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Abstract. Visual Cryptography (VC) is a powerful technique that combines the notions of
perfect ciphers and secret sharing in cryptography with that of raster graphics. A binary image
can be divided into shares that are able to be stacked together so as to approximately recover
the original image. VC is a unique technique in the sense that the encrypted message can be
decrypted directly by the Human Visual System (HVS). The distinguishing characteristic of
VC is the ability of secret restoration without the use of computation. However because of
restrictions of the HVS, pixel expansion and alignment problems, a VC scheme perhaps can
only be applied to share a small size of secret image. In this paper, we propose a general method
to let the VC shares carry more secrets, the technique is to use cypher output of private-key
systems as the input random numbers of VC scheme, meanwhile the encryption key could
be shared, the shared keys could be associated with the VC shares. After this operation, VC
scheme and secret sharing scheme are merged with the private-key system. Under this design,
we implement a (k, t, n)-VC scheme. Compared to those existing schemes, our approach could
greatly enhance the ability of current VC schemes and could cope with pretty rich secrets.
Keywords: Secret Sharing, Visual Cryptography, Covert Data.

1 Introduction

Visual Cryptography Scheme (VCS) was firstly introduced by Naor and Shamir [1], which shares
a secret image into n ∈ Z pieces (printed on transparencies). The merit of VCS is that the decoding
process is computation-free. The original image is able to be recovered by stacking any k ≤ n shares
transparently. The underlying operation of the stacking is the logic OR. Lots of research focused
on the novel applications of VCS [2–5]. Recently, some books covered an extensive range of topics
related to VCS [6–8].

In traditional VCS, the amount of secret is severely constrained: pixel expansion of the shares
implies that the size of secret image cannot be too big, because a big transparency is inconvenient
for the shares alignment; human eyes can only identify patterns of secret image when the contrast
is good enough, i.e. the lines and dots in the patterns should be a block of pixels rather than a
single pixel; Because of the alignment problem [9, 10], pixels within the shares cannot be too small.
Many studies tried to increase the secret volume of VC shares, such as sharing a plural number
of secret images in one VCS [11, 12], using rotated shares [13] or using color VC scheme [14–16].
However, these methods could not increase the capability too much if the ratio R = t

m is taken into
consideration, where t is the number of secret bits that are shared by every m sub-pixels. For the
color VC scheme, it usually degrades quality of the revealed secret image severely. In this paper, we
measure the capability of VC scheme by using the secret bits that will be shared.

The main contribution of this paper is that, the random inputs of VC scheme could be applied
to carry covert data, the ciphertext of those private-key system based encryption algorithms could
be considered as random inputs of a VC scheme, hence it increases the amount of secret shared
by VCS. By using Shamir’s secret sharing scheme [17], the encryption key is able to be shared
into n sub-keys that could be associated with the corresponding shares. We call this scheme as the
Enriched Secret Sharing VC Scheme (ESSVCS), or 3-in-1 VCS. The scheme articulately combined



the two secret sharing schemes and private-key encryption scheme together. The secret shared by the
ESSVCS includes two parts: secret and covert data. Figure 1 and Figure 2 illustrate the encryption
and decryption procedures. The reasonabilities, possiblities and potential problems will be discussed
in the following sections of this paper.

In Figure 1, we encrypt a plaintext Splaintext by using the key SKey so as to generate the
ciphertext Sciphertext via the function En(SKey, Splaintext), the ciphertext Sciphertext could be used
as a VCS share to split a visual secret S1 by using (k, n)-VCS scheme, so as to get the visual
shares V1, V2, · · · , Vn; on the other hand, the key SKey could be shared using the Polynomia-based
Secret Sharing Scheme (PSSS) namely (t, n)-PSSS to get the sub-keys SK1, SK2, · · · , SKn, we
could convert the sub-keys to binary images, so we could get the imagelets I1, I2, · · · , In; we now
concatenate the imagelets I1, I2, · · · , In and the visual shares V1, V2, · · · , Vn together to get the visual
shares S1, S2, · · · , Sn.

In Figure 2, we decrypt the corresponding secrets in Figure 1 by using the n shares S1, S2, · · · , Sn,
we superimpose the n shares and get the secret S1, we extract data from any t out of n shares so
as to get the secret Scipertext and t sub-keys SK1, SK2, · · · , SKn, we use the Lagrange’s algorithm
to interpolate the key SKey, the key SKey and the cipertext Scipertext work together to decrypt the
plaintext Splaintext by using the function De(SKey, Scipertext). The reasons to guarantee this step
will be explained in the following sections of this paper.
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Fig. 1: The encryption process of the (k, t, n)-ESSVCS
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Fig. 2: The decryption process of the (k, t, n)-ESSVCS

In order to share the covert data, we need employ computational devices. By utilizing a (k, t, n)-
ESSVCS (k ≤ t), the VC scheme that carries additional covert data where any k out of n participants
can visually recover the secret by stacking the shares, any t out of n participants can restore the
additional covert data by computation. There are two computer aided VCS’s schemes [18, 19], one is
called 2-in-1 Image Secret Sharing Scheme (TiOISSS) [18, 19], which is able to reveal a secret image
by stacking the shares and restore a much finer gray image by computation. Li et al. [20] improved
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Yang et al.’s TiOISSS [19] by gray mixing model. The comparisons between our ESSVCS and the
TiOISSS will be given in Section 4. Fang et al. [5, 21] also tried to make use of the pseudo-random
inputs to carry confidential data. Unfortunately, the scheme is only for (2,2) access structure.

The proposed (k, t, n)-ESSVCS in this paper is a multi-threshold secret sharing scheme. k out of
n members can share one secret, whereas a majority of participants t 6 n can access the additional
secret. By comparing our ESSVCS and any 2D encoding methods, we find that decoding a secret
totally relies on a computing device by using any 2D encoding methods. If participants are in the
scenario where there is no such computing devices, they cannot extract any information. But with
our ESSVCS scheme, the participants could stack the shares and get part of the secret. Hence, our
proposed ESSVCS scheme will have much wider application.

In this paper, we propose a specific construction of general (k, t, n)-ESSVCS by taking the VCS
proposed in [12] and secret sharing scheme [17] into consideration. We investigate some relevant
issues of ESSVCS scheme such as pseudo-random numbers as the input of VCS scheme, sufficient
conditions to uniquely determine a share, and secret capacity of the proposed ESSVCS scheme; we
also proposed an efficient decoding algorithm, comparisons to other schemes will be presented at
last.

This paper is organized as follows. In section 2, we will give some preliminary results. In section 3,
we will propose a general construction of the ESSVCS based on the construction of VC scheme in [12]
and point out some relevant issues of ESSVCS. In section 4, we will compare the proposed scheme
with the TiOISSS scheme. Finally, we will draw our conclusion in section 5.

