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Abstract

In this thesis, two most fundamental problems in economic theory, namely

the existence and the optimality of Walrasian equilibrium, are studied. It

is assumed that there is uncertainty about the realized state of nature in

an economy and different agents may have different information. Such an

economy is called an economy with asymmetric information. Considering a

pure exchange asymmetric information economy with finitely many states

of nature, an atomless measure space of agents and a Banach lattice as the

commodity space, it is shown that the private core and the set of Walrasian

allocations coincide. The feasibility in this result is taken as free disposal.

This optimality is known as the core-Walras equivalence theorem. When

the feasibility is defined without free disposal, then it is shown that if a

feasible allocation is not in the private core then it is privately blocked by

a coalition of any given measure less than that of the grand coalition. This

theorem not only gives the full answer to a question in [72], but also provides

a sharper characterization of Walrasian allocations.

In addition to the above optimality, some other characterizations of Wal-

rasian allocations by the veto power of the grand coalition are also es-

tablished. One of them deals with robustly efficient allocations in a pure

exchange mixed economy with asymmetric information whose commodity

space is an ordered separable Banach space having an interior point in its

positive cone. This gives a solution to the question posed in [48]. Other two

characterizations are restricted to a discrete economy with a Banach lattice

as the commodity space. First one claims that a feasible allocation is a

Walrasian allocation if and only if it is Aubin non-dominated, whereas the

other one is interpreted in terms of privately non-dominated allocations in

suitable associated economies. These yield a partial solution to a question

in [41]. The feasibility in all of these results is defined as free disposal.

In a pure exchange asymmetric information economy whose space of agents

is a finite measure space, space of states of nature is a probability space with

a complete measure, and commodity space is defined as the Euclidean space,



the existence of a maximin rational expectations equilibrium is established.

So a solution to a question in [32] is obtained.



Chapter 1

Introduction

1.1 Historical Background

One of the central paradigms in economic theory is Walras’s general equilibrium theory,

refer to [85]. As mentioned in [12], Walras formulated an equilibrium concept of an

economic system at any fixed time as the solution to a system of simultaneous equations

representing the demand for goods by consumers, the supply of goods by producers, and

the demand is equal to the supply on every market. It was also stated that consumers

and producers were price takers, each consumer acted so as to maximize his utility and

Figure 1.1: Demand and Supply
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1.1. HISTORICAL BACKGROUND

each producer acted so as to maximize his profit. A price system such that the above

conditions are satisfied is known as the equilibrium price or the market clearing price.

It is well known that if a price system is taken below the equilibrium price then there

is a shortage in supply, but if it is taken above the equilibrium price then there is a

surplus of supply in the market. This can be visualized in Figure 1.1.

Arrow and Debreu in [12], and McKenzie in [61] employed an economic model sim-

ilar to Walras, which consists of finitely many consumers, producers and commodities.

In that model, a commodity was a good or service, and was characterized by its phys-

ical characteristics, the location at which it would be available and the date on which

it would be available. Under certain appropriate assumptions, they showed that there

exists an equilibrium price for the economy. Any such price together with the commod-

ity bundles demanded by consumers and the commodity bundles supplied by producers

at that price is called a Walrasian (competitive) equilibrium. This result is called the

existence theorem of Walrasian equilibrium in the literature. The economic model in

[12, 61] is known as the Arrow-Debreu-McKenzie model. Note that the Walrasian equi-

librium is a non-cooperative solution concept, since agents’ actions are independent of

each other. The proof of the existence theorem totally depends on mathematical ar-

guments. On the one hand, Arrow and Debreu used an extension of Nash equilibrium

theorem [62] in an abstract economy (see [27]). On the other hand, McKenzie provided

a more direct and simple proof by using the Brouwer fixed point theorem. It is also

worth to point out that the reversibility of production plans was allowed in [61], which

Figure 1.2: Uncertainty
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1.1. HISTORICAL BACKGROUND

was not the case in [12]. Since this model is purely deterministic, Arrow in [11] and

Debreu in [29] introduced the notion of uncertainty about the states of nature by

adding contingent claims into this classical model. The uncertainty on any date makes

a family of events, and a commodity on any date is also characterized by an event.

They assumed that all agents have the same information about the realized state of

nature, and showed that the deterministic existence result still holds in this modified

model.

Consider a pure exchange economy (an economy without production). One example

of this type of economy is the international trade market where several countries ex-

change goods at fixed terms of trade. In a pure exchange economy, one of the important

questions is the optimality of a Walrasian equilibrium. The core of an economy is one

of the optimality notions, where it is assumed that agents (consumers) are free to coop-

erate and bargain among themselves. Roughly speaking, a core is a list of commodity

bundles, one for each agent, such that no coalition of agents can redistribute their initial

endowments among themselves and make themselves better off in the sense that every

member of the coalition prefers the new bundle than the old ones. In [34], Edgeworth

considered a two agent pure exchange economy with two commodities, which can be de-

scribed geometrically. This geometric representation is given in Figure 1.1 and is known

as the Edgeworth box corresponding to that economy. Edgeworth assumed that each of

the two agents initially possessed certain amounts of each commodity. Let a denote the

total initial endowment and correspond to the point B in the xy-plane. Suppose that

P is the initial endowment of the first agent with respect to the xy-plane. Then, P also

denotes the initial endowment of the second agent with respect to the st-plane. The

consumption set of the first agent corresponds to the xy-plane and that of the second

agent corresponds to the st-plane. The dotted curve represents the indifference curve

of the first agent, that is, any two points on this curve are equally preferable to the first

agent. Likewise, the undotted curve is the indifference curve of the second agent. A

Pareto optimal allocation is a point at which the indifference curves of the two agents

are tangent to each other. The set of Pareto optimal allocations is called the contract

curve and is the curve joining the points O and B. The intersection of this curve with

the shaded region is the core of this economy and a Walrasian equilibrium is a point of

the core. In this study, Edgewoth also introduced the expanded economy consisting of

2n agents of two types. Agents having the same type means that agents have the same

initial endowment and preference. He also noticed that as n becomes larger, the core

becomes smaller, and finally only the Walrasian allocations remain. Edgeworth’s idea

was based on the graphical pictures and so it is not applicable to the case where there

3



1.1. HISTORICAL BACKGROUND

Figure 1.3: The Edgeworth Box

are arbitrarily finitely many agents and commodities, refer to [30]. To answer this ques-

tion, Debreu and Scarf in [30] repeated the same analysis using advanced mathematical

techniques. It was also showed that the agents having the same type are assigned the

same consumption in a core allocation, and the intersection of the core of all expanded

(replica) economies is called the Edgeworth equilibria. Finally, they proved that there

are price systems for which Edgeworth equilibria become Walrasian equilibria. This

result together with the non-emptiness of the core (see [77]) gives an alternative proof

of the existence of a Walrasian equilibrium without using the equations of supply and

demand of commodities.

In [15], Aumann remarked that in an economy consisting of a finite number of

agents, the influence of an individual is not negligible. This means that any economy

with finitely many agents is not perfectly competitive, and agents are price takers.

Mathematically, the influence of an individual agent is not negligible unless the num-

ber of agents is infinite. To avoid this difficulty, Aumann introduced the notion of a

continuum of agents in a pure exchange economy, where the unit closed interval [0,1]

4



1.1. HISTORICAL BACKGROUND

was used to represent the set of agents. The reason for doing this is that one can

integrate over a continuum, and any change of the integrand at a single point (even

a set of points with measure zero) does not affect the value of the integral. Hence,

the action of an individual agent (even a set of agents with measure zero) is negligible.

Employing standard assumptions, Aumann showed that the set of Walrasian alloca-

tions is non-empty and that the core of such an economy coincides with the set of

Walrasian equilibrium allocations, refer to [15, 17]. In addition to this extension, there

have been some other extensions appearing in general equilibrium theory. Two major

extensions of them are an economy with infinitely many commodities and an economy

with asymmetric information. In the line of research of infinitely many commodities,

the initial work of Bewley in [19], Debreu in [28], and Peleg and Yaari in [66] has been

much more appreciated. There are many aspects of motivation to consider infinite di-

mensional commodity spaces. For example, one can put commodities in discrete time

periods over an infinite time horizon, or infinitely many states of nature, or infinitely

many variations in any of the characteristics describing commodities. Meanwhile, it

was Radner [73] who first extended the analysis of Arrow [11] and Debreu [29] to the

case in which different agents have different information about the states of nature and

introduced the concept of a Walrasian equilibrium in his model. This model is known as

an economy with asymmetric information. In this model, each agent is characterized by

a state dependent utility function, a random initial endowment, a private information

set and a prior belief. In this framework, agents make contingent contracts for trading

commodities before they obtain any information about the realized state of nature.

Aumann’s core-Walras equivalence theorem is one of the most interesting results in

economic theory. Many extensions of this result have been obtained in the literature.

Firstly, an extension of this result to an economy with an atomless measure space of

agents and finitely many commodities can be found in [51]. In the context of infinite

dimensional commodity space, the relation between the core and the set of Walrasian

allocations are more interesting, since preferences and endowments are more diverse,

and thus blocking become more difficult, refer to [45]. Rustichini and Yannelis [76] ex-

tended this result to an economy whose commodity space is a separable Banach lattice.

In [15], Aumann also pointed out that many real markets are indeed far from being

perfect; such a market is probably best represented by a mixed model, in which some

agents are points in a continuum and others are individually significant. One of the

key results on the equivalence between the core and the set of Walrasian allocations in

a mixed economy was established by Shitovitz in [79]. To be precise, he showed that if

there exist at least two large agents and all of them have the same initial endowment

5
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and preference, then the core coincides with the set of Walrasian allocations. Similar

results in mixed economies also came out in [33, 37, 42]. In all of these results, the fea-

sibility was defined without free disposal and in terms of Bochner integrable functions.

Due to asymmetry of information and communication opportunities among agents, sev-

eral alternative core concepts have been introduced, refer to [86, 87]. In [87], Yannelis

introduced the notion of private core based on the fact that agents have no access to

the communication system, that is, each member of the coalition uses only his private

information whenever a coalition blocks an allocation. It is also essential to mention

that under standard assumptions, the private core is non-empty, Bayesian incentive

compatible and rewards the information superiority of agents (see [58, 87]). Dealing

with asymmetric information, Einy et al. [35] first extended Aumann’s equivalence

theorem to the case of the private core and the set of Walrasian allocations, where the

free disposal feasibility assumption was used. Later, this result was further generalized

to an asymmetric information economy with an atomless measure space of agents and

an ordered separable Banach space having an interior point in its positive cone as the

commodity space in [36]. In addition to these equivalence results with free disposal,

Angeloni and Martins-da-Rocha [9] obtained an equivalence result between the private

core and the set of Walrasian allocations in an atomless economy with finitely many

commodities and without free disposal feasibility assumption. It is worth to point out

that in all of these results, commodity spaces are separable and for the case of asymmet-

ric information, there are only finitely many states. In contrast to the so far mentioned

positive results, Podczeck [68] and Tourky and Yannelis [81] constructed counterexam-

ples of economies to show that the classical core-Walras equivalence theorem in [15]

may fail under desirable assumptions when the commodity space is a non-separable

ordered Banach space and the feasibility is defined by Bochner integrable functions.

However, when feasibility is defined in terms of Pettis integral, Podczeck [69] obtained

a positive result for a ceratin class of commodity spaces without requiring that those

commodity spaces are separable.

In 1972, three notes in the same issue of Econometrica gave sharper characteriza-

tions of the core of an atomless economy, where the feasibility was defined without free

disposal. Firstly, Schmeidler [78] proved that if an allocation f is blocked by a coali-

tion via some allocation g, then there is a coalition of arbitrarily small measure which

blocks f via the allocation g. Schmeidler’s result was further generalized by Grodal in

[44] by restricting the set of coalitions to those consisting of finitely many arbitrarily

small sets of agents with similar characteristics, which are presumably easier to form

and also interpret. Finally, Vind [84] showed that if some coalition blocks a feasible

6
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allocation then there is a blocking coalition with any measure less than the measure

of the grand coalition. These results imply that, for a finite-dimensional commodity

space, the set of Walrasian allocations of an atomless economy coincides with the set

of feasible allocations that are not blocked by coalitions of arbitrarily given measure

less than that of the grand coalition. It is well known that similar results do not hold

if one restricts the economy to finitely many agents. Besides this impossibility, Khan

[56] showed that restrictions placed on the formation of coalitions as in [44, 78, 84] do

not enlarge the core “very much” if the number of agents in the finite economy is large

enough. Since these results rely heavily on Lyapunov’s convexity theorem, which does

not hold in an infinite dimensional setting, the exact extension of either Schmeidler’s

or Grodal’s result is not possible, as mentioned in [45]. Indeed, Núñez [63] gave an ex-

ample of an atomless economy with infinitely many commodities, where an allocation

f is blocked by the grand coalition via an allocation g, but there is no other different

coalition blocking f via the same allocation g. Despite this impossibility, Hervés-Beloso

et al. [45] obtained a slightly weaker version of Grodal’s result in a continuum economy

whose commodity space is the space of real bounded sequences with the Mackey topol-

ogy. Recently, Evren and Hüsseinov [36] further extended the results of Schmeidler,

Grodal and Vind to economies whose commodity spaces are ordered Banach spaces

having interior points in their positive cones. In addition to the above deterministic

results, it was mentioned in the appendix of [36] that Schmeidler’s, Grodal’s and Vind’s

theorems in [36] can be further extended to a framework with asymmetric information.

On the other hand, extensions of Vind’s theorem to asymmetric information economies

with the equal treatment setting and the Euclidean space or ℓ∞ as commodity spaces

were provided in [46, 47] respectively. Recently, using the notion of information shar-

ing rule, Hervér-Beloso et al. [49] established some results similar to those in [78, 84]

in asymmetric information economies. Interestingly, the afore-mentioned results in

[36, 46, 47, 49] were obtained under the free disposal condition.

In addition to the characterizations of Walrasian allocations in terms of the core,

some other characterizations by the veto power of coalitions have been proposed in

the literature. Addressing complete information economies with finitely many agents

and commodities, Aubin [13] introduced the ponder veto concept and showed that the

core obtained by this veto mechanism coincides with the set of Walrasian allocations.

Aubin’s approach was employed by Evren and Hüsseinov in [36], Graziano and Meo in

[41] and Hervés-Beloso et al. in [47] to characterize Walrasian allocations in asymmetric

information economies. In fact, Graziano and Meo [41] showed that the Aubin private

core provides a complete characterization of Walrasian allocations in an asymmetric

7
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information economy with a complete measure space of agents, finitely many states of

nature and an ordered separable Banach space having an interior point in its positive

cone as the commodity space. For an asymmetric information economy with finitely

many agents and finitely many states of nature, Evren and Hüsseinov [36] and Hervés-

Beloso et al. [47] obtained characterizations of Walrasian allocations sharper than those

given in [41]. They proved that the set of Walrasian allocations coincides with the set

of Aubin non-dominated feasible allocations. The commodity spaces in their work were

an ordered separable Banach space whose positive cone has an interior point and ℓ∞

with the Mackey topology. The other characterization theorems in [36, 41, 46, 47] en-

able one to obtain the first and second welfare theorems as easy corollaries. Instead of

using infinitely many coalitions, only the veto power of the grand coalition was used

in these theorems, but exercised in a family of economies obtained by perturbing the

agents’ initial endowments. The main result in [41] claims that a feasible allocation is a

Walrasian allocation in an asymmetric information economy with a complete measure

space of agents, finitely many states of nature and an ordered separable Banach space

whose positive cone has an interior point as the commodity space if and only if it is

privately non-dominated in suitable associated economies. This result is an extension of

those provided in [36, 46, 47]. In [48], Hervés-Beloso and Moreno-Garćıa introduced the

notion of robustly efficient allocations and depicted that it characterized the set of Wal-

rasian allocations in a complete information economy with a continuum of non-atomic

agents. Precisely, Hervés-Beloso and Mareno-Garćıa proved that the set of Walrasian

allocations in a continuum economy with finitely many commodities are those that are

non-dominated in any economy obtained by a slight perturbation of the real endow-

ments of the agents belonging to either arbitrarily small coalitions, arbitrarily large

coalitions, or coalitions of a given measure less than that of the grand coalition. This

is a kind of core-Walras equivalence theorem in which one does not consider the veto

power of infinitely many coalitions but the veto power of a single coalition in infinitely

many economies. In addition, applying this theorem to a continuum economy with n

different types of agents, Hervés-Beloso and Mareno-Garćıa obtained the characteriza-

tion of the Walrasian allocations showed in [46] as a particular case. In the last section

of [48], they pointed out that this result can be extended to an asymmetric informa-

tion economy with the space of real bounded sequences as the commodity space, and

questioned whether this result can be extended to economies with other commodity

spaces. This question was partially tackled in [18]. In fact, Basile and Graziano [18]

considered the concept of personalized equilibria introduced in [3] and showed that it

coincides with the set of robustly efficient allocations in a discrete economy with an

8
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ordered topological vector space with locally convex topology as the commodity space.

When traders enter a market with different information about the items to be

traded, the resulting market prices may reveal to some traders information originally

available only to others. The possibility for such inferences rests upon traders having ex-

pectations of how equilibrium prices are related to initial information. This endogenous

relationship was considered by Radner in his seminal paper [74], where he introduced

the concept of a rational expectations equilibrium by imposing on agents the Bayesian

(subjective expected utility) decision doctrine. Under the Bayesian decision making,

agents maximize their subjective expected utilities conditioned on the combination of

their own private information and also on the information that the equilibrium prices

generate. The resulting equilibrium allocations are measurable with respect to the

combination of the private information of each individual and also with respect to the

information the equilibrium prices generate and clear the market for every state of

nature. In papers [4, 5] and [74], conditions on the existence of a Bayesian rational

expectations equilibrium (REE) were studied and some generic existence results were

proved. However, Kreps [59] provided an example that shows that a Bayesian REE

may not exist universally. In addition, a Bayesian REE may fail to be fully Pareto

optimal and incentive compatible and may not be implementable as a perfect Bayesian

equilibrium of an extensive form game, refer to [40] for more details. It was pointed

out in [54] that the market hypothesis fails if the space of states of nature is of a di-

mension higher than that of the price simplex. Thus, in generic existence theorems

of Allen [4, 5] and Radner [74], the assumption on the space of states of nature be-

ing finite or of sufficiently low dimension relative to the dimension of price simplex

is essential. However, it was shown in [53] that if the space of states of nature is of

a dimension strictly higher than that of the price simplex, then for a residual set of

economies there is a rational expectations equilibrium which is given by a two-to-one

and almost discontinuous price function. When the dimensions of both spaces coin-

cide, as mentioned in [6], the existence of an equilibrium fails in finite economies. If

the space of agents is a unit interval consisting of imperfectly and perfectly informed

agents, under the hypothesis of suitably disperse forecasts, it was shown in [6] that for

each state of nature the aggregate excess demand is continuous on the price simplex

and satisfies Walras’s law. This fact allowed Allen to apply a fixed point theorem to

obtain the market clearing price vector for each state of nature and obtain the existence

of an ε-rational expectations equilibrium for all ε > 0. The convergence as ε→ 0 holds

for some cases in which open counterexamples to the existence of rational expectations

equilibria are known. In the same year, Allen [7] also considered two types of agents

9
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(informed and uninformed) and prices carried only incomplete information, when prices

conveyed some information from informed agents to uninformed agents. By applying a

fixed point theorem, she obtained a new approximate non-revealing rational expecta-

tions equilibrium in the sense that the total discrepancy between demand and supply

is small. Allen [8] further showed the existence of a rational expectations equilibrium

with (strong) ε-market clearing in the sense that the discrepancy between demand and

supply is zero for all but one commodity for which the value can be made arbitrarily

small. In a recent paper [31], de Castro et al. introduced a new notion of REE by a

careful examination of Krep’s example of the nonexistence of a Bayesian REE. In this

formulation, the Bayesian decision making adopted in the papers of [4] and [74] was

abandoned and replaced by the maximin expected utility (MEU) (see [39]). In this new

setup, agents maximize their MEU conditioned on their own private information and

also on the information the equilibrium prices have generated. Contrary to a Bayesian

REE, the resulting maximin REE may not be measurable with respect to the private

information of each individual or the information that the equilibrium prices gener-

ate. Although Bayesian REE and maximin REE coincide in some special cases (e.g.,

fully revealing Bayesian REE and maximin REE), these two concepts are in general

not equivalent. Nonetheless, the introduction of the MEU into the general equilibrium

modeling enables de Castro et al. to prove that the universal existence of a maximin

REE under the standard continuity and concavity assumptions on the utility functions

of agents. Furthermore, they showed that a maximin REE is incentive compatible and

efficient. Note that in the economic model considered in [31], it is assumed that there

are finitely many states of nature and finitely many agents, and the commodity space

is finite-dimensional.

1.2 Research Questions

It is clear from the historical background that the following research questions are still

unsolved. Most of these questions have been posed as open problems in the literature.

Question 1.2.1. For an asymmetric information economy with an atomless measure

space of agents and an ordered separable Banach space as the commodity space, does

the private core coincide with the set of Walrasian allocations?

Question 1.2.2. [41] For an asymmetric information economy, do the characteriza-

tions of Walrasian allocations in [41] hold when the positive cone of the commodity

space has no interior points?

10
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Question 1.2.3. [72] Considering the feasibility without free disposal, is it possible to

obtain a characterization of the private core similar to that in [84]?

Question 1.2.4. [48] For an asymmetric information economy, do the characteriza-

tions of Walrasian allocations in terms of robustly efficient allocations hold for a com-

modity space other than the Euclidean space and the space of real bounded sequences?

Question 1.2.5. [32] Does the existence theorem of a maximin rational expectations

equilibrium in [32] still hold whenever the space of agents is an atomless measure space,

and the space of states of nature is an arbitrary probability space?

1.3 Thesis Contributions and Organization

The contributions of this thesis can be expressed in answering the questions given in

Section 1.2. These answers are included in subsequent chapters, which are organized

as follows.

Chapter 2: This chapter is allocated to design the mathematical preliminaries and

economic models in order to study the research questions proposed previously. Since

the work of Arrow and Debreu in [12] and McKenzie in [61], several mathematical

concepts and techniques have been employed in general equilibrium theory to model

different scenarios. Here some notions and results of Set Theory, Topology, Metric

Spaces, Functional Analysis, and Measure Theory and Integration are presented, which

will be used frequently in Chapters 3-6. The last section of this chapter describes some

economic concepts and different economic models.

Chapter 3: The intention of this chapter is to establish a relation between the private

core and the set of Walrasian allocations in a pure exchange economy with asymmetric

information, finitely many states of nature and the free disposal feasibility condition.

In fact, it is shown that the private core and the set of Walrasian allocations coincide

whenever the space of agents is an atomless complete finite positive measure space

and the commodity space is a separable Banach lattice having a quasi-interior point

in its positive cone. This gives a partial solution to Question 1.2.1. If the commodity

space is not separable, then the equivalence theorem fails even the positive cone of

the commodity space has an interior point and the economy satisfies the standard

assumptions, refer to [68, 81]. Despite of this impossibility, a positive result is obtained

for an equal treatment continuum economy with a Banach lattice having an interior

point in its positive cone as the commodity space. It is also depicted that a similar

11
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result holds for an asymmetric information economy whose commodity space is an

arbitrary Banach lattice if one confines to find the relationship between the above two

notions for equal treatment allocations only.

Chapter 4: This chapter is committed to generalize Vind’s theorem in [84] to a pure

exchange economy with asymmetric information, finitely many states of nature and an

infinite dimensional commodity space. The major achievement is a direct extension of

Vind’s result to an economy whose commodity space is an ordered Banach space with

an interior point in its positive cone. As a particular case of this result, a solution

to Question 1.2.3 is derived. In addition to this, similar results on the (strong) fine

core are also obtained. For a continuum economy with the equal treatment property, a

Banach lattice as the commodity space and the free disposal feasibility condition, it is

also shown that an equal treatment allocation not in the private core can be similarly

characterized.

Chapter 5: The aim of this chapter is to extend some existing characterizations

of Walrasian allocations to a pure exchange asymmetric information economy having

finitely many states of nature and an infinite dimensional commodity space. Firstly,

an extension of Theorem 2 in [83] to an asymmetric information economy is obtained.

This theorem is used as a tool to establish a characterization of Walrasian allocations in

terms of robustly efficient allocations in a mixed economy with asymmetric information

and an ordered separable Banach space whose positive cone has an interior point as

the commodity space. This result yields a solution to Question 1.2.4. This chapter

concludes with highlighting some characterizations of Walrasian allocations in a discrete

economy by the veto power of the grand coalition, which are just partial solutions to

Question 1.2.2.

Chapter 6: In this chapter, a general model of a pure exchange asymmetric infor-

mation economy is studied. The space of states of nature is a probability space, and

the space of agents is a measure space with a finite measure, and the commodity

space is the Euclidean space. Under appropriate and standard assumptions on agents’

characteristics, results on continuity and measurability of agents’ aggregate preferred

correspondence in the sense of Aumann in [17] are established. With these results and

the assumption that the space of states of nature is complete, it is proved that a max-

imin rational expectations equilibrium (maximin REE) exists in this economic model.

This existence result gives a solution to Question 1.2.5.

Chapter 7: This is the last chapter of the thesis and is devoted to present the con-

clusions and some potential research directions.
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Chapter 2

Mathematical and Economics

Preliminaries

In this chapter, some mathematical and economics terminologies and preliminaries are

introduced. These include basic notations, definitions and many important facts, which

will be used in the subsequent chapters.

2.1 Mathematics

In this section, some mathematical concepts and results, which are needed in the study

of chapters 3-6, are presented. Most of these are taken from [1]. In addition, [14, 50,

52, 82, 88] are also used.

2.1.1 Set Theory

A set is a collection of objects, and objects constituting a set are called elements

of the set. Typically, the uppercase letters X,Y, Z, ... are used to denote sets and

those representing elements are the lowercase letters x, y, z, ... The symbols N,Q and R
represent the sets of positive integers, rational numbers and real numbers respectively.

In addition, R+ = {x ∈ R : x ≥ 0} denotes the set of non-negative real numbers

and R⋆ = R ∪ {∞,−∞} is the set of extended real numbers, where ∞ and −∞ can

be interpreted as −∞ < x < ∞ for any real number x. The symbol ∞ is called the

infinity. For any a, b ∈ R with a < b, define

[a, b] = {x ∈ R : a ≤ x ≤ b} and (a, b) = {x ∈ R : a < x < b}.
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Here [a, b] and (a, b) are called the closed interval and the open interval. In some

instance, the term family is used instead of set. As usual, ∅ refers to the set containing

no element and is known as the empty set. The notation x ∈ X indicates that x is an

element of X. If x is not an element of X, the notation x /∈ X is employed. For any

two sets X and Y , let X \ Y = {x ∈ X : x /∈ Y }. The expression X ⊆ Y means that

x ∈ X implies x ∈ Y . In this case, X is called a subset of Y . The term subfamily is

applied in an appropriate place. If Y ⊆ X, then X \ Y is termed as the complement of

Y in X. If X ⊆ Y and Y ⊆ X, then X and Y are said to be identical and written as

X = Y . Further, if X and Y are not identical, then the notation X ̸= Y is used. In

addition, X ⊂ Y denotes the situation “X ⊆ Y and X ̸= Y ”.

The power set of a set X, denoted by P(X), is the family of all subsets of X. For

any {Aj : j ∈ J} ⊆ P(X), define∪
j∈J

Aj = {x ∈ X : x ∈ Aj for some j ∈ J} ,

and ∩
j∈J

Aj = {x ∈ X : x ∈ Aj for all j ∈ J} .

The notations
∪

j∈J Aj and
∩

j∈J Aj are sometimes written as
∪
{Aj : j ∈ J} and∩

{Aj : j ∈ J} respectively. Here
∪

j∈J Aj and
∩

j∈J Aj are termed as the union

and the intersection of the family {Aj : j ∈ J}. The notation
∏

j∈J Aj refers to the

Cartesian product of {Aj : j ∈ J}, which is defined by∏
j∈J

Aj = {(xj : j ∈ J) : xj ∈ Aj for all j ∈ J} .

In particular, in the case of two sets A and B, notations A ∪B, A ∩B and A×B are

utilized instead to denote the union, the intersection and the Cartesian product of A and

B, respectively. Two sets A and B are disjoint if A∩B = ∅, and a family {Aj : j ∈ J}
is called pairwise disjoint if Ai and Aj are disjoint for all i, j ∈ J with i ̸= j. The

symmetric difference between two sets A and B is defined by A∆B = (A\B)∪ (B \A).
A partition of a non-empty set X is a family {Aj : j ∈ J} of non-empty pairwise

disjoint subsets of X satisfying
∪

j∈J Aj = X. Let {Bi : 1 ≤ i ≤ ℓ} be a finite family

of partitions of X, then {
ℓ∩

i=1

Bi : Bi ∈ Bi for all 1 ≤ i ≤ ℓ

}
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is also a partition of X. This is called the refinement of {Bi : 1 ≤ i ≤ ℓ}.
Let X and Y be two sets. A relation between elements of X and Y is a subset of

X × Y . If X = Y , then such a relation is also termed as the binary relation on X. A

binary relation ≽ on X is said to be reflexive if (x, x) ∈≽ for all x ∈ X, transitive if

(x, y) ∈≽ and (y, z) ∈≽ imply (x, z) ∈≽, and anti-symmetric if (x, y) ∈≽ and (y, x) ∈≽
together imply x = y. A partial order on X is a binary relation on X which is reflexive,

transitive and anti-symmetric. If ≽ is a partial order on a non-empty set X then (X,≽)

is termed as a partially ordered set. Further, a binary relation ≽ on X is called complete

if for any x, y ∈ X, either (x, y) ∈≽ or (y, x) ∈≽ or both. The notation (x, y) ∈≽ is

also written as x ≽ y. A correspondence F from X to Y is defined as associating to

each x ∈ X a subset F (x) of Y and is denoted by F : X ⇒ Y . The graph of F , denoted

by GrF , is defined as

GrF = {(x, y) ∈ X × Y : y ∈ F (x), x ∈ X}.

By identifying F with its graph, one can treat F as a relation between elements of

X and Y . Here F (x) is called the image of F at x. The domain of F is defined by

Dom(F ) = {x ∈ X : F (x) ̸= ∅} and F is called non-empty valued if Dom(F ) = X.

There are two ways to define the inverse image by F of a subset U of Y :

F−(U) = {x ∈ X : F (x) ∩ U ̸= ∅} and F+(U) = {x ∈ X : F (x) ⊆ U}.

Here F−(U) and F+(U) are called the lower and upper inverses of U by F . If Z is a

set and G : Y ⇒ Z then the composition correspondence G ◦ F : X ⇒ Z is defined as

(G ◦ F )(x) =
∪

{G(y) : y ∈ F (x)}.

If F (x) is a singleton for each x ∈ X, then F is called a function. The lower case

letters such as f, g, h, ... are employed to denote functions. A function f : X → R is

called the real-valued. The support of a real-valued function f : X → R is defined

by supp(f) = {x ∈ X : f(x) ̸= 0}. A function f : X → Y is said to be one-one if

f(x) ̸= f(y) for x ̸= y, x, y ∈ X and onto if for each y ∈ Y there is some x ∈ X such

that f(x) = y. A bijection is a one-one and onto function.

Axiom of Choice. If {Aj : j ∈ J} is a non-empty family of non-empty sets, then

there is a function f : J →
∪

j∈J Aj satisfying f(j) ∈ Aj for each j ∈ J . In other words,

the Cartesian product of a non-empty family of non-empty sets is non-empty.
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Suppose that (X,≥) is a partially ordered set. A sequence in X is just a function

from N to X. Normally, the notation {xn : n ≥ 1} is used to denote a sequence rather

than the function x : N → X. Recall that {xn : n ≥ 1} is monotonically increasing

(resp. monotonically decreasing) if xn+1 ≥ xn (resp. xn ≥ xn+1) for all n ≥ 1. If

{xn : n ≥ 1} ⊆ R and xn+1 > xn (resp. xn > xn+1) for all n ≥ 1, then the sequence

is called strictly increasing (resp. strictly decreasing). A subsequence of a sequence

{xn : n ≥ 1} is a sequence {xnk
: k ≥ 1}, where {nk : k ≥ 1} is strictly increasing. For

any x, y ∈ X, the notation x > y means x ≥ y and x ̸= y. Sometimes x ≥ y (resp.

x > y) is written as y ≤ x (resp. y < x). An element y is called an upper bound (resp.

a lower bound) of a subset A of X if y ≥ x (resp. x ≥ y) for all x ∈ A. The supremum

of a subset A of X is a unique upper bound y such that z ≥ y for any upper bound z

of A. Likewise, the infimum of a subset A of X is a unique lower bound y such that

y ≥ z for any lower bound z of A. The supremum and the infimum of a subset A may

not exist, and if they exist, then supA and infA are employed to denote the supremum

and the infimum of A respectively. In particular, for a set {x, y} containing only two

points, special notations x∨ y and x∧ y are employed to denote the supremum and the

infimum respectively. Recall that a lattice is a partially ordered set in which every pair

of elements {x, y} has x ∨ y and x ∧ y.
Next, the notion of size is defined, and is called the cardinality. A set A has the

same cardinality as B if there is a bijection between A and B. The cardinality of a

set A is denoted by |A|. Further, B has cardinality at least as large as A if there is

a bijection from A onto a subset of B. Sets of the same cardinality as {1, ..., n} for

any n ∈ N are finite, those have the same cardinality as N are known as countably

infinite. Sets that are finite or countably infinite are called countable and sets that are

not countable are called uncountable. N and Q have the same cardinality. The symbols

ℵ0 and c are used to denote the cardinality of N and R respectively. The Continuum

Hypothesis claims that c is the smallest uncountable cardinal number.

2.1.2 Topology

A topology T on a set X is a subset of P(X) such that

(i) ∅, X ∈ T ;

(ii) T is closed under finite intersection, that is, if {Gj : 1 ≤ j ≤ ℓ, ℓ ∈ N} ⊆ T then∩ℓ
j=1Gj ∈ T ; and

(iii) T is closed under arbitrary union, that is, if {Gj : j ∈ J} ⊆ T then
∪

j∈J Gj ∈ T .
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A non-empty set X equipped with a topology T is called a topological space, and it is

denoted by (X,T ). Sets in T are called T -open sets or simply open sets in (X,T ).

The complement of a T -open set is called a T -closed set or simply a closed set. Two

trivial topologies on a set X are the indiscrete topology, which consists of only ∅ and

X, and the discrete topology, which is P(X). Given two topologies T ,T ′ on a set X,

T is said to be stronger or finer than T ′ if T ′ ⊆ T . In this case, T ′ is called weaker

or coarser than T . A subfamily B of T is called a base for a topological space (X,T )

if each element of T can be represented as the union of elements of B. Conversely,

if B is a family of sets that is closed under finite intersection and X =
∪

B, then

the family of all unions of sets in B forms a topology in which B is a base. Such a

topology is known as the topology generated by B. If Y is a subset of (X,T ), then

the family TY = {V ∩ Y : V ∈ T } forms a topology on Y . This topology is known

as the relative topology or the topology induced by T on Y . Here (Y,TY ) is called a

topological subspace of (X,T ), and any set in TY is called (relatively) open in Y .

