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Abstract 
 

Despite advances in algorithmic design, association 

rule mining remains problematic from a performance 

viewpoint when the size of the underlying transaction 

database is large. The well-known Apriori approach, 

while reducing the computational effort involved still 

suffers from the problem of scalability due to its reliance 

on generating candidate itemsets. In this paper we 

present a novel approach that combines the power of pre-

processing with the application of user-defined 

constraints to prune the itemset space prior to building a 

compact FP-tree. Experimentation shows that that our 

algorithm significantly outperforms the current state of 

the art algorithm, FP-bonsai. 

 

 

1. Introduction 
 

The problem of incorporating user-defined constraints 

into association rule mining algorithms has received a 

great deal of attention recently. It has been recognised that 

embedding constraints into the mining process leads to 

both performance gains and higher levels of user 

interaction [8, 14, 17]. Performance improves as itemsets 

that violate an anti-monotone constraint can be pruned 

from the search space as any supersets of these itemsets 

are guaranteed to violate the constraint as well. On the 

other hand, monotone constraints have been shown to be 

effective in trimming the transaction database of items that 

violate the monotone constraint. Constraints also promote 

a higher level of user involvement as users can precisely 

specify what ietmsets that they are interested in. For 

example, a user interested in mining dairy products and 

may specify that all frequent itemsets containing dairy 

products whose total value exceeds $100 be returned. 

Various approaches such as the ExAnte [5] and FP-

bonsai [6] embed both monotone and anti-monotone 

constraints into base association rule mining algorithms 

such as Apriori [3] and FP-growth [20]. Although these 

constraint embedding techniques have produced 

significant performance gains in base algorithms there still 

exists room for improvement from a performance point of 

view due to the ever-increasing size of databases.  

Basically the performance of any association rule 

mining algorithm is limited by the sheer number of 1- and 

2- frequent itemsets present in the dataset, especially when 

mining at low support thresholds [19]. The FOLD-Growth 

approach [10] overcomes this limitation by making use of 

a pre-processing structure, the SOTrieIT (Support 

Ordered Trie Itemset), to identify 1- and 2- frequent 

itemsets with minimal cost. However, it does not exploit 

the use of constraints in pruning itemsets and relies purely 

on the use of pre-processing to speed up the process of 

frequent itemset generation.  

In this paper we propose an approach that combines 

the strengths of pre-processing together with a constraint 

embedding technique that prunes itemsets that survive the 

pre-processing phase. We show that anti-monotone 

constraints are very effective when applied to the 

SoTrieIT structure and that monotone constraints play an 

important role in pruning the transaction dataset. 

The contributions that we make are as follows. Firstly, 

we attempt to bridge the gap between specialised 

association rule mining methods and work done in 

constraint-based mining by providing a high performance 

mining algorithm that combines strengths from these two 

areas. Secondly, we study the nature of monotone and 

anti-monotone constraints and exploit them deep inside 

the algorithm. We then study the impact of each type of 

constraint on our new algorithm. Finally, we carry out a 

systematic analysis to assess the sensitivity of factors that 

impact on performance such as constraint selectivity, 

support threshold and dataset type.  

The rest of the paper is organized as follows. In section 

2 we present a formal definition of the problem. A review 

of related work is discussed in section 3. Section 4 

contains a description of the FGC algorithm, while section 

5 presents a performance comparison of running the FGC 

algorithm against an implementation of FP-bonsai 

algorithm [6]. The FP-bonsai algorithm was chosen as the 

baseline as it is the state-of-the-art algorithm in the area of 

association rule mining. We conclude in section 6 with a 

presentation on some ideas for future work. 

 

2. Problem definition 
 

Let I = {I1, I2, I3, ……,In} be the universal set of items.  



A k-frequent itemset F is some subset of I such that 

cardinality (F) ≥ min_supp, where min_supp is the support 

threshold. We are interested in the set of all frequent 

itemsets that satisfy user-defined constraints. In this 

research we focus on monotone and anti-monotone 

constraints.  
The frequent itemset mining problem in the presence of 

monotone and anti-monotone constraints requires the 

identification of all itemsets P⊆I such that cardinality(P)≥ 

min_supp and  CAM(P)= true and CM(P) =true, where  CAM 

and CM are anti-monotone and monotone constraints 

respectively. Henceforth in this paper we will use CAM(P) 

as a shorthand for CAM(P) = true, and likewise CM(P) as a 

shorthand for CM(P)  =true. 