2 Preliminaries

In this section, we will present some definitions about VC scheme, introduce the Droste’s con-
struction of (k, n)-VC Scheme [12] and Shamir’s secret sharing scheme, namely Polynomial-based
Secret Sharing Scheme (PSSS) [17], they are the start point of our proposed scheme.

2.1 VCS

We restrict ourselves to the images only consisting of black and white pixels, where we denote by
‘1’ for a black pixel and ‘0’ for a white pixel. In this paper, we only take the threshold (k, n)-VCS
into consideration. For a vector v ∈ GFm(2), we denote by w(v) as Hamming weight of the vector
v. A (k, n)-VCS, denoted by (C0, C1), consists of two sets (pairwise different collection) of n ×m
Boolean matrices C0 and C1. To encrypt a white (resp. black) pixel, a dealer (the one who sets up
the system) randomly chooses one of the share matrices (in the practical sense, the dealer can only
choose the share matrices pseudo-randomly) from C0 (resp. C1) and distributes its rows (shares) to
the n participants. More precisely, we present a formal definition of the (k, n) - VCS as follows.

Definition 1. Let k, n, m, l and h be non-negative integers satisfying 2 ≤ k ≤ n and 0 ≤ l < h ≤ m.
The two sets of n×m Boolean matrices (C0, C1) constitute a (k, n)-VCS if the following properties
are satisfied:

1. (Contrast) For any s ∈ C0, the OR of any k out of the n rows of s, is a vector v that, satisfies
w(v) ≤ l.

2. (Contrast) For any s ∈ C1, the OR of any k out of the n rows of s, is a vector v that, satisfies
w(v) ≥ h.

3. (Security) For any i1 < i2 < · · · < it in {1, 2, · · · , n} with t < k, the two collections of t ×m
matrices Fj for j ∈ {0, 1}, obtained by restricting each n×m matrix in Cj to rows i1, i2, · · · it,
are indistinguishable in the sense that they contain the same matrices with the same frequencies.

In the above definition, m is called pixel expansion of the shares. A pixel of the original secret
image is represented by m sub-pixels in the recovered secret image. In general, we are interested in
schemes with m being as small as possible.
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In Definition 1, the first two properties ensure that any k participants will be able to distinguish
the black and white pixels, and the third property ensures security of the scheme that any k − 1 or
fewer participants can gain no information about content of the secret.

In order to share a complete image, the scheme has to be applied to all the pixels in the image.
In the traditional VCS, the secret sharing method is applied to the secret pixels one at each time.
However, we extend this method to share q secret pixels at each time, and call this scheme as the q-
pixel encryption model. The traditional model is the 1-pixel encryption model. The difference between
the 1-pixel encryption model and the q-pixel encryption model is that: in the 1-pixel encryption model,
the dealer generates one pseudo-random number which guides the choice of a share matrix at each
time. However, in the q-pixel encryption model, the dealer generates one pseudo-random number
which guides the choice of q share matrices at each time.

Now let’s take VCS into consideration, the C0 and C1 are constructed from a pair of n × m
matrices M0 and M1, which are called basis matrices. The set Ci (i = 0, 1) consists of the matrices
obtained by permuting all the columns of Mi. This approach of VCS construction will have small
memory requirements (it only keeps the basis matrices) and high efficiency (to choose a matrix in
C0 (resp. C1) as it only needs to generate a permutation of the basis matrix). When the set of a
VCS C0 (resp. C1) can be generated by the basis matrix, we call such VCS as the basis matrix VCS.
Many studies in the literatures proposed to construct the basis matrix VCS, such as [12, 22, 23].

Recall that, by definition, the share matrices in C0 (resp. C1) are pairwise differently. Denote
the different columns in the basis matrix Mi as c1, c2, · · · , ce and the multiplicities of these columns

are a1, a2, · · · , ae, we have that the number of share matrices in Ci is |Ci| =
(
∑e

i=1 ai)!∏e
i=1 ai!

, for i ∈ {0, 1}
(these share matrices are pairwise different). In order to choose a share matrix in Ci pseudo-randomly,
length of the pseudo-random input for one secret pixel should be at least log2 |Ci| bits.

2.2 Droste’s construction of (k, n)-VCS

In this paper, we take the construction of Droste [12] as our building block, and we recall his
construction as follows:

Droste’s Construction of (k, n)-VCS proposed in [12]:

Setup Let M0 and M1 be two empty matrices, where the basis matrices M0 and M1 are considered
as the collections of their columns;

step 1 For all even p ∈ {0, 1, . . . , k}, call ADD(p,M0);
step 2 For all odd p ∈ {0, 1, . . . , k}, call ADD(p,M1);
step 3 Define P0 (resp. P1) be the collection consisting of all columns of every restriction of k rows

of M0 (resp. M1), and define S0 (resp. S1) be the set consisting of all k-length boolean columns
with an even (resp. odd) number of 1’s. Define the remaining of M0 (resp. M1) be P0\S0 (resp.
P1\S1), and define the rest of M0 (resp. M1) be the columns in the remaining of M0 (resp. M1),
but not in the remaining of M1 (resp. M0), i.e. the rest of M0 is {P0\S0}\{P1\S1} and the rest
of M1 is {P1\S1}\{P0\S0}. If the rests are not empty:
(a) If p is an even number, add to M0 all columns adjusting the rest of M1 by calling ADD(p,M0),
where p is the number of 1’s in column l ∈ {P1\S1}\{P0\S0}.
(b) If p is an odd number, add to M1 all columns adjusting the rest of M0 by calling ADD(p,M1),
where p is the number of 1’s in column l ∈ {P0\S0}\{P1\S1}.

where the subroutine ADD is: ADD(p,M)

1 If p ≤ k − p, add every column with q = p (1’s to M).
2 If p > k − p, add every column with q = p + n− k (1’s to M).

Example 1. (The Droste’s construction of (3,4)-VCS) In the first step, every column with zero and
three 1’s is added to M0. In the second step, every column with one and four 1’s is added to M1.
The generated M0 and M1 are shown as follows,

4



M0 =


01110
01101
01011
00111

,M1 =


10001
01001
00101
00011


Now every restriction of M0 (resp. M1) contains every even (resp. odd) column and besides that

every column with three (resp. zero) 1’s. So in the first run of step 3, every column with zero (resp.
4) 1’s is added to M0 (resp. M1). After that, we have new M0 and M1, and the rests of M0 and M1

are empty. The final basis matrices M0 and M1 are shown as follows,

M0 =


011100
011010
010110
001110

,M1 =


100011
010011
001011
000111


2

2.3 PSSS

Shamir[17] introduced the (t, n)-PSSS (t ≤ n) to share the secret data into n shares. Any t shares
can be used to reconstruct the secret, but any t−1 or less shares get no information about the secret.
To share the secret, it randomly generates a (t− 1)-degree polynomial using modular arithmetic:

f(x) = (a0 + a1x + . . . + at−1x
t−1) mod p (1)

where a0 is replaced by the secret data, p is a prime number greater than a0 and n. The coefficients
a1, a2, . . . , at−1 are randomly chosen from a uniform distribution over the integers in [1, p). Then
we could generate n shares (xi, f(xi)), i = 1, 2, . . . , n. Later, with any t out of the n shares, we can
uniquely determine a (t− 1)-degree polynomial as follows,

f(x) =

t∑
j=1

f(j)

t∏
i=1,i6=j

x− j

j − i
(2)

Particularly, the coefficient a0 of the polynomial f(x) is decrypted (Lagrange’s interpolation).
However, any t − 1 or fewer shares cannot uniquely determine a (t − 1)-degree polynomial. Hence
no information about the secret is revealed.

