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Abstract
Myoelectric pattern recognition (MPR) to decode limb movements is an important advancement regarding the control of
powered prostheses. However, this technology is not yet in wide clinical use. Improvements in MPR could potentially increase
the functionality of powered prostheses. To this purpose, offline accuracy and processing time were measured over 44 features
using six classifiers with the aim of determining new configurations of features and classifiers to improve the accuracy and
response time of prosthetics control. An efficient feature set (FS: waveform length, correlation coefficient, Hjorth Parameters)
was found to improve the motion recognition accuracy. Using the proposed FS significantly increased the performance of linear
discriminant analysis, K-nearest neighbor, maximum likelihood estimation (MLE), and support vector machine by 5.5%, 5.7%,
6.3%, and 6.2%, respectively, when compared with the Hudgins’ set. Using the FS with MLE provided the largest improvement
in offline accuracy over the Hudgins feature set, with minimal effect on the processing time. Among the 44 features tested,
logarithmic root mean square and normalized logarithmic energy yielded the highest recognition rates (above 95%). We antic-
ipate that this work will contribute to the development of more accurate surface EMG-based motor decoding systems for the
control prosthetic hands.
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Abbreviations
ANN Artificial neural networks
AR Autoregressive
Cor Correlation coefficient
DAMV Difference absolute mean value
DASDV Difference absolute standard deviation value
DWT Discrete wavelet transform
EMG Electromyography
Er Energy
FFT Fast Fourier transform

FDim Fractal dimension
FDF Frequency domain features
FE Frequency energy
FR Frequency ratio
FS Feature set
HFD Higuchi’s fractal dimension
Hist Histogram
HCom Hjorth complexity parameter
HMob Hjorth mobility parameter
IAV Integrated absolute value
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KNN K-nearest neighborhood
Kurt Kurtosis
LDA Linear discriminant analysis
LogRMS Logarithmic root mean square
MAV Mean absolute value
MAVS Mean absolute value slope
MaxAV Maximum absolute value
MDF Median frequency
MFL Maximum fractal length
MFV Mean firing velocity
MLE Maximum likelihood estimation
MNF Mean frequency
MPK Mean of peaks
MPV Mean of peak values
MLP Multilayer perceptron
MM Muscular model
MPR Myoelectric pattern recognition
mV Millivolt
NLE Normalized logarithmic energy
NP Number of peaks
PCA Principle component analysis
Perc Percentile
PKF Peak frequency
RE Relative energy
DT Decision tree
s Seconds
Skew Skewness
SSC Slope sign changes
STD Standard deviation
STDPK Standard deviation of peaks
SVM Support vector machine
TDAR Combined TD and AR
TDF Time domain features
TFDF Time-frequency domain features
Var Variance
WAM Willison amplitude
WL Waveform length
WPT Wavelet packet transform
ZC Zero crossing

1 Introduction

Myoelectric pattern recognition (MPR) controlled prosthesis
ideally mimics the functionality of a natural limb using signals
from residual muscles left over after amputation or congenital
defect. The ability of MPR systems to decode motor volition
is dependent on how well each stage of the system performs.
MPR processing stages are typically divided into pre-process-
ing, feature extraction, and classification [1]. Pre-processing is
used to remove unwanted signal components from the raw
electromyogram (EMG) like motion artifacts or power line
interference. EMG signals are then windowed and signal

features are calculated over each window. Signal features
can be grouped into three categories, time domain (TD) [1],
frequency domain (FD), and time-frequency domain (TFD)
[2], each describing different components of the signal. If
the resulting feature space is sufficiently high, dimensionality
reduction techniques like principal component analysis (PCA)
may be employed to improve classification accuracy and effi-
ciency [3]. The resulting feature vectors are then fed into a
classifier for training and decoding motor volition.

Various features and classification methods have been de-
veloped to improve the usability of prosthetic hands [4, 5].
Phinyomark et al. evaluated 37 of the most commonly used
EMG features to discriminate hand movements using linear
discriminant analysis (LDA) [6]. Based on their results, they
suggested using a feature set composed of mean absolute val-
ue, waveform length, Wilson amplitude, autoregressive coef-
ficients, and mean absolute value slope. The obtained accura-
cy is 92.1%. Another study by the same researchers [7] com-
pared the performance of 50 features using LDA to classify
ten upper-limb movements; they found the sample entropy
feature to yield the highest classification accuracy. They also
proposed a feature set of four single features to improve the
accuracy up to 95%. Oskoei et al. [8] combined 12 features
and used an artificial neural network (ANN) to discriminate
six movements. Their study on six healthy subjects indicated
that satisfactory pattern recognition accuracy could not be
achieved using TD features alone. Conversely, Scheme et al.
[9] used a set of TD features introduced by Hudgins et al. [10]
to classify 11 classes of motion using ten commonly used
classification techniques. The LDA-based, one-versus-one
configuration significantly outperformed the other classifiers,
achieving an error of less than 5% using TD features alone.
Hargrove et al. [11] compared the classification accuracy of
four different feature sets—the Hudgins TD feature set,
autoregressive (AR) model, combined TD and AR (TDAR),
and root mean square (RMS) using ANN and LDA
classifiers—to discriminate ten classes of isometric contrac-
tions. Their results from 12 healthy subjects showed the
TDAR/LDA combination had the best performance with ac-
curacy up to 97%. Guo et al. [5] compared the classification
accuracy of combinations of four TD features and ANN and
support vector machine (SVM) classifiers to discriminate nine
movements. They recommended muscular model (MM) and
ANN for real-time applications, while MM with SVM was
more suitable when processing time is not a key requirement.
Although these offline studies have shown that accurate
decoding of gestures from electrodes placed on the forearm
can be achieved, optimal feature extraction and robust classi-
fication continue to be open challenges which likely affects
the adoption and use rates of such systems by amputees for
controlling prosthetic hands [12]; therefore, improvements in
these areas could potentially increase the functionality and use
of powered prostheses. Furthermore, due to variations in
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methodologies used to evaluate the algorithms in different
studies, it is difficult to compare their results. Few studies have
quantitatively evaluated the performance of a wide range of
classifiers and features to discriminate hand and finger move-
ments using the same database and methodology [5–8, 11].

Accuracy in decoding different motions and low response
time are crucial for a successful surface EMG-based control
system [13]. Therefore, the aim of the present study was to
determine new configurations that improve the accuracy and
responsiveness of hand gesture recognition with surface
EMG signals. We investigated various combinations of 44
common and new features and six classifiers, based on the
literature mentioned above, for motion recognition with sur-
face EMG signals. We proposed a new feature set and deter-
mined new configurations for decoding individual hand
movements. We examined classification accuracy and pro-
cessing time using a database recorded from 20 healthy vol-
unteers to avoid much of variability in the recordings and
maintain consistency between experiments so that it is pos-
sible to compare the results of different algorithms. We an-
ticipate that this work will contribute to the development of
more accurate surface EMG-based motor decoding systems
for the control prosthetic hands. The paper is organized as
follows: Section 2 presents data collection and pre-
processing followed by feature extractions, dimensionality
reduction, and classifiers used in this study. Section 3 pre-
sents the results. Section 4 summarizes the discussion and
finally, Section 5 draws conclusions.

2 Methods

2.1 Data collection

Four channels of surface EMG signals (sampled at 2000 Hz)
from 20 healthy subjects were obtained from the BioPatRec
database [14]. Subjects were aged between 23 and 63 (mean ±
STD 30.1 ± 10.5) years, 10 were females and 10 were males,
one was left-handed and 19 were right-handed, with a mean
weight of 68.8 ± 11.0 kg and a mean height of 1.77 ± 0.08 m.
Recordings were taken using silver-silver chloride electrodes
placed with roughly equal spacing over the proximal third of
the subjects’ dominant forearm. The available hand and wrist
movements in this database, as shown in Fig. 1, were open
hand, close hand, flex hand, extend hand, pronation, supina-
tion, side grip, fine grip, agree or thumb up, pointer or index
extension, and relaxation.