Let (X,T ) be a topological space and E ⊆ Y ⊆ X. The interior of E in Y , denoted

by TY -intE, is the largest (with respect to “⊆”) open set in (Y,TY ) contained in E.

The closure of E in (Y,TY ), denoted by TY -clE, is the smallest closed set in (Y,TY )

containing E. When Y = X, without any confusion, the notations T -intE or intE,

and T -clE or clE are used instead. A neighborhood of a point x in a topological space

(X,T ) is any set U containing x in its interior. In such a situation, x is called an

interior point of U . A topological space is called Hausdorff if any two distinct points

have disjoint neighborhoods. Note that a point x ∈ clE is equivalent to the fact that

U∩E ̸= ∅ for every neighborhood U of x. A point x is said to be a limit point of a set E if

for any neighborhood U of x, (U\{x})∩E ̸= ∅. A subset E of a topological space (X,T )

is dense in X if clE = X, and (X,T ) is called separable if there is a countable dense

subset of X. Let A,B,C ⊆ X. Then T -intA ∩ C ⊆ TC-int(A ∩ C). It is easy to show

that if B ∈ T , T -clA ⊆ T -clB and C is dense inX, then TC-cl(A∩C) ⊆ TC-cl(B∩C).
A directed set is a non-empty set D with a reflexive and transitive binary relation

≽ in which for each pair of elements α, β ∈ D there is some element γ ∈ D such that

γ ≽ α and γ ≽ β. A net in a topological space (X,T ) is a function x : D → X, and

it is denoted by {xα : α ∈ D}. Note that every sequence in a topological space is also

a net where D = N with the usual ordering. A net {xα : α ∈ D} in X converges to

a point x if for each neighborhood U of x there is some α0 ∈ D such that xα ∈ U for

all α ≽ α0. A function f : X → Y between two topological spaces X and Y is called

continuous if f−1(U) is open in X for every open set U in Y . Recall that a subset E

of a topological space is said to be compact if every family {Uj : j ∈ J} of open sets
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satisfying E ⊆
∪

j∈J Uj has a finite subfamily {Uj1 , ...., Ujm} such that E ⊆
∪m

i=1 Uji .

Let {(Xj ,Tj) : j ∈ J} be a family of topological spaces, and assume X̂ =
∏

j∈J Xj .

The family of sets of the type U =
∏

j∈J Uj forms a base for some topology on X̂,

where Uj ∈ Tj and Uj = Xj for all but finitely many j. This topology is called the

Tychonoff product topology.

Tychonoff Product Theorem. X̂ is compact if and only if Xj is compact for all

j ∈ J .

2.1.3 Metric Spaces

In mathematics, a metric space is a non-empty set where a concept of distance or metric

between any two elements is defined. Formally, a metric on a non-empty set X is a

function ϱ : X ×X → R+ satisfying:

(i) ϱ(x, x) = 0 for all x ∈ X;

(ii) ϱ(x, y) = 0 implies x = y;

(iii) ϱ(x, y) = ϱ(y, x) for all x, y ∈ X; and

(iv) ϱ(x, y) ≤ ϱ(x, z) + ϱ(z, y) for all x, y, z ∈ X.

If ϱ is a metric on a non-empty set X, then the pair (X, ϱ) is called a metric space. A

pseudometric on X is a function ϱ : X × X → R+ such that (i), (iii) and (iv) hold,

and in this case, (X, ϱ) is said to be a pseudometric space. Note that

Rℓ = {(x1, ..., xℓ) : xi ∈ R for all 1 ≤ i ≤ ℓ}

with

ϱ(x, y) =

√√√√ ℓ∑
i=1

(xi − yi)2

is a metric space. In particular, when ℓ = 1 then ϱ(x, y) gives the absolute difference

between x and y, and it is usually denoted by a special natation |x−y|. For a non-empty

subset E of a metric space (X, ϱ), the diameter of E is defined by

diamE = sup{ϱ(x, y) : x, y ∈ E}.
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A set E is bounded if diamE < ∞, and is unbounded if diamE = ∞. The open ball of

radius ε > 0 centered at a point x ∈ X in a pseudometric space (X, ϱ) is

Bε(x) = {y ∈ X : ϱ(x, y) < ε}.

In a metric space (X, ϱ), the topology generated by

{Bε(x) : x ∈ X, ε > 0} ∪ {∅}

is called the metric topology or the topology induced by ϱ on (X, ϱ). An interesting

property of metric spaces claims that every topological subspace of a separable metric

space is separable.

Heine-Borel Theorem. For each ℓ ≥ 1, a subset of Rℓ is compact if and only if it is

closed and bounded.

The (ℓ− 1)-simplex of Rℓ is defined as

ℑℓ =

{
x = (x1, ..., xℓ) ∈ Rℓ : xi ≥ 0 for all 1 ≤ i ≤ ℓ and

ℓ∑
i=1

xi = 1

}
.

Brouwer Fixed Point Theorem. For any continuous function f : ℑℓ → ℑℓ there is

a point x ∈ ℑℓ such that f(x) = x.

Throughout the rest of this subsection, suppose (X, ϱ) is a metric space. Recall that

a sequence {xn : n ≥ 1} converges to x in (X, ϱ) if and only if {ϱ(xn, x) : n ≥ 1}
converges to 0. The notation limn→∞ xn = x is used to represent that {xn : n ≥ 1}
converges to x in (X, ϱ). A Cauchy sequence in (X, ϱ) is a sequence {xn : n ≥ 1} such

that for each ε > 0 there is some N ≥ 1 such that ϱ(xn, xm) < ε for all n,m ≥ N .

In addition, (X, ϱ) is complete if every Cauchy sequence in X converges in X. Every

compact metric space is complete. A very important fact of metric spaces is that a

metric space is compact if and only if every sequence has a convergent subsequence. If

(Y, d) is a metric space, then the following conditions are equivalent:

(i) A function f : (X, ϱ) → (Y, d) is continuous.

(ii) If {xn : n ≥ 1} converges to x, then {f(xn) : n ≥ 1} converges to f(x).

Let (Y, d) be a metric space. A sequence {fn : n ≥ 1} : X → Y converges pointwise

to a function f : X → Y if {fn(x) : n ≥ 1} converges to f(x) for all x ∈ X. In this case,
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f is named as the pointwise limit of {fn : n ≥ 1}. A sequence {fn : n ≥ 1} : X → Y

converges uniformly to a function f : X → Y if for each ε > 0 there is some N ≥ 1

such that d(fn(x), f(x)) < ε for all x ∈ X and n ≥ N . Let K0(Y ) denote the family of

non-empty compact subsets of Y . For any A,B ∈ K0(Rℓ), define

H(A,B) = sup

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
,

where

dist(a,B) = inf
b∈B

ϱ(a, b).

It can be readily checked that H : K0(Rℓ) × K0(Rℓ) → R+ is a metric on K0(Rℓ),

called the Hausdorff metric. For any A ⊆ Rℓ and ε > 0, let

Nε(A) =
{
x ∈ Rℓ : dist(x,A) < ε

}
.

The metric H can also be expressed as

H(A,B) = sup
{
|dist(x,A)− dist(x,B)| : x ∈ Rℓ

}
,

or

H(A,B) = inf {ε > 0 : A ⊆ Nε(B) and B ⊆ Nε(A)}

for A,B ∈ K0(Rℓ). The topology TH on K0(Rℓ), induced by H, is called the Hausdorff

metric topology. If F : X →
(
K0(Rℓ),TH

)
is continuous, then F : X ⇒ Rℓ is called

Hausdorff continuous. Recall that if F is Hausdorff continuous, then F−(C) is closed

for every closed subset C of Rℓ. Let {An : n ≥ 1} ⊆ P(Rℓ) \ {∅}. A point x ∈ Rℓ is

called a limit point of {An : n ≥ 1} if there exist N ≥ 1 and points xn ∈ An for each

n ≥ N such that {xn : n ≥ N} converges to x. The set of limit points of {An : n ≥ 1}
is denoted by LiAn. Similarly, a point x ∈ Rℓ is called a cluster point of {An : n ≥ 1}
if there exist positive integers n1 < n2 < · · · and for each k a point xk ∈ Ank

such

that {xk : k ≥ 1} converges to x. The set of cluster points of {An : n ≥ 1} is denoted

by LsAn. It is clear that LiAn ⊆ LsAn, and both LsAn and LiAn are closed (possibly

empty) sets. If LsAn ⊆ LiAn then LiAn = LsAn = A is called the limit of the sequence

{An : n ≥ 1}. Note that LsAn = Ls clAn and LiAn = Li clAn. If A and all An’s

are closed and contained in a compact subset M of Rℓ, then it is well known that

LiAn = LsAn = A if and only if {An : n ≥ 1} converges to A in the Hausdorff metric

topology on K0(M).
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2.1.4 Functional Analysis

A vector space or a linear space (X,+, ·) (over R) is a non-empty set X with two

algebraic operations “ + ” and “ · ” such that for all x, y, z ∈ X and α, β ∈ R the

following properties hold:

(i) x+ y ∈ X;

(ii) (x+ y) + z = x+ (y + z);

(iii) x+ 0 = x, where 0 is the zero element of X;

(iv) x+ (−1)x = 0, where 1 is the unity of R;

(v) 1x = x;

(vi) α(βx) = (αβ)x;

(vii) α(x+ y) = αx+ αy; and

(viii) (α+ β)x = αx+ βx.

For instance, (Rℓ,+, ·) is a vector space, where + and · are defined as

(x1, ..., xℓ) + (y1, ..., yℓ) = (x1 + y1, ..., xℓ + yℓ)

and

α(x1, ..., xℓ) = (αx1, ..., αxℓ).

Such operations are known as the pointwise addition and the pointwise scalar multi-

plication. A finite set {x1, ..., xm} of vectors in X is called linearly dependent if there

exists a set {a1, ..., am} of scalars, not all zero, such that
∑m

i=1 aixi = 0. If the set

{x1, ..., xm} is not linearly dependent then it is called linearly independent. Recall that

a Hamel base or simply a base of X is a set B such that every finite subset of B is lin-

early independent and each non-zero x ∈ X has a unique representation x =
∑m

i=1 bixi,

where {x1, ..., xm} ⊆ B and {b1, ..., bm} is a set of non-zero scalars. It is known that

any two Hamel bases on a non-empty set have the same cardinality. The dimension of

X is the cardinality of any of its Hamel base.

A subset of a vector space is called a vector subspace or a linear subspace whenever

it is a vector space in its own right under the induced operations. If A,B are two vector

subspaces of X and α, β are real numbers, then αA+ βB = {αx+ βy : x ∈ A, y ∈ B}
is also a vector subspace of X. A subset S of a vector space is said to be balanced or
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circled if x ∈ S and 0 ≤ α ≤ 1 imply αx ∈ S. A function f : X → Y between two

vector spaces X and Y is linear if

f(αx+ βy) = αf(x) + βf(y)

for all x, y ∈ X and α, β ∈ R. If Y = R, then f is said to be a linear functional. A linear

topology on a vector space is a topology that makes (x, y) 7→ x + y and (α, x) → αx

continuous functions. A topological vector space is a pair (X,T ), where X is a vector

space and T is a linear topology on X. Recall that the topological dual of a topological

vector space (X,T ), denoted by (X,T )∗ or simply by X∗, is a vector space consisting

of all T -continuous linear functionals on X. A subset E of (X,T ) is convex if for any

x, y ∈ E and 0 ≤ λ ≤ 1, one has λx+(1−λ)y ∈ E. Remember that if x ∈ intE, y ∈ clE

and E is convex then λx + (1 − λ)y ∈ intE for all 0 < λ ≤ 1. A topological vector

space is locally convex if every neighborhood of zero contains a convex neighborhood

of zero. If (X,T ) is a locally convex topological vector space then T is termed as a

locally convex topology. If E is a convex subset of X then a function f : E → R is

concave whenever

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

for all x, y ∈ E and 0 ≤ λ ≤ 1. If the previous inequality holds with the sign “>”,

then such a function is known as strictly concave. A cone is a set that contains every

non-negative multiples of each of its elements. For any open neighborhood U of 0 in

X and v ∈ X, the open cone spanned by v + U is {α(v + U) : α > 0}.
If X is a vector space and ≥ is a partial order on X, then the pair (X,≥) is called

an ordered vector space whenever for any x, y, z ∈ X and any positive real number α,

x ≥ y implies that αx+ z ≥ αy + z. Recall that a Riesz space or a vector lattice is an

ordered vector space that is also a lattice. A Riesz space (X,≥) is order complete or

Dedekind complete if every non-empty subset of X that is upper (resp. lower) bounded

has the supremum (resp. the infimum). For any element x of a Riesz space, |x| stands
for the absolute value of x and is defined by |x| = x+ + x−, where

x+ = x ∨ 0 and x− = (−x) ∨ 0

are positive part and negative part of x respectively. Note that x = x+ − x− and

x+ ∧ x− = 0. An element x ∈ X is called a positive element of X if x ≥ 0 and

X+ = {x ∈ X : x ≥ 0}. If x ∈ X+ \ {0}, then the notation x > 0 is used. For any set S

and any Riesz space X, XS denotes the set of functions from S into X. For f, g ∈ XS ,
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α ∈ R and A ⊆ S, define f + g : S → X by (f + g)(s) = f(s) + g(s) for all s ∈ S,

αf : S → X by (αf)(s) = αf(s) for all s ∈ S and f |A : A → X by f |A(s) = f(s)

for all s ∈ A. A function f : S → R is bounded if sup{|f(s)| : s ∈ S} < ∞. The

notation f ≤ g (resp. f = g) means f(s) ≤ g(s) (resp. f(s) = g(s)) for all s ∈ S. The

supremum and the infimum of f, g are defined as

(f ∨ g)(s) = sup{f(s), g(s)} and (f ∧ g)(s) = inf{f(s), g(s)}.

Riesz Decomposition Property. If X is a Riesz space and 0 ≤ y ≤
∑n

i=1 xi, then

there exist y1, ..., yn ∈ X+ such that y =
∑n

i=1 yi and yi ≤ xi for all 1 ≤ i ≤ n.

A dual system ⟨X,X ′⟩ is a pair of vector spaces X and X ′ together with a function

(x, x′) 7→ ⟨x, x′⟩, from X ×X ′ to R, satisfying the following properties:

(i) x′ 7→ ⟨x, x′⟩ is linear for each x ∈ X;

(ii) x→ ⟨x, x′⟩ is linear for each x′ ∈ X ′;

(iii) ⟨x, x′⟩ = 0 for all x′ ∈ X ′ implies x = 0; and

(iv) ⟨x, x′⟩ = 0 for all x ∈ X implies x′ = 0.

A locally convex topology T on X is said to be compatible with the dual system

⟨X,X ′⟩ if (X,T )∗ = X ′ holds. This means that if f ∈ (X,T )∗ then there is a x′ ∈ X ′

such that f(x) = ⟨x, x′⟩ and vise-versa. Thus, the notation ⟨x, f⟩ is also used for any

f ∈ (X,T )∗ instead of f(x). The weak topology σ(X,X ′) is a locally convex topology

on X of pointwise convergence on X ′. That is, {xα : α ∈ D} converges to x in σ(X,X ′)

if and only if {⟨xα, x′⟩ : α ∈ D} converges to ⟨x, x′⟩ for each x′ ∈ X ′. Analogously,

the locally convex topology σ(X ′, X) on X ′, known as the weak∗ topology, such that

{x′α : α ∈ D} converges to x′ in σ(X ′, X) if and only if ⟨x, x′α⟩ converges to ⟨x, x′⟩ for all
x ∈ X. The Mackey topology T (X,X ′) is a locally convex topology on X of uniform

convergence on σ(X ′, X)-compact, convex and balanced subsets of X ′. This means

that {xα : α ∈ D} converges to x in T (X,X ′) if and only if
{
yAα : α ∈ D

}
converges

to 0 for all σ(X ′, X)-compact, convex and balanced subset A of X ′, where

yAα = sup
{
|⟨xα − x, x′⟩| : x′ ∈ A

}
.

A subset A of a Riesz space is called solid if |x| ≤ |y| and y ∈ A imply x ∈ A.

Recall that a linear topology on a Riesz space is said to be locally solid if it has a base

at zero consisting of solid neighborhoods. A solid vector subspace of a Riesz space is
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called an ideal. Let X be a Riesz space. For any x ∈ X, the principal ideal generated

by x is defined by

L(x) = {y ∈ X : |y| ≤ n|x| for some n ∈ N}.

If x ≤ y in X, then an order interval is of the form [x, y] = {z ∈ X : x ≤ z ≤ y}.
A subset A of X is called order bounded if A ⊆ [x, y] for some x, y ∈ X. A linear

functional f : X → R on a Riesz space X is called order bounded if f(A) is bounded in

R for any order bounded subset A of X. Recall that an order dual X̃ of a Riesz space

X is an ordered vector space consisting of all order bounded linear functionals on X

under the usual algebraic operations and the order f ≥ g such that ⟨x, f⟩ ≥ ⟨x, g⟩ for
all x ∈ X+. The order dual X̃ of any Riesz space X is an order complete Riesz space,

and its lattice operations are given by

⟨x, f ∨ g⟩ = sup{⟨y, f⟩+ ⟨z, g⟩ : y, z ∈ X+ and y + z = x}

and

⟨x, f ∧ g⟩ = inf{⟨y, f⟩+ ⟨z, g⟩ : y, z ∈ X+ and y + z = x}

for all f, g ∈ X̃, and x ∈ X+. These two equalities are called the Riesz-Kantorovich

formulas.

Lemma 2.1.1. [67] Let Y be a vector space endowed with a Hausdorff, locally convex

topology and let U, V be convex subsets of Y such that U is open and U ∩ V ̸= ∅. Let

y ∈ V ∩ clU . Suppose that f is a linear functional (not necessarily continuous) on Y

with ⟨y, f⟩ ≤ ⟨y′, f⟩ for all y′ ∈ U ∩ V . Then, there exist linear functionals f1 and f2

on Y such that f1 is continuous, ⟨y, f1⟩ ≤ ⟨u, f1⟩ for all u ∈ U , ⟨y, f2⟩ ≤ ⟨v, f2⟩ for all

v ∈ V and f = f1 + f2.

Lemma 2.1.2. [67] Let Y be a Riesz space endowed with a Hausdorff, locally convex

topology. If L(z) is dense in Y , then L(z)+ is dense in Y+.

Given a vector space X, a function ∥ · ∥ : X → R+ satisfying

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥αx∥ = |α|∥x∥ for all x ∈ X and α ∈ R; and

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X,
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is called a norm on X, and (X, ∥ · ∥) is called a normed space. It can be readily checked

that a normed space (X, ∥ · ∥) is also a metric space with the metric ϱ : X ×X → R+

defined by ϱ(x, y) = ∥x− y∥, and the topology induced by this metric is called a norm

topology. A Banach space is a normed space whose norm induces a complete metric.

If (X, ∥ · ∥) is a normed space, its norm dual X∗ is a Banach space equipped with the

norm ∥ · ∥ defined by

∥f∥ = sup{|⟨x, f⟩| : x ∈ X, ∥x∥ ≤ 1}.

A point x ∈ X+ is called strictly positive element of a Banach space X, denoted by

x≫ 0, if ⟨x, f⟩ > 0 for all f ∈ X∗
+ \ {0}. Let X++ = {x ∈ X+ : x≫ 0}.

A norm is called a lattice norm if |x| < |y| implies ∥x∥ ≤ ∥y∥. A normed Riesz

space is a Riesz space with a lattice norm. A complete normed Riesz space is called

a Banach lattice. For a Banach lattice X, a point x ∈ X+ is strictly positive if and

only if L(x) is dense in X. In this case, x is also called a quasi-interior point of X+.

In particular, if L(x) = X, then x ∈ X+ is called an order unit of X. An order unit

is a quasi-interior point, but in general, the converse is not true. If intX+ ̸= ∅, then
intX+ = X++. A lattice norm on a Riesz space is termed as an M -norm if

∥x ∨ y∥ = max{∥x∥, ∥y∥}

for any x, y ≥ 0. An M -space is a normed Riesz space with an M -norm. A norm

complete M -space is called an AM -space. Note that if (X, ∥ · ∥) is a Banach lattice,

then L(x) with the norm

∥y∥x = inf{λ > 0 : |y| ≤ λ|x|}

is an AM-space with x as an order unit.

Let X be a Banach space and S a finite set. For any x, y ∈ XS , the order x ≤ y if

and only if x(s) ≤ y(s) for all s ∈ S is called the pointwise order on XS . Analogously,

the product norm on XS is defined by

∥(x(s) : s ∈ S)∥ =
∑
s∈S

∥x(s)∥.

Note that XS with the pointwise algebraic operations, the pointwise order and the

product norm is a Banach space. If x ∈ (X, ∥ · ∥)S (that is, XS is equipped with the

∥ · ∥S-topology) and g ∈ ((X, ∥ · ∥)S)∗, then there is an element f ∈ ((X, ∥ · ∥)∗)S such
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that

⟨x, g⟩ =
∑
s∈S

⟨x(s), f(s)⟩

and vise-versa. If (X, ∥ · ∥) is a Banach lattice, then X∗ = X̃ and ∥ · ∥-topology is the

finest locally solid topology on X. The following two theorems are crucial.

Hahn-Banach Theorem. Let X be a normed space and A a subspace of X. If f ∈ A∗

then there is some g ∈ X∗ such that g|A = f and ∥f∥ = ∥g∥.

Separation Theorem. For any two non-empty disjoint convex subsets A and B of a

Banach space X, if either A or B has non-empty interior, then there exists a non-zero

f ∈ X∗ that separates A and B, that is, ⟨x, f⟩ ≤ ⟨y, f⟩ for all x ∈ A and y ∈ B.

Figure 2.1: Separation of Two Convex Sets

This subsection concludes with some basic examples of ordered Banach spaces and a

table containing some properties of these spaces. However, some of these spaces require

additional concepts of measure theory, which are presented in the next subsection.

(i) Rℓ: the ℓ-dimensional Euclidean space;

(ii) ℓ∞: the space of real bounded sequences with the supremum norm

∥{xn : n ≥ 1}∥∞ = sup{|xn| : n ≥ 1};
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(iii) L∞(S,S , µ): the space of essentially bounded, measurable functions on a measure

space (S,S , µ) with the essential supremum norm

∥f∥∞ = inf{M > 0 : |f(s)| ≤M µ-almost everywhere},

where for convention, inf ∅ = ∞ is assumed;

(iv) C[a, b]: the space of real-valued continuous functions on a closed interval [a, b]

with the supremum norm

∥f∥∞ = sup{|f(x)| : x ∈ [a, b]};

(v) c: the space of convergent sequences endowed with the norm defined in (ii).

(vi) C(K): the space of real-valued continuous functions on a compact Hausdorff

space K with the supremum norm similar to that in (iv);

(vii) ℓp: the space of real sequences {xn : n ≥ 1} equipped with the norm

∥{xn : n ≥ 1}∥p =

∑
n≥1

|xn|p
 1

p

,

where 1 ≤ p <∞;

(viii) Lp(S,S , µ): the space of measurable functions f on a measure space (S,S , µ)

equipped with the norm

∥f∥p =
(∫

S
|f |pdµ

) 1
p

,

where 1 ≤ p <∞.
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Y intY+ ̸= ∅ Y++ ̸= ∅ Y ∗

Rℓ + + Rℓ

ℓ∞ + + ba(2N)

L∞(S,S , µ) + + ba(S )

C(K)
+ + car(B(K))

(K: a compact Hausdorff space)

ℓ1 - + ℓ∞

ℓp - +
ℓq

(1 < p <∞) 1
p + 1

q = 1

L1(S,S , µ) - + L∞(S,S , µ)

Lp(S,S , µ)
- +

Lq(S,S , µ)
(1 < p <∞) 1

p + 1
q = 1

Table 2.1: Some Banach Spaces

2.1.5 Measure Theory and Integration

A σ-algebra is a family S of subsets of a fixed set S satisfying the following properties:

(i) S ∈ S ;

(ii) if A ∈ S then S \A ∈ S ; and

(iii) if {Ai : i ≥ 1} ⊆ S then
∪

i≥1Ai ∈ S .

The pair (S,S ) is called a measurable space, and an element of S is called a measurable

set. It is clear that the intersection of any non-empty family of σ-algebras is a σ-algebra,

and any non-empty family C of subsets of S is contained in the σ-algebra P(S). So

the intersection of all σ-algebras containing C is the smallest σ-algebra containing C

and is known as the σ-algebra generated by C . Usually, the notation σ(C ) is used to

denote the σ-algebra generated by C . A separable σ-algebra is a σ-algebra that can be

generated by a countable family of sets. If (X,T ) is a topological space, then σ(T ) is

called Borel σ-algebra and an element of σ(T ) is termed as a Borel measurable set or

simply a Borel set. A special symbol B(X) represents the Borel σ-algebra of X. Recall

that a function µ : S → R⋆ is called a signed charge whenever it assumes at most one

of the values of −∞ and ∞, µ(∅) = 0, and for any finite family {Ai : 1 ≤ i ≤ ℓ} of
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pairwise disjoint sets in S , the equality

µ

(
ℓ∪

i=1

Ai

)
=

ℓ∑
i=1

µ(Ai)

holds. A signed measure µ : S → R⋆ is a signed charge with the additional assumption

that for any countable family {Ai : i ≥ 1} of pairwise disjoint sets in S , one has

µ

∪
i≥1

Ai

 =
∑
i≥1

µ(Ai).

A signed Borel charge (resp. measure) is a signed charge (resp. measure) defined on

the Borel σ-algebra of a topological space. For any signed charge µ, its total variation

is defined by

Vµ = sup

{
ℓ∑

i=1

|µ(Ai)| : {A1, ..., Aℓ} ⊆ S is a partition of S

}
.

A signed charge is of bounded variation if Vµ <∞. The family of signed charges having

bounded variation is called the space of charges on S , and is denoted by ba(S ). Note

that ba(S ) with the algebraic operations “ + ” and “ · ”, defined by

(µ+ ν)(A) = µ(A) + ν(A) and (α · µ)(A) = αµ(A) for all A ∈ S ,

the partial order “ ≤ ”, defined by µ ≤ ν if µ(A) ≤ ν(A) for all A ∈ S , and the norm

∥ · ∥, defined by ∥µ∥ = Vµ for any µ ∈ ba(S ), is a Banach lattice. The space of all

signed measures in ba(S ) is also a Banach lattice and is denoted by ca(S ).

If a signed measure assumes only nonnegative values, then it is called a measure. In

this case, the triple (S,S , µ) is called a measure space, and if µ(S) = 1, then (S,S , µ)

is called a probability space. Let (X,T ) be a topological space. A measure µ on B(X)

is called an outer measure if

µ(A) = inf{µ(U) : U ∈ T and A ⊆ U}

for all A ∈ B(X). Analogously, a measure µ on B(X) is tight if

µ(A) = sup{µ(K) : K ∈ B(X) is compact and K ⊆ A}
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for all A ∈ B(X). A measure µ is said to be regular if it is a tight outer measure such

that µ(K) < ∞ for every compact set K ∈ B(X). The space car(B(X)) of regular

signed measure is a subspace of ca(B(X)), and is a Banach lattice.

Given a measure space (S,S , µ), the measure µ is positive if µ(A) > 0 for some

A ∈ S , and complete whenever A ⊆ B ∈ S and µ(B) = 0 imply A ∈ S . In such cases,

(S,S , µ) is known as a positive (complete) measure space. Further, µ and (S,S , µ)

are said to be finite if µ(S) <∞. The phrase µ-almost everywhere or almost all s ∈ S

means “everywhere except possibly for a set A with µ(A) = 0”. A measurable set A is

called an atom if µ(A) > 0 and for every measurable subset B of A either µ(B) = 0 or

µ(A \ B) = 0 holds. If S has no atom, then (S,S , µ) is called an atomless measure

space. A standard result claims that if µ is finite then S = S0∪S1, where S0 is atomless

and S1 is the union of countably many pairwise disjoint atoms.

Let (S,S , µ) be a measure space. If R ∈ S , define SR = {A ∈ S : A ⊆ R} and

µR : SR → R+ ∪ {∞} by µR(A) = µ(A). The notation A ∼ B is used if µ(A∆B) = 0.

If {Qi : 1 ≤ i ≤ ℓ} is a family of partitions of S, then
∨ℓ

i=1 Qi denotes the refinement

of {Qi : 1 ≤ i ≤ ℓ}. Analogously, an element A ∈
∧ℓ

i=1 Qi if and only if for any

x, y ∈ A there is a finite set {xj : 1 ≤ j ≤ n} such that for all 1 ≤ j ≤ n − 1, xj

and xj+1 belong to the same atom of Qi for some 1 ≤ i ≤ ℓ, refer to [64]. Similar to

union or intersection of sets, for any two partitions Q1,Q2, the notations Q1 ∨Q2 and

Q1 ∧ Q2 are used instead. The notation Q1 ∨ Q2 also denotes the smallest σ-algebra

containing the σ-algebras Q1 and Q2. If {(Si,Si) : 1 ≤ i ≤ ℓ} is a family of measurable

spaces, then the product σ-algebra
⊗ℓ

i=1 Si is the σ-algebra defined on
∏ℓ

i=1 Si and is

generated by
ℓ∏

i=1

Si =

{
ℓ∏

i=1

Ai : Ai ∈ Si for all 1 ≤ i ≤ ℓ

}
.

Symbolically,
⊗ℓ

i=1 Si = σ(
∏ℓ

i=1 Si). For convenience, the symbol S1 ⊗S2 is used to

denote the product σ-algebra of S1 and S2. If A ∈ S1 ⊗ S2, then the projection of

A on S1 is defined as {s1 ∈ S1 : (s1, s2) ∈ A for some s2 ∈ S2}. In addition, if µ1 and

µ2 are two measures defined on S1 and S2 respectively, then the product measure,

denoted by µ1 × µ2, is defined by (µ1 × µ2)(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ S1

and A2 ∈ S2.

Projection Theorem. Let (S,S , µ) be a complete measure space and X a separable

metric space. If A ∈ S ⊗ B(X), then its projection on S belongs to S .

Suppose that (S,S ) and (R,R) are two measurable spaces. A function φ : S → R

is said to be (S ,R)-measurable if φ−1(A) ∈ S for all A ∈ R. If S ,R are understood,
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then an (S ,R)-measurable function is simply said to be a measurable function. In

particular, if Z is a metric space, then an (S ,B(Z))-measurable function is simply

called an S -measurable function. Furthermore, if S = σ(Q) for some partition Q

of S, then the Q-measurability of a function means the S -measurability of the same

function. Note that if f, g are (S ,R)-measurable and α ∈ R, then f + g and αf are

(S ,R)-measurable. A very useful result in measure theory states that the pointwise

limit of a sequence of measurable functions from a measure space into a metric space

is measurable. If X is a set and ψ : X → S then σ(ψ) = {ψ−1(A) : A ∈ S } is the

smallest σ-algebra of subsets of X such that ψ is measurable. Such a σ-algebra is called

the σ-algebra induced by ψ.

Let X be a separable metric space. If f : (S,S , µ) → X is (S ,B(X))-measurable,

then the graph of f is S ⊗ B(X)-measurable. The converse is true whenever µ is

complete. Let (R,R) be a measurable space and φ : S×R→ X a function. A S ⊗R-

measurable function is also known as jointly measurable. For all s ∈ S, define a function

φ(s, ·) : R→ X by φ(s, ·)(r) = φ(s, r). The function φ(·, r) can be defined analogously

for each r ∈ R. Recall that S ⊗ R-measurability of φ implies S -measurability and

R-measurability of φ(·, r) for all r ∈ R and φ(s, ·) for all s ∈ S respectively. Let Z

be a metric space. A function ψ : S × X → Z is called Carathéodory wherever for

each x ∈ X, ψ(·, x) is S -measurable and for each s ∈ S, ψ(s, ·) is continuous. It is

known that every Carathéodory function ψ : S ×X → Z is S ⊗B(X)-measurable. In

addition, if g : S → X is measurable, then s 7→ φ(s, g(s)) is measurable. This fact can

be proved using an argument similar to that in Lemma 8.2.3 of [14].

Throughout the rest of this subsection, let (S,S , µ) be a finite measure space and

(X, ∥ · ∥) a Banach space. A function φ : S → X that assumes only a finite number of

non-zero values, say x1, ..., xn, is called a simple function if Ai = φ−1(xi) ∈ S for each

1 ≤ i ≤ n. As usual, the formula φ =
∑n

i=1 xi1Ai is the standard representation of φ,

where

1Ai(t) =

 1, if t ∈ Ai;

0, otherwise,

is called the characteristic function of Ai on S. The integral of φ is defined by∫
S
φdµ =

n∑
i=1

xiµ(Ai).
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Moreover, a function f : S → X is strongly S -measurable if there exists a sequence

{φn : n ≥ 1} of simple functions such that for almost all s ∈ S ,

lim
n→∞

∥f(s)− φn(s)∥ = 0.

If f is strongly S -measurable then there exist a set N ∈ S and a separable closed

linear subspace Z of X such that {f(s) : s ∈ S \ N} ⊆ Z and µ(N) = 0. If f is

strongly S -measurable then so is ∥f∥, where ∥f∥ is defined by ∥f∥(s) = ∥f(s)∥ for

all s ∈ S. Recall that if f is a strongly S -measurable function, then the equivalent

class of f , denoted by [f ], is the set of all strongly S -measurable functions which are

equal to f µ-almost everywhere. An important result of measure theory states that

if X is separable, a function f : S → X is strongly S -measurable if and only if it is

(S ,B(X))-measurable.

A measurable function f : S → R+ is said to Lebesgue integrable if

B = sup

{∫
S
φdµ : 0 ≤ ϕ ≤ f and φ is simple

}
<∞

and then
∫
S fdµ = B is called the Lebesgue integral of f over S. A strongly S -

measurable function f : S → X is called a Bochner integrable if there exists a sequence

{φn : n ≥ 1} of simple functions such that ∥f − φn∥ is Lebesgue integrable for each

n ≥ 1 and

lim
n→∞

∫
S
∥f − φn∥dµ = 0.

