysis

Quantitative content analysis considers keyword frequencies, word counts, message

length and similar attributes in a descriptive way (Bullen, 1998). The fundamental

assumption of this approach is grounded in the notion that frequently used words and

phrases are often the most important and relevant to the specific scenario. Of course a

key concept that occurs once may also be more important than a mundane issue that is

commonly addressed. Quantitative content analysis may also be extended to include a

88

more linguistic, qualitative approach where words are assessed to explain context. This

approach is often called Qualitative content analysis, where researchers aim to assess

communicators’ intentions and the implications of these intentions on some process or

construct. The rationale for employing this approach is rooted in the notion that human

behaviour has functions which may be revealed purposely or subconsciously while

communicating (Bales, 1950a), regardless of the settings.

Under the Qualitative content analysis umbrella, analysis techniques range from

intuitive and interpretive analyses to the more strict examination of data (Rosengren,

1981). The specific approach chosen for implementation is often aligned with the

researcher’s theoretical stance and the nature of the phenomenon of interest (Weber,

1990). Hsieh & Shannon (2005) classify these approaches as conventional, directed and

summative. The conventional form of CA is used to describe phenomena where existing

theories are limited, thus, the approach is aimed at theory building. As with the

implementation of the grounded theory method, researchers employing this approach

generally start the process of data analysis by inductively examining the data, allowing

meaning to flow from the data as against approaching data analysis with any

preconceptions (Mayring, 2000). Directed CA is used when there is scope to extend or

complement existing theories around a phenomenon (Hsieh & Shannon, 2005). The

directed content analyst approaches the data analysis process using existing theories to

identify key concepts (and definitions) as initial coding categories. Should these prove

inadequate during data analysis, new categories and subcategories are created to extend

those found in previous theories to identify new meaning present in data. In directed CA

it is also quite common for the data to drive the creation of new coding schemes

altogether (as in the conventional form of CA above) (Hsieh & Shannon, 2005).

Summative CA is also informed by previous theories and looks for evidence of

predefined words or phrases to explore usage. This approach does not attempt to create

new coding categories, and most often is used to illuminate or interpret the context of

specific language usage (Hsieh & Shannon, 2005).

The use of a prior classification scheme to measure communication in the directed and

summative forms of CA enables communication to be segmented into various units of

analysis, and each unit can then be placed into a category, before the numbers of items

belonging to each category are tabulated. These categories are then verified when

related researchers examine this communication with an aim of having comparable

interpretation of the communication data, as a means of increasing validity and

89

reliability (Weber, 1990). Sometimes one unit may be classified in multiple categories.

Another method for categorising communication data is having participants code their

own contributions, by providing a limited set of options (Ravenscroft & Pilkington,

2000). However, participants’ lack of awareness of the CA method and the issues

outlined above by Krippendorff (2004), in addition to the classification scheme

providing limited options for coding, would likely result in incorrect categorisations – in

the process affecting the work’s reliability and validity. This issue is further discussed

in the subsequent section (Section 3.4.5.2).

3.4.5.2 Reliability and Validity Issues in Content Analysis

Reliability and validity issues (see Neuendorf (2002) for reliability and validity

discussions) have been a source of critical debate since the early uses of CA (Mowrer,

1996; Rourke & Anderson, 2004). In particular, while reporting frequencies, message

lengths and message types (e.g., whether communication is a question or an explanation

statement) is quite straightforward, and findings of studies examining these variables

may not be challenged in terms of their quantitative representations, issues of validity

surface when content analysts attempt to interpret psychological and mental constructs

such as knowledge transformation, critical thinking or other social processes without

considering or employing techniques developed by cognitive psychologists. For

example, the measurement of students’ cognitive ability by counting the number of

propositions that followed an earlier statement (Henri & Kaye, 1992) may be criticised

as invalid because of the nature of what is being inferred. The basis of such criticisms

may be embedded in the fact that cognitive or meta-cognitive abilities are mental

processes which may not necessarily exist in, or be evident in, written text (Bereiter &

Scardamalia, 1987). For example: someone may transcribe memorised information

without engaging any of their problem solving or knowledge transformation faculties

while under observation for problem solving and knowledge transformation

competencies, but nevertheless these occurrences may be recorded as valid evidence.

Thus, content analysts are encouraged to take care in developing theoretically valid

protocols in assessing the characteristics of the communication under observation when

their aim is to make inferences (De Wever, Schellens, Valcke, & Van Keer, 2006). This

issue is therefore examined in the next section (Section 3.4.5.3).

90

3.4.5.3 Creating a Reliable and Valid Protocol

For directed and summative forms of CA, developing a valid protocol (or classification

scheme) involves identifying the purpose of the coding, identifying behaviours that

represent the construct of interest, reviewing the categories and indicators, holding

preliminary try-outs and developing guidelines for administering, scoring, and

interpreting the coding scheme (Rourke & Anderson, 2004) (see Figure 14 below for

illustration). Data may be coded to investigate many areas of communication, including

the interactive, participative or social nature of communication. In this regard, nominal

scales may be used to represent individual categories (e.g., the Gunawardena, Lowe, &

Anderson (1997) scheme for coding social knowledge construction). After the coding

scheme is created, the behaviours representing the construct are identified. This process

is observational and aims to validate that the coding instrument considers only

representative behaviours of the construct. For instance, in studying participation, ‘an

individual commenting on a topic would denote a single representative behaviour’.

However, exclusively studying individual participation in this form may not be

particularly meaningful; thus, this may be combined with other variables, such as

achievement (Richardson & Swan, 2003) or satisfaction (Gunawardena & Zittle, 1997).

Construct validity is critical when considering that behaviours should be representative.

Literature reviews, the critical incident technique (CIT) and conventional forms of CA

(see Section 3.4.5.1) are methods often used to identify behaviours that represent

constructs (Rourke & Anderson, 2004). Categories of the indicators are then reviewed

once representative behaviours are identified. Normally, this process is facilitated by

domain experts who verify the provisional coding categories. Once the protocol is

verified, the next step is for the content analyst(s) (ideally plural) to hold preliminary

try-outs, and to check the instrument’s internal reliability (by assessing intra-rater

agreement). Intra-rater agreement refers to the correlation of the results obtained by the

same coder in the same study, while inter-rater agreement refers to the correlation of

results obtained by multiple coders in the same study (Rourke & Anderson, 2004). This

stage allows the researcher(s) to assess the coding scheme for shortcomings, in the

process removing unwanted indicators or rewording those that are not worded

adequately, and so on. In fact, the most valid coding schemes are those that have been

used in multiple and distinct studies, especially if such schemes possess high inter-rater

agreements (Gall, Borg, & Gall, 1996; Rourke & Anderson, 2004).

91

The last step in the protocol development process is the provision of guidelines for

administering, scoring, and interpreting the coding scheme. This would normally

comprise procedures created from the work conducted in the previous steps, and such

guidelines would include training procedures for coders as well as sample coded scripts

(see (Jonassen & Kwon, 2001) for further details). As in the try-out stage outlined

previously, this step also seeks to assess the instrument’s internal reliability.

Figure 14. The Content Analysis protocol development process

Additional empirical evidence gathered from interviews or questionnaires administered

to those being studied, or participants from a similarly representative population

(Rourke & Anderson, 2002), may be used to support the validity of the coding

instrument and the inferences made as a result of its use. Such an approach is classified

as correlation analysis (Rourke & Anderson, 2004). In considering this theme, Messick

(1989) also outlined two additional types of investigation that may support this activity

– examination of group differences and experimental interventions. In the group

difference investigation, the instrument is administered to more than one group of

communicators, with at least one of the groups being less representative of the typical

92

behaviour under investigation. The instrument under consideration should distinguish

between these groups, providing support for its validity. In the experimental scenario,

content analysts aim to modify the behaviour of the domain under consideration to

verify that the instrument detects this change.

This work uses multiple analysis techniques, including SNA, linguistic analysis and

directed CA. The linguistic analysis results were correlated with the CA results in a

form of experimental intervention. Additionally, the protocol that was used in this work

was validated previously, and also tested in this work for accuracy, precision and

objectivity. Further details on this process are provided in Section 3.4.5.8.

The themes and behaviours are frequently studied from communication that has been

segmented into various units of analysis. The selection of the study’s unit(s) of analysis

can in itself provide some specific challenges. These challenges are considered in detail

in Section 3.4.5.4.

3.4.5.4 Selecting a Unit of Analysis

Another area briefly highlighted in Section 3.4.5.1 that warrants further consideration in

this CA discussion is the approaches used for segmenting communication into different

categories (based on the unit of analysis). The goal of segmenting a communication

artefact transcript into discrete units is to maximise the likelihood of repeatability

among coders categorising constructs so that objective patterns are revealed (De Wever

et al., 2006). Researchers recognising single words, sentences, messages or paragraphs

are said to be utilising ‘syntactical or fixed units’ to identify constructs, whereas those

distinguishing communication by ‘themes’ or ‘ideas’ (units of meaning) are said to be

employing dynamic units (Rourke, Anderson, Garrison, & Archer, 2001). The

suitability of employing these approaches depends on the characteristics of the

communication under consideration (Schrire, 2006). For instance, in informal

communication where ellipses and other symbols are used to denote mood (e.g., Was

about to use that one... what do you think... anyway...lol) decoding transcripts into fixed

units could be challenging and might often require an additional subjective step of

interpreting the message prior to its classification (Blanchette, 1999). When the

paragraph is used as the unit of analysis, multiple variables of interest may exist in one

unit, affecting the reliability of the study. Similarly, utilising the more dynamic unit of

meaning could be very challenging when multiple researchers are coding subjective

93

constructs such as critical thinking or knowledge transformation; see Henri & Kaye

(1992) for example.

Thus, caution must be exercised when selecting a unit of analysis, and typically, the

nature of the communication content should drive the unit of analysis that is selected

(Schrire, 2006) (Section 3.4.5.8 outline the specific approach that is used during this

work). These segmented communications are often managed through the use of

software tools; these are examined next (refer to Section 3.4.5.5).

3.4.5.5 Content Analysis Tools

There are many software packages that provide support for both quantitative and

qualitative forms of CA (for a list of those available see http://www.content-

analysis.de/software). Those supporting quantitative CA include Concordance5 and

Diction6, while qualitative packages include ATLAS.ti7, HyperResearch8 and NVivo9.

These software packages support coding and analysis, utilising frequency counts and

pattern matching, and output reports with the numbers of messages and coder

identification, among other information. Statistical analysis packages such as SPSS10

may also be used to support (further) quantitative analyses. Before such tools are used,

however, it is critical for researchers to gain the appropriate permissions to study

communication artefacts; this issue is considered next (see Section 3.4.5.6).

3.4.5.6 Ethical Requirements of Content Analysts

Ethical approval and consent issues are relevant to all research that employs human

subjects. Content analysis studies bear no exception to this rule. Permission is often

required from participants involved in research where transcripts are analysed if the

private information of participants is identifiable or the researcher was previously

involved in interaction with the participants, and so, may be able to recall specific

scenarios, in the process, being able to identify participants. These guidelines have been

considered in the study of many software engineering related issues, as examined in

Section 3.4.5.7.

5 http://www.concordancesoftware.co.uk/
6 http://www.dictionsoftware.com/
7 http://www.atlasti.com/index.html
8 http://www.researchware.com/products/hyperresearch.html
9 http://www.qsrinternational.com/products_nvivo.aspx
10 http://www-01.ibm.com/software/analytics/spss/

94

3.4.5.7 Content Analysis in SE and IS Research

A review of the literature has shown that researchers in the SE and IS discipline areas

have employed the CA method to examine a range of issues. A selection of the more

relevant studies is considered here. Content Analysis was used by Sheetz, Henderson, &

Wallace (2009) to investigate software managers’ and developers’ perceptions of the

various methods used for software estimation. Hall, Wilson, Rainer, & Jagielska (2007)

employed CA to analyse communication among participants in a large software

development project. The methods used for task assignment in OSS projects were

examined using CA by Crowston, Li, Wei, Eseryel, & Howison (2007). Zannier,

Chiasson, & Maurer (2007) employed CA to investigate the ways in which software

designers make their design decisions. Barcellini et al. (2008) utilised CA to model

team dynamics during the OSS design process. Ryan & O'Connor (2009) studied the

effects of tacit knowledge, explicit job knowledge and social interaction on team

performance using CA. Quantitative aspects of the CA technique were also employed

by Gallivan (2001) to investigate the variables most relevant for effective performance

of OSS projects. The applications of CA techniques in these works, although variable in

their specific nature, have helped these researchers to provide valuable insights into the

software development process. This approach is similarly adopted in this work, as

outlined in the following section (Section 3.4.5.8).

3.4.5.8 Use of Content Analysis in this Study

Content analysis techniques are used during this research to study core developers’

enacted roles, their knowledge sharing behaviours, and the way core developers become

hubs in their team. These issues are studied directly from core developers’ messages. Of

the different variants of the CA method introduced in Section 3.4.5.1, it may be

apparent that directed CA is most suitable for undertaking the exploratory aspects of

this work. This study examines the aforementioned issues (refer to Section 3.4) by

studying developers’ interactions. Interactions have been studied repeatedly using CA

techniques in the education and group work domains, and thus, pointers in these works

provided utility for this research project.

For instance, Henri & Kaye (1992) and Hara, Bonk, & Angeli (2000) used CA to study

interaction using computer mediated communication (CMC). Newman, Webb, &

Cochrane (1995) studied group learning and critical thinking using a similar qualitative

approach. Zhu (1996) considered team members’ interactions during group problem

95

solving. Gunawardena et al. (1997) provided a model for studying social construction of

knowledge using a variant of the CA technique (grounded theory). Fahy, Crawford, &

Ally (2001) utilised Zhu (1996)’s model towards developing an instrument to guide

qualitative examination of communication data for evidence and results of interaction.

Aviv et al. (2003) and De Laat et al. (2007) went one step further while studying

communication to employ both CA and SNA in the examination of knowledge

construction processes and interaction and knowledge patterns in learning communities.

The studies of Henri & Kaye (1992) and Zhu (1996) are particularly applicable to the

work undertaken in this research because of their treatment of interaction and

knowledge sharing, key aspects under consideration in this research project. In fact, the

Henri & Kaye (1992) study on computer supported learning (CSL) is one of the

pioneering work on teams’ interaction; it provides many interesting findings, and is one

of the most cited CA instruments used to study interaction (De Wever et al., 2006; Erlin

et al., 2008; Manca, Delfino, & Mazzoni, 2009; Naidu & Jarvela, 2006). The coding

instrument of Henri & Kaye (1992) is grounded in the cognitive approach to learning

and interactivity. Interactivity, as used in Henri’s model, was premised on the Bretz

(1983) three-stage theory of interactivity – where an individual provides initial

communication of information, someone responds to this information and a follow up

communication to the first communication is then transmitted. Henri’s coding

instrument was created to observe five areas of interactivity: participation, social,

interaction, cognitive and meta-cognitive communication. Interaction, the theme under

consideration in this research, was measured by the number of messages communicated

and the activeness of the participants (e.g., communication directly/indirectly related to

content). The dynamic unit of meaning was utilized by Henri & Kaye (1992), an

approach that allowed them to validate precisely the way each individual communicated

when contributing. Henri’s instrument has been tested for inter-rater reliability by many

researchers; for example, Lockhorst, Admiraal, Pilot, & Veen (2003) reported a

Cohen’s kappa of 0.73 agreement among coders in assessing the nature of

communication content, while Hara et al. (2000) recorded 0.78 agreement for the

“task/off task” (social) scale. These figures represent good to excellent agreement

beyond chance (Banerjee, Capozzoli, McSweeney, & Sinha, 1999).

Another widely cited study (noted earlier) that previously utilised computer mediated

communication in the education and group work disciplines, and that is of relevance to

this work is that of Zhu (1996). Zhu grounded her protocol in the group interaction

96

theory of Hatano & Inagaki (1991) and adopted Graesser & Person (1994) approach to

question analysis, where social interaction was considered to be multi-dimensional.

According to Zhu (1996), social interaction may be classified as vertical interaction or

horizontal interaction. Vertical interaction is characterised by communication where

group members seek answers or solutions to problems from capable members as against

these individuals being willing to make personal contributions to the knowledge

construction process (e.g., information-seeking questions posed because of some

previously incomplete communication or a feeling of information deficit). Such

individuals, while not seen as active participants in the knowledge construction process,

are useful in groups, especially where other members may have the same information

deficiencies but are unwilling to seek that information. In addition, it may also be

advanced that those responding to such questions are given an opportunity to develop

their own understandings towards knowledge maturity.

Horizontal interaction, on the other hand, involves the strong assertion of ideas, which

is perceived as necessary in environments where little authoritative feedback will be

forthcoming. Zhu (1996) further divided this horizontal category into a number of sub-

categories. In particular, Category II labelled as ‘assertions’ are aimed at seeking

opinions or starting a dialogue. Additional categories of this instrument (considered

under the horizontal classification) are ‘answers’, ‘information sharing’, ‘discussion’,

‘comment’, ‘reflection’ and ‘scaffolding’. Answers are specific responses to vertical

interaction (questions), whereas, information sharing is of a more general nature.

Communications that are intended to share ideas are discussions, and comments are

those communications that are non-probing or judgmental statements. Reflective

communication was described by Zhu to be evaluative, linking previous

communications and adjusting previous viewpoints, whereas scaffolding

communications are those providing guidance or suggestions related to specific tasks.

Zhu’s protocol has also been tested for inter-rater reliability; for instance, Fahy et al.

(2001) reported 86% reliability using Zhu’s protocol in coding students’ and instructor

transcripts which was verified by three independent coders.

The conceptual framework upon which the two coding instruments just outlined were

built provides a strong basis for understanding how individuals collaborate beyond the

surface of communication or the regularly reported quantitative indicators of interaction

(Bird et al., 2006a; Cataldo & Herbsleb, 2008; Cataldo et al., 2006; Shihab et al., 2009).

While these coding instruments have been mostly employed previously in educational

97

and group work settings, there is relevance in applying these frameworks in the SE and

IS disciplines to examine goal-directed group work and problem solving and to observe

actual software process communication in detail. In particular, theories such as those of

Vygotsky (1978) that emphasise the role of the environment on an individual actions

could be verified by considering different phases of the group process, using both

quantitative and qualitative methods to assess interaction and knowledge construction

and maturity among group members, thus providing an extension to the body of

knowledge regarding group work, team communication and the structure of interaction

in these domains. Additionally, as noted in Chapter 2, findings from such observation

are likely to offer support for those provided by SNA studies (Erlin et al., 2008) that

consider team members’ interactions in purely quantitative ways (Abreu & Premraj,

2009; Bird et al., 2006a; Nguyen, Wolf, et al., 2008), extending these to provide

detailed explanations of the nature of interactions in social networks and how specific

patterns of interaction contribute to group task performance.

Accordingly, a protocol was created following the processes outlined in Figure 14 and

all of the messages contributed by three teams are studied (1561 messages from P1, P7

and P8 – see Table 2) using directed CA. Artefacts from these three teams are

deliberately selected as they comprised development efforts aimed at different types of

software features (P1 = User Experience tasks, P7 = Coding tasks, and P8 = Project

Management tasks). Thus, it is anticipated that potential variations in interaction among

those involved in different forms of task would also be revealed by studying the

artefacts associated with these teams. The protocol, shown in Table 6, is a hybrid

classification scheme adapted from Henri & Kaye (1992) and Zhu (1996). As noted

above in Section 3.4.5.1, use of a directed CA approach is appropriate when there is

scope to extend or complement existing theories around a phenomenon (Hsieh &

Shannon, 2005), and so the directed CA approach is suitable for exploring the issues

that were identified in Chapter 2, and particularly for understanding how and why core

developers contribute to agile globally distributed team dynamics. This contextual

analysis approach also offers avenues for triangulating the findings that are revealed

during the SNA and linguistic analysis phases (refer to Section 3.4.3 and Section 3.4.4).

In Section 3.4.5.3, it is outlined that the directed content analyst approaches the data

analysis process using existing theories to identify key concepts and definitions as

initial coding categories. As noted earlier, existing theories (and protocols previously

tested for studying interaction) are used for understanding practitioners’ enacted roles

98

(refer to Section 2.7.1), and the way knowledge sharing behaviours (refer to Section

2.7.2) are expressed during textual interaction.

Henri & Kaye (1992) and Zhu (1996) protocols were used to inform the creation of the

initial coding categories (see scales 1 to 8 in Table 6 shown in black font face).

Preliminary coding try-outs were then conducted, following the process depicted in

Figure 15. Initially, a small sample of messages was selected for coding by the main

researcher, and these were coded according to scales 1 to 8 in Table 6. Communications

not captured under these scales (1 to 8) where coded as “Not Coded” (scale 9 of the

initial protocol) – see Figure 15. During this process it was noted that the initial protocol

(scales 1 to 8 in Table 6) was inadequate for studying Jazz practitioners’ utterances, as a

large number of codes were being recorded under the “Not Coded” scale.

This issue is regularly encountered during the CA process (Hsieh & Shannon, 2005;

Rourke & Anderson, 2004). In Section 3.4.5.1 it is explained that during the directed

CA process, should existing theories prove insufficient to capture all relevant insights

during preliminary data analysis, new categories and subcategories should be created

(Hsieh & Shannon, 2005). Therefore, in this study’s context, the main researcher, the

primary supervisor and two other trained coders formally categorized 5% of the three

teams’ communications (80 messages) in a second coding phase. Coders were provided

with guidelines for administering, scoring, and interpreting the coding scheme;

including examples of messages that were coded under each category (refer to Figure 15

for the initial coding process).

During this second phase of coding it was also noted that practitioners in Jazz

communicated multiple ideas in their messages. Thus, messages were segmented using

the sentence as the unit of analysis. The initial protocol was extended to include new

scales directly from the pilot Jazz data (see scales 9 to 13 in Table 6, shown with blue

font face). This extended protocol was derived by consensus among the entire team of

coders (the main researcher, the primary supervisor and two other trained coders).

Thereafter, all the messages were re-coded by the main researcher and the two trained

coders. Duplicate codes were assigned to utterances that demonstrated multiple forms of

interaction, and all coding differences were discussed and resolved by consensus (see

Section 4.2 for further details). Through the use of Holsti’s coefficient of reliability

measurement (C.R) an 81% inter-rater agreement level between the three coders was

recorded (Holsti, 1969). This represents excellent agreement between the coders.

99

Table 6. Coding categories for measuring interaction

Scale Category Characteristics and Example

1 Type I Question Ask for information or requesting an answer – “Where should I start looking for the
bug?”

2 Type II Question Inquire, start a dialogue - “Shall we integrate the new feature into the current iteration,
given the conflicts that were reported when we attempted same last week?”

3 Answer Provide answer for information seeking questions - “The bug was noticed after
integrating code change 305, you should start debugging here.”

4 Information sharing Share information – “Just for your information, we successfully integrated change 305
last evening.”

5 Discussion Elaborate, exchange, and express ideas or thoughts – “What was most intriguing about
solving this bug is not how bugs may exist within code that went through rigorous
testing... but how refactoring reveals bugs even though no functional changes are
made.”

6 Comment Judgemental – “I disagree that refactoring may be considered the ultimate test of code
quality.”

7 Reflection Evaluation, self-appraisal of experience – “I found solving the problems in change 305
to be exhausting, but I learnt a few techniques that should be useful in the future.”

8 Scaffolding Provide guidance and suggestions to others – “Let’s document the procedures that
were involved in solving this problem 305, it may be quite useful for new members
joining the team in the future.”

9 Instruction/
Command

Directive – “Solve task 234 in this iteration, there is quite a bit planned for the next.”

10 Gratitude/
Praise

Thankful or offering commendation – “Thanks for your suggestions, your advice
actually worked.”

11 Off task Communication not related to solving the task under consideration – “How was your
weekend?”

12 Apology Expressing regret or remorse – “I am very sorry for the oversight, and I am quite
unhappy with the failure this has caused.”

13 Not Coded Communication that does not fit codes 1 to 12.

Given the multi-method approach that is utilised during this work (refer to Section 3.4),

there existed many avenues for correlation analysis to further verify the validity of the

final instrument that was created for analysing practitioners’ interactions in Table 6.

These results are reported in Section 4.3.5. Additionally, ethical issues considered under

Section 3.4.5.6 were not of direct concern in this work as the private information of the

practitioners that are selected for observation was not identifiable in the repository, nor

was the researcher previously involved in interactions with the participants. During the

coding process, messages were ordered around each work item (task) according to the

date they were contributed. This allowed the coders to readily identify the development

of the communication threads during practitioners’ exchanges. Once coding was

completed, the codes were entered into an extended version of the Microsoft SQL

relational database (as was done for the imported linguistic analysis data – refer to

Section 3.4.4.2) through a simple Visual Basic user interface that was created to

facilitate this data entry process (see Figure 16). Figure 17 provides an illustration of the

extended database model.

100

Figure 15. Initial coding process

Figure 16. Simple visual basic interface that was created for entering codes into the
Microsoft SQL database

The data analysis techniques described in Section 3.4.3, Section 3.4.4 and Section 3.4.5

facilitate the delivery of multiple stages of results that are aimed at answering the

research questions posed in Figure 4 (refer to Chapter 4). These answers support the

development of this study’s theoretical contributions. Section 3.5 considers this issue at

length, including discussions around the process of theorising, with an emphasis on

101

theory generation in SE research and details concerning the nature of the theoretical

contributions that are provided in this work.

Figure 17. Extended database model after Coding process

3.5 Process of Theorizing

Theory takes different shapes and forms depending on the research discipline and the

domain of interest. For instance, in the physical or natural sciences, theories are seen to

provide explanations or predictions for specific events and patterns (Propper, 2005, p.

59), whereas in the social sciences, theories tend to identify relationships among

constructs, with a requirement that these relationships should be testable (Doty & Glick,

1994, p. 233). Similarly, the meaning of theory tends to shift from discipline to

discipline; for instance, theory defined in the mathematical sciences is quite different to

that in the design or social sciences. Theory may also be viewed from a philosophical

position; while logical positivism emphasises verifiable or factual viewpoints,

interpretivists view theories as being derived from actors’ accounts of specific

contextual situations (Godfrey-Smith, 2003). A broader definition of the word theory

taken from the Oxford English Dictionary (OED) is “a supposition or a system of ideas

intended to explain something, especially one based on general principles independent

of the thing to be explained” (OED-Online). Taken further, theories are seen to offer

universal conceptual frameworks from which knowledge may mature, or actual

understandings for what is often commonly (and sometimes speculatively) assumed

(Lewin, 1945).

102

While there is an abundance of studies around the process of theorising in most of the

established disciplines (e.g., the natural sciences (Kuhn, 1970) and psychology and

social sciences (Davis, 1971; Dubin, 1978)), this subject has received far less attention

in the software engineering literature (Johnson, Ekstedt, & Jacobson, 2012). In fact, the

very applicability of the theory generation process in the applied disciplines has been

questioned (Lynham, 2002). Thus, even when solid propositions that may form the

basis for theories are provided (e.g., those in the SWEBOK (SWEBOK, 2004)), these

are often not promoted as initial theories (note: Johnson et al. (2012) argue that the

SWEBOK may actually serve as a theory that describes the software engineering

process). Some argue that this issue is tenuous at best, and has the potential for the

software engineering discipline to remain a “trial and error” paradigm (Johnson et al.,

2012).

Moreover, the relevance of theory use and theory generation in the SE literature has

been echoed by some of those conducting research in the discipline. Some argue that SE

research outputs are not useful if there is no theoretical basis for conducting the

particular study (Hannay, Sjoberg, & Dyba, 2007); this is likely to be true if the intent is

to solve a general class of problems rather than a specific problem instance.

Additionally, it has been asserted that the absence of theories is detrimental in terms of

inspiring research enquiries, and that theory-led empirical studies may improve the state

of both SE research and practice, by deriving more rigorous inspection of methods

(Johnson et al., 2012). Theory-led enquiries may also result in unintended benefits for

other disciplines (Hannay et al., 2007).

Accordingly, given the close alignment between the SE and IS disciplines (e.g., see

Morrison & George (1995) early review of the IS literature which found that 45% of the

work in this body belonged to the software engineering discipline), those theorising in

SE research often adopt Gregor’s IS classification scheme (Gregor, 2006; Hannay et al.,

2007; Johnson et al., 2012). Gregor (2006) contends that IS theories tend to take three

forms depending on the phenomenon of interest – theories aiming to generalise local

observations into abstract knowledge, theories aimed at representing causality (cause -

effect) and theories that explain or predict events. Consequently, Gregor (2006)

classified these according to five different types: 1. Analysis, 2. Explanation, 3.

Prediction, 4. Explanation and prediction, and 5. Design and action. Type 1 theories

(Analyses) typically include descriptions, conceptualisations, taxonomies and

classification schema, and say “what is”, e.g., the SWEBOK (SWEBOK, 2004). These

103

forms of theories are often relevant when very little is known about the phenomenon of

interest (Miles & Huberman, 1994).

Type 2 theories (Explanations) are aimed at providing understandings and answers for

questions related to how and why specific events occur or how and why certain patterns

exist, e.g., Structuration theory (Giddens, 1984). Gregor (2006) explained that case

studies typically provide such theories. Type 3 theories (Predictions) provide

predictions for what will happen, but rarely explain why the specific pattern exists, e.g.,

the COCOMO model (Boehm et al., 1995). Research studies providing prediction

theories typically involve statistical analysis and quantitative methods such as data

mining, correlation testing and regression analysis. Type 4 theories (Explanations and

predictions) aim at explaining and predicting events, answering questions such as how,

why, when and what will be, e.g., the Technology Acceptance Model (TAM) (Davis,

Bagozzi, & Warshaw, 1989). These theories are aligned with the views of both natural

and social scientists, where studies are aimed at building and testing theories.

Finally, Type 5 theories (Design and action) specify how to do something. This form of

theory is also referred to as software engineering or the system development approach

(Gregor, 2006). Hevner, March, Park, & Ram (2004) referred to this approach in a

broader context of design science. Theories belonging to this categorisation are

generally presented in the form of software artefacts (Hevner et al., 2004), although,

models, evaluations and metrics are also commonly delivered as “Design and action”

theories (Gregor, 2006), e.g., the ASRM tool supporting team composition (Licorish et

al., 2009b). Gregor (2006) noted that multiple theories may also be provided in a single

body of work due to the way many of these theories are related, e.g., the development of

most Explanation theories (categorised as Type 2 under Gregor (2006) model) starts

with an Analysis (categorised as Type 1 under Gregor (2006) classification scheme).

Empirical software engineering studies (as is conducted in this research) are typically

aimed at explaining passing observations, to provide understandings for how and why

phenomena occur (Hannay et al., 2007). Particularly, such theories are helpful for

understanding the conditions under which specific development approaches and

practices are most useful during the software development process. Theories generated

during such investigations are typically categorised under Gregor (2006) the Type 2

classification scheme (Explanations), and may be aimed at providing casual

explanations (Hannay et al., 2007).

104

Although these forms of theories are indeed generated and extended in software

engineering research, there is little explicit sharing of theories in the discipline. Hannay

et al. (2007) systematic review covering a decade (between 1993 and 2002) of software

engineering studies that were aimed at providing casual explanations shows that even

when multiple software engineering studies are published on the same topic, different

theoretical rationales were used. Given this state of affairs, some researchers have

expressed doubt about the potential maturity of the body of work in the software

engineering discipline (Johnson et al., 2012). Hannay et al. (2007) found that theories

are used largely for rationalising the specific research approach, but that few software

engineering studies attempted to extend these theories, or provide new ones altogether.

Earlier work had noted that empirical support for prior claims is particularly rare in the

empirical SE literature (Herbsleb & Mockus, 2003b), although, there is general

recognition around the need for theories (noted earlier) (Hannay et al., 2007). Hannay et

al. (2007) believes that the current state of play is driven by a lack of clear description

of theories use and the theories created; accordingly, there is little follow up work.

There are some exceptions in the software engineering literature both in terms of theory

use and theory generation however. For instance, Greenblatt & Waxman (1978) seminal

work examined the ease of learning for SQL and QBE query languages and revealed

that study subjects found QBE much easier to grasp than SQL. This work was later

replicated by Boyle, Bury, & Evey (1983) whose findings contradicted Greenblatt &

Waxman (1978); they discovered that SQL required less time to learn and study

subjects preferred SQL over QBE. Yen & Scamell (1993)’s work was motivated by this

disparity, and they took a slightly different approach to study this subject by considering

equal treatment groups in a controlled laboratory experiment. Their findings show that

study subjects’ performance was higher for QBE than SQL in paper and pencil testing;

however, there was no difference in study participants’ performance for these language

types in an online setting. Yen & Scamell (1993) also observed that the complexity of

the query had an effect on users’ performance. Multiple aspects of Yen & Scamell

(1993) theory has since been verified by other works (De, Sinha, & Vessey, 2001;

Groth, 2005).

Another example of the use and reuse of software engineering theories is demonstrated

in the works of Lloyd & Jankowski (1999) and Berenbach & Borotto (2006). Lloyd &

Jankowski (1999) employed cognitive information processing (CIP) and information

theory (IT) in an experiment to study the clarity of data flow diagrams (DFD), and

105

revealed that the treatment group that was exposed to CIP and IT interventions was

much faster at comprehending the DFDs than those that were in the non-CIP IT group.

Berenbach & Borotto (2006) has utilised aspects of the Lloyd & Jankowski (1999)

approach in real projects at Siemens Corporation in order to demonstrate their

effectiveness, and have discovered promising results.

Further evidence of theory generation and use is demonstrated in Sauer, Jeffery, Land,

& Yetton (2000), and subsequent works. Sauer et al. (2000) proposed the use of

behavioural theory of group performance to explain the outcomes of software

engineers’ technical reviews. Rigby & Storey (2011) built on the Sauer et al. (2000)

study and considered developers mechanisms and behaviours that facilitate peer review

on OSS projects. Babar, Kitchenham, & Gorton (2006) had also previously used Sauer

et al. (2000) work to motivate their own research that proposed a framework for

distributed software architecture evaluation. Other works identified in Wieringa,

Daneva, & Condori-Fernández (2011) have similarly used theories from other

disciplines to motivate enquiries around software development/engineering issues.

This PhD follows a similar approach and grounds the issues under consideration in

theories, in order to also provide insights that form the basis of a software engineering

theory. This work presents an amalgamation of research efforts, some of which have

been published as listed at the beginning of this thesis, and so provides initial theories

for explaining (Gregor (2006) Type 2 classification scheme) a range team of issues (see

Chapter 2). Given that previous work has studied software teams’ communication

patterns extensively (e.g., (Abreu & Premraj, 2009; Bird et al., 2006a; Cataldo &

Ehrlich, 2012; Hinds & McGrath, 2006; Yu et al., 2011)), in addition to informing the

latter stages of the analyses conducted in this research, the role of this aspect of the

current work (see confirmatory research perspective in Table 7) is to seek confirmation

for the collaboration patterns of successful globally distributed agile software teams

(refer to Section 2.6 for additional details). Such a step is necessary, as oftentimes, such

confirmations lead to stronger theories (Hannay et al., 2007). Sometimes the outcome of

adaptations of other theories is beneficial beyond its intended purpose, and informs

these host studies. Some also suggest that it is important for theories to emerge through

iterative cycles of development as against the goal of delivering a grand theory

(Pfleeger, 1999), an approach that is adopted in this work – the strategy being to

conduct this preliminary analysis before deeper examinations of the attitudes and

106

behaviours of core developers. Such an iterative approach to theorising should lead to

robust theories, which result after significant amounts of empirical work.

In addressing the second set of research issues that were outlined in Chapter 2, this

work extends previous theories and provides understandings into the way core

developers contribute to their teams’ dynamics (refer to Table 7 for summary). While

previous work has identified that a few software practitioners occupy the centre of their

teams’ knowledge processes (Bird et al., 2006a; Shihab et al., 2010), there was no

previous attempt at understanding the reason for such a phenomenon (Licorish &

MacDonell, 2013c). Questions related to the reasons for these members’ extraordinary

presence, and understanding the actual roles (both formal and informal) that core

developers occupy in their teams, have not been answered. Additionally, there has been

no attempt to reveal explanations for how developers become core become part of the

core group. Furthermore, there still remain doubts regarding when these individuals are

more or less likely to contribute the most to task performance and when their teams are

most likely to benefit from their knowledge and experiences.

This first confirmatory analysis stage (also summarised in Table 7) provides

explanations of successful globally distributed agile teams dynamics, and informs the

subsequent investigations (conducted in two phases) centred around core developers

(refer to Section 2.7). These latter investigations are largely exploratory (refer to Table

7) and are aimed at explaining why globally distributed software development teams

exhibit centralised communication patterns, and the true nature of core developers’

performance. Thus, from a theoretical perspective, this work delivers initial conjectures

that may form the basis of explanation theories for understanding the collaboration

patterns of successful globally distributed agile teams and how and why core developers

contribute to globally distributed agile team dynamics (refer to Section 3.6 for a

summary of this chapter, and an illustration of this work’s methodological framework).

107

Table 7. Summary of research perspectives, questions and study techniques and measures

Research Perspective Research Question(s) Study Technique(s) and
Measure(s)

Results

Largely Confirmatory
(Phase 1)

RQ1. Do communication patterns
change as the software project progress?

Aggregation of messages over
project phases (frequency-
based analysis)

Refer to Section 4.1.1

RQ2. Is there equity in practitioners’
contributions to their project?

SNA – Sociograms, In-degree,
Density, Unique edges,
Closeness

Refer to Section 4.1.2

RQ3. Are active communicators more
important to their teams’ collaboration?
RQ4. How are active communicators
involved in task performance?
RQ5. Are practitioners’ formal role
assignments related to their involvement
in project interactions and task
performance?

SNA – In-degree, Density,
Closeness, Sociograms, Role
details, Task performance
(change logs)

Refer to Section 4.1.3

Largely Exploratory
(Phase 2 and Phase 3)

RQ6. Do core developers’ behaviours
and attitudes differ from those of other
software practitioners?

Linguistic Analysis –
Behaviours and attitudes

Refer to Section 4.2.1

RQ7. What are the core developers’
enacted roles in their teams, and how are
these roles occupied?

Directed Content Analysis –
Enacted roles

Refer to Section 4.2.2

RQ8. Do core developers’ attitudes
change as their project progresses?

Linguistic Analysis –
Behaviour and attitudes (over
project duration)

Refer to Section 4.3.1

RQ9. How do core developers share
knowledge over the course of their
project?
RQ10. What initial team arrangements
lead to developers becoming hubs in
their teams?

Directed Content Analysis –
Knowledge sharing, Becoming
team hubs (over project
duration)

Refer to Section 4.3.2

RQ11. How do core developers
contribute to task performance over their
project?

Change Logs – Task
performance

Refer to Section 4.3.3

RQ12. Are core developers’
contributions to task performance linked
to their attitudes?

Linguistic Analysis and Change
Logs – Attitudes and task
performance

Refer to Section 4.3.4

RQ13. Are core developers’
contributions to task performance linked
to their contribution of knowledge?

Directed Content Analysis and
Change Logs – Knowledge
sharing and task performance

Refer to Section 4.3.5

3.6 Chapter Summary and Methodological Framework

This chapter has described and justified the study’s research methodology and design.

In Section 3.1 it was shown that empirical studies using repository data have largely

used frequency-based and mathematical analysis techniques to provide understandings

of software engineering teams’ communication processes. However, there are

uncertainties around the suitability of these approaches for studying deeper

psychological aspects of human-centric processes. Accordingly, techniques from the

behavioural sciences and the organisational psychology domain have been

recommended for supplementing the surface approaches to provide contextual

understandings for teams’ behavioural processes. The particular use of such deeper

approaches is often tied to the nature of the research questions that are outlined and to

108

the researcher’s theoretical stance. In particular, Section 3.2 explained that research

aimed at testing or confirming theories generally conforms to a positivist framework,

whereas studies aimed at providing understanding of new and untested phenomena are

often exploratory in nature and conform to a more interpretivist approach.

The issues that are explored in this study demand the utilisation of techniques that are

aligned with both positions (positivism and interpretivism), and so, this work adopts a

pragmatic approach under a mixed-method case study design (refer to Section 3.3 and

Section 3.4). Under the case study method, relevant software artefacts are studied using

a multi-phase approach in alignment with the general principles of data mining best

practice, social network analysis, linguistic analysis and directed content analysis (refer

to Section 3.4). Through the use of the IBM Rational Jazz repository, data mining

practices were used for data extraction and preparation. The other aforementioned

techniques (social network analysis, linguistic analysis and directed content analysis)

are then used to study the collaboration patterns of successful globally distributed agile

teams and how and why core developers contribute to globally distributed agile team

dynamics based on these artefacts.

In alignment with the theoretical stance of similar empirical work, these outcomes are

aimed at providing initial conjectures that may lead to explanation theories. In Section

3.5 it is noted that this form of theory conforms to Gregor’s Type 2 classification. This

theoretical approach and the work’s overall methodological framework are further

illustrated in Figure 18.

109

Figure 18. The methodological framework of this PhD

110

Chapter 4. Results

This chapter reports the results of the research, and comprises four sections. Firstly,

Section 4.1 presents the preliminary social network analysis results that form the

confirmatory analyses, and is aimed largely at providing the foundation for the other

main sections (Section 4.2 and Section 4.3) that follow. These latter two sections

comprise the exploratory analyses in alignment with the discussions in Section 3.4. In

incrementing the results in Section 4.1, Section 4.2 is next outlined; this section

provides a static (single project snapshot) view of the linguistic and directed CA results

that were revealed in this work, and also forms the basis for the subsequent section -

Section 4.3. This section (Section 4.3) considers the linguistic and directed CA results

from a temporal perspective. Finally, Section 4.4 provides a summary of the results that

are presented throughout this chapter.

4.1 Phase 1 – Social Network Analysis

This section considers the preliminary results aimed at answering research questions

RQ1 – RQ5. These preliminary results relate to the exploration of collaboration patterns

of successful globally distributed agile teams. Firstly, Section 4.1.1 explores the teams’

contributions of messages over their project and addresses RQ1: Do communication

patterns change as the software project progresses? Section 4.1.2 then provides the

social network analysis results for the ten teams selected. These results include those

related to the SNA metrics outlined in Chapter 3 and the visualisations of teams’

sociograms, and are aimed at answering RQ2: Is there equity in practitioners’

contributions to their project? RQ3: Are active communicators more important to their

teams’ collaboration?, RQ4: How are active communicators involved in task

performance ? and RQ5: Are practitioners’ formal role assignments related to their

involvement in project interactions and task performance?, are then answered by the

results that are presented in Section 4.1.3.

4.1.1 Project Communication Patterns (RQ1)

This section presents the results obtained from the preliminary analysis of Jazz teams’

interactions, which is aimed at answering RQ1. Given the purposive sampling approach

adopted, minimal detailed comparisons of communications across the teams are made.

Rather, communications within teams are examined in this section. First, Jazz teams’

communications are explored to understand how these teams typically interacted as

111

their project progressed. This enquiry is aimed at gaining familiarity with the Jazz

project interaction environment, and is used to set the tone for the deeper and specific

explorations conducted subsequently in relation to active developers (see the approach

used by Shihab et al. (2010) in their examination of the communication style of

practitioners in GNOME, for an example of a similar analysis). Adoption of such an

approach to explore within-project interactions as the teams progress is also useful for

observing and understanding any temporal changes, as against simply observing a static

view of project communication (Hinds & McGrath, 2006). Yu et al. (2011, p. 223)

employed a similar approach to study GTK+ project interactions. Similar analyses of

interaction evolution were also conducted by others (Cataldo et al., 2006; Datta et al.,

2011; Shihab et al., 2009).

As noted in Section 3.4.3.1, each set of team artefacts are divided into four equal parts

(start, early-mid, late-mid, and end) to account for differences in the number of

iterations and duration in each project area (note that the lowest number of iterations for

the individual teams (P1 – P10) was two (for P3) and the highest was 17 (for P5) – see

Table 2). In Table 2, the total number of messages communicated by the selected teams

is shown to be 5563. Overall, over the four project phases, 1549 messages (the highest

number) were contributed in the start phase, 1333 messages were communicated in the

early-mid phase, 1263 messages (the lowest number) were communicated in the late-

mid phase and 1418 were contributed in the end phase. (Refer to Table 8 for descriptive

statistics concerning practitioners’ communication over the course of the Jazz project.)

Table 8. Descriptive statistics for combined teams’ (P1 – P10) communication

Phase Messages (N) Mean
Messages/WI

Median
Messages/ WI SD SK KS Std. Error of

SK
Std. Error of
KS

start 1549 6.1 4.0 6.0 2.6 9.6 0.2 0.3

early-
mid 1333 5.2 3.0 5.9 3.0 11.8 0.2 0.3

late-mid 1263 4.9 3.0 5.4 2.8 9.9 0.2 0.3

end 1418 5.5 3.0 5.1 1.8 3.2 0.2 0.3

Mean 1391 5.4 3.3 5.6 2.6 8.6 0.2 0.3

Notes: SD = Standard Deviation, SK = Skewness, KS = Kurtosis

In order to verify whether there were any significant differences in the way teams

interacted over the four project phases a series of statistical tests was conducted. Firstly,

checks for normality of the data distributions were conducted using Kolmogorov-

Smirnov tests (given that there were > 1200 messages in each phase) (see Brooks,

Clarke, & McGale (1994) for discussions on the formal application of normality tests).

112

These tests confirmed that the distributions of messages communicated around software

tasks violated the normality assumption for all four project phases. The standardised

skewness coefficient (i.e., the skewness value divided by its standard error) and

standardised kurtosis coefficient (i.e., the kurtosis value divided by its standard error)

were also outside the boundaries of normally distributed data (i.e., -3 to +3)

(Onwuegbuzie & Danlel, 2002), see Table 8 for details. Thus, the nonparametric

Kruskal-Wallis test was used to check for differences in communication across the four

project phases.

The Kruskal-Wallis test revealed that there was a statistically significant difference in

the numbers of messages communicated over the four project phases X2 = 12.596, p <

0.01. The effect size associated with this difference, as measured by Cramer’s V, was

0.227. Using Cohen (1988) criteria, this measure is indicative of a small effect size. A

series of four Mann-Whitney pairwise follow-up tests at the Bonferroni adjusted level

(Vogt, 2005) (i.e., 0.05 divided by 4 analyses) of 0.0125 indicated that Jazz teams

communicated significantly more at the start of their project than in the early-mid (p <

0.0125) and late-mid (p < 0.0125) phases. Comparisons between the early-mid and end

phases, and late-mid and end phases, did not produce statistically significant results (p >

0.0125 and p > 0.0125 respectively).

A detailed view of the teams’ interactions over their project is presented through an

examination of the mean messages communicated per WI by practitioners for each team

(P1 –P10) in Figure 19 (see median messages communicated in Appendix I where a

similar pattern of results is obtained). Figure 19 shows that for seven teams (P2, P3, P4,

P5, P8, P9, and P10), there were elevated levels of messages in the first phase, and

messages also increased towards project completion for most teams (except for teams

P1 and P4). These results are in line with those reflecting the overall project measures.

With the exception of team P5 (where communication increased in the third phase), all

teams also recorded a reduction in communication over the second and third project

phases – a pattern also evident in the overall results.

113

Figure 19. Mean messages per WI communicated over project phases (teams P1– P10)

The above results reveal that practitioners communicated the most in the start and end

phases of their project. This finding is divergent to those revealed in previous work

(Datta et al., 2011), which found developers’ communications increased as the project

progressed, before stabilising towards project completion. This divergence suggests that

different communication strategies may be adopted by different teams given the specific

method that is used for developing software. For example, approaches that are aimed at

capturing most of the software requirements at project initiation would likely demand

heavy communication in the early project phases, while those that encourage

‘continuous’ requirements solicitation as projects progress may see teams

communicating more consistently throughout the project or may experience higher

levels of communication during the middle project phases. While these results provide a

view into ten Jazz teams’ communications, aggregating and then analysing the teams’

messages as has been done above does not reveal the internal interaction patterns of

these teams. SNA techniques may be used for this activity (De Laat et al., 2007;

Wasserman & Faust, 1997). Such analyses are conducted in the next section, where Jazz

teams’ communications are explored using both sociograms and SNA metrics (refer to

Section 3.4.3 for discussions around these techniques).