2.2 Pre-processing

The raw EMG signals were filtered using a Butterworth band-
pass filter with a bandwidth of 10–500 Hz [3, 15] and a Notch
filter at 50 Hz. Afterwards, 30% of the contraction time in the

EMG signal was trimmed to exclude inactive periods at the
beginning and ending of the contraction (15% each) [14]. The
relaxation part was added as an additional movement.
Overlapping windows of 200 ms length, with 100 ms overlap,
was used to segment the signal. Information theory has shown
that EMG segments with a length of 100–300 ms contain the
highest information content. Furthermore, the optimal length
for this specific task has been suggested to be between 100
and 300 ms [16].

Figure 2 shows the samples of the EMG signal acquired
from the first channel of one of the subjects. The figure shows
that the amplitude of the acquired EMG signals is different for
each hand and finger motion. The EMG signal behaves sim-
ilarly across all channels with different signal characteristics
apparent for each movement class and channel. Signal fea-
tures are calculated over each channel and window to be fed
into the classifier for training and discrimination. The signal
features over all channels will ideally result in vectors that can
be cleanly separated in the feature space.

2.3 Feature extraction

In total, 44 features in the time, frequency, and time-frequency
domains were extracted from eachwindow. The description of
features extracted from EMG is introduced in this section.
Thirty-six of these features are commonly used in this area
(and were chosen by extensively reviewing the literature) and
eight of them are new (which we would like to present their
result). The eight new features, while not extensively
reviewed for EMG processing, have shown initial promise
in unpublished preliminary experiments.

2.3.1 Time domain features

TD features are extracted directly from pre-processed EMG
without any transformation; therefore, they have low compu-
tational cost and are easy to implement [7]. This study extract-
ed 25 features in TD from the surface EMG signals. Mean of
peak values and mean firing velocity have not been evaluated
for this purpose before.

1) Mean absolute value (MAV)

MAV is obtained by averaging the absolute value of the
EMG signal in a window [4]. A large increase occurs in the
value of this feature at onset and remains high during the
contraction [3] and can be defined as [4]:

MAV ¼ 1

N
∑
N

i¼1
xij j ð1Þ

where xi is the EMG data and N is the number of samples in
each time window (2000 Hz × 0.2 s = 400 samples) [3].
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Fig. 2 Two seconds of the EMG signal acquired from the first channel of one of the subjects during 10 hand motions and rest. mV, millivolt; s, second

Fig. 1 Ten classes of motions plus the relaxation or “no movement”: from top left: open hand, close hand, flex hand, extend hand, pronation, supination,
side grip, fine grip, agree or thumb up, pointer or index extension, and relaxation [14]
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2) Standard deviation (STD)

STD represents the difference between each sample of
EMG and its mean value [17] and is defined as:

STD ¼ 1

N−1
∑
N

i¼1
xi−x�ð Þ2

� �1=2 ð2Þ

where x represents the mean value of the EMG signal in a
segment [18].

3) Variance (Var)

Variance represents the power of the EMG signal and helps
to determine onset and contraction [3]. It can be obtained as
[3, 19]:

Var ¼ 1

N−1
∑
N

i¼1
x2i ð3Þ

4) Waveform length

Waveform length of the signal gives information about
complexity of the signal in a window by summing the numer-
ical derivative of the sample window and can be calculated by
[20]:

WL ¼ ∑
N

i¼1
xi−xi−1j jð Þ ð4Þ

5) Zero crossing (ZC)

ZC counts the number of times that the sign of the ampli-
tude of the signal changes. It is calculated as [21]:

ZC ¼ ∑
N

i¼1
sgn −xixi−1ð Þ; ð5Þ

sgn xð Þ ¼ 1 if x > 0
0 otherwise

�

6) Number of peaks (NP)

Number of peaks is the number of values that are higher
than their RMS value. RMS is calculated using Eq. (6) [22].

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
xij j2

N

vuuut ð6Þ

7) Mean of peak values (MPV)

Mean of peak values is the average of the peak values that
have been found in Section 6 [23].

8) Mean firing velocity (MFV)

Mean firing velocity is the difference or velocity of the
peak values found in Section 6 [23].

9) Slope sign changes (SSC)

SSC represents the frequency properties of the EMG signal
and it counts the number of times the slope of the EMG signal
in a time window changes sign [6]. This can be defined as
[13]:

SSC ¼ ∑
N−1

i¼2
f xi−xi−1ð Þ � xi−xiþ1ð Þ½ � ð7Þ

f xð Þ ¼ 1 if x > threshold
0 otherwise

�

10) Correlation coefficient

The Pearson correlation coefficient of all pairs of EMG
channels in a time window shows the linear relationship be-
tween two samples of the EMG signal [24] and is defined as
[25]:

Cor x; yð Þ ¼
∑
N

i¼1
xi−x
� �

yi−y
� �����

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
xi−x
� �2

∑
N

i¼1
yi−y
� �2s ð8Þ

where xi and yi are the EMG data of different channels.
11) Difference absolute mean value (DAMV)

DAMV is calculated as follows [15]:

DAMV ¼ 1

N
∑
N−1

i¼1
xiþ1−xij j ð9Þ

12) Fractal dimension (FDim)

Fractal dimension of the EMG measures the strength of
muscle activity and presents information about the activemus-
cle (such as size and complexity) [19]. It is calculated as fol-
lows:

FDim kð Þ ¼ ∑
N
k½ �

i¼1
X ikð Þ−X i−1ð Þ*kð Þj j

 !
N−1
N

( )
=k ð10Þ

where N is the sample window length and k is the time-step.
13) Maximum fractal length (MFL)

The maximum fractal length of the EMG measures the
strength of muscle contraction specifically low-level muscle
activation [19]. The definitions of this feature are expressed as
follows [26]:

Med Biol Eng Comput



MFL ¼ log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N−1

i¼1
xiþ1−xið Þ2

s !
ð11Þ

14) Higuchi’s fractal dimension (HFD)

Higuchi’s fractal dimension is one of the most popular
techniques that has shown good performance in calculating
the fractal dimension. It can be calculated as follows [26]:

HFD ¼ log10 FDim 1ð Þð Þ−log10 FDim 10ð Þð Þ
log10 10ð Þ−log10 1ð Þ ð12Þ

15) Skewness (Skew)

The Skewness describes asymmetry in a statistical distri-
bution around the mean value and is calculated as [18]:

Skew ¼ M 3

M 2

ffiffiffiffiffiffiffi
M 2

p ð13Þ

Mk ¼ 1

N
∑
N

i¼1
xi−x
� �k

ð14Þ

16) Integrated absolute value (IAV)

The integral of absolute value is a summation of absolute
values of the EMG signal in a time window of N samples,
which is given by [27]:

IAV ¼ ∑
N

i¼1
xij j ð15Þ

17) Hjorth mobility parameter (HMob)

Three parameters were introduced by Hjorth [28]: activity,
mobility, and complexity (HCom). The activity parameter is
the variance of the signal that was described previously in
Section 3. The mobility parameter is proportional to the stan-
dard deviation of the power spectrum and is defined as
[29, 30]:

HMob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

dx tð Þ
dt

	 