Example 2. (The Shamir’s (2, 3)-PSSS) In a (2, 3)-PSSS, the prime number p is chosen as 251. Let
the secret number be 45, which is in the range of (0, p−1). In the sharing process, the secret number
45 replaces the constant coefficient of a 1-degree polynomial, and another coefficient, for example
145, is randomly chosen in (1, p− 1). Therefore, we can generate a 1-degree polynomial as follows,

f(x) = (45 + 145x) mod 251

Then we can generate 3 shares (xi, f(xi)), where xi is the ID of the i-th participant. Without
loss of generality, let i be the ID of the i-th participant, we have three shares (1, 190),(2, 84) and
(3, 229).

In the revealing process, any two out of three shares can uniquely determine a 1-degree polynomial
by Equation (2). Finally, the secret number 45 can be decrypted. 2
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3 ESSVCS

In this section, we first propose a construction of the ESSVCS scheme by taking the pseudo-
random inputs as a sub-channel, and then study some relevant issues of the ESSVCS: 1) The pseudo-
randomness that the input of VCS requires; 2) The sufficient conditions to uniquely determine a
share matrix in the set Ci for i = 0, 1; 3) The bandwidth of the sub-channel; 4) The method to
decode the ciphertext of ESSVCS scheme.

3.1 Construction of general (k, t, n)-ESSVCS

The main idea of this proposed scheme is to treat the private-key encryption algorithm as the
pseudo-random generator of VCS. Thus the VCS can naturally carry the additional covert data
encrypted by the private-key algorithm. In this paper, we take the VCS proposed in [12] as the
building block. In practical, the encryption algorithm can be the AES or Twofish, etc. The cipher
block chaining (CBC) [24] encryption mode is employed. The encryption key SKey in ESSVCS is
shared by (t, n)-PSSS into n sub-keys SK1, SK2, . . . , SKn. Therefore, any t or more sub-keys could
be used to reveal the secret key, while any t − 1 or less sub-keys together could restore the secret
key.

Before showing the construction, we need present the assumption that participants know the
access structure they belong to, i.e. the i-th participant knows by himself/herself that (s)he is the
i-th participant. Usually, the access structure of a VCS is not one part of secret, therefore this
assumption is reasonable.

Construction 1
Encryption process of (k, t, n)-ESSVCS:
Input: The secret image SI , covert data SPlaintext and the secret key SKey.
Output: n shares.
Step 1: Encrypt the covert data Splaintext by using the key SKey, Sciphertext = En(SKey, Splaintext);
Step 2: Share the secret image SI into n shares V1, V2, . . . , Vn by using the (k, n)-VCS, where the

encrypted data from the Step 1 is employed as the pseudo-random input of the (k, n)-VCS;
Step 3: Share SKey into n sub-keys SK1, SK2, . . . , SKn by using (t, n)-PSSS, then convert these

sub-keys into binary images I1, I2, . . . , In, and concatenate Ii (i = 1, 2, . . . , n) with share Vi to
get the final share Si.

Decryption process of (k, t, n)-ESSVCS:
Input: Any t shares where k ≤ t.
Output: The secret image SI and the covert data Splaintext.
Step 1: Stack any k shares to get the recovered secret image SI ;
Step 2: Determine the share matrices which are used to encrypt the secret image for each pixel by

t shares, and hence get the ciphertext Sciphertext;
Step 3: Extract t sub-keys from t shares, then reconstruct the secret key SKey by Lagrange’s inter-

polation.
Step 4: Decrypt the ciphertext.

Sciphertext by using the SKey, Splaintext = De(SKey, Sciphertext).

Remarks:

In practical, key length of the AES or Twofish scheme, usually, is 128 bits. Therefore, each sub-
key is generated and converted into a 128 bits binary image which only takes a small area in the
share.

For the (k, t, n)-ESSVCS, by stacking k shares we can reconstruct the secret image SI . If one
obtains t rows, (s)he can uniquely determine a share matrix and hence obtain the ciphertext, where
“can uniquely determine a share matrix” means that there only exists one share matrix in Ci

6



(i = 0, 1) that contains these t rows (and “cannot uniquely determine” means there exist more than
one share matrices that contain these t rows, hence we cannot determine which one is chosen by the
dealer when encrypting the secret pixel). In another word, in order to get the ciphertext one needs
t shares.

Security of the (k, t, n)-ESSVCS is based on the security of the encryption algorithm and that
of VCS and PSSS scheme. Particularly, if an hacker wants to know the secret image, (s)he needs at
least k shares; if (s)he wants to know the covert data encrypted by the encryption algorithm, (s)he
needs at least t shares to extract the ciphertext and the secret key.

The VCS requires pseudo-random number inputs to guide the choice of VC share matrices.
Denote the share matrices in Ci as Si

0, · · · , Si
|Ci|−1 and P (Si

j) for i = 0, 1 and j = 0, 1, · · · , |Ci| − 1

as the probability choosing the share matrix Si
j . Hence inputs of the pseudo-random numbers should

guarantee that

P (Si
0) = P (Si

1) = · · · = P (Si
|Ci|−1) (3)

In order to choose a share matrix pseudo-randomly in Ci, the dealer needs at least log2 |Ci| bits
pseudo-random numbers (we will take the case that log2 |Ci| is not an integer into consideration).
Denote B(j) as the binary representation of integer j with length log2 |Ci|, i.e. B(j) is the binary
string that represents j. Without loss of generality, we assume that when the pseudo-random number
input is B(j), the dealer chooses the share matrix Si

j to encrypt the secret pixel i. Denote P (B(j))
as the probability of generating the binary string B(j). According to the equation (3), we have:

P (B(0)) = P (B(1)) = · · · = P (B(|Ci| − 1)) (4)

In fact, ciphertext of AES or Twofish satisfies the equation (4), because they have passed the
serial test [25]. Therefore, we can take AES or Twofish as the pseudo-random generator. This also
is the ground truth why we do not use the covert data directly to guide the generation of shares.