In this case, for each E ∈ S , the Bochner integral of f over E is defined by∫
E
fdµ = lim

n→∞

∫
E
φndµ,

where the last limit is in the norm topology on X. The notation L1(µ,X) denotes the

space of (equivalent classes of) Bochner integrable functions from S into X. For any

two f, g ∈ L1(µ,X) and α ∈ R, the following properties hold:

(i)
∫
S(f + g)dµ =

∫
S fdµ+

∫
S gdµ;

(ii)
∫
S αfdµ = α

∫
S fdµ;

(iii) if f = 0 µ-almost everywhere then
∫
S fdµ = 0;

(iv) f ≤ g µ-almost everywhere implies
∫
S fdµ ≤

∫
S gdµ;

(v) if A,B ∈ S with A ∩B = ∅ then
∫
A∪B fdµ =

∫
A fdµ+

∫
B gdµ; and
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(vi) ∥
∫
S fdµ∥ ≤

∫
S ∥f∥dµ.

The absolute continuity of Bochner integral asserts that
∫
A fdµ converges to 0 whenever

µ(A) converges to 0. The proof of the following proposition can be also found in [89,

p.131].

Proposition 2.1.3. Let X be separable. Suppose f : S → X is measurable and that

{xn : n ≥ 1} is a dense subset of f(S). Then there exists a sequence {fk : k ≥ 1} of

measurable functions converging uniformly to f on S, where fk(S) ⊆ {xn : n ≥ 1} for

all k ≥ 1.

Proof. Since f − xn is measurable, so is ∥f − xn∥ for all n ≥ 1. Note that the set

B(n,k) =

{
s ∈ S : ∥f(s)− xn∥ <

1

k

}
is measurable for all k, n ≥ 1, and

∪
n≥1B(n,k) = S for each k ≥ 1. For all k ≥ 1, let

A(1,k) = B(1,k) and A(n,k) = B(n,k) \
∪
i<n

B(i,k)

if n ≥ 2. So for each k ≥ 1,
{
A(n,k) : n ≥ 1

}
is a sequence of pairwise disjoint measurable

sets and
∪

n≥1A(n,k) = S. Define a function fk : S → X by fk(s) = xn if s ∈ A(n,k).

Obviously, limk→∞ ∥f(s)− fk(s)∥ = 0 uniformly on S. This completes the proof.

Remark 2.1.1. Under the hypothesis of Proposition 2.1.3, there exists a monotonically

increasing sequence {ψk : k ≥ 1} of simple functions converging pointwise to f µ-almost

everywhere. Further, if f is Bochner integrable then

lim
k→∞

∫
S
∥f − ψk∥dµ = 0.

Indeed, since ∑
n≥1

µ
(
A(n,k)

)
<∞,

there is a monotonically increasing sequence {nk : k ≥ 1} such that

∑
n≥nk+1

µ
(
A(n,k)

)
<

1

k
.
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Then, the function ψk : S → X such that ψk =
∑nk

n=1 xn1A(n,k)
is simple and

lim
k→∞

∥f(s)− ψk(s)∥ = 0

µ-almost everywhere. Note that if f is Bochner integrable, then∫
S
∥f − ψk∥dµ =

∑
n≥nk+1

∫
A(n,k)

∥f∥dµ.

By the absolute continuity of Bochner integral,
∫
S ∥f − ψk∥dµ converges to 0.

Remark 2.1.2. If (R,R, ν) is a finite measure space and f : (S,S , µ)× (R,R, ν) → X

is an S ⊗ R-measurable function, then
∫
S f(·, ·)dµ is R-measurable.

If (S,S , µ) is atomless, then cl
{∫

E fdµ : E ∈ S
}
is convex. This result is known

as an infinite dimensional extension of Lyapunov convexity theorem, refer to [82].

Lemma 2.1.4. [21] Assume that (S,S , µ) is atomless. If A,B ∈ S such that f ∈
L1 (µA, X) and µ(A ∩B) ̸= 0, then

H = cl

{(
µ(R ∩B),

∫
R
fdµ

)
: R ∈ SA

}
is a convex set. Moreover, for any 0 < δ < 1, there is a sequence {Cn : n ≥ 1} ⊆ SA

such that µ(Cn ∩B) = δµ(A ∩B) for all n ≥ 1 and

lim
n→∞

∫
Cn

fdµ = δ

∫
A
fdµ.

Proof. To see the convexity of H, define a function h : A→ R+ by

h(t) =


1, if t ∈ A ∩B;

0, otherwise.

So for all R ∈ SA, one has
∫
R hdµ = µ(R ∩B), and

H = cl

{(∫
R
hdµ,

∫
R
fdµ

)
: R ∈ SA

}
is convex. Now, let {An : n ≥ 1} be a sequence of elements in SA such that

lim
n→∞

(
µ(An ∩B),

∫
An

fdµ

)
= δ

(
µ(A ∩B),

∫
A
fdµ

)
.

35



2.1. MEASURE AND INTEGRATION

If µ(An ∩B) ≥ δµ(A∩B), then select any Bn ⊆ An ∩B such that µ(Bn) = δµ(A∩B)

and put Cn = (An \B) ∪Bn; otherwise, choose Bn ⊆ (A ∩B) \ (An ∩B) with

µ(Bn) = δµ(A ∩B)− µ(An ∩B)

and put Cn = An ∪ Bn. As a result, one has µ(Cn ∩ B) = δµ(A ∩ B) for all n ≥ 1.

Since limn→∞ µ(Cn∆An) = 0, one obtains

lim
n→∞

∫
Cn

fdµ = δ

∫
A
fdµ.

This completes the proof.

Corollary 2.1.5. Suppose that (S,S , µ) is atomless and 0 < δ < 1. If A ∈ S and

f ∈ L1 (µA, X) then there is a sequence {Cn : n ≥ 1} ⊆ SA such that µ(Cn) = δµ(A)

for all n ≥ 1 and

lim
n→∞

∫
Cn

fdµ = δ

∫
A
fdµ.

A correspondence F : (S,S , µ) ⇒ X is lower S -measurable if F−(U) ∈ S for every

open subset U of X. It is also termed as lower measurable if the underlying measure

space is understood. Note that if (S,S , µ) is complete, X is separable, and GrF ∈
S ⊗ B(X), then F : (S,S , µ) ⇒ X is lower measurable. As usual, a correspondence

F : S ⇒ X is said to be compact-valued (resp. closed-valued, convex-valued) if F (s) is

compact (resp. closed, convex) for all s ∈ S. Given F : S ⇒ X, define (clF ) : S ⇒ X

by (clF )(x) = clF (x). It is well known that F is lower measurable if and only if clF is

lower measurable. A compact-valued correspondence F : S ⇒ Rℓ is lower measurable

if and only if F−(C) ∈ S for all closed subset C of X. Given {Fn : n ≥ 1} : S ⇒ Rℓ,

define
∩

n≥1 Fn : S ⇒ Rℓ by ∩
n≥1

Fn

 (s) =
∩
n≥1

Fn(s).

According to Theorem 4.1 in [52], if Fn is lower measurable closed-valued for each n ≥ 1

and at least one of Fn’s is compact-valued, then
∩

n≥1 Fn is lower measurable. Recall

that a non-empty compact-valued correspondence F : S ⇒ Rℓ is lower measurable if

and only if F : S → (K0(Rℓ),TH) is measurable. A measurable selection of F : S ⇒ X

is a measurable function f : S → X such that f(s) ∈ F (s) for almost all s ∈ S.
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Kuratowski-Ryll-Nardzewski Measurable Selection Theorem. If F : S ⇒ Rℓ

is non-empty closed-valued and lower measurable, then there is a measurable function

f : S → Rℓ such that f(s) ∈ F (s) for all s ∈ S.

The following theorem provides some useful characterizations of lower measurability.

Theorem 2.1.6. [14] Suppose that F : S ⇒ Rℓ is non-empty closed-valued. Then the

following properties are equivalent:

(i) F is lower measurable.

(ii) For all x ∈ Rℓ, dist(x, F (·)) is measurable.

(iii) There exists a sequence {fn : n ≥ 1} of measurable selections of F such that

F (s) = cl{fn(s) : n ≥ 1} for all s ∈ S.

Recall that an integrable selection of F : S ⇒ X is a measurable selection which

is Bochner integrable as well. The integration of F in the sense of Aumann in [16] is

defined by ∫
S
Fdµ =

{∫
S
fdµ : f is an integrable selection of F

}
.

If (S,S , µ) is atomless, then cl
∫
S Fdµ is convex, see [88] and

cl

(∪{∫
R
Fdµ : R ∈ S , µ(R) > 0

})
is convex, refer to [36]. Let (S,S , µ) be complete and X be separable. If φ : S×X → R
is Carathéodory, then according to [50],

inf

{∫
S
φ(·, f(·))dµ : f is an integrable section of F

}
=

∫
S

inf
x∈F (·)

φ(·, x)dµ.

Recall that F : S ⇒ Rℓ
+ is called integrably bounded if there is a function φ : S → R+

such that ∥x∥ ≤ φ(s) for all x ∈ F (s) and s ∈ S. If F is closed-valued and integrably

bounded, then
∫
S Fdµ is compact, refer to [51, p.73]. If all of Fn : S ⇒ Rℓ

+ (n ≥ 1) are

integrably bounded by the same function, then

Ls

∫
S
Fndµ ⊆

∫
S
LsFndµ and

∫
S
LiFndµ ⊆ Li

∫
S
Fndµ.
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2.2 Economics

In this section, some economic concepts, and different economic models are presented.

These models are required in the forthcoming chapters.

2.2.1 Economic Concepts

This subsection is devoted to study some basic concepts in an economic system. For

more details, refer to [2, 29, 51, 73, 75].

2.2.1.1 Commodity Space and Price System

Commodities and prices are formed a dual system. A commodity is a good or a service.

There are different kinds of goods. For instance, goods of one kind are wheat, iron ore,

water, or gas etc., and those of another kind are trucks, machine tools, cranes, or sheeps

etc. Some examples of services are illustrated by human labor, the use of a truck and a

hotel room. A commodity is characterized by its physical characteristics, and the date

and the location at which it will be available. A date can be a year, a month, a week

etc., and a location is assumed to be an elementary region of the space over which the

economic activity takes place. Thus, physical characteristics (e.g. wheat with specified

type) available at either different dates or different locations are treated as different

commodities.

As in [51], the quantity of a commodity is a real number. The physical character-

istics are homogeneous, which means that equal quantities of the same commodity are

interchangeable in all their uses. Moreover, it is assumed that the commodities are in-

finitely divisible (that is, a quantity of a commodity is any non-negative real number).

Each commodity is associated with a real number, called a price. If an economy has

only ℓ many commodities, then it is natural to consider Rℓ as the commodity space, and

a point of the commodity space is termed as a commodity bundle. So, a price system

for this economy is of the form p = (p1, ..., pℓ). A price system p is said to prevail in

an economy if the amount pj

pi
of commodity i is needed in order to obtain one unit of

commodity j. So the economy is assumed to work without the help of a good (money)

serving as the medium of exchange. Given a price p and a commodity x, the value of

x at p is given by ⟨x, p⟩ =
∑ℓ

h=1 p
hxh.

2.2.1.2 Agents and Their Characteristics

An agent or a consumer is typically an individual, and an individual may be a house-

hold, or even a large group with a common purpose. Normally, the uppercase letters
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I,N, T, ... are used to denote the set of agents. Given an agent, his character is to choose

a consumption plan which specifies the quantities of his inputs (that is, the quantity

of each commodity which he has to make available to him) and outputs (that is, the

quantity of labor which he makes available). The quantities of inputs are represented

by positive numbers and those of outputs are represented by negative numbers. Thus,

any consumption plan of an agent is a point in the commodity space Rℓ and the set of

such plans is called the consumption set. Due to several facts (physical, physiological,

or institutional), the consumption set of an agent is always bounded from below. For

instance, a total amount of labor of an individual more than 24 hours in a day is not a

part of any consumption plan. Formally, a consumption set can be defined as follows.

Definition 2.2.1. A consumption set is a non-empty subset of the commodity space,

and it is closed, convex and bounded from below.

Figure 2.2: Consumption Set

Each agent is associated with some taste or preference in choosing consumption

plans. Given an agent t, his consumption set Xt, and two commodity bundles x, y ∈ Xt,
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t prefers x to y whenever he wants to select x if he got two alternatives x and y. For

any x, y ∈ Xt, one and only one of the following alternatives is assumed: (i) x is

preferred to y; (ii) x is indifferent from y; and (iii) y is preferred to x. Generally, the

notation ≻t is employed to represent the preference relation of agent t, and x ≻t y

means that x is preferred to y by agent t. Moreover, if two consumption bundles x

and y are indifferent from each other, then the symbol x ∼t y is applied. Thus, x ∼t y

is equivalent to x ̸≻t y and y ̸≻t x. Further, the notation y ≽t x is termed as the

preference-indifference relation of agent t and it means that either y ≻t x, or x ∼t y

holds. It is presumed for all agent t and x, y, z ∈ Xt, (i) x ̸≻t x; and (ii) if y ≻t x and

z ≽t y, then z ≻t x. A function Ut : Xt → R is called a utility function representing

≻t if y ≻t x is equivalent to Ut(y) > Ut(x) for all x, y ∈ Xt. If Ut is a utility function

representing ≻t then so is Ut+5. Thus, the utility function is not uniquely determined.

Not every preference relation can be represented by a utility function. For instance,

the lexic ordering ≻ on R2, that is, (x′, y′) ≻ (x, y) if (i) x′ > x, or (ii) x′ = x and

y′ > y. The next theorem states that a very general class of preference relation can be

represented by a utility function.

Theorem 2.2.1. [2] In a topological space (X,T ) with a countable base, a preference

relation ≻ can be represented by a continuous utility function if {y ∈ X : y ≻ x} and

{y ∈ X : x ≻ y} are open for all x ∈ X.

Figure 2.3: Preference-indifference Curve
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Let x ∈ Xt. Then, the preference and preference-indifference relations can be

expressed in term of correspondences Pt : Xt ⇒ Xt and P∼
t : Xt ⇒ Xt respectively,

defined by

Pt(x) = {y ∈ Xt : y ≻t x} and P∼
t (x) = {y ∈ Xt : y ≽t x}.

Thus, Pt is also termed as the preference relation. Given Pt : Xt ⇒ Xt, define the

correspondence P−1
t : Xt ⇒ Xt such that

P−1
t (y) = {x ∈ X : y ∈ Pt(x)} .

The set P−1
t (y) is called the lower section of y under Pt.

An agent initially holds some amount of each commodity. The commodity bundle

formed by these amount of commodities is called the initial endowment of that agent. It

is further assumed that the initial endowment of each agent belongs to his consumption

set. If a(t) is the initial endowment of agent t, then given a price system p, the budget

set of agent t is defined by

B(t, p) = {x ∈ Xt : ⟨x, p⟩ ≤ ⟨a(t), p⟩}.

The demand set of agent t at p is defined byD(t, p) = {x ∈ B(t, p) : Pt(x)∩B(t, p) = ∅}.

Figure 2.4: Budget Set
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2.2.1.3 Pure Exchange Economies

A pure exchange economy is an economic system, where the exchange of commodities

between agents takes place. Formally, a pure exchange economy can be defined as

{(T,Σ, ν);Rℓ
+; (Xt, Pt, a(t)) : t ∈ T},

where (T,Σ, µ) is the measure space of agents. The outcome of this exchange economy

is a redistribution of the aggregate initial endowment. A detail discussion of a general

pure exchange economy with asymmetric information can be found in Subsection 2.2.2.

2.2.1.4 Uncertainty and Asymmetric Information

In this subsection, the environmental events determine the consumption sets and the

initial endowments of an economy. Commodities are distinguished not only by their

physical characteristics, locations and dates of availability and/or usage, but also by

the environmental events in which they are made available and/or used. For example,

an umbrella made available at a particular location and a date in the rainy weather is

different from the same umbrella made available at the same location and date if the

weather is not rainy. Suppose that the activities of an economy extend over finitely

many dates, denoted by {1, ..., T}. A complete history of the environmental variables

from date 1 to date T is called a state of nature, and an event is a set of states of

nature. Suppose that Ω denotes the set of states of nature, and F τ is the set of events

at 1 ≤ τ ≤ T . To simplify the notation, let Y be the commodity space at each date τ .

For any date τ , an agent t has some information F τ
t about the realized state of nature

at T , where F τ
t is the σ-algebra generated by a partition Πτ

t of Ω. It is assumed that

F τ
t ⊆ F τ for all 1 ≤ τ ≤ T and F τ

t ⊆ F τ+1
t for all 1 ≤ τ < T . Different agents may

have different information at each date. A consumption xτt of an agent t at date τ is an

F τ -measurable function from Ω into Y, and
(
x1t , ..., x

T
t

)
is a consumption plan of agent

t. The set of such consumption plans is called the consumption set of t. According

to Radner in [73], consumption plans of an agent t reflect the information available to

agent t, which means that xτt is F τ
t -measurable for all τ and t. In particular, the initial

endowment of each agent is one of the consumption plans of that agent.

In this thesis, a pure exchange economy is considered, which extends over three

dates {0, 1, 2}. The date τ = 0 is called the ex ante stage. At this stage, each agent

knows what kind of states of nature will occur at τ = 2, and his private information,

the consumption set and the initial endowment. At stage τ = 1, the interim stage,

an agent t knows that the realized state of nature belongs to Π1
t (ω

∗), where ω∗ is the
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true state at τ = 2 and Π1
t (ω

∗) is the element of the partition Π1
t which generates the

information to agent t. In these two stages, agents arrange contingent contracts for

future delivery of goods. The stage τ = 2 is said to be the ex post stage, and in this

stage, agents execute the contracts and consumption takes place. It is also assumed

that there is an exogenous enforcer (a government or a court), which makes sure that

the agreements made ex ante are fulfilled ex post; otherwise, agents may renege on their

ex ante contracts. Recently, de Castro et al. [32] mentioned that if the government

or court will enforce the contracts ex post, one does not need to consider measurable

contracts as in [73]. Suppose that Ut : Ω×Xt → R denotes the random utility function

and qt is the prior of agent t. If Ω is finite, then agent t’s ex ante expected utility is

given by

Vt(x) =
∑
ω∈Ω

Ut(ω, x(ω))qt(ω)

and the interim expected utility is defined by

Vt(ω, x) =
∑

ω′∈Πt(ω)

Ut(ω
′, x(ω′))

qt(ω
′)

qt(Πt(ω))
,

whenever ω is the true state of nature.

2.2.2 A Radner-type Model

In this subsection, a general model of an asymmetric information economy in the sense

of Radner in [73] is proposed, and this model is used in Chapters 3-5. An interpretation

via an atomless economy is also given in this section.

2.2.2.1 Description of a Model

Consider a pure exchange economy E with asymmetric information. The space of states

of nature is a probability space (Ω,F , ν), where Ω is a finite set, and the space of agents

is a complete, finite and positive measure space (T,Σ, µ). The commodity space of E

is an ordered Banach space Y . Thus, E can be defined by

E = {(Ω,F , ν); (T,Σ, µ); Y+; (Ft, Pt, a(t, ·)) : t ∈ T} .

Here, Y+ is the consumption set in every state ω ∈ Ω for every agent t ∈ T ; Ft is

the σ-algebra generated by a partition Πt of Ω representing the private information of

agent t; Pt : Y
Ω
+ ⇒ Y Ω

+ is the preference relation1 of agent t; and a(t, ·) : Ω → Y+ is the

1Preference relations in this case are similar to those in Definition 5.4 in [9] and are used to capture
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random initial endowment of agent t, assumed to be constant on elements of Πt. The

triple (Ft, Pt, a(t, ·)) are called the characteristics of agent t ∈ T .

An assignment in E is a function f : T × Ω → Y+ such that f(·, ω) ∈ L1(µ, Y ) for

all ω ∈ Ω. Throughout, a is taken to be an assignment. Put

Lt =
{
x ∈ (Y+)

Ω : x is Ft-measurable
}
.

An assignment f in E is called an allocation if f(t, ·) ∈ Lt for almost all t ∈ T , and it

is said to be feasible if ∫
T
f(·, ω)dµ ≤

∫
T
a(·, ω)dµ

for all ω ∈ Ω. This feasibility condition is also known as feasibility with free disposal.

However, if the last inequality is replaced with an equality, then it is named as feasibility

without free disposal or an exactly feasibility. Any set S ∈ Σ with µ(S) > 0 is called

a coalition of E . If S and S′ are two coalitions of E with S′ ⊆ S, then S′ is called

a sub-coalition of S. A coalition S privately blocks an allocation f in E if there is an

assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S, and∫
S
g(·, ω)dµ ≤

∫
S
a(·, ω)dµ

for all ω ∈ Ω. Following [87], the private core of E , denoted by PC (E ), is the set of

all feasible allocations which are not privately blocked by any coalition. Further, an

allocation f of E is privately non-dominated whenever there does not exist any feasible

allocation g such that g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ T . A feasible allocation f

of E is called privately Pareto optimal if it is privately non-dominated. A price system

is a non-zero function π : Ω → Y ∗
+. The budget set of agent t with respect to a price

system π is defined by

Bt(π) =

{
x ∈ Lt :

∑
ω∈Ω

⟨x(ω), π(ω)⟩ ≤
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

}
.

A Walrasian quasi-equilibrium of E in the sense of Radner is a pair (f, π), where f is

a feasible allocation and π is a price system such that

(2.1) for almost all t ∈ T , f(t, ·) ∈ Bt(π) and Pt(f(t, ·)) ∩ Bt(π) = ∅ whenever

the case of the (strong) fine core. The other results deal with private measurability condition, and so
one can also use the preference relation Pt : Lt ⇒ Lt and obtains similar results. To avoid notational
difficulty, only one type of preference relations is used here.
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2.2. A RADNER-TYPE MODEL

∑
ω∈Ω⟨a(t, ω), π(ω)⟩ ̸= 0 and

(2.2)
∑

ω∈Ω
⟨∫

T f(·, ω)dµ, π(ω)
⟩
=
∑

ω∈Ω
⟨∫

T a(·, ω)dµ, π(ω)
⟩
.

If there is some coalition S such that
∑

ω∈Ω⟨a(t, ω), π(ω)⟩ ̸= 0 for all t ∈ S, then (f, π)

is called non-trivial. Moreover, if both

(2.1′) for almost all t ∈ T , f(t, ·) ∈ Bt(π) and Pt(f(t, ·)) ∩Bt(π) = ∅,

and (2.2) hold, (f, π) is called a Walrasian equilibrium of E in the sense of Radner. In

this case, f is called a Walrasian allocation and the set of such allocations is denoted

by W (E ). If (f, π) is a Walrasian quasi-equilibrium, then the feasibility of f and (2.2)

imply ⟨∫
T
f(·, ω)dµ, π(ω)

⟩
=

⟨∫
T
a(·, ω)dµ, π(ω)

⟩
for all ω ∈ Ω. Note that every Walrasian equilibrium is a non-trivial Walrasian quasi-

equilibrium. But the converse is satisfied if the following condition holds: For each

feasible allocation f of E and any two disjoint coalitions S1, S2 of E with S1 ∪ S2 = T ,

there is an assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all

t ∈ S2, and ∫
S1

a(·, ω)dµ+

∫
S2

f(·, ω)dµ ≥
∫
S2

g(·, ω)dµ

for each ω ∈ Ω. This condition is called irreducibility and any economy satisfying this

condition is called irreducible. This condition was introduced by McKenzie in [61] for

economies with finitely many agents and was further extended to an atomless economy

by Hildenbrand in [51], refer to [35].

Proposition 2.2.2. If E is irreducible, every non-trivial Walrasian quasi-equilibrium

of E is a Walrasian equilibrium.

Proof. Let (f, π) be a non-trivial Walrasian quasi-equilibrium of E and

S2 =

{
t ∈ S :

∑
ω∈Ω

⟨a(t, ω), π(ω)⟩ ̸= 0

}
.

Then µ(S2) > 0. If µ(S2) = µ(T ), there is nothing to verify. Otherwise, let S1 = T \S2.
By irreducibility, there is an assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ S2, and∫

S1

a(·, ω)dµ+

∫
S2

f(·, ω)dµ ≥
∫
S2

g(·, ω)dµ
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for each ω ∈ Ω. Then∫
S2

∑
ω∈Ω

⟨f(·, ω), π(ω)⟩dµ ≥
∫
S2

∑
ω∈Ω

⟨g(·, ω), π(ω)⟩dµ.

By (2.1), one has ∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ <
∑
ω∈Ω

⟨g(t, ω), π(ω)⟩

for almost all t ∈ S2, which is a contradiction.

The following assumptions are employed in Chapters 3-5.

(A1) For any assignment f , and any separable closed linear subspace Z of Y Ω with

f(T, ·) ⊆ Z, the graph of P f
Z : T ⇒ Z is in Σ⊗B(Z), where P f

Z(t) = Z∩Pt(f(t, ·)).

(A2) For all t ∈ T and x ∈ Y Ω
+ , Pt(x) and P

−1
t (x) are norm-open in Y Ω

+ .

(A3) For all t ∈ T , Pt is monotone, that is, x+ y ∈ Pt(x) if x, y ∈ Y Ω
+ with y ≫ 0.

(A′
3) For all t ∈ T , Pt is strictly monotone, that is, x + y ∈ Pt(x) if x, y ∈ Y Ω

+ with

y > 0.

(A4) For all (t, ω) ∈ T × Ω, a(t, ω) ≫ 0 whenever Y+ has a quasi-interior point.

Note that under (A2) and (A3), y ∈ P∼
t (x) if and only if y ∈ clPt(x). If intY+ ̸= ∅,

then irreducibility follows from (A4), refer to [35]. Let P denote the family of all

partitions of Ω, and TQ = {t ∈ T : Πt = Q} for all Q ∈ P. Suppose that TQ ∈ Σ for

all Q ∈ P. Since Lt = Lt′ if t, t
′ ∈ TQ, LQ is used to denote the common value of Lt

for any t ∈ TQ. For any coalition S, put

PS = {Q ∈ P : S ∩ TQ ̸= ∅} and P(S) = {Q ∈ PS : µ(S ∩ TQ) > 0} .

For any allocation f , define a correspondence Pf : T ⇒ Y Ω
+ by Pf (t) = Lt ∩ Pt(f(t, ·)).

If Y is separable, by (A1), one has

(2.3) GrPf
=

∪
Q∈PT

(TQ × LQ) ∩Gr
P f

Y Ω
∈ Σ⊗ B(Y Ω).

If T is a finite set, a special notation N is used to distinguish the set of agents from

an arbitrary measure space (T,Σ, µ). Such an economy is called a discrete economy.

In this case, an assignment is of the form x = (x1, ..., xn), where n denotes the number
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of agents in N . In addition, the concept of “almost all t ∈ T” and “a measurable set

with positive measure” are replaced by “all i ∈ N” and “a non-empty set” respectively.

As usual, “summation” is used instead of “integration” in all corresponding places

appeared previously. To deal with discrete economies, some additional assumptions

are needed. First, (A2) and (A′
3) are renamed by (B1) and (B2) respectively.

(B3) For each i ∈ N and x ∈ Y Ω
+ , Pi(x) is convex.

(B4) For each ω ∈ Ω,
∑

i∈N ai(ω) ≫ 0.

(B′
4) For each ω ∈ Ω,

∑
i∈N ai(ω) > 0.

(B5) For each i ∈ N , inf{ai(ω) : ω ∈ Ω} > 0.

(B6) There exists an element â ∈ Y+ such that L
(∑

i∈N ai(ω)
)
= L(â) for each ω ∈ Ω.

(B7) E is irreducible.

The following welfare theorems can be found in [10, 28, 60], when Ω has only one

element.

First Welfare Theorem. Every Walrasian allocation of E is (privately) Pareto opti-

mal.

Second Welfare Theorem. Assume (B2) and (B3). If x is (privately) Pareto optimal

allocation of E , then y ∈ Pi(xi) implies∑
ω∈Ω

⟨y(ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨xi(ω), π(ω)⟩.

The following fact is given in the proof of Lemma 3.3 of [33].

Lemma 2.2.3. Let S be a coalition of E such that all agents in S have the same

characteristics (FS , PS , a(S, ·)), and LS be the common value of Lt for t ∈ S. Assume

g : S × Ω → Y+ is a function such that g(t, ·) ∈ LS and g(t, ·) ∈ PS(x) for all t ∈ S.

Under (A2), (A3) and convexity of {y ∈ LS : y ∈ PS(x)},

1

µ(S)

∫
S
gdµ ∈ PS(x).

Moreover, a similar result also holds if “PS” is replaced by “clPS”.
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2.2.2.2 An Interpretation via an Atomless Economy

As mentioned previously, T can be decomposed into two parts: one part is atomless and

the other is the union of countably many pairwise disjoint atoms. That is, T = T0∪T1,
where T0 is the atomless part and T1 is the union of countably many disjoint µ-atoms.

Since each µ-atom is treated as an agent, if A is a µ-atom, then A ∈ T1 is used, instead

of writing A ⊆ T1. Agents in T0 are called small agents and those in T1 are called large

agents. Let A = {Ai : i ≥ 1} be the family of µ-atoms in T .

Following [42], the economy E can be associated with an atomless economy E ∗.

The space of agents of E ∗ is denoted by (T ∗,Σ∗, µ∗), where T ∗ = T0 ∪ T ∗
1 and T ∗

1 is

an atomless measure space such that µ∗(T ∗
1 ) = µ(T1) and T0 ∩ T ∗

1 = ∅. Suppose that

(T ∗,Σ∗, µ∗) is obtained by the direct sum of (T0,ΣT0 , µT0) and the measure space T ∗
1 .

It is also assumed that each agent A ∈ T1 one-to-one corresponds to a measurable

subset A∗ of T ∗
1 with µ∗(A∗) = µ(A). Each agent t ∈ A∗ is characterized by the same

characteristics as those of A. For an assignment f in E , let f∗ = Ξ(f) be an assignment

in E ∗ defined by

f∗(t, ω) =

 f(t, ω), if (t, ω) ∈ T0 × Ω;

f(Ai, ω), if (t, ω) ∈ A∗
i × Ω.

Conversely, for an assignment f∗ in E ∗, f = Φ(f∗) defined by

f(t, ω) =

 f∗(t, ω), if (t, ω) ∈ T0 × Ω;

1
µ∗(A∗

i )

∫
A∗

i
f(·, ω)dµ, if ω ∈ Ω and t = Ai for i ≥ 1,

is an assignment in E . For a particular case when T = N , a continuum economy Ec is

associated with E instead of E ∗, just like that in [38, 46, 47]. The space of agents of Ec is

denoted by (I,M , µ̂), where I = [0, 1], M is the family of Lebesgue measurable subsets

of I with Lebesgue measure µ̂. Put I =
∪n

i=1 Ii, where Ii =
[
i−1
n , i

n

)
for i = 1, ..., n− 1,

and In =
[
n−1
n , 1

]
. Each agent t ∈ Ii has the same characteristics as those of i ∈ N .

Further, Ii is known as the set of type i agents, and Ec is known as an economy with the

equal treatment property. Similar to above, the assignments f = Ξ(x) and x = Φ(f)

are defined. The proof of the following result can be obtained in a way similar to that

in [46].

Proposition 2.2.4. Assume (B1) and (B3). If (x, π) is a non-trivial Walrasian quasi-

equilibrium of E , then (Ξ(x), π) is a non-trivial Walrasian quasi-equilibrium of Ec.

Conversely, if (f, π) is a non-trivial Walrasian quasi-equilibrium of Ec, then (Φ(f), π)

is a non-trivial Walrasian quasi-equilibrium of E .
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Remark 2.2.1. A similar conclusion holds if “non-trivial Walrasian quasi-equilibrium”

is replaced with “Walrasian equilibrium”. Both of these results are also true when N

is replaced with T , refer to [72].

2.2.3 Maximin Formulation

In this subsection, another model of a pure exchange economy E with asymmetric

information is considered. This is needed to introduce the main concept in Chapter 6,

which is far different from that described in Subsection 2.2.2. In this framework, the

space of states of nature is a probability space (Ω,F , ν) and the space of agents is a

finite measure space (T,Σ, µ). The commodity space is Rℓ and Rℓ
+ is the consumption

set in every state ω ∈ Ω for each agent t ∈ T . The characteristics of agent t are

(Ft, Ut, a(t, ·), qt), where Ft and a(t, ·) are the same as before; Ut : Ω × Rℓ
+ → R is a

random utility function of t; and qt is a probability measure on Ω giving the prior of t.

An allocation in E is a function f : T × Ω → Rℓ
+ such that f(·, ω) ∈ L1(µ,Rℓ) for all

ω ∈ Ω. The following assumptions on agents’ characteristics are essential in Chapter 6.

(C1) a is Σ⊗ F -measurable such that
∫
T a(·, ω)dµ≫ 0 for each ω ∈ Ω.

(C2) U·(·, x) is Σ ⊗ F -measurable for all x ∈ Rℓ
+ and Ut(ω, ·) is continuous for all

(t, ω) ∈ T × Ω.

(C3) For each (t, ω) ∈ T ×Ω, Ut(ω, ·) is strictly monotone in the sense that if x, y ∈ Rℓ
+

with y > 0, then Ut(ω, x+ y) > Ut(ω, x).

(C4) For each (t, ω) ∈ T × Ω, Ut(ω, ·) is concave.
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Chapter 3

Edgeworth Equilibria with the

Asymmetric Information

In this chapter, the economic model given in Subsection 2.2.2 is studied. When uncer-

tain events occur in an economy and different agents have different information, the

relationship between the private core and the set of Walrasian allocations is explored

in this chapter. Section 3.1 deals with a separable Banach lattice as the commodity

space. In this section, it is shown that the equivalence between the private core and the

set of Walrasian allocations holds under some assumptions similar to those in [76]. It

is well known that the above relationship may fail in an economy with a non-separable

commodity space even if the economy has only one state of nature. The aim of Section

3.2 is to show that the private core coincides with the set of Walrasian allocations in an

equal treatment continuum economy with a Banach lattice having an interior point in

its positive cone as the commodity space. The commodity space in this case does not

need to be separable. If the positive cone of a Banach lattice has the empty interior,

then it is shown that an equal treatment allocation is a Walrasian allocation if and only

if it is in the private core. The main results in Section 3.2 are taken from [22].

3.1 Edgeworth Equilibria in an Atomless Economy

This section is devoted to study the relationship between the private core and the set of

Walrasian allocations in an asymmetric information economy with an atomless measure

space of agents, finitely many states of nature, and a separable Banach lattice as the

commodity space. Thus, T = T0 and Y is a separable Banach lattice.
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3.1.1 The Case When intY+ ̸= ∅

In this subsection, it is assumed that intY+ ̸= ∅. The following result was shown by

Evren and Hüsseniov in [36]. Applying an approach given in [51], an alternative proof

is provided. Note that the result is also valid for an asymmetric information economy

with an ordered separable Banach space having an interior point in its positive cone as

the commodity space.

Theorem 3.1.1. Assume (A1)-(A4). Then W (E ) = PC (E ).