Var x tð Þð Þ

vuuut ð16Þ

18) Hjorth complexity parameter

Complexity is the third feature of the Hjorth parameters
which compares the similarity of the shape of a signal with a
pure sine wave and can be calculated as [29, 30]:

HCob ¼ Mobility dx tð Þ=dtð Þ
Mobility x tð Þð Þ ð17Þ

19) Multi-channel energy ratio

The absolute energy of the EMG signal from one channel is
given by [24]:

E j ¼ ∑
N

i¼1
x2i ð18Þ

where j is the jth channel of the EMG. The energy ratio of
the jth channel to the kth channel signals is calculated by [24]:

ER*
jk ¼

E j

Ek
; j ¼ 2; :::;M−1; K ¼ jþ 1; :::M : ð19Þ

The normalization of the energy ratio (ER*
jk ) with respect

to the first channel EMG signal is defined as [24]:

ERjk ¼ E j � E1

E2
k

ð20Þ

20) Difference absolute standard deviation value
(DASDV)

DASDV is a standard deviation value of the difference
between the adjacent samples, which is calculated by [15, 22]:

DASDV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑
N−1

i¼1
xiþ1−xið Þ2

s
ð21Þ

21) Willison amplitude (WAM)

WAM in a time window counts the number of times the
absolute value of the difference between two adjacent samples
exceeds a predefined threshold. Its value indicates the muscle
contraction levels [3].

WAM ¼ ∑
N

i¼1
f xi−xiþ1j jð Þ; ð22Þ

f xð Þ ¼ 1 if x > threshold
0 otherwise

�

22) Mean absolute value slope (MAVS)

Mean absolute value slope is the difference between mean
absolute value of adjacent time windows and is defined as
[4, 20]:

MAVS ¼ MAViþ1−MAVi for i ¼ 1; :::; I−1 ð23Þ

23) Kurtosis (Kurt)

Kurtosis describes the shape of a statistical distribution
compared with the normal distribution and is defined as [18]:
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Kurt ¼ M4

M 2M 2
ð24Þ

where Mis defined in Eq. (14).
24) Percentile (Perc)

The 75th percentile of the signal distribution is given by
[18]:

card xi=xi < Perc75f g ¼ 75N
100

ð25Þ

where card is the number of elements in the set.
25) Histogram (Hist)

EMG histogram is an extended version of the ZC and
WAM features that sorts the samples of the EMG signal from
its minimum value to the maximum, segments the sorted
values into several equally spaced frames, and returns the
number of samples in each segment [21].

2.3.2 Frequency domain features

FD features are usually statistical properties of power spectral
density (PSD) of EMG signals [7]. We defined eight frequen-
cy domain features as follows, three of which (waveform
length, mean of peaks, and standard deviation of peaks) have
not been investigated before. For all FD features, the fast
Fourier transform was applied to the TD signal without
padding.

2.3.3 Waveform length (WL)

WL in the frequency domain is calculated using Eq. (4) over
the magnitude of the fast Fourier transform [23]. This also
gives an estimate of the signal complexity, but in the frequen-
cy domain.

2.3.4 Mean frequency (MNF)

MNF is an average frequency value that can be calculated as
[6]:

MNF ¼
∑
M

j¼1
f jp j

∑
M

j¼1
pj

ð26Þ

where fj is the frequency variable at frequency bin j, pj is the
power spectrum of the EMG signal at frequency bin j, and M
is length of the frequency bin.

2.3.5 Median frequency (MDF)

MDF is a frequency at which the EMG power spectrum is
divided into two parts with equal amplitude; it can be defined
as [6]:

MDF ¼ 1

2
∑
M

j¼1
pj ð27Þ

2.3.6 Mean of peaks (MPK)

Similar to the MPV, the average of the peak values exceeding
the RMS value of the EMG signal in frequency domain is
calculated to form the MPK feature.

2.3.7 Standard deviation of peaks

After applying FFT to all channels of the EMG signals in the
time domain, the STD of the peak values of the EMG signal in
frequency domain is calculated to obtain the standard devia-
tion of peaks (STDPK).

2.3.8 Frequency ratio (FR)

FR provides information to differentiate between contraction
and relaxation of muscle and it is defined as the ratio of power
spectrum at low-frequency band and high-frequency band.
[4]:

FR ¼
∑

low−frequency band
pj

∑
high−frequency band

pj
ð28Þ

The frequency bands are decided through the experiments.
For example, Han et al. in 2000 [31] considered 30–250 Hz as
the low-frequency band and 250–1000 Hz as the high-
frequency band. In this study, we applied a band-pass filter
with a bandwidth of 10–500 Hz as a pre-processor; therefore,
the low- and high-frequency bands were changed to 10–250
and 250–500 Hz, respectively.

2.3.9 Peak frequency (PKF)

Peak frequency is the frequency of the maximum power. It is
defined as [32]:

PKF ¼ max pj

� �
j ¼ 1;…;M : ð29Þ
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2.3.10 Frequency energy (FE)

To obtain the frequency energy feature, after computing the
FFT for each sample, the FFT amplitude is squared. Then, the
summation of the energy of all channels into 10 Hz bins is
calculated [33].

2.3.11 Time-frequency domain features

A discrete wavelet transform (DWT) using fourth-order
Coiflet mother wavelet and a wavelet packet transform using
a fifth-order Symmlet mother wavelet (as recommended in
[34]) were applied to the time domain signal to create a four-
level wavelet decomposition (as recommended in [35]) of the
EMG signal. Then, a total of 11 features were extracted from
the wavelet and wavelet packet coefficients in the fourth (last)
level. WL, mean, and MAVof wavelet coefficients have not
been used before.

2.3.12 Standard deviation of wavelet coefficients

After applying DWT to each segment of the EMG signal,
standard deviation of the wavelet coefficients in the last level
was calculated [35].

2.3.13 Variance of wavelet coefficients

First, each segment of the EMG signal was decomposed using
DWT; then, variance of the wavelet coefficients in the last
level was calculated [35].

2.3.14 Waveform length of wavelet coefficients

After applying wavelet transform to each window of the EMG
signal, waveform length of the wavelet coefficients in the last
level was calculated.

2.3.15 Energy of wavelet coefficients

The EMG signal is decomposed by wavelet transform into
four levels; then, the energy of the wavelet coefficients is
determined in the last level as components of the feature vec-
tor [36, 37].

2.3.16 Maximum absolute value of wavelet coefficients

The maximum absolute value (MaxAV) of the wavelet coef-
ficients in the last level was calculated as the feature vector of
EMG signals [38].

2.3.17 Zero crossing of wavelet coefficients

After decomposing the EMG signal using DWT, the number
of ZC of the wavelet coefficients in the last level is evaluated
[36, 39].

2.3.18 Mean of wavelet coefficients

The EMG signal was decomposed by DWT into four levels;
then, the mean of the wavelet coefficients in the last level was
calculated.

2.3.19 Mean absolute value of wavelet coefficients

After decomposing the EMG signal using DWT into four
levels, the mean absolute value of the wavelet coefficients in
the last level was calculated.

2.3.20 Logarithmic RMS of wavelet packet coefficients

After applying the wavelet packet transform (WPT) and
decomposing the EMG into four levels, the logarithmic
RMS (LogRMS) of the coefficient in the last subspace was
calculated [40].