4.1.2 Equity in Practitioners’ Communication (RQ2)

The results in this section are aimed at answering RQ2. As noted in Chapter 3,

sociograms (or task based social networks – refer to Wolf, Schroter, Damian, Panjer, &

Nguyen (2009) for a discussion on the utility of this method for studying team

interactions around software tasks) were created based on the messages conveyed and

tasks undertaken by each of the ten teams (P1 – P10). Qualitative visual examination of

114

the teams’ network graphs reveal that, for all ten project areas, just a few practitioners

dominated communication (see Figure 12 for example; Appendix II provides the

sociograms of all ten Jazz teams considered here). Additionally, when examining the

SNA in-degree measures for the project members of the ten teams (see Figure 20 for in-

degree measures for a sample Jazz team), it is noticed that these measures were highly

skewed for all ten teams. Accordingly, formal statistical testing is conducted. First, the

distribution for each team’s in-degree measures is examined for adherence to the

normality assumption using the Shapiro-Wilks test (given that the samples (P1 – P10)

all comprised fewer than 100 contributors), and the standardised skewness and kurtosis

coefficients is also considered (see Section 4.1.1 for details). These tests corroborate

that the distributions violated the normality assumption for all ten teams; and thus,

confirm that in-degree measures were skewed for all the teams (see Table 9 for

descriptive statistics concerning teams’ in-degree measures). Given this violation of the

normality assumption, the Kruskal-Wallis test is used to test for differences in in-degree

measures across the ten Jazz teams. The result of this test reveal that Jazz teams’ in-

degree measures were indeed relatively homogenous (i.e., few practitioners dominated

interactions for all ten Jazz teams), X2 = 13.182, p > 0.05.

Figure 20. In-degree measures for a sample Jazz team

Miller, Daly, Wood, Roper, & Brooks (1997) noted that homogeneous samples such as

these tend to yield statistically powerful and reliable results. This pattern of significant

skewness in terms of team members’ interactions was also observed by Shihab et al.

(2010) and Yu et al. (2011), and in part set the tone for the further work that is

performed in this study. Particularly, this leads to questions being raised such as why

such a pattern might exist, and what are the implications of this pattern for software

engineering team dynamics? These observations point to a need to scrutinise and

115

explore these highly active individuals further, to provide insights into their behaviours

and inferences for software development. Thus, in the current preliminary SNA

investigation, dominant contributors are examined further, and these results are

presented in Section 4.1.3. The following results pertain to the ten teams’ networks (P1

– P10); here an initial examination of teams’ involvement in communication, and the

evolution of the ten teams’ sociograms over time, are provided through the SNA lens.

Table 9. Descriptive statistics for teams’ in-degree measures (P1 – P10)

Team ID In-degree Mean Median SD SK KS Std. Error of SK Std. Error of KS

P1 141 4.3 2.0 8.8 4.1 17.6 0.4 0.8

P2 249 5.3 2.0 13.0 5.2 29.4 0.3 0.7

P3 68 2.3 2.0 2.7 3.9 17.1 0.4 0.8

P4 438 11.2 2.0 20.6 2.5 5.4 0.4 0.7

P5 296 6.2 3.0 10.4 3.4 12.2 0.3 0.7

P6 230 9.2 2.0 19.5 3.2 9.7 0.5 0.9

P7 208 13.0 2.0 21.9 2.1 3.7 0.6 1.1

P8 374 4.2 1.5 8.1 4.7 26.1 0.3 0.5

P9 114 6.0 1.0 9.2 1.7 1.2 0.5 1.0

P10 365 7.6 3.0 19.0 5.6 34.9 0.3 0.7

Mean 248.3 6.9 2.1 13.3 3.6 15.7 0.4 0.7

Notes: SD = Standard Deviation, SK = Skewness, KS = Kurtosis

As observed in Section 4.1.1, there were higher levels of communication in the start and

end phases of the Jazz project. Qualitatively examining the ten teams’ sociograms

reveals a similar pattern (see Figure 21 for one team’s set of sociograms). Additionally,

the network structures, in terms of individual contributors’ interactions, were generally

stable over project duration, with communication structures established in the early and

middle stages of the project being preserved throughout the project. The underlying

trend that is observed here is that those who interacted little at the beginning of the

project remained relatively quiet throughout the project, whereas high communicating

members did so throughout, a phenomenon also observed by Shihab et al. (2010). This

is demonstrated in Figure 21 where snapshots of one of the Jazz teams’ social networks

over the four project phases are presented. These graphs show that in the start phase of

the project (graph One) practitioners 6262 and 13722 occupied hubs for team

communication, and communicated densely on the tasks in which they were involved.

This pattern continued in the early-mid and late-mid project phases (graphs Two and

Three, respectively), where it is noted that only a few other individuals contributed

significant numbers of messages. The fourth graph demonstrates that this behaviour is

also maintained in the end phase, and practitioners 6262 and 13722 continued their

116

dominant communication patterns throughout the project (see Appendix II for

sociograms of all ten Jazz teams considered over the four project phases).

As noted above, this work has employed a purposive sampling approach, and so formal

comparisons of the measures across the teams selected are not performed. That said, the

fact that all the artefacts were selected from a single repository, and that this work

employs multiple analysis approaches (both top-down and contextual) in analysing a

large number of artefacts, make some level of comparison valid (Creswell, 1998;

Kuzel, 1992). Additionally, Romney et al. (1986) showed that samples comprising as

few as four individuals can render highly accurate and generalisable information if the

individuals are very competent in the domain under investigation, as is contended here

regarding the Jazz teams (noted inChapter 3). Therefore specific comparisons across the

teams are now performed.

It is evident in Table 2 that team P8 (centred on project management-based tasks) was

most heavily populated with contributors. For this project area 90 members contributed

612 messages to the network. Although this team shares similar characteristics with

teams P4 and P10 for task count (P4 = 214 tasks, P8 = 210 tasks and P10 = 207 tasks,

respectively) and the number of messages contributed overall (P4 = 883 messages and

P10 = 640 messages; see Table 2 for further details), the number of contributors on

project area P8 (90 members) is double those in project areas P4 and P10 (these have 39

members and 48 members, respectively). Given this volume of contributors, it could be

expected that communication within this team would be the least dense of all the teams

P1 – P10. While the result confirms that this was indeed the case for P8 (with a density

measure of 0.02), Figure 22 (a) shows that all of the project areas that are observed

lacked high levels of density – the highest density of all the teams is observed for P7,

being just over 0.14). Note in Section 3.4.3 that density varies between 0 and 1, where a

task that attract communication from the entire team would have a density of 1, while

one with no communication would have a density of 0. Thus, density of less than 0.3

may generally be considered low. The overall Jazz project measures for density are

affected by the generally low level of messages contributed by team members, the

exception being the more active contributors – the mean measure is 0.07 (median = 0.07

and SD = 0.04). Many of the contributors communicated on a few tasks only (as is

illustrated in Figure 12 and Table 9). Implementation- or functionality-centric teams

(project areas P7 and P9) saw the highest levels of distribution of contributions across

software tasks; with density values of 0.14 and 0.12, respectively (see Figure 22 (a)).

117

The teams’ overall measures for density are in contrast to those for closeness centrality

where measures for all teams were very close (see Figure 22 (c)); the mean closeness

measure for the project areas (P1 – P10) is 0.01 (median = 0.01 and SD = 0.02). The

least close team (with a closeness value of 0.06) was project area P3 (documentation-

based), which also took the shortest time to tasks completion (59 days) and had the

lowest numbers of tasks (30 WIs) and communications (158 messages) (see Figure 22

(c) and Table 2). With the exception of team P3, all the project areas had a closeness

centrality measure of less than 0.02, denoting very close networks (see Hanneman &

Riddle (2005) and Wasserman & Faust (1997) for further details on closeness

centrality). Such closeness measures denote that practitioners remained accessible,

whether directly or through their connections, across all the project teams. In project

areas P4, P8 and P10, practitioners’ contributions were highest (with in-degrees 438,

374 and 365, respectively) (see Figure 22 (d)), although, on average, these teams did not

observe very high numbers of contributions across software tasks (mean in-degree (P1 –

P10) = 248.3, median = 248.3 and SD = 120.9). The representation in Figure 22 (b) of

measures for mean unique edges confirms these measures. In fact, in examining Figure

22 (b) it is evident that the average number of unique contributions across software

tasks in the individual teams was quite stable (mean unique edges (P1 – P10) = 2.2,

median = 2.2 and SD = 0.3).

The results just reported all serve to indicate that only a few individuals communicated

per team, across all ten project areas. These specific individuals maintain this distinct

presence in their teams’ communication networks throughout the Jazz project. This

finding suggests that the sample of project areas selected was homogenous (Miller et al.,

1997). In fact, although the teams were dedicated to addressing different forms of

software task, there was general consistency in the SNAs’ density, unique edges,

closeness and in-degree measures. Overall, the analyses conducted in this section (and

their associated visualisations) reveal that there is inequity in communication for all ten

Jazz teams. However, these results do not reveal the scale of the inequality in

practitioners’ communications (Bird et al., 2006a; Cataldo & Herbsleb, 2008; Cataldo et

al., 2006; Shihab et al., 2009), nor do they answer the questions “Why are only a few

developers communicating in all ten teams?”, “What are the roles of these active

communicators?” and “How are these active communicators involved in task

performance?”. Previous research has found that centralized patterns involving core

group members are a positive sign for team performance (Ahuja et al., 2003; Bavelas,

118

1950; Guetzkow & Simon, 1955). Central individuals are also generally seen as

projects’ leaders, whether or not they are the formal leaders (Leavitt, 1951), and groups

with central coordinators experience higher levels of group organization and task

performance (in terms of speed of completion). Accordingly, the communication

patterns of active contributors are further scrutinised in the next section, as a first step to

understanding the reasons for these practitioners’ distinct presence.

Figure 21. Jazz sample team network (phases one (start) to four (end))

119

Figure 22. Summary of social network measures for the ten project areas (P1 – P10)

4.1.3 Importance, Task Performance and Formal Roles (RQ3, RQ4 and
RQ5)

As highlighted previously, in all ten project areas (P1 – P10) just a few individuals

dominated the interaction networks (see Apendix I (b)). As intimated towards the end of

Section 4.1.2, individuals involved in highly dense communication network segments,

such as those observed here, have previously been shown to occupy the centre of group

coordination and collective action (Reagans & Zuckerman, 2001), and are seen as most

important to their teams’ knowledge sharing processes (Leavitt, 1951; Zhong et al.,

2012) (see Chapter 2). While previous research has observed this pattern (Cataldo et al.,

2006; Shihab et al., 2009), questions related to how and why core group members

become ‘knowledge hubs’, the reasons for these members’ extraordinary presence, and

understanding the actual roles (both formal and informal) that core developers occupy in

their teams, have not been answered. Such answers could provide explanations for the

nature and peculiarities of distributed agile group dynamics. Knowledge of the way the

most active agile practitioners contribute their social and intellectual capital could help

project leaders to identify exceptional software practitioners early, and inform the

process of assembling high performing and cohesive teams. Such findings could also

inform the use of specific organizational arrangements and team configurations in

support of high performers. Furthermore, the output of these explorations may lead to

new requirements for collaboration and process support tools.

120

In addressing these research gaps and opportunities, the artefacts of core developers are

deliberately targeted for exploration in order to answer RQ3, RQ4 and RQ5. As outlined

in Chapter 3, core developers were selected using an initial baseline density measure of

≥ 0.33 (i.e., they communicated on a third or more of their teams’ project tasks)

(Crowston et al., 2006). Table 10 shows that only fourteen contributors across the ten

project areas met this initial density-based selection criterion for core developers

(shown as bold font contributor numbers – notice that none of the members from P8

were selected initially). Thus, the top two contributors to each team were instead

selected (an approach also employed by Rigby & Hassan (2007)), which increased the

total number of core developers by six (the non-bold font contributor numbers),

bringing the core developers cluster to 20. Note also from Table 10 that a few core

developers were dominant across multiple project areas (e.g., see contributors 4661 and

2419 for P1 and P2 in Table 10). Thus, in total there were 15 distinct core developers.

Table 10. Social network measures for core developers and their team scores (P1 – P10)

Team ID/
Project area Contributor

Core In-degree Density Closeness

In-degree (% of team measure) core team core team

P1 4661 46 32.6 0.85 0.08 0.01 0.01

2419 26 18.4 0.48 0.01

P2 4661 83 33.3 0.74 0.05 0.00 0.00

2419 33 13.3 0.29 0.00

P3 13722 15 22.1 0.50 0.08 0.01 0.06

4674 7 10.3 0.23 0.01

P4 13740 85 19.4 0.40 0.05 0.00 0.01

11643 70 16.0 0.33 0.00

.P5 4749 55 18.6 0.45 0.05 0.00 0.01

4674 39 13.2 0.32 0.00

P6 12065 82 35.7 0.74 0.08 0.01 0.00

13664 61 26.5 0.55 0.00

P7 12972 73 35.1 0.80 0.14 0.01 0.00

13664 57 27.4 0.63 0.01

P8 12702 59 15.8 0.28 0.02 0.00 0.02

2102 33 8.8 0.16 0.00

P9 6572 29 25.4 0.58 0.12 0.01 0.01

12889 22 19.3 0.44 0.01

P10 6262 127 34.8 0.61 0.04 0.00 0.00

13722 36 9.9 0.17 0.00

Mean - 51.9 21.8 0.48 0.07 0.00 0.01

Table 10 shows that these core developers were indeed actively involved in their teams’

communication. In terms of in-degree, core developers contributed over 62% of the

teams’ measures for P6 and P7, and core developers on P1, P2, P9 and P10 contributed

121

a combined 51.1%, 46.6%, 44.7% and 44.7% of their teams’ measures, respectively.

Overall, the core developers had a mean in-degree score of 51.9 (refer to Table 10). This

value is substantial when considering the mean in-degree score for the ten project areas

(P1 – P10) was 248.30 (see Table 9). In fact, this number represents 21.79% of the

overall measure for all project areas (refer to Table 10). The density figures in Table 10

show a similar pattern. Here it is revealed that contributors 4661 (of P1), 12972 (of P7)

and 12065 (of P6) had density measures of 0.85, 0.80 and 0.74 respectively, and the

overall mean density measure for core developers was 0.48, compared to the mean

project areas’ (P1 – P10) density measure of 0.07 (i.e., core developers communicated

on 48% of the tasks compared to their overall teams’ score of 7%). These overall project

areas’ measures are compared for statistically significant differences. When the density

scores are checked for normality it is noted that there is no violation of the normality

assumption (Onwuegbuzie & Danlel, 2002). A Levene’s test for equality of variance

reveal unequal variances for the two groups (core developers and their team) (p =

0.001). Thus, the parametric independent sample t-test is conducted to test the mean

density measures for significant differences. This results show statistically significant

difference between the density of core members and those of their overall project areas’,

(t(9.95) = 7.85, P = < 0.001). This difference represent a large effect size (Cohen’s d) of

0.928 (Cohen, 1988). This result show core developers communicated on nearly seven

times as many software tasks as their teammates (see Figure 23 (a–d) for additional

visualisations).

In considering the closeness column in Table 10, a different pattern is observed.

Noticeably, the network measures for closeness for core developers are not much lower

than those for the teams’ networks (with an overall mean score of 0.00 for core

developers and 0.01 for the teams). In fact, Table 10 shows that for project area P7 the

closeness measure for the overall team network is lower than those for the central

players (0.00 versus 0.01 for each core developer). The closeness scores are checked for

statistically significant differences. Firstly, an examination of the standardized skewness

and kurtotis coefficients for the closeness measures reveal serious departures from

normality (Onwuegbuzie & Danlel, 2002). Thus, a non-parametric Mann-Whitney U

test is used to compare the scores of the core developers and those of their teams (refer

to Table 10). This test does not reveal any statistically significant difference in the

closeness scores for core developers and their teams, (U = 40, P = 0.404). These

findings are supported by an examination of Figure 23 (e–f) which show that even with

122

the removal of the core developers from the teams’ networks, most contributors still

remain reachable (whether directly or via others in the networks). These findings denote

that, overall, Jazz members were all very accessible irrespective of their levels of active

contribution.

Communication frequency and volume may be linked to individuals’ assigned roles

(Shihab et al., 2010). Given this, roles more inclined to coordination or liaison, such as

project manager and project administrator, might be expected to be more heavily

involved in project communication. Members occupying these and similar roles may

not necessarily be actual core developers on software tasks (Cataldo & Herbsleb, 2008)

– in terms of their efforts in problem solving. Accordingly, core developers’

communication behaviour is checked against their formal roles and their actual

involvement with software tasks (task performance). Firstly, core developers’ actual

role information is extracted from the repository. This data show that eight out of the 15

distinct cluster members were programmers, along with five team leaders and two

project managers. This evidence provides some level of support for the preliminary

assessment that the members clustered in the core developers group were high

contributors (in terms of knowledge contribution) on software tasks. As noted in Section

3.4.2, in Jazz a person occupying the formal “Programmer” (contributor) role is defined

as a contributor to the architecture and code of a component, the “Team Leader”

(component lead) is responsible for planning and architectural integrity of the

component and the “Project Manager” (PMC) is a member of the project management

committee overseeing the IBM Rational Jazz project.

123

Figure 23. Sample network graphs (sociograms)

124

Chapter 3 described the approach that is used for studying these contributors’ task

performance (Cataldo & Herbsleb, 2008; Shihab et al., 2010), where it was noted that

the mined change logs were summarised (Cataldo & Herbsleb, 2008). Having

confirmed the formally assigned roles of the core developers, the third step in this phase

of the analyses is to examine core developers’ involvement in software development

tasks. Table 11 shows that, on average, more than 41% of all software tasks were

initiated by the 15 core developers. These practitioners also made more than 69% of the

changes to these tasks and resolved nearly 75% of all software tasks that were

undertaken by their teams. In fact, core developers created as many as 69% of all

software tasks in P6 and made 94% of changes in P9 (refer to Table 11). These scores

were further exceeded in project area P9, where core developers resolved 98% of their

team’s tasks. These figures are in contrast to what would be a ‘typical’ contribution if

WIs were distributed evenly across all contributors to a project area – taking this latter

approach, team members would typically have contributed to between 1.1% (for P8)

and 6.3% (for P7) of their teams’ WIs changes (see Table 2). These task change results

provide support for the approach that was employed to select the core developers; the

members selected in the core developers cluster were truly the most active members on

their projects (Cataldo & Herbsleb, 2008). These task change results are also

triangulated with contextual analyses of these members’ (and their teammates’)

messages.

Table 11. Activities performed by core developers

Team ID % Created % Modifications % Resolved

P1 44.4 66.7 79.6

P2 49.1 58.0 67.0

P3 26.7 66.7 20.0

P4 36.0 49.1 60.7

P5 16.4 62.3 73.0

P6 65.8 78.4 97.3

P7 44.0 63.7 91.2

P8 28.6 73.3 64.3

P9 60.0 94.0 98.0

P10 39.6 85.0 93.7

Mean 41.1 69.7 74.5

The findings just reported endorse those discovered previously, that only a small

number of team members tend to contribute to a software project’s knowledge base

(Shihab et al., 2010), and that software developers’ communication and coordination

activities are directly related to their involvement in software tasks (Bird et al., 2006a).

125

These results, and particularly those related to core developers’ in-degree and density

scores, show that core members communicated on significantly more tasks (p < 0.001)

than the other members of their teams. The Cohen’s d effect size associated with the

difference in density scores between core developers and the other practitioners was

large (Cohen, 1988), suggesting that the difference noted is of practical importance

(Kampenes, Dybå, Hannay, & Sjøberg, 2007).

This pattern was also previously revealed by others studying software teams’

communication (Bird et al., 2006a; Shihab et al., 2010; Yu et al., 2011). However,

researchers have tended to stop there, and have not investigated further as to why this

phenomenon exists. In particular, evidence around why core developers demonstrate

such a distinct presence and how these members evolve into their central roles have not

been provided. Such evidence could be integral for informing team composition

strategies, and may also inform software tool features in support for team governance.

Accordingly, linguistic analysis of Jazz practitioners’ messages is conducted as a first

step towards answering these questions; these results are presented in the next section.

4.2 Phase 2 – Linguistic Analysis and Directed CA (Static Analyses)

Results in this section are aimed at establishing whether core developers’ attitudes differ

from those of ‘regular’ (i.e., non-core) team members, and examining the roles enacted

by core developers. These enquiries provide understandings for the reasons for core

developers’ very high levels of communication and task performance. Additionally, the

results around core developers’ expression of attitudes and contribution of knowledge

are also intended to explain the specific nature of the way these members contribute to

their teams’ dynamics. Firstly, Section 4.2.1 reports the exploration of the attitudes of

core developers and a comparison of the behaviours of these practitioners against those

of their less active counterparts. This aspect of the results is aimed at answering RQ6

(Do core developers’ behaviours and attitudes differ from those of other software

practitioners?). Section 4.2.2 provides a similar comparative analysis through a directed

CA (qualitative or contextual) lens. The directed CA results are aimed at answering

RQ7 (What are the core developers’ enacted roles in their teams, and how these roles

are occupied?), towards establishing what roles core developers enact in their teams.

Both forms of analyses, linguistic and directed CA, consider the project areas in the

form of a single snapshot.

126

4.2.1 Attitudes (RQ6)

In Section 3.4.3.1 the procedure used for selecting the core developers was introduced

(Crowston et al., 2006; Rigby & Hassan, 2007). Summaries of the results for core

developers’ communication (refer to Figure 21 and Figure 23 for illustrations) and their

involvement in task performance are provided in Table 10 and Table 11, respectively.

These results show that core developers communicated the most and were also integral

to their teams’ actual software development portfolio. Thus, active communicators were

not merely team coordinators. It was also discovered that core developers were not

restricted by their formal roles, as quite often programmers leading their teams’

communication worked under formal project leaders (refer to Section 4.1.3). These

results are extended in this section, and the attitudes of core developers are examined

using a psycholinguistic approach to answer RQ6. The attitudes that are commonly

expressed by core developers’ are also compared to those expressed by their

counterparts. This is achieved using an analysis of the content of the messages

contributed by core developers and the other practitioners, using the predefined

linguistic dimensions in Table 5. These dimensions were used previously to study

behaviours expressed in textual communication (Mairesse & Walker, 2006; Pennebaker

et al., 2007; Pennebaker & King, 1999; Rigby & Hassan, 2007).

All communications contributed by the two groups of developers (core and others) are

aggregated. Those 15 practitioners classified as core developers from the total of 146

distinct practitioners across the ten project areas contributed 2565 messages out of the

total 5563 messages shown in Table 2. Given the sample sizes, with both groups

contributing > 2500 messages, the form of the data distributions is first evaluated by

analysing the messages in the two groups along the 13 linguistic dimensions using the

Kolmogorov-Smirnov test of normality. The data for both sets of messages show

violations of the normality assumption. The standardised skewness and kurtosis

coefficients are also outside the boundaries of normally distributed data (i.e., -3 to +3)

(Onwuegbuzie & Danlel, 2002) – see Table 12 for a summary of the descriptive

statistics for the linguistic scores of core developers and others. Accordingly, paired

(core and others) comparisons are conducted for the individual linguistic dimensions to

check for significant differences using the non-parametric Mann-Whitney U test. These

results are presented in Table 13.

127

Table 12. Descriptive statistics for linguistic scores for core developers and others

Linguistic Category Abbrev.
Mean SD SK KS

Core Others Core Others Core Others Core Others

Pronouns I 7.6 8.3 15.0 15.1 3.3 3.1 13.9 13.2

we 2.5 2.7 6.2 6.0 3.7 2.9 17.2 9.8

you 2.8 2.2 6.7 5.7 3.2 3.9 12.4 19.4

Cognitive insight 5.7 6.4 11.4 11.5 3.8 3.3 22.0 17.5

discrep 6.0 5.9 10.9 10.2 3.6 3.1 21.5 17.0

tentat 5.2 6.0 10.7 10.8 4.2 3.3 27.0 18.3

certain 2.4 2.8 7.7 8.9 6.9 6.6 68.2 58.2

Work and Achievement work 12.5 10.3 18.6 15.8 1.7 1.9 2.6 4.0

achieve 11.4 9.8 17.1 15.1 1.7 2.0 2.1 4.2

Leisure, social and positive leisure 2.5 2.9 7.7 8.3 5.5 5.8 43.8 47.3

social 12.9 13.1 16.5 16.4 1.7 1.9 4.7 5.8

posemo 19.9 21.8 32.3 34.0 1.8 1.6 1.7 1.1

Negative negemo 3.4 3.3 11.0 10.1 5.9 5.6 43.6 40.2

Notes: SD = Standard Deviation, SK = Skewness, KS = Kurtosis

Table 13. Results for linguistics analysis

Linguistic Category Abbrev. Core (Mean Rank) Others (Mean Rank) Mann-Whitney Test (p-value)

Pronouns I 2711.5 2853.3 0.000

we 2752.7 2818.2 0.039

you 2829.9 2752.3 0.012

Cognitive insight 2716.7 2848.9 0.000

discrep 2779.1 2795.6 0.663

tentat 2706.1 2857.9 0.000

certain 2742.2 2827.1 0.007

Work and Achievement work 2841.8 2742.1 0.013

achieve 2828.2 2753.7 0.063

Leisure, social and
positive

leisure 2738.6 2830.1 0.003

social 2772.8 2801.0 0.490

posemo 2748.1 2822.1 0.073

Negative negemo 2773.9 2800.0 0.410

Table 13 shows that core developers were less self-focused, in that they used less

individualistic language (e.g., I, me, my) than the other contributors, and they tended to

delegate more (e.g., you, your, you’re). The Mann-Whitney U test comparing these

language dimensions for the two groups confirmed that these differences are statistically

significant (p < 0.001 and p < 0.05, respectively). The Cohen’s d effect sizes associated

with these differences are 0.050 and 0.034 respectively. These findings represent small

effect sizes (Cohen, 1988). The other team members used significantly more

individualistic language, and this group also used significantly more collective language

(e.g., we, our, us) (p < 0.05). This finding for collective language use has an effect size

of 0.030, also small.

128

The other team members also used significantly more insightful (e.g., think, believe,

consider) (p < 0.001), tentative (e.g., maybe, perhaps, apparently) (p < 0.001) and

certainty (e.g., definitely, extremely, always) (p < 0.01) type utterances. The Cohen’s d

effect sizes associated with the differences for these three cognitive dimensions (insight,

tentat and certain in Table 13) are all small, being 0.050, 0.050 and 0.040, respectively.

This pattern is the opposite for work (e.g., feedback, goal, delegate) and achievement

(e.g., accomplish, attain, resolve) related language use – Table 13 shows that the core

developers tended to use more work and achievement type language than the other

practitioners. These findings are also statistically significant for work (p < 0.05), but not

so for achievement language (p > 0.05). Of the other linguistic dimensions (leisure,

social, posemo and negemo), only the leisure (e.g., club, movie, party) category has

produced a statistically significant finding (p < 0.01) for higher use of this language

form for the other practitioners. The Cohen’s d effect sizes associated with the

differences for work and leisure are both small (0.033 and 0.040, respectively) (Cohen,

1988).

Given these findings, checks are made for differences in the behavioural processes of

the two groups of practitioners to ascertain if the nature of the software development

activity and/or the specific practitioners involved could have mediated the above results

for the ten individual project areas (P1 – 10). A similar pattern of results is found for

individualistic and delegation language use across the project areas; however, results for

collective language are slightly different, tending to be even across the two groups.

While core developers were more collective on some teams (P1 – P3, P6, P7, P9 and

P10), the other members were more collective on the remaining teams (i.e., P4, P5 and

P8). Another set of Mann-Whitney U tests are conducted for the individual project areas

(P1 - P10) for the cognitive dimensions, which has also produced a similar pattern of

results as noted for the complete data set. Apart from those working on P1, the core

developers for all other teams used consistently higher levels of work and achievement

language (p < 0.01 is statistically significant for the achieve dimension for higher use of

this language form for the other practitioners on P1). Findings for the leisure and social

dimensions are also similar to those reported for the entire data set. However,

significant differences (p < 0.05 and p < 0.01) are only observed for the use of leisure

utterances on P3 and P8. On the other hand, the other members involved in project

areas P2, P6 and P8 expressed significantly higher amounts of negative emotion (p <

0.01, p < 0.01 and p < 0.05, respectively).

129

In the last stage of the statistical analyses for the linguistic dimensions, checks are made

to explore the ways in which core developers expressed behaviours when they were

working in more than one team (refer to Table 10 for details). These tests are aimed at

understanding if core practitioners’ varied their attitudes given the nature of the

software tasks they were undertaking. Three of the 13 linguistic dimensions are

randomly selected for testing. These included first person pronouns (I), social process

words (social), and discrepancy words (discrep); refer to Table 5 for detail on these

linguistic dimensions. The distributions for the three selected linguistic dimensions for

each of these five core developers in Table 14 are close to normal (only slightly

positively skewed), and so checks for differences across the three linguistic dimensions

are conducted using t-tests. Table 14 shows that the core developers involved in

multiple project areas exhibited similar traits across those project areas. Use of first-

person pronouns (e.g., I, me, my) was almost identical, while there was also relative

consistency in the use of social words (e.g., give, buddy, love) and discrepancy words

(e.g., should, would, could). These findings suggest that these core members exhibited

quite stable attitudes regardless of the teams in which they were involved (Mehl &

Pennebaker, 2003).

Table 14. Results comparing differences in selected language usage for core developers
involved in multiple project areas

Contributor Project areas
(Team ID)

t-Test: Two Sample Assuming Unequal Variance (p-value)

First-person pronouns Social process words Discrepancy words

4661 P1, P2 0.878 0.920 0.888

2419 P1, P2 0.902 0.742 0.685

13722 P3, P10 0.949 0.250 0.089

4674 P3, P5 0.990 0.814 0.244

13664 P6, P7 0.905 0.349 0.603

Overall, these linguistic analysis results revealed that core developers delegated more

and used fewer individualistic processes than the less active practitioners. Core

developers were also highly task and achievement focused. On the other hand, the less

active practitioners used more cognitive processes, engaged more about leisure, and

tended to use more collective processes. While these results are insightful, the Cohen’s

d effect sizes associated with the differences in attitudes between core developers and

the other practitioners were all small (Cohen, 1988), suggesting that the differences

overall, although statistically noteworthy (p < 0.05), are of modest practical significance

(Kampenes et al., 2007).

130

There may also be an impact in terms of the analysis method employed. The LIWC tool

is applied in a top-down fashion, as its categories of language codes have been pre-

determined, and it is quite granular in considering the use of isolated words. It is

anticipated that a more exploratory, bottom-up approach focused on phrases might

provide different insights into core developers’ enacted roles and their knowledge-

centred processes. This form of analysis could also triangulate the linguistic findings.

Such examinations have led to enhanced understanding of many issues in the software

engineering and information systems domains (Sheetz et al., 2009).

The linguistics results reported for core developers and other practitioners attitudes are

therefore complemented using directed CA, employing a hybrid classification scheme

adapted from related prior work (Henri & Kaye, 1992; Zhu, 1996). As noted in Section

3.4.5, use of the directed approach is appropriate when there is scope to extend or

complement existing theories around a phenomenon (Hsieh & Shannon, 2005), and so

suited the move to further explore practitioners’ messages. The results from this form

of analysis are provided in the next section.

4.2.2 Enacted Roles (RQ7)

The results reported above show that Jazz core developers communicated extensively

across software tasks and these individuals made the most task (WI) changes (refer to

Section 4.1.3). Findings in Section 4.1.3 also show that core developers were not

restricted by their formal roles. The linguistic analysis results just reported in Section

4.2.1 have provided further insights into core developers’ interaction processes. Mainly,

these results revealed that core developers delegated to others more and used higher

levels of work and achievement processes. This section extends these SNA and

linguistic findings, and considers the nature of core developers’ interaction through

contextual lenses (Hsieh & Shannon, 2005).

As noted towards the end of the previous section (Section 4.2.1), contextual analysis

was conducted using a directed CA approach to answer RQ7 (refer to Chapter 3 for

further details). First, all of the messages for three of the ten project areas (those for P1,

P7, and P8) were selected (see Table 2). These teams were chosen deliberately as they

comprised development efforts aimed at different types of software features (P1 = User

Experience tasks, P7 = Coding tasks, and P8 = Project Management tasks). Thus, it was

anticipated that potential variations in interaction among those involved in different

forms of task would also be revealed by studying these project areas. These three

131

project areas combined comprised 355 tasks and 1561 messages, with 139 contributors

working across the three teams (including 107 distinct members) (refer to Table 2).

All of the 1561 messages were coded using the direct CA approach outlined in Section

3.4.5.8. As noted, the coding process employed a multiphase approach, including

creating the protocol from previous studies used for measuring interaction, checking the

suitability of the protocol for analysing software developers’ interactions by studying a

small sample of IBM Rational Jazz teams’ messages and extending the protocol

accordingly, recoding all of the messages with this extended protocol, and finally,

checking that the codes were reliably obtained. These steps form the process for

conducting a reliable and valid content analysis study (Hsieh & Shannon, 2005;

Jonassen & Kwon, 2001; Rourke & Anderson, 2004) (refer to Chapter 3 for further

details).

From the total 1561 messages that were coded, 5218 utterances were recorded for the

three teams (P1 = 1165 codes, P7 = 1770 codes and P8 = 2283 codes). Table 2 shows

that the three project areas selected for coding were of varying duration. There were

also variances in the numbers of tasks, messages and contributors in these project areas,

as is evident in Table 2. Overall, Table 15 shows that, typically, the highest number of

messages (8.5) was exchanged on user experience related tasks (P1), while coding

activities (P7) resulted in the second highest number of messages (5.4) on average for

each task, and practitioners working on the project management tasks (P8) exchanged

the least number of messages (2.9) on average. Measures for the average number of

tasks for each contributor were also different. On average, those working on the coding

team (P7) addressed the highest number of tasks (5.7); while members worked on fewer

tasks (1.6) in the user experience project team (P8) (refer to Table 15). Table 15

further shows that those working on the coding team (P7) also communicated the most

mean messages (30.6), while the user experience project team contributors (those of P1)

were next in line, sharing 13.9 messages on average, and those on the project

management team (P8) were the least ‘vocal’ – these practitioners exchanged 6.8

messages on average. Although contributors to the project management team (P8)

typically communicated the least around software tasks (2.9 messages on average), and

this was similar in terms of the average messages for each contributor (2.3), on average

these individuals said more in each message (3.7 utterances compared to 3.6 and 2.5 for

practitioners of coding (P7) and user experience (P1) tasks, respectively) (refer to the

Codes/Message column in Table 15).

132

Table 15. Mean project area measures for messages, tasks, contributors and codes

Team ID Messages/ Task Tasks/ Contributor Messages/ Contributor Codes/ Message

P1 8.5 1.6 13.9 2.5

P7 5.4 5.7 30.6 3.6

P8 2.9 2.3 6.8 3.7

Figure 24 shows the distribution of the aggregated interaction behaviours (from the

5218 codes that were derived) that occurred during all three project teams (P1, P7 and

P8). In Figure 24 it is noted that Information sharing (2452 codes), Discussion (598

codes), Scaffolding (590 codes) and Comments (383 codes) were the most dominant

behaviours evident during Jazz practitioners’ discourses. Additionally, Apology type

communication (17 codes) was rarely observed, and only a few utterances were not

matched to a category (Not Coded = 7 codes). Figure 24 shows that Type I Questions

(104 codes), Gratitude (97 codes) and Off task (107 codes) utterances recorded low

usage and were relatively even in number. A similar pattern is evident in Figure 24 for

Type II Questions (255 codes), Answers (257 codes) and Instructions (200 codes). The

number of codes for Reflection (151 codes) was slightly lower than that for Instructions

(refer to Table 6 for details). Please refer to Appendix III and Appendix IV for

additional visualisations of the codes across the three project areas (P1 = User

Experience (UE), P7 = Coding (Code), and P8 = Project Management (PM)).

Figure 24. Behaviour category (utterances) and number of occurrences for P1, P7 and P8

In alignment with the focus of the analysis in this phase – to explore the roles that are

enacted by core developers – all of the 2191 codes that were contributed by the six core

developers of the three project areas (P1, P7 and P8) are extracted and analysed. In total,

core developers working on P1 (UE) communicated 648 codes, the core developers

133

working on P8 (Code) communicated 1245 codes and core developers working on P8

(PM) communicated 298 codes. In order to assess these codes against those of the core

developers overall project areas’ (or teams’) utterances (as was done in Section 4.1.3),

Figure 25 shows the percentages of overall project teams’ interaction behaviours for the

individual core developers in the user experience (P1), coding (P7) and project

management (P8) project areas. (Note that the Not Coded category is not included in

Figure 25 as altogether only four (0.18%) core developer utterances were matched to

that category, refer to Table 6).

For the user experience project area (P1 or UE), Figure 25 illustrates that contributor

4661 articulated 75%, 55% and 51% of the team’s Instructions, Off task communication

and Reflective utterances, respectively. This contributor (4661) also communicated

nearly a half of the Type II Questions (enquiries), Discussions (ideas) and Scaffolding

(suggestions and guidance) on the user experience project area (UE). Additionally,

contributor 4661 expressed 41% of the team’s Gratitude, contributed a third of the

team’s Information and Comments (debates) and communicated a quarter of the team’s

Type I Questions and Answers (refer to Figure 25). On the same project area (UE)

Figure 25 shows that contributor 2419 was involved in nearly a third of the team’s Type

I Questions, shared a quarter of the team’s Information, provided nearly a fifth of the

team’s Type II Questions and Answers, and offered 11% of the team’s Instructions.

The core developers’ dominance is maintained on the coding project area (P7 or Code)

where Figure 25 shows that contributor 12972 contributed over half of the team’s

Reflection (evaluation and self-appraisal) type utterances and Discussions (ideas).

Figure 25 reveals that this contributor (12972) also communicated half of the team’s

Comments (debates), Information, Off task utterances, and Type II Questions

(enquiries). Contributor 12972 provided 43% of the coding team’s (Code) Scaffolding

communications (suggestions) and Type I Questions, 37% of the team’s Answers, and

nearly a fifth of the team’s Instructions (refer to Figure 25). On this project area (Code),

Figure 25 illustrates that contributor 13644 provided half of the team’s Instructions, a

third of the team’s Scaffolding utterances (suggestions) and Answers, a quarter of the

team’s Off task communications, and a fifth of the team’s Information and Discussions

(ideas). This contributor (13644) also provided 16% of the team’s Comments (debates)

and 14% of the team’s Reflections.

134

Figure 25 shows that the core developers’ influence observed on the user experience

(UE) and coding (Code) project areas was less evident on the project management

project area (PM). On the project management project area (PM) contributor 12702

provided close to a quarter of the team’s Instructions, while practitioner 2102

contributed just under half of this measure on the team (PM). Similarly, Figure 25

demonstrates that measures for Information sharing, Comments (judgemental or debate

type utterances) and Answers to information seeking questions were lower for 12702

and 2102. In fact, these contributors scored less than 10% of the team measures for all

but one of the other coding categories (Question, Discussion, Reflection, Scaffolding,

Gratitude, Off-task communication) (refer to Figure 25). These findings are not

unexpected for the core developers that were selected for P8 (PM), particularly because

none of the members that were selected in the core members’ group met the original

selection criterion (both members had a density measure lower than the baseline of ≥

0.33 that was initially set (Crowston et al., 2006)), refer to Section 4.1.3. Given that this

project area comprised 90 different contributors, however (compared to 33 contributors

on P1 (UE) and 16 contributors on P7 (Code)), these measures are still quite revealing

(see Table 2 for details).

Figure 25. Percentages of overall team interaction (utterances) behaviours for the core
developers

Overall, the core developers provided 42% (2191 codes) of their teams’ utterances (see

Appendix V for core developers’ combined interaction patterns for the three project

areas (P1, P7 and P8)). These utterances were related to interpersonal, intrapersonal and

organisational forms of communications. This finding is revealing when considering

that these core developers comprised just 5.6% (or 6 members) of their teams’ 107

135

distinct members. These figures are particularly surprising when allowing for what

would be a ‘typical’ contribution of knowledge if codes were distributed evenly across

the 107 contributors to the three project areas (P1 (UE), P7 (Code) and P8 (PM)) –

taking this approach a team member would typically have contributed around 48.77

codes, or 0.93% of their teams’ overall utterances. Taking this assessment into

consideration, core developers shared over 45 times (or each core developer shared 7.5

times) the knowledge of the average practitioner on their teams.

These differences are further illustrated in Figure 26 which provides visualisations of

the interaction behaviours for core developers and the other team members of the user

experience project area (P1) (refer to Appendix VI and Appendix VII for similar

visualisations for the coding (P7) and project management (P8) project areas). In Figure

26 it is shown that, overall, core developers dominated most of their team’s interactions.

In fact, these practitioners were working in a team comprising 33 members, which

included 18 programmers, 11 team leads, 2 project managers, 1 admin, 1 multiple roles.

The core developers of the user experience project area were one team lead (of the 11

team leads) and one programmer (of 18 programmers) (refer to Table 16 for P1 (UE),

P7 (Code) and P8 (PM) core developers’ formal role assignment information). This

evidence is revealing, particularly given that the UE team also comprised two project

managers (noted earlier).

Figure 26. Summary of project interaction (utterances) for the core developers and others
(for the UE team (P1))

136

Table 16. P1 (UE), P7 (Code) and P8 (PM) core developers’ formal roles

Team ID Project Member Role

UE (P1) 4661 Team lead

2419 Programmer

Code (P7) 12972 Programmer

13664 Team lead

PM (P8) 12702 Project manager

2102 Team lead

Pearson Chi-square tests are conducted to ascertain whether the differences observed in

the visualisations shown in Figure 26 (and those in Appendix VI and Appendix VII) are

statistically significant. This statistical procedure is viewed as appropriate when the

distributions comprise frequency data, as is the case for the codes that were obtained for

P1, P7 and P8 through the directed CA process (Sharp, 1979). Additionally, given that

the data revealed is categorical (refer to Table 6), the Chi-square test is the statistical

procedure of choice. Further, with the exception of the Not Coded category (only seven

codes were recorded for this category – refer to Figure 24), all the data samples (for the

other 12 categories – refer to Figure 24) comprised a sample size that was substantially

more than ten (the assumption for utilising a Chi-square test) (Sharp, 1979).

Thus, three Chi-square tests are conducted. First, all of the 5218 codes are separated and

then aggregated along the 12 coding categories for the two groups (core developers and

others). In this aggregation, core developers contributed 2191 codes and the other

members contributed 3027 codes. In line with the overall pattern (wherein the others’

codes combined were more than those contributed by core developers), it is noted that

the other members contributed more than 50% of the codes for all the coded categories

except Instruction/ Command (other members contributed 37.5% of the overall

instructions) and Off task utterances (this category was even at 50% each). The first

Chi-square test is conducted to check these two groups (core developers and others) for

differences, and the result is statistically significant, X2 (12) = 74.383, p < 0.001. The

effect size for this finding, Cramer’s V, is small, 0.119 (Cohen, 1988). This result

suggests that, overall, the other members contributed significantly more interactions

than the core developers (with the exception of Instructions/ Command and Off task

utterances), though, this difference is of modest practical significance (Kampenes et al.,

2007).

Given the pattern that was noted earlier for the core developers of the project

management project area (PM or P8) (i.e., these members contributed significantly

137

lower amounts of interactions than those working on the user experience (P1) and

coding (P7) project areas, they were selected in the core developer cluster having failed

the original selection criteria (both members had a density measure lower that the

baseline of ≥ 0.33 that was initially set (Crowston et al., 2006)), and their project area

comprised 90 members – the largest number for all the teams (P1 – P10), it is suspected

that the measures (codes obtained) for the core developers of the project management

project area (P8) are mediating the overall results of the first Chi-square test (discussed

in the previous paragraph). Thus, two additional Chi-square tests are conducted to

ascertain whether a difference is present in the way core developers contributed their

knowledge on the user experience (P1) and coding (P7) project areas respectively. For

the user experience project area (P1), the result show that core developers contributed

more than 50% of the codes for eight of the 12 interaction categories that are examined

(other members contributed 58.2% of the Answers and 61.8% of the Comments; and

two categories (Scaffolding and Apology) were even – refer to Figure 26 for

visualisation of codes). The Chi-square result is statistically significant, X2 (12) =

60.813, p < 0.001. The effect size, although small (Cramer’s V, 0.228) (Cohen, 1988), is

larger (and so of greater practical significance) than those seen for the overall Chi-

square result above (0.119).

A similar pattern of results is revealed for the coding project area (P7). For this team

core developers contributed more than 50% of the codes for 10 of the 12 interaction

categories (Gratitude being the exception), and codes were even for Type I Questions

among core developers and other members (both groups contributed 50% of this

category – refer to Appendix VI for visualisation). The Chi-square result is statistically

significant, X2 (12) = 32.270, p < 0.01. The effect size for this finding, Cramer’s V, is

small (but higher than the overall result above as well), 0.135 (Cohen, 1988).

Additionally, in line with the pattern noted in the user experience team (P1) above, the

core developers working on the coding team (P7) were also one programmer and one

team lead (refer to Table 16 for details). In Table 2 it is shown that P7 comprised of 16

members; including 6 programmers, 7 team leads, 1 project manager, 1 admin, 1

multiple roles.

These directed CA results show that core developers were major sources of their teams’

knowledge and these members also contributed to their teams’ social climate.

Additionally, core developers offered most of their teams directives (Instructions) and

guidance (Scaffolding). These forms of interactions are aligned to both task based and

138

social roles (Benne & Sheats, 1948). The statistical analysis also confirmed that core

developers expressed significantly different knowledge behaviours when compared to

the other practitioners of their teams. However, while these results and those in Section

4.2.1 establish that core developers exhibited significantly different attitudes and

behaviours to the regular developers during team work, these results only reflect a static

view of the software project. This is in line with the objective to establish whether core

developers’ attitudes differ to those of regular team members, and examining the roles

these practitioners enacted. Questions related to how core developers share knowledge

over the course of their project, the initial team arrangements that cause core developers

to become hubs in their teams and how the behaviours and traits these practitioners

exhibited are linked to their involvement in task performance have not been answered.

Such explorations could provide understandings for the peculiarities of globally

distributed agile software team dynamics, may inform appropriate team configurations,

and may enable the early identification of ‘software gems’ – exceptional practitioners in

terms of both task and team performance. These questions may only be answered

through longitudinal examinations. The next section adopts this approach in the analysis

of core developers’ artefacts, towards delivering answers for the preceding questions.

4.3 Phase 3 – Linguistic Analysis and Directed CA (Longitudinal
Analyses)

Results in Section 4.1 revealed that few members dominated project communication

and these members were also integrally involved in their teams’ software development

portfolio (Reagans & Zuckerman, 2001). Additionally, the results in this section

(Section 4.1) revealed that these core developers were not restricted by their formal role

assignment (Datta et al., 2010). As an initial step towards understanding the reason for

these members’ pronounced communication and task performance, Section 4.2

compared the attitudes of these core developers to those of their less active counterparts,

and investigated the roles that were enacted by core developers during their project. The

drive to understand core developers’ attitudes and their enacted roles is invaluable given

that these practitioners occupy the centre of their teams’ coordination action, they are

seen as the project’s leaders (whether or not they are the formal leaders (Hinds &

McGrath, 2006)), and they coordinate information flow and knowledge within their

teams (Leavitt, 1951). Accordingly, the nature of core developers’ attitudes, and the role

these members enact during their project development, are likely to be determinants of

their teams’ success.

139

For instance, these members are likely to express happiness and satisfaction in their

communication if they are fulfilled, while the opposite may be observed if they are

dissatisfied (Stone & Pennebaker, 2002). During core developers’ periods of

dissatisfaction, team communication may not be properly facilitated. The more reliant

team members may also find it unsettling to solicit help from core developers when they

exhibit negative attitudes. In fact, for globally distributed software developments,

negative and cynical team behaviours may have an overall generally negative impact on

team harmony and cohesion (Chang et al., 2013; Denning, 2012). The negative effects

of such behaviours may be particularly evident given that there are often reduced

opportunities for cooperation during global developments (Serce et al., 2009), and the

collaborative technologies that are commonly used in these settings generally offer only

limited amounts of social presence (Cummings, 2004; Herbsleb & Grinter, 1999). Thus,

reduced levels of team harmony and cohesion may affect global teams’ performance

(Espinosa et al., 2007). The opposite is likely to occur in more optimistic and social

environments where global teams share a single vision.

Similarly, the roles that core developers enact in their teams are likely to determine

their teams’ effectiveness at managing interpersonal communication, conflicts and

software quality (Hayes Huffman, 2003). Helpful and supportive behaviours (personal

and social roles) and task-concerned behaviours (task roles) are the desired roles for

maintaining task performance (Benne & Sheats, 1948), whereas, excess debate and

conflict-centred behaviours (individualistic roles) have a negative effect on task

performance (Andre et al., 2011; Chang et al., 2013). Core developers’ expression of

social and positive behaviours may be especially necessary during times of high

intensity and stressful team work – providing encouragement and support for the less

strong team members – whereas, these core developers’ expression of task-driven

attitudes may be most effective during actual task analysis and brainstorming stages, or

when the less active members display reduced focus on task performance. Should these

members exhibit moderate levels of individualistic roles, this may also be useful for

maintaining high team standards through critical and constructive debates. The results

in this section are aimed at examining these issues further, as the Jazz software project

change from phase to phase.