Proof. Let f ∈ W (E ) and π be an equilibrium price associated with f . Suppose that

there is a coalition S such that∫
S
g(·, ω)dµ ≤

∫
S
a(·, ω)dµ

for all ω ∈ Ω, and g(t, ·) ∈ Pt(f(t, ·)) ∩ Lt for almost all t ∈ S. This means that∑
ω∈Ω

⟨g(t, ω), π(ω)⟩ >
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for almost all t ∈ S. Consequently, one obtains∫
S

∑
ω∈Ω

⟨g(·, ω), π(ω)⟩dµ >
∫
S

∑
ω∈Ω

⟨a(·, ω), π(ω)⟩dµ,

which is a contradiction. Thus, f ∈ PC (E ).

Conversely, suppose that f ∈ PC (E ). Let F : T ⇒ Y Ω
+ be a correspondence

defined by

F (t) = {x− a(t, ·) : x ∈ Pf (t)} ∪ {0},

where Pf : T ⇒ Y Ω
+ is defined in Subsection 2.2.2. Obviously, F (t) ̸= ∅ for all t ∈ T , and

cl
∫
T Fdµ∩−intY Ω

+ = ∅. Since cl
∫
T Fdµ and −intY Ω

+ are non-empty and convex, there

is a non-zero element π ∈ (Y ∗
+)

Ω such that
∑

ω∈Ω⟨y(ω), π(ω)⟩ ≥ 0 for all y ∈
∫
T Fdµ.

By (2.3), GrF ∈ Σ⊗ B(Y Ω) and so∫
T

inf
z∈F (·)

∑
ω∈Ω

⟨z(ω), π(ω)⟩dµ = inf
y∈

∫
T Fdµ

∑
ω∈Ω

⟨y(ω), π(ω)⟩ ≥ 0.

With this and the fact that infz∈F (t)

∑
ω∈Ω⟨z(ω), π(ω)⟩ ≤ 0, one can conclude that
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infz∈F (t)

∑
ω∈Ω⟨z(ω), π(ω)⟩ = 0 for almost all t ∈ T . Thus,

(3.1)
∑
ω∈Ω

⟨x(ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for all x ∈ Pf (t) and almost all t ∈ T . By (A3), one obtains∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for almost all t ∈ T . Using the feasibility of f , it can be easily verified that for almost

all t ∈ T , ∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ =
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩.

Thus, ∑
ω∈Ω

⟨∫
T
f(·, ω)dµ, π(ω)

⟩
=
∑
ω∈Ω

⟨∫
T
a(·, ω)dµ, π(ω)

⟩
.

To complete the proof, one needs to verify that Pt(f(t, ·)) ∩ Bt(π) = ∅ for almost all

t ∈ T . By (A4),
∑

ω∈Ω⟨a(t, ω), π(ω)⟩ > 0 for all t ∈ T . Select some t ∈ T satisfying

(3.1). It is claimed that for any such t, the inequality (3.1) holds with the sign “ > ”.

Indeed, ∑
ω∈Ω

⟨x(ω), π(ω)⟩ =
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for some x ∈ Pf (t) and (A2) together yield λx ∈ Pf (t) and∑
ω∈Ω

⟨λx(ω), π(ω)⟩ <
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for some 0 < λ < 1, which contradicts with (3.1). So, (f, π) is a Walrasian equilibrium

of E .

3.1.2 The Case When Y++ ̸= ∅

In this subsection, the main equivalence theorem is established. To do this, some

assumptions and techniques similar to those in [76] are employed.

Definition 3.1.1. [76] Let v ∈ Y Ω
+ \ {0} and V be an open convex solid neighborhood

of 0 in Y Ω. Suppose that K is the open cone spanned by v+V . The bundle v is called

extremely desirable with respect to V if x ∈ Y Ω
+ and y ∈ (x+K) ∩ Y Ω

+ together imply

y ∈ Pt(x) for almost all t ∈ T .
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Figure 3.1: Extremely Desirable Bundle

(A5) There is some
∧

P(T )-measurable element v ∈ Y Ω
+ \ {0} such that v is extremely

desirable with respect to some open convex solid neighborhood U of 0 in Y Ω.

(A6) Suppose that δ1, ..., δm are positive numbers with
∑m

i=1 δi = 1. If xi ∈ Y Ω
+ and

xi /∈ δiU for all 1 ≤ i ≤ m, then
∑m

i=1 xi /∈ U .

Next lemma plays a key role in the proof of the equivalence theorem. To see this, let∏
ω∈Ω U(ω) ⊆ U for some open ball U(ω) of 0 in Y . Put

W =

(
1

|Ω|
∩
ω∈Ω

U(ω)

)Ω

,

and C and D be the open cones spanned by v +W and v + U respectively.

Lemma 3.1.2. Assume (A2), (A
′
3), (A5), (A6) and that f ∈ PC (E ). Let g : S → Y Ω

+

be a function such that g(t, ·) ∈ Pt(f(t, ·)) ∩ Lt and g =
∑m

i=1 yiχSi, where

(i) µ(Si) = η for all 1 ≤ i ≤ m;

(ii) for each 1 ≤ i ≤ m there is some Q ∈ P(S) such that Si ⊆ S ∩ TQ.

If b =
∑m

i=1

(
1
η

∫
Si
adµ

)
χSi then

∫
S(g − b)dµ /∈ −C.
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Proof. Assume the contrary. Then
∑m

i=1(yi − ai)η ∈ −α(v +W ), where ai =
1
η

∫
Si
adµ

and α > 0. So there is an element w ∈ α
ηW such that

m∑
i=1

yi + u+ w =

m∑
i=1

ai ≥ 0,

where u = α
η v. Since

∑m
i=1 yi + u ≥ 0 and W is solid, one has

∑m
i=1 yi + u ≥ w− and

w− ∈ α
ηW . For any m-tuple σ = (σ1, ..., σm) of positive real numbers with

∑m
i=1 σi = 1,

w− ≤
m∑
i=1

(yi + σiu).

By the Riesz decomposition property, one obtains a finite set {wσ
1 , ..., w

σ
m} such that

w− =
∑m

i=1w
σ
i and 0 ≤ wσ

i ≤ yi + σiu for all 1 ≤ i ≤ m. Let

IQ = {i : Si ⊆ S ∩ TQ}

for all Q ∈ P(S). Pick an i ∈ IQ and note that yi + σiu is Q-measurable. Define

dσi : Ω → Y+ by

dσi (ω) = sup
{
wσ
i (ω

′) : ω′ ∈ Q(ω)
}
.

Obviously, dσi is Q-measurable and dσi ≤ yi + σiu. Let

zσi = yi + σiu− dσi and δσi = dist
(
zσi , (D + yi) ∩ Y Ω

+

)
.

Consider a continuous function f : ℑm → ℑm defined by

f(σ) =

(
σ1 + δσ1

1 +
∑m

j=1 δ
σ
j

, ...,
σm + δσm

1 +
∑m

j=1 δ
σ
j

)
.

By the Brouwer fixed point theorem, one obtains a σ∗ = (σ∗1, ..., σ
∗
m) ∈ ℑm satisfying

δσ
∗

i = σ∗i
∑m

j=1 δ
σ∗
j for all 1 ≤ i ≤ m.

Claim.
∑m

j=1 δ
σ∗
j = 0. If not, then δσ

∗
i = 0 is equivalent to σ∗i = 0. Define the set

J = {i : δσ∗
i = 0}. Pick an i ∈ J . Then zσ

∗
i = yi − dσ

∗
i . First assume that dσ

∗
i > 0. By

(A′
3), one has yi ∈ Pt(z

σ∗
i ) ∩ Lt for t ∈ Si and hence

zσ
∗

i /∈ cl
(
(D + yi) ∩ Y Ω

+

)
.

By definition, δσ
∗

i > 0, which is a contradiction with the fact that i ∈ J . Thus dσ
∗

i = 0
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for all i ∈ J . Pick an i /∈ J . Then zσ
∗

i /∈ D + yi and so

dσ
∗

i /∈ σ∗i α

η
U

for all i /∈ J . Consequently,
∑m

i=1 d
σ∗
i /∈ α

ηU . Note that dσ
∗

i ≤
∑

ω∈Ωw
σ∗
i (ω)1Ω and so

m∑
i=1

dσ
∗

i ≤
∑
ω∈Ω

w−(ω)1Ω.

Since
∑

ω∈Ωw
−(ω)1Ω ∈ α

ηU and α
ηU is solid,

∑m
i=1 d

σ∗
i ∈ α

ηU , which is a contradiction.

Thus the claim is verified.

It follows from the claim that δσ
∗

i = 0 for all 1 ≤ i ≤ m. So zσ
∗

i ∈ cl
(
(D + yi) ∩ Y Ω

+

)
for all 1 ≤ i ≤ m. Using yi ∈ Pt(f(t, ·)) and (A5), one has z

σ∗
i ∈ Pt(f(t, ·)) for all t ∈ Si

and 1 ≤ i ≤ m. Define h : T × Ω → Y+ by

h(·, ω) =
m∑
i=1

zσ
∗

i (ω)1Si .

Clearly, h(t, ·) ∈ Pf (t) for almost all t ∈ S and

∫
S
hdµ ≤ η

(
m∑
i=1

yi + u− w−

)
≤ η

(
m∑
i=1

yi + u+ w

)
= η

m∑
i=1

ai =

∫
S
adµ.

This contradicts with the fact that f ∈ PC (E ) and the proof is now completed.

Theorem 3.1.3. Assume (A1), (A2), (A
′
3) and (A4)-(A6). Then W (E ) = PC (E ).

Proof. Similar to Theorem 3.1.1, one can obtain that W (E ) ⊆ PC (E ).

Conversely, let f ∈ PC (E ). Consider the correspondence F : T ⇒ Y Ω
+ defined by

F (t) = {x− a(t, ·) : x ∈ Pf (t)} ∪ {0}.

Clearly, F (t) ̸= ∅ for all t ∈ T . Note that if
∫
T Fdµ ∩ −C = ∅ then by the separation

theorem,
∑

ω∈Ω⟨y(ω), π(ω)⟩ ≥ 0 for all y ∈
∫
T Fdµ. By an argument similar to that in

Theorem 3.1.1, one can show that f ∈ W (E ). Thus, it is assumed that∫
T
Fdµ ∩ −C ̸= ∅
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3.1. THE CASE WHEN Y++ ̸= ∅

and a contradiction will be derived later. Suppose that
∫
T hdµ ∈

∫
T Fdµ ∩ −C. Let

S = {t ∈ T : h(t, ·) ̸= 0 and h(t, ·) = g(t, ·)− a(t, ·) for some g(t, ·) ∈ Pf (t)} .

Then S is measurable, µ(S) > 0 and
∫
S(g − a)dµ ∈ −C. Without loss of generality,

one can assume that P(S) = PS . Pick an Q = {A1, ..., Ak} ∈ P(S) and let ωj ∈ Aj

for all 1 ≤ j ≤ k. Since g(·, ωj) ∈ L1 (µS∩TQ
, Y+), there is a monotonically increasing

sequence
{
h
(Q,ωj)
n : n ≥ 1

}
of simple functions converging pointwise to g(·, ωj) such

that

lim
n→∞

∫
S∩TQ

∥∥∥g(·, ωj)− h
(Q,ωj)
n (·)

∥∥∥ dµ = 0.

Define the function gn : S × Ω → Y+ such that gn(t, ω) = h
(Q,ωj)
n (t) for all (t, ω) ∈

(S ∩ TQ) × Aj . So, {gn : n ≥ 1} is a monotonically increasing sequence of simple

functions converging pointwise to g and

lim
n→∞

∫
S
∥g(·, ω)− gn(·, ω)∥dµ = 0

for all ω ∈ Ω. Let

S̃n = {t ∈ S : gn(t, ·) ∈ Pf (t)} and Sn =
∪

{S̃n ∩ TQ : Q ∈ P(Sn)}

By (A2) and (A′
3), Sn ⊆ Sn+1 for all n ≥ 1 and

∪
n≥1 Sn ∼ S. Fix an n ≥ 1. Let

gn|Sn =
∑m

i=1 yiχRi , where for all 1 ≤ i ≤ m there is some Q ∈ P(Sn) such that

Ri ⊆ Sn ∩ TQ and µ(Ri) = ηn. Since gn(t) > 0 for all t ∈ Sn, Sn =
∪m

i=1Ri. Assume

that

an =

m∑
i=1

(
1

ηn

∫
Ri

adµ

)
χRi .

By Lemma 3.1.2, ∫
Sn

gndµ−
∫
Sn

andµ /∈ −C.

Note that ∥∥∥∥∫
Sn

(gn − an)dµ−
∫
S
(g − a)dµ

∥∥∥∥→ 0 as n→ ∞.

Since C is open,
∫
S(g − a)dµ /∈ −C and this completes the proof.

56



3.2. EDGEWORTH EQUILIBRIA IN EQUAL TREATMENT SETTING

3.2 Edgeworth Equilibria in the Equal Treatment Setting

In this section, a relation between the private core and the set of Walrasian allocations

is established in the setting of equal treatment. Throughout this section, T = N and

Y is a Banach lattice, which is not necessarily separable.

3.2.1 The Case When intY+ ̸= ∅

In this subsection, the equivalence between the private core and the set of Walrasian

allocations is provided in an economy whose commodity space has an interior point in

its positive cone. Since the commodity space Y is not necessarily separable, the negative

result obtained in [68, 81] is not valid in every equal treatment continuum economy. In

[70], some necessary and sufficient conditions were given for the core-Walras equivalence

theorem in a deterministic economy with an atomless measure space of agents and a

Banach lattice as the commodity space. In fact, Podczeck [70] obtained the equivalence

between the core and the set of Walrasian allocations under some properties of the

commodity space. In contrast, the equivalence theorem in this subsection does not

require such properties. The following lemma is similar to Theorem 3.5 in [33], and is

essential for the equivalence theorem.

Lemma 3.2.1. Assume (B1)-(B3) and ai(ω) ∈ intY+ for all i ∈ N and ω ∈ Ω. If

f ∈ PC (Ec) and x = Φ(f), then xi ∼i f(t, ·) for almost all t ∈ Ii and all i ∈ N .

Proof. By ignoring a µ̂-null subset of I, one can choose a separable closed linear sub-

space Z of Y Ω such that f(I, ·) ⊆ Z. Assume that there exist an i0 ∈ N , a coalition

D ⊆ Ii0 such that xi0 ∈ Pi0(f(t, ·)) for all t ∈ D. For any r ∈ Q ∩ (0, 1), define

Dr = {t ∈ D : rxi0 ∈ Pi0(f(t, ·))}.

Note that Dr is the projection of

(
D ×

{
x ∈ Y Ω

+ : rxi0 ∈ Pi0(x)
})

∩ {(t, f(t, ·)) : t ∈ D}

on D. Thus Dr is Lebesgue measurable and D =
∪
{Dr : r ∈ Q ∩ (0, 1)}. So, one can

find a r1 ∈ Q ∩ (0, 1) and a sub-coalition C ⊆ D such that r1xi0 ∈ Pi0(f(t, ·)) for all

t ∈ C. Let r2 = nµ̂(C). Then 0 < r2 ≤ 1. For each ω ∈ Ω, put

υ(ω) = r1r2

(∫
I
f(·, ω)dµ̂−

∫
I
a(·, ω)dµ̂

)
− r2(1− r1)

∫
Ii0

ai0(ω)dµ̂.
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3.2. THE CASE WHEN INTY+ ̸= ∅

Clearly, υ(ω) ∈ −intY+ for all ω ∈ Ω. So, there is an ε > 0 such that

υ(ω) +B(0, 2ε) ⊆ −intY+

for all ω ∈ Ω. Applying Corollary 2.1.5, one has a coalition E of Ec such that

µ̂(E) < µ̂(I \ Ii0) and ∥d(ω)∥ < ε

for all ω ∈ Ω, where

d(ω) =

∫
E
(f(·, ω)− a(·, ω))dµ̂− r1r2

∫
I\Ii0

(f(·, ω)− a(·, ω))dµ̂.

Let S = C ∪E. Then, µ̂(S) < 1. Pick an u ∈ B(0, ε)∩ intY+ and define g : I×Ω → Y+

by

g(t, ω) =

 f(t, ω) + u
µ̂(E) , if (t, ω) ∈ E × Ω;

r1xi0 , otherwise.

Then, g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S, and∫
S
g(·, ω)dµ̂ =

∫
E
f(·, ω)dµ̂+ r1r2

∫
Ii0

f(·, ω)dµ̂+ u

for all ω ∈ Ω. It can be easily verified that for all ω ∈ Ω,

−v(ω) +
∫
S
(g(·, ω)− a(·, ω))dµ̂ = d(ω) + u ∈ B(0, 2ε).

Hence, ∫
S
a(·, ω)dµ̂−

∫
S
g(·, ω)dµ̂≫ 0

for all ω ∈ Ω, which contradicts with the fact that f ∈ PC (Ec). Thus, f(t, ·) ∈ clPi(xi)

for almost all t ∈ Ii and all i ∈ N . Suppose that there is a coalition R ⊆ Ii′ for some

i′ ∈ N such that f(t, ·) ∈ Pi′(xi′) for all t ∈ R. By Lemma 2.2.3, one has

1

µ̂(R)

∫
R
f(·, ·)dµ̂ ∈ Pi′(xi′)

and
1

µ̂(Ii′ \R)

∫
Ii′\R

f(·, ·)dµ̂ ∈ clPi′(xi′).
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3.2. THE CASE WHEN INTY+ ̸= ∅

Let δ = µ̂(R)
µ̂(Ii′ )

. Since

xi′ =
δ

µ̂(R)

∫
R
f(·, ·)dµ̂+

1− δ

µ̂(Ii′ \R)

∫
Ii′\R

f(·, ·)dµ̂,

xi′ ∈ Pi′(xi′), which is a contradiction. Thus, xi ∼i f(t, ·) for almost all t ∈ Ii and all

i ∈ N .

Theorem 3.2.2. Under the assumptions in Lemma 3.2.1, if f ∈ PC (Ec), then (f, π)

is a Walrasian equilibrium of Ec for some non-zero π : Ω → Y ∗
+.

Proof. Consider a correspondence F : I ⇒ Y Ω
+ defined by

F (t) = {g(t, ·) ∈ Lt : g(t, ·) ∈ Pt(f(t, ·))} .

By (B2), F (t) ̸= ∅ for all t ∈ I. Note that

H = ∥ · ∥Ω-cl
(∪{∫

S
Fdµ̂−

∫
S
adµ̂ : S ∈ M , µ̂(S) > 0

})
is a convex subset of Y Ω. Since H ∩ −intY Ω

+ = ∅, by the separation theorem, there is

a non-zero element π ∈ (Y ∗
+)

Ω such that for any coalition S,

∑
ω∈Ω

⟨y(ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨∫
S
a(·, ω)dµ̂, π(ω)

⟩

for all y ∈
∫
S Fdµ̂. Let x = Φ(f). By Lemma 3.2.1, xi ∼i f(t, ·) for almost all t ∈ Ii

and all i ∈ N . Pick an i ∈ N and a yi ∈ Pi(xi) ∩ Li. If yi ∈ Bi(π), by (B1), one can

construct some zi ∈ Bi(π) such that zi ∈ Pi(xi) and

∑
ω∈Ω

⟨∫
Ii

zi(ω)dµ̂, π(ω)

⟩
<
∑
ω∈Ω

⟨∫
Ii

ai(ω)dµ̂, π(ω)

⟩
,

which is a contradiction. Thus,∑
ω∈Ω

⟨yi(ω), π(ω)⟩ >
∑
ω∈Ω

⟨ai(ω), π(ω)⟩.

For almost all t ∈ Ii and i ∈ N , by (B2),∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨ai(ω), π(ω)⟩
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Using the feasibility of f , one can show that∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ =
∑
ω∈Ω

⟨ai(ω), π(ω)⟩

for almost all t ∈ Ii and all i ∈ N . Thus, (f, π) is a Walrasian equilibrium in Ec.

Corollary 3.2.3. Assume that intY+ ̸= ∅. Let x be a feasible allocation in E and

f = Ξ(x). Under (B1), (B2) and (B4), if f ∈ PC (Ec) then (f, π) is a non-trivial

Walrasian quasi-equilibrium of Ec for some non-zero π : Ω → Y ∗
+.

3.2.2 The Case When Y++ ̸= ∅

This section deals with an extension of Corollary 3.2.3 to an asymmetric information

economy whose commodity space is a Banach lattice containing a quasi-interior point

in its positive cone. The following properness assumption and the argument of getting

continuity of the equilibrium price in the next theorem are similar to those in (A8) and

Theorem 2 of [71]. The proof needs some additional construction because of the free

disposal assumption. Note that the definition of ATY -properness is originally inherited

from the M -properness introduced in [80].

Definition 3.2.1. [71] The preference relation Pi is called ATY-proper at xi ∈ Li if

there exists a convex subset P̃i(xi) of Y
Ω with non-empty ∥ · ∥Ω-interior such that

P̃i(xi) ∩ Li = Pi(xi) ∩ Li and
(
∥ · ∥Ω-intP̃i(xi)

)
∩ Li ̸= ∅.

(B8) If (x1, ..., xn) is a privately Pareto optimal allocation in E , then for each i ∈ N ,

Pi is ATY-proper at xi.

Theorem 3.2.4. Assume (B1)-(B4), (B6) and (B8). Let x be a feasible allocation in E

and f = Ξ(x). If f ∈ PC (Ec), then (f, π) is a non-trivial Walrasian quasi-equilibrium

of Ec for some non-zero π : Ω → Y ∗
+.

Proof. Let f ∈ PC (Ec) and Z = L(â), where â is selected according to (B6). Then,

(Z, ∥ · ∥â) is an AM -space with â as an order unit. Note that â ∈ ∥ · ∥â-intZ+, Z+ is

∥ · ∥â-closed in Z, and the ∥ · ∥â-closed unit ball of Z coincides with the order interval

[−â, â]. Define a new economy Ê which is identical with E except for the commodity

space being Z equipped with the ∥ · ∥â-topology, each agent’s consumption set being

Z+ in each state of nature ω ∈ Ω, and agent i’s ex ante preference relation being
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3.2. THE CASE WHEN Y++ ̸= ∅

P̂i : Z
Ω
+ ⇒ ZΩ

+, which is defined by P̂i(z) = Pi(z)∩ZΩ for all z ∈ ZΩ
+. If (y1, ..., yn) is a

feasible allocation of E , then yi(ω) ∈ Z+ for each i ∈ N and ω ∈ Ω. Thus, xi(ω) ∈ Z+

for each i ∈ N and ω ∈ Ω. Since
∑

i∈N ai(ω) is an order unit of Z,∑
i∈N

ai(ω) ∈ ∥ · ∥â-intZ+

for each ω ∈ Ω. Since (Z, ∥·∥â) is a Banach lattice, the ∥·∥-topology is weaker than the

∥ · ∥â-topology on Z. It follows that for any x ∈ ZΩ
+, P̂i(x) and P̂

−1
i (x) = P−1

i (x)∩ZΩ

are ∥ · ∥Ωâ -open in ZΩ
+. Thus, Ê satisfies (B1), (B2) and (B4), and f ∈ PC (Êc). By

Corollary 3.2.3, there is a non-zero positive element π̂ ∈ ((Z, ∥ · ∥â)∗)Ω such that (f, π̂)

is a non-trivial Walrasian quasi-equilibrium of Êc. It is required to show that there is a

non-zero positive element π ∈ ((Z, ∥ · ∥)∗)Ω such that (f, π) is a non-trivial Walrasian

quasi-equilibrium in Ec|Z , where Ec|Z is identical with Êc except for the commodity

space being Z with the norm ∥ · ∥.
Since (f, π̂) is a non-trivial Walrasian quasi-equilibrium of Êc, by Proposition 2.2.4,

(x, π̂) is a non-trivial Walrasian quasi-equilibrium of Ê . Thus, x is privately Pareto

optimal in Ê , and also in E . By (B8) and Definition 3.2.1, there is a convex and

∥ · ∥Ω-open subset Wi of Y
Ω such that

∅ ̸=Wi ∩ Li ⊆ Pi(xi) ∩ Li and ∥ · ∥Ω-cl(Pi(xi) ∩ Li) ⊆ ∥ · ∥Ω-clWi.

Since
∑

i∈N ai(ω) is a quasi-interior point of Y+ for each ω ∈ Ω, Z is ∥ · ∥-dense in Y .

By Lemma 2.1.2, Z+ is ∥ · ∥-dense in Y+. By definition, Li ∩ ZΩ
+ is ∥ · ∥Ω-dense in Li.

Thus, Wi ∩Li ∩ZΩ
+ ̸= ∅. Let Qi =Wi ∩ZΩ and L̂i = Li ∩ZΩ. Then, Qi is convex and

relatively ∥ · ∥Ω-open in ZΩ. Further, ∅ ̸= Qi ∩ L̂i ⊆ P̂i(xi) ∩ L̂i and

∥ · ∥ΩZ-cl(P̂i(xi) ∩ L̂i) ⊆ ∥ · ∥ΩZ-clQi.

By (B2), xi ∈ ∥ · ∥ΩZ-cl(P̂i(xi)∩ L̂i), and so xi ∈ ∥ · ∥ΩZ-clQi. For any yi ∈ Qi ∩ L̂i, since

yi ∈ Pi(xi) ∩ Li and (x, π̂) is a non-trivial Walrasian quasi-equilibrium,∑
ω∈Ω

⟨yi(ω), π̂(ω)⟩ ≥
∑
ω∈Ω

⟨xi(ω), π̂(ω)⟩ .

Since Ω is finite, π̂ ∈ ((Z, ∥ · ∥â)Ω)∗. By Lemma 2.1.1, there exist an element πi1 ∈
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((Z, ∥ · ∥)Ω)∗ and a linear functional πi2 on (Z, ∥ · ∥)Ω such that∑
ω∈Ω

⟨
xi(ω), π

i
1(ω)

⟩
≤
∑
ω∈Ω

⟨
yi(ω), π

i
1(ω)

⟩
for all yi ∈ Qi, ∑

ω∈Ω

⟨
xi(ω), π

i
2(ω)

⟩
≤
∑
ω∈Ω

⟨
yi(ω), π

i
2(ω)

⟩
for all yi ∈ L̂i, and π̂ = πi1+π

i
2. Since L̂i is a cone,

∑
ω∈Ω

⟨
xi(ω), π

i
2(ω)

⟩
= 0. It follows

that
∑

ω∈Ω
⟨
yi(ω), π

i
2(ω)

⟩
≥ 0 for all yi ∈ L̂i. Hence, one obtains

(3.2)
∑

ω∈Ω ⟨xi(ω), π̂(ω)⟩ =
∑

ω∈Ω
⟨
xi(ω), π

i
1(ω)

⟩
;

(3.3)
∑

ω∈Ω ⟨yi(ω), π̂(ω)⟩ ≥
∑

ω∈Ω
⟨
yi(ω), π

i
1(ω)

⟩
for all yi ∈ L̂i.

In what follows, let (Z, ∥ · ∥â)∗ be endowed with the dual order relative to the order of

Z. Since each yi ∈ L̂i can be written as yi =
∑

S∈Πi
ySi 1S , where y

S
i ∈ Z+, from (3.2)

and (3.3), it can be verified that the following hold for all S ∈ Πi:

(3.4)
∑

ω∈S π
i
1(ω) ≤

∑
ω∈S π̂(ω);

(3.5)
∑

ω∈S ⟨xi(ω), π̂(ω)⟩ =
∑

ω∈S
⟨
xi(ω), π

i
1(ω)

⟩
.

Pick an arbitrary element S ∈ Πi. Since π̂(ω) ≥ 0 for all ω ∈ S and the order dual of

Z is a Riesz space,

0 ∨
∑
ω∈S

πi1(ω) ≤
∑
ω∈S

π̂(ω).

By the Riesz Decomposition Property, there is an element π̃i ∈ ((Z, ∥ · ∥)∗)S such that

0 ≤ π̃i ≤ π̂ on S and ∑
ω∈S

π̃i(ω) = 0 ∨
∑
ω∈S

πi1(ω).

It is claimed that for each ω ∈ S,

⟨
xi(ω), π̃

i(ω)
⟩
= ⟨xi(ω), π̂(ω)⟩ .

To see this, let xi =
∑

R∈Πi
xRi 1R, where x

R
i ∈ Z+. By (3.5),

∑
ω∈S

⟨
xi(ω), π̃

i(ω)
⟩
≥

⟨
xSi ,

∑
ω∈S

πi1(ω)

⟩
=
∑
ω∈S

⟨xi(ω), π̂(ω)⟩ .

Moreover, ⟨
xi(ω), π̃

i(ω)
⟩
≤ ⟨xi(ω), π̂(ω)⟩
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3.2. THE CASE WHEN Y++ ̸= ∅

for each ω ∈ S. So, one has

⟨
xi(ω), π̃

i(ω)
⟩
= ⟨xi(ω), π̂(ω)⟩

for each ω ∈ S, and the claim is verified. Since Πi is a partition of Ω, there is an

element π̃i ∈ ((Z, ∥ · ∥)∗)Ω such that 0 ≤ π̃i ≤ π̂ on Ω and

⟨
xi(ω), π̃

i(ω)
⟩
= ⟨xi(ω), π̂(ω)⟩

for each ω ∈ Ω. Let N0 = N ∪ {0} and π̃0(ω) = 0 for each ω ∈ Ω. Since Z̃ is a Riesz

space, for each ω ∈ Ω, one can choose an element π̈(ω) ∈ Z̃ such that

π̈(ω) = sup
{
π̃i(ω) : i ∈ N

}
.

Then π̈ ∈ ((Z, ∥ · ∥)∗)Ω, and π̈ ≤ π̂. Define x0 ∈ ZΩ
+ such that

x0(ω) =
∑
i∈N

ai(ω)−
∑
i∈N

xi(ω)

for each ω ∈ Ω. By the Riesz-Kantorovich formulas, one obtains⟨∑
i∈N

ai(ω), π̈(ω)

⟩
= sup

∑
i∈N0

⟨
yi, π̃

i(ω)
⟩
: yi ∈ Z+,

∑
i∈N0

yi =
∑
i∈N

ai(ω)


≥

∑
i∈N0

⟨
xi(ω), π̃

i(ω)
⟩
=
∑
i∈N

⟨
xi(ω), π̃

i(ω)
⟩

=

⟨∑
i∈N

xi(ω), π̂(ω)

⟩
=

⟨∑
i∈N

ai(ω), π̂(ω)

⟩

for all ω ∈ Ω. Applying π̈ ≤ π̂, one has⟨∑
i∈N

ai(ω), π̈(ω)

⟩
=

⟨∑
i∈N

ai(ω), π̂(ω)

⟩

for each ω ∈ Ω. Note that Z = L(
∑

i∈N ai(ω)) for each ω ∈ Ω. Let z ∈ Z+ be fixed.

Choose δ > 0 be such that z ≤ δ
∑

i∈N ai(ω) for each ω ∈ Ω. Then,⟨(
δ
∑
i∈N

ai(ω)− z

)
, π̈(ω)

⟩
≤

⟨(
δ
∑
i∈N

ai(ω)− z

)
, π̂(ω)

⟩
,
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and so ⟨z, π̈(ω)⟩ ≥ ⟨z, π̂(ω)⟩ for each ω ∈ Ω. Consequently, π̈ ≥ π̂ and therefore, π̈ = π̂.

Thus, π̂ ∈ ((Z, ∥ · ∥)∗)Ω and (f, π̂) is a non-trivial Walrasian quasi-equilibrium of Ec|Z .
By the Hahn-Banach theorem, one can choose a positive element π ∈ ((Y, ∥ · ∥)∗)Ω

such that π is an extension of π̂. Since Lt ∩ ZΩ
+ is ∥ · ∥Ω-dense in Lt and Pt(f(t, ·)) is

∥ · ∥Ω-open for each t ∈ I, one can show that∑
ω∈Ω

⟨y(ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

for all y ∈ Pt(f(t, ·))∩Lt. Further, if
∑

ω∈Ω⟨a(t, ω), π(ω)⟩ > 0, then similar to Theorem

3.1.1, one can show that (f, π) is a non-trivial Walrasian quasi-equilibrium of Ec. This

completes the proof.

3.2.3 The Case When Y++ = ∅

In this subsection, a further extension of Theorem 3.2.4 to an economy whose com-

modity space has no quasi-interior points in its positive cone is given. The following

properness assumption and the argument of getting continuity of the equilibrium price

in the next theorem are similar to those in (A8′) and Theorem 3 of [71].

Definition 3.2.2. [71] The relation Pi : Li ⇒ Li is called strongly ATY-proper at

xi ∈ Li if there is a convex subset P̂i(xi) of Y
Ω with non-empty ∥ · ∥Ω-interior such that

P̂i(xi) ∩ Li = Pi(xi) ∩ Li and
(
∥ · ∥Ω-intP̂i(xi)

)
∩ Li ∩ L

(∑
i∈N

ai

)
̸= ∅.

(B9) If (x1, ..., xn) is a privately Pareto optimal allocation in E , then Pi is strongly

ATY-proper at xi for each i ∈ N .

Theorem 3.2.5. Assume (B1)-(B3), (B′
4), (B6) and (B9). Let x be a feasible al-

location in E and f = Ξ(x). If f ∈ PC (Ec), then (f, π) is a non-trivial Walrasian

quasi-equilibrium of Ec for some non-zero π : Ω → Y ∗
+.

Proof. Let f ∈ PC (Ec) and Z = L(â), where â is selected according to (B6). Then,

(X, ∥ · ∥) equipped with the order of (Y, ∥ · ∥) is a Banach lattice, where X denotes

the ∥ · ∥-closure of Z in Y . Note that for any feasible allocation (y1, ..., yn) of E , yi(ω)

belongs to Z+ for each i ∈ N and each ω ∈ Ω. In particular, xi(ω) ∈ Z+ for each

i ∈ N and each ω ∈ Ω. Clearly, for each i ∈ N , Pi|XΩ satisfies (B1)-(B3), where

Pi|XΩ is the preference relation of agent i on XΩ defined by Pi|XΩ(x) = XΩ ∩ Pi(x)
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for all x ∈ XΩ. Suppose that (y1, ..., yn) is a privately Pareto optimal allocation in

the economy E |X , which is identical with E except for the commodity space being X

and agent i’s preference being Pi|XΩ . Then (y1, ..., yn) is privately Pareto optimal in

E . Take P̃i(yi) = P̂i(yi) ∩ XΩ for each i ∈ N , where P̂i(yi) is chosen according to

(B9) and Definition 3.2.2. So, for each i ∈ N , P̃i(yi) is convex with non-empty relative

∥ · ∥Ω-interior in XΩ. Let L̂i = Li ∩XΩ for each i ∈ N . By (B9) and Definition 3.2.2,

for each i ∈ N ,

P̃i(yi) ∩ L̂i = Pi|XΩ(yi) ∩ L̂i,

and (∥·∥ΩX intP̃i(yi))∩L̂i ̸= ∅. Thus, (B1)-(B4), (B6) and (B8) are satisfied by E |X . Note

that f ∈ PC (Ec|X). By Theorem 3.2.4, there exists a non-zero positive element π ∈
(X∗)Ω such that (f, π) is a non-trivial Walrasian quasi-equilibrium in Ec|X . Therefore,

by Proposition 2.2.4, (x, π) is a non-trivial Walrasian quasi-equilibrium in E |X . By

the Hahn-Banach theorem, there is a non-zero positive element π̂ ∈ (Y ∗)Ω which is

an extension of π. Then, (x, π̂) satisfies all conditions of non-trivial Walrasian quasi-

equilibrium of E except for the fact that if
∑

ω∈Ω ⟨ai(ω), π̂(ω)⟩ ̸= 0, then∑
ω∈Ω

⟨yi(ω), π̂(ω)⟩ >
∑
ω∈Ω

⟨ai(ω), π̂(ω)⟩

for all yi ∈ Li \ L̂i satisfying yi ∈ Pi(xi).