To make things simple and clear, we give the following example for (2, 2, 2)-ESSVCS:

Example 3. The sets of share matrices of (2, 2, 2)-ESSVCS are as follows:

C0 =

{[
10
10

]
,

[
01
01

]}
and C1 =

{[
10
01

]
,

[
01
10

]}
The principle of choosing share matrix is that: if the pseudo-random input is 0, we choose the

first share matrix in C0 or C1; if the pseudo-random input is 1, we choose the second option. Figure 3
presents an illustration for the procedure of the (2, 2, 2)-ESSVCS.

In Figure 3, a secret image having 64 × 128 pixels is split into Share 1 and Share 2. Size of the
shares and the recovered secret image is 129 × 128. Since the length of each sub-key is 128 bits, it
only takes one line at the bottom of each share to attach the sub-keys. Length of the ciphertext
Sciphertext encrypted in the shares is 213 bits, i.e. the sub-channel can be used to carry extra 213 bits
of covert data. In the first step of the reconstruction, the secret image can be visually revealed by
stacking two shares. In the second step, two sub-keys SK1 and SK2 are extracted from the last row
of two shares, and then we restore the secret key SKey by Lagrange’s interpolation. With further
observation, the ciphertext can be obtained by the uniquely determined share matric by share blocks.
For example, the first block of share 1 is constituted by two sub-pixels ‘0’ and ‘1’, and the first block
of share 2 is also constituted by two sub-pixels ‘0’ and ‘1’. Therefore, we can determine the share
matrix, which is the second share matrix C0 and the recovered ciphertext is ‘1’. Finally, we get the
covert data Splaintext by decrypting the ciphertext Sciphertext. 2

3.2 Uniquely determine a share matrix

For the (n, n)-VCS, if one has all the n shares, (s)he can uniquely determine the share matrices
used when sharing the secret image SI and hence to know the ciphertext.
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Fig. 3: The procedure of the (2, 2, 2)-ESSVCS

We then focus our discussion on the (k, n)-VCS with k < n: we find that, for the VCS in section 2,
n − 1 rows can uniquely determine a share matrix in the set C0 (resp. C1). The following theorem
shows this result:

Theorem 1. Denote M0 and M1 be the basis matrices constructed by (k, n)-VCS in [12], and
denote C0 and C1 be the sets of share matrices generated from M0 and M1, respectively. If every t
rows of a share matrix in Ci (i = 0, 1) can uniquely determine a share matrix in Ci, then t ≥ n− 1.

Proof: First, for the case of t = n, it obviously can uniquely determine an n-row matrix from
its all n rows.

Second, we show any n − 1 rows can uniquely determine a share matrix. According to the
construction in [12], number of the 1’s of each column in the basis matrix M0 is from the set
T0 = {a|0 ≤ a ≤ bk2 c, a mod 2 = 0}

⋃
{a + n − k|bk2 c < a ≤ k, a mod 2 = 0}, and num-

ber of 1’s of each column in the basis matrix M1 is from the set T1 = {a|0 ≤ a ≤ bk2 c, a
mod 2 = 1}

⋃
{a + n − k|bk2 c < a ≤ k, a mod 2 = 1}. Hereafter, bxc is the largest integer that

is no greater than x and dxe is the smallest integer no less than x.

Because k < n, when one has n− 1 rows of a share matrix M , he can stack k shares and hence
knows the secret pixel. Without loss of generality, suppose the secret pixel is black. We determine
last row of the share matrix M as follows: for the column pi of M , where i ∈ {1, · · ·m}, denote
number of 1’s of the n− 1 rows in column pi as h, then we have the entry of the last rows of column
pi be 0 if h ∈ T1 and be 1 if h+ 1 ∈ T1. Hence, the last row can be uniquely determined by the n− 1
rows, because the participants know the access structure they belong to, the share matrix will be
uniquely determined.

Third, we prove any n − 2 rows cannot uniquely determine a share matrix. Consider the con-
struction in [12], we have that the basis matrix M1 contains all the columns with Hamming weight
are equal to 1. Let A be a share matrix in C1. Without loss of generality, there exist two different
columns c1 and c2 in A, whose Hamming weights are equaled to 1. Denote the position of 1 in column
c1 (resp. c2) be p1 (resp. p2), we have p1 6= p2. Let X = {1, 2, . . . , n}\{p1, p2}, then, by restricting all
the rows of columns c1 and c2 in X, we get two same sub-columns. Suppose B is a matrix generated
by exchanging positions of columns c1 and c2 in A, then B is also a share matrix in C1. Therefore,
by restricting all the rows of A and B in X, we are able to get two same sub-matrices. Namely, the
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n− 2 rows of share matrix A (the rows restricted in X) cannot uniquely determine a share matrix.
Obviously, it also cannot uniquely determine a share matrix from less than n− 2 rows. 2

Example 4. In a (2,3)-VCS constructed by Droste’s method, we have two basis matrices as follows:

M0 =

010
010
010

,M1 =

100
010
001


Obviously, we can generate three (resp. six) share matrices from basis matrix M0 (resp. M1). When
we have two rows of a share matrix, we need to uniquely determine the share matrix. By the definition
of VCS, any two rows of a share matrix can reveal the secret pixel. From 1, we have the number of
1’s of each column in basis matrix M0 (resp. M1) constructs the set T0 = 0, 3 (resp. T1 = 1). If the
secret pixel is white (resp. black), the share matrix is constructed by permuting basis matrix M0

(resp. M1). Since all rows of M0 are the same, we can uniquely determine the share matrix from its
two rows if it is constructed by M0. If the share matrix is constructed by M1, we can also uniquely
determine the share matrix from its two rows by counting the number of 1’s of each column. For
example, if we have two rows of a share matrix like:

B =

[
010
100

]
Because the number of 1’s in each column is in the set T1 = 1, we can determine the third row of
the share matrix as [001]. However, if we have only one row of a share matrix, we can not determine
the secret pixel, and also can not uniquely determine the share matrix. For example, if we have one
row of a share matrix, like [010]. There are three share matrices, which may share the same row.
These three share matrices are shown as follows.

B1 =

010
010
010

,B2 =

010
100
001

,B3 =

010
001
100


Therefore, in a (2, 3)-VCS, a share matrix can be determined by any 2 rows. 2

Theorem 1 presents an explicit method to uniquely determine a share matrix in Ci (i = 0, 1),
and in light of the above discussion, we have the following theorem:

Theorem 2. Let t = n− 1, then Construction 1 generates a (k, n− 1, n)-ESSVCS. 2

For general basis matrix visual cryptography (C0, C1), denote CAll
i as a set of all the possible

columns that appear in the share matrices of Ci (i = 0, 1). For any set of participants X ⊆ P , denote
M ′ as a sub-matrix which is generated by restricting to the rows in X of a share matrix in Ci. First,
we have the following lemma:

Lemma 1. For every column c′ of M ′, if there exists only one column c ∈ CAll
i such that c[X] = c′,

then the sub-matrix M ′ can uniquely determine a share matrix in Ci, where c[X] is the sub-column
generated by restricting to the rows in X of c.

