
Full citation: Sallis, P.J., MacDonell, S.G., MacLennan, G., Gray, A.R., & Kilgour, R.I. (1998)
IDENTIFIED: software authorship analysis with case-based reasoning, in Proceedings of the Ad-
dendum Session of the Fourth International Conference on Neural Information Processing
(ICONIP'97). Dunedin, New Zealand, University of Otago, pp.53-56.

IDENTIFIED: Software Authorship Analysis with Case-Based Reasoning

Philip Sallis, Stephen G. MacDonell, Grant MacLennan, Andrew Gray, and Richard Kilgour
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
psallis@commerce.otago.ac.nz

Abstract

Software forensics is the use of authorship analysis
techniques to analyse computer programs for a legal or
official purpose. This generally consists of plagiarism
detection and malicious code analysis. IDENTIFIED is
a system that has been designed to assist with the
extraction of count-based metrics from source code, and
with the development of models of authorship using
statistical and machine-learning approaches. Software
forensic models can be used for identification, classifica-
tion, characterisation, and intent analysis. One of the
more promising methods for identification is case-based
reasoning, where samples of code can be compared to
those collected from known authors.

1. SOFTWARE FORENSICS

The frequency and severity of the many forms of
computer-based attacks such as viruses and worms, logic
bombs, trojan horses, computer fraud, and plagiarism of
software code (both object and source) have all become
increasingly prevalent and costly for many organisations
and individuals involved with information systems. Part
of the difficulty experienced in collecting evidence
regarding the attack or theft in such situations has been
the definition of appropriate measurements to use in
models of authorship and the development of appropriate
models from these metrics.

Several options for developing such models for identifi-
cation, discrimination, characterisation, and intent
analysis exist, including subjective expert opinion
(including fuzzy logic as in [Kilgour, et al., 1997]) and
statistical and machine learning models using formally
defined metrics. Each offers its own set of advantages
and disadvantages for the task of software forensics.

With the difficulties of data collection and the goal of
increasing the accessibility of such modelling techniques
in mind a system called IDENTIFIED is being devel-
oped. It is intended to assist with the task of software
forensics which is defined here to be the use of software
code authorship analysis for legal or official purposes
[Gray, et al., 1997]. IDENTIFIED uses combinations of

wildcards and special characters to define count-based
metrics, allows for hierarchical meta-metric definitions,
automates much of the file handling task, extracts metric
values from source code, and assists with the analysis
and modelling process. In particular IDENTIFIED will
enable the analyst to use several analysis procedures such
as case-based reasoning. It is hoped that the availability
of such tools will encourage more detailed research into
this area of ever-increasing importance.

2. SOFTWARE FORENSICS

Source code is the textual form of a computer program
that is written by a computer programmer in a computer
programming language. These programming languages
can in some respects be treated as a form of language
from a linguistic perspective, or more precisely as a
series of languages of particular types, but within some
common family. In the same manner that written text can
be analysed for evidence of authorship (such as [Sallis,
1994]), computer programs can also be examined from a
forensics or linguistics viewpoint [Sallis, et al. 1996] for
information regarding the program’s authorship.

Figure 1 [from Gray et al. 1997] shows two small code
fragments that were written in C++ by two separate
programmers. Both programs provide the same func-
tionality (calculating the mathematical function facto-
rial(n), normally written as n!) from the users’ perspec-
tive. That is to say, the same inputs will generate the
same outputs for each of these programs.

As should be apparent, each programmer has solved the
same problem, that of calculating the factorial of an
input, in both a different manner (algorithm) and with a
different style exhibited in his or her code. These
stylistic differences include the use of comments,
variable names, use of white space, indentation, and the
levels of readability in each function.

These fragments are obviously far too short to make any
substantial claims about the feasibility of using source
code characteristics to make statements regarding the
author(s). However, they do illustrate the fact that
programmers writing programs will often do so in a
significantly different manner to another programmer,

without any instruction to do so. Both of these functions
were written in the natural styles of their respective
authors.