Since (x, π) is a non-trivial Walrasian quasi-equilibrium in E |X , x is privately Pareto

optimal in E |X and hence, in E . Pick an i ∈ N . By (B9) and Definition 3.2.2, there is

a convex and ∥ · ∥Ω-open subset Qi of Y
Ω such that

∅ ̸= Qi ∩ L̂i ⊆ Pi|XΩ(xi) ∩ Li and ∥ · ∥Ω-cl(Pi(xi) ∩ Li) ⊆ ∥ · ∥Ω-clQi.

By (B2), xi ∈ ∥ · ∥Ω-cl(Pi(xi) ∩ Li) and hence, xi ∈ ∥ · ∥Ω-clQi. For any yi ∈ Qi ∩ L̂i,

since yi ∈ Pi|XΩ(xi)∩Li and (x, π̂) is a non-trivial Walrasian quasi-equilibrium in E|X ,∑
ω∈Ω

⟨yi(ω), π̂(ω)⟩ ≥
∑
ω∈Ω

⟨xi(ω), π̂(ω)⟩ .

Note that L̂i is convex, xi ∈ L̂i and π̂ ∈ (Y Ω)∗. By an argument similar to that in

Theorem 3.2.4, one can find an element πi1 ∈ (Y Ω)∗ such that∑
ω∈Ω

⟨
xi(ω), π

i
1(ω)

⟩
=
∑
ω∈Ω

⟨xi(ω), π̂(ω)⟩ ,
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∑
ω∈Ω

⟨
xi(ω), π

i
1(ω)

⟩
≤
∑
ω∈Ω

⟨
yi(ω), π

i
1(ω)

⟩
for all yi ∈ Qi, and ∑

ω∈Ω

⟨
yi(ω), π

i
1(ω)

⟩
≤
∑
ω∈Ω

⟨yi(ω), π̂(ω)⟩

for all yi ∈ L̂i. Since π
i
1 is ∥ · ∥Ω-continuous and

∥ · ∥Ω-cl(Pi(xi) ∩ Li) ⊆ ∥ · ∥Ω-clQi,

one obtains ∑
ω∈Ω

⟨
xi(ω), π

i
1(ω)

⟩
≤
∑
ω∈Ω

⟨
yi(ω), π

i
1(ω)

⟩
for all yi ∈ Pi(xi) ∩ Li. Now, consider two elements πi⋆, π

⋆ ∈ (Y Ω)∗+ defined by

⟨
yi, π

i
⋆

⟩
=
∑
ω∈Ω

⟨
ySi (ω), π

i
1(ω)

⟩
and ⟨yi, π⋆⟩ =

∑
ω∈Ω

⟨
ySi (ω), π̂(ω)

⟩
,

where

ySi =
1

|S|
∑
ω∈S

yi(ω)1S

for S ∈ Πi. Then π̃
i = πi⋆ + π̂ − π⋆ ∈ (Y Ω)∗, and it can be verified that

(3.6)
∑

ω∈Ω
⟨
xi(ω), π̃

i(ω)
⟩
=
∑

ω∈Ω ⟨xi(ω), π̂(ω)⟩;

(3.7)
∑

ω∈Ω
⟨
xi(ω), π̃

i(ω)
⟩
≤
∑

ω∈Ω
⟨
yi(ω), π̃

i(ω)
⟩
for all yi ∈ Pi(xi) ∩ Li; and

(3.8)
∑

ω∈Ω
⟨
z(ω), π̃i(ω)

⟩
≤
∑

ω∈Ω ⟨z(ω), π̂(ω)⟩ for all z ∈ XΩ
+.

Since Y is a locally solid Riesz space, Y ∗ is an ideal in the order dual of Y . Let

N0 = N ∪ {0} and π̃0(ω) = 0 for each ω ∈ Ω. Define π̈ ∈ (Y ∗)Ω such that

π̈(ω) = sup
{
π̃i(ω) : i ∈ N0

}
for each ω ∈ Ω, and x0 ∈ ZΩ

+ such that

x0(ω) =
∑
i∈N

ai(ω)−
∑
i∈N

xi(ω)

for each ω ∈ Ω. By the Riesz-Kantorovich formulas and techniques similar to those in
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Theorem 3.2.4, one has⟨∑
i∈N

ai(ω), π̈(ω)

⟩
≥
∑
i∈N

⟨
xi(ω), π̃

i(ω)
⟩

for each ω ∈ Ω. Using (3.6), one obtains

∑
ω∈Ω

⟨∑
i∈N

ai(ω), π̈(ω)

⟩
≥
∑
ω∈Ω

⟨∑
i∈N

ai(ω), π̂(ω)

⟩
.

Further, the Riesz-Kantorovich formulas and (3.8) imply∑
ω∈Ω

⟨z(ω), π̈(ω)⟩ ≤
∑
ω∈Ω

⟨z(ω), π̂(ω)⟩

for all z ∈ XΩ
+. Since ZΩ = L

(∑
i∈N ai

)
, one has π̈ ≡ π̂ on ZΩ, combining with (3.6)

and (3.7), one derives ∑
ω∈Ω

⟨xi(ω), π̈(ω)⟩ ≤
∑
ω∈Ω

⟨yi(ω), π̈(ω)⟩

for all yi ∈ Pi(xi)∩Li. Suppose that
∑

ω∈Ω ⟨ai(ω), π(ω)⟩ ̸= 0. It follows from (B2) and

the fact that (x, π̈) is a non-trivial Walrasian equilibrium in E |X ,∑
ω∈Ω

⟨xi(ω), π̈(ω)⟩ =
∑
ω∈Ω

⟨ai(ω), π̈(ω)⟩ .

By (B1), one obtains ∑
ω∈Ω

⟨ai(ω), π̈(ω)⟩ <
∑
ω∈Ω

⟨yi(ω), π̈(ω)⟩

for all yi ∈ Pi(xi) ∩ Li. Thus, (x, π̈) is a non-trivial Walrasian quasi-equilibrium in E .

By Proposition 2.2.4, (f, π̈) is a non-trivial Walrasian quasi-equilibrium in Ec.
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Chapter 4

Blocking Efficiency of the Core

Solutions

In this chapter, the economic model given in Subsection 2.2.2 is further studied. Sharp

interpretations of various core solutions are provided in economies with asymmetric

information, atomless measure spaces of agents, finitely many states of nature and

infinite dimensional commodity spaces. Firstly, an extension of a result in [47] to an

economy with a Banach lattice as the commodity space is established in Section 4.1.

The main result in this section is taken from [22]. Section 4.2 deals with a Vind-

type theorem for the private core without free disposal condition in an asymmetric

information economy whose commodity space is an ordered Banach space having an

interior point in its positive cone. In particular, an answer to the question in Remark 1

of [72] is given. For particular interests, a variation of Grodal’s theorem is also obtained

in this section. In Section 4.3, similar investigations on the (strong) fine core without

free disposal, introduced in [87], are continued. The main results in Sections 4.2 and

4.3 are taken from [20].

4.1 The Private Core with Equal Treatment

In this section, an extension of Vind’s theorem is given to an asymmetric information

economy with a continuum of agents having the equal treatment property, finitely

many states of nature and a Banach lattice as the commodity space. This result can

be treated as an extension of Proposition 3.1 in [46] and Theorem 3.3 in [47], and is

established without using any convexity theorem on the commodity space. Throughout

this section, T = N and Y is a Banach lattice.
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4.1. THE PRIVATE CORE WITH EQUAL TREATMENT

Lemma 4.1.1. Assume (B1), (B3) and (B5). Let x be an allocation and f = Ξ(x).

If f is privately blocked in Ec, then it is privately blocked by a coalition S ⊆ I via an

assignment g such that g(t, ·) = yi ∈ Li if t ∈ S ∩ Ii and i ∈ N , and∫
S
(a(·, ω)− g(·, ω))dµ̂ ≥ z

for all ω ∈ Ω, where z > 0.

Proof. Since f is privately blocked in Ec, there are a coalition Ŝ ⊆ I and an assignment

ĥ such that ĥ(t, ·) ∈ Lt and ĥ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ Ŝ, and∫
Ŝ
ĥ(·, ω)dµ̂ ≤

∫
Ŝ
a(·, ω)dµ̂

for all ω ∈ Ω. Let Ŝi = Ŝ ∩ Ii for each i ∈ N , N̂ = {i ∈ N : µ̂(Ŝi) ̸= 0}, and

S =
∪

i∈N̂ Ŝi. For each i ∈ N̂ and ω ∈ Ω, put

zi(ω) =
1

µ̂(Ŝi)

∫
Ŝi

ĥ(·, ω)dµ̂.

Then zi ∈ Li for all i ∈ N̂ . Define h : S ×Ω → Y+ by h(t, ω) = zi(ω) if (t, ω) ∈ Ŝi ×Ω.

Clearly, for each ω ∈ Ω, ∫
S
h(·, ω)dµ̂ ≤

∫
S
a(·, ω)dµ̂,

equivalently, ∑
i∈N̂

zi(ω)µ̂(Ŝi) ≤
∑
i∈N̂

ai(ω)µ̂(Ŝi).

Moreover, Lemma 2.2.3 implies that zi ∈ Pi(xi) for all i ∈ N̂ . Choose a sequence

{cm : m ≥ 1} ⊆ (0, 1) converging to 0. For each i ∈ N̂ and each integer m ≥ 1, define

a function ymi : Ω → Y+ by

ymi (ω) = (1− cm)zi(ω).

Then ymi ∈ Li for all i ∈ N̂ . For each i ∈ N̂ , since zi ∈ Pi(xi) and Pi(xi) is ∥ · ∥Ω-open,
then ymi ∈ Pi(xi) for all i ∈ N̂ whenever m is sufficiently large. If one chooses such an

m, then ∑
i∈N̂

ymi (ω)µ̂(Ŝi) ≤ (1− cm)
∑
i∈N̂

ai(ω)µ̂(Ŝi),
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and consequently,∑
i∈N̂

ai(ω)µ̂(Ŝi)−
∑
i∈N̂

ymi (ω)µ̂(Ŝi) ≥ cm
∑
i∈N̂

ai(ω)µ̂(Ŝi).

Let

z = inf

cm∑
i∈N̂

ai(ω)µ̂(Ŝi) : ω ∈ Ω

 .

By (B5), one has z > 0. Define g : S × Ω → Y+ such that g(t, ω) = ymi (ω) for

all (t, ω) ∈ Ŝi × Ω; and g(t, ω) = a(t, ω), otherwise. Then g is an allocation and∫
S(a(·, ω)− g(·, ω))dµ̂ ≥ z for all ω ∈ Ω, which is required by the lemma.

Theorem 4.1.2. Assume (B1)-(B3) and (B5). Let x be a feasible allocation in E and

f = Ξ(x). If f /∈ PC (Ec), then for any 0 < ε < 1, there is a coalition S with µ̂(S) = ε

privately blocking f .

Proof. Since f /∈ PC (Ec), by Lemma 4.1.1, there is a coalition S ⊆ I that privately

blocks f via an assignment g such that
∫
S(a(·, ω) − g(·, ω))dµ̂ ≥ z for all ω ∈ Ω and

g(t, ·) = yi ∈ Li if t ∈ Ŝi, where Ŝi = S ∩ Ii for all i ∈ N . Choose a λ ∈ (0, 1). Since µ̂

is atomless, there is some Ei ⊆ Ŝi such that µ̂(Ei) = λµ̂(Ŝi). Moreover, for any t ∈ Ŝi,

a(t, ·)− g(t, ·) = ai − yi. Hence,∫
Ei

(a(·, ω)− g(·, ω))dµ̂ = (ai(ω)− yi(ω))λµ̂(Ŝi) = λ

∫
Ŝi

(a(·, ω)− g(·, ω))dµ̂

for all ω ∈ Ω. Take E =
∪

i∈N̂ Ei. Then, µ̂(E) = λµ̂(S) and∫
E
(a(·, ω)− g(·, ω))dµ̂ = λ

∫
S
(a(·, ω)− g(·, ω))dµ̂

for all ω ∈ Ω. Since λ
∫
S(a(·, ω) − g(·, ω))dµ̂ > 0 for any ω ∈ Ω, there is a coalition

E ⊆ S with µ̂(E) = λµ̂(S) privately blocking f via g. This proves the theorem for

ε ≤ µ̂(S). If µ̂(S) = 1, the proof has been completed. Otherwise, µ̂(I \ S) > 0 and one

needs to consider the case ε > µ̂(S). Let R = I \ S and

λ = 1− ε− µ̂(S)

µ̂(R)
.

Then 0 < λ < 1 and define gλ : S × Ω → Y+ such that

gλ(t, ω) = λg(t, ω) + (1− λ)f(t, ω).
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Note that f(t, ·) ∈ clPt(f(t, ·)) for all t ∈ S. So, by (B1), one has gλ(t, ·) ∈ Pt(f(t, ·))
and gλ(t, ·) ∈ Lt for all t ∈ S. Put Ri = R ∩ Ii for all i ∈ N . Since µ̂ is atomless,

for each i ∈ N , there is some Bi ⊆ Ri such that µ̂(Bi) = (1 − λ)µ̂(Ri). Moreover,

a(t, ·)− f(t, ·) = ai − xi for any t ∈ Ri. Hence,∫
Bi

(a(·, ω)− f(·, ω))dµ̂ = (1− λ)

∫
Ri

(a(·, ω)− f(·, ω))dµ̂

for all ω ∈ Ω. Let B =
∪

i∈N Bi. Then µ̂(B) = (1− λ)µ̂(R) and∫
B
(a(·, ω)− f(·, ω))dµ̂ = (1− λ)

∫
R
(a(·, ω)− f(·, ω))dµ̂

for all ω ∈ Ω. Define a function hλ : R× Ω → Y+ by

hλ(t, ω) = f(t, ω) +
λµ̂(S)

µ̂(B)
z.

Since f(t, ·) ∈ Lt and z is constant, hλ(t, ·) ∈ Lt for all t ∈ R. By (B2), hλ(t, ·) ∈
Pt(f(t, ·)) for all t ∈ B. Put S̃ = S ∪B. Then µ̂(S̃) = ε. It is claimed that S privately

blocks f . Define an allocation yλ : I × Ω → Y+ such that

yλ(t, ω) =

 gλ(t, ω), if (t, ω) ∈ S × Ω;

hλ(t, ω), otherwise.

Clearly, yλ(t, ·) ∈ Pt(f(t, ·))∩Lt for all t ∈ S̃. It remains to verify that yλ is feasible for

S̃. Since
∫
S(a(·, ω)− g(·, ω))dµ̂ ≥ z for all ω ∈ Ω, one has∫

S̃
(a(·, ω)− yλ(·, ω))dµ̂ ≥ λz + (1− λ)

∫
S
(a(·, ω)− f(·, ω))dµ̂

+

∫
B
(a(·, ω)− f(·, ω))dµ̂− λµ̂(S)z.

On the other hand, λz − λµ̂(S)z = λµ̂(R)z > 0, and∫
B
(a(·, ω)− f(·, ω))dµ̂ = (1− λ)

∫
R
(a(·, ω)− f(·, ω))dµ̂.

Combining the previous inequalities and equalities, one obtains∫
S̃
(a(·, ω)− yλ(·, ω))dµ̂ > (1− λ)

∫
I
(a(·, ω)− f(·, ω))dµ̂ ≥ 0
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for all ω ∈ Ω, which verifies that S̃ privately blocks f via yλ.

4.2 The Private Core without Free Disposal

When feasibility is defined with free disposal, Walrasian allocations may not be in-

centive compatible and contracts may not be enforceable, refer to [9]. Thus, to avoid

this problem, it is desirable to consider a framework without free disposal. Recently,

Angeloni and Martins-da-Rocha [9] showed that Aumann’s equivalence theorem is still

valid in a framework with asymmetric information and without free disposal. As a re-

sult, whether Vind’s theorem is still valid in the same framework emerges as a question.

Indeed, as mentioned in [72], whether there is a Vind-type theorem on the private core

in an asymmetric information economy without free disposal even for a finite dimen-

sional commodity space is still an open problem. In this section, a positive answer to

this question is given for an asymmetric information economy with an ordered Banach

space having an interior point in its positive cone as the commodity space. To achieve

this goal, one needs several technical lemmas, and the proof of the following one can be

found in that of Lemma 1 in [36]. For the sake of completeness, a full proof is provided

here.

Lemma 4.2.1. Assume (A1) and (A2). Let f, h be assignments and S be a coalition

in E such that h(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S. Suppose that {cm : m ≥ 1} is a

monotonically decreasing sequence in (0, 1) converging to 0 and hm : S × Ω → Y+ is a

function defined by hm(t, ω) = (1 − cm)h(t, ω) for all (t, ω) ∈ S × Ω. Then there is a

monotonically increasing sequence {Sm : m ≥ 1} ⊆ ΣS such that hm(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ Sm and limm→∞ µ(S \ Sm) = 0.

Proof. By ignoring a µ-null subset of S, one can choose a separable closed linear sub-

space Z of Y Ω such that

f(S, ·) ∪ h(S, ·) ∪ a(S, ·) ⊆ Z.

Define a correspondence P f : S ⇒ Z by P f (t) = P f
Z(t). By (A1), GrP f ∈ ΣS ⊗ B(Z).

For any ε > 0, define a correspondence Nε : S ⇒ Z such that for each t ∈ S,

Nε(t) = {y ∈ Z : ∥y − h(t, ·)∥ < ε}.
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Then, GrNε ∈ ΣS ⊗ B(Z). Choose εt such that

εt = sup
{
ε > 0 : Nε(t) ⊆ P f (t)

}
for all t ∈ S. By (A2), εt > 0 for almost all t ∈ S. Let β > 0. Then,

{t ∈ S : εt < β} =
∪

r∈Q∩(0,β)

{
t ∈ S : Nr(t) ∩

(
Z \ P f (t)

)
̸= ∅
}
,

which is the projection of the set∪
r∈Q∩(0,β)

(GrNr ∩ ((S × Z) \GrP f )) ∈ ΣS ⊗ B(Z)

on S. By the projection theorem, {t ∈ S : εt < β} ∈ ΣS , which means that the function

t 7→ εt is measurable. For each m ≥ 1, put

Sm = {t ∈ S : ∥hm(t, ·)− h(t, ·)∥ < εt}.

It is clear that Sm ∈ ΣS , Sm ⊆ Sm+1 for all m ≥ 1 and
∪

m≥1 Sm ∼ S. Hence,

limm→∞ µ(S \Sm) = 0. By the definition of εt, one concludes that hm(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ Sm.

Definition 4.2.1. [87] A coalition S is said to be NY-privately 1 blocking an allocation

f in E if there is an assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for

almost all t ∈ S, and ∫
S
g(·, ω)dµ =

∫
S
a(·, ω)dµ

for all ω ∈ Ω. The NY-private core of E , denoted by PCNY (E ), is the set of exactly

feasible allocations which are not NY -privately blocked by any coalition.

Throughout the rest of this chapter, suppose that T = T0, and intY+ ̸= ∅. The

following result can be viewed as an infinite dimensional extension of Vind’s theorem

to the private core without free disposal.

Theorem 4.2.2. Assume (A1)-(A4). If f is an exactly feasible allocation and f ̸∈
PCNY (E ), then for any 0 < ε < µ(T ) there exists a coalition S in E which NY -

privately blocks f with µ(S) = ε.

1Here, NY is the abbreviation of Nicholas Yannelis, which is used to distinguish it from the concept
of privately blocking.
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Proof. Since f ̸∈ PCNY (E ), there exist a coalition S and an assignment g such that

g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S, and
∫
S g(·, ω)dµ =

∫
S a(·, ω)dµ

for all ω ∈ Ω. For all ω ∈ Ω and Q ∈ P(S), let

eQ(ω) =
1

µ(S ∩ TQ)

∫
S∩TQ

a(·, ω)dµ.

Choose an e ≫ 0 such that e ≤ 1
3eQ(ω) for all ω ∈ Ω and Q ∈ P(S). Next, choose an

open ball U with center 0 such that e−U ⊆ intY+. Let {cm : m ≥ 1} be a monotonically

decreasing sequence in (0, 1) converging to 0. Pick an arbitrary element Q ∈ P(S),

and then define a function gQ
m : (S ∩ TQ)× Ω → Y+ such that

gQ
m(t, ω) = (1− cm)g(t, ω) + cm(eQ(ω)− 2e).

By Lemma 4.2.1 and (A3), there is a monotonically increasing sequence
{
SQ
m : m ≥ 1

}
⊆

ΣS∩TQ
such that limm→∞

(
(S ∩ TQ) \ SQ

m

)
= 0 and gQ

m(t, ·) ∈ Pt(f(t, ·)) for almost all

t ∈ SQ
m . By absolute continuity of the Bochner integral, there exists some δ > 0 such

that
2

µ(S ∩ TQ)

∫
RQ

(g(·, ω)− eQ(ω)) dµ ∈ U

for all ω ∈ Ω and RQ ∈ ΣS∩TQ
with µ(RQ) < δ and all Q ∈ P(S). Choose any λ with

0 < λ < 1. For each Q ∈ P(S), choose an mQ such that

µ
(
SQ
mQ

)
>

(
1− λ

2

)
µ(S ∩ TQ) and µ

(
(S ∩ TQ) \ SQ

mQ

)
< δ.

Let m0 = max{mQ : Q ∈ P(S)}. Then, it follows that for all ω ∈ Ω and Q ∈ P(S),

1

µ(SQ
m0

)

∫
(S∩TQ)\SQ

m0

(g(·, ω)− eQ(ω)) dµ ∈ U.

Now, for each Q ∈ P(S) and (t, ω) ∈ SQ
m0

× Ω, set

x(t, ω) = eQ(ω)− 1

µ(SQ
m0

)

∫
(S∩TQ)\SQ

m0

(g(·, ω)− eQ(ω)) dµ.

Consider a function yQ : (S ∩ TQ)× Ω → Y+ defined by

yQ(t, ω) =

 (1− cm0)g(t, ω) + cm0x(t, ω), if (t, ω) ∈ SQ
m0

× Ω;

g(t, ω), otherwise.
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Since yQ(t, ω) ≫ gQ
m0

(t, ω)+ cm0e for all (t, ω) ∈ SQ
m0

×Ω, by (A3), y
Q(t, ·) ∈ Pt(f(t, ·))

for almost all t ∈ SQ
m0

. Thus, yQ(t, ·) ∈ Lt and yQ(t, ·) ∈ Pt(f(t, ·)) for almost all

t ∈ S ∩ TQ. Moreover,

(4.1)

∫
S∩TQ

yQ(·, ω)dµ =

∫
S∩TQ

((1− cm0)g(·, ω) + cm0a(·, ω)) dµ

for all ω ∈ Ω. By Corollary 2.1.5, there exists a sequence {FQ
n : n ≥ 1} ⊆ ΣS∩TQ

such

that µ(FQ
n ) = λµ(S ∩ TQ) and for all ω ∈ Ω,

lim
n→∞

∫
FQ
n

(
yQ(·, ω)− a(·, ω)

)
dµ = λ

∫
S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ.

The function bQn : Ω → Y+, defined by

bQn (ω) = λ

∫
S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ−

∫
FQ
n

(
yQ(·, ω)− a(·, ω)

)
dµ,

is Q-measurable for all n ≥ 1 and limn→∞ ∥bQn (ω)∥ = 0 for all ω ∈ Ω. Note that

inf
{
µ(FQ

n ∩ SQ
m0

) : n ≥ 1
}
≥ λ

2
µ(S ∩ TQ).

Choose an nQ such that 2
λµ(S∩TQ) b

Q
nQ

(ω) ∈ cm0U for all ω ∈ Ω. Then, one has

cm0e+
1

µ
(
FQ
nQ

∩ SQ
m0

) bQnQ
(ω) ≫ 0

for all ω ∈ Ω. Define a function gQ : FQ
nQ

× Ω → Y+ such that

gQ(t, ω) =

 yQ(t, ω) +
bQ
nQ

(ω)

µ
(
FQ
nQ

∩SQ
m0

) , if (t, ω) ∈
(
FQ
nQ

∩ SQ
m0

)
× Ω;

yQ(t, ω), otherwise.

By (A3) and the fact that gQ
m0

(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ FQ
nQ

∩ SQ
m0

, one has

gQ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ FQ
nQ

∩ SQ
m0

. So, gQ(t, ·) ∈ Lt and gQ(t, ·) ∈
Pt(f(t, ·)) for almost all t ∈ FQ

nQ
. Furthermore,

(4.2)

∫
FQ
nQ

(gQ(·, ω)− a(·, ω))dµ = λ

∫
S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ

for all ω ∈ Ω. Let F =
∪
{FQ

nQ
: Q ∈ P(S)}. So µ(F ) = λµ(S). Define a function
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h : T × Ω → Y+ such that h(t, ω) = gQ(t, ω) if (t, ω) ∈ FQ
nQ

× Ω; and h(t, ω) = g(t, ω),

otherwise. Then, h is an allocation and h(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ F . By

(4.1)-(4.2), one obtains
∫
F (h(·, ω) − a(·, ω))dµ = 0 for all ω ∈ Ω. Thus, f is NY -

privately blocked by F via h. This proves the theorem for ε ≤ µ(S). If µ(S) = µ(T ),

the proof has been completed. Otherwise, one needs to consider the case for ε > µ(S).

Let A = T \ S, and let the λ be chosen such that

λ = 1− ε− µ(S)

µ(A)
.

Furthermore, let

S′ =
∪{

SQ
m0

: Q ∈ P(S)
}

and u =
λcm0µ(S

′)

2(ε− µ(S))
e.

Again, pick an arbitrary element Q ∈ P(A). By Corollary 2.1.5, there exists a sequence

{BQ
k : k ≥ 1} ⊆ ΣA∩TQ

such that µ
(
BQ

k

)
= (1− λ)µ(A ∩ TQ) and for all ω ∈ Ω,

lim
k→∞

∫
BQ

k

(a(·, ω)− f(·, ω)− u)dµ = (1− λ)

∫
A∩TQ

(a(·, ω)− f(·, ω)− u)dµ.

The function dQ
k : Ω → Y+, defined by

dQ
k (ω) = (1− λ)

∫
A∩TQ

(a(·, ω)− f(·, ω)− u)dµ−
∫
BQ

k

(a(·, ω)− f(·, ω)− u) dµ,

is Q-measurable for all k ≥ 1 and limk→∞ ∥dQ
k (ω)∥ = 0 for all ω ∈ Ω. Choose some kQ

such that

u−
dQ
kQ

(ω)

(1− λ)µ(A ∩ TQ)
≫ 0

for each ω ∈ Ω, and then consider the function fQ : BQ
kQ

× Ω → Y+ defined by

fQ(t, ω) = f(t, ω) + u− 1

(1− λ)µ(A ∩ TQ)
dQ
kQ

(ω).

Obviously, fQ(t, ·) ∈ Lt for almost all t ∈ BQ
kQ

. By (A3), f
Q(t, ·) ∈ Pt(f(t, ·)) for all

t ∈ BQ
kQ

. Furthermore, for each ω ∈ Ω,

(4.3)

∫
BQ

kQ

(
a(·, ω)− fQ(·, ω)

)
dµ = (1− λ)

∫
A∩TQ

(a(·, ω)− f(·, ω)− u)dµ.
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Let B =
∪
{BQ

kQ
: Q ∈ P(A)}. Then, µ(B) = (1 − λ)µ(A). Now, define a function

fλ : B × Ω → Y+ such that fλ(t, ω) = fQ(t, ω) if (t, ω) ∈ BQ
kQ

× Ω, and for any

Q ∈ P(S), consider the function ŷQ : (S ∩ TQ)× Ω → Y+ defined by

ŷQ(t, ω) =

 yQ(t, ω)− cm0
2 e, if (t, ω) ∈ SQ

m0
× Ω;

yQ(t, ω), otherwise.

Recall that yQ(t, ω) ≫ gQ
m0

(t, ω)+cm0e for all (t, ω) ∈ SQ
m0

×Ω and gQ
m0

(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ SQ

m0
. By (A3), ŷ

Q(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ SQ
m0

. So,

ŷQ(t, ·) ∈ Lt and ŷ
Q(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S ∩ TQ. Take

Ŝ =
∪

{S ∩ TQ : Q ∈ P(S)}.

Then, µ(Ŝ) = µ(S). Define yλ : Ŝ × Ω → Y+ by yλ(t, ω) = ŷQ(t, ω) if (t, ω) ∈
(S ∩ TQ)× Ω. It can be checked that for each ω ∈ Ω,

(4.4)

∫
Ŝ
a(·, ω)dµ−

∫
Ŝ
yλ(·, ω)dµ =

cm0µ(S
′)

2
e.

For any given Q ∈ P(S), define the function xQ : (S ∩ TQ)× Ω → Y+ by

xQ(t, ω) =

 gQ
m0

(t, ω), if (t, ω) ∈ SQ
m0

× Ω;

g(t, ω), otherwise,

and consider another function pQ : (S ∩ TQ)× Ω → Y+ defined by

pQ(t, ω) = yQ(t, ω)− xQ(t, ω).

Note that pQ(t, ω) ≫ cm0e for all (t, ω) ∈ SQ
m0

× Ω, pQ(t, ω) = 0 for all (t, ω) ∈
((S ∩ TQ) \ SQ

m0
) × Ω and pQ(t, ·) ∈ Lt for almost all t ∈ S ∩ TQ. Define a function

δQ : Ω → Y+ such that for each ω ∈ Ω,

δQ(ω) = λ

(∫
SQ
m0

pQ(·, ω)dµ−
cm0µ(S

Q
m0

)

2
e

)
.

Then δQ(ω) ≫ 0 for each ω ∈ Ω and δQ is Q-measurable. Choose an open neighborhood
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W of 0 such that δQ(ω)−W ⊆ intY+ for all ω ∈ Ω. Note that∫
S∩TQ

xQdµ ∈ cl

∫
S∩TQ

Pfdµ,

where Pf : T ⇒ Y Ω
+ is defined in Subsection 2.2.2. By (A3),∫

S∩TQ

fdµ ∈ cl

∫
S∩TQ

Pfdµ.

Since cl
∫
S∩TQ

Pfdµ is convex,

λ

∫
S∩TQ

xQdµ+ (1− λ)

∫
S∩TQ

fdµ ∈ cl

∫
S∩TQ

Pfdµ.

It follows that(
λ

∫
S∩TQ

xQdµ+ (1− λ)

∫
S∩TQ

fdµ+WΩ

)∩∫
S∩TQ

Pfdµ ̸= ∅.

So, there exist a Q-measurable element uQ ∈WΩ and an integrable selection vQ of Pf

such that

λ

∫
S∩TQ

xQdµ+ (1− λ)

∫
S∩TQ

fdµ+ uQ =

∫
S∩TQ

vQdµ.

Define a function hQ : (S ∩ TQ)× Ω → Y+ such that for all (t, ω) ∈ (S ∩ TQ)× Ω,

hQ(t, ω) = vQ(t, ω) +
1

µ(S ∩ TQ)

(
δQ(ω)− uQ(ω)

)
.

By (A3), h
Q(t, ·) ∈ Pt(f(t, ·)) and hQ(t, ·) ∈ Lt for almost all t ∈ S ∩ TQ, and∫

S∩TQ

hQ(·, ω)dµ = λ

∫
S∩TQ

xQ(·, ω)dµ+ (1− λ)

∫
S∩TQ

f(·, ω)dµ+ δQ(ω).

Let hλ : Ŝ × Ω → Y+ be defined by hλ(t, ω) = hQ(t, ω) if (t, ω) ∈ (S ∩ TQ)× Ω. Then,

hλ(t, ·) ∈ Lt and hλ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ Ŝ. Finally, it can be simply

verified that for each ω ∈ Ω,

(4.5)

∫
Ŝ
hλ(·, ω)dµ = λ

∫
Ŝ
yλ(·, ω)dµ+ (1− λ)

∫
Ŝ
f(·, ω)dµ.

Let S̃ = Ŝ ∪B. By the selection of λ, one has µ(S̃) = µ(S) + (1− λ)µ(A) = ε. It only

remains to verify that S̃ NY -privately blocks f . To this end, consider the function
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gλ : T × Ω → Y+ defined by

gλ(t, ω) =


hλ(t, ω), if (t, ω) ∈ Ŝ × Ω;

fλ(t, ω), if (t, ω) ∈ B × Ω;

g(t, ω), otherwise.

Obviously, gλ is an allocation satisfying gλ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S̃.

Furthermore, using (4.3)- (4.5), it can be simply verified that∫
S̃
(a(·, ω)− gλ(·, ω))dµ = (1− λ)

∫
T
(a(·, ω)− f(·, ω))dµ = 0

holds for all ω ∈ Ω. This completes the proof.

This section concludes with an extension of Grodal’s theorem in [44] to an asym-

metric information economy with an ordered Banach space Y having an interior point

in its positive cone as the commodity space and without free disposal. When Y = Rℓ,

an extension of Grodal’s theorem to an asymmetric information economy is straight-

forward, where the number of sub-coalitions is at most |Ω|ℓ. In the case of infinitely

many commodities, the situation is quite different, and there is no immediate extension

of Grodal’s theorem. As an application of Theorem 4.2.2, similar to Corollary 2 in [36],

one has the following extension of Grodal’s theorem.

Theorem 4.2.3. Assume (A1)-(A4). Let T be endowed with a pseudometric which

makes T a separable topological space such that B(T ) ⊆ Σ, f an exactly feasible allo-

cation and f ̸∈ PCNY (E ). For any ε, δ > 0, there exists a coalition R with µ(R) ≤ ε

privately blocking f and R =
∪n

i=1Ri for a finite collection of coalitions {R1, ..., Rn}
with diameter of Ri smaller than δ for all i = 1, ..., n.