Proof: (Reduction to absurdity) Suppose M ′ cannot uniquely determine a share matrix in Ci, i.e.
there exist two different share matrices, denoted by Ma and Mb, such that Ma[X] = Mb[X] = M ′,
where Ma[X] is the sub-matrix generated by restricting to the rows in X of Ma. Since Ma and Mb

are different share matrices, there exists at least one column that is different for Ma and Mb. Denote
this column in Ma is ca and that in Mb is cb, i.e. ca 6= cb. Because of Ma[X] = Mb[X], we have
ca[X] = cb[X], which is contradict to the assumption that there exists only one column c ∈ CAll

i

such that c[X] = c′. Hence, M ′ can uniquely determine a share matrix in Ci. 2

9



According to Lemma 1, we present a general discussion for basis matrix (k, n)-VCS, denote
cp, cq ∈ CAll

i as two different columns, and denote Xi
pq(⊂ P ) as the set of the participants such

that for each x ∈ Xi
pq satisfying cp[x] = cq[x], where cp[x] is the x-th entry of cp. Then we have the

following theorem:

Lemma 2. Let t = max{|Xi
pq| + 1} for p 6= q, 1 ≤ p, q ≤ m and i = 0, 1, then a sub-matrix of t

rows of a share matrix in Ci can uniquely determine a share matrix in Ci.

Proof: Let c′ be a column of the sub-matrix M ′ which is generated by restricting t rows of a
share matrix in Ci (i = 0, 1). Denote a set of the participants of these t rows as X, i.e. |X| = t,
where t = max{|Xpq|+ 1}. We prove that there only exists one column c of M such that c[X] = c′.

(Reduction to absurdity): Suppose there exist two columns ca and cb such that ca[X] = cb[X] = c′.
We see that ca and cb have t entries with the same values, i.e. t = |Xab|, which is impossible because
t = max{|Xpq|+ 1} which implies t > |Xab|.

According to Lemma 1, we have that a sub-matrix M ′ with t rows can uniquely determine a
share matrix in Ci. 2

According to Lemma 2, and let’s recall that we have assumed t ≥ k. (another reason that we
assume t ≥ k is that, if t < k, then t participants cannot decide the sub-matrix of their t shares is
from C0 or C1, and hence it may not get the ciphertext either) we hence get the following theorem
immediately:

For a (k, n)-VCS, any k − 1 or less shares cannot get any information of the secret image. In
another word, any t(t < k) shares cannot decide the t-row sub-matrix is from C0 or C1, and hence
we can not uniquely determine the share matrix. Therefore, it is reasonable to assume t ≥ k. Further
with Lemma 2, we get the following theorem:

Theorem 3. For a basis matrix (k, n)-VCS, there exists a (k, t, n)-ESSVCS where t = max{k, |Xi
pq|+

1}, p 6= q, 1 ≤ p, q ≤ m and i = 0, 1. 2

According to Theorem 3, we also examined other two known constructions of (k, n)-VCS in [23,
26], and found that the two constructions both have t = n−1 (the same as the results in Theorem 1).
Because they both take the canonical matrices as building block, where the canonical matrices mean
the matrices that all the columns of a given weight occur with the same frequency. And for the
canonical matrices that have a column ci with x 1’s and n − x 0’s where 0 < x < n, there exists a
column cj such that only two entries are different from ci, which implies |Xij | = n − 2, and hence
t = n− 1.

3.3 Bandwidth of ESSVCS scheme

We define bandwidth of the ESSVCS as the maximum amount of covert data it carries through its
sub-channel. Denote columns in the basis matrix Mi as c1, · · · , ce and multiplicities of these columns

are a1, · · · , ae, let’s recall that we have the number of share matrix in Ci being |Ci| =
(
∑e

i=1 ai)!∏e
i=1 ai!

for i ∈ {0, 1}. To choose a share matrix in Ci, one needs at least log2 |Ci| pseudo-random bits
theoretically. By determining the share matrix which is chosen when encrypting the secret image
in Ci, one can determine at most log2 |Ci| bits information theoretically. Hence, the amount of the
additional covert data that can be carried by the secret pixel i is at most log2 |Ci| bits theoretically.
We list the number of the share matrices |Ci| of the VCS constructed [12] in the Table 1 and Table 2
as follows.

Actually, in practical, a pseudo-random number generator can only generate integer number of
pseudo-random bits, and ciphertexts are also represented by integer number of bits. However, the
values of log2 |Ci| are rarely integers, which means that some share matrices cannot be chosen by
integer number of the pseudo-random bits, and it is hard to determine all the log2 |Ci| ciphertext

10



Table 1: The number of share matrices in C0

@
@@k
n

2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10

3 4! 6!
2!

8!
3!

10!
4!

12!
5!

14!
6!

16!
7!

18!
8!

4 8! 15!
3!2!

24!
6!3!

35!
10!4!

48!
15!5!

63!
21!6!

80!
28!7!

5 16! 30!
3!(2!)6

48!
6!(3!)7

70!
10!(4!)8

96!
15!(5!)9

126!
21!(6!)10

6 32! 70!
4!(2!)213!

128!
10!(3!)286!

210!
20!(4!)3610!

320!
35!(5!)4515!

7 64! 140!
4!(2!)28(3!)8

256!
10!(3!)36(6!)9

420!
20!(4!)45(10!)10

8 128! 315!
5!(3!)36(2!)364!

640!
15!(6!)45(3!)4510!

9 256! 630!
5!(3!)45(2!)120(4!)10

10 512!

bits, hence results in wasting of the pseudo-random resources. So from the practical viewpoint, the
amount of the covert data carried by the ESSVCS is impossible to reach the theoretical value.

In fact, if the secret pixels are encrypted only one at each time, in order to choose a share matrix
pseudo-randomly in Ci, one needs at least dlog2 |Ci|e pseudo-random bits, and its length of the
ciphertext can be at most blog2 |Ci|c bits. To fully make use of the pseudo-random resources, we
propose to encrypt q secret pixels at a time, i.e. the q-pixel encryption model. Let q = a0 +a1, where
denote a0 as the number of white pixels and a1 as the number of black pixels, the effectiveness of
using q-pixel encryption model rather than 1-pixel encryption model is as follows.

Table 2: The number of share matrices in C1

@
@@k
n

2 3 4 5 6 7 8 9 10

2 2! 3! 4! 5! 6! 7! 8! 9! 10!

3 4! 6!
2!

8!
3!

10!
4!

12!
5!

14!
6!

16!
7!

18!
8!