 

3. Related research 
 

Research in association rule mining has spanned over a 

decade due to its application in a wide variety of areas 

such as identifying correlations, multi-dimensional 

patterns, partial patterns and periodicity. The seminal 

work by Agrawal [2] resulted in the Apriori algorithm 

which sparked a flurry of research in this area. The 

algorithm uses a simple property called the Apriori 

heuristic that limits the number of candidate itemsets that 

need to be tested. The basic intuition is that any subset of 

a frequent itemset also has to be frequent. This eliminated 

the need for testing every possible combination of items 

and thus the time for generating the frequent itemsets was 

speeded up significantly.  

The main drawback of the Apriori approach is that it 

requires repeated scans of the transaction database and the 

accompanying effort involved in candidate generation. 

Apriori works in a level-by-level fashion and to compute 

the 2-frequent itemsets it has to scan the entire transaction 

database, identify the 1-frequent itemsets and use the 

Apriori principle to generate the candidate 2-frequent 

itsemsets. These candidates then need to be checked 

against the transaction database to verify whether they 

qualify as 2-frequent itemsets. Thus to generate k-frequent 

itemsets a total of k database scans will be needed in 

general, with each scan requiring generation and testing of 

candidate itemsets. 

In recent years, the FP-growth algorithm was proposed 

to eliminate the major bottleneck of repeated database 

scanning and candidate generation inherent in Apriori-like 

algorithms [11, 12]. FP-growth uses a new compact data 

structure, the FP-tree, to store transactions in a trie-like 

structure with every item having a linked list representing 

each transaction. This algorithm does not use the 

generate-and-test paradigm employed by Apriori-type 

algorithms, rather it uses a divide-and-conquer technique 

and thus represents a radical departure in strategy. 

Frequent itemset generation requires only 2 scans of the 

transaction database. In the first scan all 1-frequent 

itemsets are identified. The infrequent items are discarded 

and the 1-frequent items are sorted in support descending 

order. A second scan over the transaction dataset is 

conducted and a branch in the FP-tree is created for each 

transaction. Transactions that have a common item prefix 

share a common sub-tree that is rooted at the shared item. 

If many transactions share the same items, the FP-tree will 

represent a compact version of the transaction database. 

Each time a branch is traversed the support counts for all 

items along the branch are incremented by 1. Once the 

FP-tree has been constructed the transaction database can 

effectively be discarded.  A tree traversal of the FP-tree 

can then be performed to generate frequent itemsets 

without the need for further scanning of the transaction 

database. 

In comparison with Apriori, FP-growth performs well 

on dense datasets, where the former suffers due to the 

huge overheads of candidate generation, resulting in 

memory overload [12]. In spite of FP-growth’s efficient 

data structure and mining techniques, there has been a 

significant amount of criticism levelled at it. The 

criticisms refer to FP-growth as a complex algorithm [22, 

16] and one that has been tailored to dense datasets [13]. 

Indeed, the performance improvement over Apriori is not 

impressive for sparse datasets having short length 

transactions [13, 20]. This has resulted in a number of 

attempts to improve the performance of FP-growth on 

sparse datasets. 

One such attempt is the FOLD-growth algorithm [23], 

which not only aims to provide an improved version of 

FP-growth but also distributes the mining effort over time 

by using a pre-processing data structure called the Support 

Ordered Trie Itemset (SOTrieIT). The first level of the 

SOTrieIT contains a node for every unique item that 

appears in the transaction database. The nodes in the first 

level are sorted in support decreasing order and each node 

is split into child nodes which represent items that appear 

in combination with the parent item in the transaction 

database.  

The SOTrieIT structure supports the identification of 1 

and 2- frequent itemsets by a simple tree traversal. For 

example, to identify itemsets which have a minimum 

support threshold of 3, Figure 1 shows that only nodes C 

and A with their corresponding children need to be 

examined. 

The effectiveness of the SOTrieIT stems from two 

factors: firstly, as mentioned before the major bottleneck 

in association rule mining is the identification of the 1- 

and 2-frequent itemsets. Given a support threshold these 

itemsets can be found very quickly without the need for 

candidate generation and testing by a simple tree traversal 

of the relevant portion of the pre-processed tree structure. 



Secondly, the SOTrieIT, unlike the FP-Tree does not have 

to be re-built if the support threshold changes. This makes 

it very attractive from a performance viewpoint as the 

structure can be incrementally maintained without the 

need for major reorganization. Once the 1 and 2-frequent 

itemsets are identified the FOLD-Growth method trims 

the transaction database by removing items which are not 

included in the 1- and 2-frequent itemsets. The trimmed 

dataset is then used to build a compact version of the FP-

tree, which is then mined to produce the required frequent 

itemsets. 