Proof. By Theorem 4.2.2, there exists a coalition S with µ(S) = ε privately blocking f

via g. It is claimed that there exists a η > 0 such that any coalition E ⊆ S satisfying

µ(S\E) < η privately blocks f via some assignment h. To verify the claim, applying an

argument similar to that in Theorem 4.2.2, for each Q ∈ P(S), one can find a function

yQ : (S ∩ TQ)× Ω → Y+ such that yQ(t, ·) ∈ Lt and y
Q(t, ·) ∈ Pt(f(t, ·)) for almost all

t ∈ S ∩ TQ, and (4.1) holds. By absolute continuity of the Bochner integral, there is

an η1 > 0 such that

2

λµ(S ∩ TQ)

∫
EQ

(
yQ(·, ω)− a(·, ω)

)
dµ ∈ cm0U
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for all ω ∈ Ω and EQ ∈ ΣS∩TQ satisfying µ(EQ) < η1 and all Q ∈ P(S). Further, for

all EQ ∈ ΣS∩TQ
with µ(EQ) > λµ(S ∩ TQ), one has

µ(EQ ∩ SQ
m0

) >
λ

2
µ(S ∩ TQ).

Choose η > 0 such that

η = min{η1, (1− λ)µ(S ∩ TQ) : Q ∈ P(S)}.

Pick any EQ ∈ ΣS∩TQ
such that µ((S ∩ TQ) \ EQ) < η. Then,

µ(EQ ∩ SQ
m0

) >
λ

2
µ(S ∩ TQ).

Let

bQ(ω) =
1

µ(EQ ∩ SQ
m0

)

∫
(S∩TQ)\EQ

(
yQ(·, ω)− a(·, ω)

)
dµ

for each ω ∈ Ω. It follows that cm0e + bQ(ω) ≫ 0 for all ω ∈ Ω. Define a function

gQ : EQ × Ω → Y+ such that

gQ(t, ω) =

 yQ(t, ω) + bQ(ω), if (t, ω) ∈
(
EQ ∩ SQ

m0

)
× Ω;

yQ(t, ω), otherwise.

Recall that yQ(t, ω) ≫ gQ
m0

(t, ω) + cm0e and gQ
m0

(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈
EQ ∩ SQ

m0
. By (A3), one has gQ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ EQ ∩ SQ

m0
. Thus,

gQ(t, ·) ∈ Lt and g
Q(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ EQ, and∫

EQ

(gQ(·, ω)− a(·, ω))dµ =

∫
S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ

for all ω ∈ Ω. Now for any E ∈ ΣS with µ(S \ E) < η, µ((S ∩ TQ) \ (E ∩ TQ)) < η

for all Q ∈ P(S). So, for each Q ∈ P(S), there is a function gQ : (E ∩ TQ)× Ω → Y+

such that gQ(t, ·) ∈ Lt and g
Q(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ E ∩ TQ, and∫

E∩TQ

(gQ(·, ω)− a(·, ω))dµ =

∫
S∩TQ

(
yQ(·, ω)− a(·, ω)

)
dµ

for all ω ∈ Ω. Thus, the assignment h : T × Ω → Y+, defined by h(t, ω) = gQ(t, ω) if

(t, ω) ∈ (E ∩ TQ) × Ω, Q ∈ P(S); and h(t, ω) = g(t, ω), otherwise, satisfies the claim.

The rest of the proof is the same as that of Corollary 2 in [36].
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4.3 The Fine Core and the Strong Fine Core

In this section, the concepts of the fine core and the strong fine core are introduced in

an asymmetric information economy, where agents pool their information when they

form a coalition. Thus, it is natural for one to ask whether a result similar to Theorem

4.2.2 holds for these cores. The main purpose of this section is to explore this issue.

Definition 4.3.1. [87] An allocation f in E is fine blocked by a coalition S if there is

an assignment g such that g(t, ·) is
∨

PS-measurable and g(t, ·) ∈ Pt(f(t, ·)) for almost

all t ∈ S, and ∫
S
g(·, ω)dµ =

∫
S
a(·, ω)dµ

for all ω ∈ Ω. The fine core of E , denoted by FC (E ), is the set of all exactly feasible

allocations which are not fine blocked by any coalition of E .

The next lemma is inspired by Lemma 1 in [36]. It is closely related to Theorem

9 of [25], whose finite dimensional version was proved by Grodal in [43]. Note that

Grodal’s result has been used in the proofs of the main results of [48] and [84].

Lemma 4.3.1. Assume (A1), (A2) and (A4). If an allocation f is fine blocked by a

coalition S of E , then there exists an assignment g such that

(i)
∫
S(a(·, ω)− g(·, ω))dµ≫ 0 for all ω ∈ Ω;

(ii) g(t, ·) is
∨

PS-measurable and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S.

Proof. Suppose that f is fine blocked by S via h. Let {cm : m ≥ 1} be a decreasing

sequence in (0, 1) converging to 0. For each m ≥ 1, define a function hm : S ×Ω → Y+

such that hm(t, ω) = (1 − cm)h(t, ω). It is clear that hm(t, ·) is
∨

PS-measurable

for almost all t ∈ S. By Lemma 4.2.1, there is a monotonically increasing sequence

{Sm : m ≥ 1} ⊆ ΣS such that limm→∞ µ(S \ Sm) = 0 and hm(t, ·) ∈ Pt(f(t, ·)) for

almost all t ∈ Sm. Next, for each m ≥ 1, consider the function gm : T × Ω → Y+

defined by

gm(t, ω) =

 h(t, ω), if (t, ω) ∈ (T \ Sm)× Ω;

hm(t, ω), if (t, ω) ∈ Sm × Ω.

Then gm(t, ·) is
∨

PS-measurable and gm(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S. Now,

for each ω ∈ Ω,∫
S
gm(·, ω)dµ =

∫
S\Sm

(h(·, ω)− hm(·, ω))dµ+

∫
S
hm(·, ω)dµ.

81



4.3. THE FINE CORE AND THE STRONG FINE CORE

In addition,
∫
S hm(·, ω)dµ = (1− cm)

∫
S a(·, ω)dµ for all ω ∈ Ω. Consequently, one

obtains ∫
S
(a(·, ω)− gm(·, ω))dµ = cm

(∫
S
a(·, ω)dµ−

∫
S\Sm

h(·, ω)dµ

)
.

By absolute continuity of the Bochner integral, one can choose an integer m ≥ 1

sufficiently large such that∫
S
a(·, ω)dµ−

∫
S\Sm

h(·, ω)dµ≫ 0

for all ω ∈ Ω. The proof is completed by letting g = gm.

Theorem 4.3.2. Assume (A1)-(A4). If f is an exactly feasible allocation and f ̸∈
FC (E ), then for any 0 < ε < µ(T ) there exists a coalition S in E which fine blocks f

with µ(S) = ε.

Proof. By the definition of FC (E ) and Lemma 4.3.1, there exist a coalition S and an

assignment g such that (i) and (ii) in Lemma 4.3.1 hold. Define a function z : Ω → Y+

such that for all ω ∈ Ω,

(4.6) z(ω) =

∫
S
(a(·, ω)− g(·, ω))dµ.

Then z(ω) ≫ 0 for all ω ∈ Ω. Pick some δ with 0 < δ < 1. For any fixed Q ∈ P(S), by

Corollary 2.1.5, there exists a sequence {FQ
n : n ≥ 1} ⊆ ΣS∩TQ

such that for all n ≥ 1,

µ(FQ
n ) = δµ(S ∩ TQ) and

lim
n→∞

∫
FQ
n

(a(·, ω)− g(·, ω))dµ = δ

∫
S∩TQ

(a(·, ω)− g(·, ω))dµ

for all ω ∈ Ω. For each n ≥ 1, let

Fn =

 ∪
Q∈P(S)

FQ
n

∪ ∪
Q∈PS\P(S)

(S ∩ TQ)

 .

Then, it can be easily verified that µ(Fn) = δµ(S) for all n ≥ 1 and

lim
n→∞

∫
Fn

(a(·, ω)− g(·, ω))dµ = δz(ω)
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for all ω ∈ Ω. Hence, there exists an n0 such that
∫
Fn0

(a(·, ω)− g(·, ω))dµ ≫ 0 for all

ω ∈ Ω. Since
∨
PFn0

=
∨

PS , the function zn0 : Ω → Y+, defined by

zn0(ω) =

∫
Fn0

(a(·, ω)− g(·, ω))dµ

for all ω ∈ Ω, is
∨

PFn0
-measurable. Define a function ĝ : T × Ω → Y+ such that

ĝ(t, ω) =

 g(t, ω) +
zn0 (ω)

δµ(S) , if (t, ω) ∈ Fn0 × Ω;

g(t, ω), otherwise.

By (A3), f is fine blocked by Fn0 via ĝ, which proves the theorem for ε ≤ µ(S). If

µ(S) = µ(T ), the proof has been completed. Otherwise, µ(T \ S) > 0 and one needs

to consider the case of ε > µ(S). Let R = T \ S. Again, by Corollary 2.1.5, there is a

sequence {BQ
n : n ≥ 1} ⊆ ΣR∩TQ

such that µ(BQ
n ) = (1 − δ)µ(R ∩ TQ) for all n ≥ 1

and

lim
n→∞

∫
BQ

n

(a(·, ω)− f(·, ω))dµ = (1− δ)

∫
R∩TQ

(a(·, ω)− f(·, ω))dµ

for all ω ∈ Ω. For each n ≥ 1, let

Bn =

 ∪
Q∈P(R)

BQ
n

∪ ∪
Q∈PR\P(R)

(R ∩ TQ)

 .

For all n ≥ 1, define a function bn : Ω → Y+ such that

(4.7) bn(ω) = (1− δ)

∫
R
(a(·, ω)− f(·, ω))dµ−

∫
Bn

(a(·, ω)− f(·, ω))dµ.

Then, bn is
∨

PBn-measurable for all n ≥ 1, and limn→∞ ∥bn(ω)∥ = 0 for all ω ∈ Ω.

Choose an n1 ≥ 1, an x≫ 0 and an open neighborhood W of 0 such that

δz(ω)− bn1(ω)− x−W ⊆ intY+

for all ω ∈ Ω. Consider a correspondence Qf : S ⇒ Y Ω
+ , defined by

Qf (t) =
{
y ∈ Y Ω

+ : y ∈ Pt(f(t, ·)) and y is
∨

PS-measurable
}

for all t ∈ S. Note that
∫
S gdµ ∈ cl

∫
S Qfdµ, and by (A3),

∫
S fdµ ∈ cl

∫
S Qfdµ. Since
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cl
∫
S Qfdµ is convex,

δ

∫
S
gdµ+ (1− δ)

∫
S
fdµ ∈ cl

∫
S
Qfdµ.

It follows that (
δ

∫
S
gdµ+ (1− δ)

∫
S
fdµ+WΩ

)∩∫
S
Qfdµ ̸= ∅.

Hence, there exist a
∨

PS-measurable element u ∈ WΩ and an integrable selection h

of Qf such that

δ

∫
S
gdµ+ (1− δ)

∫
S
fdµ+ u =

∫
S
hdµ.

Consider the function gδ : S × Ω → Y+ defined by

gδ(t, ω) = h(t, ω) +
1

µ(S)
(δz(ω)− bn1(ω)− x− u(ω)).

Let S̃ = S ∪Bn1 . Note that gδ(t, ·) is PS̃
-measurable for almost all t ∈ S, and by (A3),

one has gδ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S. Furthermore, it can be simply checked

that for each ω ∈ Ω,

(4.8)

∫
S
gδ(·, ω)dµ = δ

∫
S
g(·, ω)dµ+ (1− δ)

∫
S
f(·, ω)dµ+ δz(ω)− bn1(ω)− x.

Since µ(S̃) = µ(S) + (1− δ)µ(R), to have µ(S̃) = ε, δ can be chosen as

δ = 1− ε− µ(S)

µ(R)
.

Thus, to complete the proof, it remains to verify that f is fine blocked by S̃. To this

end, define yδ : T × Ω → Y+ by

yδ(t, ω) =

 gδ(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω) + 1
µ(Bn1 )

x, otherwise.

By (A3), yδ(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S̃. Furthermore, yδ(t, ·) is
∨
P

S̃
-

measurable for almost all t ∈ S̃. By (4.6)-(4.8), one can conclude that∫
S̃
(a(·, ω)− yδ(·, ω))dµ = (1− δ)

∫
T
(a(·, ω)− f(·, ω))dµ = 0
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for all ω ∈ Ω. This completes the proof.

In the literature, there is a sightly different version of the core concept, namely the

strong core, see [30, 36]. An extension of this concept to an asymmetric information

economy was given in [9, 72]. Next, a variation of the fine core is introduced.

Definition 4.3.2. An allocation f in E is strongly fine blocked by a coalition S if there

exist a sub-coalition S0 of S and an assignment g such that g(t, ·) is
∨

PS-measurable

and g(t, ·) ∈ P∼
t (f(t, ·)) for almost all t ∈ S, g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S0

and ∫
S
g(·, ω)dµ =

∫
S
a(·, ω)dµ

for all ω ∈ Ω. The strong fine core of E , denoted by FC s(E ), is the set of all exactly

feasible allocations which are not strongly fine blocked by any coalition.

A Vind-type theorem for the strong fine core directly follows from Theorem 4.3.2

and the following lemma.

Lemma 4.3.3. Assume (A1), (A2), (A
′
3) and (A4). If f is an exactly feasible alloca-

tion and f /∈ FC s(E ), then f ̸∈ FC (E ).

Proof. Suppose that f is strongly fine blocked by S. Then there are a sub-coalition S0

of S and an assignment y such that y(t, ·) is
∨

PS-measurable and y(t, ·) ∈ P∼
t (f(t, ·))

for almost all t ∈ S, y(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S0 and∫
S
y(·, ω)dµ =

∫
S
a(·, ω)dµ

for all ω ∈ Ω. If µ(S0) = µ(S), then there is nothing to verify. Assume that µ(S0) <

µ(S). By (A′
3) and the fact that y(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S0, there exist

an atom A of
∨

PS and a sub-coalition S1 of S0 such that y(t, ω) > 0 for almost all

t ∈ S1 and all ω ∈ A. Let {cm : m ≥ 1} be a monotonically deceasing sequence in (0, 1)

converging to 0. For each m ≥ 1, define a function ym : S1 × Ω → Y+ such that

ym(t, ω) = (1− cm)y(t, ω).

Then ym(t, ·) is
∨

PS-measurable for almost all t ∈ S1. By Lemma 4.2.1, there is a

sub-coalition Sm of S1 such that ym(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ Sm. Define a

function b : Ω → Y+ such that b(ω) = cm
∫
Sm

y(·, ω)dµ for all ω ∈ Ω, and consider the

85



4.3. THE FINE CORE AND THE STRONG FINE CORE

function ŷ : (S \ S0)× Ω → Y+ defined by

ŷ(t, ω) = y(t, ω) +
b(ω)

µ(S \ S0)
.

Furthermore, define another function h : T × Ω → Y+ by

h(t, ω) =


ym(t, ω), if (t, ω) ∈ Sm × Ω;

ŷ(t, ω), if (t, ω) ∈ (S \ S0)× Ω;

y(t, ω), otherwise.

Then, ŷ(t, ·) is
∨

PS-measurable for almost all t ∈ S \ S0. By (A′
3), ŷ(t, ·) ∈ Pt(f(t, ·))

for almost all t ∈ S\S0. It follows that h(t, ·) is
∨

PS-measurable and h(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ S, and

∫
S h(·, ω)dµ =

∫
S a(·, ω)dµ for all ω ∈ Ω. This verifies that

f ̸∈ FC (E ).
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Chapter 5

Veto Mechanism by the Grand

Coalition

In this chapter, the economic model given in Subsection 2.2.2 is considered. Three

different characterizations of Walrasian allocations are investigated by the veto power

of the grand coalition in asymmetric information economies having infinite dimensional

commodity spaces. To do these, some results on the privately blocking power of coali-

tions are established in Section 5.1. One of them is an extension of Theorem 2 in [83]

to an asymmetric information economy with an ordered Banach space whose positive

cone has an interior point as the commodity space. The first characterization theorem

is presented in Section 5.2 and claims that an allocation is a Walrasian allocation if

and only if it is robustly efficient in a mixed economy with an ordered separable Ba-

nach space admitting an interior point in its positive cone as the commodity space. In

this section, it is also shown that a similar characterization in [41] is a particular case

of the above characterization theorem under some restrictions on the space of agents.

Section 5.3 is confined to a discrete economy. In this section, two characterizations

of Walrasian allocations are given. The first one deals with the Aubin non-dominated

allocations and the other is interpreted in terms of privately non-dominated allocations

in economies with finitely many agents and Banach lattices as commodity spaces. The

main results in the first two sections are taken from [21] and the main results in the

last section are taken from [22]. Throughout this chapter excluding the last section, it

is assumed that the positive cone of the commodity space has non-empty interior, that

is, intY+ ̸= ∅.
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5.1 Some Technical Results

In this section, some technical results are provided.

Lemma 5.1.1. [36] Assume (A1)-(A4). Let f∗ be a feasible allocation of E ∗ and

0 < ε < µ∗(T ∗). If f∗ /∈ PC (E ∗), then there is a coalition S∗ with µ∗(S∗) = ε

privately blocking f∗.

The next result is similar to Lemma 1 in [36] and Lemma 4.3.1, and for the sake of

completeness, a full proof is given for Lemma 5.1.2.

Lemma 5.1.2. Assume (A1)-(A4). Suppose that an allocation f∗ in E ∗ is privately

blocked by a coalition S∗. Then there exists an assignment g∗ such that

(i) g∗(t, ·) ∈ Lt and g
∗(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗;

(ii)
∫
S∗(a(·, ω)− g∗(·, ω))dµ∗ ≫ 0 for all ω ∈ Ω;

(iii) g∗(t, ω) ≫ 0 for all (t, ω) ∈ S∗ × Ω.

Proof. Since f∗ is privately blocked by S∗, there is an assignment h∗ such that h∗(t, ·) ∈
Lt and h

∗(t, ·) ∈ Pt(f
∗(t, ·)) for almost all t ∈ S∗, and∫

S∗
h∗(·, ω)dµ∗ ≤

∫
S∗
a∗(·, ω)dµ∗

for all ω ∈ Ω. Choose a monotonically decreasing sequence {cm : m ≥ 1} ⊂ (0, 1)

converging to 0. For eachm ≥ 1, define h∗m : S∗×Ω → Y+ by h∗m(t, ω) = (1−cm)h∗(t, ω).

By Lemma 4.2.1, there is a monotonically increasing sequence {S∗
m : m ≥ 1} ⊆ Σ∗

S∗

such that h∗m(t, ·) ∈ Pt(f
∗(t, ·)) for almost all t ∈ S∗

m and limm→∞ µ∗(S∗ \ S∗
m) = 0.

Define g∗m : T ∗ × Ω → Y+ such that

g∗m(t, ω) =

 h∗(t, ω), if (t, ω) ∈ (T ∗ \ S∗
m)× Ω;

h∗m(t, ω), if (t, ω) ∈ S∗
m × Ω.

Then g∗m(t, ·) ∈ Lt and g
∗
m(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗. Since∫
S∗
g∗m(·, ω)dµ∗ =

∫
S∗\S∗

m

(h∗(·, ω)− h∗m(·, ω))dµ∗ +
∫
S∗
h∗m(·, ω)dµ∗

and ∫
S∗
h∗m(·, ω)dµ∗ ≤ (1− cm)

∫
S∗
a(·, ω)dµ∗
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hold for all ω ∈ Ω, one obtains

∫
S∗
(a(·, ω)− g∗m(·, ω))dµ∗ ≥ cm

(∫
S∗
a(·, ω)dµ∗ −

∫
S∗\S∗

m

h∗(·, ω)dµ∗
)
.

By absolute continuity of the Bochner integral, one can choose an integer m ≥ 1

sufficiently large such that∫
S∗
a(·, ω)dµ∗ −

∫
S∗\S∗

m

h∗(·, ω)dµ∗ ≫ 0

for all ω ∈ Ω. Pick some b ∈ intY+ such that
∫
S∗(a(·, ω)−g∗m(·, ω))dµ∗ ≫ µ(S∗)b for all

ω ∈ Ω, and define a function g∗ : T ∗ × Ω → intY+ such that g∗(t, ω) = g∗m(t, ω) + b for

all (t, ω) ∈ T ∗ ×Ω. Then, one can readily verify that the assignment g∗ is desired.

Now, a common extension of Lemma 3.1 in [48] and Theorem 2 in [83] is provided.

Theorem 5.1.3. Assume (A1)-(A3) and that f∗ is an allocation in E ∗. Suppose there

exist a coalition S∗, a sub-coalition R∗ of S∗ and an assignment g∗ such that P(S∗) =

P(R∗), g∗(t, ω) ≫ 0 for all (t, ω) ∈ R∗ × Ω, and g∗(t, ·) ∈ Lt and g
∗(t, ·) ∈ Pt(f

∗(t, ·))
for almost all t ∈ S∗. For each 0 < r < 1, there exists an assignment h∗ such that

h∗(t, ·) ∈ Lt and h
∗(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗, and∫
S∗
h∗(·, ω)dµ∗ =

∫
S∗

(rg∗(·, ω) + (1− r)f∗(·, ω)) dµ∗

for all ω ∈ Ω.

Proof. Let {cm : m ≥ 1} be a monotonically decreasing sequence in (0, 1) converging

to 0. For each m ≥ 1, define a function g∗m : S∗ × Ω → Y+ such that

g∗m(t, ω) = (1− cm)g∗(t, ω).

Then g∗m(t, ·) ∈ Lt for almost all t ∈ S∗ and g∗m(t, ω) ≫ 0 for all (t, ω) ∈ R∗ × Ω. For

any Q ∈ P(S∗), by Lemma 4.2.1, there is an increasing sequence
{
S∗
(m,Q) : m ≥ 1

}
⊆

Σ∗
S∗∩T ∗

Q
such that g∗m(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗
(m,Q) and

lim
m→∞

µ∗
(
(S∗ ∩ T ∗

Q) \ S∗
(m,Q)

)
= 0.

Choose an mQ such that

µ∗
(
R∗ ∩ S∗

(mQ,Q)

)
> 0,
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and define the function y∗Q : (S∗ ∩ T ∗
Q)× Ω → Y+ by

y∗Q(t, ω) =

 g∗mQ
(t, ω), if (t, ω) ∈ S∗

(mQ,Q) × Ω;

g∗(t, ω), otherwise.

Obviously, y∗Q(t, ·) ∈ Lt and y
∗
Q(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗ ∩ T ∗
Q. Further-

more, for all ω ∈ Ω,

(5.1)

∫
S∗∩T ∗

Q

y∗Q(·, ω)dµ∗ =
∫
S∗∩T ∗

Q

g∗(·, ω)dµ∗ − cmQ

∫
S∗
(mQ,Q)

g∗(·, ω)dµ∗.

Let xQ ≫ 0 be chosen such that for all ω ∈ Ω,

(5.2) xQ ≤ cmQ

2

∫
S∗
(mQ,Q)

g∗(·, ω)dµ∗.

Given 0 < r < 1, let U(r,Q) be a neighborhood of 0 such that rxQ −U(r,Q) ⊆ intY+.

By Corollary 2.1.5, there is a sequence
{
E∗

(n,Q) : n ≥ 1
}
⊆ Σ∗

S∗∩T ∗
Q

such that

lim
n→∞

(
µ∗
(
E∗

(n,Q)

)
,

∫
E∗

(n,Q)

(y∗Q(·, ω)− f∗(·, ω)) dµ∗
)

= r (µ∗ (S∗ ∩ T ∗
Q) , z∗Q(ω))

for each ω ∈ Ω, where z∗Q(ω) =
∫
S∗∩T ∗

Q
(y∗Q(·, ω) − f∗(·, ω))dµ∗. Define a function

b∗(n,Q) : Ω → Y such that

b∗(n,Q)(ω) =

∫
E∗

(n,Q)

(y∗Q(·, ω)− f∗(·, ω))dµ∗ − rz∗Q(ω).

Then, limn→∞ ∥b∗(n,Q)(ω)∥ = 0 for all ω ∈ Ω. Thus, there exists an nQ such that

µ∗
(
E∗

(nQ,Q)

)
< µ∗(S∗ ∩ T ∗

Q) and b∗(nQ,Q)(ω) ∈ U(r,Q)

for all ω ∈ Ω. Now, consider the function g∗Q : (S∗ ∩ T ∗
Q)× Ω → Y+ defined by

g∗Q(t, ω) =


y∗Q(t, ω), if (t, ω) ∈ E∗

(nQ,Q) × Ω;

f∗(t, ω) + rxQ

µ∗
(
(S∗∩T ∗

Q)\E∗
(nQ,Q)

) , otherwise.

Note that (A3) implies that g∗Q(t, ·) ∈ Pt(f
∗(t, ·)) and g∗Q(t, ·) ∈ Lt for almost all
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t ∈ S∗ ∩ T ∗
Q. It can be easily verified that for all ω ∈ Ω,∫

S∗∩T ∗
Q

(g∗Q(·, ω)− f∗(·, ω))dµ∗ =
∫
E∗

(nQ,Q)

(y∗Q(·, ω)− f∗(·, ω))dµ∗ + rxQ.

On the other hand, since∫
E∗

(nQ,Q)

(y∗Q(·, ω)− f∗(·, ω))dµ∗ − b∗(nQ,Q)(ω) = r

∫
S∗∩T ∗

Q

(y∗Q(·, ω)− f∗(·, ω))dµ∗

for all ω ∈ Ω, one obtains

(5.3)

∫
S∗∩T ∗

Q

g∗Q(·, ω)dµ∗ ≪
∫
S∗∩T ∗

Q

(ry∗Q(·, ω) + (1− r)f∗(·, ω))dµ∗ + 2rxQ

for each ω ∈ Ω. Combining (5.1)-(5.3), one further obtains that∫
S∗∩T ∗

Q

g∗Q(·, ω)dµ∗ ≪
∫
S∗∩T ∗

Q

(rg∗(·, ω) + (1− r)f∗(·, ω))dµ∗

for each ω ∈ Ω. Consider a Q-measurable function d∗Q : Ω → Y+ defined by

d∗Q(ω) =
1

µ∗(S∗ ∩ T ∗
Q)

∫
S∗∩T ∗

Q

(rg∗(·, ω) + (1− r)f∗(·, ω)− g∗Q(·, ω)) dµ∗

for each ω ∈ Ω. It is clear that d∗Q(ω) ≫ 0 for each ω ∈ Ω. Define a function

h∗Q : (S∗ ∩ T ∗
Q)× Ω → Y+ by

h∗Q(t, ω) = g∗Q(t, ω) + d∗Q(ω).

Then, h∗Q(t, ·) ∈ Lt and h
∗
Q(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ S∗ ∩ T ∗
Q, and∫

S∗∩T ∗
Q

h∗Q(·, ω)dµ∗ =
∫
S∗∩T ∗

Q

(rg∗(·, ω) + (1− r)f∗(·, ω))dµ∗

for all ω ∈ Ω. Let h∗ : T ∗ × Ω → Y+ be defined by

h∗(t, ω) =

 h∗Q(t, ω), if (t, ω) ∈ (S∗ ∩ T ∗
Q)× Ω and Q ∈ P(S∗) ;

g∗(t, ω), otherwise.

It can be readily checked that h∗ is the desired assignment.
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Remark 5.1.1. The conclusion of Lemma 5.1.2 also holds if (T ∗,Σ∗, µ∗) is replaced by

(T,Σ, µ). In addition, one should notice that Theorem 5.1.3 is still valid for (T,Σ, µ)

if S∗ ⊆ T0. This fact will be used in the next section.

Remark 5.1.2. If a coalition S privately blocks an allocation f in an atomless economy

and if 0 < r < 1, in the light of Lemma 5.1.2 and Theorem 5.1.3, one has assignments

g and h such that g(t, ·), h(t, ·) ∈ Lt, g(t, ·) ∈ Pt(f(t, ·)), h(t, ·) ∈ Pt(f(t, ·)) for almost

all t ∈ S and ∫
S
h(·, ω)dµ =

∫
S
(rg(·, ω) + (1− r)f(·, ω))dµ

for all ω ∈ Ω.

Finally, an extension of a result in [42] to an infinite dimensional asymmetric infor-

mation economy is established.

Lemma 5.1.4. Assume (A1)-(A4) and that f∗ be an allocation in E ∗ privately blocked

by a coalition S∗ with µ∗(S∗ ∩ T ∗
1 ) ≥ ε for some ε > 0. Then there exist a coalition R∗

and an assignment g∗ such that

(i) µ∗(R∗ ∩ T ∗
1 ) = ε and

∫
R∗(a(·, ω)− g∗(·, ω))dµ∗ ≫ 0 for all ω ∈ Ω;

(ii) g∗(t, ·) ∈ Lt and g
∗(t, ·) ∈ Pt(f

∗(t, ·)) for almost all t ∈ R∗.

Proof. If ε = µ∗(S∗ ∩ T ∗
1 ), the conclusion directly follows from Lemma 5.1.2. Assume

that ε < µ∗(S∗ ∩ T ∗
1 ). Applying Lemma 5.1.2, one has an assignment g∗ satisfying

(i)-(ii) of Lemma 5.1.2. Let

δ =
ε

µ∗(S∗ ∩ T ∗
1 )
.

By Lemma 2.1.4, for each Q ∈ P(S∗), there exists a sequence
{
E∗

(n,Q) : n ≥ 1
}

⊆
Σ∗
S∗∩T ∗

Q
such that for all n ≥ 1,

µ∗
(
E∗

(n,Q) ∩ T
∗
1

)
= δµ∗(S∗ ∩ T ∗

Q ∩ T ∗
1 )

and

lim
n→∞

∫
E∗

(n,Q)

(a− g∗)dµ∗ = δ

∫
S∗∩T ∗

Q

(a− g∗)dµ∗.

Let

E∗
n =

∪{
E∗

(n,Q) : Q ∈ P(S∗)
}

92



5.2. THE ROBUST EFFICIENCY

for all n ≥ 1. Then

lim
n→∞

∫
E∗

n

(a− g∗)dµ∗ = δ

∫
S∗
(a− g∗)dµ∗.

Pick an n0 such that
∫
E∗

n0

(a− g∗)dµ∗ ≫ 0, and put R∗ = E∗
n0
.

5.2 The Robust Efficiency

In this section, a characterization of a Walrasian allocation is obtained in a mixed econ-

omy by the private blocking power of the grand coalition. To do this, throughout this

section, assume that all agents in T1 having the same characteristics (FT1 , PT1 , a(T1, ·)).
So for all t ∈ T1, the common value of Lt is denoted by LT1 .

The following concept was first introduced and studied in [48], where it was used

to provide a new characterization of Walrasian allocations in a pure exchange economy

with a continuum of non-atomic agents and finitely many commodities.

Definition 5.2.1. For any coalition S, allocation f in E and any 0 ≤ r ≤ 1, suppose

E (S, f, r) is an asymmetric information economy which coincides with E except for the

initial endowment allocation that is given by

a(S, f, r)(t, ·) =

 a(t, ·), if t ∈ T \ S;

(1− r)a(t, ·) + rf(t, ·), if t ∈ S.

A feasible allocation f in E is said to be robustly efficient if f is not privately blocked

by the grand coalition in every economy E (S, f, r).

For each feasible allocation f in E , define the function cf : Ω → Y+ such that

cf (ω) =
1

µ(T1)

∫
T1

f(·, ω)dµ

for all ω ∈ Ω. Let f̂ : T × Ω → Y+ be the allocation defined by

f̂(t, ω) =

 f(t, ω), if (t, ω) ∈ T0 × Ω;

cf (ω), if (t, ω) ∈ T1 × Ω.

The following additional assumption will be needed in the sequel.

(A7) For each feasible allocation f in E which is not privately blocked by the grand
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coalition in E (S, f, r) for any coalition S and real number r with µ(S) < µ(T ) and

0 ≤ r ≤ 1, the set {x ∈ LT1 : x ∈ PT1(cf )} is convex.

The following example shows that (A7) is weaker than the convexity of PT1(x) for

all x ∈ Y Ω
+ .

Example 5.2.1. Consider a complete measure space (T,Σ, µ), where T = [0, 1]∪{2, 3},
[0, 1] is endowed with the Lebesgue measure, and µ(2) = µ(3) = 1. For all t ∈ [0, 1],

define Ut : R2
+ → R by Ut(x, y) = x + y for all (x, y) ∈ R2

+; and if t ∈ {2, 3}, define
Ut : R2

+ → R by

Ut(x, y) =


inf{x+ y, x2 + y2}, if x+ y ≤ 2;

x+ y, otherwise.

Further, for all t ∈ T , define Pt : R2
+ ⇒ R2

+ by

Pt(x, y) =
{(
x′, y′

)
∈ R2

+ : Ut

(
x′, y′

)
> Ut (x, y)

}
for all (x, y) ∈ R2

+, and

A =
{
(x, y) ∈ R2

+ : x+ y ≤ 2
}
.

Note that for t ∈ {2, 3}, Pt(
1
2 ,

1
2) is not convex and Pt(x, y) is convex when (x, y) ∈ R2

+\
A. Obviously, (t, (x, y)) 7→ Ut(x, y) is Carathéodory. Suppose that E is a deterministic

economy whose space of agents is (T,Σ, µ) and commodity space is R2. It is assumed

that the consumption set of each agent t ∈ T is R2
+ and the preference relation of

each agent t ∈ T is Pt. By Remark 6 in [36], (A1) is satisfied by E . Let agent t’s

initial endowment be a(t) = (16, 16) if t ∈ [0, 1]; and a(t) = (8, 8) if t ∈ {2, 3}. Since

a ∈ W (E ), W (E ) ̸= ∅. Clearly, E satisfies assumptions (A2)-(A4). It is claimed that

if a feasible allocation f is not blocked by the grand coalition in E (S, f, r) for every

coalition S with µ(S) < µ(T ) and 0 ≤ r ≤ 1, then f(2), f(3) ∈ R2
+ \A. Indeed, without

loss of generality, suppose that f(2) ∈ A. Since f is not blocked by the grand coalition

in E (f, S, 0) for any coalition S with µ(S) < µ(T ), one has∫
[0,1]

fdµ+ f(3) ≫ (24, 24).

Choose S = [0, 1]∪{3} and any 0 < r ≤ 1. Observe that
∫
T a(S, f, r)dµ≫ (32, 32), and
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thus f is blocked by the grand coalition in E (S, f, r). This is a contradiction, which

verifies the claim. Since R2
+ \A is convex,

cf =
1

2
(f(2) + f(3)) ∈ R2

+ \A.

Note that for all t ∈ {2, 3},

{
(x, y) ∈ R2

+ : Ut(x, y) > Ut(cf )
}
⊆ R2

+ \A.

Since Ut is concave on R2
+ \ A, then Pt(x, y) is convex for all t ∈ {2, 3}. Hence, it is

verified that E satisfies (A7).

Theorem 5.2.2. Assume (A1)-(A4), (A7) and |A | ≥ 1. If f is a robustly efficient

allocation in E , then f̂(t, ·) ∼T1 f(t, ·) for all t ∈ T1.