In alignment with the process for normalisation of the project phases and artefacts

described in Section 4.1, core developers’ artefacts are separated according to the four

project phases (start, early-mid, late-mid and end). Table 17 provides a summary of the

140

messages contributed by the core developers over the four phases of their project (refer

to Appendix VIII for additional descriptive statistics). As noted in Section 4.2.1, in

total, 2565 messages (shown in Table 17) were contributed by the core developers (of

the total 5563 messages noted in Table 2). These practitioners typically communicated

most in the early and middle phases of their project (see the measures for P1, P2, P5, P7

and P8 in Table 17). Previously, it was revealed that, overall, Jazz teams communicated

most in the first and last phases of their project (Licorish & MacDonell, 2012) (these

results are also presented in Section 4.1.1 above), suggesting that the less active

developers communicated more towards project completion. This finding was also

noted by Cataldo and Herbsleb (2008), who discovered that technical dependencies

resulted in increased levels of communication for some of the less active developers at

various times of the project.

In order to verify whether there were significant differences in core developers’

contribution of messages over the four project phases, first, checks for the normality of

the data distributions are conducted using Shapiro-Wilks tests. These tests confirm that

the data did not violate the normality assumption for any of the four project phases.

Therefore, a two-way ANOVA test for significant differences is conducted to examine

core developers’ contribution of messages over the course of their project. There is

homogeneity of variance between the four phases as assessed by Levene’s test for

equality of error variances. The ANOVA test uncover that although core developers

tended to communicate more in the first three project phases, these differences are not

statistically significant, F(3, 36) = 0.191, P > 0.05.

Table 17. Numbers of messages communicated by core developers

Team ID
Phase

∑
start (%) early-mid (%) late-mid (%) end (%)

P1 51 (19.8) 96 (37.2) 55 (21.3) 56 (21.7) 258

P2 138 (26.7) 184 (35.6) 106 (20.5) 89 (17.2) 517

P3 25 (52.1) 11 (22.9) 7 (14.6) 5 (10.4) 48

P4 83 (28.2) 73 (24.8) 72 (24.5) 66 (22.5) 294

P5 38 (20.5) 28 (15.1) 73 (39.5) 46 (24.9) 185

P6 77 (19.8) 96 (24.7) 93 (23.9) 123 (31.6) 389

P7 75 (23.7) 82 (26.0) 89 (28.2) 70 (22.2) 316

P8 22 (16.3) 28 (20.7) 52 (38.5) 33 (24.4) 135

P9 42 (36.2) 33 (28.5) 21 (18.1) 20 (17.2) 116

P10 106 (34.5) 72 (23.5) 63 (20.5) 66 (21.5) 307

∑ 657 (25.6) 703 (27.4) 631 (24.6) 574 (22.4) 2565

141

As noted earlier, whereas in Section 4.2 core developers’ attitudes and their enacted

roles were examined using a project snapshot (static analysis) approach, this section

presents longitudinal analyses of core developers’ attitudes, knowledge sharing

behaviours and task performance over their project. Messages (refer to Table 17) are

examined to study core developers’ attitudes and knowledge sharing behaviours, and

change log activities are investigated to study their task performance (refer to Section

3.4 for further details).

Section 4.3.1 reports the exploration of the way core developers express attitudes as

their project progress, through the use of linguistic analysis techniques (as used in

Section 4.2.1). This aspect of the analysis is aimed at answering RQ8 (Do core

developers’ attitudes change as their project progress?). Section 4.3.2 then provides the

directed CA (as used in Section 4.2.2) results pertaining to the way core developers

share knowledge over their project, thus answering RQ9 (How do core developers share

knowledge over the course their project?) and RQ10 (What initial team arrangements

lead to core developers becoming hubs in their teams?). RQ11 (How do core developers

contribute to task performance over their project?) is then answered by the task changes

results presented in Section 4.3.3. The results comparing core developers’ attitudes with

their task performance are presented in Section 4.3.4, towards answering RQ12 (Are

core developers’ contributions to task performance linked to their attitudes?). Finally,

directed CA and task performance results are outlined in Section 4.3.5, and are aimed at

answering RQ13 (Are core developers’ contributions to task performance linked to their

contribution of knowledge?).

4.3.1 Attitudes (RQ8)

In order to answer RQ8 core developers’ messages (the 2565 total messages) are

analysed according to the 13 linguistic dimensions in Table 5. Each of these individual

distributions are checked for normality (Brooks et al., 1994) over the four project phases

(start, early-mid, late-mid, and end) of the ten project areas using the Shapiro-Wilks

test. Homogeneity of variance over the different project phases is found using Levene’s

test for equality of error variances for all of the 13 linguistic dimensions. Results for the

Shapiro-Wilks tests for ten of the thirteen linguistic dimensions are found to be

normally distributed across the four project phases (Onwuegbuzie & Danlel, 2002).

Closer examination of the standardised skewness coefficient (i.e., the skewness value

divided by its standard error) and standardised kurtosis coefficient (i.e., the kurtosis

142

value divided by its standard error) for these ten linguistic dimensions has further

established that these distributions conformed to the normality assumption. Measures

for collective (we), leisure and positive emotion (posemo) language have failed the

Shapiro-Wilks normality test. For these three dimensions (collective, leisure and

positive emotion language – refer to Table 5), the standardised skewness and kurtosis

coefficients are also outside the boundaries of normally distributed data (i.e., -3 to +3)

(Onwuegbuzie & Danlel, 2002).

Therefore, two-way ANOVA tests are conducted to check for differences in mean

linguistic scores over the four project phases for the ten linguistic dimensions with

normal distributions, and the equivalent non-parametric Kruskal-Wallis tests are

conducted for the other three non-normally distributed linguistic dimensions just

mentioned (Onwuegbuzie & Danlel, 2002) (refer to Table 18 for the descriptive

statistics concerning core developers’ linguistic usage over their project).

Overall, although there were differences in the way core developers used the different

language dimensions over time, these differences are not statistically significant (p >

0.05). For instance, it is revealed that core developers used slightly lower levels of

individualistic language at the start of their project (mean 6.8, median 6.6, Std dev 4.5),

and use of this language form increased slightly as the project progressed to completion

(mean 7.9, median 7.2, Std dev 3.5). Core developers were less collective in the early

phases of their project (mean 2.9, median 3.0, Std dev 1.7), and these practitioners

tended to be most collective towards project completion (mean 4.1, median 2.9, Std dev

3.4). Core developers were also highly work focused (frequently using words like

“feedback”, “goal” and “delegate”) towards the end of their project (mean 13.5, median

11.4, Std dev 7.3). Additionally, core developers used a high amount of social language

(e.g., give, buddy, love) throughout their project, but became less social as their project

progressed (means: start 14.8, early-mid 12.9, late-mid 12.7, and end 12.7). Finally,

while negative language use (e.g., afraid, hate, dislike) was low overall for core

developers (mean 3.5, median 3.3, Std dev 2.8), these practitioners expressed negative

emotion mostly towards project completion (mean 4.8, median 3.9, Std dev 4.9) (refer

to Table 18 for further details).

143

Table 18. Descriptive statistics for core developers’ linguistic measures across the project phases

Abbrev.
Mean Median SD SK KS

start early-
mid

late-
mid end start early-

mid
late-
mid end start early-

mid
late-
mid end start early-

mid
late-
mid end start early-

mid
late-
mid end

I 6.8 7.6 7.5 7.9 6.6 9.1 8.9 7.2 4.5 4.7 4.4 3.5 0.3 -0.4 -0.3 -0.2 -0.2 -1.6 -1.6 -0.7

we 2.9 2.8 2.4 4.1 3.0 2.3 2.1 2.9 1.7 2.7 1.3 3.4 -0.0 1.6 0.2 2.0 -0.7 2.8 0.6 4.5

you 2.9 3.4 3.5 2.4 2.8 3.5 3.0 2.6 1.0 1.4 1.7 1.9 0.2 0.3 0.8 0.1 0.6 -1.4 0.7 -1.3

insight 5.7 6.7 6.4 5.7 5.1 5.3 6.2 5.4 3.4 4.2 2.2 1.4 1.5 1.0 0.6 0.2 2.9 0.2 0.3 -1.2

discrep 6.4 6.5 5.7 5.8 6.9 5.6 5.9 5.1 2.4 3.0 3.2 4.6 -0.3 0.9 -0.2 1.5 -0.1 0.1 -1.5 3.1

tentat 5.7 5.6 4.9 5.4 5.9 5.2 4.2 5.0 2.7 2.8 3.5 3.1 -0.2 0.6 0.9 1.4 -1.6 -1.4 -0.1 2.4

certain 2.3 1.9 2.6 2.4 2.8 1.9 2.5 2.4 1.3 0.8 1.5 1.7 -0.5 -0.3 0.3 0.5 -1.5 -1.5 -1.1 -1.1

work 11.8 11.0 14.0 13.5 10.5 10.2 14.4 11.4 3.1 3.9 2.1 7.3 0.5 0.6 0.3 1.6 -0.8 -0.2 0.8 3.1

achieve 10.5 10.2 10.5 10.7 10.6 9.7 10.8 9.4 3.7 4.5 3.3 5.3 -0.3 0.6 -0.2 0.3 -0.9 -0.5 -1.4 -1.3

leisure 3.1 2.6 3.3 2.7 3.1 2.1 2.6 1.7 1.2 2.1 1.7 2.8 0.0 1.3 1.1 2.0 -1.3 1.0 0.3 4.6

social 14.8 12.9 12.7 12.7 14.9 12.3 13.3 13.2 3.1 3.5 4.3 4.2 -0.4 0.3 -0.5 -0.8 -0.3 -0.2 -0.9 0.3

posemo 15.7 17.9 18.4 17.0 9.9 11.8 13.6 12.3 15.2 14.8 12.8 15.2 1.7 1.2 1.1 1.4 2.1 -0.0 -0.3 1.1

negemo 3.1 2.7 3.6 4.8 2.8 2.9 3.4 3.9 1.8 1.5 1.6 4.9 0.8 -0.1 0.9 2.0 -0.2 -0.9 1.5 4.8

Notes: SD = Standard Deviation, SK = Skewness, KS = Kurtosis

144

Generally, the linguistic analysis findings show that core developers’ attitudes did not

change excessively over the course of their project. Additionally, taken as a whole, the

results show that when there were some levels of changes in core developers’ attitudes,

these changes were mixed – some attitude changes are generally desirable, while others

are unfavourable for teamwork (Denning, 2012). For instance, evidence for the way

core developers became more collective and work-focused as their project progressed is

a positive sign for team performance (Licorish & MacDonell, 2012). On the other hand,

the higher incidence of individualistic and negative attitudes towards project completion

is a less attractive indicator (Benne & Sheats, 1948; Chang et al., 2013). These results

are triangulated through contextual analysis techniques in the next section (Section

4.3.2) to unearth further details around these changes.

4.3.2 Knowledge Sharing (RQ9) and Becoming Team Hubs (RQ10)

In order to answer RQ9 and RQ10 contextual analyses were conducted using directed

CA to study core developers’ knowledge sharing behaviours. These results increment

those that were revealed through linguistic analysis techniques in the preceding section

(Section 4.3.1). As with Section 4.2.2, first, core developers’ messages were coded.

Core developers’ knowledge sharing behaviours were then examined from these codes,

though appropriate statistical techniques.

Of the 1581 messages that were coded in Section 4.2.2, 709 of these messages were

contributed by the core developers of the three project areas (refer to Table 17). As

noted in Section 4.2.2, these three project areas (P1, P7 and P8) were deliberately

selected as they represented different task portfolios, and so, it was anticipated that such

insights would reveal differences among teams solving different types of tasks (Licorish

& MacDonell, 2012). Thus, the contextual analysis that is conducted here could

potentially triangulate prior results. From the 709 messages, 2191 utterances (P1 = 648

codes, P7 = 1245 codes, and P8 = 298 codes) were recorded for the core developers.

In Figure 27 and Figure 28 percentages are used to represent the differences in core

developers’ knowledge sharing contributions to their teams’ knowledge pools during

the four different phases of their project (refer to Table 19 for counts of core developers

utterances). Figure 27 (a) provides aggregated summary percentages of the core

developers’ knowledge sharing interactions during their project. Here it is observed that

Information Sharing, Discussion, Scaffolding, Comments and Instructions dominated

core developers’ discourses. This pattern of results is also maintained for core

145

developers’ interactions on the individual project areas (P1, P7 and P8) in Appendix IX

(a). Figure 27 (b) shows that core developers contributed 60% of their knowledge

during the middle stages of their project. In reviewing the details of core developers’

interactions for the individual project areas (refer to Appendix IX (b)), this higher

contribution of knowledge sharing in the middle project phases is also maintained. A

Chi-square test (refer to Section 4.2.2 for discussions around appropriate use of Pearson

Chi-square tests) confirm that there were significant differences in the levels of

contribution of core developers over the different project phases, X2 (36) = 63.237, p =

0.003. The effect size for this finding, Cramer’s V, is small, 0.168 (Cohen, 1988).

To probe these overall results further, the nature of core developers’ knowledge sharing

interactions during their project is considered in detail by examining the graphs in

Figure 28 (a-d). The directed CA results reveal that although core developers did not

ask many questions overall (refer to Figure 27 (a)), this type of utterance increased

towards project completion: 34.6% and 30.6% of Type I and II Questions were asked in

the last project phase (refer to Figure 28 (a)). Figure 28 (a) also shows that the majority

of core developers’ Answers to their teams’ questions were provided in the middle

phases (34.0% and 33.2% in early-mid and late-mid phases, respectively). Figure 28 (b)

further shows that core developers shared most Information (33.8%), expressed more

Ideas (30.9%) and offered the most Suggestions (31.4%) to their teams during the later

middle phase of their project. The overall trend of the graphs shown in Figure 28 (b)

indicates that core developers were most engaged in the middle (early-mid and late-mid)

phases of their project. In looking at the Comments in Figure 28 (c) it is noted that there

was a high contribution of this form of expression by core developers in the second

project phase (more than 35%), but use of this language form remained relatively stable

in the last two project phases (23.1% recorded in both phases). Figure 28 (c) shows that

core developers were most Reflective towards project completion (32.2% of this

language form was used in the end phase), and although core developers did not

contribute a large amount of Off task communication or Gratitude (see Figure 27 (a)),

these forms of utterances were also used most in the middle phases by these

practitioners (see Figure 28 (d)). The frequencies for Apology and Not Coded utterances

were not plotted in Figure 28 (as were shown in Figure 27 (a)), since only four and six

codes (of the 2191 codes) were recorded to these categories, respectively.

146

Figure 27. Aggregated interactions (utterances) for core developers

147

Figure 28. Detailed interactions (utterances) of core developers over project phases

148

Table 19. Counts of core developers’ interactions (utterances)

Category
Phase

∑
start early-mid late-mid end

Type I Quest. 9 8 8 12 37

Type II Quest. 20 25 26 27 98

Answer 15 31 29 19 94

Information sharing 214 303 328 206 1051

Discussion 59 63 56 22 200

Comment 39 69 36 29 173

Reflection 17 20 14 9 60

Scaffolding 52 86 80 45 263

Instruction/ Command 30 52 26 17 125

Gratitude/Praise 2 13 8 4 27

Off task 13 19 13 8 53

Apology 0 1 3 2 6

Not Coded 3 0 0 1 4

∑ 473 692 630 396 2191

The directed CA results above show that core developers established pronounced

knowledge sharing roles in their teams during the early project phase, however, these

individuals contributed the most of their knowledge in the early-mid and late-mid stages

of their project. In contrast, core developers were least visible in their teams’ knowledge

networks towards project completion (in the end phase). These differences were shown

to be statistically significant (although the effect size was modest); slightly divergent to

the results revealed through linguistic analysis techniques (refer to Section 4.3.1). In

general, these results confirm the importance of temporal analysis for studying the

changes in teams’ dynamics as software projects progress (Hinds & McGrath, 2006).

However, while the results in this section do support the view that core developers

evolved and behaved differently over their project, and so, provides answers for how

core developers contribute to their teams’ project knowledge dynamics from project

phase to project phase, it is still unclear why these patterns exist. Of further relevance

are how core developers are involved with task performance over their project

(considered in the next section – Section 4.3.3), and how these involvements relate to

their attitudes and knowledge sharing behaviours (considered in Section 4.3.4 and

Section 4.3.5 respectively). These insights provide additional pointers towards

unfolding the reasons for (why) the particular patterns that are observed in this section.

149

4.3.3 Task Performance (RQ11)

In the preceding sections (Section 4.1 and Section 4.2) it was revealed that core

developers were very active, and these members made the most changes to their teams’

tasks. In Section 4.3.1 it was observed that although core developers’ expression of

attitudes over the course of their project did not differ in a statistically significant

manner, some specific attitudes did appear to be more pronounced during certain project

phases. These results were extended in Section 4.3.2, where it was discovered that core

developers expressed significantly different knowledge sharing behaviours over the

course of their project. In this section a detailed analysis is conducted to unearth how

core developers contributed to task performance as their project progressed. This

analysis is aimed at answering RQ11.

Table 20 provides a summary of the task change data for core developers, and shows

that these members tended to make the most changes to their teams’ tasks during the

middle stages of their project. These individuals made as many as 33% of their task

(WI) changes in the early-mid phase for P2, and 47% of their task changes in the late-

mid phase for P8 (see Table 20 for overall means which also maintain this pattern). The

higher levels of task changes in these phases coincide somewhat with the higher

numbers of messages communicated and knowledge sharing behaviours expressed by

these individuals, as noted in Table 17 and Table 19. Note also that a small, positive

correlation was previously observed between the number of messages communicated

and the number of task changes made by core developers (Licorish & MacDonell,

2013c).

In order to verify whether there are significant differences in core developers’

contribution of task (WI) changes over the four project phases, first, checks for the

normality of the data are conducted using Shapiro-Wilks tests. These tests confirm that

core developers’ task change measures did not violate the normality assumption for any

of the four project phases. Therefore, a two-way ANOVA test is conducted to examine

core developers’ contribution of task changes over the course of their project for

significant differences. There is homogeneity of variance between core developers’ task

changes over the four project phases as assessed by Levene’s test for equality of error

variances. The ANOVA test reveal a statistically significant difference F(3, 36) = 4.833,

P < 0.01, n2 = 0.287. The effect size for this statistically significant difference is large

(n2 > 0.138) (Cohen, 1988). Scheffe’s post hoc procedures reveal that differences were

150

present in frequency of task changes between the late-mid and start phases (p < 0.05)

and the late-mid and end phases (p < 0.01). These results support the earlier analysis,

and show that in general, core developers were most active in the middle phases of their

project (refer to Table 20 for details), and particularly during the late-mid project phase.

Additionally, overall, while core developers made fewer task (WI) changes during the

early project phases, these members were least active towards project completion.

Table 20. Percentage of overall task (WI) changes made by core developers over the
duration of their Project

Team ID
Percentage of task changes

start early-mid late-mid end

P1 19.4 26.2 25.2 29.1

P2 19.0 33.3 28.2 19.5

P3 35.3 14.7 32.4 17.6

P4 20.8 26.9 25.6 26.6

P5 28.9 19.1 37.5 14.5

P6 27.2 26.5 25.7 20.5

P7 22.1 32.6 23.2 22.1

P8 11.6 20.5 47.0 20.9

P9 20.8 26.0 32.5 20.8

P10 19.5 27.4 30.3 22.8

mean 22.5 25.3 30.8 21.4

Similar to the findings noted for core developers’ contribution of knowledge sharing

behaviours over their project, the results presented in this section reveal that these

members did not contribute to task performance evenly over their project. Findings

above show that core developers contributed the most changes to their teams’ software

tasks in the early-mid and late-mid project phases. Their contribution to task

performance during the latter of the two phases was particularly pronounced, and the

effect size associated with the difference observed in task performance is of major

practical importance (Kampenes et al., 2007). On face value, these results support those

revealed for the higher level of knowledge sharing behaviours that were contributed by

core developers in the middle phases of their project (refer to Section 4.3.2). These

results also coincide with use of delegation, insightful, certainty and positive emotion

language by core developers as revealed in Section 4.3.1.

As noted earlier, given core developers’ active role in their teams’ behavioural climate,

knowledge sharing and task performance, and their likely impact on their teams’ overall

performance, unearthing the way these members’ contributions of attitudes and

knowledge sharing behaviours are linked to their involvement in their teams’ task

151

performance could provide a wealth of contingencies and recommendations related to

team composition, software human resource planning and overall project governance.

This issue is addressed next; first, core developers’ actual contributions to task

performance are correlated with their attitudes (Section 4.3.4). Subsequently, core

developers’ contribution of knowledge sharing behaviours is correlated with their task

performance in Section 4.3.5.

4.3.4 Attitudes and Task Performance (RQ12)

This section presents correlation results between core developers’ attitudes and their

task performance. As observed above in Section 4.3.1, core developers expressed some

key attitudes during specific periods of their project. Additionally, these members’ task

performance varied over their project (refer to Section 4.3.4). It is anticipated that core

developers’ involvement in software development activities may be associated with

their expression of attitudes. For instance, it is likely that when core developers are most

insightful and positive, these members may be more productive, and hence, useful to

their teams. On the other hand, the opposite may be demonstrated when core developers

are unhappy (Denning, 2012). An understanding of when these undesirable periods are

most likely to exist would inform strategies aimed at mitigating the likely negative

effects of this phenomenon on overall team performance. Accordingly, the results in

this section are aimed at satisfying this objective in answering RQ12.

Before correlation procedures are conducted, scatter plots are examined for each of the

thirteen linguistic dimensions and the task change data. In some cases, bivariate linear

relationships between the two variables are observed, while in others this relationship is

not apparent. Regarding the distributions, it is noted in Section 4.3.1 that ten of the 13

linguistic dimensions were within the range of normality, while three dimensions

(collective (we), leisure and positive emotion (posemo) – refer to Table 5 for details)

violated the normality assumption. Section 4.3.3 also shows that core developers’

distribution of task changes were within the range of normality. These findings overall

justify the use of correlation analyses, and more specifically, parametric correlation

procedures (Pearson’s product-moment correlation coefficient) for the normally

distributed data and non-parametric correlation procedures (Spearman’s rank order

correlation coefficient – Spearman’s rho) for the data that violated the normality

assumption. These tests are conducted, and the results are now presented.

152

In Section 4.3.1 it is noted that core developers used more collective (e.g., we, our, us)

language towards project completion, but used a similarly higher proportion of

individualistic (e.g., I, me, my) language during the last project phase. While the

correlation results did not reveal any relationship between individualistic language and

the number of task changes, evidence of a small negative correlation between core

developers’ use of collective language and the number of changes they made is

observed (r = -0.211, n = 40, P = 0.191); however, this relationship is not statistically

significant (p > 0.05).

Similarly, although core developers were most active during the middle stages of their

project, they also made the greatest use of reliance and delegation (e.g., you, your,

you’re) language during this time. This pattern was also seen for insightful (e.g., think,

believe, consider) and discrepancy (e.g., should, would, could) language in Section

4.3.1. While there is no evidence of a relationship between the use of reliance language

and the number of task changes, correlation results uncover a small positive relationship

between insightful language use by core developers and the number of changes they

made (r = 0.129, n = 40, P = 0.428). In contrast, when core developers communicated

with higher levels of discrepancy language they made fewer task changes (r = -0.128, n

= 40, P = 0.431). However, as with the result for collective language, these result are

not statistically significant.

Of all the other correlation results, only work related (e.g., feedback, goal, delegate)

language use is found to be correlated with core developers’ task performance. In fact,

this dimension reveal the only statistically significant (p < 0.05) positive relationship of

all the 13 linguistic dimensions. It is observed that when core developers expressed

more work related language they made more changes (r = 0.360, n = 40, P = 0.023), and

this finding is reflective of a medium (Cohen, 1988) statistically significant positive

relationship between the use of work related language and task changes.

Finally, the highest use of negative emotion (e.g., afraid, hate, dislike) language was

expressed by core developers towards project completion, and Table 20 shows that

these members were least active during this period. However, no association is observed

between the use of this type of language dimension and the number of task changes

made by core developers.

153

Overall, while many of the relationships between core developers’ attitudes and their

task performance were not statistically significant, this could be a function of simply

having too few data points – thus, these results are reported here as they warrant further

investigation. A similar approach is adopted in the following section (Section 4.3.5)

where core developers’ knowledge sharing behaviours are correlated with their

involvement in task performance.

4.3.5 Knowledge Sharing and Task Performance (RQ13)

In order to answer the final question (RQ13) the connection between the directed CA

(Section 4.3.2) and task performance analysis (Section 4.3.3) is examined. In line with

the procedures used in the previous section (Section 4.3.4), Pearson product-moment

correlation tests are conducted to determine the relationships between the knowledge

sharing behaviours of core developers and the task changes they made. This procedure

is fitting as none of the knowledge dimensions or the task changes data exhibited

violation of normality, linearity or homoscedasticity.

For the Pearson’s product-moment correlation results, a medium, negative correlation is

seen between the number of Type I Questions asked by core developers and the number

of task changes they made, although this is not statistically significant (r = -0.390, n =

12, P = 0.210). In contrast, when core developers initiated more Type II Questions in

their dialogues they made more task changes (r = 0.215, n = 12, P = 0.501); this result is

also not statistically significant (p > 0.05). The correlation test to determine the

relationship between the number of Answers provided by core developers and their

involvement in task changes uncover a strong, statistically significant (p < 0.05)

positive correlation (r = 0.691, n = 12, P = 0.013). Similarly, correlation results for the

relationships between the contributions of Information, Discussion and Scaffolding by

core developers and their involvement in task changes uncover strong, positive

correlations for Information provision and Scaffolding, (r = 0.791, n = 12, P = 0.002) (r

= 0.532, n = 12, P = 0.075), respectively; however result for Discussion was not

statistically significant (p > 0.05).

A medium, positive (but non-significant) relationship existed between core developers’

contributions to Discussions and their involvement in task changes (r = 0.466, n = 12, P

= 0.127). Additionally, a strong, positive correlation is observed between the volume of

Instructions given by core developers and the number of task changes they made, but

this finding is also not significant (r = 0.539, n = 12, P = 0.071). The Pearson’s product-

154

moment correlation test to determine the relationship between the number of Comments

contributed by core developers and the task changes they made shows some evidence of

a medium, positive correlation (r = 0.308, n = 12, P = 0.331). However, these results are

also not statistically significant (p > 0.05).

Attitude and knowledge sharing behaviour results in Section 4.3.1 and Section 4.3.2 are

triangulated through Pearson’s product-moment correlation tests to determine the

relationship between core developers’ use of the cognitive linguistic dimensions (see

“insight”, “discrep”, “tentat” and “certain” in Table 5) and their levels of contribution to

Information, Discussion, Scaffolding and Comments (refer to Table 6). Correlation

results show a strong, positive correlation between the incidence of insightful language

use and core developers’ contribution of Information. This result is statistically

significant (p < 0.05), (r = 0.708, n = 12, P = 0.010). A similar but less conclusive

finding is noted for insightful language and Scaffolding (r = 0.518, n = 12, P = 0.085).

Results for insightful language use and Discussion and Comments are less strong, but

these instances also return positive correlations (r = 0.470, n = 12, P = 0.123) (r =

0.345, n = 12, P = 0.272). There is no evidence of any relationships between the other

cognitive dimensions (“discrep”, “tentat” and “certain”) and core developers’

contributions of Information, Discussion, Scaffolding and Comments.

These results confirm that core developers’ contribution of knowledge was tied to their

involvement in their teams’ task performance. Overall, while some of the correlation

results presented in this section were not statistically significant (p > 0.05), the findings

show that core developers provided their teams more answers when they made more

task changes. Similar patterns of results were noted for discussions when core

developers were actively involved in their teams’ tasks. These results for core

developers’ involvement in knowledge sharing were triangulated with their use of

certain terms, and particularly those that were insightful in nature. This evidence may

indeed inform team strategies and software project governance. These issues are

considered in Chapter 5. Prior to this, a brief summary of the results that were presented

in this chapter (Section 4.1, Section 4.2 and Section 4.3) is provided in the next section

(Section 4.4).

4.4 Chapter Summary

This chapter has reported the results that were aimed at answering the 13 research

questions (RQ1 – RQ13) that are outlined in Chapter 2. Results presented in Section

155

4.1.1 were aimed at answering RQ1, these revealed that Jazz teams typically

communicated more in the start and end phases of their project. These findings are

somewhat divergent to those discovered previously and echoed that the strategy selected

for development likely impacts team communication patterns. Aimed at answering

RQ2, Section 4.1.2 revealed that for all Jazz teams, few individuals dominated project

interaction and these individuals established their position very early in their project.

These findings provide support for the sampling strategy that was used for selecting

Jazz teams’ artefacts, and endorse previous evidence; however, these results failed to

establish why such a pattern existed. With a view to understanding these central

individuals further, results in Section 4.1.3 were aimed at answering RQ3, RQ4 and

RQ5. These results revealed that core communicators were indeed core developers and

these members communicated on seven times as many software tasks as their wider

teammates. However, in terms of connectivity, all Jazz practitioners were observed to

be highly reachable. That said, results presented in Section 4.1.3 show that core

developers occupied various roles, with those assigned to the formal programmer role

having the highest number of individuals in the core developers group. Additionally, it

was revealed that core developers were integral to their teams’ task portfolio. While

results in Section 4.1 were able to identify the aforementioned patterns, the real reasons

for core developers’ dominance and how these members establish such a critical

position in their teams were not revealed. This understanding was forwarded as

particularly necessary given that core developers are critical to their teams’

performance.

Accordingly, results in Section 4.2 were aimed at providing a static view of core

developers’ attitudes and their enacted roles, and in the process answer RQ6 and RQ7.

Results in Section 4.2.1 show that apart from core developers’ active involvement in

task performance these members were integral for maintaining their teams’ work and

achievement focus. Contextual analysis findings in Section 4.2.2 also uncovered that

core developers contributed most of their teams’ knowledge, and these members

occupied both task-based and social roles.

While these results established the true roles of core developers in their teams, this

evidence provided a single snapshot view of these members’ performance. It is held that

temporal analysis would unearth specifically during which project phase(s) core

developers are most productive and the specific events that influence core developers’

actions throughout their project. Results from these inquiries were provided in Section

156

4.3 and answered RQ8 – RQ13. In the process of answering RQ8, in Section 4.3.1 it

was discovered that core developers expressed relatively consistent attitudes over their

project, but these members were most individualistic and negative towards project

completion. These results coincided with those aimed at answering RQ9 and RQ10 in

Section 4.3.2 for lower levels of knowledge sharing by core developers in the end phase

of their project. Section 4.3.2 also discovered that core developers were most involved

in their teams’ knowledge sharing during the middle phases of their project. Results

presented in Section 4.3.3 endorse this observation, where it was also shown that core

developers made most task changes during the middle stages of their project. These

results answered RQ11 and supported the assessment that core developers were most

useful to their teams during the middle of their project. However, formal correlation

testing was undertaken and reported in Section 4.3.4 and Section 4.3.5 to confirm this

assessment and in the process answer RQ12 and RQ13. Results in these two sections

(Section 4.3.4 and Section4.3.5) confirmed that core developers’ work-related

expressions were driven by their active involvement in task performance, and their

provision of answers and ideas were also directly related to their task performance. The

approaches used to study core developers’ attitudes and knowledge sharing were also

triangulated towards the end of Section 4.3.5. The following chapter (Chapter 5) further

discusses these results in relation to previous theories.

157

Chapter 5. Discussion

This chapter discusses the results reported in Chapter 4. First, Section 5.1 considers the

preliminary findings in Section 4.1. This section discusses the collaboration patterns of

successful globally distributed agile teams, focusing on the changes in communication

patterns, the equity in practitioners’ contribution, the importance of active

communicators and their involvement in task performance and the way formal role

assignment impacts practitioners’ involvement in project interaction and task

performance. The second section (Section 5.2) then discusses the results outlined in

Section 4.2. These discussions centre largely on core developers’ true role in their

project, and particularly in relation to the behaviours and attitudes these members

express and the roles they enact in their teams. The findings for these members’

attitudes and enacted roles are compared to those of their lesser active counterparts.

Third, Section 5.3 provides discussions of the findings in Section 4.3. These discussions

consider core developers’ attitudes, knowledge sharing and task performance from a

longitudinal perspective, including how these members become hubs in their teams and

the way their attitudes and knowledge sharing behaviours are linked to their task

performance. Finally, the fourth section (Section 5.4) summarises the discussions that

are provided throughout this chapter and provides the study’s consolidated model.

5.1 Collaboration patterns (Phase 1)

Results in Section 4.1.1 to Section 4.1.3 are largely confirmatory of prior research

outcomes. However, aspects of the findings discussed in these sections also extend

those reported previously in the OSS body of work. Additionally, some new patterns

were noted for IBM Rational Jazz teams that were not observed previously. This section

examines these findings and discusses the preliminary quantitative results that were

reported in Section 4.1. These discussions are aimed at understanding collaboration

patterns of successful globally distributed agile software teams and forming the basis

for other subsequent discussions, by answering the five preliminary research questions,

RQ1 – RQ5. First, Section 5.1.1 discusses the ways in which teams’ communicate over

their project and addresses RQ1 (Do communication patterns change as the software

project progresses?). Discussions are then provided in Section 5.1.2 that relate to the

SNA results reported in Section 4.1.2. These discussions are presented largely from a

project perspective and answer RQ2 (Is there equity in practitioners’ contributions to

their project?). RQ3 (Are active communicators more important to their teams’

158

collaboration?) is then discussed in Section 5.1.3. These preliminary discussions form

the basis for further debates around core developers. RQ4 (How are active

communicators involved in task performance?) is discussed in Section 5.1.4, where the

results that were presented in Section 4.1.3 for active communicators’ involvement in

task changes are evaluated. RQ5 (Are practitioners’ formal role assignments related to

their involvement in project interactions and task performance?) is then discussed in

Section 5.1.5. Finally, this section closes with a summary of the discussions presented

throughout this section; this is presented in Section 5.1.6.

5.1.1 Communication patterns (RQ1)

Given the unique characteristics of globally distributed software development, and its

growing use in industry, it is pertinent to study the way global teams communicate over

their projects (Datta et al., 2011). Agile methods stress the need for incremental and

iterative development. Such an approach is likely to have an effect on requirements

solicitation and management. In particular, given that communication is the conduit

through which software requirements are requested and clarified during development

(and for collaboration during actual coding and testing activities), an iterative approach

with a focus on extensive interaction in global software development (as is used in most

agile development contexts) could provide added strain on team communication

(Prikladnicki et al., 2003; Tiwana, 2004). In establishing how communication occurs in

such a setting, insights could be gained into how globally distributed agile teams

maintain the balance of being nimble while also delivering representative features and

sustaining adequate plans for their global teams’ awareness. In fact, beyond answers for

how teams remain productive while being agile in a global development context,

changes in the way project decisions are made (whether related to design, coding, or

testing) could be revealed through the study of team communication (Abreu & Premraj,

2009; Bachmann & Bernstein, 2009). This approach to studying the project ecosystem

as the project progresses has being taken in other development contexts (Capiluppi et

al., 2007; Datta et al., 2011; Sharma & Kaulgud, 2011). In this study, this preliminary

exploration is aimed at first understanding how the teams that were selected contributed

messages over their project. In answering the research question (RQ1) in this section,

this aspect of the work aims to provide preliminary understandings of distributed agile

teams’ dynamics, to replicate works that focused on other teams using different

development approaches in other contexts (Robles et al., 2009; Rowley & Lange, 2007;

Ruhnow, 2007) and to set the tone for the enquiries that follow.

159

The results reported in Section 4.1.1 are slightly divergent to those that were noted

previously for the CSS teams studied by Datta et al. (2011). When studying Scrum

teams Datta et al. (2011) found increased levels of collaboration as the project

progressed, with communication reducing towards project completion. Such findings

are understandable given the need to solicit requirements, develop these requirements,

test these requirements and release them iteratively in a Scrum context (Pressman,

2009). Thus, over time, communications in such a development environment are likely

to stabilise as this process is repeated, perhaps with reduced functionality as the project

progresses these members need to communicate less, an assessment supported by Datta

et al. (2011). Cataldo et al. (2006) study of a large distributed CSS project also found

team communication increased as the project progressed. However, in contrast to Datta

et al. (2011), these authors found team communication to increase in the final phase of

the project, actually being at the highest towards project completion.

The results in Section 4.1.1 show that IBM Rational Jazz practitioners communicated

the most in the first and last phases of their project. This finding would not be

particularly surprising in a plan-oriented development setting, given the need to

establish overall project goals and work assignments at the beginning of a project, to

stabilise feature developments in the middle project phases, and then to intensively

assess the overall project at its closure to ensure that the features developed match those

requested (Abreu & Premraj, 2009). However, given that Jazz teams were using an

agile-based approach (the Eclipse Way), these findings are somewhat revealing. The

Eclipse Way methodology outlines iteration cycles that are six weeks in duration, where

iterations comprise planning, development and stabilizing phases, after which builds are

executed, conforming to key agile principles (“iteravive, reflect, adapt, incremental,

feedback”).

As noted in Section 4.1.1, however, Jazz teams engaged the most (perhaps in planning

activities) around project initiation and in the early project phase. This is perhaps a good

sign for distributed global software developments. The results revealed in Section 4.1.1

suggest that these teams expended more effort to adequately capture the overall project

focus, before then stabilising iterations in the middle phases. Effort then increased at

project completion as these teams validated the overall outcomes against the initial

focus in the early project phase.

160

One caution about the results in Section 4.1.1 relates to the way artefacts were

partitioned in order to be normalised. Datta et al. (2011) studied 10 different iterations

in deriving their findings, while Cataldo et al. (2006) studied four releases. On the other

hand, the project artefacts belonging to the ten teams that were examined in this work

were associated with various numbers of iterations (e.g., P3 tasks were completed in

two iterations, whereas P5 tasks were executed in 17 iterations) (refer to Chapter 4). To

address this issue, these teams’ artefacts were normalised by dividing each project’s

tasks and artefacts into four quarters (start, early-mid, late-mid, and end). Thus, the

pattern of results could have been affected by this process. That said, these results are

triangulated with other forms of quantitative and contextual analyses in subsequent

sections. Note also that Cataldo et al. (2006) observed the similar elevated level of

communication towards project completion.

Datta et al. (2011) warned that teams with communication patterns like those noted for

the Jazz teams studied in this work may not be a good sign for project managers, as this

may be an indicator of unbalanced project overhead. However, this form of

communication pattern may be appropriate in a globally distributed agile software

development context (Prikladnicki et al., 2003; Tiwana, 2004), where there is likely to

be a need for balancing agility with some level of upfront planning (Sharma & Kaulgud,

2011). In fact, Yu et al. (2011) observed a similar pattern of communication in the OSS

GNOME GTK+ distributed project for IRC meeting messages, where it was noted that

contributors communicated significantly more in the early years (2004 and 2005) of the

project, with communication via this means reducing in the middle years (2006 and

2007), before increasing in the latter two project years (2008 and 2009). The opposite

pattern was noted for team communication when studying email messages, however

(Yu et al., 2011). Yu et al. (2011)’s findings were also replicated by Shihab et al. (2009)

work, who also found that contributors communicated much more at project start and

completion.

In comparing the findings revealed from this preliminary exploration of Jazz teams’

communications to those related to other teams, it is contended that different

communication strategies are – and should be – adopted by different teams given the

specific approach used for developing software. These discussions were derived from an

aggregation of teams’ messages, as against the internal structure of Jazz teams’

communications. Such an internal assessment would provide further understanding for

the ways in which these teams communicate. In incrementing the preliminary analysis,

161

these discussions are provided in the next subsection (Section 5.1.2), where the

evidence discovered for the internal interaction patterns of Jazz teams is discussed.

5.1.2 Equity in contribution (RQ2)

Results in Section 4.1.2 show that, regardless of the task type, team size or time taken to

complete software tasks, just a few team members dominated project interaction, and

these dominant individuals emerged very early in the project lifecycle. Some of these

members also worked across project teams, and occupied similarly central roles. In

terms of the less active members, their engagements were also consistent, and these

members communicated densely on some specific tasks. These tasks were possibly

directly under these members’ control.

The findings in Section 4.1.2 are slightly divergent to those reported in the work of

Nguyen, Wolf, et al. (2008) which found a larger cohort of Jazz developers (around half

of the practitioners) to be involved in the core of their teams communication network.

Nguyen, Wolf, et al. (2008) studied an earlier version of Jazz, and did not employ a

fine-grained approach to their analysis as was done in this work. These differences may

account for the divergence in patterns observed. In Nguyen, Wolf, et al. (2008) work,

SNA was used to explore all the communication artefacts in the Jazz repository, and the

k-cores were examined closely to study dense network segments. Nguyen, Wolf, et al.

(2008) examined these segments to see if members in these sections of the network had

higher network ties (communicated on more tasks). In contrast, this work mined Jazz

from a team perspective, and clustered artefacts according to the natural partitioning of

the Jazz repository (in terms of project areas; see Section 3.4.2 for details).

Additionally, the k-core measures of the individual teams were not actually examined in

this study as the goal of this work was to go beyond the assessment of message

frequency to employ multiple techniques to the study of teams’ communication.

In Section 4.1.2 it was observed that once the central communicators’ positions were

established, their roles in their teams’ communication networks remained consistent

over the course of the software project. These observations seems to denote that

oftentimes the holders of knowledge in a software project, once recognised, are

regarded as such for the duration of their involvement with the team; knowledge sharing

here being considered as the quantity of information flow (Quigley et al., 2007). Such a

communication norm, once deemed necessary, is thought to be sustained by highly

motivated team members (Chang et al., 2013). Perhaps the less central team members

162

acknowledged these members as knowledge hubs once their capabilities were

established very early in the project. This was also observed by Shihab et al. (2010). In

fact, this pattern has been previously recognised by others studying developer messages

and change logs. For instance, Shihab et al. (2009) found that 20% of the core

developers communicated 80% of the team’s messages in the Evolution and GTK+

mailing lists. Others have also found this structure to exist in other OSS settings

(Crowston et al., 2006; Gacek & Arief, 2004; Mockus et al., 2002).

This centralised pattern is somewhat understandable for OSS environments, given that

individuals contribute voluntarily to such projects for reasons often associated with

personal interest and ideological commitment (Ljungberg, 2000; Markus, Manville, &

Agres, 2000; Oreg & Nov, 2008), or even in order to gain skills and enhance their

reputation (Markus et al., 2000; Oreg & Nov, 2008). Thus, while many contributors

may join OSS projects, during stressful and challenging stages of these projects

members may not sustain their initial interest, and are likely to leave the project or at

least not actively contribute. This phenomenon has been shown to exist where, apart

from the core group of developers, most other members were seen to generally

contribute in a sporadic manner (Crowston et al., 2004). On the other hand, the core

group of members in OSS settings whose motivation and rewards may be different to

the less active members (Gacek & Arief, 2004) (e.g., sponsorships or the development

of a commercial variant of the OSS), are likely to remain with these projects.

Previous research has also expressed caution regarding inferences and generalizations

drawn from analyses of the extracted OSS repositories that are regularly used to study

software practice issues, due to questions over reliability and validity (Aune et al.,

2008). For instance, as noted previously, research evidence has reported poor data

quality in some repositories OSS projects (Aune et al., 2008; Bird et al., 2006a). In their

study of the Apache mailing list Bird et al. (2006a) found it difficult to uniquely identify

developers’ records due to the volume of email addresses and aliases individuals used.

Issues may also be encountered when studying OSS repositories because anyone is able

to post messages to these mailing lists, whether or not those individuals are contributing

to the project (Bettenburg et al., 2007). In fact, evidence has shown that the majority of

OSS mailing list members are not involved with the actual development (Bettenburg et

al., 2007), but are instead regular users of the software who communicate their interest

to the core developers and report bugs (Crowston et al., 2006), and so many contributors

to the OSS mailing lists could not be accounted for in code changes (Bettenburg et al.,

163

2007). In IBM Rational Jazz, however, those communicating on features are actually

part of the teams undertaking these software tasks.

Given these latter arguments, it would be understandable to observe centralised

communication and administration for projects developed in an OSS environment. Core

developers perhaps work in isolation to deliver features and fixes in response to user

feedback in this setting. However, the opposite is thought to be necessary in a

commercial organisation such as for IBM Rational Jazz (Robles et al., 2009), where

teams operate under a solid project vision, utilising tested software processes, and their

motivation is much more than personal satisfaction. In fact, developers’ motivations in

commercial projects are quite different to those in OSS development settings (there is a

large literature base on software engineers’ motivations (Sach et al., 2011; Sharp,

Baddoo, Beecham, Hall, & Robinson, 2009)), and the rewards offered in this setting are

immediate (e.g., financial remuneration). In these settings software practitioners may

feel a sense of moral obligation in direct recognition of remunerations and rewards

(Kankanhalli, Tan, & Wei, 2005). Additionally, commercial environments often revise

work strategies to fit individual practitioners’ coordination needs. In particular,

communication strategies are likely to be aligned with the teams task portfolio in

commercial organisations, such that when teams are working on large numbers of

interdependent features where communication among the entire team requires careful

management to ensure efficiency and team awareness, specific mechanisms are likely to

be implemented in support of this phenomenon (e.g., communication plans and

expertise awareness tools) (Grinter, Herbsleb, & Perry, 1999; Mockus et al., 2002). The

very high level of network connectivity that was observed for all ten Jazz teams

considered here endorse this viewpoint (refer to Section 4.1.2). Successful commercial

software organizations are also likely to implement human resource management

strategies to ensure intense screening of selected practitioners, and especially in relation

to communication skills (Colomo-Palacios et al., 2010; Downey, 2009). Furthermore,

task assignment is generally managed by the project manager in commercial software

environments (Mockus et al., 2002, p. 344; Robles et al., 2009).

With these assessments in mind, of further relevance to this discussion thread is the

observation that all of the ten teams studied in this work had a centralised

communication structure (regardless of the number of tasks or team size). This pattern

has been explained in terms of several prior principles. For instance, Shihab et al.

(2010) used the Pareto principle to explain this pattern in GNOME OSS projects, where

164

they found the top 10% of communicators contributed 60% of the overall messages.

The Pareto principle is that a minority of the cause influences the most effect (Shihab et

al., 2010). This principle was also previously demonstrated by Boehm & Basili (2001)

who discovered that 20% of the code accounted for 80% of the bugs in the software

they studied. Another principle that has been previously associated with this pattern is

that of small-world communication (Uzzi & Spiro, 2005). This principle is used to

describe interaction structures where small groups of contributors share most of their

communication among a core cluster of team members while working in a larger team.

However, members in the core cluster may have connections to others in multiple

clusters, which then connect with others in other clusters, making the overall

communication network connected and cohesive (Uzzi & Spiro, 2005). Andre,

Baldoquin, & Acuna (2011) study on role distribution also found that successful teams

had few leaders who were consistently strong communicators. Thus, it would be

reasonable to assume that the centralised pattern that was observed for these Jazz teams

is linked to role distribution (or the leadership hierarchy). However, the results

presented in Section 4.1.3 do not support this latter proposition, as in this section it was

observed that many of the active communicators were not formal project leaders, and

thus, were not necessarily responsible for project coordination.

The real question then becomes why there are disparities in communication for software

development teams, and in particular, how important are these active communicators to

their teams in terms of maintaining team connectivity? The next section (Section 5.1.3)

considers the question of active communicators’ importance. Section 5.1.4 then

addresses active communicators’ actual involvement in task performance.

5.1.3 Active communicators importance (RQ3)

This section discusses the importance of core developers to their global teams’

collaboration. Given the dense communication patterns that are noted around central

software practitioners (see Section 4.1.2 and Section 4.1.3), these members are held to

be critical to their teams’ shared understanding (Crowston et al., 2006; Mockus et al.,

2002). This deduction is rational, as one would expect that the removal of such

members from their teams would erode key links to their teams’ less central and

peripheral members. Such links are likely to be critical for maintaining shared

perceptions and a friendly team climate, and promoting team optimism or urgency in

the face of schedule pressures. Such a position has been established in other disciplines

165

(Ahuja et al., 2003; Guetzkow & Simon, 1955), and early works investigating the

significance of centralised group members have stressed the importance of these actors

to their team’s performance (Bavelas, 1950; Leavitt, 1951), and particularly for their

teams’ information dissemination.

Thus, in making provision for these members’ reduced availability, absence or sudden

withdrawal from the team, project management may also promote team configurations

that are likely to provide failsafe mechanisms. In fact, the threat imposed by the loss of

key team players (and with them – the team’s tacit knowledge) has been a recognised

source of concern for agile teams given their reliance on team members’ interaction as a

substitute for extensive documentation (Boehm & Turner, 2003a, 2003b; De Souza,

Anquetil, & De Oliveira, 2005; Nord & Tomayko, 2006). This threat is likely to be

exacerbated for globally distributed agile software teams, where there are limited

possibilities for spontaneous and informal communications (Serce et al., 2009).