 

 

 

 

 

 

 

Figure 1: SOTrieIT constructed from sample 

database 

 
In parallel with improvements in mining frequent 

itemsets a considerable amount of research has been 

devoted to the subject of constraint-based mining. All 

previous research in this area has focused on embedding 

constraints into either Apriori type algorithms [18, 4] or 

the FP-tree algorithm [6, 21]. 

The FP-bonsai approach [6] prunes using both 

monotone and anti-monotone constraints, extending the 

ideas of Ex-Ante [4] to an FP-growth algorithm. The 

advantage of this algorithm is that it uses monotone 

constraints to complement anti-monotone pruning of the 

candidate itemsets and the input database. The major 

strength of this algorithm is that it performs very well for 

dense datasets. However it performs less efficiently at 

higher selectivities. Its performance on sparse datasets is 

also poor due to the time spent in building the FP-tree [6].  

The ExAMiner [4] algorithm on the other hand uses 

anti-monotone pruning efficiently. However, due to its 

Apriori-like framework it suffers heavily in performance 

for dense datasets. The higher efficiency of ExAMiner in 

sparse datasets clearly indicates that FP-bonsai would 

have benefited from a more efficient strategy of exploiting 

anti-monotone pruning. 

From previous research it is clear that neither the 

Apriori nor the FP-tree algorithms by themselves are 

efficient vehicles for exploiting the full power of 

constraints. The impressive gains in performance made by 

the FOLD-GROWTH algorithm encouraged us to 

investigate the effect of applying constraints to the pre-

processed SOTrieIT structure to further reduce the itemset 

space prior to frequent itemset mining. 

 

 

4. Constraint-based algorithms 
 

We first examine, with the help of a running example, 

the performance of the FP-bonsai algorithm which 

exploits constraints but does not make explicit use of pre-

processing. We then present our algorithm, called FOLD-

Growth with Constraints (FGC) that exploits constraints 

during both pre-processing phase (involving the 

SOTrieIT) and mining phases.  

We make use of the following transactional database to 

illustrate the working of each algorithm. Figure 2 (a) 

shows a sample database with the itemcode-price file for 

the items in the sample transactional database. We will 

use min_supp = 4 and use Sum(Price)>10 and  

Sum(Price)<25  as the monotone and anti-monotone 

constraints respectively. 

  

4.1. Mining with FP-bonsai 

 
In FP-bonsai, the database is first scanned to identify 

the 1-frequent itemsets. The anti-monotone constraint is 

then applied to identify 1-frequent constraint satisfied 

itemsets.  For each transaction, items that do not appear in 

the 1-frequent itemset are removed. Figures 2 (a) and (b) 

show that items F and H are infrequent, and D, though 

frequent, does not satisfy the anti-monotone constraint. 

Items D, F and H are thus eliminated from all transactions. 

The remaining items are then arranged in support 

descending order. Thereafter, a root node labelled null is 

used to connect the first level nodes. Each transaction is 

checked against the tree for matching nodes. If at a given 

node a branch containing the itemsets exists, then the 

support of that node is incremented by 1, otherwise, a new 

branch representing the transaction is inserted at that 

node. Finally, the nodes in the tree are linked to the 

corresponding items in the header table. Figure 2(c) shows 

that there are 17 nodes in the resulting FP-tree. 

 

4.2. Mining with the Fold Growth with 

Constraints (FGC) algorithm 
 

The FGC algorithm works in three phases. In phase 1, 

the SOTrieIT structure enables us to find 1 and 2-frequent 

constrained satisfied itemsets (CSI12) quickly as the 

structure has been pre-built and contains just two levels. 

As shown in Figure 3, the surviving items are then used to 

trim the transaction database prior to building the FP-tree 

in phase 2.  Items not present in the 1 and 2 frequent 

itemsets are removed from each transaction. Finally, the 

FP-tree that is built in phase 2 is mined in phase 3 to 

produce the constraint satisfied n-frequent itemsets. 