4 8! 15!
(2!)5

24!
(3!)6

35!
(4!)7

48!
(5!)8

63!
(6!)9

80!
(7!)10

5 16! 30!
3!(2!)6

48!
6!(3!)7

70!
10!(4!)8

96!
15!(5!)9

126!
21!(6!)10

6 32! 70!
(3!)7(2!)7

128!
(6!)8(3!)8

210!
(10!)9(4!)9

320!
(15!)10(5!)10

7 64! 140!
4!(2!)28(3!)8

256!
10!(3!)36(6!)9

420!
20!(4!)45(10!)10

8 128! 315!
(4!)9(2!)84(3!)9

640!
(10!)10(3!)120(6!)10

9 256! 630!
5!(3!)45(2!)120(4!)10

10 512!

First : the number of pseudo-random bits required to choose the share matrices when the q-pixel
encryption model is da0 log2 |C0|+ a1 log2 |C1|e, and it satisfies:

da0 log2 |C0|+ a1 log2 |C1|e ≤ a0dlog2 |C0|e+ a1dlog2 |C1|e (5)

which implies less pseudo-random bits are required by using the q-pixel encryption model than the
1-pixel encryption model.

Second : the number of pseudo-random bits determined by the share matrices when encrypting q
secret pixels at each time is ba0 log2 |C0|+ a1 log2 |C1|c, and it satisfies:

ba0 log2 |C0|+ a1 log2 |C1|c ≥ a0blog2 |C0|c+ a1blog2 |C1|c (6)
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which implies more pseudo-random bits can be determined by using the q-pixel encryption model
than the 1-pixel encryption model.

A problem for the q-pixel encryption model is that, when encrypting more secret pixels at a time,
the encryption scheme becomes more complex. So there exists a trade-off for the value of q.

To make things clear, we present the following example for a (2, 2, 3)-ESSVCS:

Example 5. For the sets

C0 =


100

100
100

 ,

010
010
010

 ,

001
001
001

 (7)

C1 =


100

010
001

 ,

100
001
010

 ,

010
100
001

 ,

010
001
100

 ,

001
100
010

 ,

001
010
100

 (8)

We have that, from theoretic point of view, the amount of information bits that can be carried by
a white secret pixel is log2 |C0| = log2 3 and by a black secret pixel is log2 |C1| = log2 6. And for 10
secret pixels with 5 white secret pixels and 5 black secret pixels the value will be 5 log2 3 + 5 log2 6 ≈
20.85.

However, in practical, the 10-pixel encryption model, where take a0 = 5 and a1 = 5 as example,
we have the amount of information that can be carried is blog2 35 + log2 65c = 20, which is more
than 1-pixel encryption model, where the corresponding value is 5blog2 3c+ 5blog2 6c = 15. 2

At this point, we can calculate the bandwidth of the ESSVCS as follows:

Theorem 4. For a secret image SI which consists of nw white pixels and nb black pixels, the band-
width W of the ESSVCS is W = bnw log2 |C0| + nb log2 |C1|c, and it is achieved when using the
qa-pixel encryption model where qa = nw + nb.

Proof: For the qa-pixel encryption model where qa = nw + nb, which implies encrypt all the secret
pixels in the secret image at each time. And it is clear that the amount of covert data carried by such
ESSVCS is W = bnw log2 |C0| + nb log2 |C1|c. We only need to prove that W reaches its maximum
when using the qa-pixel encryption model, i.e. if one divides all the pixels in the secret image into
several parts, and encrypts these parts respectively, the amount of covert data carried is less than
the qa-pixel encryption model.

Without loss of generality, let qa = q1 + q2 (i.e. divide into two parts) and suppose encryption
of the secret image SI is realized by using q1-pixel encryption model and q2-pixel encryption model,
and let q1 = a0 + a1, q2 = b0 + b1, where a0, b0 are the number of white pixels and a1, b1 are the
number of black pixels. We have that the total number of pseudo-random bits can be determined is
ba0 log2 |C0|+a1 log2 |C1|c+bb0 log2 |C0|+b1 log2 |C1|c, which is not greater than b(a0+b0) log2 |C0|+
(a1 + b1) log2 |C1|c=bnw log2 |C0|+ nb log2 |C1|c. Hence, the theorem is true. 2

3.4 On decoding the ciphertext

For ESSVCS, in order to encrypt the secret pixels and decode the ciphertext, one needs to set
a bijection between the set of pseudo-random numbers (ciphertext) and the set of share matrices.
A simple way to realize that is to generate a table which contains all the share matrices and their
corresponding random numbers. When the dealer generates the shares, (s)he needs to generate a
pseudo-random number and find the corresponding share matrix by table-lookup, then (s)he can
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encrypt the shares by using the share matrix. When decoding the ciphertext, the participants get
the share matrices according to the Theorem 1, and find the corresponding numbers by table-lookup,
hence, they get the ciphertext. Disadvantage of this decoding method is that, the table requires us
store all the share matrices in sets C0 and C1, and hence it has large memory requirements. In this
subsection, we propose a decoding method which is more efficient than the above mentioned method.

The proposed decoding method contains two subroutines: the first is MTN(S), which takes a
share matrix in Ci (i = 0, 1) as its input and generates a number between 1 and m!, the second is
NTM(N), which takes a number between 1 and m! as its input and generates a share matrix S.
The subroutines MTN(S) and NTM(N) form a bijection between the set of the share matrices and
the set of numbers between 1 and m!.

By using MTN(S) and NTM(N), when the dealer encrypts a secret pixel p, (s)he first generates
a pseudo-random number between 1 and m!, and then consults the subroutine NTM(N) to generate
a share matrix in Ci (i = 0, 1), and encrypts the secret pixel p by using the share matrix. When
the participants decode the ciphertext, they first generate the share matrix according to Theorem 1,
and consult the subroutine MTN(S) to get the ciphertext.

Denote the columns of the basis matrix as c1, · · · , cm, first we take the case that c1, · · · , cm
are pairwise different into consideration. In this part, we treat a matrix as a set of columns. The
subroutine MTN(S) which outputs a number between 1 and m! given a share matrix S as its input
is:

Subroutine: MTN(S)

For i = 1 to m− 1
Find ci in S, assume that ci is the Ji-th column of S
Delete ci from S

Output N = 1 +
m−1∑
i=1

((m− i)!)(Ji − 1)

The subroutine NTM(N) which outputs a share matrix S given a number between 1 and m! as
its input is:

Subroutine: NTM(N)

Initial S as an empty matrix
N0 ← N − 1
For i = 1 to m− 1
Ji ← b Ni−1

(m−i)!c+ 1

Ni ← Ni−1 − (Ji − 1)((m− i)!)
Insert cm to S as its 1-st column
For i = m− 1 to 1

Insert column ci into S as its Ji-th column
Output S

According to the subroutines MTN(S) and NTM(N) above, we have the following theorem:

Theorem 5. The subroutines MTN(S) and NTM(N) form a bijection between the set of share
matrices in Ci (i = 0, 1) and the set of numbers between 1 and m!.