Studying teams’ communication is likely to expose how this issue is addressed, and

should also help to explain the importance of active communicators to their global

teams (Abreu & Premraj, 2009; Bachmann & Bernstein, 2009).

During the analysis of Jazz teams artefacts in Section 4.1.3, active communicators were

clustered into a group called core developers and their importance was compared to that

of the other team members. Apart from the higher frequency with which core

developers communicated, there was also vast disparity between the numbers of tasks

core developers communicated on compared to the rest of their team members (refer to

Section 4.1.3). The results show that core developers communicated in relation to seven

times as many tasks as their teammates, on average. These findings show that, beyond

the incidence of messages, core developers also maintained interest on many tasks. This

high level of interest may not necessarily denote that core developers are important,

however. For instance, it has been previously contended that these members may be

involved in team task coordination and liaison (Cataldo & Herbsleb, 2008). Others have

also stressed the need for studying the actual discussions and project documentation to

understand the actions and attributes of real core developers (Robles et al., 2009).

Accordingly, mechanisms for studying core developers’ level of importance (in-degree

and closeness) to their teams are described in Section 3.4.3.

Section 3.4.3 outlined that SNA in-degree measures the number of connections that

point towards a vertex and closeness measures the shortest distance between nodes, so

166

that the lower the closeness measure for a given node the more important that node is to

their group’s communication (Wasserman & Faust, 1997). These measures were

considered jointly in Section 4.1.3 in order to study core developers’ importance to their

team (Bird et al., 2006a; Datta et al., 2010). That said, given that these measures only

reflect a form of structural importance, rather than intellectual or social importance,

there is need to use other deeper contextual analysis techniques to validate these

findings. This approach was used in this work, as further discussed in Section 5.2 and

Section 5.3.

In analysing the results for core developers’ in-degree measures it was observed that

these members contributed over a fifth of their teams’ measures. These findings endorse

the density measures noted earlier. However, core developers’ closeness measures,

although lower than those of their teammates, were not significantly different. In fact,

Section 4.1.3 outlined that even when the communications for core developers were

removed from their teams’ social networks, these networks still remained highly

connected. From these findings it is surmised that while Jazz core developers were

highly active in communication, and they perhaps occupied critical links in their teams’

shared understanding processes, maintaining a friendly team climate and promoting

team optimism and urgency when necessary, the social network measures did not find

these members to be significantly more important than the less active members in their

teams, in terms of maintaining the connectivity of the members at the network’s

periphery. Less active members were connected through their involvement on software

tasks, whether or not core members were present. This finding has not been observed

previously.

Notwithstanding the highly centralised nature of IBM Rational Jazz teams’

communication, this is a positive observation for these teams, and this evidence may

have implications for the configuration of globally distributed agile software

development teams in a more general sense. In particular, given that these are high-

performing and successful teams, this outcome is something that others could seek to

replicate. Overall, the results revealed that although some Jazz members communicated

on few tasks, all team members remained highly reachable and connected either through

their engagement on other tasks or directly through their connections. Although it is

unclear whether this is a deliberate strategy employed by Jazz teams, or whether this

evidence reflects the process of self-organisation among high performing globally

distributed agile software practitioners, this finding supports the synthesis above

167

regarding the ways in which commercial organisations are driven, and the motivations

of developers in such settings (refer to Section 5.1.2). A strategy that promotes

interconnected communication across software tasks may work as a cross training

mechanism (Highsmith, 2000, 2004). Such a coupling strategy is also likely to result in

a higher degree of knowledge sharing and reduced loss of tacit knowledge should core

developers leave these teams (Boehm & Turner, 2003b; Williams & Kessler, 2003).

In summary, the findings revealed in Section 4.1.3 are surprising in several ways. First,

and given prior research outcomes, it was anticipated that there would be a much larger

spread of team members involved in team interactions. In particular, higher levels of

modularity was expected for teams that were solving a larger cohort of tasks due to the

heavy knowledge demands associated with managing larger projects (Mockus et al.,

2002). That said, however, the difficulties associated with managing a large number of

connections could also present a burden to these teams. Thus, a centralised structure is

likely to reduce project communication overhead and costs related to coordinating a

large number of team dependencies (Crowston et al., 2004). A strategy to make teams

highly connected would then mitigate the effects of tacit knowledge loss should core

developers leave their teams (Williams & Kessler, 2003). Thus, the centralised structure

noted in Jazz networks may not necessarily introduce risks to these teams.

That said, although the SNA results did not establish that core developers were most

important to their global teams’ collaboration, it is still pertinent to establish how core

developers are involved in task (WI) changes, as this would reveal further insights into

global team dynamics. Such evidence would also provide additional understandings into

these practitioners’ roles during teamwork. This issue is considered in the next

subsection (Section 5.1.4).

5.1.4 Active communicators task performance (RQ4)

Those that are formally assigned to coordination inclined software roles (e.g., team

leaders and project managers) may generally be expected to communicate more than the

average software programmer (Shihab et al., 2010). Accordingly, while these

practitioners are likely to provide project awareness and guidance to their teams, they

are consequently unlikely to be core developers on actual software tasks. The goal in

this work is to understand the collaboration patterns of successful globally distributed

agile software teams, and how and why core developers contribute to globally

distributed agile software team dynamics. While the first object is easily realized by

168

studying overall teams’ artefacts (Nguyen, Wolf, et al., 2008), the latter objective could

only be achieved by studying actual core developers – those that communicate

extensively and also demonstrate key involvement with their teams’ actual development

portfolio (Cataldo & Herbsleb, 2008; Crowston et al., 2006; Robles et al., 2009).

In fact, as noted in Section 5.1.3, while it was established that a few individuals tend to

dominate project interaction, SNA results in Section 4.1.3 revealed that these core

members were not significantly more important to their teams than the less active

members (refer to Section 5.1.3 for further details). Accordingly, core developers’

actual involvement in software tasks was examined in Section 4.1.3, and the results

showed that core developers played a key role in their teams’ task portfolio. This

finding was also noted previously in both OSS and commercial settings (Cataldo &

Herbsleb, 2008; Shihab et al., 2010). For instance, Mockus et al. (2002) observed that

the top 15 developers contributed 80% of the code for new software functionality in the

Apache httpd OSS project. In contrast, these members (i.e., those who were assigned to

the top developers group) only reported 5% of the bugs on their project. Shihab et al.

(2010) found a correlation between the number of messages practitioners communicated

and the number of code changes they made, when studying the Evolution and Nautilus

OSS projects. Bird et al. (2006a) found that practitioners’ communications were

strongly related to their involvement in source code changes, and a similar pattern was

revealed in Cataldo & Herbsleb (2008)’s work.

These findings seem to suggest that task involvement influences the need to

communicate; perhaps the communication pattern is influenced by the management of a

large number of feature dependencies. Discussions around these dependencies are likely

to be particularly pronounced at integration time. Thus, the more software features

developers deliver, the more they are required to communicate (Cataldo & Herbsleb,

2008). The findings revealed in this work, and by those in other studies (Bird et al.,

2006a; Cataldo & Herbsleb, 2008; Shihab et al., 2010), are surprising given the

overhead associated with ‘owning’ large numbers of features, particularly in a

distributed development setting where temporal distance may affect team members’

availability (Espinosa et al., 2006). Reduced availability could potentially hamper core

developers’ engagement possibilities (Carmel & Agarwal, 2001; Cataldo, et al., 2007;

Herbsleb & Mockus, 2003a; Jalali & Wohlin, 2010), and ultimately, discussions around

decisions that are made during feature development (although given the high number of

169

messages IBM Rational Jazz core developers sent, this may not be an issue for these

particular developers).

In fact, while centralised feature management (in terms of reviews and approvals) may

help with team productivity and lessening defect density, such an approach generally

extends development time frames (Mockus et al., 2002). Of particular note is the way

core developers were integrally involved in task modifications. Given this evidence,

there is some contradiction of the view that the pattern around core developers may be

as a consequence of a deliberate strategy that is implemented at IBM Rational Jazz to

maintain productivity and quality (this speculation was forwarded during discussions in

Section 5.1.2).

On the contrary, IBM Jazz core developers seem to evolve naturally into their central

role. Perhaps these members are of particular demand because of their natural

characteristics. This assessment is further verified by an investigation of their formal

roles through contextual analysis techniques (see Section 4.1.3). These discussions are

provided in the next section (Section 5.1.5).

5.1.5 Active communicators formal roles (RQ5)

Discussions presented thus far highlight that IBM Rational Jazz developers spend the

most time communicating in the start and end phases of their project, a few developers

dominate project interaction, core developers are not significantly more important than

their less active counterparts, and core developers play an integral role in their teams’

development portfolio. These findings were discussed in relation to relevant theory in

Sections 5.1.1, Section 5.1.2, Section 5.1.3 and Section 5.1.4 above. The final aspect in

this preliminary phase of the work relates to the assessment of core developers’ formal

roles.

Results presented in Section 4.1.3 revealed that formal role assignment did not limit

IBM Rational Jazz core developers’ performance in communication networks or on

software development tasks. Those leading the interaction networks occupied various

roles – including programmers, team leaders and project managers. Given the high

number of task (feature) changes undertaken by core developers, it was also posited that

these members were likely to communicate actively due to task dependencies. In fact,

results in Section 4.1.3 show that in a slight majority of the cases core developers (both

in communication networks and involvement in software tasks) were programmers.

170

These findings are interesting, given that IBM Rational Jazz teams are each led by a

formal team leader. Thus, it was expected that those assigned to leadership roles (team

leaders and project managers) would at least dominate project communication networks

given their need to coordinate and manage multiple project dependencies. However, the

evidence provided in Section 4.1.3 is clearly to the contrary.

Agile practitioners have previously reported that team members adopted various roles

over different project phases in order that their projects should succeed (Hoda, Noble, &

Marshall, 2010b). Datta et al. (2010) SNA study also found that some team members’

actual involvement in bug fixes exceeded what was expected given their formal roles.

These findings support the proposition made above in Section 5.1.4, that the core

developers studied in this work may be driven by some specific intrinsic characteristics

and/or motivations. Evidence in Section 4.1.3 shows that core developers were not

restricted by their formally assigned responsibilities; rather, these members seemed to

perform given the teams’ demand. This assessment is particularly fitting for those core

developers who formally occupied the programmer role.

These may not be default behaviours, however. While core developers may feel a sense

of obligation to their teams (Constant, Sproull, & Kiesler, 1996), a facilitating

organisation and work structure may be a prerequisite for encouraging high performers

to work across roles as the need arises. Given the evidence revealed in this work, it is

posited that IBM Rational is one such organisation that encourages team members’

performance based on their natural abilities, and that promotes non-hierarchical and

informal work structures. Such configurations have long been shown to encourage tacit

knowledge sharing and cross-fertilization among team members, and allow team

members to adapt and execute their tasks based on work demands (Powell, 1990). These

environments are well suited for globally distributed agile software development teams,

and should be encouraged if such teams are to succeed.

In comparing the outputs of this role examination to previous literature, it is noted that

previous studies have speculated that programmers require fewer communication-

related abilities (Acuna et al., 2006; Andre et al., 2011). However, the evidence reported

here is divergent to these views. Results in Section 4.1.3 confirmed that all software

practitioners may actively participate in communication and coordination networks

if/when the project environment is supportive. In fact, closer examination of the roles

for the 15 core developers revealed that role assignment was not a barrier for any of the

171

teams, and in a number of the ten teams that were studied both core developers were

formally assigned the programmer (contributor) role. These similar findings for Jazz

core developers across all ten project teams – regardless of the nature of the tasks, or

number of team members – support the position that the IBM Rational Jazz work

structure had a positive influence on the way core developers were able to interact and

share knowledge (Giddens, 1979; Orlikowski, 1992).

Additionally, the evidence observed in Section 4.1.3 regarding the way those assigned

to different formal roles became communication hubs in their teams supports the view

that IBM Rational Jazz teams were encouraged to work across roles and self-organise.

Self-organising theories have noted that a prerequisite for successful self-organising

practitioners is the ability to work across multiple roles (example: roles that contribute

ideas, facilitate coordination and communication and remove obstacles) (Hoda et al.,

2010b). Thus, although practitioners are assigned formal roles in IBM Rational Jazz

teams, during project execution it is believed that core developers enact other non-

formal roles, perhaps so that their project’s communication and coordination

requirements are met, and their project succeeds. This finding has implications for

globally distributed agile software development teams, and particularly, for instances

where such core developers may be unwilling to accept project leadership and champion

responsibilities.

In summary, although the IBM Rational Jazz teams studied here operated in a

centralised structure, it was common to see many programmers occupying vital

positions in their team’s network. While the literature advocates for non-centralised and

non-hierarchical structures especially in distributed software development contexts

(Crowston & Howison, 2006), these Jazz teams are likely to have been insulated from

negative issues related to over-centralisation due to the way IBM Rational Jazz team

members are involved with software tasks – these members are highly connected

whether or not core developers are a part of their communication networks (refer to

Section 5.1.3). In fact, the burden associated with information processing for groups

with higher numbers of inter-connections may in some way be lessened in the Jazz

teams’ context (Hinds & McGrath, 2006). Additionally, although this study does not

examine the actual skills of Jazz developers, this may also mitigate the effects of

centralised communication structure. It is posited that Jazz teams possess premium

skills given their project portfolio, the project range available at http://www.jazz.net, the

172

volume of customers using these products and the sentiments expressed by these users

(refer to Section 3.4.1).

5.1.6 Summary

Figure 29 depicts the main findings that were discussed in this section. In this

preliminary quantitative analysis of IBM Rational Jazz globally distributed agile

software teams’ communication, it was revealed that these teams communicated the

most at project start-up and towards project completion (refer to Section 5.1.1), only a

small number of individuals dominated project communication networks and early

communication patterns were maintained throughout the software project (refer to

Section 5.1.2). Additionally, findings in this work revealed that communication

networks with low density may not necessarily mean that contributors are not reachable,

as all members of the ten IBM Rational Jazz teams examined here were highly

connected, whether or not they belonged to the core developers’ group (refer to Section

5.1.3). Given this evidence, it is contended that the centralised communication pattern

noted for Jazz teams may not necessarily represent a risk related to the loss of the

project’s tacit knowledge should core developers leave these teams (refer to Figure 29).

Additionally, it was contended that this highly connected pattern for Jazz

communication networks may be linked directly to deliberately adopted organisation

processes to deal with maintaining knowledge redundancy, in order to address risk

related to tacit knowledge loss.

The analysis in this section also demonstrated that those leading interaction networks

were heavily involved in performing software tasks (refer to Section 5.1.4).

Additionally, it was found that core developers occupied various formal roles (refer to

Section 5.1.5). These findings were consistent for all teams, an indicator that the IBM

Rational Jazz organisation’s flexible work structure may have positively influenced the

way teams interacted and core developers’ willingness to adopt project champion roles

even when they were not formal leaders. This finding was particularly revealing for

those core developers that occupied the programmer role.

While some of the findings in this initial analysis are confirmatory of prior outcomes,

others were unique and point to the need for further in-depth qualitative exploration of

these artefacts. In particular, the quantitative findings that were discussed in this section

did not reveal the semantics of core developers’ behaviours and attitudes. Although

previous work has linked practitioners’ performance to experience and cognitive ability

173

(Curtis, Krasner, & Iscoe, 1988), the nature of core developers’ characteristics may not

be entirely explained through quantitative means, and more contextual analysis may

reveal relevant attributes of these practitioners’ behaviours and the actual roles they

enact during teamwork (Cataldo et al., 2006). For instance, Cataldo et al. (2006)

previous work did not find significant differences between core developers and their

less active counterparts when considering their programming experience, domain

experience, education or tenure in the company. Similarly, productivity measures

drawing on mean lines of code for features did not reveal any differences between core

developers and the other members in their team.

To this end, it is believed that the use of other analysis techniques commonly employed

in organisation psychology and the social science domains could help to reveal further

the nature of (and reason for) core developers’ attitudes, and the roles these members

enact during globally distributed agile software team dynamics. These understandings

would further illuminate the nature of globally distributed software development team

dynamics. This approach was therefore used in this work, the results of which are

discussed in the following section (Section 5.2).

174

Figure 29. Collaboration patterns of successful globally distributed agile software teams

175

5.2 The true role of core developers (Phase 2)

The results presented in Section 4.2.1 and Section 4.2.2 are largely exploratory,

extending those of previous studies as well as the evidence proffered in Section 4.1.

These findings thus provide understandings of the true role of core developers and

explain the reason for the centralised patterns noted for software teams’ communication

networks. Through such understandings, these findings aimed to establish the reason for

core developers’ distinct presence in their teams, and to provide explanations for the

nature (and peculiarities) of successful distributed agile software team dynamics. More

specifically, it is anticipated that knowledge of how the most active agile practitioners

(and others) contribute their social and intellectual capital would help project leaders to

identify exceptional software practitioners, and inform the process of assembling high

performing and cohesive teams. Such findings could also inform the use of specific

organizational arrangements and team configurations in support of high performers.

Furthermore, the output of these explorations may lead to new requirements for

collaboration and process support tools.

This section discusses these findings by answering RQ6 and RQ7. First, Section 5.2.1

discusses the ways in which core developers’ attitudes differ to those of their less active

counterparts, so answering RQ6 (Do core developers’ behaviours and attitudes differ

from those of other software practitioners?). Results for RQ7 (What are the core

developers’ enacted roles in their teams, and how are these roles occupied?) are then

discussed in Section 5.2.2. Finally, this section closes with a brief summary (presented

in Section 5.2.3) of the discussions presented throughout this section.

5.2.1 Differences in attitudes (RQ6)

Evidence discussed in the preceding section confirms that a small number of IBM

Rational Jazz team members (the core developers) contributed the most to their

project’s knowledge-base and these members were also highly involved with software

task changes. This evidence has been observed previously for other software teams

(Bird et al., 2006a; Shihab et al., 2010). Given this pattern, along with evidence of core

members’ influence on their teams’ overall performance (see Leavitt (1951) for

discussions), it is imperative to understand core developers’ communications beyond

frequency-based assessments alone (as was done in Section 5.1) (Di Penta, 2012). More

in-depth evaluations could potentially answer questions related to the reasons for these

members’ extraordinary presence, and provide understanding of the actual roles (both

176

formal and informal) that core developers occupy in their teams. This is particularly

necessary given that measures related to education, experience and cognitive ability

(Cataldo et al., 2006; Curtis et al., 1988) have not explained the differences noted in

communication and software task involvement patterns between core developers and

their lesser active counterparts. This work examines these differences from a

behavioural perspective. In this section, discussions of the linguistic analysis results

(project snapshots/static perspectives – refer to Section 4.2.1) are presented.

The linguistic analysis findings in Section 4.2.1 show that, when compared to the less

active software practitioners, core developers were less self-focused (or individualistic)

and, although these individuals were most actively involved in task changes (refer to

Section 5.1.4), they delegated more. Members that are individualistic have been shown

to have a negative impact on team climate (Benne & Sheats, 1948); these individuals

are seen to be driven by their own personal goals as against those of the team (Stone &

Pennebaker, 2002). Thus, the evidence that core developers exhibited lower levels of

self-focus attitudes is a good sign for shared team norms (Chang et al., 2013). This is

particularly noteworthy given that, as discussed in Section 5.1.2, core developers

communicated in regard to a substantial number of their teams’ tasks. Had these

members exhibited high levels of individualistic attitudes, this would potentially impact

their teams negatively, and particularly given that these core members occupied the

centre of their teams’ communication, and so, behaviour climate, team culture and trust

(Dullemond et al., 2009; Lee & Yong, 2010) – all of which have been held to be

necessary and critical to teams’ performance in globally distributed settings. Evidence

has indeed shown that team norms are cultivated (Chang et al., 2013; Denning, 2012).

Given that software development is a shared activity, individualistic team norms could

have a negative impact on team performance, and particularly in a globally distributed

agile software development context where individuals are already affected by distance

and have few opportunities to engage in face-to-face communication (Chang & Ehrlich,

2007; Espinosa et al., 2006) – both of which are known to stimulate trust (Al-Ani et al.,

2011; Krebs et al., 2006; Zigurs, 2003).

Findings revealing the higher level of delegation among core developers are surprising

given that core developers comprised only 15 of the teams’ 146 practitioners. However,

these findings are supported by Shihab et al. (2009) who also found that the Evolution

and GTK+ OSS projects’ top developers referred to others by their actual names

(directly addressing contributors), an observation that was linked to their status in the

177

team. As noted earlier, however, team dynamics and processes in OSS environments are

somewhat different to those in commercial organisations (refer to Section 5.1.2). In fact,

among IBM Rational Jazz’s less active practitioners there were many formal project

managers and team leaders (see Table 2 for details), whereas core developers comprised

just eight programmers, five team leaders and two project managers.

This evidence of the much higher level of delegation among core developers suggests

that these practitioners indeed operated as informal leaders (an assessment that was

incited in Section 5.1.5), whether or not they were assigned to formal leadership roles

(Licorish & MacDonell, 2013c). This assessment converges with those in Section 5.1.5

above, where it was postulated that IBM Rational Jazz core developers operated freely

across roles. Additionally, this evidence also supports the notion that IBM Rational Jazz

organisation promoted organic work structures, and this in turn encouraged

practitioners’ performance in light of their teams’ demands, policies that may be linked

directly to Jazz teams’ success (refer to Section 5.1.5). These findings have implications

for globally distributed agile software teams, and particularly those environments that

employ rigid project management approaches (Coram & Bohner, 2005). Such a tactic

may be detrimental in globally distributed software environments. Evidence in this

work also suggests that formal project leaders may need to regularly compromise,

perhaps encouraging, and releasing control to, informal leaders as the need arises

(Abrahamsson et al., 2003). These principles are generally embraced by agile

proponents (Koch, 2005).

Linguistic analysis results for work- and achievement-processes add further support for

these deductions. Results in Section 4.2.1 reveal that core developers were highly work-

and achievement-focused, and these individuals communicated little about leisure.

Rigby & Hassan (2007) also found top Apache OSS developers to be less social than

the other members. Previous work has noted that individuals that are highly ambitious

are generally outcome-oriented (Denning, 2012). These individuals are often committed

to succeeding regardless of the circumstances (Chang et al., 2013). Well-established

role theories have also shown that task-driven individuals are keen on task performance

and drive their teams towards achieving project targets (Belbin, 2002; Benne & Sheats,

1948). Thus, the finding that core developers were highly task-focused is fitting for their

teams, and these results are positive for the IBM Rational Jazz organisation. In

particular, given core developers’ central position in their team communication

networks (noted earlier – refer to Section 4.1.2 and Section 4.1.3), these practitioners

178

were uniquely positioned to promote team urgency during times of schedule pressures

and when the less active members demonstrated reduced task focus. Additionally, as

noted above, core developers’ ubiquitous qualities would mean that their achievement-

driven behaviours are likely to easily propagate to their teams, resulting in achievement-

driven team norms (Denning, 2012). Such team norms would be ideal for globally

distributed agile software teams’ performance (Abrahamsson et al., 2003).

These assessments are of particular relevance given the results that were discovered in

Section 4.1.3 through the use of quantitative SNA techniques. These results were

discussed in Section 5.1.3, where it was asserted that although core developers

contributed significantly more communication, these members were not significantly

more important to their teams than the less active developers (where importance was

evaluated through the use of in-degree and closeness measures – refer to Section 3.4.3.1

for details). These linguistic analysis results contradict these initial findings (in Section

4.1.3), and show that core developers exhibited important team behaviours (discussed

earlier). These findings endorse the view that, when used on their own, quantitative and

frequency-based analysis techniques illuminate only a partial view of team dynamics

(Di Penta, 2012; Easterbrook et al., 2008; Glass et al., 2002; Robles et al., 2009; Vessey

et al., 2002), and complementing these approaches with contextual analysis techniques

would further reveal the intricacies and complexities of human behaviours and software

teams’ dynamics (Vessey et al., 2002).

Results in Section 4.2.1 show that core developers were less positive and less social

than the other team members. Perhaps IBM Rational Jazz’s core developers were too

involved with their teams’ development agenda to be social. Findings for these

members’ involvement in task (WI) changes and communication (refer to Section 4.1.2

and Section 4.1.3) support such a conjecture. However, there still remain questions

around what actually drives these members’ motivation. While this work was not able

to examine the experience and education of core developers, as noted above, these

variables did not account for differences noted between core developers and their less

active counterparts in other settings (Cataldo et al., 2006; Curtis et al., 1988). Previous

work has explained that strong team commitment is linked to sentimental attachments to

team goals (Allen & Meyer, 1990; Morgan & Hunt, 1994) and the willingness to

maintain team commitment through team tasks (Mowday, Steers, & Porter, 1979).

Highly committed team members are also said to feel a sense of team duty and have a

strong desire for team success (Kline & Peters, 1991). Such team members exhibit

179

extreme willingness (Oh, Gallivan, & Kim, 2006). Dedicated team members are also

willing to adjust themselves in providing relevant knowledge for their team (Lee & Xia,

2005). The concept of the super-individual entity in team work has also been explained

previously (Walsh, 1995), and such individuals are emphasised as necessary for agile

software development settings (Abrahamsson et al., 2003). These viewpoints may

explain IBM Rational Jazz core developers’ performance in their teams. While there is

little doubt that Jazz core developers were highly cognitive, these members were very

committed to their teams’ tasks. Such a commitment is likely to be driven by more

intrinsic than extrinsic motivations (e.g., from personal satisfaction and enjoyment

rather than from interest in organisational rewards) (Chang et al., 2013).

The linguistic analysis results (refer to Section 4.2.1) revealed that the less active

contributors tended to used more collective team processes, communicated the most

about leisure and expressed higher amounts of cognitive processes. In particular, those

that were less active used more insightful processes; these members expressed

significantly more tentativeness and they also communicated with more certainty.

Collective team processes are an indicator of team synergy (Tuckman, 1965). Denning

(2012) noted that collective language use is a sign of team focus, and so may be good

for collaborative teams. These findings reveal that the less active IBM Rational Jazz

practitioners operated cohesively in the norming and performing phases of group work

(Tuckman, 1965). Generally, teams tend to engage more collectively after overcoming

initial differences and conflicts, and elevated levels of collective behaviours are an

indicator of more shared and established team norms (Tuckman, 1965). This reasoning

is applicable to the IBM Rational Jazz teams studied here, especially given that the core

developers were found to use lower levels of individualistic processes and those that

were less active used higher level of collective language. Results for leisure also showed

that IBM Rational Jazz’s less active practitioners communicated significantly more of

this form of language when compared to the core developers (refer to Section 4.2.1).

Those less active also communicated with higher levels of cognitive processes (refer to

Section 4.2.1); cognitive qualities have been linked previously to higher software task

performance (Andre et al., 2011).

This evidence endorses the previous assessment of the way core developers maintained

task focus; perhaps core developers’ attentiveness on work and achievement was in part

driven by their desire to keep their teams focused when the less active members became

highly social and engaged excessively about leisure. At the same time, those that were

180

less active also contributed meaningfully with ideas, and expressed certainty during

their contributions (refer to Section 4.2.1). These findings increment those that were

revealed in Section 5.1.3 about the importance of the less active members; and

particularly, the observation that these members were highly interconnected.

Overall, these behavioural processes may have a balancing effect (Licorish &

MacDonell, 2012), especially in terms of IBM Rational Jazz teams’ self-organisation.

Benne & Sheats (1948) have shown that various roles (both social- and task-based) are

acted out by contributors and are necessary to maintain team balance during successful

team work. Social roles contribute towards positive group climate, promoting

harmonizing and compromising traits, while task roles are concerned with task success,

contributing and initiating ideas and knowledge towards task completion. Evidence in

this work suggests that, as a group, IBM Rational Jazz teams indeed cultivated both

social and task oriented team norms (Chang et al., 2013). This finding would seem to be

generally beneficial for globally distributed agile software developments, and likely

impacted positively on IBM Rational Jazz teams’ trust, and overall performance

(Dullemond et al., 2009; Lee & Yong, 2010).

In keeping with the above discussion, Section 4.2.1 shows that, overall, IBM Rational

Jazz teams did not use high amounts of negative language. Excess negative emotion

may lead to disharmony and hostility among teams (De Dreu & Weingart, 2003). Those

that demonstrate negative team traits may be annoyed or irritated (Denning, 2012), and

evidence of this trait is generally understandable during periods of schedule slippage, as

a result of the discovery of defects in code that had undergone seemingly rigorous

testing, or for other external organisational effects (e.g., inter-departmental

disagreements or due to changing client requirements). However, in extreme cases such

negative traits may also be deep-seated in anger and resentment, which is likely to result

in an individual’s desire to undermine their team’s vision due to their own personal

dissatisfaction (Solomon, 2007). Thus, negative moods are – unsurprisingly – generally

bad for teamwork (Denning, 2012; Goguen, 1993; Goldberg, 1981).

Research has shown that team moods, and particularly those related to collective, social

and encouraging processes that support teamwork and optimism, generally promote

team satisfaction and cooperation, and these behavioural processes have a positive

influence on team morale and task outcomes (Denning, 2012). A social team ambience

has also been shown to encourage team members’ contributions and rapport (Chang et

181

al., 2013). Such positive moods are thought to be cultivated by skilled team leaders

(Denning, 2012).

In summary, this section represents a first attempt to analyse and discuss core

developers’ attitudes and to compare the traits that these members exhibited to those of

their less active counterparts. Apart from triangulating the findings in Section 5.1 above,

discussions in this section were also aimed at extending previous works that had

discovered many software teams to operate in centralised communication and task

performance structures. It was observed that core developers exhibited less

individualistic attitudes, these members delegated more, and were largely responsible

for maintaining task focus. These traits were assessed as being critical for maintaining

desirable team norms, and particularly, given core members’ central position in their

teams, it was noted that these traits are likely to have a positive impact on the attitudes

that are cultivated by the wider IBM Rational Jazz teams. These findings were

somewhat in contradiction to those discussed in Section 5.1.3 which did not find core

developers to be significantly more important than their less active counterparts, an

issue that reflected the limitation of the frequency-based technique (the SNA closeness

measure) that produced this evidence. It was observed that the less active developers

complemented the core developers, and also helped to maintain team balance. Given

that most of the core developers were informal leaders, results in this work also suggest

that a flexible organisational climate and less rigid project management are likely to be

advantageous for globally distributed agile software team management. Additionally,

findings discussed in this section imply that core developers were intrinsically driven.

These discussions are extended in the following section (Section 5.2.2) where the roles

core developers enacted are examined through more contextual lenses.

5.2.2 Enacted roles (RQ7)

In an effort to study IBM Rational Jazz practitioners’ behavioural processes and to

compare the behaviours of core developers against those of their less active counterparts

so as to understand the true role of core developers, beyond the communication patterns

noted previously (Crowston et al., 2006; Mockus et al., 2002; Shihab et al., 2009),

practitioners’ messages were analysed using linguistic analysis in Section 4.2.1. These

results were discussed in the preceding section (Section 5.2.1), which shows that core

developers communicated significantly different attitudes to the other members of their

project. Such attitudes are largely responsible for maintaining a team perspective and

182

for promoting task and achievement focus in the team. Less active Jazz practitioners

used high levels of collective and social processes, and these members were also more

insightful. It was contended that these findings are fitting for globally distributed

software developments given core developers’ central position in their teams’

communication networks, and the highly connected nature of IBM Rational Jazz

project’s networks in general. These discussions are incremented here. This section

discusses the contextual directed content analysis results presented in Section 4.2.2 to

evaluate the core developers’ enacted roles in their teams. These discussions follow a

similar outline to those in Section 5.2.1, where core developers’ interactions and their

enacted roles are compared to those of their less active counterparts. This approach is

taken to understand further how core developers (and others) contribute to their team

dynamics.

Given the high volume of messages conveyed by core developers as well as their

intensive involvement in task changes (refer to Section 4.1.3 and Section 5.1.4), it was

anticipated that these individuals would dominate knowledge sharing in their teams, and

the results in Section 4.2.2 support this position. Here it is shown that IBM Rational

Jazz core developers contributed 42% of their teams’ actual utterances (note that these

members also communicated 46% of their teams’ messages – refer to Section 4.2.1).

These results show that core developers’ communications were aimed at much more

than task coordination alone (Cataldo & Herbsleb, 2008). This finding is revealing

when considering that the core developers in the three project areas that were selected

for the directed content analysis procedure (P1, P7 and P8 – refer to Table 2) comprised

only 6 of their teams’ 107 members (being two programmers, three team leads and one

project manager). In particular, as noted in Chapter 3, a person occupying the formal

‘Programmer’ (contributor) role in IBM Rational Jazz is defined as a contributor to the

architecture and code of a component, the ‘Team Leader’ (component lead) is

responsible for planning and architectural integrity of the component and the ‘Project

Manager’ (PMC) is a member of the project management committee overseeing the

Jazz project. Additionally, each IBM Rational Jazz team is led by a formally appointed

project manager.

Furthermore, this finding regarding the very high level of core developers’ utterances

represents a substantial difference in involvement – it is 45 times the average

knowledge contribution of a typical Jazz practitioner (refer to Section 4.2.2). This

finding supports those discussed in Section 5.1.2 above, and confirm that developers in

183

distributed global software developments are not required to contribute equitably in

order for the team to succeed (Crowston et al., 2006; Mockus et al., 2002; Shihab et al.,

2009). Additionally, the directed content analysis results (as well as the linguistic

analysis results discussed in the preceding section – Section 5.2.1) also refute the

assessment that core developers are not significantly more important than the less active

members, and in doing so support the need for triangulating quantitative analysis

techniques with deeper approaches when studying team behaviours. These results also

endorse those that were presented in Section 4.1.3 that core developers’ active

involvement in communication is perhaps driven by their task performance (Bird et al.,

2006a; Cataldo & Herbsleb, 2008; Shihab et al., 2010).

In examining the actual details of core developers’ utterances (refer to Section 4.2.2), it

is shown that these members indeed operated across multiple informal roles. The

directed CA results confirm that core developers were integrally involved with team

organization and task assignment (e.g., see measures for Answers and Instruction in

Figure 25 and Figure 26). It had been previously established that individuals involved in

such forms of (vertical) communication are seen as capable, and such individuals are

often perceived by their peers as knowledge hubs, and pillars of the knowledge

construction process (Henri & Kaye, 1992; Zhu, 1996). Discourses of an assertive

nature (e.g., Type II Questions and Instructions) are also communicated due to a

perception that little authoritative feedback is forthcoming (Zhu, 1996), and may

generally be linked to those in power. In fact, such responsibilities and behaviours are

often associated with formal software project leadership or individuals occupying more

coordination and planning related roles (Andre et al., 2011). These findings converge

with those that were discovered during the linguistic analysis regarding the higher level

of delegation language that was communicated by core developers when compared to

their less active counterparts (refer to Section 4.2.1). Additionally, evidence revealed in

this work suggests that these globally distributed agile software teams promoted

organic and informal work structures in order to self-organise (Hoda et al., 2010b).

Thus, formal role assignment may not be an adequate indicator of the need for

communication and coordination during globally distributed software projects (Acuna et

al., 2006; Andre et al., 2011).

Results in Section 4.2.2 revealed that core developers provided context awareness for

the other team members and acted as their teams’ main information resource (e.g., as

evident in the measures for Information sharing, Discussion and Scaffolding in Figure

184

25 and Figure 26). Such competencies are typically associated with highly skilled roles;

or with those individuals that are extremely creative, imaginative and insightful (Belbin,

2002). Those that communicate more are also generally more aware (Kanawattanachai

& Yoo, 2007; Palazzolo, Serb, She, Su, & Contractor, 2006), as demonstrated with the

level of Information that was shared by core developers. Such vigilant and aware

individuals are necessary for globally distributed agile developments (Al-Ani et al.,

2011; Young & Terashima, 2008). These findings coincide with those for task changes

(refer to Section 4.1.3), denoting that core developers were indeed their teams’ main

implementers. Importantly, while core developers were actively involved with their

teams’ task portfolio, these members also exhibited intrapersonal and interpersonal

skills (e.g., see measures for Apology, Off task and Gratitude/Praise in Figure 25 and

Figure 26) (Downey, 2009). These observations triangulate the low levels of

individualistic language communicated by core developers and confirm that Jazz core

developers’ active involvement in their teams’ communications was fitting for

promoting shared team norms (Chang et al., 2013).

Core developers also communicated with less desired judgemental language (e.g., see

measures for Comment in Figure 25 and Figure 26) on occasions. Lower incidence of

judgmental discourse is often required for maintaining team spirit and overcoming

tension, which is critical to a positive team atmosphere (Belbin, 2002; Benne & Sheats,

1948). However, while excessive debate and conflict behaviours are posited to be

harmful, some level of task-related conflict is also said to be good for enhancing

innovativeness and critical evaluation among group members (Tjosvold, 2008). Perhaps

in their drive for maintaining strong task performance, core developers became

evaluative and judgemental at times. While the evidence obtained from this static

project analysis does not reveal specifically when these judgemental behaviours are

most prevalent for core developers or why, such understandings (as provided in Section

5.3.2) would be useful for implementing strategies aimed at discouraging excessive

expression of such attitudes, which may derail team cohesiveness (Benne & Sheats,

1948; Denning, 2012).

In terms of the less active members, apart from their minimal involvement in providing

Instructions, these members also supported core developers and contributed to all the

interaction categories, albeit in much smaller amounts (refer to Section 4.2.2). Overall,

the evidence presented in Section 4.2.2 suggests that the formal project managers in

these IBM Rational Jazz teams acted as facilitators, and were happy to let their teams

185

self-organize, an approach often deemed necessary for agile teams to succeed

(Abrahamsson et al., 2003). Such a hands-off approach to project governance may only

be feasible (and useful for globally distributed software teams) if team members are

achievement motivated and informal leaders are present – the core developers.

As noted above (refer to Section 5.1.5) the behaviours demonstrated by IBM Rational

Jazz core developers may not be default behaviours, however. Such high performing

members often need to possess intrinsic motivation and keen willingness to self-

organize (Kline & Peters, 1991; Moe, Dingsoyr, & Dyba, 2008). A facilitating

organization and work structure may also encourage high performers to work across

roles as the need arises. On the basis of the result discovered in Section 4.2.2 it is

further contended that IBM Rational Jazz is one such organization that encourages team

members’ performance based on their natural abilities. Such institutional configurations

enable team members to adapt and execute their tasks based on work demands (Powell,

1990), as was evident among Jazz practitioners. Such arrangements should be

encouraged in order to facilitate globally distributed software team success.

As a group, IBM Rational Jazz developers communicated extensively about actual

software development, and these practitioners were highly task focussed. Over 95% of

Jazz practitioners’ exchanges related directly to solving software tasks (refer to Section

4.2.2). These findings suggest that core developers indeed drove their teams’ task focus,

and all Jazz developers were happy to contribute towards their teams’ performance.

These outcomes may have implications for tool design, and particularly, for tools aimed

at prioritising team communications. Overall, while IBM Rational Jazz developers were

highly task oriented, Jazz practitioners also expressed some amounts of gratitude and

communicated modestly about personal issues. Such an interpersonal outlook confirms

the previous linguistic results for IBM Rational Jazz teams’ high level of social and

positive processes (refer to Section 5.2.1). In fact, although IBM Rational Jazz

practitioners used social and positive language processes, the contextual directed CA

results (refer to Section 4.2.2) revealed that these individuals maintained most task

focus. These findings suggest that while a positive and social group atmosphere may be

ideal for maintaining a pleasant team ambience (Chang et al., 2013; Denning, 2012), a

task-driven team focus (and roles) is important for globally distributed agile software

developments. Previous literature has endorsed this viewpoint for collocated settings

(Andre et al., 2011), suggesting that a task-driven team outlook is appropriate for

software development (and team performance) as a whole.

186

5.2.3 Summary

In an effort to understand the true role of core developers, so as to provide details

around the reasons for these practitioners’ distinct presence in communication and task

performance and their contribution to team dynamics, Section 4.2 diverges from the

more commonly used quantitative and frequency-based analysis approaches and has

instead used deeper psycholinguistic and directed CA techniques in the study of IBM

Rational Jazz teams’ messages. These findings were discussed in this section.

In summary, the linguistic analysis results show that, when compared to the less active

software practitioners, core developers expressed little self-focused attitudes, they

delegated more, and they were highly task-driven (refer to Section 5.2.1). Evidence of

the low amount of self-focused attitudes and high levels of task-driven behaviour for

core developers is ideal for globally distributed software teams, where the need for

collective team vision and an outcome-oriented viewpoint are critical to positive team

performance. In particular, given core developers’ influential position in their teams,

these behaviours are no doubt useful for encouraging desirable team norms. The high

level of delegation language also endorses the view that core developers operated as

their teams’ leaders (these results extend those in Figure 29, and are depicted in the

orange segments of Figure 30). Given that some core members did not occupy formal

leadership roles, this evidence also confirms that IBM Rational Jazz, as an organisation,

promoted organic work structures and encouraged participation based on practitioners’

competencies. Such an approach to software project governance is likely to be critical in

order for globally distributed software development teams to succeed, and particularly

for supporting highly motivated and keen performers.

Jazz’s less active members contributed the most collective and social processes and

were also heavily involved in their teams’ cognitive processes (refer to Section 5.2.1).

These attitudes complimented the task-driven traits expressed by the core developers,

and suggest that, overall, IBM Rational Jazz practitioners operated in a cohesive and

well-balanced team environment. Such an environment (possessing both social- and

task-based individuals) is posited to be necessary for high performing teams, and

particularly for globally distributed software developments.

The contextual directed content analysis results reveal that core developers dominated

their teams’ knowledge processes, denoting that globally distributed software team

members are not required to perform equitably to be successful (refer to Section 5.2.2).

187

Additionally, findings for the significant level of knowledge contributions by core

developers support earlier propositions that these members were very important to their

teams, and their involvement in communication may be driven by their task portfolio.

Results from the directed content analysis also show that core developers indeed

operated across informal roles (refer to Figure 30 for illustration – note that the orange

aspects in this figure extend the work’s outcomes in Figure 29). For instance, core

developers were integrally involved with team organization, task assignment and project

instructions. Such responsibilities are typically assigned to the formal project manager;

however, only one of the core developers belonged to this role. These findings converge

with those for the high level of delegation language expressed by core developers, as

noted in the linguistic analysis results.

Contextual analysis also shows that core developers were their teams’ main information

resource, and these practitioners were particularly insightful. Furthermore, it was

confirmed that core developers were their teams’ main solution providers. That said,

core developers also expressed intrapersonal and interpersonal traits. These findings

triangulate those for core developers’ task-focused attitudes and their low level of

individualistic behaviours. Overall, directed CA evidence confirms that core

developers’ informal responsibilities exceeded what would be typical of their formally

assigned roles. Support for the way core developers operated across roles endorses the

viewpoint that the IBM Rational Jazz organisation facilitated teams’ self-organisation,

and indicates that such an approach is relevant to successful globally distributed

software project governance.

In terms of the less active developers, directed CA findings show that although these

members contributed modestly to their teams’ communication networks and task

performance, these practitioners were also important to their teams’ output. These

individuals contributed insights, and were key to their teams’ interpersonal climate. As

with the linguistic analysis results, directed CA findings confirmed that IBM Rational

Jazz teams operated in a balanced team environment. Additionally, although both

social- and task- driven behaviours were prevalent among IBM Rational Jazz teams,

these practitioners maintained most task-focus. The need for task focus was previously

discovered in co-located software development settings, suggesting that such

behaviours are necessary for software development (and team performance) as a whole.

188

The psycholinguistics and directed content analysis evidence exposed the limitations

inherent in frequency-based SNA techniques in terms of studying the internal details of

software practitioners’ behaviours and team dynamics. Evidence revealed from these

techniques (linguistics and directed CA) extended previous work and provided further

explanations for the reason for the centralised patterns previously noted for software

teams’ communication networks, and details around core developers’ true roles.

Of final note here is the evidence that core developers expressed a degree of less

desirable judgemental behaviour. While a modest level of this form of attitude is helpful

for promoting innovativeness and critical evaluation among group members, large

amounts of such behaviours are negative and create team tension. Given core

developers’ influence in their team communication, it is pertinent to understand the

circumstances under which these and similar behaviours are revealed. Various events

may impact the attitudes and knowledge behaviours expressed by core developers

which may in turn impact their overall teams’ behavioural climate, and team outcomes.

Thus, an understanding of core developers’ attitudes and the knowledge sharing

behaviours that they contribute through the course of their project would be useful for

informing strategies aimed at maintaining an optimistic and positive team climate, and

ultimately, positive team performance. More generally, such knowledge would reveal

details around when core developers are more or less likely to perform as desired,

during which project phases these practitioners are most influential, and when their

teams are most likely to benefit from their knowledge and experiences. Additionally,

these insights would be useful for understanding the specific traits of less active team

members that are likely to complement these individuals. Furthermore, such

understandings would inform specific project arrangements that are likely to enhance

the satisfaction of core developers and inform project governance, and team strategies

aimed at composing software teams in readiness for core developers’ less productive

periods. These understandings are provided in the following section (Section 5.3),

where the ways in which core developers’ attitudes, knowledge sharing behaviours and

task performance change over the course of their project are discussed.

189

Figure 30. Collaboration patterns of successful globally distributed agile software teams and the true role of core developers

190

5.3 Changes in core developers’ attitudes, knowledge sharing and
task performance (Phase 3)

In line with the previous findings of Bird et al. (2006a), discussions above confirm that

core developers communicated the most in the Jazz project, and those that had frequent

discourses were also integral to their teams’ actual software development portfolios

(Cataldo & Herbsleb, 2008) (refer to Section 5.1). Overall, it was observed that Jazz

core developers demonstrated all specialties, including high levels of interpersonal,

organizational and social skills (refer to Section 5.2). Results in Section 4.3 suggest,

however, that core developers’ specialties were enacted in different ways during

different project phases, tending to align with the teams’ needs and their involvement in

task performance. This section discusses these results (those in Section 4.3), and

examines the changes in core developers’ efforts over the duration of their project by

considering RQ8 – RQ13 in turn.

First, Section 5.3.1 discusses the way core developers’ attitudes change over their

project and answers RQ8 (Do core developers’ attitudes change as their project

progresses?). Section 5.3.2 then provides a discussion around the way core developers

share knowledge over their project, in order to address RQ9 (How do core developers

share knowledge over the course of their project?). RQ10 (What initial team

arrangements lead to developers becoming hubs in their teams?) is discussed in the third

section (Section 5.3.3), and the fourth section (Section 5.3.4) discusses RQ11 (How do

core developers contribute to task performance over their project?). The fifth section

(Section 5.3.5) presents a discussion of the way core developers attitudes are linked to

their task performance and so answers RQ12 (Are core developers’ contributions to task

performance linked to their attitudes?). Section 5.3.6 then considers the discussion for

the final question, RQ13 (Are core developers’ contributions to task performance linked

to their contribution of knowledge?). Finally, a synopsis of the discussions that are

presented throughout this section is provided in Section 5.3.7.

5.3.1 Changes in attitudes (RQ8)

For the most part IBM Rational Jazz core developers communicated consistent attitudes

over the duration of their project, but they were most cognitive at project initiation, and

exhibited the most individualistic and negative attitudes when they were least involved

in task (WI) changes. Overall, certain attitudes were more pronounced in specific

project phases. For instance, Jazz core developers became more self-focused as their

191

project progressed, but these individuals also exhibited high levels of collective

attitudes over their project. As noted in Section 5.2.1, those exhibiting individualistic

behaviours are said to affect team spirit and these traits have a negative effect on team

cohesion (Benne & Sheats, 1948), while the opposite is shown for those that are

collective (Pennebaker & Lay, 2002). It is contended that these practitioners’ heavy

development portfolios in the middle project phases and the challenges of release

pressures towards project completion were responsible for the higher levels of self-

focused behaviour at these times. The rigours associated with release pressures have

been shown previously to affect team optimism (Rigby & Hassan, 2007). In the Jazz

context, however, core developers communicated the least at project completion, and so

the higher levels of self-focus may have minimal negative impact on their teams at this

time. This form of attitude may not be desirable during the early-mid and late-mid

phases, when core developers are most dominant, and thus, are highly likely to affect

overall team climate and trust (Dullemond et al., 2009; Lee & Yong, 2010). A project

manager observing these trends should be particularly vigilant and encourage active

contributions from the wider team during these times, as core developers generally

occupy the centre of coordination action and their teams’ knowledge processes (Leavitt,

1951) (refer to Section 5.1 and Section 5.2). Otherwise, core developers’ self-focused

attitudes could potentially affect overall team morale in a negative way. Given the

reduced opportunities for informal (and face-to-face) communication in AGSD, such

attitudes may also strain team trust.