TID Items 

100 AC 

200 BC 

300 AC 

400 ABCD 

ROOT 

D(1) 

C(4) A(3) B(2) D(1) 

C(3) B(1) D(1) C(2) D(1) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

      

Figure 2: Mining with FP-bonsai 

 
 

 

 

 

 

 

 

Figure 3: Overview of the FGC Algorithm 

 
Figure 4 shows the results of mining the SOTrieIT and 

trimming the transaction database of items that do not 

satisfy either the support threshold or the anti-monotone 

constraint. Since all 1- and 2-frequent constraint satisfied 

itemsets have already been identified, any transaction 

containing less than 3 items can be ignored. This helps to 

further reduce the number of transactions to 4, as only 

transactions 1, 3, 10 and 11 now meet the criteria. As 

shown in Figure 4, these transactions give rise to a tree 

with just one branch and 3 nodes, which is minimal when 

compared to the 17 nodes generated by the FP-bonsai 

algorithm. 

We now present an outline of the FGC algorithm. 

Figure 5 details the algorithm used in phase 1. The 

rationale behind mining the SOtrieIT is to apply the most 

effective constraint types first. The support and anti-

monotone constraints both enable entire branches to be 

pruned if they are violated. We first use the support 

constraint to filter nodes at level 1. The existence of the 

anti-monotone constraint is then checked, and if it exists it 

is applied to all surviving nodes. Thereafter the monotone 

constraint is applied if it is present. With the monotone 

constraint children of nodes that do not satisfy the 

constraint need to be checked, unlike with the anti-

monotone constraint type. 

Figure 6 illustrates the algorithm used in phases 2 and 

3 of FGC. Figure 6a illustrates that 2-frequent itemsets are 

used to trim transactions in addition to the 1-frequent 

itemsets. This is one of the advantages of FGC over the 

FP-bonsai approach and is a direct result of mining the 

SoTrieIT. A further advantage is the fact that FGC only 

requires one scan of the transaction database, as opposed 

to FP-bonsai that requires two as the latter does not 

exploit any pre-processed data structures. 

Figure 6b illustrates the dual roles played by the 

monotone and anti-monotone constraints. The monotone 

constraint is very effective at trimming transactions in the 

conditional databases (line 3), while the anti-monotone 

constraint is effective at reducing the search space (line 

6). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: Mining with FGC 

 

We now briefly analyse the space and time complexity 

of the FGC algorithm. With regards to space complexity, 

there are two structures to consider: the SOTrieIT 

generated in Phase 1 and the FP-tree used in phases 2 and 

3. The worst-case space complexity of the SOTrieIT has 

been shown to be O(n2) in [10], where n represents the 

total number of items to be mined. The worst case space 

complexity of the FP-tree generated in Phase 2 is O(d), 

Tid Itemsets  
for  
FP-tree 

1 BGC 

2 BAE 

3 BGCE 

4 GAE 

5 GCE 

6 BCAE 

7 BGA 

8 BC 

9 BGE 

10 BGC 

11 BGC 

Item 
code 

Suppo
rt 

Price 

A 4 5 

B 9 3 

C 7 14 

D 7 30 

E 5 23 

F 2 15 

G 7 6 

H 3 12 

B 9 

G 8 

C 7 

E 6 

A 4 

Tid 2- frequent 

constraint- 

satisfied itemsets 

1 BG, GC 

2 BA 

3 BG, GC 

4 GA 

5 GC 

6 BC 

7 BG 

8 BC 

9 BG 

10 BG, GC, BC 

11 BG, GC, BC 

B 4 

G 4 

C 4 

Hea

(a) 

Phase1:  

Mine 
SOTrieIT 

Phase 3:  

mining of 
itemsets with 

length  ≥3 

Phase 2: 

FP-tree 

construc
tion 

B:4 

G:4 

C:4 

null 

  A:1 

(b) 

CSI12 

Hea

B:9 G:2 

C:2 
G:6 

G:6 
E:1 

A:1    E:1 
A:1 

C:4 

E:1 

E:1 

A:1 

C:1 

C:1 

E:1 

E:1 
(c) 



where d is the size of the database after trimming of the 

transactions that contain infrequent items and/or those 

items that do not satisfy the anti-monotone constraint. 

This corresponds to the case where there is no sharing of 

nodes whatsoever in the FP-tree, which is almost always 

not the case in practice and thus the estimate is a 

pessimistic one. 