2.3.21 Relative energy of wavelet packet coefficients

After the EMG had been decomposed by WPT, the relative
energy (RE) of the coefficients in every subspace was
employed as the signal feature set. The energy in each sub-
space can be computed as follows [41]:

E j;p ¼ ∑
i
wp

j ið Þ
��� ���2 ð30Þ

where w is the matrix of wavelet packet coefficients and p
and j are the indexes of subspace and decomposition level,
respectively. The total energy of the signal is given by:

TE j ¼ ∑
p
E j;p ð31Þ

The relative energy of the signal in each subspace is:

RE j;p ¼ E j;p=TE j ð32Þ

2.3.22 Normalized logarithmic energy of wavelet packet
coefficients

WPT was applied to the EMG signals to generate wavelet
coefficients up to a level j decomposition. The logarithmic
operator was then applied to the accumulation of the squares
of the coefficients divided by the number of coefficients (N) in
the subspace. Normalized logarithmic energy (NLE) is
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defined as follows [40]:

NLE j;p ¼ log
∑
i

wp
j ið Þ

� �2
N�

2 j

0
BB@

1
CCA ð33Þ

2.4 Dimensionality reduction

To increase the classification performance, dimensionality re-
duction of the feature set is often necessary [13]. In this study,
two types of dimensionality reduction were applied: feature
selection (forward feature selection and backward feature
elimination) and feature projection (PCA). Forward feature
selection and backward feature elimination consist of adding
features one by one to the feature set. If an added feature
produced higher accuracy rate, it would stay in the feature
set; otherwise it would be removed. Once all features were
evaluated, features in the obtained feature set were removed
in inverted order if their subtraction did not negatively affect
accuracy. The 25 features in TD, the eight features in FD, and
the 11 features in TFD were considered as three different
feature sets. Then the feature selection and PCA were
employed to reduce the dimensionality of the aforementioned
feature sets.

2.5 Classification

The resulting feature vectors corresponding to 11 movements
were then fed into the following classifiers: LDA, k-nearest
neighbor (KNN), decision tree (DT), maximum likelihood
estimation (MLE), SVM, and multilayer perceptron (MLP).
LDA, KNN, SVM, and MLP were chosen by reviewing state
of the art; DT and MLE have been extensively used in differ-
ent areas such as gait measurement and speech recognition
[42]; however, there is no enough investigation on their per-
formance on hand gesture recognition. First, the data of the 11
hand motions were used as a learning data set for the classi-
fiers. Then, another data set of similar motions (from the same
experiment of the same subject) was applied to the classifiers
as test data for making decision regarding the kind of motion.

The results of the classifiers were performed by a 10-fold
cross-validation in each subject and the classification accuracy
was computed as an average accuracy based on the results
from cross-validation testing of all subjects. The best perfor-
mance of a feature is approached when the classification ac-
curacy reaches its highest value [6].

2.5.1 Linear discriminant analysis

LDA is a simple and efficient classifier that has been used due
to its high performance in classification of EMG signals, the

robustness in long-term effect usage, and the low computa-
tional cost [6]. Discriminant analysis algorithm (type: linear)
in MATLAB 2015b was used to classify the 11 hand motions.

2.5.2 K-nearest neighbor

KNN is a simple machine learning algorithm with a low train-
ing time that utilizes a distance measure relative to the k-
nearest neighbors of a point to assign an unknown event to a
given class [9, 21, 43]. In this study, Euclidean distance was
chosen as the distance metric. In choosing K in the KNN
classifier, it was observed that a larger value of K decreases
the classification accuracy. We carried out our experiments
with different values of K: 1 to 10, 40, and 100; K = 2 even-
tually provided the highest classification accuracy.

2.5.3 Decision tree

DT uses a set of comparisons of features extracted from phys-
iological signals to classify the unknown input [42, 44]. To
perform the DT classifier, the available algorithm in
MATLAB 2015b was used.

2.5.4 Maximum likelihood estimation

The MLE is used for parameter estimation in statistics [15,
45]. For Gaussian inputs, these parameters are the mean and
the covariance of the probability density function [15, 45]. In
this study, the extracted features from the EMG signals were
applied to theMLE in order to estimate the optimal parameters
(one Gaussian model per class), and a group of the motion
data was then determined.

2.5.5 Support vector machine

SVM is an increasingly popular machine learning tool that
uses kernels to map data into separable hyper-planes [2, 9].
In this study, the LIBSVM library (C-SVC) was used to clas-
sify 11 different hand motions and the Kernel type was set to a
Gaussian radial basis function [46]. In order to optimize the
decoding performance and maximize correct classification, all
parameters (such as cost and gamma in the kernel function)
were set with a grid-search procedure.

2.5.6 Multilayer perceptron

Feedforward multilayer perceptron with two hidden layers of
16 neurons and 11 output neurons each (one neuron per move-
ment) was used for classification. MLP can be implemented
with more neurons and hidden layers, but doing so limits the
ability to translate the results to real-time embedded systems
useful for prosthetic control. The transfer function for the hid-
den layers is tan-sigmoid. The MLP was trained using a
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MATLAB’s Bayesian Regularization algorithm to prevent
overtraining. The learning rate and momentum were 0.1.

2.6 Feature and classification evaluation

All combinations of features and classifiers were used to per-
form the initial evaluation. We then investigated the accuracy
rate of different combinations of features in each feature set
(TD, FD, TFD) by applying the dimensionality reduction
methods.

2.7 Data analysis

Classification accuracy (acc) was computed as the average
class-wise accuracy, defined as:

acci ¼ TPi þ TNi

TPi þ TNi þ FPi þ FNi
ð34Þ

where i is the class index and TP, TN, FP, and FN are true
positive, true negative, false positive, and false negative pre-
dictions, respectively. Accuracy averaged over all classes and
further averaged over cross-validation results.

Performance matrixes between movements (intended and
detected movements) were also used to better visualize and
compare the performance of different algorithms in detecting
different movements. Each row of the matrix represents the
intended movements while each column represents the
detected movements.

Another important issue for motion recognition is the time
consumption for training and classification. Therefore, the
elapsed time of each classifier in combination with features
and feature sets that obtained better accuracy rates in each
domain was calculated in second (s).

The processing stages in this study for decoding hand and
finger movements are presented in Fig. 3.

To compare the results, we also applied all the classifiers to
the Hudgins feature set (a set of TD features including MAV,
WL, SSC, ZC, and DAMVintroduced by Hudgins et al. [10]).
One-way analysis of variances (ANOVA) using general linear
model procedure of SAS software (SAS Institute Inc. 2004)
was carried out by analyzing the parameters as a completely
randomized design to find statistically significant differences
among the obtained accuracies by each feature and feature set.
Duncan’s multiple range test was used to test the significance

of the difference between means. All significances were de-
clared at p < 0.0001.

3 Results

The average classification accuracy and standard deviation of
different feature/classifier combinations across the 20 subjects
are shown in Tables 1, 2, 4, and 6. The least significant differ-
ence tests [47], which were used to determine significant dif-
ferences among obtained accuracy rates, are also presented in
Tables 1, 2, 4, and 6.

3.1 TD feature result

Of the 25 TD features, nine features including one of the new
features (MPV)—MAV, STD, WL, MPV, DAMV, MFL, IAV,
DASDV, and Perc—showed the best performance for the six
classifiers. TheKNN andMLP classifiers showed numerically
higher accuracy rates than the rest, but no statistical signifi-
cance was observed. Combining the KNN classifier with each
of the aforementioned features produced accuracy rates with
averages of 93.17%, 93.52%, 93.16%, 92.29%, 93.29%,
93.95%, 93.23%, 92.26%, and 89.60%, respectively. The
MAVS/LDA combination obtained the lowest rate, with an
average of 11.52%.