Core developers expressed the most cognitive attitudes at the start of their project, at a

time when project features were being initiated. These findings are positive, given the

need for project leaders to be perceptive and insightful during early project scoping

activities. Such knowledge may become critical to team awareness, and later efforts

related to project oversight and monitoring (Damian & Zowghi, 2003; Prikladnicki et

al., 2003; Rudzki et al., 2010), which are often challenged by distance. The wider Jazz

team is also likely to benefit from these practitioners’ higher levels of insight at this

time and so it would be prudent for project managers to implement strategies aimed at

encouraging the simultaneous engagement of less active developers at project inception.

Results in Section 4.3.1 show that while Jazz core developers were highly task-focused

(Benne & Sheats, 1948) overall, these attitudes were most evident in the latter phases of

their project. These findings are particularly informative for the end phase given core

developers’ lower levels of communication and task performance at this time. As noted

192

previously, while project release pressure is likely to promote such urgency among the

core developers, this finding supports the view that these practitioners were also

motivated to see their project through even when they were not entirely in control. As

noted in Section 5.2.1 such strong team commitment is linked to a sentimental

attachment to team goals (Allen & Meyer, 1990; Morgan & Hunt, 1994), and is

particularly fitting for overall team performance.

Relatively speaking, core developers were also most negative and cynical towards

project closure. These findings coincide with the results for the expression of

individualistic and self-focused attitudes in Section 4.3.1. Like individualistic attitudes

(Pennebaker & Lay, 2002), negative behaviour is counterproductive for team work

(Goldberg, 1981) (noted in Section 5.2.1). However, positive and social language use is

an indicator of team friendliness (Benne & Sheats, 1948), and core developers also used

significant amounts of these forms of language throughout their project (although these

processes were less evident in the last project phase). Individuals that are motivated and

operate in environments with positive social ambience are happy to contribute (Chang

et al., 2013). These forms of language were especially pronounced in the early phases

for core developers, a time when interpersonal skills are critical to team formation and

establishing team dynamics (Downey, 2009). Given the likely establishment of positive

team norms between core developers and the rest of their teams in the early project

phases, the wider team may be more tolerant of core developers’ frustrations at project

completion. These higher levels of social and positive processes may also offset the

more cynical attitudes. However, as noted above, keen participation (including clear

communication) and availability of the wider team may go some way to reducing

tension and coordination breakdowns (Herbsleb & Roberts, 2006) and enhance team

spirit (and trust) around project completion for core developers. These discussions are

extended in the following section (Section 5.3.2), where core developers’ changes in

knowledge sharing behaviours over the course of their project are examined from a

directed CA perspective.

5.3.2 Changes in knowledge sharing (RQ9)

While core developers exhibited higher levels of some specific knowledge sharing

behaviours at project start and completion, overall, these members shared more

knowledge in the middle phases of their project. Additionally, the more software

development IBM Rational Jazz core developers performed, the more they were

193

required to provide knowledge to their teams. These findings support this proposition,

as put forward in Section 5.1.4 and Section 5.2.2. The contextual results in Section 4.3.2

show that core developers were integrally involved in their project (Licorish &

MacDonell, 2013c), and that Jazz core developers were most dominant during the

middle phases of their project. Additionally, these practitioners asked more questions at

project start and project completion. The high level of questioning at project initiation is

understandable given the need to clarify and delineate system requirements and team

understandings at this time. The elevated level of questioning at project completion

coincides with core developers’ reduced levels of project communication and task

participation. The questions at this time may be aimed at the need for context

awareness, given this reduced overall involvement. This finding supports the view that

core developers were anxious for their project to succeed even when they were not so

heavily engaged (also posited in Section 5.3.1). Highly curious individuals are not able

to manage their desire for discovering new knowledge (Denning, 2012), and these

individuals generally tend to make many inquiries.

Findings for Answers in Section 4.3.2 were the reverse; it was observed that core

developers provided most answers to their teams during the middle phases, when they

were most active. These results demonstrate that although Jazz core developers were

focused on their individual tasks they also kept the teams’ agendas in mind (Belbin,

2002; Pennebaker et al., 2003; Tuckman, 1965). This assessment is supported by the

other knowledge dimension analyses (refer to Section 4.3.2) – this pattern of

involvement is maintained for core developers’ contributions of Information, ideas

(Discussion) and suggestions (Scaffolding) to their teams, which were most frequently

provided during the middle phases of the project.

In fact, results for all of the other knowledge measures (except Reflection which did not

follow a consistent pattern) demonstrate that core developers were indeed most active

during the middle phases, when they were also highly involved in task changes. In

particular, core developers expressed most judgemental behaviours (Comments) during

the middle project phases. Although excessive debate and judgmental behaviours are

posited to be harmful, as noted earlier in Section 5.2.2, some level of task-related

conflict is also said to be good for enhancing innovativeness and critical evaluation

among group members (Tjosvold, 2008). Additionally, given that core developers were

most judgemental when they were most active in their teams, these behaviours may not

necessarily present a threat to overall team performance. In fact, it was generally

194

expected that core developers would express such attitudes when they were not involved

in task (WI) changes due to frustration (as was noted for negativity in Section 5.3.1).

However, the evidence revealed in Section 4.3.2 does not support this assessment.

These findings indeed suggest that critical evaluations may aid task performance.

Support for the view that the higher level of debates that were contributed by core

developers during the middle phases of their project may be more evaluative than

cynical is seen in the findings for the expression of Gratitude and Off task utterances.

Although core developers did not communicate heavily about personal issues, Section

4.3.2 confirms that core developers communicated socially (Off task) and expressed

more gratitude when they were most actively involved in solving software tasks.

Overall, these findings show that technical needs drove IBM Rational Jazz teams’

knowledge sharing (Cataldo & Herbsleb, 2008), such that task involvement appears to

have a general influence on core developers’ need to provide knowledge and

information to their teammates. Such an understanding was established by an early

study considering human factors during software development (Curtis, 1981). Thus,

communication hubs may not necessarily be formally denoted as communication and

coordination specialists (Cataldo & Herbsleb, 2008). Rather, the findings in this work

indicate that these individuals communicate because of their actual development

portfolio. While the presence of such individuals in teams is no doubt beneficial, project

managers should also be vigilant about the team’s possible over-reliance on these

members, which may negatively affect the quality of the knowledge core developers are

able to provide. Poor quality information may lead to irreparable damage in distributed

development settings, particularly due to reduced opportunities available for

(re)orientation to maintain the shared understanding (Prikladnicki et al., 2003; Tiwana,

2004).

This evidence of the way core developers provide knowledge to their teams and their

general interest in team performance may be linked to their teams’ or tasks’ demands

(Hackman, 1986). However, previous work has also found that such behaviours may be

intrinsic (Belbin, 2002; Chang et al., 2013; W. Oh et al., 2006). This issue is examined

further in the following section (Section 5.3.3).

195

5.3.3 Becoming team hubs (RQ10)

IBM Rational Jazz core developers exhibited cognitive competencies at project

initiation; however, the position these practitioners occupy in their teams is linked to

their active involvement in task changes. This involvement drives the need for their

distinct presence in their teams’ knowledge sharing networks. It was revealed in Section

4.3.2 that core developers asked more questions when they were least involved in task

changes, and these practitioners were required to provide more help when they made

more task changes. During periods of core developers’ reduced levels of involvement

their less active counterparts made substantial contributions. As a result, there was a

need for ‘re-orientation’ of core developers regarding these activities as evidenced by

the lower levels of task involvement and higher proportion of questioning towards

project completion (refer to Section 4.3.2 and Section 4.3.3). The need to await

feedback is likely to promote uneasiness and frustrate core developers. This issue may

not be easily avoided in globally distributed agile software development settings,

however. Thus, access to multiple communication channels is important in reducing

such dissatisfaction (Damian & Zowghi, 2003). The availability of a variety of

communication channels would also be beneficial to support reflections conducted at

project completion (refer to Section 4.3.3), comprising information that will likely be

relevant to future developments.

Results in this work show that, regardless of their role title, Jazz core developers

continuously maintained awareness of and were anxious regarding their teams’ overall

progress (refer to Section 5.3.2 for further details). Additionally, while core developers

delegated, they were also happy to provide answers and help to their peers. This level of

project ownership is especially surprising given that more than 50% of the core

developers in this study occupied the nominal ‘programmer’ role (refer to Section

4.1.3). Cataldo and Herbsleb (2008) also found non-lead team members at the centre of

project communication and task changes. These findings indicate that IBM Rational

Jazz core developers were highly skilled and motivated in their teams (Sach et al.,

2011). Findings show that core developers provided more knowledge to their teams

when they made higher levels of task changes. Thus, the high levels of team reliance

may in part be responsible for core developers’ distinct presence in their project’s

communications. However, these individuals also expressed high levels of cognitive

traits (Feldt et al., 2010) at project initiation suggesting that they possessed some unique

insightful characteristics, and these were intrinsic.

196

Core developers’ contributions to task changes have been noted thus far in Section

5.3.1, Section 5.3.2 and in this section (Section 5.3.3). However, references to this

subject were generally made to support the assessment of other issues (e.g., the way

core developers share knowledge over the course of their project). This issue is now

properly examined in the following section (Section 5.3.4).

5.3.4 Changes in task performance (RQ11)

IBM Rational Jazz core developers’ involvement in task performance increased steadily

over the first three project phases, and decreased towards project completion. In Section

4.1.3 it is shown that, overall, the core developers in this study initiated more than 41%

of their teams’ software tasks, they made more than 69% of the changes to these tasks,

and resolved nearly 75% of all software tasks undertaken by their teams (Licorish &

MacDonell, 2013c). These findings are revealing when considering that core developers

comprised just over 10% of their teams’ 146 practitioners (refer to Section 4.1.3). In

Section 4.3.3 results for core developers’ involvement in task performance over the

course of their project substantiate the project snapshot results. As noted above, IBM

Rational Jazz core developers were most active in the middle phases of their project. In

particular, these practitioners made the highest number of task (WI) changes in the late-

mid stage of their project, with task changes tending to be stable, and much lower,

during their project’s start and end phases. Overall, core developers contributed the

fewest number of task changes towards project completion. While this evidence was

previously linked to the increasing level of task difficulty encountered as software

projects progress (Cataldo & Herbsleb, 2008), the trend of the results over the first three

project phases in this work does not support this position. It may instead be contended,

given the reduction in communication (refer to Table 17), that core developers were

involved in other work outside of the repository towards project completion. Future

research employing complementary interview-related techniques would help to provide

additional insights into the reasons for such a pattern.

The patterns noted for core developers’ involvement in task changes may be linked to

their attitudes. In particular, when these members express specific moods they may be

more or less inclined to perform. Various events may modify team atmosphere which

may result in both negative and positive team outcomes (Rigby & Hassan, 2007). Such

knowledge would be useful for informing software project governance. This issue is

considered next in Section 5.3.5.

197

5.3.5 Attitudes and task performance (RQ12)

Core developers were most actively involved in task changes when they were work

focussed. However, overall, results in Section 4.3.4 do not provide a conclusive link

between core developers’ attitudes and their contribution to software tasks. Apart from

work related focus, there were some linkages between task (WI) changes and the

expression of some other specific behaviour.

For instance, although a small negative correlation between core developers’ use of

collective language and the number of changes they made was discovered in Section

4.3.4, this result was not significant. While it would be rational for core developers to

express more collective attitudes (Inkpen & Tsang, 2005; Levin & Cross, 2004;

Pennebaker & Lay, 2002) when relying on others for help (and this was evident to an

extent in the results), this evidence was not strong. Opposite patterns of results were

observed for the cognitive attitudes. When core developers communicated higher

amounts of insightful language, they made more task changes, and when these

individuals communicated with higher levels of discrepancy language they made fewer

task changes (De Vries et al., 2006). Insightful language comprises words such as

“think”, “consider”, “determine”, and “idea” (Pennebaker & King, 1999). It could be

expected that there would be elevated use of such words when assistance is being

provided (e.g., “you should consider using session variables instead of cookies to

maintain state across the web pages” or “I think the bug you are now noticing was

observed after last night’s build”), as was seen for core developers in the early-mid and

late-mid phases of their project. Thus, this evidence provides confirmation of the results

that core developers were involved in higher levels of knowledge sharing when they

made more task changes (De Vries et al., 2006).

Discrepancy language comprises words such as “should”, “prefer”, “needed”, and

“regardless” (Pennebaker & King, 1999). Such words are likely to be used to offer

suggestions (e.g., “the patch I created for bug B should also work for bug C”) or to

show preference for a specific option (e.g., “I prefer option E over option F”). Thus, the

finding that when core developers used higher amounts of discrepancy words they made

fewer task (WI) changes can be explained. However, overall, results in Section 4.3.2

were not definitive; this question would benefit from additional research, comprising a

much larger sample of artefacts.

198

That said, given the correlation results for work-related language use and task

performance in Section 4.3.4, profound use of this form of language by core developers

may be a signal for the less active practitioners to reduce their level of reliance on these

members. Additionally, evidence of this form of language process may also result in the

provision of support for core developers, should they need such assistance.

Furthermore, excessive use of work-related utterances may also stimulate project

managers’ interest, and serve as a warning sign that project leaders should be vigilant

about the quality of the feedback that core developers are able to provide the general

team at this time (noted in Section 5.3.2). These results are triangulated with those that

are discussed in the following section (Section 5.3.6).

5.3.6 Knowledge sharing and task performance (RQ13)

IBM Rational Jazz core developers’ performance in task changes is related to their

contribution of knowledge (Geen, 1991; Inkpen & Tsang, 2005; Levin & Cross, 2004).

It was observed that when there were higher levels of questioning from core developers

these practitioners were less active in task changes, tending to rely more on their wider

teams. Thus, strategies aimed at surrounding core developers with competent

communicators would help these practitioners to quickly become familiar with task

knowledge. This would in turn promote overall shared team understanding (Boh,

Slaughter, & Espinosa, 2007), and reduced incidence of coordination breakdowns

(Herbsleb & Roberts, 2006). This may be particularly useful for team synergies in

globally distributed developments, as while it is not entirely clear from the results that

were revealed in this work why core developers demonstrated reduced presence at

specific times of their project (refer to Section 4.3.3), it was evident that these

individuals expressed more unhappiness when they communicated many questions.

This finding suggests that they were indeed dissatisfied with the feedback they received

at times (Goldberg, 1981). In contrast, when core developers were actively involved in

task changes they provided more answers to their wider teams (De Vries et al., 2006). A

similar pattern of results was revealed for Information sharing, Discussion, Scaffolding,

Instruction and Comments. Use of these forms of communication was related to core

developers’ active involvement in task changes (Bock & Kim, 2002).

Overall, the results presented in Section 4.3.5 confirm previous psycholinguistic

theories (Mairesse et al., 2007; Pennebaker & King, 1999) and support the contention

that there is evidence of individuals’ behaviours and attitudes in their communications

199

(Pennebaker et al., 2003), and that word use has a deeper link to individuals’ behaviour

(Bales, 1950b; Geen, 1991; Quigley et al., 2007). For example, it was established that

when IBM Rational Jazz practitioners used words such as “think”, “consider”,

“determine”, and “idea”, they shared more ideas, offered more suggestions and were

involved in more critical evaluations – and did more actual software development.

These findings have implications for software engineering research and practice,

considered in the next chapter (Chapter 6).

5.3.7 Summary

In this section core developers’ attitudes, knowledge sharing behaviours and task

performance were considered over the course of their project. First, Section 5.3.1

discussed the changes in core developers’ attitudes as their project progresses. It was

noted that core developers’ attitudes did not vary extensively over their project.

However, these practitioners were most cognitive at project initiation, and exhibited the

most individualistic and negative attitudes when they were least involved in task (WI)

changes towards project completion. On the other hand core developers exhibited social

and positive attitudes throughout their project. The reduced level of project involvement

for core developers at project completion may result in increased likelihood of

disharmony among their teams, given the higher incidence of less desired attitudes at

this time. This is counterproductive for teamwork, and particularly for global teams

given their reduced opportunities to build and maintain team trust. However, it was

noted that active participation of the less active members towards project completion

would likely mitigate the possible negative effect of core developers’ unhappiness.

Additionally, the consistent expression of social and positive attitudes may also offset

the negative attitudes that were expressed by core developers. Core developers’ higher

level of cognitive processes at project initiation may also benefit the less active team

members. Furthermore, core developers were highly task focused even when they were

not heavily involved in task changes, an indicator that these individuals were indeed

intrinsically driven.

Section 5.3.2 next discussed the way core developers share knowledge over the course

of their project. Core developers exhibited higher levels of some specific knowledge

sharing behaviours at project start and completion; however, overall, these members

shared more knowledge in the middle phases of their project. These practitioners asked

more questions when they were least involved with task changes and provided more

200

answers and overall knowledge to their teams when they were most active. These

contributions also comprised judgemental utterances, which, given the corresponding

evidence of off task communication and gratitude contributed by core developers, may

generally be useful for critical evaluation of others’ suggestions. Given the core

developers’ extensive involvement in their teams’ knowledge processes throughout their

project, project managers are encouraged to be vigilant about the actual quality of the

knowledge these members are able to provide.

Section 5.3.3 considered the initial team arrangements that lead to core developers

becoming hubs in their teams. It was noted that core developers’ actual position in their

team was driven by the number of task changes they made, which in turn influenced

their teams’ dependence for contextual awareness. However, core developers also

exhibited insightful competencies from very early in their project. These discussions

were supplemented by those in Section 5.3.4 which established that core developers

were most actively involved in task changes during the middle phases of their project, a

time when they were also required to provide most knowledge to their teams.

Section 5.3.5 discussed the way core developers’ attitudes were linked to their

involvement in task changes. It was observed that when core developers were most

work-focused they also made more changes. However, overall evidence in this work did

not provide a conclusive link between core developers’ expression of attitudes and their

involvement in task performance. Thus, future work is encouraged to study this issue

further.

Finally, Section 5.3.6 discussed the evidence of a link between core developers’

involvement in task changes and their contribution of knowledge. In particular, these

members asked more questions when they made fewer changes (and when less active

practitioners were more involved). Additionally, core developers provided more

answers and overall knowledge to their teams when they were actively involved in task

performance. Given these findings, it is suggested that core developers should be

surrounded by other capable communicators, and particularly when they are least active.

Such a move would likely reduce the general negativity core developers expressed when

they were least involved in their teams, and may help to maintain positive team climate.

Overall the results in this work show that the way practitioners used language is related

to their performance and involvement in software development. These results confirm

201

that evidence of individuals’ behaviours and attitudes is evident in their

communications. The findings that were revealed in this work have implications for

software engineering research, and particularly those findings aimed at providing

understandings and retrospectives of the software development process. These

implications are considered in the following chapter (Chapter 6).

5.4 Chapter Summary and Explanatory Model

This chapter discussed the results that were presented in Chapter 4 and highlighted the

main findings of this work as are now shown in the explanatory model depicted in

Figure 31 (which extends Figure 30 – note the green segments of the model). These

findings were discussed in relation to previous theories, and while some previous

patterns were confirmed, others were extended. Some patterns had not been observed

previously and so provide the basis from which concrete theories may be derived.

Section 5.1 surmised that distributed teams’ communication patterns are linked to the

approach that is utilised for software development, and regardless of the task type, team

size, or duration of team tasks, only a few individuals dominate team interaction. It was

observed that communication patterns established early were maintained throughout the

software development project, and network density did not reflect accurately on

participants’ reachability (captured in the blue aspects of model in Figure 31).

Additionally, it was noted that successful globally distributed agile software teams are

highly connected, and this pattern is likely to mitigate for knowledge loss in centralised

networks. Furthermore, Section 5.1 disclosed that practitioners who communicate

heavily are also similarly involved in software development, and formal role assignment

does not limit team members’ performance once individuals are operating in a fluid

organisational environment. Finally, evidence presented demonstrated that, regardless

of the nature of the software tasks or team size, developers operating in all software

roles are required to communicate, and particularly if such individuals were actively

involved in software development (again noting the blue segments of the model in

Figure 31).

Section 5.2 outlined that beyond actual involvement in software development, core

developers exhibited attitudes that were ideal for maintaining team spirit and driving

their teams’ performance. These members were highly motivated and played a key role

in their teams’ outcome-oriented focus. Additionally, it was observed that successful

distributed teams exhibit a range of behaviours, being both social and positive and task-

202

based. Such behaviours were acted out by various groups of practitioners and may have

a balancing effect on team climate. Overall, Section 5.2 established that core developers

occupied many informal roles (including informal leadership), and exhibited

intrapersonal, interpersonal and organisation skills. Thus, formal role assignment may

not predict communication and coordination requirements, and evidence shows that task

involvement drives the need for communication and coordination (refer to the orange

aspects of the model in Figure 31). Finally, it was shown that successful globally

distributed agile software teams are highly task-focused, and that frequency-based

analysis techniques do not capture fully the details of team dynamics during software

development.

In the final section (Section 5.3) it was revealed that core developers expressed

relatively consistent attitudes over the course of their project, but these members were

most cognitive at project initiation and expressed some negative attitudes towards

project closure. Core developers were most active in knowledge sharing and task

performance during the middle phases of their project (refer to the green aspects of the

model in Figure 31). Overall, the discussions above demonstrated that core developers’

involvement in their teams was linked to their teams’ demands, but these members also

possessed cognitive abilities, and the more software development core developers did,

the more they were required to provide knowledge and awareness to their wider teams.

It was established that core developers’ task performance is linked to their expression of

work-related attitudes and their involvement in knowledge sharing (abstracted in green

segments of the model in Figure 31). Finally, evidence in Section 5.3 confirmed that

software practitioners’ language processes are related to their involvement in knowledge

sharing and task performance; refer to Figure 31 for abstractions.

These findings are evaluated in the following chapter (Chapter 6), and particularly, the

implications of these findings for software project governance, software engineering

theory and collaboration and process tools design are outlined.

203

Figure 31. Collaboration patterns of successful globally distributed agile software teams, the true role of core developers and changes in core developers’
attitudes, knowledge sharing and task performance

204

Chapter 6. Conclusions

The importance of studying the human factors relevant to software development has

been emphasised throughout this thesis. Research in this space is posited to be

particularly relevant for contemporary and future software engineering endeavours

given inadequately performing software teams, even after a raft of recommendations in

relation to software methods and tools. This research set out to study software human

factors, and particularly those of globally distributed agile teams, largely through the

comprehensive examination of their communication artefacts through multiple lenses.

This chapter brings the research to a close, and provides the study’s conclusions. First,

Section 6.1 provides retrospections on the main findings that were revealed in this

study. These retrospections form the basis for the other sections that follow. Section 6.2

outlines the novel research contributions provided by this work, considering how the

work enhances theory, software engineering literature and pragmatic research in

software engineering. This study is then evaluated and the work’s limitations and threats

are acknowledged in Section 6.3. The thesis then comes to a close with a summary of

the implications for practice and research in Section 6.4.

6.1 Retrospections

This section provides a review of the results and discussions that were presented in

Chapter 4 and Chapter 5. First, Section 6.1.1 summarises this study’s outcomes for the

enquiries around the collaboration patterns of successful globally distributed agile

teams. This summary considers the findings that were aimed at answering research

questions RQ1 – RQ 5. Section 6.1.2 then provides retrospections for the true role of

core developers, largely considering the study outcomes for research questions RQ6 and

RQ7. Finally, results and discussions that were aimed at answering RQ8 – RQ13, which

considered task performance and its relationship to various characteristics and

behaviours of core developers, are re-examined in Section 6.1.3.

6.1.1 Collaboration patterns (Phase 1)

In providing insights into the collaboration patterns of successful globally distributed

agile teams, evidence in this work showed that IBM Rational Jazz teams communicated

the most at project start-up and towards project completion (Licorish & MacDonell,

2013d). This finding is fitting for Jazz developments, and more generally for globally

distributed developments where there are likely to be reduced opportunities for

205

communication and project oversight (Damian & Zowghi, 2003; Prikladnicki et al.,

2003; Rudzki et al., 2010). An iterative approach to software development, where most

requirements and features are elaborated in the middle project phases in line with the

need for intensive team communication, may be less ideal for these settings

(Prikladnicki et al., 2003; Tiwana, 2004). Globally distributed agile software

development teams may lessen critical project overhead by reducing project

uncertainties in the early project phase, thereby balancing agility with some levels of

stable planning (Sharma & Kaulgud, 2011). Notwithstanding the specific way Jazz

artefacts were normalised in this work, previous studies have also observed similar

patterns for other global teams (Cataldo et al., 2006; Shihab et al., 2009; Yu et al.,

2011). These findings are not universal however, as others have noted different

communication patterns when studying other global teams (Datta et al., 2011),

suggesting that other communication strategies may also facilitate globally distributed

software development teams’ success.

Another revealing finding of this research was the highly centralised network pattern

noted for all of the ten teams that were studied, regardless of team size, task portfolio or

number of iterations. This pattern has also been noted in other globally distributed

settings (Crowston et al., 2006; Gacek & Arief, 2004; Mockus et al., 2002; Shihab et al.,

2010), suggesting that not everyone needs to aggressively communicate for projects to

succeed. While this pattern is understandable for OSS environments, where

contributors’ motivations are often divergent (Ljungberg, 2000; Markus et al., 2000;

Oreg & Nov, 2008) and there are commonly pre-set hierarchical structures imposed on

those involved (Crowston et al., 2006), the opposite is expected for commercial teams

operating in globally distributed agile settings where practitioners are likely to benefit

from comparable remuneration rewards. In these settings remuneration rewards may

also impact practitioners’ perceived moral obligations (Kankanhalli et al., 2005), and

monitoring mechanisms in commercial environments also enforce communication

(Grinter et al., 1999; Mockus et al., 2002) and other human resource strategies

(Colomo-Palacios et al., 2010; Downey, 2009) that mandate active team involvement

and highly skilled communicators. Thus, the evidence for the highly centralised Jazz

teams’ communication networks is somewhat revealing.

In fact, while the highly centralised pattern was observed for all ten Jazz teams, results

in this work also show that all of the members of these teams were highly connected.

This finding was also unexpected, particularly given previous beliefs around core

206

developers’ important role in maintaining shared understandings (and team connections)

(Crowston et al., 2006; Mockus et al., 2002). In fact, this position has also been long

established in other disciplines (Bavelas, 1950; Leavitt, 1951). However, the results

reported here show that even periphery members can remain highly connected and

involved in knowledge sharing once teams establish strategic communication

configurations. Periphery members were connected through their involvement on

software tasks, whether or not core members were ‘present’. This arrangement may be

particularly useful for globally distributed agile software development teams, where

distance naturally creates barriers to communication and there are likely to be few

avenues for teams to maintain knowledge redundancy (Serce et al., 2009). Thus, an

approach that limits redundant inter-connections among members, but at the same time

ensures connectivity based on task assignment, is likely to reduce the overhead

associated with managing multiple connections (James, 1951). This strategy could also

serve as a cross training mechanism (Highsmith, 2000, 2004), and in the process, should

mitigate loss in tacit knowledge should practitioners leave globally distributed agile

teams (Boehm & Turner, 2003b; Williams & Kessler, 2003).

Findings regarding the communication networks’ connectivity are not replicated in the

task performance findings in this work. Additionally, in line with the centralised

communication pattern noted, task changes were also heavily skewed for all ten Jazz

teams (Licorish & MacDonell, 2013c). In fact, those practitioners that communicated

heavily also maintained a similar level of presence in task (WI) changes. Although this

pattern has been noted for other global teams (Cataldo & Herbsleb, 2008; Crowston et

al., 2006; Robles et al., 2009), there was an associated expectation that highly active

communicators would be project coordinators (Shihab et al., 2010), and so these

members would not necessarily play active roles on software tasks. However, findings

in this research contradict this conjecture, and show that Jazz core communicators are

also core developers (Cataldo & Herbsleb, 2008; Shihab et al., 2010). Accordingly, task

involvement seems to impact the need or tendency to communicate (Cataldo &

Herbsleb, 2008).

In fact, rather than being project coordinators the Jazz core developers occupied various

formal roles, and most were programmers (Licorish & MacDonell, 2013c). This finding

also endorses the viewpoint that active involvement in software tasks is likely to drive

practitioners’ need to communicate. Thus, highly active programmers are likely to

benefit from good communication, teamwork and social skills; a finding that is contrary

207

to previous belief (Acuna et al., 2006; Andre et al., 2011). Findings indicating Jazz

programmers’ high level of involvement in team communication are particularly

surprising given that each Jazz team was led by a formal leader - more than that, all of

the teams studied comprised multiple members occupying both project manager and

team lead roles. This finding indeed suggests that task involvement may impact the

need to communicate (Cataldo & Herbsleb, 2008), as against being driven by

practitioners’ role assignment. This unexpected pattern of involvement in

communication for Jazz practitioners occupying the formal programmer role has also

been observed for teams fixing bugs (Datta et al., 2010). Those operating outside their

formal role are said to be integral to their team’s self-organisation process (Hoda et al.,

2010b), a necessary requirement for mitigating the impacts of geographical and

temporal distances in globally distributed development contexts (Espinosa et al., 2006).

Those behaviours, and particularly the evidence noted for core developers’ actual

involvement in both communication and task performance, also signal that these

members are likely to be driven intrinsically (Chang et al., 2013; Constant et al., 1996).

However, a supportive organisation culture may be necessary for encouraging these

members’ performance, and for enabling practitioners’ output based on their work

demands (Powell, 1990), particularly for globally distributed agile teams.

The retrospections just presented pertain to RQ1 – RQ5 (refer to Section 2.6). These

questions were answered through the preliminary data analysis considered in Section

4.1, which uncovered that Jazz teams communicated most at project start and

completion, a few individuals contributed most of the teams’ communication, Jazz

teams’ communication networks were highly connected through task assignment, core

communicators were also core developers, and formal role assignment did not limit

practitioners’ contributions. While these preliminary findings are insightful, several of

these patterns were also previously noted for other globally distributed teams. That said,

although these findings were noted, and particularly those of the centralised

communication structure and the skewness in practitioners’ task performance, previous

work did not examine in detail the true role of these core developers. This is despite

core developers’ critical role in their teams’ knowledge sharing processes and task

performance, and the potential for such knowledge to inform team composition

strategies (refer to Section 2.7.1). In contrast, this research addressed this gap,

retrospections of which are provided in the following section (Section 6.1.2).

208

6.1.2 The true role of core developers (Phase 2)

While it has been previously discovered that a few developers in a team dominate

project communications and that these individuals make most of the task changes

during their teams’ software projects (Cataldo & Herbsleb, 2008; Crowston et al., 2006;

Gacek & Arief, 2004; Mockus et al., 2002; Shihab et al., 2010), the rationale for this

phenomenon has not been provided. Details around the reasons for these practitioners’

distinct presence and performance, and insights into how these members contribute to

team dynamics, have not been revealed – understandings that are likely to be beneficial

in terms of informing team composition strategies. This study applied psycholinguistic

and directed CA techniques to the study of artefacts from globally distributed agile Jazz

teams to address these gaps.

Findings in this work show that core developers expressed lower amounts of self-

focused attitudes, and these members used more delegation language than their

counterparts. These findings are revealing given core developers’ heavy involvement in

undertaking software tasks. However, this evidence is also positive for Jazz teams given

core developers’ central position in their teams’ communication and their likely impact

on overall team climate (Licorish & MacDonell, 2013c), and particularly for globally

distributed developments where a positive team climate and shared team norms are

necessary to cultivate team trust (Dullemond et al., 2009; Lee & Yong, 2010). Those

that exhibit individualistic attitudes have been shown to negatively affect team

synergies and performance (Benne & Sheats, 1948). In particular, had core developers

exhibited these traits, their teams would likely be affected negatively, as team norms are

generally cultivated by the leaders’ actions (Chang et al., 2013; Denning, 2012). Thus,

the expression of self-focused behaviours by the most influential team members is

likely to impact agile global teams’ behavioural climate negatively, especially given

reduced incidence of face-to-face communication (Chang & Ehrlich, 2007; Espinosa et

al., 2006), and thus, team trust (Al-Ani et al., 2011; Krebs et al., 2006; Zigurs, 2003).

Evidence in this work of high levels of delegation language use by Jazz core developers

suggests that these practitioners assumed leadership status in their teams. This finding is

insightful when considering that core developers comprised only 15 of the 146

contributors in the ten teams, and fewer than 50% of these members were formal team

leaders.

209

Apart from delegation, Jazz core developers also exhibited strong task focus. Role

theories have shown that individuals that exhibit this trait are often keen on task

performance and consequently they drive their teams towards achieving project targets

(Belbin, 2002; Benne & Sheats, 1948). These behavioural processes are also associated

with ambition and commitment (Chang et al., 2013; Denning, 2012). Given Jazz core

developers’ expressions of these desirable traits, and their central position in their

teams, these Jazz teams were likely to cultivate achievement-driven team norms

(Denning, 2012). Such a team atmosphere may be ideal for globally distributed agile

environments. Of particular significance is the previous finding that experience and

education did not account for core developers’ demeanour (Cataldo et al., 2006; Curtis

et al., 1988), thus, Jazz core developers’ commitment to their teams’ performance is

likely to be driven by more intrinsic motivations (Chang et al., 2013).

Jazz’s less active contributors expressed cognitive attitudes, and exhibited collective

focus. Cognitive attitudes have been linked previously to task performance (Andre et

al., 2011), whereas, collective processes are linked to team focus and shared team norms

(Denning, 2012; Tuckman, 1965). These behaviours are desirable for teams’

performance, and may be particularly beneficial for globally distributed agile teams.

Overall, Jazz teams demonstrated a mix of both social and task-focused attitudes. These

traits are said to have a balancing effect during team work (Benne & Sheats, 1948).

Those exhibiting social traits contribute towards positive group climate, promoting

harmonizing and compromising team norms, while task-driven behaviours are generally

associated with task success, contributing and initiating ideas and knowledge towards

task completion. These behavioural processes have a positive influence on team morale

and task outcomes (Denning, 2012).

Results in this research have further revealed that core developers engaged heavily in

vertical communication, and contributed expression related to team organisation and

task assignment (Licorish & MacDonell, 2013c). Such forms of communication are

associated with those in power and so are normally befitting of those in leadership

positions or those assigned to coordination roles (Andre et al., 2011). Core developers

also acted as information hubs and offered their teams a diverse range of solutions and

advice. These practitioners’ high levels of message contribution made them very aware

of their project landscape which showed in the number of questions they answered and

the volume of information they contributed (Kanawattanachai & Yoo, 2007; Palazzolo

et al., 2006). Additionally, in line with the task involvement assessment noted in Section

210

6.1.1, evidence derived from the contextual analysis conducted in this work also shows

that core developers occupied problem solving and skill based roles; that is, roles

concerned with the practical translation and application of concepts and plans developed

by the team and putting forward ideas and strategies for achieving the objectives

adopted by the team (Belbin, 2002). Furthermore, in support of the linguistic analysis

results indicating low levels of individualistic attitudes, contextual analysis results show

that core developers were interpersonal (Downey, 2009).

The presence of core developers was no doubt critical for their globally distributed agile

teams to maintain outcome-oriented and shared team norms. That said, core developers

also exhibited some judgemental attitudes, behaviours that are positive for enhancing

innovativeness and critical evaluation among group members (Tjosvold, 2008);

however, when excessive, such behaviours may become counterproductive (Belbin,

2002; Benne & Sheats, 1948), and so further analysis (reviewed in Section 6.1.3) to

understand how and when these behaviours become pronounced was appropriate.

Overall, as a group, Jazz developers (core and others) spent most of their time engaging

one another in regard to software tasks. This keen interest in task outcomes is pleasing

given that these teams were separated by distance. These findings also indeed suggest

that core developers positively influenced their teams’ behavioural norms in that these

members were highly task focused, and a task-driven outlook may be a positive sign for

team performance. That said, however, the high intensity of task-focused

communication suggests that Jazz teams would benefit from tools that enable

communication prioritisation. In fact, such a capability may generally support globally

distributed agile software teams, and particularly those that need to maintain task focus.

The retrospections above were aimed at providing reflections regarding RQ6 and RQ7

(refer to Section 2.7.1). These questions were answered through the overall project

snapshot analyses, comprising linguistic analysis and directed content analysis results as

presented in Section 4.2. Evidence in this work discovered that Jazz core developers

exhibited behaviours that are integral for maintaining collective project visions, task

performance and team dynamics. It was also revealed that core developers occupied

various informal roles in their teams, and they were central to their teams’ actual task

coordination and knowledge sharing. Further, it was observed that, as a group, Jazz

developers spent most of their communication effort engaging about software tasks.

Contextual findings in this work supported the preliminary proposition that Jazz core

211

developers’ performance is directly related to an organizational environment that

promotes informal and organic work structures. This form of organization configuration

may be necessary for agile teams, and especially for distributed developments.

While core developers were no doubt invaluable to their teams’ performance, these

members were also seen to exhibit some judgemental attitudes. When contributed in

large amounts, these behaviours may be undesirable for task performance. Additionally,

since there may be some initial team arrangements that caused core developers to

become hubs in their teams, knowledge of what motivated core developers could be

invaluable in coordinating efforts aimed at detecting and moulding such ‘software

gems’. The next stage of the analysis therefore investigated how core developers’

attitudes and knowledge sharing behaviours change over time and the relationship

between attitudes, knowledge sharing behaviours and task performance. These

retrospections are provided in the following section (Section 6.1.3).

6.1.3 Changes in core developers’ attitudes, knowledge sharing and task
performance (Phase 3)

In extending the reviews above (refer to Section 6.1.1 and Section 6.1.2) this section

considers the retrospections regarding changes in core developers’ attitudes, knowledge

sharing behaviours and task performance, and the way these are related. Findings for the

way core developers expressed attitudes over the course of their project show that core

developers exhibited relatively stable feelings during their project, but expressed most

desirable team attitudes at project inception and were most cynical towards project

completion. While software practitioners were previously found to exhibit less

optimism as their project progressed (Rigby & Hassan, 2007), suggesting that core

developers’ less desirable attitudes at project closure may have been related to release

pressures or increasing levels of task difficulty (Cataldo & Herbsleb, 2008), evidence in

this work also revealed that these members were less engaged in communication and

task changes when they exhibited their dissatisfaction. Taken together, these findings

suggest that core developers were potentially frustrated at their reduced involvement

and likely discontented with the feedback they received from the wider team during

their less active periods. Additionally, of particular note is the evidence that core

developers also exhibited their highest level of task-focus in their communications when

they were least involved with their teams. Such a finding confirmed that these members

were highly motivated, and were keen on driving their teams forward (Allen & Meyer,

1990; Morgan & Hunt, 1994). While the negative attitudes expressed by core

212

developers towards project completion are unhelpful for team climate (Benne & Sheats,

1948; Goldberg, 1981), and particularly given the central position these practitioners

occupied in their teams’ communications (Licorish & MacDonell, 2013c), core

developers also expressed high levels of social and positive attitudes throughout their

project, and more so at project start-up. Such attitudes are critical to team formation and

establishing team dynamics (Downey, 2009; Tuckman, 1965), which may mitigate the

impact of later negativity and team issues. Additionally, given that core developers were

least involved in their teams’ communication towards project completion, their negative

behaviours at this time perhaps had the least harmful impact on their teams’ behavioural

norms. That said, however, negative behaviours are not ideal for globally distributed

agile software developments given the constraints introduced by distance in these

setting (Chang & Ehrlich, 2007; Espinosa et al., 2006), and so, wider team participation

should be encouraged during core developers’ least active periods to mitigate the likely

negative effects of these members’ unhappiness.

Jazz core developers shared most of their knowledge during the middle project phases,

and these members were most active in contributing to their teams’ knowledge pools

when they were performing task (feature) changes. Jazz core developers also asked

questions primarily at project start and project completion. While a large number of

questions at project start is understandable given the need for project scoping and

requirements clarification at this time, core developers’ high level of questions at

project completion coincided with their reduced presence. This evidence supported the

assessment that these members’ expression of negative attitudes was related to their

limited involvement at project completion, and their desire to maintain team

performance (cf. core developers’ task focus attitudes at project completion) (Kline &

Peters, 1991; Mowday et al., 1979). Results in this work also demonstrated that core

developers’ expressions of judgemental behaviours were aligned with their active

involvement in task performance, suggesting that critical evaluations may aid in task

performance (Tjosvold, 2008) during globally distributed agile projects. These critical

evaluations are likely to result in innovative solutions.

In terms of the initial team arrangements that influenced core developers’ distinct

performance in their teams, results in this work revealed that these members exhibited

cognitive competencies at project initiation; however, the position these practitioners

occupied in their teams was linked to their active involvement in task changes. This

involvement drove the need for core developers’ distinct presence in their teams’

213

knowledge sharing networks. In particular, these members were most active in their

teams’ communication when they also made most task changes, tending to also share

most knowledge and contribute most positively to team climate. The opposite is noted

when core developers were least involved. This finding has implications for globally

distributed agile software project governance, and particularly for the management of

software teams’ tacit knowledge (considered later in this chapter).

In fact, although this work did not provide a conclusive link between core developers’

expression of attitudes and their involvement in task changes, results show that core

developers contributed most changes when they used more work-related terms. These

results provide some support for the linkage between attitudes and team performance, in

support of social motivation theories (Bock & Kim, 2002; Geen, 1991; Inkpen & Tsang,

2005; Levin & Cross, 2004; Quigley et al., 2007). More conclusive findings were drawn

from this research in relation to core developers’ knowledge sharing behaviours and

their involvement in task performance. For instance, evidence presented here showed

that when there were higher levels of questioning from core developers these

practitioners were less active in task changes, tending to rely more on their wider teams.

This evidence supported the conjecture above that core developers were unhappy due to

their lack of awareness. Perhaps they were indeed dissatisfied with the feedback they

received at this time (Goldberg, 1981). In contrast, when core developers were actively

involved in task changes they provided more answers, information, ideas, and

instructions.

This section has provided retrospections around the findings related to RQ8 – RQ13.

Linguistic analysis and directed content analysis techniques were used to study core

developers’ artefacts using a longitudinal approach to address these questions. Findings

from these analyses indicated that core developers contributed relatively stable attitudes

over the course of their project, these members were most active in knowledge sharing

during the middle phase of their project and their attitudes and involvement in

knowledge sharing were linked to the demands of their wider teams. These practitioners

also brought high levels of skills and cognitive characteristics to their teams. These

individuals started their project providing high levels of ideas, suggestions, information,

comments, instructions and answers, and quickly became the centre of their teams’

knowledge activities as the Jazz project progressed. These patterns were related to core

developers’ actual involvement in task (WI) changes – the more changes core

developers performed the more knowledge they provided. When these practitioners

214

were least involved in communication and task changes, they asked more questions and

exhibited negative team attitudes, suggesting that they were dissatisfied with the

feedback they received from the wider team. These findings have implications for future

research, software project governance and collaboration and process tool enhancements.

These issues are considered in Section 6.4. Prior to their consideration, the following

section (Section 6.2) outlines this research’s contributions, and Section 6.3

acknowledges this study’s limitations and threats.

6.2 Research Contributions

This section outlines the novel contributions that have been made as a result of this

research. In terms of the contributions to theory, this research provides conjecture that

may form the basis of initial explanation theories, comprising multiple aspects related to

the collaboration patterns of successful globally distributed agile teams and the way

core developers contribute to their teams’ dynamics. These contributions are outlined in

Section 6.2.1. The contributions that this work provides to the software engineering

literature are summarised in Section 6.2.2, primarily comprising extensions to the

literature around core developers’ contributions to team dynamics. Section 6.2.3 finally

summarises this work’s contributions to pragmatic research, with some particular

suggestions for those studying software repository data.

6.2.1 Contributions to Theory

Theories take different shapes and forms depending on the paradigm under

consideration. While the process of theorising is well established in other disciplines

(e.g., natural sciences (Kuhn, 1970) and psychology and social sciences (Davis, 1971;

Dubin, 1978)), there is less focus on this issue in software engineering (Hannay et al.,

2007). Thus, some researchers have argued that this lack of appreciation for the theory

generation process has often led to poor research outcomes, and the immaturity of the

software engineering discipline (Johnson et al., 2012). In contrast, research practitioners

in the IS discipline tend to place more emphasis on the theorising process (Hannay et

al., 2007; Morrison & George, 1995), and have also provided frameworks for theorising

that can encompass software engineering research (Gregor, 2006). These frameworks

were used to inform the theoretical basis that guided the generation of this study’s

research questions (refer to Chapter 2), and the theory formulation process (refer to

Section 3.5).

215

Of the various theoretical representations that are presented by Gregor (2006), this work

contributes initial conjectures that may form the basis of explanation theories (in

addition to confirmations). Theories that are generated by empirical software

engineering research typically take this form (Hannay et al., 2007), and generally

provide understandings of the phenomena under consideration (Gregor, 2006). The

conjectures that may form future explanation theories in this work are aligned with the

multistage analysis approach adopted in this case study, comprising both confirmatory

and exploratory aspects (refer to Section 3.4).

Theoretical contributions from the confirmatory analysis relate to the understanding of

the collaboration patterns of successful globally distributed agile teams, as aligned with

the confirmatory analysis that was performed in order to replicate previous findings

(refer to Section 4.1), and inform deeper exploratory analysis. Evidence from the

confirmatory analysis shows that the software development approach determines the

team’s communication patterns, few individuals dominate project interaction, low

density communication networks do not determine teams’ connectivity, early

communication patterns are maintained throughout the software project, all software

developers are required to communicate, especially those that are actively involved in

task changes, successful teams have highly connected communication networks, core

communicators are core developers, and formal role assignment does not limit

practitioners’ performance once the organisation facilitates self-organisation. These

outputs are summarised in Table 21, where the status of each proposition is also

highlighted.

Exploratory aspects of the conjectures that are contributed in this work relate to how

and why core developers contribute to globally distributed agile team dynamics. This

objective was aligned to the second and third phases of the data analysis conducted

during this research. In the second phase core developers’ attitudes and their enacted

roles were studied from a project snapshot perspective (refer to Section 4.2). Evidence

discovered during this phase provides multiple insights to the initial conjectures that

may form explanation theories that are provided here (refer to Table 21). It was revealed

that successful globally distributed teams are social and task driven, formal role

assignment does not determine communication and coordination requirements, core

developers are highly motivated and maintain team spirit, core developers operate

across roles – both organisational and interpersonal, and core developers are integral to

team knowledge, awareness, evaluation and coordination. Additionally, evidence

216

revealed in the second phase of the data analysis confirmed that frequency-based

analysis techniques do not capture the details evident in team dynamics.

Table 21. Summary of theoretical contributions

Study Area Proposition or Conjecture Status

Collaboration patterns of
successful globally distributed
agile software teams

The software development approach determines teams’ communication
patterns.

Confirmation

Early communication patterns are maintained throughout the software
project.

New Conjecture

Successful teams have highly connected communication networks. New Conjecture

Low density communication network does not determine teams’
connectivity.

New Conjecture

Few individuals dominate project interaction. Confirmation

Core communicators are core developers. Confirmation

All software developers are required to communicate, and especially
those that are actively involved in task changes.

New Conjecture

Highly connected networks may mitigate the risk of knowledge loss. New Conjecture

Formal role assignment does not limit practitioners’ performance once
the organisation facilitates self-organisation.

Confirmation

Formal role assignment does not determine communication and
coordination requirement.

New Conjecture

Successful globally distributed teams are social and task driven. New Conjecture

Software practitioners’ language processes are related to their
involvement in knowledge sharing and task performance.

New Conjecture

The true role of core
developers

Core developers are highly motivated and maintain team spirit and task
focus.

New Conjecture

Core developers operate across roles – both organisational and
interpersonal.

New Conjecture

Core developers are integral to team knowledge, awareness, evaluation
and coordination.

New Conjecture

Changes in core developers’
attitudes, knowledge sharing
and task performance

Core developers express stable attitudes over project duration. New Conjecture

Core developers are most active during the middle project phases. New Conjecture

Core developers’ performance is linked to the demands of their teams but
they also demonstrated cognitive abilities.

New Conjecture

Core developers’ task performance influences their need to communicate. New Conjecture

There is a linkage between core developers’ expression of work related
attitudes and their involvement in task changes.

New Conjecture

There is a linkage between core developers’ involvement in knowledge
sharing and their involvement in task changes.

New Conjecture

Analysis techniques for
repository artefacts

Frequency-based analysis techniques do not capture the details of team
dynamics.

Confirmation

The final aspect of this work’s theoretical contribution relate to the changes in core

developers’ attitudes, knowledge sharing and task performance, and how these elements

were associated. These findings were derived through longitudinal analyses of core

developers’ artefacts (refer to Section 4.3). Evidence from these analyses revealed that

core developers express relatively stable attitudes over their project duration, core

developers are most active during the middle project phases, core developers’ task

performance influences their need to communicate, core developers’ performance is

linked to the demands of their teams but they also demonstrate cognitive abilities, and

core developers’ language processes are related to their involvement in knowledge

sharing and task performance. These outputs are also provided in Table 21.