If t the number of transactions in the database, then the 

worst case time complexity for mining of the SOTrieIT is 

O(nt), as t scans are needed of the SOTrieIT. In practice, 

this is also a pessimistic estimate as the number of items 

to be mined is < n, as some of the items will fail either the 

support or anti-monotone constraint. If m is the number of 

items surviving Phase1 and p is the average number of 

items in a transaction after database trimming, then the 

worst case time complexity of mining the FP tree in 

phases 2 and 3 is O(plog(p))+O(tp)+ ,)(
1

supp∑
=

m

i

ia  where 

supp(ai) is the support of item ai.  The first term represents 

the time needed to sort each transaction in support 

descending order, while the second term represents the 

effort needed to scan the database.  The last term accounts 

for the effort needed to insert nodes into the tree in the 

worst-case situation where there is no sharing of nodes. 

Simplifying the above expression, we get the worst case 

complexity as O(tp) as .and)(supp

1

tpta

m

i

i ≤≤∑
=

 

 

Mine SOTrie(const_type, min_supp) 

{       /* CSL1 and CSL2 denote the 1 and 2-constraint satisfied 

              sets respectively. */          
  for every node x under ROOT   

 if  supp(x)≥min_supp   // min_supp is the min support threshold 

 { 
  if (multiple) // if anti-monotone constraint is present use it   

   for all x where Cam(x)        

     {   // apply the anti-monotone constraint  to prune branches 
    add x to CLS1 where Cm(x); 

    for all children y where Cam(xy) add xy to CSL2 if  Cm(xy); 

      } 

      else if (anti-monotone)  

     for all x where Cam(x)  
    { 

   add x to CLS1; 

   for all children y add xy to CSL2 where Cam(xy); 

    } 

    else  

     add x to CSL1 where Cm(x);  //  check for monotone  

     for all children y add xy to CSL2 where Cm(xy); 

 else break,//  no more nodes need to be explored 

  } 
} 

 

Figure 5: Mining the SOTrieIT in Phase 1 of FGC 

 

 

If  there are no items the 1-frequent itemset CSL1 ,   

then  Terminate algorithm 

Else { 

      Build a FP-tree using the transaction database, D with a    

      root node, R and label it as “null’; 

      for every transaction, T  ∈ D { 

          // trim transaction database prior to building  the FP-tree 

          remove transactions that do not satisfy the constraint Cm 

         reduce support value of all affected itemsets  in CSL1  

           and CSL2;.  

        if the support value of an itemset  is less than the threshold         

       then { 

          remove the item/itemset from CSL1 and CSL2;. 

    remove items from T  not present  in CSL1 or CSL2; 

    select and sort the items in T  in the order CSL1;. 

    recursively insert all items in T into the tree; 

       } 

       // now use the constraints to prune the FP tree during the 

      // mining stage. D’- Trimmed Transaction Database;  

      //FCI – list of frequent constraint satisfied itemsets 

     To mine the constructed FP-tree call the function  

       (Constrained FP Growth) as CFP(D’, CSL2,, FCI, Cm ,Cam); 

   } 

Figure 6a: Phase 2 of FGC 

Function CFP(DB,  flist, FCI, Cm,, Cam) 

Parameters: DB: conditional transaction database; FCI: set 

                             of  frequent itemsets found so far 

 for every element ai in flist 

 { 

   identify all transactions which contain ai as ai‘s   

         conditional database; 

  remove trans in ai‘s conditional database which do not  

        satisfy the constraint Cm;       
databaseconditonalsainitemsfrequentlocalofsetflist iai

=

};{ iaiflistE a ∪=  

  // use the anti-monotone constraint to prune search space     

  for all itemsets ai ∈ E such that supp(aiaj)≥min_supp and  

          Cam(E) and j≠I  
  { 

        ; jiDB databaseonditionalcreate a c aa    

        ; 
jiji
aaaa DBms in equent itel local fr set of al flist =             

        ;to FCIa ad)  then ada(aCif jijm i

  

        );,,,,( ammajaja CCFCIiflistaiDBCFPcall  

}      

 } 
 

Figure 6b: Phase 3 of FGC 

 

5. Experimental results 
 

In our experimentation we used three synthetic datasets 

and one real-life dataset. All three datasets were generated 

using the [9] synthetic dataset generator. By varying three 

major parameters such as average size of the transaction, 

number of unique items and the number of transactions, 



three different datasets (D2, D3 and D4) were generated. 

A real life dataset, (D1) supplied by an anonymous 

Belgian retail store was also used. There are 88,163 

transactions with over 16,470 items. D2 is typical of those 

used in data mining and has been used in previous 

research [22, 14, 15, 23] for benchmarking performance. 