For the feature set evaluation using the forward feature
selection and backward feature elimination, Var, WL, Cor,
HMob, and HComwere found to improve the results, referred
to here as FS, our proposed feature set. The highest accuracy
rate of each investigated classifier in this study (LDA, KNN,
DT, MLE, SVM, and MLP) in combination with the 25 TD
features was 84.88%, 93.95%, 90.29%, 90.44%, 85.01%, and
91.62%, respectively (Table 1). Combining TD features and
proposing the new feature set (FS) increased the accuracy
rates of LDA, MLE, and SVM classifiers to 95.15%,
97.43%, and 91.97%, respectively (Table 2), which was sta-
tistically significant (p < 0.0001). There was also a numerical
increase in the accuracy rates of KNN, DT, and MLP classi-
fiers, to 94.07%, 91.36%, and 93.73%, respectively; however,
this increase was not statistically significant.

The Hudgins feature set in Table 2 showed significantly
lower accuracy rates (p < 0.0001) than FS for LDA, KNN,
MLE, and SVM classifiers. The highest accuracy rate for the

Fig. 3 Flow chart of the processing stages of different hand and finger movement recognition
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Hudgins feature set was obtained by the MLP classifier, with
an average of 91.64%. PCA was also applied to all 25 TD
features as a feature set to decrease the dimension of the fea-
ture set from 133 to 20, a number experimentally found to
offer a reasonable trade-off between accuracy and complexity.
The DT and MLE classifiers, using the FS set, showed signif-
icantly (p < 0.0001) higher accuracy than the TD features/
PCA combination. For the LDA, KNN, SVM, and MLP clas-
sifiers, there was no statistically significant difference between
the rates of TD features/PCA combination and our proposed
feature set. However, the accuracy rates of LDA, SVM, and
MLP classifiers in conjunction with TD features/PCA combi-
nation were numerically higher than that of the FS set with an
average of 96.20%, 94.73%, and 94.39%, respectively.

Table 3 shows the performance matrix between the move-
ments (the intended movements and the detected movements)
for the FS/MLE combination that obtained the highest classi-
fication accuracy among the TD features. As presented in
Table 3, flex hand and extend hand were easy to detect as they
obtained the highest classification accuracies (above 99%).

However, there was confusion between flex hand and open
hand, pronation, and others when using the FS/MLE combi-
nation. There was also some difficulty discriminating extend
hand from open hand, close hand, side grip, and fine grip. The
lowest classification accuracy with an average of 94.43% was
obtained by fine grip indicating that this movement was the
most difficult to detect. It was confused most often (1.88% of
the time) with side grip.

3.2 FD feature results

Most of the FD features obtained low accuracy rates;
among the eight FD features tested, WL and our proposed
feature, MPK, showed only marginally better perfor-
mance. The highest rate was obtained by FE/KNN com-
bination with an average of 90.02% (Table 4). The com-
bination of the FE feature and the MLE classifier obtained
the lowest accuracy rate among the FD features, with an
average of 16.80%.

Table 1 The average classification accuracy and standard deviation of single TD feature/classifier combinations across 20 subjects

TDF Average classification accuracy (%) ± STD

LDA KNN DT MLE SVM MLP

1 MAV 84.65c ± 7.73 93.17ab ± 4.60 90.05abc ± 4.92 89.93bcd ± 6.21 84.02bc ± 8.47 91.14bcdef ± 4.69

2 STD 84.66c ± 7.95 93.52a ± 3.56 89.75abcd ± 5.01 89.45bcd ± 6.05 84.62bc ± 7.62 91.00cdef ± 4.20

3 Var 71.21f ± 11.35 90.42abc ± 4.94 89.95abc ± 4.68 79.19gh ± 8.40 72.83e ± 10.14 90.51cdefg ± 4.11

4 WL 84.71c ± 7.43 93.16ab ± 4.38 90.18abc ± 5.47 90.44bc ± 5.88 84.86bc ± 8.08 91.21bcde ± 4.69

5 ZC 55.48mn ± 8.45 47.26lm ± 9.63 47.69pq ± 8.69 53.70nop ± 8.10 49.50mn ± 8.14 52.12rs ± 8.55

6 NP 57.92klmn ± 8.53 51.43jkl ± 10.42 51.34op ± 8.80 55.44mno ± 8.29 54.55ijkl ± 9.20 55.81pqr ± 8.90

7 MPV 83.49cd ± 7.81 92.29abc ± 4.36 88.83abcd ± 5.01 87.81bcde ± 6.64 84.14bc ± 7.11 89.85defg ± 4.69

8 MFV 19.97r ± 1.99 19.65q ± 1.69 18.43v ± 1.68 20.41tu ± 1.64 19.71s ± 1.94 19.93w ± 1.79

9 SSC 59.19jklm ± 9.08 50.01klm ± 9.61 51.39op ± 9.56 58.08lmno ± 8.97 56.61hij ± 8.79 55.42qr ± 9.28

10 Cor 62.89hij ± 9.07 57.46ghi ± 10.05 52.98no ± 9.56 61.43kl ± 9.35 58.18ghi ± 9.43 54.98rs ± 10.51

11 DAMV 84.85c ± 7.45 93.29ab ± 4.50 90.29abc ± 5.40 90.42bc ± 5.84 84.01bc ± 8.11 91.18bcdef ± 4.72

12 FDim 37.41pq ± 8.30 34.31n ± 8.21 34.14rst ± 8.99 34.73r ± 8.45 33.73pq ± 7.11 37.64uv ± 8.99

13 MFL 84.88c ± 7.47 93.95a ± 4.41 90.16abc ± 5.50 90.4bc ± 5.98 84.24bc ± 7.73 91.46abcde ± 4.41

14 HFD 41.07op ± 7.29 33.42no ± 6.84 33.33rst ± 6.75 40.17q ± 7.20 38.36op ± 6.27 38.15uv ± 7.24

15 Skew 35.84q ± 6.88 28.90op ± 5.93 29.77tu ± 6.52 33.78r ± 6.40 27.40r ± 5.51 34.08v ± 6.46

16 IAV 84.57c ± 7.75 93.23ab ± 4.49 90.01abc ± 5.13 89.97bc ± 6.04 83.97bc ± 8.08 91.62abcde ± 4.46

17 HMob 53.78n ± 10.05 45.60m ± 11.24 46.12q ± 10.71 53.27op ± 10.56 48.73mn ± 10.46 50.61s ± 9.52

18 HCom 68.72fg ± 8.71 66.18f ± 11.38 63.02jk ± 10.03 67.45ij ± 8.74 59.74fgh ± 11.63 66.63l ± 9.18

19 ER 57.85lmn ± 9.55 76.47e ± 5.34 80.84gh ± 6.10 69.34i ± 9.73 54.87hijkl ± 8.46 83.14ij ± 5.16

20 DASDV 83.95cd ± 7.95 92.26abc ± 4.50 88.94abcd ± 5.31 88.25bcde ± 5.98 85.01bc ± 7.44 89.75defg ± 4.29

21 WAM 71.11f ± 14.75 75.24e ± 14.43 78.82h ± 11.28 60.07klm ± 28.44 77.40de ± 13.88 79.57jk ± 11.11

22 MAVS 11.52s ± 2.89 32.82no ± 5.67 32.21st ± 5.56 26.23s ± 3.68 12.45t ± 1.40 18.52w ± 5.10

23 Kurt 35.80q ± 6.72 35.84n ± 8.16 35.08rs ± 8.09 32.76r ± 6.58 29.97qr ± 6.53 39.09u ± 7.97

24 Perc 81.36cde ± 8.16 89.60abc ± 6.15 86.32bcde ± 6.68 85.81cdef ± 7.43 80.15cd ± 8.82 87.73efgh ± 5.38

25 Hist 42.04op ± 6.97 46.42m ± 5.81 34.35rst ± 6.87 40.57q ± 6.72 41.91o ± 6.39 40.25tu ± 7.67

a,bMeans within a column not sharing a common superscript are significantly different (p < 0.0001)
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Different combinations of the FD features were inves-
tigated using the forward feature selection and backward
feature elimination; however, the results did not improve
significantly. PCA was applied to the eight FD features to
decrease the dimensionality of the feature set from 828 to
20. The accuracy rate of the KNN classifier showed a
slight numerical increase, but the other classifiers obtain-
ed lower accuracy rates when employing the PCA
(Table 4).