217

While findings from isolated case studies may not adequately deliver theories as such,

such an approach provides early conjectures from which theories may be derived from

future empirical work (Potts, 1993; Runeson & Host, 2009). Accordingly, the

consolidated model in Figure 31 and the detailed summary in Table 21 represent

propositions; further research should therefore replicate this work to extend these

findings (refer to Section 6.4.2). Such work would also more generally contribute to the

software engineering knowledge base for globally distributed agile software

developments. The specific contributions provided by this work are reviewed next (in

Section 6.2.2).

6.2.2 Contributions to SE Literature

This work provides multiple contributions to the body of software engineering literature

around globally distributed agile team dynamics. First, this work follows previous

studies (Cataldo et al., 2006; Datta et al., 2011; Shihab et al., 2009; Yu et al., 2011), and

provides insights into the collaboration patterns of successful globally distributed agile

teams. Specifically, this study has replicated other works focusing on changes in teams’

communication patterns (Cataldo et al., 2006; Datta et al., 2011; Shihab et al., 2009; Yu

et al., 2011), and has provided insights into teams communication dynamics. Evidence

from this aspect of the work were largely confirmatory. In particular, this work

discovered centralised communication patterns for the teams that were examined, thus,

demonstrating convergence with other works in the globally distributed development

space (Cataldo et al., 2006; Shihab et al., 2009; Yu et al., 2011). However, while the

centralised pattern is noted in the findings of this work, it was also observed that the

globally distributed teams that were studied were highly connected through their task

involvement. This pattern had not been observed previously, and so there is need for

follow up research to ascertain the effectiveness of such a pattern for team knowledge

distribution. This work contributes to the software engineering literature on the way

highly active communicators are involved with task performance, and again, the

evidence in this work converges with those of previous studies which revealed that core

communicators were actually core developers (Cataldo & Herbsleb, 2008; Crowston et

al., 2006; Robles et al., 2009). This evidence was particular surprising given that the

teams studied in this work operated in a commercial rather than open source context.

Furthermore, this work’s assessment of the roles of core developers contributes

understandings to the software engineering literature around self-organising roles and

work structures (Hoda et al., 2010b).

218

In terms of the reason for the centralised pattern noted for globally distributed agile

software development teams, this work has provided understandings through the use of

psycholinguistic (Pennebaker et al., 2007; Pennebaker & King, 1999) and contextual

analysis methods (Henri & Kaye, 1992; Zhu, 1996) regarding the true role of these core

developers (Licorish & MacDonell, 2013c). These explanations represent an extension

of the literature that previously reported this pattern, and particularly those works that

have largely employed frequency-based analysis approaches (Cataldo et al., 2006;

Crowston et al., 2006; Shihab et al., 2009; Yu et al., 2011).

Although this study examined multiple teams of one case organisation, and so the

findings presented therein may not generalise to all software teams (Runeson & Host,

2009) (refer to Section 6.3 for details), this work contributes to the literature around

attitudes and behaviours that are exhibited by successful globally distributed agile

software development teams (Licorish & MacDonell, 2013c). Novel insights into the

attitudes and behaviours of core developers are provided, along with conjectures about

these members’ motivation (Chang et al., 2013; Denning, 2012). Further, this work

provides insights into the roles that are enacted by core developers, and members of

globally distributed agile teams in general. While such evidence have been provided for

software teams along the lines of self-organising principles (Hoda et al., 2010b), this

research represents one of the first attempts to understand the inner details of globally

distributed agile software development teams (Rigby & Hassan (2007) is the only other

study that has used linguistic analysis techniques, one of the approaches that was used

in this work), and particularly, insights into the true role of core developers from the

study of their artefacts.

Additionally, having established core developers’ true role in their teams, this study

explored the way these members’ attitudes and knowledge behaviours change as their

project progresses, the specific team arrangements that are responsible for core

developers’ distinct performance in their teams, how these members are involved in task

(WI) changes over the course of their project and how their behaviours are related to

their involvement in task changes. These understandings provide an extension of the

findings that were introduced in the second phase of the data analysis around core

developers’ true roles (refer to Section 6.1.3 for retrospections) (Licorish & MacDonell,

2013c). While there have been prior efforts aimed at studying the way teams evolve

(Capiluppi et al., 2007; Rowley & Lange, 2007), enquiries in this research represent the

first attempt to examine how core developers contribute to their teams’ process over the

219

course of their project (through the use of deeper text analysis approaches), and how

these members’ organizational, interpersonal and intrapersonal competencies sustain

their project’s health.

Furthermore, this work has provided insights into commercial globally distributed agile

software teams, an enhancement to the more frequently used OSS repositories regularly

extracted to study process issues (Bachmann & Bernstein, 2009; Bird et al., 2006a). As

stated earlier (refer to Section 3.4.1 for details), the challenges with using OSS

repositories are related to the reliability and validity of the data available. Research

evidence has reported poor data quality in repositories of OSS projects (Aune et al.,

2008; Bird et al., 2006a). While data pre-processing techniques are generally used for

improving data quality, concerns remain over the reliability of data in such sources

(Rodriguez et al., 2012). This work was not faced with such issues, and so, the findings

that are provided in this study are likely to be highly reliable (refer to Section 6.3 for

reliability discussions).

Of final note is the contribution provided to the software engineering literature through

the utilisation of contextual analysis techniques to understand team processes. As noted

earlier (and throughout Chapter 2), studies in the software engineering discipline

examining human factors from communication artefacts and repository data have tended

to employ analytical and frequency-based approaches (Abreu & Premraj, 2009; Bird et

al., 2006a). Such approaches align with a technical focus on team processes (Glass et

al., 2002). Although certainly useful, it is generally understood (and there is growing

recognition in SE) that these approaches would benefit from triangulation with more

contextual techniques (Di Penta, 2012; Johnson & Onwuegbuzie, 2004). This view is

also supported by researchers working in the IS discipline (Klein & Myers, 1999),

where tested research approaches in the behavioural sciences, management and

psychology domains have been recommended for use when studying human aspects of

IS processes (Vessey et al., 2002). Additionally, previous work has placed significant

emphasis on the need for longitudinal studies to understand changes in teams’ activities

over time, in addition to the frequently used snapshot or cross-sectional analysis

approaches (Cataldo & Ehrlich, 2012; Hinds & McGrath, 2006). This work’s utilization

of deeper contextual analysis techniques (Licorish & MacDonell, 2013b), and the

incremental systematic approach used for studying Jazz teams artefacts (refer to Section

3.4 for details), from both static and temporal perspectives, also represent contributions

to software engineering literature (Licorish & MacDonell, 2013a). In particular, the

220

approach to embrace the general principles of pragmatism during the examination of

software teams’ artefacts is novel (Licorish & MacDonell, 2013a), and in itself

represents a contribution to the software engineering knowledge base. This issue is

considered further in the following section (Section 6.2.3).

6.2.3 Contribution to Pragmatic Research in SE

Analytical approaches may not adequately reveal the details in human interactions

(Runeson & Host, 2009). While this viewpoint has been expressed repeatedly by those

researching the human factors involved in software development (Easterbrook et al.,

2008; Glass et al., 2002; Goguen, 1993; Klein & Myers, 1999; Ramesh et al., 2004; Yu

et al., 2011), software engineering researchers, and particularly those that explore team

processes from artefacts and repository data, have tended to focus mainly on

mathematically-based analysis techniques (Bird et al., 2006a; Cataldo & Ehrlich, 2012;

Datta et al., 2010; Ehrlich & Cataldo, 2012; Hinds & McGrath, 2006; M. Zhou &

Mockus, 2011). This represents a limitation to the evidence these works are able to

provide, and so, more flexible design strategies are generally encouraged to limits such

threats (Leech & Onwuegbuzie, 2009; Onwuegbuzie & Leech, 2005; Schultz & Hatch,

1996).

This research utilised such a flexible approach, comprising confirmatory and

exploratory techniques under a case study design, and so contributes insights for those

intending to adopt a pragmatic approach in the study of software repository data

(Licorish & MacDonell, 2013a). Combining these techniques in this way helped this

work to uncover multiple perspectives around team dynamics, and so demonstrate the

utility of pragmatism for software engineering research. The employment of such a

pragmatic approach also provided multiple avenues for triangulation, including both

methodological and observer triangulation (Runeson & Host, 2009; Stake, 1995). This

is particularly necessary for investigating how software development is conducted by

individuals, whose behaviours are often nuanced in complex social systems (Goguen,

1993), and particularly when using artefacts (Di Penta, 2012; Robles et al., 2009).

For instance, data pre-processing techniques are generally recommended for

maintaining data quality before data mining software are applied to the given dataset.

The use of these techniques is said to enhance the validity of study results (Larose,

2005; Rodriguez et al., 2012). While this work did not perform data mining to make

predictions or classifications as such, data pre-processing techniques were utilised to

221

explore and extract the Jazz repository. Such techniques are typically used under a

positivist framework, and normally lead to prediction and classification. However,

employing data pre-processing techniques to enhance data quality may not be confined

to studies that are aimed at prediction and classification, and such techniques provide

general utility for research best practice. Output from the data pre-processing stage in

this research informed the sampling process and also provided preliminary insights into

the way successful globally distributed agile teams collaborate, providing the platform

for multiple forms of methodological triangulation.

SNA techniques were subsequently employed to study teams’ interactions, providing an

increment to the methodological triangulation process. There is growing recognition

that exclusively utilising SNA techniques to study interactions restricts the level of

inferences researchers are able to make (Easterbrook et al., 2008; Erlin et al., 2008;

Jamali & Abolhassani, 2006). Accordingly, deeper approaches were used to suppliment

SNA techniques in this work (refer to Table 21 for conjecture). However, prior to the

employment of these deeper techniques this work employed an exploratory approach (in

addition to quantitative measures and statistical analysis techniques) to the study of

team sociograms by qualitatively examining these graphs. Evidence revealed through

these qualitative examinations converged with those drawn from the quantitative

measures, offering this work a further tier of methodological triangulation.

Another layer of methodological triangulation was provided through the use of

linguistic analysis techniques in this work. Application of such a richer textual analysis

technique provided multiple forms of insights that the SNA-related measures did not

previously reveal. Evidence revealed though the use of this technique extended those

provided in previous work and provided further understandings into globally distributed

agile software teams’ dynamics.

Content analysis was then used to overcome the limitations of the linguistic analysis

techniques, and this form of data analysis extended the triangulation efforts, in terms of

both methodological and observer triangulation. Further, the linguistic analysis results

were correlated with the directed CA results in a form of experimental assessment, to

support methodological triangulation efforts. These techniques were combined to

provide multiple insights, and the usage of these techniques support the utility of mixed

method research, and particularly for those considering the study of repository data.

222

In closing this section, no single technique (SNA, linguistic analysis or directed CA)

would reveal the research findings that were revealed in this work through the use of a

mixed method approach. Additionally, the use of a pragmatic approach in this research

reduced the threats associated with exclusively adopting either a confirmatory or

exploratory research design. That said however, this research still suffers from some

shortcomings, and particularly those that typically accompany case studies. This issue is

considered further in the next section (Section 6.3).

6.3 Research Evaluation, Limitations and Threats

Although the findings in this work are novel, this study, like any other case study

(Runeson & Host, 2009), suffers from limitations that may present threats to the work’s

generalisability. Runeson & Host (2009) suggest that the best assessment for the quality

of case studies is a comprehensive evaluation of the study design, data collection,

analysis of the collected data and the reporting of study findings. Similarly, Yin (2003)

suggests that the findings of case studies are meaningful when they are presented with

an assessment of construct validity, internal validity, external validity and reliability.

Perry, Sim, & Easterbrook (2004) recommended that case studies should outline

research questions very early in the study, data collection should exhibit consistency,

inferences should be made from the data in answering research questions, the study

should provide an explanation of the phenomenon, and the study threats and validity

should be addressed in a systematic way.

These processes are all captured in Runeson & Host (2009) guidelines, and are

considered in this work under the research evaluation taxonomy provided in Table 22.

In Table 22, Runeson & Host (2009) checklist items are provided in the first column,

and the second column provides pointers to the specifics steps that were taken in this

work to address the corresponding issue. This measure is combined with Yin (2003)’s

tests for evaluating the quality of case studies which are subsequently provided.

Table 22. Research evaluation taxonomy

Checklist Item Addressed in this study?

Case study design
1. What is the case and its units of analysis?

Refer to Section 3.4

2. Are clear objectives, preliminary research questions, hypotheses
(if any) defined in advance?

Yes (Refer to Section 1.3, Section 1.5, Section 2.6,
Section 2.7.1, Section 2.7.2 and Section 2.7.3)

3. Is the theoretical basis - relation to existing literature or other
cases - defined?

Yes (Refer to Chapter 2)

4. Are the authors’ intentions with the research made clear? Yes (Refer to Section 1.1, Section 1.2, Section 1.3,
Section 1.5, Chapter 2 and Chapter 3)

223

Checklist Item Addressed in this study?

5. Is the case adequately defined (size, domain, process,
subjects…)?

Yes (Refer to Section 3.4)

6. Is a cause - effect relation under study? If yes, is it possible to
distinguish the cause from other factors using the proposed design?

No (Refer to Section 2.6, Section 2.7.1, Section 2.7.2 and
Section 2.7.3)

7. Does the design involve data from multiple sources (data
triangulation), using multiple methods (method triangulation)?

Study used multiple forms of data from a representative
repository, multiple methods were used for triangulation
(Refer to Section 3.4)

8. Is there a rationale behind the selection of subjects, roles,
artefacts, viewpoints, etc.?

Yes (Refer to Section 3.4.1, Section 3.4.2, Section
3.4.3.1, Section 4.1.2 and Section 4.1.3)

9. Is the specified case relevant to validly address the research
questions (construct validity)?

Yes (Refer to Section 3.4.1, Section 3.4.2, Section
3.4.3.1)

10. Is the integrity of individuals/organizations taken into account? Yes (Refer to Appendix X (Confidentiality Agreement))

Preparation for data collection
11. Is a case study protocol for data collection and analysis derived
(what, why, how, when)? Are procedures for its update defined?

Study design used as protocol, procedures were updated
throughout this research project (Refer to Section 3.4)

12. Are multiple data sources and collection methods planned
(triangulation)?

Multiple forms of data gathering planned and examined
from a representative repository (Refer to Section 3.4.2)

13. Are measurement instruments and procedures well defined
(measurement definitions, interview questions)?

Yes (Refer to Section 3.4.3, Section 3.4.4 and Section
3.4.5)

14. Are the planned methods and measurements sufficient to fulfil
the objective of the study?

Yes (Refer to Section 1.3, Section 3.4.2, Section 3.4.3,
Section 3.4.4 and Section 3.4.5)

15. Is the study design approved by a review board, and has
informed consent obtained from individuals and organizations?

This research project was exempted from AUT’s formal
ethics review process given the study design and
completion of IBM’s Confidentiality Agreement (Refer
to Section 3.4.5.8 and Appendix X (Confidentiality
Agreement))

Collecting Evidence
16. Is data collected according to the case study protocol?

Yes (Refer to Section 3.4.1 and Section 3.4.2)

17. Is the observed phenomenon correctly implemented (e.g. to
what extent is a design method under study actually used)?

Yes (Refer to Section 3.4.3, Section 3.4.4, Section 3.4.5
and Chapter 4)

18. Is data recorded to enable further analysis? Yes (Refer to Section 3.4.2, Section 3.4.3.1, Section
3.4.4.2 and Section 3.4.5.8)

19. Are sensitive results identified (for individuals, the organization
or the project)?

No specific sensitive results identified (Refer to Section
3.4.5.8 and Appendix X (Confidentiality Agreement))

20. Are the data collection procedures well traceable? Yes (Refer to Section 3.4)

21. Does the collected data provide ability to address the research
question?

Yes (Refer to Chapter 4 and Chapter 5)

Analysis of collected data
22. Is the analysis methodology defined, including roles and review
procedures?

Yes (Refer to Section 3.4.3, Section 3.4.4, Section 3.4.5
and Chapter 4)

23. Is a chain of evidence shown with traceable inferences from
data to research questions and existing theory?

Yes (Refer to Chapter 4 and Chapter 5)

24. Are alternative perspectives and explanations used in the
analysis?

Yes (Refer to Chapter 5)

25. Is a cause - effect relation under study? If yes, is it possible to
distinguish the cause from other factors in the analysis?

No (Refer to Section 2.6, Section 2.7.1, Section 2.7.2 and
Section 2.7.3)

26. Are there clear conclusions from the analysis, including
recommendations for practice/further research?

Yes (Refer to Chapter 6)

27. Are threats to the validity analysed in a systematic way and
countermeasures taken? (Construct, internal, external, reliability)

Yes (Refer to Section 6.3)

Reporting
28. Are the case and its units of analysis adequately presented?

Yes (Refer to Section 3.4 and Chapter 5)

29. Are the objective, the research questions and corresponding
answers reported?

Yes (Refer to Section 1.3, Section 1.5, Section 2.6,
Section 2.7.1, Section 2.7.2, Section 2.7.3 and Chapter 5)

30. Are related theory and hypotheses clearly reported? Yes (Refer to Section 2.6, Section 2.7.1, Section 2.7.2,
Section 2.7.3 and Chapter 5)

31. Are the data collection procedures presented, with relevant Yes (Refer to Section 1.3, Section 3.4.3, Section 3.4.4,

224

Checklist Item Addressed in this study?
motivation? Section 3.4.5 and Chapter 4)

32. Is sufficient raw data presented (e.g. real life examples,
quotations)?

No quotations included, in conformance with clauses of
IBM’s Confidentiality Agreement (Refer to Appendix X
(Confidentiality Agreement))

33. Are the analysis procedures clearly reported? Yes (Refer to Section 3.4.3, Section 3.4.4, Section 3.4.5
and Chapter 4)

34. Are threats to validity analyses reported along with
countermeasures taken to reduce threats?

Yes (Refer to Chapter 4 and Section 6.3)

35. Are ethical issues reported openly (personal intentions, integrity
issues, confidentiality)

Yes (Refer to Section 3.4.5.8 and Appendix X
(Confidentiality Agreement))

36. Does the report contain conclusions, implications for practice
and future research?

Yes (Refer to Section 6.1, Section 6.2 and Section 6.4)

37. Does the report give a realistic and credible impression? Yes (Refer to thesis from Chapter 1 through Chapter 6)

38. Is the report suitable for its audience, easy to read and well
structured?

Yes, findings from this case study were presented in
multiple formats: (a) In multiple conferences proceedings
(refer to Section 1.6), (b) In a submission to the I&ST
Journal – this paper is under review (refer to Section
1.6), and (c) In the form of this thesis.

Construct Validity: Construct validity is associated with the adequacy with which

variables represent the intended research construct of interest (Shadish, Cook, &

Campbell, 2002). In this study communication was assessed based on messages sent

around software tasks. These messages were extracted from Jazz and so may not

represent all of the project teams’ communications, which may have been facilitated

through email, chat, and face-to-face communication for collocated team members.

Offsetting this concern is the fact that, as Jazz was developed as a globally distributed

project, developers were required to use messages so that all other contributors

(irrespective of their physical location) were aware of product and process decisions

regarding each WI (Cataldo & Ehrlich, 2012; Nguyen, Wolf, et al., 2008). Additionally,

although messages sent around software tasks may be for many reasons outside of work

(Aral & Walker, 2011), previous evidence confirms that communication during

software engineering projects is generally related to work tasks (Shihab et al., 2010).

Contextual analysis in this work also supports these authors’ assessment (refer to

Section 4.2 and Section 4.3).

Finally, in this work task change frequency was used to measure core developers’ task

performance (Cataldo & Herbsleb, 2008). However, all software tasks are not equal

(Hackman, 1986); some tasks may be more computational and complex than others

(e.g., a user experience task may not demand the same cognitive and mental rigor as that

of a computational or coding intensive feature). While such complexities would likely

‘even out’ over the entire project, there is need for further research to take task

complexity into account. That said, however, deeper analysis in this work provided

225

triangulation for the task change measure that was used as a proxy for task performance

(refer to Chapter 4).

Internal Validity: Internal validity considers the control of potential interference from

other variables beyond the main variables under consideration (Runeson & Host, 2009).

Given that case studies are generally uncontrolled, such studies generally invoke

internal validity concerns (Yin, 2003). While this work used archival data, and so

threats related to socially desirable responding by participants (Layman et al., 2006) is

eliminated, the archival data studied in this work were not originally prepared for the

purpose of research. This poses a threat to this study’s internal reliability (Runeson &

Host, 2009). Similarly, staff turnover at IBM Rational could also impact the patterns

that were noticed in this work. That said, however, while this work could not account

for artefacts for all of the 146 practitioners for the full duration of the Jazz project

during the confirmatory aspect of the analysis (refer to Section 4.1), artefacts

contributed by the 15 core developers that were explored during the deeper linguistic

and directed content analysis stages of this work reflect software activities undertaken

over the entire project duration (refer to Section 4.2 and Section 4.3). Multiple studies

that have researched artefacts in the Jazz repository have also confirmed the

representativeness and appropriateness of these artefacts for studying the software

development process (Cataldo & Ehrlich, 2012; Ehrlich & Cataldo, 2012; Nguyen,

Schroter, et al., 2008; Schroter, 2010).

External Validity: External validity considers the extent to which the findings of

research may generalise to the domain under consideration (Yin, 2003). This issue has

always been a source of contention for those criticising case studies, and so, is often

countered through the application of rigorous and systematic study techniques (Runeson

& Host, 2009) (refer to Table 22 for evaluation taxonomy). Although data saturation

was achieved after analysing the third project case during the SNA phase of the analysis

(refer to Section 3.4.2 and Appendix II), the tasks, history logs and messages from the

ten teams (out of 94) may not necessarily represent all the teams’ processes in the

repository. Additionally, the work processes at IBM Rational are specific to this

organisation and may not represent the organisation dynamics in other software

development establishments. The software teams studied in this work used Jazz for

project execution, including project management, project communication and software

building (coding), and followed specific software methods. These software processes

may be largely mature when compared to other small software organisations or open

226

source project environments. Thus, given that other smaller software teams may not

create software in a similar environment to IBM’s, the results shared in this work may

not necessarily generalise to those software development situations.

Furthermore, as noted in Section 1.4, cultural differences and distance (geographical

and temporal) may directly affect software development teams’ performance (Espinosa

et al., 2006), and these variables may also have an impact on team members’ behaviors -

which in turn may lead to performance issues (Jaanu et al., 2012). However, research

examining the effects of cultural differences in global software teams has found few

cultural gaps and behavioral differences among software practitioners from, and

operating in, Western cultures, with the largest negative effects observed between Asian

and Western cultures (Espinosa et al., 2006). Given that the teams (and core

developers) studied in this work all operated in Western cultures, this issue may have

had little effect on the patterns of behaviors that were observed.

That said, Costa et al. (2011) confirmed that practitioners of the Jazz project exhibited

similar coordination needs to practitioners of four projects operating in two distinct

companies. Further, Potts (1993) noted that issues present in large industrial projects are

likely to be representative of phenomena elsewhere in comparable contexts. However, it

is not possible for case studies to provide completely generalisable findings (Potts,

1993; Runeson & Host, 2009). Thus, this work provides conjectures, and encourages

future research (outlined in Chapter 5 and Section 6.4.2). There is also optimism, and

particularly given the consistency in coordination requirements that was noted for other

similar projects (Costa et al., 2011), that the results in this work may be applicable to

similar large-scale distributed software development endeavours.

Reliability: Reliability assesses the repeatability of research, and the likelihood of other

researchers being able to replicate the study findings using the identical study design

and procedures (Runeson & Host, 2009). Benchmarks are generally used to limit threats

to reliability (Layman et al., 2006). In this study context, SNA techniques are

established approaches used for studying communication among individuals across

many disciplines (De Laat et al., 2007; Wasserman & Faust, 1997; Willging, 2005), and

this approach was also used previously for studying software teams’ interactions as was

undertaken in this work (Cataldo et al., 2006; Wolf, Schroter, Damian, Panjer, et al.,

2009). Additionally, the LIWC language constructs that were used in this work to

measure attitudes have been utilized previously to investigate this subject and were

227

assessed for validity and reliability (Li & Chignell, 2010; Mairesse et al., 2007;

Pennebaker et al., 2007; Pennebaker & King, 1999; Yee et al., 2010).

However, although the LIWC dictionary was able to capture 66% of the overall words

used by Jazz practitioners, the adequacy of these constructs in the specific context of

software development warrants further investigation (Rigby & Hassan, 2007). To that

end, a small sample of the messages were checked to see what might account for the

remaining words being ignored by the LIWC tool and it was discovered that there were

large amounts of cross referencing to other WIs in the messages, along with large

amounts of highly specialized software related language (e.g., J2EE, LDAP, JACC,

API, XML, TAME, JASS, Jazz, URI, REST, HTTP, Servlet, WIKI, UseCase, HTML,

CVS, Dump, Config, SourceControl) evident in Jazz practitioners’ exchanges (Licorish

& MacDonell, 2013d). Their non-consideration here is therefore not a problem.

Moreover, what was of interest, and was captured by the LIWC tool, was evidence of

attitude, demeanour and behaviour. Additionally, triangulation generally provides a

form of countermeasure against reliability and validity threats (Runeson & Host, 2009).

Given that the linguistic analysis results in this work were also triangulated with

positive and significant correlation results from the directed content analysis (refer to

Section 4.3), the non-consideration of the terms noted above does not present a threat to

the reliability of this study’s findings.

Finally, directed CA, as conducted in this work and involving interpretation of textual

data, is subjective, and so questions may naturally arise regarding the validity and

reliability of the outcomes that are derived through its use. In this work multiple

strategies were employed to mitigate these issues. First, the protocol that was adopted to

study Jazz practitioners’ interactions was created from those previously employed and

tested in the study of interaction and knowledge sharing (Henri & Kaye, 1992; Zhu,

1996), and so there is a strong theoretical basis for its use. Second, this protocol was

piloted and extended by deriving additional codes directly from the Jazz data, and the

extended protocol was tested for accuracy, precision and objectivity, receiving an inter-

rater measure indicative of excellent agreement (Hsieh & Shannon, 2005). Runeson &

Host (2009) noted that such measures sufficiently validate case study reliability.

Overall then, while there are indeed potential threats to the findings derived from the

research conducted and reported here, extensive effort has been expended to ensure that

228

the findings are as robust as possible. The implications of this case study’s findings are

considered next (in Section 6.4).

6.4 Research Implications

Findings in this work have implications for software engineering practice and future

research. These details are provided in this section. Section 6.4.1 first presents the

implications of this study’s findings for software engineering practice, comprising both

recommendations for project governance and collaboration and process tool

enhancements. Section 6.4.2 then outlines the implications for software engineering

research, including recommendations for future research and suggestions for those

studying software artefacts and change logs.

6.4.1 Implications for SE Practice

This section presents the implications of this work’s findings for software engineering

practice, as outlined in two parts. The first part (Section 6.4.1.1) outlines implications

for software project governance. Section 6.4.1.2 then provides the implications of this

study’s findings for collaboration and process tools.

6.4.1.1 Software Project Governance

Evidence in this work shows that Jazz globally distributed agile software development

teams communicated most at project start-up and towards project completion. Given

this pattern, Jazz project managers, or those governing projects where similar

communication patterns are noted, should plan for these period of intensive activity by

making adequate communication channels available. This requirement may be

particularly necessary for software developments efforts conducted in distributed

contexts, where time zone differences have been found to induce delays.

All of the ten Jazz teams studied in this work exhibited centralised communication

patterns, and a small number of individuals dominated project communication

networks, suggesting that project managers in globally distributed agile software

development settings should not be alarmed if there is unevenness among team

members’ communications during software development. In fact, more dense

communication networks may indicate a need for increased project coordination. Thus,

project managers should be vigilant and prepared to closely manage their teams’

229

workload should this evidence appear. It was also observed that communication

networks with low density did not affect team members’ accessibility.

Findings in this work show that initial communication patterns were maintained

throughout the software development project for Jazz practitioners. While this pattern

may not be universal, software project managers should be vigilant of their project(s)

communication demands and foster appropriate environments very early in the project.

Changes in communication patterns may also be taken as a sign to closely examine

project collaboration environments. For instance, for the more active practitioners,

reduced communication may be a sign of reduced motivation or interest; on the other

hand, excessive communication by the less active members may indicate that such

individuals are overburdened or involved with unusually high amounts of features.

Additionally, in making provision for core developers’ (or any other practitioners’)

absence or sudden withdrawal from the team, project management in globally

distributed agile software development teams may promote team configurations that are

likely to provide failsafe mechanisms – highly connected networks through task

assignment. These networks are likely to reduce the threat imposed by the loss of key

team players, and with them, the team’s tacit knowledge.

Findings in this work revealed that formal team role assignment did not limit Jazz core

developers’ contributions. Thus, if the project environment is favourable globally

distributed software development teams may self-organise successfully and work across

roles to deliver successful outcomes – and this is likely to have a positive impact on

team performance. Project managers should encourage their members to adapt and enact

their natural roles; such that, programmers should not be seen entirely as solution

providers and coders - persons occupying this role also need to communicate (and may

lead coordination efforts) in order to succeed.

In fact, project managers employing rigid approaches may face challenges when

managing teams such as those studied in this work, and strict project oversight tactics

may be detrimental in globally distributed agile development environments. Evidence in

this work suggests that the formal project leader in these settings should be willing to

compromise, and perhaps encourage top performers, by releasing project control to

these informal leaders as the need arises. That said, project managers should also be

vigilant and prepared for instances where core developers may be unwilling to accept

230

informal project leadership and champion responsibilities. Specific incentives and

rewards may be offered to those members to encourage such forms of participation,

presuming of course that these members demonstrate this inclination early on.

These informal leaders, and central communicators in general, should cultivate less

individualistic and more achievement-driven team norms. This would propagate to the

entire team and may help with team performance. Evidence of negative and cynical

attitudes during globally distributed agile software development should be discouraged,

and particularly if these attitudes are observed among core developers. Given that these

members occupy the heart of their teams’ development activities, their expression of

negative emotion may quickly circulate to the entire team and lead to disharmony and a

tense team atmosphere. Such a project environment may affect overall team

performance. On the other hand, a project environment that promotes social and task-

based attitudes and behaviours seems ideal for team performance. This evidence was

noticed in this work for all of the ten Jazz teams that were studied. Thus, globally

distributed team leaders are encouraged to promote this form of team atmosphere. In

fact, evidence in this work also revealed overall that Jazz developers were highly task

focused. These findings suggest that while a positive and social group atmosphere may

be ideal for maintaining a pleasant team ambience, a task-driven team focus (and roles)

is important for globally distributed agile software developments, an so this should also

be encouraged.

In terms of top software performers’ changes in attitudes and knowledge sharing

behaviours, Jazz core developers exhibited high levels of insight at project start-up,

which may benefit weaker team members, and so it would be prudent for their project

managers to implement strategies aimed at encouraging the engagement of less active

developers at project inception. Although this pattern may be specific to IBM Rational,

project leaders in other software organisations may also encourage less active members’

participation during periods when their core developers are most active. This may

benefit weaker members both in terms of knowledge acquisition and mentoring.

Jazz core developers were integral to project awareness, task coordination, idea

generation and future planning, and these members were unhappy when they were least

involved with task changes and team communication. This may be due to general

dissatisfaction with the feedback that is provided by the wider team during their period

of less prominence. Thus, keen participation (including clear communication) and

231

availability of the wider team may go some way to reducing tension and coordination

breakdowns and enhancing team spirit around project completion for core developers.

Strategies aimed at surrounding core developers with competent communicators would

also help core developers to become quickly familiar with task knowledge during their

periods of reduced presence. Further, access to multiple communication channels may

also be important in reducing such dissatisfaction during globally distributed agile

software developments.

Evidence in this work shows that technical needs drove Jazz core developers’

knowledge sharing behaviours; such that, task involvement appears to have a general

influence on core developers’ need to provide knowledge and information to their

teammates. Thus, communication hubs may not necessarily be formally denoted as

communication and coordination specialists. These individuals communicate because of

their actual development portfolio. Project managers should be vigilant that those that

are integrally involved with task performance also need to communicate, and

particularly in environments where teams work on individual software tasks, before

then integrating these to a central software product. Lack of communication by these

members may result in tacit knowledge loss should these members leave, but more

critically, this may also result in lack of overall general team awareness and consequent

integration issues.

Additionally, while those individuals who were highly active in their teams’

communication network and task performance appeared critical to the functioning of

their teams, project managers should be vigilant about the team’s possible over-reliance

on these members, which may negatively affect the quality of knowledge core

developers are able to provide. In fact, these members’ language process may provide

project governance indicators. This work discovered correlation between Jazz core

developers’ use of work-related language and their task performance. While these

results may be specific to Jazz teams, profound use of this form of speech by core

developers may be a signal for the less active practitioners to reduce their level of

reliance on these members. Additionally, evidence of this form of language process may

also result in the provision of support for core developers, should they need such

assistance. Furthermore, excessive use of work-related utterances may also stimulate

project managers’ interest, and serve as a warning sign that project leaders should be

vigilant about the quality of the feedback that core developers are likely to provide the

general team at this time.

232

Similar project governance pointers may be provided for core developers’ contribution

of knowledge sharing behaviours. For instance, this work revealed that when there

were higher levels of questioning from Jazz core developers these practitioners were

less active in task (WI) changes, tending to rely more on their wider teams. Thus,

strategies aimed at surrounding core developers with competent communicators would

help these practitioners to quickly become familiar with task knowledge. This would in

turn promote overall shared team understanding, and reduced incidence of coordination

breakdowns. This may be particularly useful for team synergies, as while it is not

entirely clear from the results that were revealed in this work why core developers

demonstrated reduced presence at specific times of their project, it was evident that

these individuals expressed more unhappiness when they communicated many

questions. The opposite was noted for other forms of knowledge sharing behaviours.

The aforementioned discussions comprise implications of this work’s findings for

software project governance. Discussions above include specific recommendations for

improving the governance and potential performance of globally distributed agile

software teams. Many of these recommendations may also apply more generally to

software development as a whole. The next section (Section 6.4.1.2) extends these

discussions, and considers the implication of the findings in this study in relation to

collaboration and process tools.

6.4.1.2 Collaboration and Process Tools

Contextual analysis in this work shows that one half of Jazz practitioners’

communications were directed at information sharing. This form of utterance, although

useful for providing context awareness (i.e., explanations and information about

software features, e.g., details about the outcomes of software builds), may not be as

critical to the teams’ development portfolios as the provision of questions, answers,

suggestions and ideas. These latter, more critical types of communication may become

‘lost’ underneath the less significant messages (e.g., those expressing gratitude or

praise). This issue was previously experienced by those involved in global software

development, resulting in negative performance issues (Damian, Izquierdo, et al., 2007).

Thus, including a message tagging feature in Jazz or any similar tool (as is done for

tagging software tasks) could help developers to manage this wealth of communication.

During time-constrained work periods, comment tags should help practitioners to

identify and consider the most critical issues first. For instance, if comment tags were

233

labelled to express similar meanings to the categories and related scales in Table 6, a

programmer coming in to work would likely review and action messages with Scales 9

(Instructions) and 1 (Questions) first, before going through the other messages in his or

her order of preference.

During this work it was discovered that core developers’ communication increased with

higher levels of task involvement and their attitudes and knowledge sharing behaviours

varied over the phases of their project. The link between communication and task

involvement suggests that tools may provide useful visualizations of measures of

development and coordination carried out by practitioners during the software

development process. These project metrics may be compared against perceived or

projected coordination measures in support of team management (Borici, Blincoe,

Schroter, Valetto, & Damian, 2012). A project manager could use such tools in a similar

way that project management and tracking tools are used for monitoring project

performance. Of course, these tools would need to be sufficiently informed about the

linkage between practitioners’ involvement in task changes and communication.

Process tools that capture practitioners’ communications (such as IBM Rational Jazz)

may also benefit from attitude and behaviour visualizations. In order to be reliable and

accurate, such tools will need to adhere to data mining principles (particularly data pre-

processing techniques) and tested natural language processing methods (Licorish &

MacDonell, 2013d). These tools would help project managers with team composition

and task assignment (Licorish et al., 2009b). For instance, in monitoring teams’

attitudes over the course of their project a relatively high incidence of negative words

(e.g., afraid, hate, suck, dislike) expressed among developers would be an indicator of

frustration and dissatisfaction. Such an observation may kick start human resource

interventions (e.g., deeper interviews which lead to increasing the complement of highly

skilled developers, staff rotation or some form of team-building activity). Similarly, in

accommodating the findings for the relationship between core developers’ expression of

work-related terms and their involvement in task changes, evidence of such work focus

attitudes during behaviour visualisations could potentially inform project governance

interventions such as reducing less active practitioners’ reliance on these members or

the provision of assistance in the form of additional keen developers.

234

That said however, this work did not find irrefutable evidence of this latter linkage.

Thus, this issue could benefit from additional research before its firm usage in software

project diagnostics. This issue is considered further in Section 6.4.2.

6.4.2 Implications for SE Research (Future Work)

Software repositories hold details of teams’ interactions that provide understandings of

the way team processes are enacted during the software development life cycle. In

particular, analysis opportunities presented by software artefacts are especially novel

because of the reduction of the likely bias that arises from self-reporting and the

unobtrusive nature of the investigation of behaviour from such sources (Licorish &

MacDonell, 2012). Such understandings have led to numerous recommendations for

improving software project performance (Abreu & Premraj, 2009; Bird et al., 2006a;

Licorish & MacDonell, 2013b; Shihab et al., 2009).This work used repository sources

to study the collaboration patterns of successful globally distributed agile teams, and

how and why core developers contribute to globally distributed agile team dynamics.

SNA conducted in this research revealed that teams with centralised and low density

communication networks may also remain highly connected through task assignment.

From this evidence it was suggested that such highly connected communication

networks may reduce risks related to knowledge loss should members leave such teams.

However, there still remain questions around the effectiveness of such a strategy for

dealing with knowledge transfer. Accordingly, future research is encouraged to study

this issue.

This research has also revealed that Jazz’s core developers worked across multiple

roles, and these members were crucial to their teams’ organizational, intrapersonal and

interpersonal processes. Additionally, although these individuals were highly task- and

achievement-focused, they also contributed to the maintenance of a positive team

atmosphere. In fact, these members were eager for their teams to succeed, to the extent

that they expressed unhappiness when they were least involved in task (feature)

changes, at a time when they also asked more questions. Given that most of these

members occupied the formal programmer role, there is little doubt that these members

were intrinsically driven (Chang et al., 2013; Kline & Peters, 1991). While the literature

has shed some light on this issue (Allen & Meyer, 1990; Chang et al., 2013; Kline &

Peters, 1991; Lee & Xia, 2005; Morgan & Hunt, 1994), there is need for future research

235

to investigate core developers’ motivation, perhaps through face-to-face research

mechanisms (e.g., interviews).

Results obtained in this work show that core developers made reduced contributions to

communication and task performance towards project completion. While this evidence

was previously linked to the increasing level of task difficulty encountered as software

projects progress, the trend of the results revealed in this work over the first three

project phases did not support this assessment (refer to Section 6.1.3 for retrospections).

It may instead be contended that core developers were involved in other work outside of

the repository towards project completion. Future research employing complementary

interview-related techniques would again help to provide additional insights into the

reasons for this pattern.

Finally, results in this work revealed that core developers were most active in task

performance when they used more work-related terms. These results provide some

support for the linkage between attitudes and team performance, as established in social

motivation theories (Geen, 1991; Inkpen & Tsang, 2005; Levin & Cross, 2004), and

particularly for the way certain behavioural norms are said to encourage individual

performance (Denning, 2012; Quigley et al., 2007). However, overall, the results in this

work were not definitive; this question would benefit from additional research,

comprising a much larger sample of artefacts.

Accordingly, the following open questions are outlined to address these issues: Do

communication networks connected through task assignment provide an effective

strategy for dealing with knowledge transfer/loss? What ignites core developers’

motivation? Why are core developers most negative and self-focused at project

completion? What is responsible for core developers’ reduced task performance and

communication towards project completion? Research may also consider the research

questions in this study (refer to Chapter 2) in relation to the quality of core developers’

deliverables (e.g., How do core developers’ attitudes and knowledge sharing behaviours

affect the quality of the features they deliver?). Further research is also needed for

testing the model that is provided by this work (refer to Figure 31) with other AGSD

teams.

From a study design perspective, the value of employing more contextual analysis

techniques to understand team processes cannot be overstated. Quantitative and

236

qualitative techniques may indeed complement each other to provide richer accounts of

team phenomena. The value of the balance provided by these approaches was exhibited

during this work. This study overcame the limitations of purely quantitative approaches

that ignore the complexities of human psychology, and the time-intensive and

potentially invasive nature of field work required in full case studies. Furthermore,

previous work has placed significant emphasis on the need for longitudinal studies to

understand changes in teams’ activities over time, as against the frequently used

snapshot or cross-sectional analysis approaches. The utilization of deeper analysis

techniques in this longitudinal study shows that studying software practitioners’

behaviours, even at the word usage level, provides enhanced understanding of SE

teams. Thus, researchers are encouraged to conduct such temporal analyses and to

triangulate frequency-based approaches with contextual analysis techniques when

examining teams’ behavioural issues.

237

References

Abrahamsson, P., Marchesi, M., Succi, G., Sfetsos, P., Stamelos, I., Angelis, L. (2006).
Investigating the Impact of Personality Types on Communication and
Collaboration-Viability in Pair Programming – An Empirical Study. In Extreme
Programming and Agile Processes in Software Engineering (Vol. 4044, pp. 43-
52): Springer Berlin / Heidelberg. doi:10.1007/11774129_5.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003, 3-10 May 2003).
New directions on agile methods: a comparative analysis. presented at the
meeting of the Proceedings of the 25th International Conference on Software
Engineering, Portland, Oregon. doi:10.1109/ICSE.2003.1201204.

Abreu, R., & Premraj, R. (2009, August 24-28, 2009). How developer communication
frequency relates to bug introducing changes. presented at the meeting of the
Joint international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops IWPSEEvol 09
Amsterdam, The Netherlands. doi:10.1145/1595808.1595835.

Acuna, S. T., Gomez, M., & Juristo, N. (2009). How do personality, team processes and
task characteristics relate to job satisfaction and software quality? Information
and Software Technology, 51(3), 627-639. doi:10.1016/j.infsof.2008.08.006.

Acuna, S. T., & Juristo, N. (2004). Assigning people to roles in software projects.
Software Practice and Experience, 34(7), 675-696. doi:10.1002/spe.586.

Acuna, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human capabilities in
software development. IEEE Software, 23(2), 94-101.

Adams, S. L., & Anantatmula, V. (2010). Social and behavioral influences on team
process. Project Management Journal, 41(4), 89-98. doi:10.1002/pmj.20192.

Ahuja, M. K., Galletta, D. F., & Carley, K. M. (2003). Individual Centrality and
Performance in Virtual R&D Groups: An Empirical Study. Management
Science, 49(1), 21-38. doi:10.1287/mnsc.49.1.21.12756.

Al-Ani, B., Horspool, A., & Bligh, M. C. (2011). Collaborating with ‘virtual strangers’:
Towards developing a framework for leadership in distributed teams.
Leadership, 7(3), 219-249. doi:10.1177/1742715011407382.

Al-Rawas, A., & Easterbrook, S. (1996, February 1-2, 1996). Communication problems
in requirements engineering: a field study. presented at the meeting of the
Proceedings of the First Westminster Conference on Professional Awareness in
Software Engineering, Royal Society, London.

Allen, N. J., & Meyer, J. P. (1990). The measurement and antecedents of affective,
continuance and normative commitment to the organization. Journal of
Occupational Psychology, 63(1), 1-18. doi:10.1111/j.2044-
8325.1990.tb00506.x.

Andre, M., Baldoquin, M. G., & Acuna, S. T. (2011). Formal model for assigning
human resources to teams in software projects. Information and Software
Technology, 53(3), 259-275. doi:10.1016/j.infsof.2010.11.011.

Antoniol, G., Ayari, K., Penta, M. D., Khomh, F., & Gueheneuc, Y.-G. (2008, October
27-30, 2008). Is it a bug or an enhancement?: a text-based approach to classify
change requests. presented at the meeting of the Proceedings of the 2008

238

conference of the center for advanced studies on collaborative research: meeting
of minds, Ontario, Canada. doi:10.1145/1463788.1463819.

Aral, S., & Walker, D. (2011). Identifying Social Influence in Networks Using
Randomized Experiments. IEEE Intelligent Systems, 26(5), 91-96.
doi:10.1109/MIS.2011.89.

Aranda, J., & Venolia, G. (2009, May 16-24, 2009). The secret life of bugs: Going past
the errors and omissions in software repositories. presented at the meeting of
the Proceedings of the 31st International Conference on Software Engineering,
Vancouver, BC, Canada. doi:10.1109/icse.2009.5070530.

Ardichvili, A., Page, V., & Wentling, T. (2003). Motivation and barriers to participation
in virtual knowledge-sharing communities of practice. Knowledge Management,
7(1), 64-77.

Arora, A., & Gambardella, A. (2005). The Globalization of the Software Industry:
Perspectives and Opportunities for Developed and Developing Countries.
Washington, DC: National Bureau of Economic Research.

Ashforth, B. E. (2001). Role transitions in organizational life: An identity based
perspective. Mahwah, NJ: Lawrence Earlbaum.

Augustine, S., Payne, B., Sencindiver, F., & Woodcock, S. (2005). Agile project
management: steering from the edges. Communications of the ACM. , 48(12), 85
- 89. doi:10.1145/1101779.1101781.

Aune, E., Bachmann, A., Bernstein, A., Bird, C., & Devanbu, P. (2008, November 9-14,
2008). Looking back on prediction: A retrospective evaluation of bug-prediction
techniques. presented at the meeting of the Student Research Forum at
SIGSOFT 2008/FSE 16, November 2008, Atlanta, GA.

Aviv, R., Erlich, Z., Ravid, G., & Geva, A. (2003). Network analysis of knowledge
construction in asynchronous learning networks. Journal of Asynchronous
Learning Networks, 7(3), 1-23.

Babar, M. A., Kitchenham, B., & Gorton, I. (2006, May 20-28, 2006). Towards a
distributed software architecture evaluation process: a preliminary assessment.
presented at the meeting of the Proceedings of the 28th international conference
on Software engineering, Shanghai, China. doi:10.1145/1134285.1134430.

Babbie, E. (2004). The Practice of Social Research (10th ed.). Belmont, CA:
Wadsworth, Thomson Learning Inc.

Bacchelli, A., Lanza, M., & Robbes, R. (2010, May 2-8, 2010). Linking e-mails and
source code artifacts. presented at the meeting of the Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1,
Cape Town, South Africa. doi:10.1145/1806799.1806855.

Bachmann, A., & Bernstein, A. (2009, August 24-28, 2009). Software process data
quality and characteristics: a historical view on open and closed source
projects. presented at the meeting of the joint international and annual ERCIM
workshops on Principles of software evolution (IWPSE) and software evolution
(Evol) workshops, Amsterdam, Netherlands. doi:10.1145/1595808.1595830.

Baddoo, N., Hall, T., & Jagielska, D. (2006). Software developer motivation in a high
maturity company: a case study. Software Process: Improvement and Practice,
11(3), 219-228. doi:10.1002/spip.265.

239

Bales, R. F. (1950a). Interaction Process Analysis: A Method for the Study of Small
Groups. Cambridge, MA: Addison Wesley.

Bales, R. F. (1950b). A Set of Categories for the Analysis of Small Group Interaction.
American Sociological Review, 15(2), 257-263.

Ball, G., & Breese, J. (2000). Relating Personality and Behavior: Posture and Gestures.
In Affective Interactions (Vol. 1814, pp. 196-203): Springer Berlin / Heidelberg.
doi:10.1007/10720296_14.

Banerjee, M., Capozzoli, M., McSweeney, L., & Sinha, D. (1999). Beyond kappa: A
review of interrater agreement measures. Canadian Journal of Statistics, 27(1),
3-23. doi:10.2307/3315487.

Barcellini, F., Detienne, F., Burkhardt, J.-M., & Sack, W. (2008). A socio-cognitive
analysis of online design discussions in an Open Source Software community.
Interacting with Computers, 20(1), 141-165. doi:10.1016/j.intcom.2007.10.004.

Bavelas, A. (1950). Communication Patterns in Task-Oriented Groups. The Journal of
the Acoustical Society of America, 22(6), 725 -730.

Baysal, O., & Malton, A. J. (2007, May 20-26, 2007). Correlating Social Interactions to
Release History during Software Evolution. presented at the meeting of the
Fourth International Workshop on Mining Software Repositories, 2007. ICSE
Workshops MSR '07, Minneapolis, MN. doi:10.1109/msr.2007.4.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading, MA:
Addison-Wesley Longman, Inc.