Proof. Suppose that there exists a coalition D ⊆ T1 such that f̂(t, ·) ∈ PT1(f(t, ·))
for all t ∈ D. Note that the conclusion of Lemma 4.2.1 is also true if T0 is replaced

by D, and so one can find some 0 < r1 < 1 and a sub-coalition C ⊆ D such that

r1f̂(t, ·) ∈ PT1(f(t, ·)) for all t ∈ C. Let r2 =
µ(C)
µ(T1)

and r3 = r1 + η for some η > 0 such

that 0 < r3 < 1. Then 0 < r2 ≤ 1. Suppose that for each ω ∈ Ω,

α(ω) = r2r3

(∫
T
f(·, ω)dµ−

∫
T
a(·, ω)dµ

)
− r2(1− r3)

∫
T1

a(·, ω)dµ.

Since α(ω) ∈ −intY+ for all ω ∈ Ω, one can choose an ε > 0 such that

α(ω) +B(0, 2ε) ⊆ −intY+

for all ω ∈ Ω. By Corollary 2.1.5, there is an E0 ∈ ΣT0 with µ(E0) < µ(T0) such that

∥d(ω)∥ < ε for all ω ∈ Ω, where

d(ω) =

∫
E0

(f(·, ω)− a(·, ω))dµ− r2r3

∫
T0

(f(·, ω)− a(·, ω))dµ.

Let S = C∪E0. Then, µ(S) < µ(T ). Pick an u ∈ B(0, ε)∩ intY+, and define a function

g : T × Ω → intY+ by

g(t, ω) =

 f̂(t, ω) + u
2µ(E0)

, if (t, ω) ∈ E0 × Ω;

r3f̂(t, ω) +
u

2µ(C) , otherwise.
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Then, g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S, and∫
S
g(·, ω)dµ =

∫
E0

f(·, ω)dµ+ r2r3

∫
T1

f(·, ω)dµ+ u

for all ω ∈ Ω. Since all agents in T1 have the same characteristics,∫
C
a(·, ω)dµ = r2

∫
T1

a(·, ω)dµ

for all ω ∈ Ω. Then it can be easily verified that for all ω ∈ Ω,

−α(ω) +
∫
S
(g(·, ω)− a(·, ω))dµ = d(ω) + u ∈ B(0, 2ε).

It follows that
∫
S a(·, ω)dµ−

∫
S g(·, ω)dµ≫ 0 for all ω ∈ Ω. Select an z ≫ 0 such that∫

S
a(·, ω)dµ−

∫
S
g(·, ω)dµ≫ z

for all ω ∈ Ω and pick a 0 < r < 1 such that r1f̂(t, ω) ≤ rg(t, ω) for all (t, ω) ∈ C × Ω.

Consider the function h1 : C × Ω → Y+ defined by h1(t, ω) = r1f̂(t, ω). Note that

h1(t, ·) ∈ LT1 and h1(t, ·) ∈ PT1(f(t, ·)) for all t ∈ C. By Theorem 5.1.3, there is an

assignment h2 : T × Ω → Y+ such that h2(t, ·) ∈ Lt and h2(t, ·) ∈ Pt(f(t, ·)) for almost

all t ∈ E0, and ∫
E0

h2(·, ω)dµ =

∫
E0

(rg(·, ω) + (1− r)f(·, ω)) dµ

for all ω ∈ Ω. Let h : S × Ω → Y+ be defined by

h(t, ω) =

 h1(t, ω), if (t, ω) ∈ C × Ω;

h2(t, ω), otherwise.

Then h(t, ·) ∈ Lt and h(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S, and

(5.4)

∫
S
h(·, ω)dµ ≤

∫
S
(rg(·, ω) + (1− r)f(·, ω))dµ for all ω ∈ Ω.
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Define a function y : T × Ω → Y+ such that

y(t, ω) =

 h(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω) + rz
µ(T\S) , if (t, ω) ∈ (T \ S)× Ω.

By (A3), y(t, ·) ∈ Pt(f(t, ·)) for all t ∈ T \ S. Thus, y is an allocation and y(t, ·) ∈
Pt(f(t, ·)) for almost all t ∈ T . Furthermore, using (5.4) and

∫
S(a(·, ω)−g(·, ω))dµ≫ z,

one can simply verify that for each ω ∈ Ω,∫
T
(y(·, ω)− a(T \ S, f, r)(·, ω))dµ ≤ (1− r)

∫
T
(f(·, ω)− a(·, ω))dµ ≤ 0.

This means that f is privately blocked by the grand coalition in E (T \ S, f, r), which
contradicts with the fact that f is robustly efficient. So f(t, ·) ∈ clPT1(f̂(t, ·)) for all

t ∈ T1. Suppose that there is a coalition W ⊆ T1 such that f(t, ·) ∈ PT1(f̂(t, ·)) for all
t ∈W . Pick an arbitrary t ∈ T1. Then Lemma 2.2.3 implies that

1

µ(W )

∫
W
f(·, ·)dµ ∈ PT1(f̂(t, ·))

and
1

µ(T1 \W )

∫
T1\W

f(·, ·)dµ ∈ clPT1(f̂(t, ·)).

Let δ = µ(W )
µ(T1)

. Since

f̂(t, ·) = δ

µ(W )

∫
W
f(·, ·)dµ+

1− δ

µ(T1 \W )

∫
T1\W

f(·, ·)dµ,

f̂(t, ·) ∈ PT1(f̂(t, ·)), which is a contradiction. Thus, f(t, ·) ∼T1 f̂(t, ·) for all t ∈ T1.

Remark 5.2.1. Assume (A1)-(A4), (A7) and that f is a feasible allocation that is not

privately blocked by the grand coalition in E (S, f, r) for any coalition S and real number

r with µ(S) < µ(T ) and 0 ≤ r ≤ 1. Note that under these assumptions, the conclusion

of Theorem 5.2.2 still holds. It is claimed that if f̂ ∈ W (E ) then f ∈ W (E ). To see

this, let (f̂ , π) be a Walrasian expectations equilibrium of E . Since
∫
fdµ =

∫
f̂dµ,

by f̂(t, ·) ∼T1 f(t, ·) for all t ∈ T1, one only needs to verify that f(t, ·) ∈ Bt(π) for all

t ∈ T1. Choose a y ∈ intY+ and a sequence {cm : m ≥ 1} ⊆ R+ converging to 0. By

(A3), one has f(t, ·) + cmy ∈ PT1(f̂(t, ·)) for all t ∈ T1. Moreover, f(t, ·) + cmy ∈ LT1
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for all t ∈ T1. It follows that for all t ∈ T1,∑
ω∈Ω

⟨f(t, ω) + cmy, π(ω)⟩ >
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨f̂(t, ω), π(ω)⟩.

So, one obtains ∑
ω∈Ω

⟨f(t, ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨
f̂(t, ω), π(ω)

⟩
for all t ∈ T1. Thus,∑

ω∈Ω
⟨f(t, ω), π(ω)⟩ =

∑
ω∈Ω

⟨
f̂(t, ω), π(ω)

⟩
≤
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩

holds for all t ∈ T1.

Next theorem deals with a characterization of Walrasian expectations allocations

of E by the veto power of the grand coalition in E (S, f, r) with µ(S) < µ(T ) and

0 ≤ r ≤ 1.

Theorem 5.2.3. Assume (A1)-(A4), (A7) and that Y is separable. If |A | = 0 or

|A | ≥ 2, then a feasible allocation f ∈ W (E ) if and only if f is not privately blocked

by the grand coalition in every economy E (S, f, r) with µ(S) < µ(T ) and 0 ≤ r ≤ 1.

Proof. Let f ∈ W (E ) and π be an equilibrium price associated with f . Suppose that

there are a coalition S and a real number r with µ(S) < µ(T ) and 0 ≤ r ≤ 1 such that

f is privately blocked by the grand coalition in E (S, f, r). Then, there is an allocation

g : T × Ω → Y+ such that g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ T and∫
T
g(·, ω)dµ ≤

∫
T
a(S, f, r)(·, ω)dµ

for all ω ∈ Ω. Using the definition of Walrasian equilibrium, one has∑
ω∈Ω

⟨g(t, ω), π(ω)⟩ >
∑
ω∈Ω

⟨a(t, ω), π(ω)⟩ ≥
∑
ω∈Ω

⟨f(t, ω), π(ω)⟩

for almost all t ∈ T . Then,∑
ω∈Ω

⟨g(t, ω), π(ω)⟩ >
∑
ω∈Ω

⟨(1− r)a(t, ω) + rf(t, ω), π(ω)⟩
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for almost all t ∈ S. Consequently, one obtains∫
T

∑
ω∈Ω

⟨g(·, ω), π(ω)⟩dµ >
∫
T

∑
ω∈Ω

⟨a(S, f, r)(·, ω), π(ω)⟩dµ,

which is a contradiction. So, f is not privately blocked by the grand coalition in every

economy E (S, f, r) with µ(S) < µ(T ) and 0 ≤ r ≤ 1.

Conversely, let f be not privately blocked by the grand coalition in every economy

E (S, f, r) with µ(S) < µ(T ) and 0 ≤ r ≤ 1. Suppose that f /∈ W (E ). The rest of the

proof is completed by considering the following two cases.

Case 1. |A | = 0. By Theorem 3.1.1 and Lemma 5.1.1, f is blocked by a coalition

S via g with µ(S) < µ(T ). Applying Lemma 5.1.2, one can choose g so that for all

ω ∈ Ω, ∫
S
(a(·, ω)− g(·, ω))dµ≫ z

for some z ∈ intY+ and g(t, ω) ≫ 0 for all (t, ω) ∈ S × Ω. For any 0 < r < 1, by

Theorem 5.1.3, there is an assignment h such that h(t, ·) ∈ Lt and h(t, ·) ∈ Pt(f(t, ·))
for almost all t ∈ S, and∫

S
h(·, ω)dµ =

∫
S
(rg(·, ω) + (1− r)f(·, ω))dµ

for all ω ∈ Ω. Similar to Theorem 5.2.2, one can show that f is privately blocked by

the grand coalition via the allocation y : T × Ω → Y+ defined by

y(t, ω) =

 h(t, ω), if (t, ω) ∈ S × Ω;

f(t, ω) + rz
µ(T\S) , if (t, ω) ∈ (T \ S)× Ω

in E (T \ S, f, r). This is a contradiction. Thus, f ∈ W (E ).

Case 2. |A | ≥ 2. By Remark 5.2.1, f̂ /∈ W (E ). Since f̂ |T0×Ω = f̂∗|T0×Ω and

f̂(·, ω) is constant in T1 for ω ∈ Ω, it is easy to see that f̂∗ /∈ W (E ∗). By Theorem

3.1.1, f̂∗ /∈ PC (E ∗). Pick any A0 ∈ T1 and let µ(A0) = ε > 0. According to Lemma

5.1.1, f̂∗ is privately blocked by a coalition S∗ of E ∗ with µ∗(S∗) = µ∗(T0) + ε, which

yields µ∗(S∗ ∩ T ∗
1 ) ≥ ε. By Lemma 5.1.4, there exist a coalition R∗ and an assignment

g∗ such that (i) and (ii) of Lemma 5.1.4 hold. Take a coalition E of E such that
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E = (R∗ ∩ T0) ∪A0, and define a function g̃ : E × Ω → Y+ by

g̃(t, ω) =

 g∗(t, ω), if (t, ω) ∈ (R∗ ∩ T0)× Ω;

1
ε

∫
R∗∩T ∗

1
g∗(·, ω)dµ∗, otherwise.

Further, define another function g̃∗ : E∗ × Ω → Y+ such that

g̃∗(t, ω) =

 g̃(t, ω), if (t, ω) ∈ (R∗ ∩ T0)× Ω;

g̃(A0, ω), if (t, ω) ∈ A∗
0 × Ω.

Similar to Lemma 2.2.3, g̃∗(t, ·) ∈ Pt(f̂
∗(t, ·)) and g̃∗(t, ·) ∈ Lt for almost all t ∈ E∗,

and ∫
E∗

(a(·, ω)− g̃∗(·, ω))dµ∗ ≫ 0

for all ω ∈ Ω. Select some b≫ 0 such that∫
E∗

(a(·, ω)− g̃∗(·, ω))dµ∗ ≫ b

for all ω ∈ Ω, and define a function g∗b : E∗ × Ω → Y+ by

g∗b (t, ω) = g̃∗(t, ω) +
b

2µ∗(E∗)
.

By (A3), one has g∗b (t, ·) ∈ Pt(f̂
∗(t, ·)) for almost all t ∈ E∗. Consider a function

gb : T × Ω → Y+ defined by

gb(t, ω) =


g∗b (t, ω), if (t, ω) ∈ (E ∩ T0)× Ω;

g̃(A0, ω) +
b

2µ∗(E∗) , if t = A0, ω ∈ Ω;

f(t, ω), otherwise.

Then, gb is an allocation and gb(t, ω) ≫ 0 for all (t, ω) ∈ E ×Ω. Choose a real number

r satisfying 0 < r < 1 and g̃(A0, ω) ≤ rgb(A0, ω) for each ω ∈ Ω. By Theorem 5.1.3,

there is an assignment hb such that hb(t, ·) ∈ Lt and hb(t, ·) ∈ Pt(f(t, ·)) for almost all

t ∈ E ∩ T0, and ∫
E∩T0

hb(·, ω)dµ =

∫
E∩T0

(rgb(·, ω) + (1− r)f(·, ω))dµ
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for all ω ∈ Ω. Note that the function h : E × Ω → Y+, defined by

h(t, ω) =

 hb(t, ω), if (t, ω) ∈ (E ∩ T0)× Ω;

g̃(t, ω), otherwise,

is similar to that in the proof of Theorem 5.2.2. Thus, applying an argument similar

to that just after the definition of h in the proof of Theorem 5.2.2, one can draw a

contradiction. Hence, f ∈ W (E ), and the proof is completed.

Let B be the set of simple functions γ : T → [0, 1] such that µ(supp(γ)) > 0.

For any feasible allocation f in E and γ ∈ B, define a new asymmetric information

economy E (γ, f) which has the same characteristics as those of E except for the initial

endowment for every agent t ∈ T which is defined in each state ω ∈ Ω as

aγ(t, ω) = γ(t)a(t, ω) + (1− γ(t))f(t, ω).

Graziano and Meo [41] proved that W (E ) coincides with the set of those feasible allo-

cations that are not privately blocked by the grand coalition in the economy E (γ, f)

for any γ ∈ B. The next theorem not only illustrates the connection between Theorem

5.2.3 and this result, but also provides an answer to the question posed in [48] and

extends the main result in [48] to a mixed economy as well.

Theorem 5.2.4. Assume (A1)-(A4), (A7) and that Y is separable. If |A | = 0 or

|A | ≥ 2, then the following are equivalent for a feasible allocation f in E :

(i) f ∈ W (E ).

(ii) f is robustly efficient.

(iii) f is not privately blocked by the grand coalition in the economy E (γ, f) for any

γ ∈ B.

(iv) f is not privately blocked by the grand coalition in every economy E (S, f, r) with

µ(S) < µ(T ) and 0 ≤ r ≤ 1.

Proof. (i) implies (ii) and (i) implies (iii) are similar, and they can be proved by

simple arguments similar to that in the proof of Theorem 5.2.3. (ii) implies (iv) is

straightforward. To show that (iii) implies (iv), for a coalition S of E and 0 ≤ r ≤ 1,
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define a simple function γS,r : T → [0, 1] by

γS,r(t) =

 1− r, if t ∈ S;

1, if ∈ T \ S.

Note that γS,r ∈ B if µ(S) < µ(T ). So for every coalition S of E with µ(S) < µ(T )

and 0 ≤ r ≤ 1, one has E (S, f, r) = E (γS,r, f) and thus (iv) holds. Finally, (iv) implies

(i) follows directly from Theorem 5.2.3.

5.3 Walrasian Allocations in a Discrete Economy

In this section, characterizations of Walrasian allocations in terms of the privately

blocking power of the grand coalition are studied in economies with finitely many

agents and Banach lattices as commodity spaces. These results are extensions of those

in [36, 46, 47] and the proofs are similar to those in [47]. Throughout this section, let

T = N and Y be a Banach lattice

Definition 5.3.1. [47] A coalition S ⊆ N privately blocks an allocation x of E in the

sense of Aubin via y = (yi : i ∈ S) if for all i ∈ S, there is an element αi ∈ (0, 1] such

that yi ∈ Pi(xi) ∩ Li and
∑

i∈S αiyi ≤
∑

i∈S αiai. The Aubin private core of E is the

set of all feasible allocations which cannot be privately blocked in the sense of Aubin

by any coalition, and an allocation x of E is called Aubin non-dominated if x is not

privately blocked in the sense of Aubin by the grand coalition. An allocation is called

an Aubin dominated if it is not Aubin non-dominated.

Theorem 5.3.1. Assume (B1)-(B5) and (B7), and intY+ ̸= ∅. Then, a feasible allo-

cation x ∈ W (E ) if and only if x is Aubin non-dominated.

Proof. Let x ∈ W (E ). Suppose that x is Aubin dominated. Then, f /∈ PC (Ec), where

f = Ξ(x). Hence, by Corollary 3.2.3, Proposition 2.2.2 and Remark 2.2.1, x /∈ W (E ),

which is a contradiction.

Conversely, let x be an Aubin non-dominated feasible allocation in E . Suppose that

x /∈ W (E ). By Remark 2.2.1, f /∈ W (Ec). Corollary 3.2.3 and Proposition 2.2.2 imply

that f /∈ PC (Ec). By Theorem 4.1.2, there exist a coalition S ⊆ I with µ̂(S) > 1− 1
n

and an assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S,

and ∫
S
g(·, ω)dµ̂ ≤

∫
S
a(·, ω)dµ̂
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for all ω ∈ Ω. Let Si = S ∩ Ii and α̃i = nµ̂(Si) for all i ∈ N . Since

µ̂(S) > 1− 1

n
,

then 0 < α̃i ≤ 1 for all i ∈ N . Now,

yi =
1

µ̂(Si)

∫
Si

g(·, ·)dµ̂ ∈ Li

for each i ∈ N , and y = (y1, ..., yn) is an allocation in E . By Lemma 2.2.3, yi ∈ Pi(xi)

for all i ∈ N . Since ∑
i∈N

µ̂(Si)yi ≤
∑
i∈N

µ̂(Si)ai,

one has ∑
i∈N

α̃iyi ≤
∑
i∈N

α̃iai.

This contradicts with the fact that x is Aubin non-dominated. Thus, x ∈ W (E ).

Remark 5.3.1. The participation of an agent i in the grand coalition of E is said to

be close to complete if α̃i > 1 − δ for sufficiently small δ > 0. Indeed, Theorem 5.3.1

shows that the participation of each agent can be chosen to be close to complete. To

see this, for any given 0 < δ < 1, by Theorem 4.1.2, one can choose a privately blocking

coalition S such that

µ̂(S) > 1− δ

n
.

Hence, it follows from the proof that α̃i = nµ̂(Si) > 1− δ for all i ∈ N .

Remark 5.3.2. Conclusions of Theorem 5.3.1 and Remark 5.3.1 are also true under

(B1)-(B8), or (B1)-(B3), (B5)-(B7) and (B9) respectively.

To see the next characterization theorem, let f = x and γ = r ∈ [0, 1]n in the

definition of E (γ, f), where agent i’s initial endowment is given by

ai(ri, xi) = riai + (1− ri)xi.

Theorem 5.3.2. Assume (B1)-(B5) and (B7), and intY+ ̸= ∅. Then, a feasible alloca-

tion x ∈ W (E ) if and only if x is privately non-dominated in E (r, x) for any r ∈ [0, 1]n.

Proof. Let x ∈ W (E ). Applying an argument similar to that in Theorem 5.2.3 with

S = N , one can show that x is privately non-dominated in E (r, x) for any r ∈ [0, 1]n.
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Conversely, let x be a privately non-dominated feasible allocation in E (r, x) for each

r ∈ [0, 1]n. Suppose that x /∈ W (E ). By Remark 2.2.1, f /∈ W (Ec). Corollary 3.2.3

and Proposition 2.2.2 imply that f /∈ PC (Ec). By Theorem 4.1.2, one has a coalition

S ⊆ I with

µ̂(S) > 1− 1

n

and an assignment g such that g(t, ·) ∈ Lt and g(t, ·) ∈ Pt(f(t, ·)) for almost all t ∈ S,

and ∫
S
g(·, ω)dµ̂ ≤

∫
S
a(·, ω)dµ̂

for all ω ∈ Ω. Let Si = S ∩ Ii and r̃i = nµ̂(Si) for all i ∈ N . Put r̃ = (r̃1, ..., r̃n). Since

µ̂(S) > 1− 1

n
,

then r̃i > 0 for all i ∈ N . Now,

yi =
1

µ̂(Si)

∫
Si

g(·, ·)dµ̂ ∈ Li

for all i ∈ N . Hence, y = (y1, ..., yn) is an allocation in E (r̃, x). By Lemma 2.2.3,

yi ∈ Pi(xi) for all i ∈ N . Further, since∑
i∈N

µ̂(Si)yi ≤
∑
i∈N

µ̂(Si)ai,

then ∑
i∈N

r̃iyi ≤
∑
i∈N

r̃iai.

If one put zi = r̃iyi + (1− r̃i)xi for all i ∈ N , then zi ∈ Li for all i ∈ N and∑
i∈N

zi ≤
∑
i∈N

{r̃iai + (1− r̃i)xi} =
∑
i∈N

ai(r̃i, xi).

Since xi ∈ clPi(xi), one obtains zi ∈ Pi(xi) for all i ∈ N , which contradicts with the fact

that x is privately non-dominated in E (r, x) for every r ∈ [0, 1]n. Hence, x ∈ W (E ).

Remark 5.3.3. Note that for each agent i ∈ N , r̃i can be selected arbitrarily close to

1. To see this, for any given 0 < δ < 1, by Theorem 4.1.2, one can choose a privately

blocking coalition S such that

µ̂(S) > 1− δ

n
.
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Hence, r̃i = nµ̂(Si) > 1− δ for all i ∈ N .

Remark 5.3.4. Conclusion of Theorem 5.3.2 is also true under (B1)-(B8), or (B1)-(B3),

(B5)-(B7) and (B9) respectively. The same is true for Remark 5.3.3 in these cases.

The following corollary can be obtained under the assumptions mentioned in Re-

mark 5.3.2.

Corollary 5.3.3. Assume that (B1)-(B5), (B7) and intY+ ̸= ∅. The following are

equivalent for any feasible allocation x in E .

(i) x ∈ W (E ).

(ii) x is in the Aubin private core of E .

(iii) x is Aubin non-dominated in E .

(iv) x is Aubin non-dominated in E with a participation of each agent as close to the

complete participation as one wants.

(v) x is non-dominated in any E (r, x) with r = (r1, ..., rn) ∈ [0, 1]n.

(vi) x is non-dominated in any E (r, x) with ri as close to 1 as one wants.
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Chapter 6

Existence of a Maximin Rational

Expectations Equilibrium

Recently, de Castro et al. [32] introduced the concept of a maximin rational expecta-

tions equilibrium and showed that such an equilibrium always exists in a pure exchange

asymmetric information economy with finitely many agents, finitely many states of na-

ture, and finitely many commodities. The main purpose of this chapter is to extend

this result into several directions. In contrast to finitely many agents and finitely many

states of nature in [32], the spaces of agents and states of nature in this chapter are

taken as a finite measure space and a probability space respectively. The commodity

space is the same as that in [32]. In Section 6.1, the aggregate preferred correspon-

dence is introduced in the sense of Aumann in [17]. In addition to this, the non-empty

valuedness, compactness, continuity and measurability of the aggregate preferred cor-

respondence are studied in this section. Section 6.2 is the last section of this chapter

and is devoted to establish the existence of a maximin rational expectations equilibrium

under the assumption that the space of states of nature is complete. In this chapter, the

economic model given in Subsection 2.2.3 is studied. The main results in this chapter

are taken from [23].

6.1 The Aggregate Preferred Correspondence

In this section, the concept of aggregate preferred correspondence is introduced and

then the non-empty valuedness, compactness, continuity and measurability of this cor-

respondence are established. To see these, some concepts are presented below.
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Let ∆ = intℑℓ. The budget correspondence B : T × Ω×∆ ⇒ Rℓ
+ is defined by

B(t, ω, p) =
{
x ∈ Rℓ

+ : ⟨x, p⟩ ≤ ⟨a(t, ω), p⟩
}

for all (t, ω, p) ∈ T ×Ω×∆. Obviously, B is non-empty closed-valued. For each ω ∈ Ω,

by Theorem 2 in [51, p.151] and (C1)-(C4), there are p(ω) ∈ ∆ and an allocation f

such that (f(·, ω), p(ω)) is a Walrasian equilibrium of the deterministic economy E (ω),

given by

E (ω) =
{
(T,Σ, µ);Rℓ

+; (Ut(ω, ·), a(t, ω)) : t ∈ T
}
.

Define a function δ : ∆ → R+ by

δ(p) = min
{
ph : h = 1, · · · , ℓ

}
,

where p =
(
p1, · · · , pℓ

)
∈ ∆. For any (t, ω, p) ∈ T × Ω×∆, let

γ(t, ω, p) =
1

δ(p)

ℓ∑
h=1

ah(t, ω)

and

b(t, ω, p) = (γ(t, ω, p), · · · , γ(t, ω, p)).

Define X : T × Ω×∆ ⇒ Rℓ
+ by

X(t, ω, p) =
{
x ∈ Rℓ

+ : x ≤ b(t, ω, p)
}

for all (t, ω, p) ∈ T × Ω ×∆. Note that X is non-empty compact- and convex-valued

such that B(t, ω, p) ⊆ X(t, ω, p) for all (t, ω, p) ∈ T × Ω×∆. It can be readily verified

that for every (t, ω) ∈ T × Ω, the correspondence X(t, ω, ·) : ∆ ⇒ Rℓ
+ is Hausdorff

continuous. Define two correspondences C,CX : T × Ω×∆ ⇒ Rℓ
+ by

C(t, ω, p) =
{
y ∈ Rℓ

+ : Ut(ω, y) ≥ Ut(ω, x) for all x ∈ B(t, ω, p)
}

and

CX(t, ω, p) = C(t, ω, p) ∩X(t, ω, p).

Obviously,

B(t, ω, p) ∩ C(t, ω, p) = B(t, ω, p) ∩ CX(t, ω, p)

holds for all (t, ω, p) ∈ T ×Ω×∆. Note that under (C2), Ut(ω, ·) is continuous on the
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non-empty compact set B(t, ω, p). Thus, one has

B(t, ω, p) ∩ C(t, ω, p) ̸= ∅

for all (t, ω, p) ∈ T × Ω×∆.

Proposition 6.1.1. Let (t, ω, p) ∈ T × Ω × ∆. Under (C3), ⟨x, p⟩ ≥ ⟨a(t, ω), p⟩ for

every point x ∈ CX(t, ω, p).

Proof. Assume that ⟨x0, p⟩ < ⟨a(t, ω), p⟩ for some point x0 ∈ CX(t, ω, p). Then, one

can choose some y ∈ Rℓ
+ such that y > 0 and ⟨p, x0 + y⟩ < ⟨p, a(t, ω)⟩. Thus, x0 + y ∈

B(t, ω, p). Since x0 ∈ CX(t, ω, p), one has Ut(ω, x0) > Ut(ω, x0 + y). However, (C3)

implies Ut(ω, x0+y) > Ut(ω, x0). This is a contradiction, which completes the proof.

Following [17], CX(t, ω, p) is called the preferred set of agent t at the price p and

state ω, and
∫
T C

X(·, ω, p)dµ is called the aggregate preferred set at the price p and

state ω. Moreover, ∫
T
CX(·, ·, ·)dµ : Ω×∆ ⇒ Rℓ

+

is termed as the aggregate preferred correspondence. The first important result in this

section is the non-emptiness and the compactness of the aggregate preferred correspon-

dence. For this end, the following lower measurability of B(·, ω, p) and X(·, ω, p) are

crucial for all (ω, p) ∈ Ω×∆.

Proposition 6.1.2. Under (C1), for every (ω, p) ∈ Ω × ∆, B(·, ω, p) : T ⇒ Rℓ
+ and

X(·, ω, p) : T ⇒ Rℓ
+ are lower measurable.

Proof. Here, only the proof of lower measurability of B(·, ω, p) is provided. The other

case can be done analogously. Fix (ω, p) ∈ Ω ×∆. Define a function h : T × Rℓ
+ → R

by letting

h(t, x) = ⟨x, p⟩ − ⟨a(t, ω), p⟩

for all (t, x) ∈ T × Rℓ
+. Then, h(·, x) is measurable for all x ∈ Rℓ

+. Note that

B(t, ω, p) = h(t, ·)−1((−∞, 0]).

Let V be a non-empty open subset of Rℓ, and put V ∩Qℓ
+ = {xk : k ≥ 1}. It is worth to

point out that if x ∈ B(t, ω, p) ∩ V , then xk ∈ B(t, ω, p) for some k ≥ 1. Since h(·, xk)
is measurable,

{t ∈ T : h(t, xk) ∈ (−∞, 0]} ∈ Σ
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for all k ≥ 1. Thus,

B(·, ω, p)−1(V ) =
∪
k≥1

{t ∈ T : xk ∈ B(t, ω, p)}

=
∪
k≥1

{t ∈ T : h(t, xk) ∈ (−∞, 0]}

belongs to Σ. It follows that B(·, ω, p) is lower measurable.

Proposition 6.1.3. Under (C1)-(C3),
∫
T C

X(·, ·, ·)dµ is non-empty compact-valued.

Proof. Fix (ω, p) ∈ Ω×∆. By (C2), C
X(t, ω, p) is non-empty closed for all t ∈ T . By

the lower measurability of B(·, ω, p), there exists a sequence {fn : n ≥ 1} of measurable

functions from (T,Σ, µ) to Rℓ
+ such that

B(t, ω, p) = cl{fn(t) : n ≥ 1}

for all t ∈ T . For each n ≥ 1, define a correspondence Cn : T ⇒ Rℓ
+ by letting

Cn(t) =
{
x ∈ Rℓ

+ : Ut(ω, x) ≥ Ut(ω, fn(t))
}

for all t ∈ T . Obviously,

C(t, ω, p) ⊆
∩
n≥1

Cn(t).

If x ∈ Rℓ
+ \ C(t, ω, p) for some t ∈ T , there is an element y ∈ B(t, ω, p) such that

Ut(ω, y) > Ut(ω, x). By (C2), there is some n0 ≥ 1 such that Ut(ω, fn0(t)) > Ut(ω, x).

This implies that x /∈ Cn0(t). Thus,

C(t, ω, p) =
∩
n≥1

Cn(t)

for all t ∈ T . Fix n ≥ 1, and define a function h : (T,Σ, µ)× Rℓ
+ → R by

h(t, x) = Ut(ω, fn(t))− Ut(ω, x).

Clearly, h is Carathéodory. Similar to Proposition 6.1.2, one can show that Cn is lower

measurable. Since X(·, ω, p) is compact-valued, each Cn is closed-valued and

CX(·, ω, p) =
∩
n≥1

Cn(·) ∩X(·, ω, p),
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then CX(·, ω, p) : (T,Σ, µ) ⇒ Rℓ
+ is lower measurable. By the Kuratowski-Ryll-

Nardzewski measurable selection theorem, CX(·, ω, p) has a measurable selection which

is also integrable, as b(·, ω, p) is so. Since CX(·, ω, p) is closed-valued and integrably

bounded,
∫
T C

X(·, ω, p)dµ is compact.

Next, the Hausdorff continuity of the aggregate preferred correspondence with re-

spect to the variable p ∈ ∆ is established.

Theorem 6.1.4. Assume (C1)-(C3). For each ω ∈ Ω,
∫
T C

X(·, ω, ·)dµ : ∆ ⇒ Rℓ
+ is

Hausdorff continuous.

Proof. Fix ω ∈ Ω. Let {pn : n ≥ 1} ⊆ ∆ converge to p ∈ ∆. Choose ε > 0 and N ≥ 1

such that ε < δ(p) and ε < δ(pn) for all n ≥ N . Let

c = min {δ(pn), ε : n = 1, 2, · · · , N − 1} ,

d(t, ω) =
1

c

ℓ∑
h=1

ah(t, ω), and ξ(t, ω) = (d(t, ω), · · · , d(t, ω)).

Define M(ω) by

M(ω) =

{
x ∈ Rℓ

+ : x ≤
∫
T
ξ(·, ω)dµ

}
.

Since all X(·, ω, pn) and X(·, ω, p) are upper bounded by ξ(·, ω), then
∫
T C

X(·, ω, pn)dµ
and

∫
T C

X(·, ω, p)dµ are contained in the compact subset M(ω) of Rℓ
+ . Thus, one

only needs to show that
{∫

T C
X(·, ω, pn)dµ : n ≥ 1

}
converges to

∫
T C

X(·, ω, p)dµ in

the Hausdorff metric topology on K0(M(ω)), which is equivalent to

Li

∫
T
CX(·, ω, pn)dµ = Ls

∫
T
CX(·, ω, pn)dµ =

∫
T
CX(·, ω, p)dµ.

The verification of the above equation can be split into two steps. First, one verifies

Ls

∫
T
CX(·, ω, pn)dµ ⊆

∫
T
CX(·, ω, p)dµ.

To do this, it is enough to verify that for any t ∈ T ,

LsCX(t, ω, pn) ⊆ CX(t, ω, p).

Pick t ∈ T and x ∈ LsCX(t, ω, pn). Then, there exist positive integers n1 < n2 < n3 <

· · · and for each k a point xk ∈ CX(t, ω, pnk
) such that {xk : k ≥ 1} converges to x.
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It is obvious that x ∈ X(t, ω, p). If x /∈ CX(t, ω, p), by the continuity of Ut(ω, ·), one
can choose some y ∈ Rℓ

+ such that ⟨y, p⟩ < ⟨a(t, ω), p⟩ and Ut(ω, y) > Ut(ω, x). By the

Hausdorff continuity of X(t, ω, ·), {X(t, ω, pnk
) : k ≥ 1} converges to X(t, ω, p) in the

Hausdorff metric topology. Since y ∈ X(t, ω, p), there exists a sequence {yk : k ≥ 1}
such that yk ∈ X(t, ω, pnk

) for all k ≥ 1 and {yk : k ≥ 1} converges to y. It follows that

Ut(ω, yk) > Ut(ω, xk) and ⟨yk, pnk
⟩ < ⟨a(t, ω), pnk

⟩ for all sufficiently large k, which is a

contradiction. Therefore, one must have x ∈ CX(t, ω, p). Secondly, one needs to verify∫
T
CX(·, ω, p)dµ ⊆ Li

∫
T
CX(·, ω, pn)dµ.

It is enough to verify that for all t ∈ T ,

CX(t, ω, p) ⊆ LiCX(t, ω, pn).

Fix t ∈ T and pick d ∈ CX(t, ω, p). If d = b(t, ω, p), b(t, ω, pn) ∈ CX(t, ω, pn) and

{b(t, ω, pn) : n ≥ 1} converges to d. Assume d < b(t, ω, p). Select δ > 0 such that

d+ (0, · · · , δ, · · · , 0) ≤ b(t, ω, p).