As illustrated in Table 5, the FE/KNN combination
(the best performing combination among the FD fea-
tures) showed the highest average accuracy of 98.52%
for rest (no movement) with flex hand showing the next
highest accuracy of 97.46%. Rest was confused with
open hand and close hand by the FE/KNN combination
the most, but each was less than 1% of the total pre-
dictions for the class. The lowest classification accuracy
with an average of 84.43% was obtained by side grip.
This movement was confused with all the movements to
some extent except flex hand and extend hand; the most
confusion happened with fine grip with an average pre-
diction rate of 5.90%.

3.3 TFD feature result

Table 6 presents the classification accuracy of 11 different
TFD features (the first eight features were extracted from the
wavelet coefficients and the last three features were extracted
from the wavelet packet coefficients). Afterwards, PCA was
applied to all 11 TFD features as a set to decrease dimension
of the feature set from 224 to 20. The wavelet transform fea-
tures did not have good performance in decoding the 11 hand
movements and the highest accuracy rate, with an average of
67.66%, was obtained with the WL/MLP combination
(Table 6). The forward feature selection and backward feature
elimination were applied to the TFD features; however, the
results did not improve significantly.

Among the TFD features, LogRMS and NLE showed the
highest accuracy rates when applied to the LDA and MLP
classifiers (with averages of above 95%). The above-
mentioned features, as applied to the KNN and SVM classi-
fiers, evolved into the second highest accuracy rates with av-
erages of above 93% for KNN and SVM (Table 6). DT and
MLE did not achieve good accuracy rates using TFD features.
The LDA and SVM classifiers obtained the highest rate of

Table 3 The performance matrix between the movements (the intended movements and the detected movements); numbers are average classification
accuracy (%) obtained by the FS/MLE combination across 20 subjects

Detected movements

OH CH FH EH PR SU SG FG AG PO RST

Intended movements OH 98.36 0.16 0.08 0 0.08 0.25 0.16 0.08 0.25 0.41 0.16

CH 0.25 97.79 0.08 0.08 0 0 0.66 0 0.66 0.33 0.16

FH 0.16 0,0 99.26 0 0.33 0 0 0 0 0.16 0.08

EH 0.16 0.08 0 99.51 0 0 0.08 0.16 0 0 0

PR 0.49 0 0.16 0 98.93 0.08 0 0.08 0.08 0.16 0

SU 0.33 0.08 0 0.16 0.08 98.77 0.16 0.08 0.16 0.16 0

SG 0.74 0.49 0 0.08 0.33 0 95.33 0.90 1.07 1.07 0

FG 0.66 0.41 0.08 0.16 1.23 0.25 1.88 94.43 0.33 0.57 0

AG 0.33 0.81 0.08 0 0.08 0.33 0.66 0.16 95.90 1.64 0

PO 0.25 0.82 0.25 0.08 0.25 0.33 0.33 0.16 1.31 96.23 0

RST 0.49 0.25 0.08 0 0.33 0 0.90 0.16 0.41 0.16 97.21

Average = 97.43%

OH open hand, CH close hand, FH flex hand, EH extend hand, PR pronation, SU supination, SG side grip, FG fine grip, AG agree, PO pointer, RST rest

Table 2 The average classification accuracy and standard deviation of TD feature set/classifier combinations across 20 subjects

TD feature sets Average classification accuracy (%) ± STD

LDA KNN DT MLE SVM MLP

FS 95.15a ± 2.85 94.07a ± 3.77 91.36a ± 4.56 97.43a ± 1.70 91.97a ± 3.82 93.73abcd ± 3.22

Hudgins feature set 89.90b ± 5.23 88.68bc ± 7.02 90.60ab ± 5.62 91.31b ± 5.12 86.28b ± 7.53 91.64abcde ± 4.26

Applying PCA to 25 TD features 96.20a ± 2.44 92.54abc ± 5.02 79.66h ± 10.49 83.81efg ± 7.09 94.73a ± 3.20 94.39abc ± 3.18

a,bMeans within a column not sharing a common superscript are significantly different (p < 0.0001)
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94.87% and 93.33% in conjunction with TFD features/PCA
combination (almost the same result obtained by LogRMS
and NLE features). The PCA dimensionality reduction im-
proved the result of MLE classifier from 76.20 to 79.37%,
which was not statistically significant. The results for the fea-
ture set analysis of TFD features using the feature selection
method did not significantly improve the classification accu-
racy of any of the classifiers.

Table 7 illustrates the performance matrix between the
movements (the intended movements and the detected move-
ments) for the LogRMS/MLP combination which obtained
the highest classification accuracy among the TFD features.
Flex hand, extend hand, and pronation obtained the highest
accuracy rates of above 98%. Flex hand was misclassified to
some extent with all the movements except close hand and
extend hand with the highest misclassification rate of 0.49%

with pronation. The highest misclassification rate in detecting
extend hand was found with fine grip at 0.49%. The lowest
classification accuracy with an average of 91.31%was obtain-
ed by side grip. Side grip was confused with all movements
except flex hand and extend hand; the highest misclassifica-
tion rate was obtained by fine grip with an average accuracy of
3.61%.

3.4 Processing time

The average values of offline training and testing times (pro-
portional to the offline training and real-time classification
delay, respectively) of the 20 subjects on the same feature
extraction and classifiers are presented in Tables 8 and 9,
respectively.

Table 4 The average classification accuracy and standard deviation of single FD feature/classifier combinations across 20 subjects

FDF Average classification accuracy (%) ± STD

LDA KNN DT MLE SVM MLP

1 WL 82.42cde ± 7.78 88.27c ± 5.86 85.81cdef ± 6.08 86.61bcde ± 6.53 81.14cd ± 7.64 86.97fghi ± 4.95

2 MNF 66.55fgh ± 8.97 64.23f ± 11.04 61.22jk ± 10.46 64.59ijk ± 8.47 57.81ghij ± 11.63 64.25lm ± 9.44

3 MDF 61.10ijkl ± 8.13 57.58ghi ± 8.50 59.18lmn ± 8.65 58.74lmn ± 7.75 50.06lmn ± 11.07 59.87nop ± 7.71

4 MPK 80.80cde ± 7.75 87.92c ± 6.37 85.14defg ± 6.73 84.82def ± 7.35 80.94cd ± 8.23 86.39ghi ± 5.60

5 STDPK 42.55o ± 5.91 36.33n ± 6.64 37.90r ± 6.98 37.76rq ± 4.88 33.77pq ± 6.57 43.66t ± 6.89

6 FR 61.27ijkl ± 8.24 55.26hij ± 10.13 54.61mno ± 9.51 59.5klm ± 8.12 53.24jklm ± 8.76 59.01opq ± 8.87

7 PKF 77.77e ± 8.34 83.26d ± 9.01 81.40fgh ± 7.99 80.69fgh ± 8.61 75.22e ± 10.59 82.75ij ± 7.15

8 FE 64.06ghi ± 9.23 90.02abc ± 6.41 82.52efgh ± 7.87 16.80u ± 6.76 62.55fg ± 9.71 61.65mno ± 10.35

Applying PCA to eight FDF 81.89cde ± 8.37 90.78abc ± 6.44 78.55hi ± 9.42 18.99tu ± 8.00 63.13f ± 7.91 85.22hi ± 5.07

a,bMeans within a column not sharing a common superscript are significantly different (p < 0.0001)