Proof: Because in subroutines MTN(S) and NTM(N), we represent the share matrices by the posi-
tions of its columns (J1, J2, · · · , Jm−1) where 1 ≤ Ji ≤ m+1−i for i = 1, 2, · · · ,m−1, we only need to
prove that MTN(S) and NTM(N) form a bijection between the sets X = {(J1, J2, · · · , Jm−1)|1 ≤
Ji ≤ m + 1− i for i = 1, 2, · · · ,m− 1} and Y = {1, 2, · · · ,m!}. Denote f : X → Y as a map from
X to Y , we prove that f is a bijection.

First, given a number in Y , according to NTM(N), there exists a (J1, J2 · · · , Jm−1), hence f is
a surjection.

Second, for any two different elements in X, J = (J1, J2, · · · , Jm−1) and J ′ = (J ′1, J
′
2, · · · , J ′m−1)

such that J 6= J ′, we prove that their corresponding numbers f(J) and f(J ′) are different.
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According to MTN(S), we have f(J) = 1 +
m−1∑
i=1

((m − i)!)(Ji − 1) and f(J ′) = 1 +
m−1∑
i=1

((m −

i)!)(J ′i − 1). Denote i∗ as the smallest number that Ji∗ 6= J ′i∗ , without loss of generality, we suppose
Ji∗ > J ′i∗ , i.e. Ji∗ − J ′i∗ ≥ 1. Thus, we have:

f(J)− f(J ′) =
m−1∑
i=1

((m− i)!)(Ji − J ′i)

=(m− i∗)!(Ji∗ − J ′i∗) +
m−1∑

i=i∗+1

((m− i)!)(Ji − J ′i)

≥ (m− i∗)! +
m−1∑

i=i∗+1

((m− i)!)(Ji − J ′i)

Because 1 ≤ Ji, J
′
i ≤ m + 1− i, we have −(m− i) ≤ Ji − J ′i ≤ m− i, hence

f(J)− f(J ′) ≥ (m− i∗)!−
m−1∑

i=i∗+1

((m− i)!)(m− i)

=(m− i∗)!− ((m− i∗)!− 1)
=1

Therefore, f(J) − f(J ′) 6= 0, we have f is an injection. Hence, f is a bijection and the theorem
follows. 2

Example 6. For a (2,3)-VCS, the basis matrix M1 has three different columns. M1 and its three
columns c1, c2, c3 are shown as follows:

M1 =

100
010
001

,c1 =

1
0
0

,c2 =

0
1
0

,c3 =

0
0
1


By subroutines MTN(S) and NTM(N), we can construct a bijection between the set of share
matrices generated by M1 and the set of numbers between 1 and 3!. The detailed bijection can be
shown as follows.

No.1 :

100
010
001

, No.2 :

100
001
010

,No.3 :

010
100
001



No.4 :

001
100
010

, No.5 :

010
001
100

,No.6 :

001
010
100


2

For the case that there are identical columns in the basis matrix, which means that there are
identical share matrices in the m! permutations of the basis matrix. Suppose there are e different
columns in the basis matrix, and the multiplicities of these columns are a1, a2, · · · , ae. Denote Nd as

the number of the different share matrices in Ci, then we have Nd =
(
∑e

i=1 ai)!∏e
i=1 ai!

, for i ∈ {0, 1}. Each

share matrix appears m!
Nd

times in the m! permutations.

Furthermore, according to the subroutine MTN(S), each permutation corresponds to a number
between 1 and m!, we can divide these m! numbers into Nd groups, where each group contains m!

Nd

numbers, and the numbers in one group correspond to an identical share matrix. We hence can
form an array of length Nd by choosing the smallest number of each group. Denote this array as A,
and denote Si

1, S
i
2 · · · , Si

Nd
as all the different share matrices in the set Ci, the following subroutine

generates A:

Subroutine: MC
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Initial an empty array A
For j = 1 to Nd

For q = 1 to m
Find the first cq in Si

j from left to right, assume that cq is the Jq-th column

of Si
j

Delete cq from Si
j

A[j]← 1 +
m−1∑
q=1

((m− q)!)(Jq − 1)

To differentiate the two cases whether there exist and do not exist identical columns, we denote
MTN -d(S) and NTM -d(N) as the corresponding subroutines for the case that there exist identical
columns:

Subroutine: MTN-d(S)

A←MC
For q = 1 to m

Find the first cq in Si
j from left to the right, assume that cq is the Jq-th column

of Si
j

Delete cq from Si
j

N ′ ← 1 +
m−1∑
q=1

((m− q)!)(Jq − 1)

For r = 1 to Nd

if A[r] = N ′

Output r

Subroutine: NTM-d(N)

A←MC
N ′ ← A[N ]
S ← NTM(N ′)
Output S

According to the Theorem 5, we have that, each group only has one smallest number. Hence
the array A is a bijection from the set {1, 2, · · · , Nd} and the set of the smallest numbers in each
group. Furthermore, because each group corresponds to a different share matrix we have that the
MTN -d(S) and NTM -d(N) form a bijection between the set {1, 2, · · · , Nd} and the set of share
matrices {Si

1, S
i
2 · · · , Si

Nd
}. We summarize this result as the following theorem:

Theorem 6. The subroutines MTN -d(S) and NTM -d(N) form a bijection between the set of share
matrices in Ci (i = 0, 1) and the set of numbers between 1 and Nd. 2

Example 7. For a (2,3)-VCS, there are identical columns in basis matrix M0. M0 and its two different
columns c1 and c2 with multiplicities 1 and 2 are shown as follows.

M1 =

100
100
100

,c1 =

1
0
0

,c2 =

0
0
0


By subroutines MTN − d(S) and NTM − d(N), we can construct a bijection between the set of
share matrices generated by M0 and the set of numbers between 1 and 3. The detailed bijection can
be shown as follows.

No.1 :

100
100
100

, No.2 :

100
010
001


15



2

The above subroutines are more efficient than the simple table-lookup method. Particularly,
for the case that the columns c1, c2, · · · , cm are pairwise different, the subroutines MTN(S) and
NTM(N) are efficient, because they only need fixed memory requirements. For the case that there
are identical columns in c1, c2, · · · , cm, the memory requirement of the subroutines MTN − d(S)
and NTM − d(N) relates to the value of m. Because they only need to store the indexes of the
share matrices A[1], A[2], · · · , A[Nd], they are more efficient than the simple table-lookup method.
Furthermore, the table (the array A in Subroutine MC) can be previously generated and reusable.

4 Comparisons of ESSVCS and TiOISSS

From the viewpoint of carrying amount of the secret, both the ESSVCS and the TiOISSS are
computer aided and carry two types of secrets, one is a secret image that can be revealed by stacking
the shares, and the other is covert data which is revealed by computation. The three TiOISSS
schemes [18–20] can be also treated as (k, k, n)-TiOISSS, which means a vague secret image is
revealed by stacking any k out of n shares, and further a much finer gray-scale secret image (i.e. the
covert data) is revealed by computation with these k shares.