Further, choose a sequence {δi : i ≥ 1} in (0, δ] converging to 0. For each i ≥ 1, let

di = d+ (0, · · · , δi, · · · , 0),

and choose a sequence {din : n ≥ 1} such that din ∈ X(t, ω, pn) for each n ≥ 1 and

{din : n ≥ 1} converges to di. It is claimed that for each i ≥ 1, din ∈ CX(t, ω, pn)

for sufficiently large n. Otherwise, there must exist an i0 ≥ 1 and a subsequence

{di0nk
: k ≥ 1} of {di0n : n ≥ 1} such that di0nk

/∈ CX(t, ω, pnk
). Let bk ∈ B(t, ω, pnk

) and

Ut(ω, bk) > Ut(ω, d
i0
nk
) for all k ≥ 1. Then {bk : k ≥ 1} has a subsequence converging

to b ∈ B(t, ω, p). By (C2) and (C3), one obtains

Ut(ω, b) ≥ Ut(ω, d
i0) > Ut(ω, d),

which contradicts with the fact that d ∈ CX(t, ω, p). To complete the proof, note that

the previous claim implies that for each i,
{
dist(di, CX(t, ω, pn)) : n ≥ 1

}
converges to

0. Since {di : i ≥ 1} converges to d, one concludes that {dist(d,CX(t, ω, pn)) : n ≥ 1}
also converges to 0. This means that d ∈ LiCX(t, ω, pn).

The next result is crucial for the existence theorem in Section 6.2.
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Theorem 6.1.5. Assume (C1)-(C3). For each p ∈ ∆,
∫
T C

X(·, ·, p)dµ : Ω ⇒ Rℓ
+ is

lower measurable.

Proof. Fix p ∈ ∆. Since a(·, ·) and U·(·, ·) are Σ⊗F -measurable and Σ⊗F ⊗B(Rℓ
+)-

measurable respectively, by Proposition 2.1.3, there exist two sequences {an : n ≥ 1}
and {ψn : n ≥ 1} of Σ ⊗ F -measurable and Σ ⊗ F ⊗ B(Rℓ

+)-measurable functions

respectively such that {an : n ≥ 1} uniformly converges to a(·, ·) on T × Ω and {ψn :

n ≥ 1} uniformly converges to U·(·, ·) on T × Ω × Rℓ
+. For each n ≥ 1, an and ψn are

written as

an =
∑
i≥1

eiχTn
i ×Ωn

i
and ψn =

∑
i≥1

viχTn
i ×Ωn

i ×Bn
i
,

where ei ∈ Rℓ
+, vi ∈ R, and {Tn

i × Ωn
i × Bn

i : i ≥ 1} is a partition of T × Ω × Rℓ
+

for all n ≥ 1. Choose some N ≥ 1 such that ∥an − a∥∞ < 1 for all n ≥ N . By

the measurability of an(·, ω), one has an(·, ω) ∈ L1

(
µ,Rℓ

)
for all ω ∈ Ω and n ≥ 1

(replacing an for all 1 ≤ n < N by some constant functions, if necessary). Let

γn(t, ω) =
1

δ(p)

ℓ∑
h=1

ahn(t, ω) and bn(t, ω) = (γn(t, ω), · · · , γn(t, ω)).

Define Xn, Bn, Cn : T × Ω ⇒ Rℓ
+ such that

Xn(t, ω) =
{
x ∈ Rℓ

+ : x ≤ bn(t, ω)
}
,

Bn(t, ω) =
{
x ∈ Rℓ

+ : ⟨x, p⟩ ≤ ⟨an(t, ω), p⟩
}
,

and

Cn(t, ω) =
{
y ∈ Rℓ

+ : ψn(t, ω, y) ≥ ψn(t, ω, x) for all x ∈ Bn(t, ω)
}
.

In addition, define CX
n : T × Ω ⇒ Rℓ

+ such that for all (t, ω) ∈ T × Ω,

CX
n (t, ω) = (Cn(t, ω) ∪ {bn(t, ω)}) ∩Xn(t, ω).

For every n ≥ 1, define the correspondence Hn : (Ω,F , ν) ⇒ L1

(
µ,Rℓ

)
by letting

Hn(ω) =
{
f ∈ L1(µ,Rℓ

+) : f(t) ∈ CX
n (t, ω) for almost all t ∈ T

}
.

Obviously, Hn(ω) ̸= ∅ for all ω ∈ Ω.

Claim 1. For each fixed n ≥ 1, Hn is lower measurable. For convenience, define a
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function Θ : L1

(
µ,Rℓ

)
× Ω → R+ such that

Θ(g, ω) = dist(g,Hn(ω))

for all g ∈ L1

(
µ,Rℓ

)
and ω ∈ Ω. To verify the claim, one needs to verify that for

each g ∈ L1

(
µ,Rℓ

)
, Θ(g, ·) is measurable. Since Θ(·, ω) : L1

(
µ,Rℓ

)
→ R+ is norm-

continuous, it suffices to show that Θ(g, ·) : (Ω,F , ν) → R+ is measurable for every

simple function g =
∑r

j=1 xjχTj , where xj ∈ Rℓ. To this end, consider the function

Γ : (T,Σ, µ)× (Ω,F , ν) → R+ such that

Γ(t, ω) = dist
(
g(t), CX

n (t, ω)
)

for all (t, ω) ∈ T×Ω. Since Γ is constant on each (Tn
i ∩Tj)×Ωn

i , it is jointly measurable.

Note that

Γ(t, ω) ≤ ∥g(t)− bn(t, ω)∥

for all (t, ω) ∈ T × Ω. This implies for all ω ∈ Ω, Γ(·, ω) is integrable. Thus, Θ(g, ·) is
measurable and the claim is verified if one shows for all ω ∈ Ω,∫

T
Γ(·, ω)dµ = Θ(g, ω).

Assume that ∫
T
Γ(·, ω0)dµ < Θ(g, ω0)

for some ω0 ∈ Ω. Pick ε > 0 such that∫
T
Γ(·, ω0)dµ+ εµ(T ) < Θ(g, ω0).

Further, pick t ∈ Tn
i ∩ Tj and y(i,j) ∈ CX

n (t, ω0) such that

∥xj − y(i,j)∥ < Γ(t, ω0) + ε.

Define ζ : T → Rℓ
+ by ζ(t) = y(i,j) for all t ∈ Tn

i ∩ Tj . Then, ζ ∈ Hn(ω0) and

∥g − ζ∥1 <
∫
T
Γ(·, ω0)dµ+ εµ(T ),

which is a contradiction.

Claim 2. The correspondence
∫
T C

X
n (·, ·)dµ : (Ω,F , ν) ⇒ Rℓ

+ is lower measurable.
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To see this, consider the function ξ : L1

(
µ,Rℓ

)
→ Rℓ defined by ξ(f) =

∫
T fdµ for all

f ∈ L1

(
µ,Rℓ

)
. Let V be an open subset of Rℓ. Note that

ξ ◦Hn(ω) =

∫
T
CX
n (·, ω)dµ

for all ω ∈ Ω, and

(ξ ◦Hn)
−1(V ) = {ω ∈ Ω : Hn(ω) ∩ ξ−1(V ) ̸= ∅}.

Since ξ is norm-continuous, by Claim 1, (ξ ◦Hn)
−1(V ) ∈ F . This verifies the claim.

Claim 3.

Li

∫
T
CX
n (·, ω)dµ = Ls

∫
T
CX
n (·, ω)dµ =

∫
T
CX(·, ω, p)dµ.

To see this, for each ω ∈ Ω, put

α(·, ω) = sup

{
b1(·, ω), · · · , bN−1(·, ω), b(·, ω, p) +

(
ℓ

δ(p)
, · · · , ℓ

δ(p)

)}
.

Then, CX(·, ω, p) and all CX
n (·, ω) are upper bounded by α(·, ω). Now, it suffices to

verify that for all t ∈ T ,

LsCX
n (t, ω) ⊆ CX(t, ω, p) and CX(t, ω, p) ⊆ LiCX

n (t, ω).

First, let x ∈ LsCX
n (t, ω). If x = b(t, ω, p), then {bn(t, ω) : n ≥ 1} converges to x and

bn(t, ω) ∈ CX
n (t, ω) for all n ≥ 1. Assume now that x ̸= b(t, ω, p). Then, there exist

positive integers n1 < n2 < n3 < · · · and for each k a point xk ∈ CX
nk
(t, ω) such that

{xk : k ≥ 1} converges to x and xk ̸= bnk
(t, ω) for all sufficiently large k. Obviously,

x ∈ X(t, ω, p). If x /∈ CX(t, ω, p), there is some y ∈ Rℓ
+ such that

⟨y, p⟩ < ⟨a(t, ω), p⟩ and Ut(ω, y) > Ut(ω, x).

Since {Xnk
(t, ω) : k ≥ 1} converges to X(t, ω, p) in the Hausdorff metric topology, there

is a sequence {yk : k ≥ 1} such that yk ∈ Xnk
(t, ω) for all k ≥ 1 and {yk : k ≥ 1}

converges to y. By the inequality

|Ut(ω, x)− ψnk
(t, ω, xk)| < |Ut(ω, x)− Ut(ω, xk)|

+ |Ut(ω, xk)− ψnk
(t, ω, xk)|,
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the continuity of Ut(ω, ·) and the uniform convergence of ψnk
(t, ω, ·) to Ut(ω, ·), one

concludes that

ψnk
(t, ω, yk) > ψnk

(t, ω, xk) and ⟨yk, p⟩ < ⟨ank
(t, ω), p⟩

for sufficiently large k, which contradicts with xk ∈ CX
nk
(t, ω) for all k ≥ 1. Hence,

x ∈ CX(t, ω, p). Now, let d ∈ CX(t, ω, p). If d = b(t, ω, p), then {bn(t, ω) : n ≥ 1}
converges to d and bn(t, ω) ∈ CX

n (t, ω) for all n ≥ 1. Thus, d ∈ LiCX
n (t, ω). Suppose

that d < b(t, ω, p). Similar to that in the proof of Theorem 6.1.4, one can show that

d ∈ LiCX
n (t, ω).

To complete the proof, for each ω ∈ Ω, put

M(ω) =

{
x ∈ Rℓ

+ : x ≤
∫
T
α(·, ω)dµ

}
.

Clearly, cl
∫
T C

X
n (·, ω)dµ and

∫
T C

X(·, ω, p)dµ are contained in the compact set M(ω).

It follows from Claim 3 that
{
cl
∫
T C

X
n (·, ω)dµ : n ≥ 1

}
converges to

∫
T C

X(·, ω, p)dµ in

M(ω) under the Hausdorff metric topology. By Claim 2, cl
∫
T C

X
n (·, ·)dµ : (Ω,F , ν) →

K0(Rℓ
+) is measurable, and thus,

∫
T C

X(·, ·, p)dµ is lower measurable.

Corollary 6.1.6. Assume (C1)-(C3). Then
∫
T C

X(·, ·, ·)dµ : (Ω,F , ν)×(∆,B(∆)) →
(K0(Rℓ

+),TH) is a jointly measurable function.

Proof. By Theorem 6.1.4, for every ω ∈ Ω,
∫
T C

X(·, ω, ·)dµ : ∆ → K0

(
Rℓ
+

)
is contin-

uous. Furthermore, by Theorem 6.1.5, for every p ∈ ∆,
∫
T C

X(·, ·, p)dµ : Ω ⇒ Rℓ
+ is

lower measurable. Thus, for every p ∈ ∆,
∫
T C

X(·, ·, p)dµ : Ω → K0(Rℓ
+) is a measur-

able function. This means that
∫
T C

X(·, ·, ·)dµ : (Ω,F , ν) × (∆,B(∆)) → K0(Rℓ
+) is

Carathéodory, and thus is jointly measurable.

6.2 Existence of a Maximin REE

A price system of E is a measurable function π : (Ω,F , ν) → (∆,B(∆)). Let Gt =

Ft ∨ σ(π). For each ω ∈ Ω, let Gt(ω) denote the smallest element of Gt containing ω.

Given t ∈ T , ω ∈ Ω and a price system π, let BREE(t, ω, π) be defined by

BREE(t, ω, π) =
{
x ∈ (Rℓ

+)
Ω : x(ω′) ∈ B(t, ω′, π(ω′)) for all ω′ ∈ Gt(ω)

}
.
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6.2. THE EXISTENCE OF A MAXIMIN REE

The maximin utility of each agent t ∈ T with respect to Gt at an allocation f : T ×Ω →
Rℓ
+ in state ω, denoted by U

¯
REE
t (ω, f(t, ·)), is defined by

U
¯
REE
t (ω, f(t, ·)) = inf

ω′∈Gt(ω)
Ut(ω

′, f(t, ω′)).

Comparing with U
¯
REE
t , the function Ut is sometime called the ex post utility of agent

t.

Remark 6.2.1. The maximin utility formation in the sense of REE was introduced by

de Castro et al. in [31], where Ω is finite. In this case, for each t ∈ T , Πt is a partition

of Ω consisting of only finitely many elements and σ(π) is generated by a partition Ππ

also consisting of only finitely many elements. Thus, the σ-algebra Gt = Ft ∨ σ(π) is

generated by the partition Πt∨Ππ. For each ω ∈ Ω, there exists a unique element Gt(ω)

in Πt ∨Ππ containing ω. It is clear that Gt(ω) is the smallest element of Gt containing

ω. Moreover, since Gt(ω) is a finite set, U
¯
REE
t (ω, f(t, ·)) is well-defined.

In our case, Ω is fairly general, particularly, can be infinite. The structure of σ(π)

can be complicated. If Ω is infinite, σ(π) may not be generated by a partition. But,

for each ω ∈ Ω, there always exists a (unique) smallest element in σ(π) containing ω.

This means that there also exists a (unique) smallest element Gt(ω) in Gt containing ω.

Since Gt(ω) can be infinite, U
¯
REE
t (ω, f(t, ·)) is allowed to take the value −∞ if the above

infimum does not exist. This adaptation will not affect the proof of Theorem 6.2.1.

Definition 6.2.1. Given a feasible allocation f and a price system π, the pair (f, π) is

called a maximin rational expectations equilibrium (abbreviated as maximin REE) of E

if f(t, ω) ∈ B(t, ω, π(ω)) and f(t, ·) maximizes U
¯
REE
t (ω, ·) on BREE(t, ω, π) for almost

all (t, ω) ∈ T × Ω. In this case, f is called a maximin rational expectations allocation,

and the set of such allocations is denoted by MREE(E ).

Definition 6.2.1 indicates that at a maximin rational expectations allocation, ex-

cept for some negligible sets of agents and states of nature, each agent maximizes his

maximin utility conditioned on his private information and the information generated

by the equilibrium prices, subject to the budget constraint. Recently, de Castro et al.

[32] showed that MREE(E ) ̸= ∅ when Ω and T are finite. The next theorem extends

their result to a more general case. To do this, suppose that (Ω,F , ν) is complete.

Theorem 6.2.1. Under (C1)-(C4), MREE(E ) ̸= ∅.

Proof. Consider the correspondence Z : (Ω,F , ν)× (∆,B(∆)) ⇒ Rℓ defined by

Z(ω, p) =

∫
T
CX(·, ω, p)dµ−

∫
T
a(·, ω)dµ.
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6.2. THE EXISTENCE OF A MAXIMIN REE

By Proposition 6.1.3, Z is non-empty compact-valued. In addition, by Corollary 6.1.6

and (C1), Z : (Ω,F , ν) × (∆,B(∆)) → K0(Rℓ) is jointly measurable. Define another

correspondence F : (Ω,F , ν) ⇒ (∆,B(∆)) such that

F (ω) = {p ∈ ∆ : Z(ω, p) ∩ {0} ̸= ∅}.

Since E (ω) has a Walrasian equilibrium, F is non-empty valued. Since GrF = Z−({0}),
one obtains GrF ∈ F⊗B(∆), and thus, F is lower measurable. It follows from Theorem

6.1.4 that F (ω) is closed for all ω ∈ Ω. By the Kuratowski-Ryll-Nardzewski measurable

selection theorem, there is a measurable function π̂ : (Ω,F , ν) → (∆,B(∆)) such that

π̂(ω) ∈ F (ω) for all ω ∈ Ω. By the definition of Z, there exists an allocation f such

that f(t, ω) ∈ CX(t, ω, π̂(ω)) and∫
T
f(·, ω)dµ =

∫
T
a(·, ω)dµ

for almost all t ∈ T and all ω ∈ Ω. By Proposition 6.1.1, one has

⟨f(t, ω), π̂(ω)⟩ ≥ ⟨a(t, ω), π̂(ω)⟩

for almost all t ∈ T and all ω ∈ Ω. It follows that

⟨f(t, ω), π̂(ω)⟩ = ⟨a(t, ω), π̂(ω)⟩

for almost all t ∈ T and all ω ∈ Ω. Thus, f(t, ω) ∈ B(t, ω, π̂(ω)) for almost all t ∈ T

and all ω ∈ Ω. For all ω ∈ Ω, define Tω ⊆ T by

Tω = {t ∈ T : f(t, ω) ∈ B(t, ω, π̂(ω)) ∩ C(t, ω, π̂(ω))}.

Then, µ(Tω) = µ(T ) for all ω ∈ Ω. Next, for every ω ∈ Ω and every t ∈ T \ Tω, as
B(t, ω, π̂(ω)) ∩ C(t, ω, π̂(ω)) ̸= ∅, one can pick a point

h(t, ω) ∈ B(t, ω, π̂(ω)) ∩ C(t, ω, π̂(ω)),

and then define a function f̂ : T × Ω → Rℓ
+ such that

f̂(t, ω) =

 f(t, ω), if t ∈ Tω;

h(t, ω), if t ∈ T \ Tω.
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6.2. THE EXISTENCE OF A MAXIMIN REE

It is obvious that f̂(t, ω) ∈ B(t, ω, π̂(ω)) ∩ C(t, ω, π̂(ω)) for all (t, ω) ∈ T × Ω. Assume

that there are an agent t0 ∈ T , a state of nature ωt0 ∈ Ω and an element y(t0, ·) ∈
BREE(t0, ωt0 , π̂) such that

U
¯
REE
t0 (ωt0 , y(t0, ·)) > U

¯
REE
t0 (ωt0 , f̂(t0, ·)).

Then, one obtains

Ut0

(
ω′
t0 , y(t0, ω

′
t0)
)
> Ut0

(
ω′
t0 , f̂(t0, ω

′
t0)
)

for some ω′
t0 ∈ Gt0(ωt0), which contradicts with f̂(t0, ω

′
t0) ∈ C

(
t0, ω

′
t0 , π̂(ω

′
t0)
)
. This

verifies that (f̂ , π̂) is a maximin rational expectations equilibrium of E .
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Chapter 7

Conclusions and Future Work

The main goal of this thesis is to build up a general framework, which can be used to

analyze some unsolved key problems on the blocking efficiency of the core allocations,

characterizations and existence of Walrasian allocations in economies with asymmetric

information. To do this, several mathematical concepts and techniques are employed.

In the following sections, comparison of the results in this thesis with the others and

some open problems are discussed. All of those open problems are left for future work.

More precisely, Section 7.1 is devoted to discuss the blocking power of coalitions for

allocations not belonging to the (strong) fine core and the private core of an asymmetric

information economy. All results concerning the characterizations of Walrasian alloca-

tions established in the preceding chapters are summarized in Section 7.2. Section 7.3

is the last section of this chapter and deals with the existence of Walrasian allocations

and maximin REE.

7.1 Blocking of Non-core Allocations

In Chapter 4, sharper characterizations of the (strong) fine core and the private core

are provided in an asymmetric information economy with finitely many states and an

infinite dimensional commodity space. It would be interesting to extend these results

in the direction of infinitely many states. In Theorem 4.2.2 and Theorem 4.3.2, the

positive cone of the commodity space has an interior point. At this stage, it is unclear

that whether the conclusions of these theorems still hold when the positive cone of

the commodity space has no interior points. The concept of the strong private core

was used in [72], where a Vind-type theorem was also established in an asymmetric

information economy with finitely many commodities. However, it is unclear whether
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7.1. BLOCKING OF NON-CORE ALLOCATIONS

this result can be extended to an asymmetric information economy with infinitely many

commodities.

Definition 7.1.1. An allocation f in E is coarsely blocked by a coalition S if there is

an assignment g such that g(t, ·) is
∧

PS-measurable and Vt(g(t, ·)) > Vt(f(t, ·)) for

almost all t ∈ S, and
∫
S g(·, ω)dµ =

∫
S a(·, ω)dµ for all ω ∈ Ω. The coarse core of E ,

denoted by C C (E ), is the set of all feasible allocations which are not coarsely blocked

by any coalition of E .

Moreover, analogous to Definition 4.3.2 and Definition 7.1.1, the concept of the

strong coarse core can also be introduced. In the light of Theorem 4.2.2 and Theorem

4.3.2, one may ask whether similar theorems can be established for the coarse core and

the strong coarse core. These are left as open questions. In the rest of this section,

several applications of Theorem 4.2.2 are given.

Remark 7.1.1. The first application of Theorem 4.2.2 leads to an affirmative solution

to the question mentioned in Remark 1 of [72], when one considers Y = Rℓ. This is

just a special case of Theorem 4.2.2. Suppose that for an agent t, Ut : Ω × Y+ → R is

the random utility function and qt is the prior belief. Thus, agent t’s ex ante expected

utility is given by Vt(x) =
∑

ω∈Ω Ut(ω, x)qt(ω). By Remark 6 in [36], the measurability

of the function q·(ω) and U·(ω, x) for all x ∈ Y+ and the continuity of Ut(ω, ·) for all

t ∈ T imply (A1). Similarly, (A2) and (A3) follow from continuity and monotonicity

of Ut(ω, ·). Note that in the proof of Lemma 3 of [72], only the assumption that

Ut(ω, ·) is concave for all (t, ω) ∈ T ×Ω is needed. Thus, one may think that the same

assumption is needed to solve Pesce’s question. But here, instead of the concavity

of Ut(ω, ·), measurability, continuity and monotonicity assumptions stated above are

essential.

Remark 7.1.2. An equivalence theorem for the private core and the set of Walrasian

expectations allocations without free disposal was given in [9]. Theorem 4.2.2 strength-

ens this result with a sharper interpretation. Under free disposal, it was shown in

[22, 36, 46, 47] that Walrasian allocations can be characterized by privately non-

dominated allocations and Aubin non-dominated allocations. The proofs of these re-

sults depend on some versions of the equivalence theorem and Vind’s theorem. Applying

Theorem 4.2.2 and the equivalence theorem in [9], one can easily extend those results

to an asymmetric information economy with a finite dimensional commodity space and

without free disposal. There is some potential to extend those results to an economy

with an infinite dimensional commodity space, depending on whether the equivalence
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7.2. CHARACTERIZATIONS OF WALRASIAN ALLOCATIONS

theorem in [9] can be extended to an asymmetric information economy with infinitely

many commodities.

Remark 7.1.3. Recently, some work has been done in the formulation of maximin pref-

erences, refer to [24, 31, 65]. With a little bit of extra efforts and modifications, results

similar to Theorem 4.2.2 in the framework of maximin preferences could be established.

In addition, based on non-linear price systems, the notion of a personalized equilibrium

was introduced in [3]. As a potential future research direction, one may wonder if

Theorem 4.2.2 can be applied to give some characterizations of personalized equilibria.

7.2 Characterizations of Walrasian Allocations

Since the work of Aumann in [15], different characterizations of Walrasian allocations by

the co-operative solution concepts have been obtained in economic theory. In this thesis,

two types of characterizations are considered. One deals with the veto power of infinitely

many coalitions, and other claims that an allocation is a Walarasian allocation if and

only if it is not privately blocked by the grand coalition, by considering perturbations

of the original initial endowments in precise directions. All of these results presented

in Chapter 3 and Chapter 5 are obtained in economies with finitely many states of

nature. Possible extensions of these results in asymmetric information economies with

infinitely many states of nature are still open questions. In addition, it is natural to

ask whether the characterization of Walrasian allocations in terms of robustly efficient

allocations can be extended to a framework with the commodity space has no interior

points in its positive cone. Moreover, the major limitation of this theorem is that it

does not allow the situation when either there is exactly one large agent, or at least

two large agents have the different characteristics. Thus the following question arises:

Does the conclusion of Theorem 5.2.4 hold in a mixed economy E with either |A | = 1,

or |A | ≥ 2 but whose large agents have different types of characteristics? In Section

5.3, some characterizations of Walrasian allocations are given in a discrete asymmetric

information economy whose commodity space is a Banach lattice. At this stage, it is

unclear whether similar characterizations hold in atomless (possibly mixed) economies

with asymmetric information and Banach lattices as commodity spaces. This section

concludes with several remarks.

Remark 7.2.1. The robust efficiency theorem in [48] is a particular case of Theorem

5.2.4. By Lemma 5.1.1 and Theorem 5.1.3, the coalition S and the number r in Theorem

5.2.4 can be chosen arbitrarily small in an atomless economy. As a result, slight pertur-

bations of initial endowments of agents in small coalitions are enough to characterize
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7.2. CHARACTERIZATIONS OF WALRASIAN ALLOCATIONS

Walrasian allocations. Moreover, similar to Remark 3.2 in [48], as a particular case of

Theorem 5.2.4, one obtains the welfare theorems in mixed economies with asymmetric

information.

Remark 7.2.2. In the end of [48], the following question was mentioned: More work is

needed to verify whether the result still holds for other commodity spaces. Of particular

interest is the spaces of measures, where the Walrasian allocations are known to resist

manipulation by arbitrarily small coalitions and may, therefore, be regarded as true

perfectly compatitive outcomes. Our Theorem 5.2.4 provides an answer to the first

part of the question. Under the continuum hypothesis, Podczeck [68], Tourky and

Yannelis [81] constructed a continuum economy with a non-separable ordered Banach

space having an interior point in its positive cone as the commodity space such that

Aumann’s core-Walras equivalence theorem fails. In the light of this construction, it is

conjectured that the answer to the second part of the question is negative.

It is worth to point out that the argument in the proof appeared in [48] cannot be

applied to extend the robust efficiency theorem to an asymmetric information economy

with an atomless measure space of agents, finitely many commodities and without free

disposal. In fact, to keep the measurability of h(t, ·) for almost all t ∈ S in their Lemma

3.1, the authors choose δ = min{δ(ω) : ω ∈ Ω}. So the equality sign in their Lemma

3.1 is replaced by “≤” and hence also at the end of the proof of their Theorem 3.1.

Thus, this approach does not provide an answer to the case without free disposal in

an asymmetric information economy. However, one can apply Theorem 5.1.3 of this

thesis to obtain a positive result. A similar result for a mixed economy requires some

further modification of Theorem 5.2.2, which is left as an open problem. In this regard,

Theorem 4.2.2 may be helpful to obtain a positive result.

Remark 7.2.3. Now, Theorem 5.2.4 of this thesis and Theorem 5.2 in [41] are compared.

First, different assumptions on the concavity of utility functions and the convexity of

preference relations are used in the proofs of these two results. Recall that if a preference

relation is represented by a utility function, then the concavity of utility implies the

convexity of preference relation. Note that in the proof of Theorem 5.2.4, the partial

convexity of Pt for all t ∈ T1 is used. When the economy E is atomless, no convexity

is needed at all. But, in the proof of Theorem 5.2 in [41], the concavity of Ut(ω, ·)
for all (t, ω) ∈ T × Ω is used. Second, Theorem 5.2.4 holds under assumptions that E

either is atomless or contains at least two large agents, and all large agents have the

same characteristics. But, Theorem 5.2 in [41] does not need these assumptions. Third,

Theorem 5.2 in [41] gives a characterization of a Walrasian expectations allocation f

of E in terms of the veto power of the grand coalition in every economy E (γ, f) for all
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7.3. EXISTENCE OF A WALRASIAN EQUILIBRIUM AND A MAXIMIN REE

γ ∈ B. Since E (S, f, r) = E (γS,r, f) for all S ∈ Σ, µ(S) < µ(T ) and 0 ≤ r ≤ 1, and

B0 = {γS,r : S ∈ Σ, µ(S) < µ(T ) and 0 ≤ r ≤ 1}

is a proper subfamily of B, Theorem 5.2.4 of this thesis provides a sharper characteri-

zation of a Walrasian expectations allocation f in E .

Remark 7.2.4. Applying Theorem 5.2.4 to a continuum economy with n different types

of agents, one obtains Theorem 4.1 in [46, 47] and a similar result in [36] as particular

cases.

Remark 7.2.5. The work presented in this thesis is within the Arrow-Debreu formulation

of the Walrasian equilibrium model. Since many intertemporal general equilibrium

models are derived from this microeconomic formulation, characterization theorems

may have potential applications to some of intertemporal general equilibrium models.

For instance, one may consider if some modifications of the approach in this paper can

provide characterizations of equilibria in the economic model of asset markets without

short-selling in [26] or the models mentioned in [55].

7.3 Non-emptiness of W (E ) and MREE(E )

Several characterizations of Walrasian allocations are presented in Chapter 3 and Chap-

ter 5. One may wonder whether a Walrasian equilibrium exists in each of those frame-

works. The existence of a Walrasian equilibrium in a discrete economy can be estab-

lished by using an argument similar to that in [71]. It is well known that a Walrasian

equilibrium may not exist in a continuum economy with infinitely many agents and

infinitely many commodities. In fact, it was shown in [90] that without any upper

bound on the consumption sets, an equilibrium may not exist in an economy with

a continuum of agents and infinitely many commodities. However, Khan and Yan-

nelis [57] obtained a positive result by employing an additional assumption on the

consumption set of each agent. To obtain a positive result for a mixed asymmetric

information economy whose commodity space is an ordered Banach space having an

interior point in its positive cone, the following assumption is posed: The consumption

correspondence X : T ×Ω → Y+ is integrably bounded, norm-closed, convex, nonempty,

weakly compact-valued. In addition, X(·, ω) has a measurable graph for all ω ∈ Ω and

X(t, ·) is Ft-measurable for all t ∈ T . Under this assumption, define a correspondence

X̂ : T → Y Ω
+ by X̂(t) = X(t, ·)∩Lt. It can be easily checked that the assumption (3.2)

in [57] is satisfied. Thus, applying the main result in [57] with Pt as a prefernce on
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X̂(t) for t ∈ T , one can show the existence of a Walrasian equilibrium.

In Chapter 6, an existence theorem on a maximin rational expectations equilibrium

(maximin REE) for an exchange asymmetric information economy is proved. Com-

paring with the existence result on maximin REE in [31], the existence theorem in

Chapter 6 applies to a more general economic model with an arbitrary finite measure

space of agents and an arbitrary complete probability measure space as the space of

states of nature, while the later applies only to an economic model which has finitely

many agents and finitely many states of nature. Assumptions in Theorem 6.2.1 are sim-

ilar to those in [32], except the joint measurability and continuity of utility functions,

and the joint measurability of the initial endowment function. The proof techniques in

Theorem 6.2.1 are quite different from those in [32]. Since there are only finitely many

agents and states of nature in the model considered in [32], neither measurability nor

continuity of utility functions and the initial endowment function plays any role in the

proof of the existence of a maximin REE. Instead, the existence of a competitive equi-

librium for complete information economies is applied. In contrast, both measurability

and continuity of utility functions and the initial endowment function play key roles

in Theorem 6.2.1. To establish the existence theorem, techniques in [17] are adopted,

the measurability and continuity of the aggregate preferred correspondence are inves-

tigated. However, for special cases, the techniques can be simplified. For instance, if

there are finitely many states of nature, one can still apply the approach employed in

[32] and obtains an existence theorem. On the other hand, if there are finitely many

agents, then one can show that the demand of each agent is F ⊗B(∆)-measurable and

so is the aggregate demand. Then, an approach similar to that in the proof of Theorem

6.2.1 can be applied to establish the existence theorem. Further, since the space of

states of nature in our model is an abstract probability space, the existence theorem in

Chapter 6 does not depend on the dimension of the space of states of nature.
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[15] R.J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964),

39–50.

[16] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965),

1–12.

[17] R.J. Aumann, Existence of competitive equilibria in markets with a continuum of

traders, Econometrica 34 (1966), 1–17.

[18] A. Basile, M.G. Graziano, Core equivalence for equilibria suppoted by non-linear

pices, Positivity, DOI 10.1007/s11117-012-0195-3.

[19] T.F. Bewley, Existence of equilibrium in economies with infinitely many commodi-

ties. J. Econ. Theory 4 (1972), 514–540.

[20] A. Bhowmik, J. Cao, Blocking efficiency in mixed economies with asymmetric

information, J. Math. Econ. 48 (2012), 396–403.

[21] A. Bhowmik, J. Cao, Robust efficiency in an economy with asymmetric informa-

tion, J. Math. Econ. 49 (2013), 49–57.

[22] A. Bhowmik, J. Cao, On the core and Walrasian expectations equilibrium in infi-

nite dimensional commodity spaces, Econ. Theory, DOI 10.1007/s00199-012-0703-

5.

[23] A. Bhowmik, J. Cao, N.C. Yannelis, Aggregate preferred correspondence and the

existence of a Maximin REE, Submitted to J. Math. Anal. Appl.

[24] S. Condie, J.V. Ganguli, Informational efficiency with ambiguous information,

Econ. Theory 48 (2011), 229–242.

126



BIBLIOGRAPHY

[25] R.R. Cornwall, Conditions for the graph and the integral of a correspondence to

be open, J. Math. Anal. Appl. 39 (1972), 771–792.

[26] R. Dana, C. Le Van, F. Magnien, General equilibrium in asset markets with or

without short-selling, J. Math. Anal. Appl. 206 (1997), 567–588.

[27] G. Debreu, A social equilibrium existence theorem. Proc. Nat. Acad. Sci. 38 (1952),

886–893.

[28] G. Debreu, Valuation equilibrium and Pareto optimum, Proc. Nat. Acad. Sci. 40

(1954), 588–592.

[29] G. Debreu, Theory of value, Yale University Press, 1959.

[30] G. Debreu, H.E. Scarf, A limit theorem on the core of an economy, Int. Econ. Rev.

4 (1963), 235–246.

[31] L.I. de Castro, M. Pesce, N.C. Yannelis, Core and equilibria under ambiguity,

Econ. Theory 48 (2011), 519–548.

[32] L.I. de Castro, M. Pesce, N.C. Yannelis, A new perspective to rational expecta-

tions: maximin rational expectation equilibrium, preprint.

[33] A. De Simone, M.G. Graziano, Cone conditions in oligopolistic market models,

Math. Social Sci. 45 (2003), 53–73.

[34] F.Y. Edgeworth, Mathematical Psychics, London, Kegan Paul, 1881.

[35] E. Einy, D. Moreno, B. Shitovitz, Competitive and core allocations in large

economies with differentiated information, Econ. Theory 18 (2001), 321–332.
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