Table 5 The performance matrix between the movements (the intended movements and the detected movements); numbers are average classification
accuracy (%) obtained by the FE/KNN combination across 20 subjects

Detected movements

OH CH FH EH PR SU SG FG AG PO RST

Intended movements OH 87.46 0.33 0 0.08 1.64 0.98 1.97 1.72 1.97 2.70 1.15

CH 0.41 85.66 0 0.33 0.98 0.25 4.26 2.62 2.54 2.30 0.57

FH 0.66 0.16 97.46 0 0.49 0 0.08 0.16 0 0.41 0.33

EH 1.15 0.74 0 95.25 0 0 0.41 0.57 1.15 0 0

PR 3.28 0.74 0.33 0 88.11 2.13 1.56 1.64 1.15 0.33 0

SU 0.74 0.25 0 0 0.57 90.33 0.33 2.21 2.70 1.72 0.98

SG 1.64 1.39 0 0 0.82 0.41 84.43 5.90 2.30 1.39 1.64

FG 0.49 1.39 0 0 0.74 0.66 5.98 86.39 1.80 0.66 1.89

AG 1.39 0.74 0 0 0 2.13 1.39 1.80 88.28 2.13 1.15

PO 1.23 1.56 0 0 0.08 1.64 1.23 3.03 1.15 88.20 1.80

RST 0.08 0.16 0 0 0 0 0 0 0 0 98.52

Average = 90.0%

OH open hand, CH close hand, FH flex hand, EH extend hand, PR pronation, SU supination, SG side grip, FG fine grip, AG agree, PO pointer, RST rest
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The training process for KNN andMLE took less time than
other classifiers, whereas MLP took the most time. TheMAV/
MLE combination was the fastest (0.008 s) and FE/MLP was
the most time-consuming combination (3655.0 s) in training
(Table 8). The testing process for KNN and DTwas faster than
the other classifiers, and LDA consistently took the most time.
The MAV/DT combination had the fastest testing time, and
NLE/LDA showed the slowest testing time (Table 9). Among
the TD features, MFL was the most time-consuming. For FE,
LogRMS, and NLE, the transformation of time domain signal
to the frequency and time-frequency domains made these fea-
ture sets relatively time-consuming.

For LDA and SVM classifiers, FS, LogRMS, and NLE
features provided the highest accuracy rates. However,
LogRMS and NLE took much more time than FS for both
training and testing (34.31 s vs. 0.198 s and 34.30 s vs. 0.185
s, respectively). For the KNN and DT classifiers, FS obtained
the highest accuracy; however, MAV was the fastest for both
testing and training. For MLE, the FS showed the highest
accuracy rate, and the elapsed time for training and testing
was 0.121 s and 0.136 s, respectively. For MLP, FS,
LogRMS, and NLE showed the highest accuracy rates; how-
ever, FS was the fastest in both training and testing (7.189 s
and 0.131 s, respectively).

4 Discussion

The aim of the present study was to investigate configurations
of signal features and classifiers to improve the accuracy and
responsiveness of surface EMG-based motor decoding sys-
tems. To this purpose, four channels of surface EMG signal
recorded from 20 healthy subjects during 11 different hand

movements were selected from the BioPatRec database [14].
An investigation was then performed on the accuracy and
responsiveness of 44 conventional and new features in com-
bination with six different classifiers on a freely available da-
tabase using a publicly available training and testing method-
ology. Many of the relative accuracy differences found in this
work are corroborated with results from some of the existing
literature [7, 11, 48], but the standardized and open pattern
recognition framework used here provided results that are eas-
ily comparable with any other works that opt to use the same
system.

The experimental results of the 25 TD features as presented
in Table 1 showed that MAV, STD, WL, MPV, DAMV, MFL,
IAV, and DASDV in combination with the KNN classifier ob-
tained the highest accuracy rates (above 92%). Among these
features, MFL was the most computationally expensive feature
(Tables 8 and 9), limiting its usefulness in real-time systems.

Since the accuracy rate of the TD features was not satisfac-
tory, we evaluated many different combinations of the 25 TD
features and proposed an efficient feature set which provided
statistically significant improvement in combination with
LDA, MLE, and SVM classifiers. However, the elapsed train-
ing and testing time were slightly increased, but the authors
still consider it acceptable for real-time applications. We then
compared the result of our proposed feature set with that of a
well-known feature set in the state of the art (Hudgins’ set).
The results in Table 2 show that our proposed feature set
outperformed the Hudgins’ TD feature set. The presented per-
formance matrix for the FS/MLE combination in Table 3
shows that, among the movements, gross movements, like
flex hand and extend hand, were easy to detect while fine grip
was the most difficult. This is expected, as gross antagonist
movements tend to generate highly separable features.

Table 6 The average classification accuracy and standard deviation of single TFD feature/classifier combinations across 20 subjects

TFDF Average classification accuracy (%) ± STD

LDA KNN DT MLE SVM MLP

1 STD 61.0ijkl ± 7.68 61.89gf ± 9.62 62.44jk ± 8.69 61.52kl ± 7.60 55.38hijk ± 8.12 66.35l ± 6.81

2 Var 45.57o ± 6.43 57.59ghi ± 9.02 62.09jk ± 8.30 50.12p ± 7.05 47.98n ± 6.57 64.57lm ± 7.72

3 WL 62.57hijk ± 8.08 64.57f ± 9.22 63.55j ± 8.67 62.40jkl ± 7.95 55.94hijk ± 7.45 67.66l ± 7.62

4 Er 45.17o ± 6.30 59.08gh ± 9.82 60.54jkl ± 8.59 49.38p ± 7.35 48.49mn ± 6.09 63.69lmn ± 6.82

5 MaxAV 55.61mn ± 7.13 58.42gh ± 9.25 58.78klm ± 8.67 56.29mno ± 7.53 51.05klmn ± 7.72 63.69lmn ± 7.00

6 ZC 10.01s ± 1.17 10.34r ± 1.29 10.13w ± 1.18 9.88v ± 1.17 10.17t ± 1.26 9.16x ± 0.71

7 Mean 13.00s ± 2.24 27.02p ± 5.18 26.88u ± 5.07 22.67st ± 3.76 13.57t ± 2.30 19.9w ± 4.46

8 MAV 62.44hijkl ± 7.99 61.72fg ± 9.66 61.66jk ± 9.37 62.38jkl ± 8.29 58.94fghi ± 8.78 65.94l ± 8.13

9 LogRMS 95.24a ± 3.63 93.35a ± 4.94 86.63bcde ± 6.04 76.15h ± 9.02 93.51a ± 5.51 95.47a ± 3.51

10 RE 79.57de ± 8.13 53.70ijk ± 9.68 55.50mno ± 10.39 37.24rq ± 7.79 74.05e ± 8.96 75.94k ± 9.54

11 NLE 95.12a ± 3.76 93.30ab ± 5.00 86.47bcde ± 6.29 76.20h ± 9.56 93.81a ± 5.29 95.24ab ± 3.61

Applying PCA to 11 TFDF 94.87a ± 3.97 90.33abc ± 6.06 73.94i ± 8.76 79.37gh ± 9.65 93.33a ± 5.55 85.39hi ± 6.36

a,bMeans within a column not sharing a common superscript are significantly different (p < 0.0001)
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We also investigated the performance of eight FD fea-
tures. However, they did not show sufficiently low delay in
combination with any of the six classifiers under investiga-
tion. The highest accuracy was obtained with the FE/KNN
combination with an accuracy of 90.2%, but the testing time
for this combination was almost 0.3 s, over twice that of our
proposed feature set. The provided performance matrix for
this combination in Table 5 shows that, among the individual
movements, rest (no movement) and flex hand obtained the
highest accuracy, whereas side grip obtained the lowest. This
indicates that the frequency content of system and environ-
mental noise, which dominates the EMG recordings at rest,
has significantly different frequency characteristics than
EMG signals.