// Factorial takes an integer as an input and returns
// the factorial of the input.
// This routine does not deal with negative values!

int Factorial (int Input)
{

int Counter;
int Fact;
 Fact=1; // Initalises Fact to 1 since factorial 0 is 1
for (Counter=Input; Counter>1; Counter=Counter-1)
 {

Fact=Fact*Counter;
 }
return Fact;

}

int f(int x){
int a, y=1;
if (!x) return 1; else return x*f(x-1);}

Figure 1. Program segments in C++

A large number of candidate metrics for capturing
authorship information have been proposed in the
literature, but rather than discussing these in detail here
we will instead focus on the IDENTIFIED system. For
more information regarding the metrics themselves the
interested reader should consult [Sallis, et al., 1996],
[Kilgour, et al., 1997], and [Gray, et al., 1997]

3. IDENTIFIED

IDENTIFIED (Integrated Dictionary-based Extraction of
Non-language-dependent Token Information for Forensic
Identification, Examination, and Discrimination) is a,
currently, prototype implementation of a dictionary-
based metric extraction tool. IDENTIFIED also pro-
vides modules for analysing the resultant metric data,
including case-based reasoning. Figure 2 shows the Scan
Module of IDENTIFIED. The overall structure of
IDENTIFIED is as shown in Figure 3.

Figure 2. The Scan Module of IDENTIFIED

The system works in the following manner:

1. The user specifies a dictionary file that using a
system of special codes defines count-based met-
rics to be extracted. For example, a metric may be
defined to count the number of lines of code, the
number of temporary type variables (indicated as
temp* perhaps), or the number of while structures.

2. The user then can optionally specify a meta-
dictionary file that defines metrics in terms of the
lower-level counts. For example, the ratio of for
to while loops, the proportion of lines that are
comments, and the number of closing brackets on
the same line as a statement.

3. The user then specifies the base source code file
and the directories in which to search for files that

this base file depends on, either directly or indi-
rectly. This allows for the user to avoid system
header files. Other options such as date ranges
may also be used.

4. Once these files have been specified the user can
request the system to scan the source code and re-
port the metrics, either on a system level or for
each individual program.

5. The analysis modules can now be used to examine
the resulting data using descriptive statistics and
various visualisation tools

6. Finally. The user can use modelling tools such as
case-based reasoning.

Figure 3. Structure of IDENTIFIED

4. CONCLUSIONS

It appears that software forensics has the potential to
become both an important area of practice in computer
security, computer law, and academia as well as an
exciting new area of research. Systems such as
IDENTIFIED will form an important part of such a field
– providing fast and accurate data extraction and
accessible analysis methods.

REFERENCES

Gray, A.R., Sallis, P.J., and MacDonell, S.G. (1997)
Software Forensics: Extending Authorship Analysis
Techniques to Computer Programs. Presented at The
Third Biannual Conference of the International Associa-
tion of Forensic Linguists, 4-7 September 1997, at Duke
University, Durham, North Carolina, USA.

Kilgour, R.I., Gray, A.R., Sallis, P.J., and MacDonell,
S.G. (1997) A Fuzzy Logic Approach to Computer
Software Source Code Authorship Analysis. Accepted in
The Fourth International Conference on Neural Infor-
mation Processing - The Annual Conference of the Asian
Pacific Neural Network Assembly (ICONIP'97), 24-28
November 1997, at the University of Otago, Dunedin,
New Zealand.

Sallis, P. (1994). Contemporary Computing Methods
for the Authorship Characterisation Problem in Compu-
tational Linguistics, New Zealand Journal of Computing,
5, 85-95.

Sallis P., Aakjaer, A., and MacDonell, S. (1996).
Software Forensics: Old Methods for a New Science.
Proceedings of SE:E&P’96 (Software Engineering:
Education and Practice). Dunedin, New Zealand, IEEE
Computer Society Press, 367-371.

	Abstract
	1. Software forensics
	2. Software Forensics
	3. IDENTIFIED
	Figure 3. Structure of IDENTIFIED
	4. Conclusions
	References