Belbin, R. M. (2002). Management teams: why they succeed or fail. Woburn, UK:
Butterworth-Heinemann.

Benestad, H. C., & Hannay, J. E. (2012, September 17-22, 2012). Does the
prioritization technique affect stakeholders' selection of essential software
product features? presented at the meeting of the ACM-IEEE international
symposium on Empirical software engineering and measurement, Lund,
Sweden. doi:10.1145/2372251.2372300.

Benne, K. D., & Sheats, P. (1948). Functional Roles of Group Members. Journal of
Social Issues, 4(2), 41-49. doi:10.1111/j.1540-4560.1948.tb01783.x.

Beranek, G., Zuser, W., & Grechenig, T. (2005, May 15-16, 2005). Functional group
roles in Software Engineering teams. presented at the meeting of the Workshop
on Human and Social Factors of Software Engineering, HSSE'05, St. Louis,
Missouri, USA. doi:10.1145/1083106.1083108.

Bereiter, C., & Scardamalia, M. (1987). The Psychology of Written Composition.
Broadway, Hillsdale, NJ: Lawrence Erlbaum Associates.

Berelson, B. (1952). Content analysis in communication research (Vol. #1 of
Foundations of communications research). Glencoe, Illinois: Free Press.

Berenbach, B., & Borotto, G. (2006, May 20-28, 2006). Metrics for model driven
requirements development. presented at the meeting of the Proceedings of the
28th international conference on Software engineering, Shanghai, China.
doi:10.1145/1134285.1134348.

Bettenburg, N., Sascha, J., Schroter, A., Weib, C., Premraj, R., & Zimmermann, T.
(2007, October 21-25, 2007). Quality of bug reports in Eclipse. presented at the
meeting of the Proceedings of the 2007 OOPSLA workshop on eclipse

240

technology eXchange, Montreal, Quebec, Canada.
doi:10.1145/1328279.1328284.

Bhat, T., & Nagappan, N. (2006, December 6-8, 2006). Building Scalable Failure-
proneness Models Using Complexity Metrics for Large Scale Software Systems.
presented at the meeting of the 13th Asia Pacific Software Engineering
Conference, APSEC 2006, Bangalore, India. doi:10.1109/apsec.2006.25.

Biddle, B. J., & Thomas, E. J. (1966). Role theory: Concepts and research (Vol. (Eds.)).
New York: John Wiley & Sons.

Bird, C., Gourley, A., Devanbu, P., Gertz, M., & Swaminathan, A. (2006a, May 22-23,
2006). Mining email social networks. presented at the meeting of the
Proceedings of the 2006 international workshop on Mining Software
Repositories, Shanghai, China. doi:10.1145/1137983.1138016.

Bird, C., Gourley, A., Devanbu, P., Gertz, M., & Swaminathan, A. (2006b, May 22-23,
2006). Mining email social networks in Postgres. presented at the meeting of the
Proceedings of the 2006 International workshop on Mining Software
Repositories, Shanghai, China. doi:10.1145/1137983.1138033.

Bird, C., Murphy, B., Nagappan, N., & Zimmermann, T. (2011, March 19-23, 2011).
Empirical software engineering at Microsoft Research. presented at the meeting
of the ACM 2011 Conference on Computer Supported Cooperative Work,
Hangzhou, China. doi:10.1145/1958824.1958846.

Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B. (2009, May 16-24, 2009).
Does distributed development affect software quality? An empirical case study
of Windows Vista. presented at the meeting of the Proceedings of the 31st
International Conference on Software Engineering, Vancouver, BC.
doi:10.1109/icse.2009.5070550.

Bird, C., Nagappan, N., Gall, H., Murphy, B., & Devanbu, P. (2009, November 16-19,
2009). Putting it all together: using socio-technical networks to predict failures.
presented at the meeting of the the 20th IEEE International Conference on
Software Reliability Engineering, Bengaluru-Mysuru, India.
doi:10.1109/ISSRE.2009.17.

Blackman, M. C. (2002). The Employment Interview via the Telephone: Are We
Sacrificing Accurate Personality Judgments for Cost Efficiency? Journal of
Research in Personality, 36(3), 208-223. doi:10.1006/jrpe.2001.2347.

Blanchette, J. (1999). Register choice: Linguistic variation in an on-line classroom.
International Journal of Educational Telecommunications, 5(2), 127–142.

Blaskovich, J. L. (2008). Exploring the Effect of Distance: An Experimental
Investigation of Virtual Collaboration, Social Loafing, and Group Decisions.
Journal of Information Systems, 22(1), 27-46.

Bock, G. W., & Kim, Y.-G. (2002). Breaking the Myths of Rewards: An Exploratory
Study of Attitudes about Knowledge Sharing. Information Resources
Management Journal, 15(2), 14-21. doi:10.4018/irmj.2002040102.

Boehm, B. W. (2006, May 20-28, 2006). A view of 20th and 21st century software
engineering. presented at the meeting of the Proceeding of the 28th International
Conference on Software Engineering, Shanghai, China.
doi:10.1145/1134285.1134288.

241

Boehm, B. W., & Basili, V. R. (2001). Software Defect Reduction Top 10 List.
Computer, 34(1), 135-137. doi:10.1109/2.962984.

Boehm, B. W., Clark, B., Horowitz, E., Westland, C., Madachy, R., & Selby, R. (1995).
Cost models for future software life cycle processes: COCOMO 2.0. Annals of
Software Engineering, 1(1), 57-94. doi:10.1007/bf02249046.

Boehm, B. W., & Turner, R. (2003a). Balancing Agility and Discipline: A guide for the
Perplexed. New York: Addison-Wesley.

Boehm, B. W., & Turner, R. (2003b). Using risk to balance agile and plan-driven
methods. IEEE Journal, 36(6), 57-66.

Boh, W. F., Slaughter, S. A., & Espinosa, J. A. (2007). Learning from Experience in
Software Development: A Multilevel Analysis. Management Science, 53(8),
1315-1331. doi:10.1287/mnsc.1060.0687.

Borici, A., Blincoe, K., Schroter, A., Valetto, G., & Damian, D. (2012, June 2, 2012).
ProxiScientia: Toward real-time visualization of task and developer
dependencies in collaborating software development teams. presented at the
meeting of the 5th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), 2012, Zurich, Switzerland.
doi:10.1109/chase.2012.6223024.

Boyle, J. M., Bury, K. F., & Evey, R. J. (1983). Two Studies Evaluating Learning and
Use of QBE and SQL. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 27(7), 663-667. doi:10.1177/154193128302700732.

Bretz, R. (1983). Media for interactive communication. London: Sage Publication.

Brooks, A., Clarke, D., & McGale, P. A. (1994). Investigating stellar variability by
normality tests. Vistas in Astronomy, 38(4), 377-399. doi:10.1016/0083-
6656(94)90011-6.

Brown, R. (2000). Social identity theory: past achievements, current problems and
future challenges. European Journal of Social Psychology, 30(6), 745-778.
doi:10.1002/1099-0992.

Bryman, A. (1984). The Debate about Quantitative and Qualitative Research: A
Question of Method or Epistemology? The British Journal of Sociology, 35(1),
75-92.

Bullen, M. (1998). Participation and Critical Thinking in Online University Distance
Education. Journal of Distance Education, 13(2).

Calefato, F., Gendarmi, D., & Lanubile, F. (2009, August 24-28, 2009). Embedding
social networking information into jazz to foster group awareness within
distributed teams. presented at the meeting of the Proceedings of the 2nd
international workshop on Social software engineering and applications,
Amsterdam, The Netherlands. doi:10.1145/1595836.1595842.

Capiluppi, A., Fernandez-Ramil, J., Higman, J., Sharp, H., & Smith, N. (2007, May 20-
26, 2007). An Empirical Study of the Evolution of an Agile-Developed Software
System. presented at the meeting of the 29th International Conference on
Software Engineering, 2007 (ICSE 2007), Minneapolis, MN.
doi:10.1109/icse.2007.14.

Capretz, L. F., & Ahmed, F. (2010). Why do we need personality diversity in software
engineering? SIGSOFT Softw. Eng. Notes, 35(2), 1-11.
doi:10.1145/1734103.1734111.

242

Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global
software development. IEEE Software, 18(2), 22-29. doi:10.1109/52.914734.

Cataldo, M., Bass, M., Herbsleb, J. D., & Bass, L. (2007, August 27-30, 2007). On
Coordination Mechanisms in Global Software Development. presented at the
meeting of the Second IEEE International Conference on Global Software
Engineering, 2007, Munich, Germany. doi:10.1109/icgse.2007.33.

Cataldo, M., & Ehrlich, K. (2012, May 5-10, 2012). The impact of communication
structure on new product development outcomes. presented at the meeting of the
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Austin, Texas, USA. doi:10.1145/2207676.2208722.

Cataldo, M., & Herbsleb, J. D. (2008, November 8-12, 2008). Communication networks
in geographically distributed software development. presented at the meeting of
the Proceedings of the 2008 ACM conference on Computer supported
cooperative work, San Diego, CA, USA. doi:10.1145/1460563.1460654.

Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., & Carley, K. M. (2006, November 4-8,
2006). Identification of coordination requirements: implications for the Design
of collaboration and awareness tools. presented at the meeting of the 20th
anniversary conference on Computer Supported Cooperative Work, 06, Banff,
Alberta, Canada. doi:10.1145/1180875.1180929.

Chang, K., & Ehrlich, K. (2007, October 22-25, 2007). Out of sight but not out of
mind?: Informal networks, communication and media use in global software
teams. presented at the meeting of the Proceedings of the 2007 Conference of
the center for advanced studies on Collaborative Research, Richmond Hill,
Ontario, Canada. doi:10.1145/1321211.1321221.

Chang, K., Yen, H., Chiang, C., & Parolia, N. (2013). Knowledge contribution in
information system development teams: An empirical research from a social
cognitive perspective. International Journal of Project Management, 31(2), 252-
263. doi:10.1016/j.ijproman.2012.06.005.

Charette, R. N. (2005). Why software fails. Spectrum, IEEE, 42(9), 42-49.

Checkland, P. (2000). Soft systems methodology: a thirty year retrospective. Systems
Research and Behavioral Science, 17(1), 11- 58. doi:10.1002/1099-1743.

Cheng, L.-T., Hupfer, S., Ross, S., Patterson, J., Clark, B., & De Souza, C. (2003,
October 26-30, 2003). Jazz: a collaborative application development
environment. presented at the meeting of the Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, Anaheim, CA, USA. doi:10.1145/949344.949370.

Chin, G. (2004). Agile Project Management: How to Succeed in the Face of Changing
Project Requirements. New York: American Management Association.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor.
Computer, 34(11), 131-133.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Colomo-Palacios, R., Cabezas-Isla, F., Garcia-Crespo, A., & Soto-Acosta, P. (2010).
Generic Competences for the IT Knowledge Workers: A Study from the Field.
Communications in Computer and Information Science, 111, 1-7.
doi:10.1007/978-3-642-16318-0_1.

243

Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of
Experimental Psychology Section A: Human Experimental Psychology, 33(4),
497 - 505.

Constant, D., Sproull, L., & Kiesler, S. (1996). The Kindness of Strangers: The
Usefulness of Electronic Weak Ties for Technical Advice. Organization
Science, 7(2), 119-135. doi:10.1287/orsc.7.2.119.

Constas, M. A. (1992). Qualitative Analysis as a Public Event: The Documentation of
Category Development Procedures. American Educational Research Journal,
29(2), 253-266. doi:10.3102/00028312029002253.

Coram, M., & Bohner, S. (2005, April 4-7, 2005). The impact of agile methods on
software project management. presented at the meeting of the 12th IEEE
International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS '05. , Greenbelt, Maryland. doi:10.1109/ECBS.2005.68.

Costa, J. M., Cataldo, M., & de Souza, C. (2011, May 7-12, 2011). The scale and
evolution of coordination needs in large-scale distributed projects: implications
for the future generation of collaborative tools. presented at the meeting of the
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Vancouver, BC, Canada. doi:10.1145/1978942.1979409.

Creswell, J. (1998). Qualitative inquiry and research design: Choosing among five
traditions. Thousand Oaks, CA: Sage.

Creswell, J. (2002). Qualitative, Quantitative, and Mixed Methods Approaches (2nd
ed.). Thousand Oaks, CA: Sage Publication.

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004, November 5, 2004).
Effective work practices for software engineering: free/libre open source
software development. presented at the meeting of the Proceedings of the 2004
ACM workshop on Interdisciplinary software engineering research, Newport
Beach, CA, USA. doi:10.1145/1029997.1030003.

Crowston, K., & Howison, J. (2006). Hierarchy and Centralization in Free and Open
Source Software Team Communications. Knowledge, Technology, and Policy,
18(4), 65-85.

Crowston, K., Li, Q., Wei, K., Eseryel, Y. U., & Howison, J. (2007). Self-organization
of teams for free/libre open source software development. Information and
Software Technology, 49(6), 564-575. doi:10.1016/j.infsof.2007.02.004.

Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2008). Free/Libre open-source
software development: What we know and what we do not know. ACM
Computing Surveys, 44(2), 1-35. doi:10.1145/2089125.2089127.

Crowston, K., Wei, K., Li, Q., & Howison, J. (2006, January 4-7, 2006). Core and
Periphery in Free/Libre and Open Source Software Team Communications.
presented at the meeting of the Proceedings of the 39th Annual Hawaii
International Conference on System Sciences - Volume 06, Kauai, HI, USA.
doi:10.1109/hicss.2006.101.

Cummings, J. N. (2004). Work Groups, Structural Diversity, and Knowledge Sharing in
a Global Organization. Management Science, 50(3), 352-364.
doi:10.1287/mnsc.1030.0134.

244

Cummings, J. N., & Cross, R. (2003). Structural properties of work groups and their
consequences for performance. Social Networks, 25(3), 197-210.
doi:10.1016/S0378-8733(02)00049-7.

Cunha, A. B., Canen, A. G., & Capretz, M. A. M. (2009, 17 May, 2009). Personalities,
cultures and software modeling: Questions, scenarios and research directions.
presented at the meeting of the Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering, Vancouver, BC,
Canada. doi:10.1109/chase.2009.5071406.

Curtis, B. (1981). Human factors in software development. Piscataway, N.J.: IEEE
Computer Society.

Curtis, B., Hefley, W. E., & Miller, S. A. (2001). People Capability Maturity Model
Version 2.0 CMU/SEI-2001-MM-01. Pittsburgh, PA: Carnegie Mellon
University, Software Engineering Institute.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process
for large systems. Communications of the ACM, 31(11), 1268-1287.
doi:10.1145/50087.50089.

Dabbish, L. A., Kraut, R., Fussell, S., & Kiesler, S. (2005, April 2-7, 2005).
Understanding email use: predicting action on a message. presented at the
meeting of the Proceedings of the SIGCHI conference on Human factors in
computing systems, Portland, Oregon, USA. doi:10.1145/1054972.1055068.

Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media
richness and structural design. Management Science, 32(5), 554-571.
doi:10.1287/mnsc.32.5.554.

Damerau, F., J. (1993). Generating and evaluating domain-oriented multi-word terms
from texts. Inf. Process. Manage., 29(4), 433-447. doi:10.1016/0306-
4573(93)90039-g.

Damian, D., Izquierdo, L., Singer, J., & Kwan, I. (2007, August 27-30, 2007).
Awareness in the Wild: Why Communication Breakdowns Occur. presented at
the meeting of the Proceedings of the International Conference on Global
Software Engineering, Munich, Germany. doi:10.1109/icgse.2007.13.

Damian, D., Kwan, I., & Marczak, S. (2010). Requirements-Driven Collaboration:
Leveraging the Invisible Relationships between Requirements and People. In
Collaborative Software Engineering (pp. 57-76): Springer Berlin Heidelberg.
doi:10.1007/978-3-642-10294-3_3.

Damian, D., Marczak, S., & Kwan, I. (2007, October 15-19, 2007). Collaboration
Patterns and the Impact of Distance on Awareness in Requirements-Centred
Social Networks. presented at the meeting of the 15th IEEE International
Requirements Engineering Conference (RE '07), New Delhi, India.
doi:10.1109/RE.2007.51.

Damian, D., & Zowghi, D. (2003). Requirements engineering challenges in multi-site
software development organisations. Requirements Engineering, 8(3), 149-160.
doi:10.1007/s00766-003-0173-1.

Danait, A. (2005, July 24-29, 2005). Agile offshore techniques - a case study. presented
at the meeting of the Proceedings of the Agile Conference, 2005, Denver, USA.
doi:10.1109/adc.2005.9.

245

Datta, S., Kaulgud, V., Sharma, V. S., & Kumar, N. (2010, February 25-27, 2010). A
social network based study of software team dynamics. presented at the meeting
of the Proceedings of the 3rd India Software Engineering Conference, Mysore,
India. doi:10.1145/1730874.1730883.

Datta, S., Sindhgatta, R., & Sengupta, B. (2011, Febuary 23-26, 2011). Evolution of
developer collaboration on the jazz platform: a study of a large scale agile
project. presented at the meeting of the Proceedings of the 4th India Software
Engineering Conference, Thiruvananthapuram, Kerala, India.
doi:10.1145/1953355.1953359.

Datta, S., Sindhgatta, R., & Sengupta, B. (2012). Talk versus work: characteristics of
developer collaboration on the jazz platform. SIGPLAN Notices, 47(10), 655-
668. doi:10.1145/2398857.2384664.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science,
35(8), 982-1003. doi:10.2307/2632151.

Davis, M. S. (1971). That's Interesting!: Towards a Phenomenology of Sociology and a
Sociology of Phenomenology. Philosophy of the Social Sciences, 1(2), 309-344.
doi:10.1177/004839317100100211.

De Dreu, C. K. W., & Weingart, L. R. (2003). Task Versus Relationship Conflict, Team
Performance, and Team Member Satisfaction: A Meta-Analysis. Journal of
Applied Psychology, 88(4), 741-749.

De Laat, M., Lally, V., Lipponen, L., & Simons, R.-J. (2007). Investigating patterns of
interaction in networked learning and computer-supported collaborative
learning: A role for Social Network Analysis. International Journal of
Computer-Supported Collaborative Learning, 2(1), 87-103.
doi:10.1007/s11412-007-9006-4.

De, P., Sinha, A. P., & Vessey, I. (2001). An empirical investigation of factors
influencing object-oriented database querying. Information Technology and
Management, 2(1), 71-93. doi:10.1023/a:1009934820999.

de Souza, C. R. B., & Redmiles, D. F. (2009). On The Roles of APIs in the
Coordination of Collaborative Software Development. Computer Supported
Cooperative Work (CSCW), 18(5-6), 445-475. doi:10.1007/s10606-009-9101-3.

De Souza, S., Anquetil, N., & De Oliveira, K. (2005, 2005). A study of the
documentation essential to software maintenance.ACM Press, New York.
Symposium conducted at the meeting of the Proceedings of the 23rd annual
international conference on Design of communication: documenting &
designing for pervasive information, Coventry, United Kingdom.

De Vries, R. E., Van den Hooff, B., & De Ridder, J. A. (2006). Explaining Knowledge
Sharing: The Role of Team Communication Styles, Job Satisfaction, and
Performance Beliefs. Communication Research, 33(2), 115-135.
doi:10.1177/0093650205285366.

De Wever, B., Schellens, T., Valcke, M., & Van Keer, H. (2006). Content analysis
schemes to analyze transcripts of online asynchronous discussion groups: a
review. Computers and Education, 46(1), 6-28.
doi:10.1016/j.compedu.2005.04.005.

Dekker, A. (2002). Applying Social Network Analysis Concepts to Military C4ISR
Architectures. 24(3), 93-103.

246

Dempsey, B., J, Weiss, D., Jones, P., & Greenberg, J. (2002). Who is an open source
software developer? Communications of the ACM, 45(2), 67-72.
doi:10.1145/503124.503125.

Denning, P. J. (2012). Moods. Communications of the ACM, 55(12), 33-35.
doi:10.1145/2380656.2380668.

Denning, P. J., & Dunham, R. (2010). The Innovator's Way. Cambridge, MA: The MIT
Press.

Di Penta, M. (2012, June 3, 2012). Mining developers' communication to assess
software quality: Promises, challenges, perils. presented at the meeting of the
3rd International Workshop on Emerging Trends in Software Metrics
(WETSoM), 2012 Zurich, Switzerland. doi:10.1109/WETSoM.2012.6226987.

Doty, D. H., & Glick, W. H. (1994). Typologies as a Unique Form of Theory Building:
Toward Improved Understanding and Modeling. The Academy of Management
Review, 19(2), 230-251. doi:10.2307/258704.

Downey, J. (2009). Designing Job Descriptions for Software Development. In
Information Systems Development: Challenges in Practice, Theory, and
Education. (pp. 447-460). USA: Springer US. doi:10.1007/978-0-387-68772-
8_34.

Druskat, V. U., & Wolff, S. B. (2001). Building the emotional intelligence of groups.
Harvard Business Review, 79(3), 80.

Dubin, R. (1978). Theory Building. (Vol. Revised). London: Free Press.

Ducheneaut, N. (2005). Socialization in an Open Source Software Community: A
Socio-Technical Analysis. Computer Supported Cooperative Work (CSCW),
14(4), 323-368. doi:10.1007/s10606-005-9000-1.

Dullemond, K., Gameren, B. v., & Solingen, R. v. (2009, July 13-16, 2009). How
Technological Support Can Enable Advantages of Agile Software Development
in a GSE Setting. presented at the meeting of the Proceedings of the 2009 Fourth
IEEE International Conference on Global Software Engineering, Limerick,
Ireland. doi:10.1109/icgse.2009.22.

Dutoit, A. H., & Bruegge, B. (1998). Communication Metrics for Software
Development. IEEE Trans. Softw. Eng., 24(8), 615-628. doi:10.1109/32.707697.

Earl, M. J. (1996). The Risks of Outsourcing IT. MIT Sloan Management Review,
Spring 1996.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical
Methods for Software Engineering Research. In Guide to Advanced Empirical
Software Engineering (pp. 285-311). London: Springer-Verlag.
doi:10.1007/978-1-84800-044-5_11.

Edwards, H., Puckett, R., & Jolly, A. (2006, June 26-29, 2006). Analyzing
communication patterns in software engineering projects. presented at the
meeting of the Software Engineering Research and Practice, SERP 2006, Las
Vegas, Nevada, USA.

Ehrlich, K., & Cataldo, M. (2012, February 11-15, 2012). All-for-one and one-for-all?:
a multi-level analysis of communication patterns and individual performance in
geographically distributed software development. presented at the meeting of
the Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, Seattle, Washington, USA. doi:10.1145/2145204.2145345.

247

Ehrlich, K., & Chang, K. (2006, October 16-19, 2006). Leveraging expertise in global
software teams: Going outside boundaries. presented at the meeting of the
Proceedings of the IEEE International Conference on Global Software
Engineering, Florianopolis, Brazil. doi:10.1109/ICGSE.2006.261228.

Ehrlich, K., Helander, M., Valetto, G., Davies, S., & Williams, C. (2008, May 10,
2008). An Analysis of Congruence Gaps and Their Effect on Distributed
Software Development. presented at the meeting of the Socio-Technical
Congruence Workshop at ICSE conference, Leipzig, Germany.

Ehrlich, K., Lin, C.-Y., & Griffiths-Fisher, V. (2007, November 4-7, 2007). Searching
for experts in the enterprise: combining text and social network analysis.
presented at the meeting of the Proceedings of the 2007 international ACM
Conference on Supporting Group Work, Sanibel Island, Florida, USA.
doi:10.1145/1316624.1316642.

El Emam, K., & Koru, A. G. (2008). A Replicated Survey of IT Software Project
Failures. IEEE Software, 25(5), 84-90.

Erlin, B. Y., Yusof, N., & Rahman, A. A. (2008, August 26-28, 2008). Integrating
Content Analysis and Social Network Analysis for analyzing Asynchronous
Discussion Forum. presented at the meeting of the International Symposium on
Information Technology, 2008. ITSim 2008, Kuala Lumpur.
doi:10.1109/ITSIM.2008.4631996.

Espinosa, J. A., DeLone, W., & Lee, G. (2006). Global boundaries, task processes and
IS project success: a field study. Information Technology & People, 19(4), 345 -
370. doi:10.1108/09593840610718036.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Familiarity,
Complexity, and Team Performance in Geographically Distributed Software
Development. Organization Science, 18(4), 613-630.
doi:10.1287/orsc.1070.0297.

Fahy, P. J., Crawford, G., & Ally, M. (2001). Patterns of interaction in a computer
conference transcript. The International Review of Research in Open and
Distance Learning, 2(1).

Feldt, R., Angelis, L., Torkar, R., & Samuelsson, M. (2010). Links between the
personalities, views and attitudes of software engineers. Information and
Software Technology, 52(6), 611-624. doi:10.1016/j.infsof.2010.01.001.

Fitzgerald, B., & Howcroft, D. (1998, December 13-16, 1998). Competing dichotomies
in IS research and possible strategies for resolution. presented at the meeting of
the Proceedings of the International Conference on Information Systems,
Helsinki, Finland. doi:10.1145/353053.353066.

Flyvbjerg, B. (2006). Five Misunderstandings About Case-Study Research. Qualitative
Inquiry, 12(2), 219-245. doi:10.1177/1077800405284363.

Franca, A. C. C., & Da Silva, F. Q. B. (2009, October 15-16, 2009). An empirical study
on software engineers motivational factors. presented at the meeting of the 3rd
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2009), Florida, USA. doi:10.1109/ESEM.2009.5316011.

French, A., & Layzell, P. (1998, November 16-20, 1998). A study of communication
and cooperation in distributed software project teams. presented at the meeting
of the Proceedings of the International Conference on Software Maintenance,
1998, Bethesda, MD. doi:10.1109/icsm.1998.738503.

248

Frost, R. (2007). Jazz and the Eclipse Way of Collaboration. IEEE Software, 24(6), 114-
117. doi:10.1109/ms.2007.170.

Funder, D. C., & Colvin, R. C. (1988). Friends and Strangers: Acquaintanceship,
Agreement, and the Accuracy of Personality Judgment. Journal of Personality
& Social Psychology, 55(1), 149-158.

Gacek, C., & Arief, B. (2004). The many meanings of open source. IEEE Software,
21(1), 34-40. doi:10.1109/ms.2004.1259206.

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational Research: An Introduction.
White Plains, N.Y: Longman Publishers.

Galliers, R. D., & Land, F. F. (1987). Viewpoint: choosing appropriate information
systems research methodologies. Communications of the ACM, 30(11), 901-902.
doi:10.1145/32206.315753.

Gallivan, M. J. (2001). Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies.
Information Systems Journal, 11(4), 277-304. doi:10.1046/j.1365-
2575.2001.00108.x.

Gaye, K., Butler, T., & Finnegan, P. (2010). Coordinating Global Virtual Teams:
Building Theory from a Case Study of Software Development. In Advanced
Information Systems Engineering (Vol. 6051, pp. 281-295). Heidelberg:
Springer Berlin. doi:10.1007/978-3-642-13094-6_23.

Geen, R. G. (1991). Social Motivation. Annual Review of Psychology, 42(1), 377-399.
doi:10.1146/annurev.ps.42.020191.002113.

Ghoniem, M., Fekete, J.-D., & Castagliola, P. (2005). On the readability of graphs using
node-link and matrix-based representations: a controlled experiment and
statistical analysis. Information Visualization, 4(2), 114-135.
doi:10.1057/palgrave.ivs.9500092.

Giddens, A. (1979). Central Problems in Social Theory: Action, Structure and
Contradiction in Social Analysis. London: Macmillan.

Giddens, A. (1984). The constitution of society: outline of the theory of structuration.
Berkeley and Los Angeles: University of California Press.

Giles, H., & Wiemann, J. M. (1993). Social Psychological Studies of Language: Current
Trends and Prospects. American Behavioral Scientist, 36(3), 262-270.
doi:10.1177/0002764293036003002.

Gill, A. J., & Oberlander, J. (2002, August 7-10, 2002). Taking care of the linguistic
features of Extraversion. presented at the meeting of the Paper presented at the
24th Annual Conference of the Cognitive Science Society, Fairfax, VA.

Gill, A. J., & Oberlander, J. (2003, July 31-August 2, 2003). Perception of email
personality at zero-acquaintance: Extraversion takes care of itself; Neuroticism
is a worry. presented at the meeting of the Proceedings of the 25th Annual
Conference of the Cognitive Science Society, Boston, Massachusetts.

Gill, A. J., Oberlander, J., & Austin, E. (2006). Rating e-mail personality at zero
acquaintance. Personality and Individual Differences, 40(3), 497-507.

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies
for Qualitative Research. Chicago: Aldine Publishing Company.

249

Glass, R. L., Vessey, I., & Ramesh, V. (2002). Research in software engineering: an
analysis of the literature. Information and Software Technology, 44(8), 491-506.
doi:10.1016/S0950-5849(02)00049-6.

Godfrey-Smith, P. (2003). Theory and Reality: an introduction to the philosophy of
science. Chicago: University of Chicago Press.

Goguen, J. A. (1993, January 4-6, 1993). Social issues in requirements engineering.
presented at the meeting of the Proceedings of IEEE International Symposium
on Requirements Engineering, San Diego, CA. doi:10.1109/isre.1993.324858.

Goldberg, L. R. (1981). Language and individual differences: The search for universals
in personality lexicons. Review of Personality and Social Psychology, 2(1), 141-
165.

Gorla, N., & Lam, Y. W. (2004). Who should work with whom?: building effective
software project teams. Commun. ACM, 47(6), 79-82.
doi:10.1145/990680.990684.

Gorunescu, F. (2011). Introduction to Data Mining. In J. Kacprzyk & L. C. Jain (Eds.),
Data Mining (Vol. 12, pp. 1-43). Heidelberg: Springer Berlin. doi:10.1007/978-
3-642-19721-5_1.

Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the
Big-Five personality domains. Journal of Research in Personality, 37(6), 504-
528.

Graesser, A. C., & Person, N. K. (1994). Question Asking During Tutoring. American
Educational Research Journal, 31(1), 104-137.
doi:10.3102/00028312031001104.

Greenblatt, D., & Waxman, J. (1978, August 2-3, 1978). A Study of Three Database
Query Languages. presented at the meeting of the Proceedings of the
International Conference on Databases: Improving Usability and Responiveness,
Technion, Haifa, Israel.

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3),
611-642.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E. (1999, November 14-17, 1999). The
geography of coordination: dealing with distance in R&D work. presented at the
meeting of the Proceedings of the international ACM SIGGROUP conference
on Supporting Group Work, Phoenix, Arizona, USA.
doi:10.1145/320297.320333.

Groth, D. (2005). An Evaluation of a Rule-Based Language for Classification Queries.
In D. Seipel, M. Hanus, U. Geske, & O. Bartenstein (Eds.), Applications of
Declarative Programming and Knowledge Management (Vol. 3392, pp. 79-97):
Springer Berlin Heidelberg. doi:10.1007/11415763_6.

Guetzkow, H., & Simon, H. A. (1955). The Impact of Certain Communication Nets
upon Organization and Performance in Task-Oriented Groups. Management
Science, 1(3/4), 233-250. doi:10.2307/2627162.

Gummer, B. (2001). I'm in the Mood for Work -- Current Perspectives on Work Group
Dynamics. Administration in Social Work, 25(2), 81 - 101.

Gunawardena, C. N., Lowe, C., & Anderson, T. (1997). Analysis of a global on-line
debate and the development of an interaction analysis model for examining

250

social construction of knowledge in computer conferencing. Journal of
Educational Computing Research, 17(4), 395-429.

Gunawardena, C. N., & Zittle, F. J. (1997). Social presence as a predictor of satisfaction
within a computer-mediated conferencing environment. American Journal of
Distance Education, 11(3), 8-26.

Hackman, J. R. (1986). The design of work teams. In The handbook of Organizational
Behavior (Lorsch, J. W ed., pp. 315-342). Eaglewood Cliffs, NJ: Prentice-Hall.

Hackman, J. R. (1992). Group influences on individuals in organizations. In M. D.
Dunnette & L. M. Hough (Eds.), Handbook of industrial and organizational
psychology (Vol. 3). Palo Alto: Consulting Psychologists Press.

Hackman, J. R., Morris, C. G., & Leonard, B. (1975). Group Tasks, Group Interaction
Process, and Group Performance Effectiveness: A Review and Proposed
Integration. In Advances in Experimental Social Psychology (Vol. Volume 8, pp.
45-99): Academic Press. doi:10.1016/S0065-2601(08)60248-8.

Hall, T., Jagielska, D., & Baddoo, N. (2007). Motivating developer performance to
improve project outcomes in a high maturity organization. Software Quality
Control, 15(4), 365-381. doi:10.1007/s11219-007-9028-1.

Hall, T., Wilson, D., Rainer, A., & Jagielska, D. (2007, April 19-21, 2007).
Communication: the neglected technical skill? presented at the meeting of the
Proceedings of the 2007 ACM SIGMIS CPR Conference on Computer
Personnel Research: The global information technology workforce, St. Louis,
Missouri, USA. doi:10.1145/1235000.1235043.

Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques (2nd ed.). San
Francisco: Morgan Kaufmann Publishers, Elsevier.

Hancock, J. T., & Dunham, P. J. (2001). Impression Formation in Computer-Mediated
Communication Revisited: An Analysis of the Breadth and Intensity of
Impressions. Communication Research, 28(3), 325-347.
doi:10.1177/009365001028003004.

Hannay, J. E., Sjoberg, D. I. K., & Dyba, T. (2007). A Systematic Review of Theory
Use in Software Engineering Experiments. IEEE Transaction on Software
Engineering, 33(2), 87-107. doi:10.1109/tse.2007.12.

Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods.
Riverside, CA: University of California, Riverside.

Hansen, D., Shneiderman, B., & Smith, M. (2011). Analyzing Social Media Networks
with NodeXL. Boston: Morgan Kaufmann. doi:10.1016/b978-0-12-382229-
1.00016-3.

Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an
applied educational psychology course. Instructional Science, 28(2), 115-152.
doi:10.1023/a:1003764722829.

Hart, R. P. (1984). Verbal Style and the Presidency: A Computer-Based Analysis New
York: Academic Press.

Hatano, G., & Inagaki, K. (1991). Sharing cognition through collective comprehension
activity. In In L.B. Resnick, J.M Levine, & S.D. Teasley (Eds.), Perspectives on
socially shared cognition (pp. 331-348). Washington DC: American
Psychological Association.

251

Hayes Huffman, J. (2003). Do you like Pina Coladas? How improved communication
can improve software quality. IEEE Software, 20(1), 90-92.

Heijstek, W., Kuhne, T., & Chaudron, M. R. V. (2011, September 22-23, 2011).
Experimental Analysis of Textual and Graphical Representations for Software
Architecture Design. presented at the meeting of the International Symposium
on Empirical Software Engineering and Measurement (ESEM2011), Banff, AB.
doi:10.1109/esem.2011.25.

Hellriegel, D., & Slocum, J. W. (2007). Organizational Behavior (11 ed.). Mason, OH:
Thomson Learning.

Henri, F., & Kaye, A. R. (1992). Computer conferencing and content analysis. In
Collaborative learning through computer conferencing: The Najaden papers
(pp. 117-136). New York: Springer-Verlag.

Henry, N., & Fekete, J.-D. (2007, September 10-14, 2007). MatLink: enhanced matrix
visualization for analyzing social networks. presented at the meeting of the
Proceedings of the 11th IFIP TC 13 international conference on Human-
computer interaction - Volume Part II, Rio de Janeiro, Brazil.

Herbsleb, J. D., & Grinter, R. E. (1999). Architectures, Coordination, and Distance:
Conway's Law and Beyond. IEEE Software, 16(5), 63-70.
doi:10.1109/52.795103.

Herbsleb, J. D., & Mockus, A. (2003a). An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE
Transactions on Software Engineering, 29(6), 481-494.
doi:10.1109/tse.2003.1205177.

Herbsleb, J. D., & Mockus, A. (2003b, September 1-5, 2003). Formulation and
preliminary test of an empirical theory of coordination in software engineering.
presented at the meeting of the Proceedings of the 9th European Software
Engineering Conference held jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Helsinki, Finland.
doi:10.1145/940071.940091.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2000, December 2-6,
2000). Distance, dependencies, and delay in a global collaboration. presented at
the meeting of the Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, Philadelphia, Pennsylvania, United States.
doi:10.1145/358916.359003.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2001, May 12-19, 2001).
An empirical study of global software development: distance and speed.
presented at the meeting of the 23rd International Conference on Software
Engineering, Toronto, Ontario, Canada. doi:10.1109/ICSE.2001.919083.

Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE Software,
18(2), 16-20.

Herbsleb, J. D., & Roberts, J. (2006, December 10-13, 2006). Collaboration In Software
Engineering Projects: A Theory of Coordination. presented at the meeting of the
Proceedings of the International Conference on Information Systems, ICIS 2006,
Milwaukee, Wisconsin, USA. doi:http://aisel.aisnet.org/icis2006/38.

Herzig, K., & Zeller, A. (2009, May 16-17, 2009). Mining the Jazz repository:
Challenges and opportunities. presented at the meeting of the 6th IEEE

http://aisel.aisnet.org/icis2006/38

252

International Working Conference on Mining Software Repositories, 2009.
MSR '09, Vancouver, BC. doi:10.1109/MSR.2009.5069495.

Hevner, A., March, T., S, Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1), 75-105.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York: Dorset House Publishing.

Highsmith, J. (2004). Agile Project Management: Creating Innovative Products.
Boston, MA: Pearson Education, Inc.

Hinds, P. J., & McGrath, C. (2006, November 4 -8, 2006). Structures that work: social
structure, work structure and coordination ease in geographically distributed
teams. presented at the meeting of the Proceedings of the 2006 20th anniversary
Conference on Computer Supported Cooperative Work, Banff, Alberta, Canada.
doi:10.1145/1180875.1180928.

Hinds, P. J., & Pfeffer, J. (2003). Why Organizations Don't Know What They Know:
Cognitive and Motivational Factors Affecting the Transfer of Expertise. In In
Ackerman, M, Pipek, V & Wulf, V, (Eds), Beyond Knowledge Management:
Sharing Expertise (citeulike:229884, pp. 3-26). Cambridge, MA: MIT Press.

Hoda, R., Noble, J., & Marshall, S. (2010a, May 2, 2010). Balancing acts: walking the
Agile tightrope. presented at the meeting of the Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of Software Engineering, Cape
Town, South Africa. doi:10.1145/1833310.1833312.

Hoda, R., Noble, J., & Marshall, S. (2010b, May 1-8, 2010). Organizing self-organizing
teams. presented at the meeting of the Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, Cape Town,
South Africa. doi:10.1145/1806799.1806843.

Holden, R. R., & Passey, J. (2010). Socially desirable responding in personality
assessment: Not necessarily faking and not necessarily substance. Personality
and Individual Differences, 49(5), 446-450. doi:10.1016/j.paid.2010.04.015.

Holsti, O. R. (1969). Content Analysis for the Social Sciences and Humanities. Reading,
MA: Addison Wesley.

Howe, K. R. (1988). Against the Quantitative-Qualitative Incompatibility Thesis or
Dogmas Die Hard. Educational Researcher, 17(8), 10-16.
doi:10.3102/0013189x017008010.

Howison, J., Inoue, K., & Crowston, K. (2006). Social dynamics of free and open
source team communications. In Open Source Systems (Vol. 203, pp. 319-330):
Springer Boston. doi:10.1007/0-387-34226-5_32.

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content
Analysis. Qualitative Health Research, 15(9), 1277-1288.
doi:10.1177/1049732305276687.

Humphrey, W. S. (1997). Introduction to the personal software process. Boston, MA:
Addison-Wesley Longman Publishing Co.

Humphrey, W. S. (1998). Three Dimensions of Process Improvement. Part III: The
Team Process. CROSSTALK The Journal of Defense Software Engineering,
11(2), 14-17.

253

Hussey, J., & Hussey, R. (1997). Business Research: A Practical Guide for
Undergraduate and Postgraduate Students. London: Macmillan.

Inkpen, A. C., & Tsang, E. W. K. (2005). Social Capital, Networks, and Knowledge
Transfer. The Academy of Management Review, 30(1), 146-165.
doi:10.2307/20159100.

Ivancevich, J. M., & Matteson, M. T. (2001). Organizational Behavior and
Management. (6 th Edition ed.): Mcgraw-hill Professional.

Jaanu, T., Paasivaara, M., & Lassenius, C. (2012, September 19-20, 2012). Effects of
four distances on communication processes in global software projects.
presented at the meeting of the Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, Lund,
Sweden. doi:10.1145/2372251.2372293.

Jalali, S., & Wohlin, C. (2010, August 23-26, 2010). Agile Practices in Global Software
Engineering - A Systematic Map. presented at the meeting of the 2010 5th IEEE
International Conference on Global Software Engineering (ICGSE), Princeton,
NJ. doi:10.1109/icgse.2010.14.

Jamali, M., & Abolhassani, H. (2006, December 18-22, 2006). Different Aspects of
Social Network Analysis. presented at the meeting of the Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence, Hong
Kong. doi:10.1109/wi.2006.61.

James, J. (1951). A Preliminary Study of the Size Determinant in Small Group
Interaction. American Sociological Review, 16(4), 474-477.
doi:10.2307/2088278.

Johansen, R. (1977). Social evaluations of teleconferencing. Telecommunications
Policy, 1(5), 395-419.

Johnson, P., Ekstedt, M., & Jacobson, I. (2012). Where's the Theory for Software
Engineering? IEEE Software 29(5), 96-96. doi:10.1109/ms.2012.127.

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods Research: A Research
Paradigm Whose Time Has Come. Educational Researcher, 33(7), 14-26.
doi:10.3102/0013189x033007014.

Jonassen, D., & Kwon, H. (2001). Communication patterns in computer mediated
versus face-to-face group problem solving. Educational Technology Research
and Development, 49(1), 35-51. doi:10.1007/bf02504505.

Jones, C. (1996). Strategies for managing requirements creep. Computer, 29(6), 92-94.
doi:10.1109/2.507640.

Jung, C. (1971). Psychological types. (Vol. 6). New Jersey: Princeton University Press.

Junior, M. C., Mendonca, M., Farias, M., & Henrique, P. (2010, May 2-3, 2010). OSS
developers context-specific Preferred Representational systems: A initial
Neurolinguistic text analysis of the Apache mailing list. presented at the meeting
of the 7th IEEE Working Conference on Mining Software Repositories (MSR),
Cape Town, SA. doi:10.1109/MSR.2010.5463339.

Kalman, M. E., Monge, P., Fulk, J., & Heino, R. (2002). Motivations to Resolve
Communication Dilemmas in Database-Mediated Collaboration.
Communication Research, 29(2), 125-154. doi:10.1177/0093650202029002002.

254

Kamaruddin, N. K., Arshad, N. H., & Mohamed, A. (2012, April 7-8, 2012). Chaos
issues on communication in Agile Global Software Development. presented at
the meeting of the 2012 IEEE Business Engineering and Industrial Applications
Colloquium (BEIAC), Kuala Lumpur. doi:10.1109/beiac.2012.6226091.

Kampenes, V. B., Dybå, T., Hannay, J. E., & Sjøberg, D. I. K. (2007). A systematic
review of effect size in software engineering experiments. Information and
Software Technology, 49(11–12), 1073-1086. doi:10.1016/j.infsof.2007.02.015.

Kanawattanachai, P., & Yoo, Y. (2007). The Impact of Knowledge Coordination on
Virtual Team Performance over Time. MIS Quarterly, 31(4), 783-808.
doi:10.2307/25148820.

Kankanhalli, A., Tan, B., & Wei, K.-K. (2005). Contributing knowledge to electronic
knowledge repositories: an empirical investigation. MIS Quarterly, 29(1), 113-
143.

Karn, J., & Cowling, T. (2006, September 21-22, 2006). A follow up study of the effect
of personality on the performance of software engineering teams. presented at
the meeting of the Proceedings of the 2006 ACM/IEEE international symposium
on Empirical Software Engineering, Rio de Janeiro, Brazil.
doi:10.1145/1159733.1159769.

Karolak, D. W. (1999). Global Software Development: Managing Virtual Teams and
Environments. Los Alamitos, CA: IEEE Computer Society Press.

Katzenbach, J., & Smith, D. (2001). The Discipline of Teams: A Mindbook-Workbook
for Delivering Small Group Performance (First Edition ed.). New York: John
Wiley & Sons.

Kennedy, D. M., McComb, S. A., & Vozdolska, R. R. (2011). An investigation of
project complexity's influence on team communication using Monte Carlo
simulation. Journal of Engineering and Technology Management, 28(3), 109-
127. doi:10.1016/j.jengtecman.2011.03.001.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS Quarterly, 23(1), 67-93.
doi:10.2307/249410.

Kline, C. J., & Peters, L. H. (1991). Behavioral Commitment and Tenure of New
Employees: A Replication and Extension. The Academy of Management
Journal, 34(1), 194-204. doi:10.2307/256307.

Koch, A. (2005). Agile Software Development: Evaluating the methods for your
organisation. Boston, MA: Artech House.

Krauss, R. M., & Fussell, S. R. (1996). Social psychological models of interpersonal
communication. In E. T. Higgins & A. Kruglanski (Eds.), Social psychology:
Handbook of basic principles (pp. 655-701): Guilford Press.

Krebs, S. A., Hobman, E. V., & Bordia, P. (2006). Virtual Teams and Group Member
Dissimilarity: Consequences for the Development of Trust. Small Group
Research, 37(6), 721-741. doi:10.1177/1046496406294886.

Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology (2nd
ed.). Thousand Oaks, CA: Sage Publications.

Kuhn, T. (1970). The structure of scientific revolutions. (Second ed.). Chicago: The
University of Chicago Press.

255

Kuzel, A. (1992). Sampling in qualitative inquiry. In Doing qualitative research (B.
Crabtree and W. Miller ed., pp. 31 - 44). Newbury Part, CA: Sage.

Larman, C., & Basili, V. R. (2003). Iterative and Incremental Development: A Brief
History. Computer, 36(6), 47-56. doi:10.1109/mc.2003.1204375.

Larose, D. T. (2005). Discovering Knowledge in Data: An introduction to Data Mining.
Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/0471687545.

Layman, L., Williams, L., Damian, D., & Bures, H. (2006). Essential communication
practices for Extreme Programming in a global software development team.
Information and Software Technology, 48(9), 781-794.
doi:10.1016/j.infsof.2006.01.004.

Lázaro, M., & Marcos, E. (2006, June 5-9, 2006). An Approach to the Integration of
Qualitative and Quantitative Research Methods in Software Engineering
Research. presented at the meeting of the 2nd CAiSE International Workshop
on Philosophical Foundations of Information Systems Engineering (PHISE'06),
Luxembourg.

Leavitt, H. J. (1951). Some effects of certain communication patterns on group
performance. The Journal of Abnormal & Social Psychology, 46(1), 38-50.

Lee, D. M. S., Trauth, E. M., & Farwell, D. (1995). Critical skills and knowledge
requirements of IS professionals: a joint academic/industry investigation. MIS
Quarterly, 19(3), 313-340. doi:10.2307/249598.

Lee, G., & Xia, W. (2005). The ability of information systems development project
teams to respond to business and technology changes: a study of flexibility
measures. European Journal of Information Systems, 14(1), 75-92.

Lee, S., & Yong, H.-S. (2010). Distributed agile: project management in a global
environment. Empirical Software Engineering, 15(2), 204-217.
doi:10.1007/s10664-009-9119-7.

Leech, N., & Onwuegbuzie, A. (2009). A typology of mixed methods research designs.
Quality & Quantity, 43(2), 265-275. doi:10.1007/s11135-007-9105-3.

Levin, D. Z., & Cross, R. (2004). The Strength of Weak Ties You Can Trust: The
Mediating Role of Trust in Effective Knowledge Transfer. Management Science,
50(11), 1477-1490. doi:10.2307/30047959.

Lewin, K. (1945). The Research Center for Group Dynamics at Massachusetts Institute
of Technology. Sociometry, 8(2), 126-136. doi:10.2307/2785233.

Li, J., & Chignell, M. (2010). Birds of a feather: How personality influences blog
writing and reading. International Journal of Human-Computer Studies, 68(9),
589-602.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006, October 21, 2006). Have
things changed now?: an empirical study of bug characteristics in modern open
source software. presented at the meeting of the Proceedings of the 1st
workshop on Architectural and system support for improving software
dependability, San Jose, California. doi:10.1145/1181309.1181314.

Licorish, S. A., & MacDonell, S. G. (2012, June 2, 2012). What affects team behavior?
Preliminary linguistic analysis of communications in the Jazz repository.
presented at the meeting of the 5th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE 2012), Zurich, Switzerland.
doi:10.1109/chase.2012.6223029.