Among the 11 investigated TFD features, the features that
were obtained from the wavelet packet coefficients (LogRMS
and NLE) had the highest accuracy when used in combination
with LDA and MLP classifiers (above 95%). However, the
FD and TFD features were computationally expensive, since
the TD EMG signal needs to be transformed to the frequency
and time-frequency domains, respectively. The performance
matrix in Table 7 illustrates that flex hand, extend hand, and
pronation were the easiest to detect and side grip was the most
difficult, which corroborates our previous conclusions.

PCA was also applied to the three sets of features (25 TD
features, eight FD features and, 11 TFD features) in each do-
main as the dimensionality reductionmethod and the results in
Tables 2, 4, and 6 show that, in some cases, the accuracy rate

Table 7 The performance matrix between the movements (the intended movements and the detected movements); numbers are average classification
accuracy (%) obtained by the LogRMS/MLP combination across 20 subjects

Detected movements

OH CH FH EH PR SU SG FG AG PO RST

Intended movements OH 95.33 0.49 0.16 0.08 0.25 0.98 0.25 0.41 0.57 0.90 0.57

CH 0.41 95.66 0 0.08 0 0.66 0.82 0.57 0.98 0.41 0.41

FH 0.25 0 98.28 0 0.49 0.08 0.08 0.16 0.16 0.16 0.33

EH 0.08 0.08 0 98.93 0.08 0.08 0.25 0.49 0 0 0

PR 0.25 0 0.08 0 98.11 0.25 0.33 0.66 0.16 0.08 0.08

SU 0.66 0.49 0.08 0 0.16 96.39 0.41 0.66 0.66 0.25 0.25

SG 0.74 0.49 0 0 0.49 0.16 91.31 3.61 0.82 1.39 0.98

FG 0 0.66 0.08 0.08 0.74 0.25 3.03 93.36 0.49 0.90 0.41

AG 0.66 1.23 0.16 0 0.08 0.90 0.49 0.82 93.28 2.30 0.08

PO 1.15 0.41 0.16 0 0.25 0.49 1.64 0.98 2.13 91.80 0.98

RST 0.16 0.16 0.16 0 0 0 0.74 0.49 0 0.57 97.70

Average = 95.47%

OH open hand, CH close hand, FH flex hand, EH extend hand, PR pronation, SU supination, SG side grip, FG fine grip, AG agree, PO pointer, RST rest

Table 8 Elapsed time in seconds (s) when training six classifiers with
11 different single and multiple features

Features Elapsed time (s) for training

LDA KNN DT MLE SVM MLP

MAV 0.092 0.016 0.021 0.008 0.060 5.207

STD 0.096 0.018 0.026 0.010 0.052 5.329

WL 0.095 0.018 0.024 0.011 0.055 6.540

DAMV 0.092 0.019 0.023 0.011 0.054 7.130

MFL 0.868 0.798 0.804 0.791 0.831 6.010

IAV 0.090 0.019 0.025 0.011 0.058 4.890

FS 0.198 0.128 0.140 0.121 0.191 7.189

Hudgins set 0.158 0.087 0.100 0.080 0.156 14.47

FE 0.666 0.358 0.753 3.067 1.345 3655.0

LogRMS 34.31 34.23 34.27 34.23 34.34 61.68

NLE 36.24 36.17 36.21 36.17 36.29 63.40

Table 9 Elapsed time in seconds (s) when testing six classifiers with 11
different single and multiple features

Features Elapsed time (s) for testing

LDA KNN DT MLE SVM MLP

MAV 0.074 0.009 0.007 0.021 0.010 0.021

STD 0.078 0.011 0.009 0.024 0.011 0.022

WL 0.077 0.012 0.010 0.023 0.013 0.024

DAMV 0.077 0.012 0.010 0.023 0.013 0.024

MFL 0.862 0.792 0.790 0.803 0.793 0.803

IAV 0.077 0.012 0.010 0.023 0.013 0.023

FS 0.185 0.121 0.119 0.136 0.123 0.131

Hudgins set 0.151 0.080 0.078 0.094 0.083 0.091

FE 0.503 0.298 0.297 1.457 0.433 0.342

LogRMS 34.30 34.22 34.22 34.24 34.23 34.23

NLE 36.23 36.16 36.16 36.18 36.17 36.17
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dropped. This indicates that the reduced feature set lost some
useful information from the EMG signal. However, almost the
same result was obtained with a lower dimension (133 vs. 20,
224 vs. 20, and 828 vs. 20) for some of the combinations such
as FE/KNN and FD/PCA in combination with KNN, suggest-
ing that some classifiers, like KNN, are more robust to the
information loss.

Overall, a wide range of pattern recognition methods, some
of which have been evaluated in different studies with varying
methodologies, were gathered into one study with the same
experimental setup to find efficient configurations, resulting in
an efficient feature set that improves motion recognition ac-
curacy while maintaining high responsiveness.

In future work, other promising alternative classifiers, like
deep–learning algorithms and cascade classification schemes
[49], will be used to decode individual hand movements and
will be compared with conventional machine learning algo-
rithms shown in this work. Improved parameter selection for
the conventional machine learning will also be investigated.
The data from other custom-collected datasets will also be
used to observe the amount of deviations in the performance
of algorithms and to enhance the statistical robustness of the
comparisons. Optimal feature and classifier combinations will
then be used in real-time tests, like the Target Achievement
Control [50] or Motion Test [51], to corroborate the findings
and translate them to clinically useful technologies.

5 Conclusions

In this study, we investigated 44 EMG features and five com-
binations of such features, and used six classifiers to decode
11 human upper-limb movements. Even though the process-
ing time and dimension for the TD features were faster and
smaller than other features, recognition performance was
found to be unsatisfactory. Therefore, a new feature set (FS)
was proposed by combining different TD features, which of-
fered statistically significant improvement (p < 0.0001) in the
results, with the cost of a small increase in the elapsed time for
both training and testing processes. Among the classifiers un-
der investigation, KNN and MLP offered the best perfor-
mance for time domain features. However, MLP took much
longer to train. LDA and MLP showed higher accuracy than
other classifiers when used in combination with wavelet pack-
et features (LogRMS and NLE), but at the cost of training and
testing time. LDAwas much faster than MLP when training,
but the reverse was true for testing. MLE and SVM obtained
their highest rates with the TD and TFD features, but they
showed unsatisfactory performance in combination with FD
features. The FS/MLE combination obtained the highest ac-
curacy rate (above 97%) among the FD features. However, the
elapsed time for the training and testing was 0.358 s and 0.298
s, respectively, making this combination unsuitable for real-

time pattern recognition. PCA was also applied to the three
feature sets in TD, FD, and TFD, and the results indicated that
applying PCA offers improvement in the performance of
LDA, MLE, and SVM classifiers which is not statistically
significant. As a consequence, TD features and feature sets
MAV, STD, WL, DAMV, IAV, and FS in combination with
KNN and FS/MLE are recommended to obtain higher recog-
nition accuracy rates while maintaining low processing times,
whereas LogRMS and NLE in combination with LDA and
MLP are suitable when time consumption is not a key
requirement.
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