Taking the information carrying capability into consideration, we compare the amount of covert
data carried by the ESSVCS and three TiOISSSs [18–20].

First, the covert data carried by the ESSVCS is greater than that in Lin et al.’s TiOISSS [18].
Bandwidth of the proposed ESSVCS has been discussed in Theorem 4, and it can be evaluated from
Table 1 and Table 2. Lin et al.’s TiOISSS [18] groups the share matrices into different types to carry
covert data according to the first row. Let m be pixel expansion of the basis matrix, where each

row contains b ‘1’ and w ‘0’ and m=b+w. There are

(
m
w

)
different types of share matrix, and

each secret pixel in VCS carries log2

(
m
w

)
bits. We list the number of share matrices generated by

Droste [12] with different types in Table 3.

Note that in order to satisfy the security, we can only choose the type of one row and the
remaining (n− 1) rows are then determined according to the type of share matrix. Therefore, only

1/n part of each share can be used to carry log2

(
m
w

)
bits. Since the covert data of each share is

taken from the shadow image generated by polynomial-based secret sharing scheme, the total secret

information carried by VCS is k · |SI | · log2

(
m
w

)
/n bits, where SI is the binary secret image of

VCS.

Table 3: The number of share matrices with different types in Lin et al.’s TiOISSS

@
@@k
n

2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10

3 4!
2!2!

6!
3!3!

8!
4!4!

10!
5!5!

12!
6!6!

14!
7!7!

16!
8!8!

18!
9!9!

4 8!
4!4!

15!
9!6!

24!
16!8!

35!
25!10!

48!
36!12!

63!
49!14!

80!
64!16!

5 16!
8!8!

30!
15!15!

48!
24!24!

70!
35!35!

96!
48!48!

126!
63!63!

6 32!
16!16!

70!
40!30!

128!
80!48!

210!
140!70!

320!
224!96!

7 64!
32!32!

140!
70!70!

256!
128!128!

420!
210!210!

8 128!
64!64!

315!
175!140!

640!
384!256!

9 256!
128!128!

630!
315!315!

10 512!
256!256!
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Second, there is no fixed relationship between the amount of covert data carried by the ESSVCS
and that of Yang et al.’s TiOISSS [19]. The TiOISSS [19] replaces the black pixels in the shares
with gray pixels generated by polynomial-based secret sharing scheme. Therefore, each row of share
matrix carries 8 bits, and the total amount of covert data are 8000 · |SI | bits, where b is the number
of ‘1’ in each row of share matrix. In most cases, especially when n is a small number, the covert
data carried by Yang et al.’s TiOISSS [19] is more than that in the ESSVCS.

However, in some cases, the ESSVCS can carry more data. For example, for a (2,10)-VCS con-
structed by Droste [12], we have log2 |C0| = 3.32, log2 |C1| = 21.79, and b = 1, k = 2. In the ESSVCS,
each white secret pixel carries 3.32 bits and each black secret pixel carries 21.79 bits, while in Yang
et al.’s TiOISSS [19], sharing one secret pixel carries 16 bits. With proper proportion of the numbers
of white secret pixels to black secret pixels, the ESSVCS can carry more covert data than Yang et
al.’s TiOISSS [19].

Li et al.’s TiOISSS [20] improved Yang et al.’s scheme [19] by restricting the gray values of share
pixels. The visual quality of the revealed image can be improved by increasing the share size. Hence
each share carries less information than that in Yang et al.’s scheme [19].

From viewpoint of visual quality, both ESSVCS and TiOISSS can visually recover the secret
image by stacking shares. The ESSVCS and Lin et al.’s TiOISSS [18] used traditional VCS as the
building block, hence the recovered secret image is as same as that of the traditional VCS. In Yang
et al.’s TiOISSS [19] and Li et al.’s TiOISSS [20], the black pixels of shares are replaced by gray
pixels, and the contrast of VCS is diminished. Therefore, visual quality of the recovered secret image
by stacking shares is deteriorated in Yang et al.’s TiOISSS [19] and Li et al.’s TiOISSS [20], which
is a disadvantage of their scheme. However, in Li et al.’s TiOISSS [20], the visual quality can be
improved with the cost of larger share size.

Besides, another disadvantage of Yang et al.’s TiOISSS scheme [19] and Li et al.’s TiOISSS [20]
is that, to reconstruct the covert data the participants have to obtain the greyness of each sub-pixel
precisely, which is impractical if the shares are printed on transparencies. Occasional scrub may
change the greyness of sub-pixels in the transparencies, which will be impossible to reconstruct the
covert data.

Both the ESSVCS and Lin et al.’s TiOISSS [18] carry covert data by choosing different share
matrices, hence there is a bijection between the set of pseudo-random numbers (ciphertext) and the
set of share matrices. In Lin et al.’s TiOISSS [18], it employs a lookup table to map the different
types of share matrices to the set of pseudo-random numbers. The disadvantage of their scheme is
that, the table needs to store all the types of share matrices, which has large memory requirements.
However, in the ESSVCS, an efficient algorithm is introduced to make the mapping more convenient.

5 Conclusions

In this paper, we proposed a construction of the (k, t, n)-ESSVCS scheme, which can carry ad-
ditional covert data compared to the traditional (k, n)-VCS scheme by treating the pseudo-random
inputs as a sub-channel. We analyzed some issues related to ESSVCS scheme such as the pseudo-
randomness that the input of VCS requires, sufficient conditions to uniquely determine a share in
the set Ci (i = 0, 1), and bandwidth of the proposed ESSVCS scheme. We also presented an efficient
algorithm to decode ESSVCS secret. At last, comparisons of some relevant VCS schemes are given
such as the TiOISSS scheme [18–20].

The proposed (k, t, n)-ESSVCS scheme is especially useful for the case (n− 1, n− 1, n)-ESSVCS
and the case (n, n, n)-ESSVCS, because in these cases, the qualified participants could get secret
and covert data simultaneously. The constructions of (k, n − 1, n)-ESSVCS and (k, n, n)-ESSVCS
can be easily implemented by the proposed scheme. For general value of k < t < n− 1, we left it as
an open problem for future study.

Our (k, t, n)-ESSVCS scheme is not so perfect, there are more space to improve our work in
future. We will provide a more suitable solution for concanating the keys to each share.
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It is well known that the shares of VC are random. The content properties of random shares have
not been fully explored, this could reveal wasteful use of space and can easily lead an adversary to
suspect the presence of a hidden message. We will study the space complexity of a VC share in future.
We plan on using cipher text to generate the master key and presenting the resulting encrypted
information in black/white blocks. The content-based VC shares will fully use the available key
space.
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