256

Licorish, S. A., & MacDonell, S. G. (2013a, April 14-16, 2013). Adopting Softer
Approaches in the Study of Repository Data: A Comparative Analysis. presented
at the meeting of the 17th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2013), Porto de Galinhas, Brazil.
doi:10.1145/2460999.2461035.

Licorish, S. A., & MacDonell, S. G. (2013b, May 25, 2013). Differences in Jazz project
leaders’ competencies and behaviors: a preliminary empirical investigation.
presented at the meeting of the 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE 2013), San Francisco, CA.

Licorish, S. A., & MacDonell, S. G. (2013c, April 14-16, 2013). The true role of active
communicators: an empirical study of Jazz core developers. presented at the
meeting of the 17th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2013), Porto de Galinhas, Brazil.
doi:10.1145/2460999.2461034.

Licorish, S. A., & MacDonell, S. G. (2013d, June 4-7, 2013). What can developers’
messages tell us?: A psycholinguistic analysis of Jazz teams’ attitudes and
behavior patterns. presented at the meeting of the 22th Australian Conference
on Software Engineering (ASWEC 2013), Melbourne, Australia.
doi:10.1109/ASWEC.2013.22.

Licorish, S. A., Philpott, A., & MacDonell, S. G. (2009a, July 13-16, 2009). A prototype
tool to support extended team collaboration in agile project feature
management. presented at the meeting of the International Conference on
Software Engineering Theory and Practice (SETP 2009), Orlando FL, USA.

Licorish, S. A., Philpott, A., & MacDonell, S. G. (2009b, May 17, 2009). Supporting
agile team composition: A prototype tool for identifying personality
(In)compatibilities. presented at the meeting of the ICSE Workshop on
Cooperative and Human Aspects on Software Engineering (CHASE 2009),
Vancouver, Canada. doi:10.1109/CHASE.2009.5071413.

Litecky, C. R., Arnett, K. P., & Prabhakar, B. (2004). The paradox of soft skills versus
technical skills in IS hiring. The Journal of Computer Information Systems,
45(1), 69-76.

Ljungberg, J. (2000). Open source movements as a model for organising. European
Journal of Information Systems, 9(4), 208-216.
doi:10.1057/palgrave.ejis.3000373.

Lloyd, K. B., & Jankowski, D. J. (1999). A cognitive information processing and
information theory approach to diagram clarity: a synthesis and experimental
investigation. Journal of Systems and Software, 45(3), 203-214.
doi:10.1016/s0164-1212(98)10079-1.

Lockhorst, D., Admiraal, W., Pilot, A., & Veen, W. (2003). Analysis of electronic
communication using 5 different perspectives. Heerlen, Netherlands.

Lynham, S. A. (2002). The General Method of Theory-Building Research in Applied
Disciplines. Advances in Developing Human Resources, 4(3), 221-241.
doi:10.1177/1523422302043002.

Mairesse, F., & Walker, M. (2006, June 4-9, 2006). Automatic recognition of
personality in conversation. presented at the meeting of the Proceedings of the
Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers, New York.

257

Mairesse, F., Walker, M., Mehl, M. R., & Moore, R. K. (2007). Using linguistic cues
for the automatic recognition of personality in conversation and text. Journal of
Artificial Intelligence Research, 30(1), 457-500.

Manca, S., Delfino, M., & Mazzoni, E. (2009). Coding procedures to analyse interaction
patterns in educational web forums. Journal of Computer Assisted Learning,
25(2), 189-200. doi:10.1111/j.1365-2729.2008.00296.x.

Margerison, C. J., McCann, D. J., & Davies, R. (1986). The Margerison-McCann Team
Management Resource - Theory and Applications. International Journal of
Manpower, 7(2), 3-32.

Markus, M. L., Manville, B., & Agres, E. C. (2000). What makes a virtual organization
work? Sloan Management Review, 42(1), 13-26.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research,
1(2). Advance online publication. 471 Retrieved from http://www.qualitative-
research.net/index.php/fqs/article/view/1089

McCrae, R. R., & Costa, P. T. (1987). Validation of the Five-Factor Model of
Personality Across Instruments and Observers. Journal of Personality & Social
Psychology, 52(1), 81-90.

McDonough, E. F., Kahn, K. B., & Barczak, G. (2001). An investigation of the use of
global, virtual, and colocated new product development teams. Journal of
Product Innovation Management, 18(2), 110-120. doi:10.1016/S0737-
6782(00)00073-4.

McGann, S., & Lyytinen, K. (2008, December 14-17, 2008). The improvisation effect: a
case study of user Improvisation and its effects on information system evolution.
presented at the meeting of the Proceedings of the 29th International Conference
on Information Systems, ICIS 2008, Paris, France.

Mehl, M. R., & Pennebaker, J. W. (2003). The sounds of social life: a psychometric
analysis of students' daily social environments and natural conversations.
Journal of Personality and Social Psychology, 84(4), 857-870.

Mendieta, J. G., Schmidt, S., & Ruiz, A. (1997). A Dynamic Analysis of the Mexican
Power Network. Connections, 20(2), 34-55.

Messick, S. (1989). Validity. . In R.L. Linn (Ed.), in Educational Measurement (3rd ed.,
pp. 13-103). New York: American Council on Education & Macmillan.

Miles, M., & Huberman, A. (1994). Qualitative data analysis. Thousand Oaks, CA:
Sage.

Miller, J., Daly, J., Wood, M., Roper, M., & Brooks, A. (1997). Statistical power and its
subcomponents — missing and misunderstood concepts in empirical software
engineering research. Information and Software Technology, 39(4), 285-295.
doi:10.1016/S0950-5849(96)01139-1.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), 309-346. doi:10.1145/567793.567795.

Mockus, A., & Votta, L. G. (2000, October 11-14, 2000). Identifying Reasons for
Software Changes Using Historic Databases. presented at the meeting of the
Proceedings of the International Conference on Software Maintenance
(ICSM'00), San Jose, CA. doi:10.1109/ICSM.2000.883028.

http://www.qualitative-research.net/index.php/fqs/article/view/1089
http://www.qualitative-research.net/index.php/fqs/article/view/1089

258

Moe, N. B., Dingsoyr, T., & Dyba, T. (2008, March 26-28, 2008). Understanding Self-
Organizing Teams in Agile Software Development. presented at the meeting of
the Proceedings of the 19th Australian Conference on Software Engineering,
Perth, WA. doi:10.1109/ASWEC.2008.4483195.

Moe, N. B., Dingsoyr, T., & Dyba, T. (2010). A teamwork model for understanding an
agile team: A case study of a Scrum project. Information and Software
Technology, 52(5), 480-491.

Moreno, J. L. (1953). Who Shall Survive? Beacon, New York: Beacon House, Inc.

Morgan, R. M., & Hunt, S. D. (1994). The Commitment-Trust Theory of Relationship
Marketing. Journal of Marketing, 58(3), 20-38. doi:10.2307/1252308.

Morrison, J., & George, J. F. (1995). Exploring the software engineering component in
MIS research. Communications of the ACM, 38(7), 80-91.
doi:10.1145/213859.214802.

Mowday, R. T., Steers, R. M., & Porter, L. W. (1979). The measurement of
organizational commitment. Journal of Vocational Behavior, 14(2), 224-247.
doi:10.1016/0001-8791(79)90072-1.

Mowrer, D. E. (1996). A content analysis of student/instructor communication via
computer conferencing. Higher Education, 32(2), 217-241.
doi:10.1007/bf00138397.

Mulac, A., Bradac, J. J., & Gibbons, P. (2001). Empirical support for the gender-as-
culture hypothesis. Human Communication Research, 27(1), 121-152.
doi:10.1111/j.1468-2958.2001.tb00778.x.

Mumford, M. D., & Gustafson, S. B. (1988). Creativity Syndrome: Integration,
Application, and Innovation. Psychological Bulletin, 103(1), 27-43.

Nagappan, N., & Ball, T. (2007, September 20-21, 2007). Using Software Dependencies
and Churn Metrics to Predict Field Failures: An Empirical Case Study.
presented at the meeting of the First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), Madrid, Spain.
doi:10.1109/esem.2007.13.

Nagappan, N., Murphy, B., & Basili, V. (2008, May 10-18, 2008). The influence of
organizational structure on software quality: an empirical case study. presented
at the meeting of the Proceedings of the 30th international conference on
Software engineering, Leipzig, Germany. doi:10.1145/1368088.1368160.

Naidu, S., & Jarvela, S. (2006). Analyzing CMC content for what? Computers &
Education, 46(1), 96-103. doi:10.1016/j.compedu.2005.04.001.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM. , 48(5), 72 - 78.
doi:10.1145/1060710.1060712.

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks: Sage
Publication.

Newman, D. R., Webb, B., & Cochrane, C. (1995). A Content Analysis Method to
Measure Critical Thinking in Face-to-Face and Computer Supported Group
Learning. Interpersonal Computing and Technology, 3(2), 56-77.

259

Newman, I., & Benz, C. R. (1998). Qualitative-quantitative research methodology:
Exploring the interactive continuum. Carbondale: Southern Illinois University
Press.

Nguyen, T., Schroter, A., & Damian, D. (2008, November 9, 2008). Mining Jazz: An
experience report. presented at the meeting of the In Proceedings of the 1st
International Workshop on Infrastructure for Research in Collaborative Software
Engineering(iReCoSE), Atlanta, Georgia, USA.

Nguyen, T., Wolf, T., & Damian, D. (2008, August 17-20, 2008). Global Software
Development and Delay: Does Distance Still Matter? presented at the meeting
of the IEEE International Conference on Global Software Engineering (ICGSE
2008), Bangalore, India. doi:10.1109/ICGSE.2008.39.

Nord, R. L., & Tomayko, J. E. (2006). Software Architecture-Centric Methods and
Agile Development. IEEE Software, 23(2), 47-54.

Nowson, S., & Oberlander, J. (2006). The Language of Weblogs: A study of genre and
individual differences. University of Edinburgh. College of Science and
Engineering.

O'Dell, C., & Grayson, C. J. (1998). If only we knew what we know: Identification and
transfer of internal best practices. California Management Review, 40(3), 154-
174.

Ocker, R., J, & Fjermestad, J. (2008). Communication differences in virtual design
teams: findings from a multi-method analysis of high and low performing
experimental teams. SIGMIS Database, 39(1), 51-67.
doi:10.1145/1341971.1341977.

OED-Online. Oxford English Dictionary Online (539). Retrieved February 1, 2013,
from http://www.oed.com/

Oh, H., Labianca, G., & Chung, M. (2006). A Multilevel Model of Group Social
Capital. Academy of Management Review, 31(3), 569-582.

Oh, W., Gallivan, M. J., & Kim, J. W. (2006). The Market's Perception of the
Transactional Risks of Information Technology Outsourcing Announcements.
Journal of Management Information Systems, 22(4), 271-303.
doi:10.2307/40398820.

Onwuegbuzie, A. J. (2003). Effect Sizes in Qualitative Research: A Prolegomenon.
Quality & Quantity, 37(4), 393-409. doi:10.1023/a:1027379223537.

Onwuegbuzie, A. J., & Danlel, L. G. (2002). Uses and misuses of correlation
coefficient. Research in the Schools, 9(1), 73-90.

Onwuegbuzie, A. J., & Leech, N. (2005). On Becoming a Pragmatic Researcher: The
Importance of Combining Quantitative and Qualitative Research Methodologies.
International Journal of Social Research Methodology, 8(5), 375-387.
doi:10.1080/13645570500402447.

Onwuegbuzie, A. J., & Teddlie, C. (2003). A framework for analyzing data in mixed
methods research. In In A Tashakkori & C Teddlie (Eds.), Handbook of mixed
methods in social and behavioral research (pp. 351–383). Thousand Oaks, CA:
Sage.

Oreg, S., & Nov, O. (2008). Exploring motivations for contributing to open source
initiatives: The roles of contribution context and personal values. Computers in
Human Behavior, 24(5), 2055-2073. doi:10.1016/j.chb.2007.09.007.

http://www.oed.com/

260

Orlikowski, W. (1992). The Duality of Technology: Rethinking the Concept of
Technology in Organizations. ORGANIZATION SCIENCE, 3(3), 398-427.

Oxman, T. E., Rosenberg, S. D., Schnurr, P. P., & Tucker, G. J. (1988). Diagnostic
classification through content analysis of patients' speech. American Journal of
Psychiatry, 145(4), 464-468.

Paasivaara, M., & Lassenius, C. (2003). Collaboration practices in global inter-
organizational software development projects. Software Process: Improvement
and Practice, 8(4), 183-199. doi:10.1002/spip.187.

Palazzolo, E. T., Serb, D. A., She, Y., Su, C., & Contractor, N. S. (2006). Coevolution
of Communication and Knowledge Networks in Transactive Memory Systems:
Using Computational Models for Theoretical Development. Communication
Theory, 16(2), 223-250. doi:10.1111/j.1468-2885.2006.00269.x.

Pattison, D. S., Bird, C. A., & Devanbu, P. T. (2008, May 10-18, 2008). Talk and work:
a preliminary report. presented at the meeting of the Proceedings of the 2008
international working conference on Mining software repositories, Leipzig,
Germany. doi:10.1145/1370750.1370776.

Paul, L. B. (2008). Risk and risk management in software projects: A reassessment.
Journal of Systems and Software, 81(12), 2118-2133.
doi:10.1016/j.jss.2008.03.059.

Pennebaker, J., Chung, C., Ireland, M., Gonzales, A., & Booth, R. J. (2007). Linguistic
inquiry and word count (291). Retrieved 10-01-2011, from
http://liwc.net/index.php

Pennebaker, J., & King, L. (1999). Linguistic Styles: Language Use as an Individual
Difference. Journal of Personality & Social Psychology, 77(6), 1296-1312.
doi:10.1037//0022-3514.77.6.1296.

Pennebaker, J., & Lay, T. (2002). Language Use and Personality during Crises:
Analyses of Mayor Rudolph Giuliani's Press Conferences. Journal of Research
in Personality, 36(3), 271-282. doi:10.1006/jrpe.2002.2349.

Pennebaker, J., Mayne, T., & Francis, M. (1997). Linguistic Predictors of Adaptive
Bereavement. Journal of Personality & Social Psychology, 72(4), 863-871.

Pennebaker, J., Mehl, M., & Niederhoffer, K. (2003). Psychological Aspects of Natural
Language Use: Our Words, Our Selves. Annual Review of Psychology, 54(1),
547-577. doi:10.1146/annurev.psych.54.101601.145041.

Pennebaker, J., & Stone, L. (2003). Words of Wisdom: Language Use Over the Life
Span. Journal of Personality and Social Psychology, 85(2), 291-301.
doi:10.1037/0022-3514.85.2.29.

Perry, D. E., Sim, S. E., & Easterbrook, S. M. (2004, May 23-28, 2004). Case studies
for software engineers. presented at the meeting of the 26th International
Conference on Software Engineering (ICSE 2004), Edinburgh, Scotland, UK.
doi:10.1109/icse.2004.1317512.

Perry, D. E., Staudenmayer, N., & Votta, L. G. (1994). People, Organizations, and
Process Improvement. IEEE Software, 11(4), 36-45. doi:10.1109/52.300082.

Pfleeger, S. L. (1999). Albert Einstein and empirical software engineering. Computer,
32(10), 32-38. doi:10.1109/2.796106.

http://liwc.net/index.php

261

Pinzger, M., Nagappan, N., & Murphy, B. (2008, November 9-14, 2008). Can
developer-module networks predict failures? presented at the meeting of the
Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, Atlanta, Georgia.
doi:10.1145/1453101.1453105.

Pohl, M., & Diehl, S. (2008, May 13, 2008). What dynamic network metrics can tell us
about developer roles. presented at the meeting of the Proceedings of the 2008
International workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2008), Leipzig, Germany. doi:10.1145/1370114.1370135.

Pollock, M. (2009). Investigating the relationship between team role diversity and team
performance in information systems teams. Journal of Information Technology
Management, 20(1), 42-55.

Polzehl, T., Moller, S., & Metze, F. (2010, September 22-24, 2010). Automatically
Assessing Personality from Speech. presented at the meeting of the IEEE Fourth
International Conference on Semantic Computing (ICSC), 2010 Pittsburgh, PA.
doi:10.1109/ICSC.2010.41.

Potts, C. (1993). Software-engineering research revisited. IEEE Software, 10(5), 19-28.
doi:10.1109/52.232392.

Powell, W. W. (1990). Neither market nor hierarchy: network forms of organization. In
B. M. Staw and L. L. Cummints, eds. Research in Organizational Behavior, 12,
295-336.

Prabhala, S., & Gallimore, J. J. (2005, May 14-8, 2005). Can humans perceive
personality in computer agents? presented at the meeting of the IIE Annual
Conference and Exposition 2005, Atlanta Georgia.

Prashant, B. (1997). Face-to-Face Versus Computer-Mediated Communication: A
Synthesis of the Experimental Literature. Journal of Business Communication,
34(1), 99 -120.

Pressman, R. S. (2009). Software Engineering: A Practitioner's Approach (7th ed.).
New York: McGraw-Hill.

Prikladnicki, R., Nicolas Audy, J. L., & Evaristo, R. (2003). Global software
development in practice lessons learned. Software Process: Improvement and
Practice, 8(4), 267-281. doi:10.1002/spip.188.

Proper, K. (2005). The logic of scientific discovery. London: Taylor and Francis Group.

Quigley, N. R., Tesluk, P. E., Locke, E. A., & Bartol, K. M. (2007). A Multilevel
Investigation of the Motivational Mechanisms Underlying Knowledge Sharing
and Performance. Organization Science, 18(1), 71-88.
doi:10.1287/orsc.1060.0223.

Rajendran, M. (2005). Analysis of team effectiveness in software development teams
working on hardware and software environments using Belbin Self-Perception
inventory. Journal of Management Development, 24(8), 738-753.
doi:10.1108/02621710510613753.

Ramesh, V., Glass, R. L., & Vessey, I. (2004). Research in computer science: An
empirical study. Journal of Systems and Software, 70(1-2), 165-176.
doi:10.1016/S0164-1212(03)00015-3.

Ravenscroft, A., & Pilkington, R. M. (2000). Investigation by Design: Developing
Dialogue Models to Support Reasoning and Conceptual Change. International

262

Journal of Artificial Intelligence in Education: Special Issue on Analysing
Educational Dialogue Interaction: From Analysis to Models that Support
Learning, 11(3), 273--298.

Reagans, R., & Zuckerman, E. W. (2001). Networks, Diversity, and Productivity: The
Social Capital of Corporate R&D Teams. Journal of Organization Science,
12(4), 502-517. doi:10.1287/orsc.12.4.502.10637.

Reid, A. (1977). Comparing telephone with face-to-face contact. Cambridge, Mass:
MIT Press.

Rice, R. E. (1992). Task Analyzability, Use of New Media, and Effectiveness: A Multi-
Site Exploration of Media Richness. Organization Science, 3(4), 475 - 500.

Rich, S. (2010, April 26-30, 2010). IBM's jazz integration architecture: building a tools
integration architecture and community inspired by the web. presented at the
meeting of the Proceedings of the 19th international conference on World wide
web, Raleigh, North Carolina, USA. doi:10.1145/1772690.1772936.

Richardson, J., & Swan, K. (2003). Examining Social Presence in Online Courses in
Relation to Student's Perceived Learning and Satisfaction. Journal of
Asynchronous Learning Networks, 7(1), 68- 88.

Ricoeur, P. (1981). Hermeneutics and the Human Sciences. Cambridge, UK: Cambridge
University Press.

Rigby, P., & Hassan, A. (2007, May 20-26, 2007). What Can OSS Mailing Lists Tell
Us? A Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List. presented at the meeting of the Proceedings of the Fourth
International Workshop on Mining Software Repositories, Minneapolis, MN.
doi:10.1109/msr.2007.35.

Rigby, P., & Storey, M.-A. (2011, May 21-28, 2011). Understanding broadcast based
peer review on open source software projects. presented at the meeting of the
2011 33rd International Conference on Software Engineering (ICSE), Honolulu,
HI. doi:10.1145/1985793.1985867.

Robles, G., Gonzalez-Barahona, J. M., & Herraiz, I. (2009, May 16-17, 2009).
Evolution of the core team of developers in libre software projects. presented at
the meeting of the 6th IEEE International Working Conference on Mining
Software Repositories, 2009 (MSR '09), Vancouver, BC.
doi:10.1109/msr.2009.5069497.

Rodriguez, D., Herraiz, I., & Harrison, R. (2012, June 5, 2012). On software
engineering repositories and their open problems. presented at the meeting of
the First International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE), 2012, Zurich, Switzerland.
doi:10.1109/raise.2012.6227971.

Romney, A. K., Weller, S. C., & Batchelder, W. H. (1986). Culture as Consensus: A
Theory of Culture and Informant Accuracy. American Anthropologist, 88(2),
313-338. doi:10.2307/677564.

Ropponen, J., & Lyytinen, K. (2000). Components of software development risk: how
to address them? A project manager survey. IEEE Transactions on Software
Engineering, 26(2), 98-112.

263

Rosengren, K. E. (1981). Advances in Scandinavia content analysis: An introduction. In
K. E. Rosengren (Ed.), Advances in content analysis (pp. 9-19). Beverly Hills,
CA: Sage.

Rourke, L., & Anderson, T. (2002). Exploring Social Communication in Computer
Conferencing. Journal of Interactive Learning Research, 13(3), 259-275.

Rourke, L., & Anderson, T. (2004). Validity in quantitative content analysis.
Educational Technology Research and Development, 52(1), 5-18.
doi:10.1007/bf02504769.

Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (2001). Methodological issues
in the content analysis of computer conference transcripts. International Journal
of Artificial Intelligence in Education, 12(1), 8–22.

Rowley, D., & Lange, M. (2007, August 13-17, 2007). Forming to Performing: The
Evolution of an Agile Team. presented at the meeting of the Agile Conference
(AGILE), 2007, Washington, DC. doi:10.1109/agile.2007.28.

Rudzki, J., Hammouda, I., Mikkola, T., Mustonen, K., & Systä, T. (2010). Considering
Subcontractors in Distributed Scrum Teams. In D. Šmite, N. B. Moe, & P. J.
Ågerfalk (Eds.), Agility Across Time and Space (pp. 235-255): Springer Berlin
Heidelberg. doi:10.1007/978-3-642-12442-6_16.

Ruhnow, A. (2007, August 13-17, 2007). Consciously Evolving an Agile Team.
presented at the meeting of the Agile Conference (AGILE), 2007, Washington,
DC. doi:10.1109/agile.2007.20.

Runeson, P., & Host, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2), 131-
164. doi:10.1007/s10664-008-9102-8.

Ryan, S., & O'Connor, R. V. (2009). Development of a team measure for tacit
knowledge in software development teams. Journal of Systems and Software,
82(2), 229-240. doi:10.1016/j.jss.2008.05.037.

Sach, R., Sharp, H., & Petre, M. (2011, September 19-23, 2011). Software Engineers'
Perceptions of Factors in Motivation. presented at the meeting of the 5th
International Symposium on Empirical Software Engineering and Measurement
Banff, Alberta, Canada.

Sahay, S. (2003). Global software alliances: the challenge of 'standardization'.
Scandinavian Journal of Information Systems, 15(1), 3-21.

Sauer, C., Jeffery, D. R., Land, L., & Yetton, P. (2000). The Effectiveness of Software
Development Technical Reviews: A Behaviorally Motivated Program of
Research. IEEE Trans. Softw. Eng., 26(1), 1-14. doi:10.1109/32.825763.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying Software Project
Risks: An International Delphi Study. Journal of Management Information
Systems, 17(4), 5-36.

Schnurr, P. P., Rosenberg, S. D., & Oxman, T. E. (1992). Comparison of TAT and Free
Speech Techniques for Eliciting Source Material in Computerized Content
Analysis. Journal of Personality Assessment, 58(2), 311-325.
doi:10.1207/s15327752jpa5802_10.

Schrire, S. (2006). Knowledge building in asynchronous discussion groups: Going
beyond quantitative analysis. Journal of Computers & Education, 46(1), 49-70.
doi:10.1016/j.compedu.2005.04.006.

264

Schroter, A. (2010, May 2-8, 2010). Predicting build outcome with developer
interaction in Jazz. presented at the meeting of the Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2,
Cape Town, South Africa. doi:10.1145/1810295.1810456.

Schultz, M., & Hatch, M. J. (1996). Living with Multiple Paradigms: The Case of
Paradigm Interplay in Organizational Culture Studies. The Academy of
Management Review, 21(2), 529-557. doi:10.2307/258671.

Scott, J. (2000). Social Network Analysis: A Handbook (Scott00). London: Sage
Publications.

Serce, F. C., Alpaslan, F.-N., Swigger, K., Brazile, R., Dafoulas, G., Lopez, V. (2009,
July 13-16, 2009). Exploring Collaboration Patterns among Global Software
Development Teams. presented at the meeting of the Proceedings of the 2009
Fourth IEEE International Conference on Global Software Engineering,
Limerick, Ireland. doi:10.1109/icgse.2009.14.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton: Mifflin.

Sharma, V. S., & Kaulgud, V. (2011, May 21, 2011). Studying team evolution during
software testing. presented at the meeting of the Proceeding of the 4th
International workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2011), Waikiki, Honolulu, HI, USA.
doi:10.1145/1984642.1984660.

Sharp, H., Baddoo, N., Beecham, S., Hall, T., & Robinson, H. (2009). Models of
motivation in software engineering. Information and Software Technology,
51(1), 219-233. doi:10.1016/j.infsof.2008.05.009.

Sharp, V. (1979). Statistics for the social sciences: the University of Michigan.

Sheetz, S. D., Henderson, D., & Wallace, L. (2009). Understanding developer and
manager perceptions of function points and source lines of code. Journal of
Systems and Software, 82(9), 1540-1549. doi:10.1016/j.jss.2009.04.038.

Shihab, E., Bettenburg, N., Adams, B., & Hassan, A. (2010). On the Central Role of
Mailing Lists in Open Source Projects: An Exploratory Study. In New Frontiers
in Artificial Intelligence (Vol. 6284, pp. 91-103). Heidelberg: Springer Berlin.
doi:10.1007/978-3-642-14888-0_9.

Shihab, E., Zhen Ming, J., & Hassan, A. (2009, September 20-26, 2009). Studying the
use of developer IRC meetings in open source projects. presented at the meeting
of the IEEE International Conference on Software Maintenance (ICSM 2009),
Edmonton, AB. doi:10.1109/ICSM.2009.5306333.

Short, J., Williams, E., & Christie, B. (1976). The Social Psychology of
Telecommunications. London, England: John Wiley & Sons Ltd.

Siddiqui, M. S., & Hussain, S. J. (2006, March 8, 2006). Comprehensive Software
Development Model. presented at the meeting of the IEEE International
Conference on Computer Systems and Applications, Dubai/Sharjah, UAE.
doi:10.1109/AICCSA.2006.205113.

Singer, J. (1998, November 16-20, 1998). Practices of Software Maintenance. presented
at the meeting of the Proceedings of the International Conference on Software
Maintenance, Bethesda, MD. doi:10.1109/ICSM.1998.738502.

265

Siniaalto, M., & Abrahamsson, P. (2007, September 20-21, 2007). A Comparative Case
Study on the Impact of Test-Driven Development on Program Design and Test
Coverage. presented at the meeting of the First International Symposium on
Empirical Software Engineering and Measurement, (ESEM 2007) Madrid,
Spain. doi:10.1109/esem.2007.35.

Smilowitz, M., Compton, D. C., & Flint, L. (1988). The effects of computer mediated
communication on an individual's judgment: A study based on the methods of
Asch's social influence experiment. Computers in Human Behavior, 4(4), 311 -
321.

Smith, E., Seger, C., & Mackie, D. (2007). Can Emotions Be Truly Group Level?
Evidence Regarding Four Conceptual Criteria. Journal of Personality and Social
Psychology, 93(3), 431-446.

Smith, M., Shneiderman, B., Milic-Frayling, N., Mendes Rodrigues, E., Barash, V.,
Dunne, C. (2009, June 25-27, 2009). Analyzing (social media) networks with
NodeXL. presented at the meeting of the Proceedings of the fourth international
conference on Communities and technologies, University Park, PA, USA.
doi:10.1145/1556460.1556497.

Solomon, R. C. (2007). True to Our Feelings: What Our Emotions Are Really Telling
Us. Oxford, UK: Oxford University Press.

Sowe, S., Stamelos, I., & Angelis, L. (2008). Understanding knowledge sharing
activities in free/open source software projects: An empirical study. Journal of
Systems and Software, 81(3), 431-446.

Spence, D. P., Scarborough, H. S., & Hoff Ginsberg, E. (1978). Lexical correlates of
cervical cancer. Social Science & Medicine. Part A: Medical Psychology &
Medical Sociology, 12(0), 141-145. doi:10.1016/0271-7123(78)90042-1.

Spinellis, D. (2006, May 23, 2006). Global software development in the freeBSD
project. presented at the meeting of the Proceedings of the 2006 international
workshop on Global software development for the practitioner, Shanghai, China.
doi:10.1145/1138506.1138524.

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks, CA: Sage
Publication.

Standish Group. (1995). The Chaos Report. Retrieved May 1, 2006, from
http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf

Standish Group. (2001). Extreme Chaos. Retrieved May 1, 2006, from
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

Standish Group. (2009). CHAOS Summary 2009. West Yarmouth, MA: The Standish
Group International Inc.

Stevens, T. K., & Henry, S. M. (1997). Using Belbin''s Role to Improve Team
Effectiveness: Virginia Polytechnic Institute & State University Blacksburg, VA,
USA.

Stone , L. D., & Pennebaker, J. W. (2002). Trauma in Real Time: Talking and Avoiding
Online Conversations about the Death of Princess Diana. Basic Appl. Soc.
Psychol., 24, 172-182.

Stone, L. D., & Pennebaker, J. W. (2002). Trauma in Real Time: Talking and Avoiding
Online Conversations About the Death of Princess Diana. Basic and Applied
Social Psychology, 24(3), 173-183. doi:10.1207/s15324834basp2403_1.

http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

266

SWEBOK. (2004). Guide to the Software Engineering Body of Knowledge. Retrieved
from http://www.computer.org/portal/web/swebok

Szulanski, G. (2000). The Process of Knowledge Transfer: A Diachronic Analysis of
Stickiness. Organizational Behavior and Human Decision Processes, 82(1), 9-
27. doi:10.1006/obhd.2000.2884.

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Boston,
USA: Addison-Wesley.

Tashakkori, A., & Teddlie, C. (1998). Mixed methodology: Combining qualitative and
quantitative approaches. Thousand Oaks, CA: Sage.

Taylor, M. A., Reed, R., & Berenbaum, S. (1994). Patterns of Speech Disorders in
Schizophrenia and Mania. The Journal of Nervous and Mental Disease, 182(6),
319-326.

Thomas, M., & Hynes, C. (2007). The darker side of groups. Journal of Nursing
Management, 15(4), 375-385. doi:10.1111/j.1365-2834.2007.00697.x.

Tiwana, A. (2004). Beyond the black box: knowledge overlaps in software outsourcing.
IEEE Software, 21(5), 51-58. doi:10.1109/ms.2004.1331302.

Tjosvold, D. (2008). The conflict-positive organization: it depends upon us. Journal of
Organizational Behavior, 29(1), 19-28. doi:10.1002/job.473.

Trapnell, P. D., & Wiggins, J. S. (1990). Extension of the Interpersonal Adjective
Scales to Include the Big Five Dimensions of Personality. Journal of Personality
and Social Psychology, 59(4), 781-790.

Treude, C. (2010, May 2-8, 2010). The role of emergent knowledge structures in
collaborative software development. presented at the meeting of the Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 2, Cape Town, South Africa. doi:10.1145/1810295.1810400.

Trigo, A., Varajao, J., Soto-Acosta, P., Barroso, J., Molina-Castillo, F. J., & Gonzalvez-
Gallego, N. (2010). IT professionals: an Iberian snapshot. International Journal
of Human Capital and Information Technology Professionals (IJHCITP) 1(1),
61-75.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological
Bulletin, 63(6), 384 - 399.

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem.
AJS, 111, 447-504.

van den Hoof, B., de Ridder, J., & Aukema, E. (2004). Exploring the Eagerness to
Share Knowledge: The Role of Social Capital and ICT in Knowledge Sharing.
In M. H. Huysman & V. Wulf (Eds.), Social Capital and Information
Technology (pp. 163- 186). Cambridge, MA: MIT Press.

van den Hooff, B., & de Ridder, J. (2004). Knowledge sharing in context: the influence
of organizational commitment, communication climate and CMC use on
knowledge sharing. Journal of Knowledge Management, 8(6), 117-130.

van den Hooff, B., & Hendrix, L. (2004, April 2-3, 2004). Eagerness and willingness to
share: the relevance of different attitudes towards knowledge sharing. presented
at the meeting of the Fifth Euoropean Conference on Organizational Knowledge,
Learning and Capabilities, Innsbruck, Austria.

http://www.computer.org/portal/web/swebok

267

Verner, J. M., & Evanco, W. M. (2005). In-house software development: what project
management practices lead to success? IEEE Software, 22(1), 86 - 93
doi:10.1109/MS.2005.12.

Vessey, I., Ramesh, V., & Glass, R. L. (2002). Research in Information Systems: An
Empirical Study of Diversity in the Discipline and Its Journals. Journal of
Management Information Systems, 19(2), 129-174.

Vogt, W. P. (2005). Dictionary of Statistics & Methodology: A Nontechnical Guide for
the Social Sciences (3rd ed.). Thousand Oaks: SAGE Publications, Inc.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological
Processes (14th ed.). Cambridge: Harvard University Press.

Walle, T., & Hannay, J. E. (2009, October 15-16, 2009). Personality and the nature of
collaboration in pair programming. presented at the meeting of the 3rd
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2009), Lake Buena Vista, Florida, USA.
doi:10.1109/ESEM.2009.5315996.

Walsh, J. P. (1995). Managerial and Organizational Cognition: Notes from a Trip Down
Memory Lane. Organisation Science, 6(3), 280-321. doi:10.2307/2635252.

Walsham, G. (1993). Interpreting Information Systems in Organizations. New York:
John Wiley & Sons, Inc.

Walther, J., & Burgoon, J. K. (1992). Relational Communication in Computer-Mediated
Interaction. Human Communication Research, 19(1), 50 -88.

Walz, D., Elam, J., & Curtis, B. (1993). Inside a software design team: knowledge
acquisition, sharing, and integration. Commun. ACM, 36(10), 63-77.
doi:10.1145/163430.163447.

Wasserman, S., & Faust, K. (1997). Social network analysis: methods and applications.
Cambridge: Cambridge University Press.

Watson, W., & Michaelsen, L. (1988). Group Interaction Behaviors that Affect Group
Performance on an Intellective Task. Group & Organization Management,
13(4), 495-516. doi:10.1177/105960118801300406.

Weber, R. (1990). Basic content analysis. Beverly Hills, CA: Sage.

Wieringa, R., Daneva, M., & Condori-Fernández, N. (2011, September 22-23, 2011).
The Structure of Design Theories, and an Analysis of their Use in Software
Engineering Experiments. presented at the meeting of the International
Symposium on Empirical Software Engineering and Measurement (ESEM
2011), Banff, Canada. doi:10.1109/ESEM.2011.38.

Willging, P. (2005). Using Social Network Analysis Techniques to Examine Online
Interactions. US-China Education Review, 2(9), 46-56.

Williams, L., & Kessler, R. (2003). Pair Programming Illuminated. Boston: Addison-
Wesley.

Wilson, M. (1987). MRC Psycholinguistic Database: Machine Usable Dictionary,
Version 2.00.

Wilson, M. (1988). The MRC Psycholinguistic Database: Machine Readable
Dictionary, Version 2. Behavioural Research Methods, Instruments and
Computers, 29(1), 6-11.

268

Wohlin, C. (2002, August 23, 2002). Is prior knowledge of a programming language
important for software quality? presented at the meeting of the Proceedings of
the International Symposium of Empirical Software Engineering, 2002, Nara,
Japan. doi:10.1109/isese.2002.1166922.

Wolf, T., Schroter, A., Damian, D., & Nguyen, T. (2009, May 16-24, 2009). Predicting
build failures using social network analysis on developer communication.
presented at the meeting of the Proceedings of the 31st International Conference
on Software Engineering, Vancouver, BC. doi:10.1109/icse.2009.5070503.

Wolf, T., Schroter, A., Damian, D., Panjer, L. D., & Nguyen, T. H. D. (2009). Mining
Task-Based Social Networks to Explore Collaboration in Software Teams. IEEE
Software, 26(1), 58-66. doi:10.1109/MS.2009.16.

Woodcock, M. (1989). Team Development Manual. Surrey, UK: Gower, Aldershot.

Wynekoop, J., & Walz, D. (2000). Investigating traits of top performing software
developers. Information Technology & People, 13(3), 186 - 195.
doi:10.1108/09593840010377626.

Yee, N., Harris, H., Jabon, M., & Bailenson, J. N. (2010). The Expression of Personality
in Virtual Worlds. Social Psychological and Personality Science, 1(4).
doi:10.1177/1948550610379056.

Yen, M. Y. M., & Scamell, R. W. (1993). A human factors experimental comparison of
SQL and QBE. IEEE Transactions on Software Engineering, 19(4), 390-409.
doi:10.1109/32.223806.

Yin, R. (2003). Case Study Research: Design and Methods (Third ed., Vol. 5).
Thousand Oaks, CA: Sage Publications, Inc.

Young, C., & Terashima, H. (2008, August 4-8, 2008). How Did We Adapt Agile
Processes to Our Distributed Development? presented at the meeting of the
Agile, 2008 Conference, Toronto, ON. doi:10.1109/Agile.2008.7.

Yu, L., Ramaswamy, S., Mishra, A., & Mishra, D. (2011, October 17-21, 2011).
Communications in global software development: an empirical study using
GTK+ OSS repository. presented at the meeting of the Proceedings of the
2011th Confederated international conference on On the move to meaningful
internet systems, Crete, Greece. doi:10.1007/978-3-642-25126-9_32.

Zakaria, N., Amelinckx, A., & Wilemon, D. (2004). Working Together Apart? Building
a Knowledge-Sharing Culture for Global Virtual Teams. Creativity and
Innovation Management, 13(1), 15-29. doi:10.1111/j.1467-8691.2004.00290.x.

Zalesny, M. D. (1990). Rater Confidence and Social Influence in Performance
Appraisals. Journal of Applied Psychology, 75(3), 274-289.

Zannier, C., Chiasson, M., & Maurer, F. (2007). A model of design decision making
based on empirical results of interviews with software designers. Information
and Software Technology, 49(6), 637-653. doi:10.1016/j.infsof.2007.02.010.

Zeldow, P. B., & McAdams, D. P. (1993). On the Comparison of TAT and Free Speech
Techniques in Personality Assessment. Journal of Personality Assessment,
60(1), 181-185.

Zheng, J., Veinott, E., Bos, N., Olson, J. S., & Olson, G. M. (2002, April 20-25, 2002).
Trust without touch: jumpstarting long-distance trust with initial social
activities. presented at the meeting of the Proceedings of the SIGCHI conference

269

on Human factors in computing systems: Changing our world, changing
ourselves, Minneapolis, Minnesota, USA. doi:10.1145/503376.503402.

Zhong, X., Huang, Q., Davison, R. M., Yang, X., & Chen, H. (2012). Empowering
teams through social network ties. International Journal of Information
Management, 32(3), 209-220. doi:10.1016/j.ijinfomgt.2011.11.001.

Zhou, L., Burgoon, J. K., Zhang, D., & Nunamaker, J. F. (2004). Language dominance
in interpersonal deception in computer-mediated communication. Computers in
Human Behavior, 20(3), 381-402.

Zhou, M., & Mockus, A. (2011, May 21-28, 2011). Does the initial environment impact
the future of developers? presented at the meeting of the Proceedings of the 33rd
International Conference on Software Engineering, Waikiki, Honolulu, HI,
USA. doi:10.1145/1985793.1985831.

Zhu, E. (1996). Meaning Negotiation, Knowledge Construction, and Mentoring in a
Distance Learning Course. Education Research Information Center. Symposium
conducted at the meeting of the Selected Research and Development
Presentations at the 1996 National Convention of the Association for
Educational Communications and Technology, Indianapolis, USA.

Zigurs, I. (2003). Leadership in Virtual Teams: Oxymoron or Opportunity?
Organizational Dynamics, 31(4), 339-351. doi:10.1016/S0090-2616(02)00132-
8.

Zimmermann, T., & Nagappan, N. (2008, May 10-18, 2008). Predicting defects using
network analysis on dependency graphs. presented at the meeting of the
Proceedings of the 30th International Conference on Software Engineering,
Leipzig, Germany. doi:10.1145/1368088.1368161.

Zimmermann, T., & Nagappan, N. (2009, October 15-16, 2009). Predicting defects with
program dependencies. presented at the meeting of the 3rd International
Symposium on Empirical Software Engineering and Measurement, 2009. ESEM
2009., Lake Buena Vista, FL. doi:10.1109/ESEM.2009.5316024.

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., & Weiss, C.
(2010). What Makes a Good Bug Report? IEEE Transactions on Software
Engineering, 36(5), 618-643. doi:10.1109/tse.2010.63.

Zwikael, O., & Ahn, M. (2010). The Effectiveness of Risk Management: An Analysis
of Project Risk Planning Across Industries and Countries. Risk analysis : an
official publication of the Society for Risk Analysis, Wiley Online Library, 31(1),
1 -12. doi:10.1111/j.1539-6924.2010.01470.x.

270

Appendices

Appendix I. Median message per WI communicated over project
phases (P1- P10)

271

Appendix II. Sociograms for of all ten Jazz teams (P1 – P10)

272

Appendix III. Interaction behaviours (counts) for the UE, Code and
PM project practitioners

Appendix IV. Percentages of interaction behaviours across the UE,
Code and PM project areas

273

Appendix V. Combined percentages of overall project interaction
behaviours for core developers

Appendix VI. Summary of project interaction for the core developers
and others (for Code project area (P7))

274

Appendix VII. Summary of project interaction for the core developers
and others (for PM project area (P8))

Appendix VIII. Descriptive statistics for core developers messages
across the project phases

Phase Messages (N) Mean Median SD SK KS Std. Error of SK Std. Error of KS

start 657 65.7 63.0 37.2 0.71 -0.90 0.69 1.33

early-mid 703 70.3 72.5 50.4 1.18 2.03 0.69 1.33

late-mid 631 63.1 67.5 31.1 -0.59 -0.19 0.69 1.33

end 574 57.4 61.0 34.1 0.37 0.40 0.69 1.33

Mean 641.3 64.1 66.0 38.2 0.42 0.34 0.69 1.33

Notes: SD = Standard Deviation, SK = Skewness, KS = Kurtosis

275

Appendix IX. Aggregated interactions for core developers

276

Appendix X. Confidentiality Agreement

277

278

279

	List of Tables
	List of Figures
	Attestation of Authorship
	Acknowledgements
	Abstract
	Chapter 1. Introduction and Background
	1.1 Rationale for Research on Human Factors and Empirical SE
	1.2 Main Motivations
	1.3 Goals and Objectives
	1.4 Scope, Assumptions and Boundaries
	1.5 Research Design
	1.6 Contributions and Published Work
	1.7 Thesis Structure
	1.8 Chapter Summary

	Chapter 2. Literature Review
	2.1 The Study of Human Factors
	2.2 Team Composition, Psychology and SE Human Factors Frameworks
	2.3 Globally Distributed Agile Software Development
	2.4 The Study of Communication
	2.5 Communication, Text, Language and Attitudes
	2.6 Communication and SE Research
	2.7 Wheel Structure Networks and Central Communicators
	2.7.1 Attitudes and Team Roles
	2.7.2 Changes in Attitudes and Knowledge Sharing
	2.7.3 Attitudes, Knowledge Sharing and Task Performance

	2.8 Chapter Summary

	Chapter 3. Research Methodology and Design
	3.1 Selecting a Research Method
	3.2 Research Perspectives - Positivist versus Interpretivist
	3.3 A Pragmatic Research Approach
	3.4 Case Study Method and Study Design
	3.4.1 Study Repository
	3.4.2 Data Extraction and Pre-processing - Data Mining
	3.4.2.1 Data Extraction and Pre-processing Procedures

	3.4.3 Data Analysis (Technique 1) - Social Network Analysis
	3.4.3.1 SNA and Other Quantitative Measures and Procedures

	3.4.4 Data Analysis (Technique 2) - Linguistic Analysis
	3.4.4.1 Behaviour and Attitude Analysis Measures
	3.4.4.2 Linguistic Analysis Procedures

	3.4.5 Data Analysis (Technique 3) - Content Analysis
	3.4.5.1 Forms of Content Analysis
	3.4.5.2 Reliability and Validity Issues in Content Analysis
	3.4.5.3 Creating a Reliable and Valid Protocol
	3.4.5.4 Selecting a Unit of Analysis
	3.4.5.5 Content Analysis Tools
	3.4.5.6 Ethical Requirements of Content Analysts
	3.4.5.7 Content Analysis in SE and IS Research
	3.4.5.8 Use of Content Analysis in this Study

	3.5 Process of Theorizing
	3.6 Chapter Summary and Methodological Framework

	Chapter 4. Results
	4.1 Phase 1 – Social Network Analysis
	4.1.1 Project Communication Patterns (RQ1)
	4.1.2 Equity in Practitioners’ Communication (RQ2)
	4.1.3 Importance, Task Performance and Formal Roles (RQ3, RQ4 and RQ5)

	4.2 Phase 2 – Linguistic Analysis and Directed CA (Static Analyses)
	4.2.1 Attitudes (RQ6)
	4.2.2 Enacted Roles (RQ7)

	4.3 Phase 3 – Linguistic Analysis and Directed CA (Longitudinal Analyses)
	4.3.1 Attitudes (RQ8)
	4.3.2 Knowledge Sharing (RQ9) and Becoming Team Hubs (RQ10)
	4.3.3 Task Performance (RQ11)
	4.3.4 Attitudes and Task Performance (RQ12)
	4.3.5 Knowledge Sharing and Task Performance (RQ13)

	4.4 Chapter Summary

	Chapter 5. Discussion
	5.1 Collaboration patterns (Phase 1)
	5.1.1 Communication patterns (RQ1)
	5.1.2 Equity in contribution (RQ2)
	5.1.3 Active communicators importance (RQ3)
	5.1.4 Active communicators task performance (RQ4)
	5.1.5 Active communicators formal roles (RQ5)
	5.1.6 Summary

	5.2 The true role of core developers (Phase 2)
	5.2.1 Differences in attitudes (RQ6)
	5.2.2 Enacted roles (RQ7)
	5.2.3 Summary

	5.3 Changes in core developers’ attitudes, knowledge sharing and task performance (Phase 3)
	5.3.1 Changes in attitudes (RQ8)
	5.3.2 Changes in knowledge sharing (RQ9)
	5.3.3 Becoming team hubs (RQ10)
	5.3.4 Changes in task performance (RQ11)
	5.3.5 Attitudes and task performance (RQ12)
	5.3.6 Knowledge sharing and task performance (RQ13)
	5.3.7 Summary

	5.4 Chapter Summary and Explanatory Model

	Chapter 6. Conclusions
	6.1 Retrospections
	6.1.1 Collaboration patterns (Phase 1)
	6.1.2 The true role of core developers (Phase 2)
	6.1.3 Changes in core developers’ attitudes, knowledge sharing and task performance (Phase 3)

	6.2 Research Contributions
	6.2.1 Contributions to Theory
	6.2.2 Contributions to SE Literature
	6.2.3 Contribution to Pragmatic Research in SE

	6.3 Research Evaluation, Limitations and Threats
	6.4 Research Implications
	6.4.1 Implications for SE Practice
	6.4.1.1 Software Project Governance
	6.4.1.2 Collaboration and Process Tools

	6.4.2 Implications for SE Research (Future Work)

	References
	Appendices
	Appendix I. Median message per WI communicated over project phases (P1- P10)
	Appendix II. Sociograms for of all ten Jazz teams (P1 – P10)
	Appendix III. Interaction behaviours (counts) for the UE, Code and PM project practitioners
	Appendix IV. Percentages of interaction behaviours across the UE, Code and PM project areas
	Appendix V. Combined percentages of overall project interaction behaviours for core developers
	Appendix VI. Summary of project interaction for the core developers and others (for Code project area (P7))
	Appendix VII. Summary of project interaction for the core developers and others (for PM project area (P8))
	Appendix VIII. Descriptive statistics for core developers messages across the project phases
	Appendix IX. Aggregated interactions for core developers
	Appendix X. Confidentiality Agreement