On the other hand, D3 is based on the study done by 

National Association of Merchandisers which discovered 

that, on an average, retail customers buy a maximum of 

two items per transaction (2000).  Dataset D4 to test the 

scalability with respect to both number of transactions and 

number of unique items. The price information needed to 

define the constraints was generated using a Gaussian 

distribution. Table1 shows the parameters involved. 

In section 5.1 we present the results of running FGC 

against the FP-bonsai algorithm at different support 

thresholds for the real-life dataset D1. We then go on to 

analyze the sensitivity of FGC on constraint type in 

section 5.2. 

 

Table 1: Parameter settings for datasets used 

 

 

 

 

 

 

 

5.1. Performance of FGC against FP-bonsai 
 

 To benchmark FGC against FP-bonsai we ran both 

algorithms on the real life dataset (D1) at two different 

support thresholds, 0.1% (low) and 10% (high). The 0.1% 

support threshold was chosen as this was the smallest 

level of support that enabled us to run the FP-bonsai 

algorithm in a reasonable amount of time; lower support 

levels caused an exponential increase in the timing for FP-

bonsai. Constraint selectivity was varied in the range 10% 

to 90% and the mining time in milliseconds was measured 

for each algorithm. Figures 7 (a) and (b) illustrate the 

results for the low and high support thresholds 

respectively. 

Figure 7 (a) illustrates that FGC clearly outperforms 

FP-bonsai throughout the selectivity range for both types 

of constraints. Both algorithms take advantage of 

selectivity, but FGC has the added advantage of pre-

processing that trims the transaction dataset of items and 

pairs of items that do not meet the support and selectivity 

criteria prior to mining the FP-tree. Figure 7 (b) shows 

that the two algorithms perform very differently from each 

other at the higher support level. At this level of support 

FP-bonsai is virtually insensitive to constraint selectivity 

whereas there is a dramatic drop in mining time for FGC 

at just over 50% selectivity. This sharp drop in time can 

be explained by the Table 2 that shows that the number of 

FP-tree nodes halves at this selectivity value and that the 

number of 3-frequent constraint satisfied itemsets drops to 

zero at this point, which means that FGC terminates 

almost immediately when executing phases 2 and 3 of its 

mining process. 
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Figure 7 (a): mining at low support level (0.1%)  
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Figure 7(b): mining at high support level (10%) 

 

Table 2 Variation in the number of FP-tree nodes 

  

 

 

 

 

 

 

 

 

 

 

 

Dataset Avg size of 

transaction 

No. of 

unique 

items 

No. of 

transactions 

D1 13 16K 88K 

D2 25 10K 100K 

D3 2 32K      640K 

D4 25 32K 640K 

Constraint 

Selectivity 

Number of 

FP-tree 
nodes 

Number of 3-

frequent 
itemsets 

10% 10 25 

20% 10 25 

30% 10 25 

40% 10 25 

50% 5 0 

60% 4 0 

70% 2 0 

80% 1 0 

90% 1 0 



5.2. Sensitivity of FGC on Constraint Type 

 
Having established the superiority of FGC over FP-

bonsai in the previous section we now turn our attention to 

examining its behavior with respect to the different 

constraint types. For each constraint type (e.g. monotone), 

we varied its selectivity in the range 10% to 90% while 

keeping the selectivity of the other constraint type (anti-

monotone) fixed at 0%. This enabled us to measure the 

effect of each constraint type on mining time separately. 

In this group of experiments we used the synthetic 

datasets (D2, D3 and D4), in addition to the real-life 

dataset, D1. 

As mentioned previously the two constraint types each 

have their own role to play and we were thus interested in 

isolating the effects of each constraint type on 

performance. Figures 8a to 8d illustrate the performance 

of FGC over the 4 different datasets that we tested. 

The graphs show that both types of constraints are 

influential in reducing mining time across the selectivity 

range. This is true across all datasets tested. However, 

with D3, the smallest of the datasets, the reduction in 

mining time across the selectivity range was much smaller 

in proportion to the other three datasets. This is to be 

expected as the average transaction size is only 2 and a 

very large proportion of the frequent itemsets would be 

discovered during the pre-processing phase, which 

identifies the 2-frequent itemsets.  

Another consistent trend is that both types of 

constraints perform equally well at low selectivity, but as 

the degree of selectivity increases the anti-monotone 

constraint starts to exert more influence over mining time. 

At higher degrees of selectivity, the anti-monotone 

constraint enables more aggressive pruning of branches of 

the SOTrieIT structure, resulting in smaller FP-trees that 

need to be built prior to mining in phases 2 and 3, unlike 

with the monotone constraint which does not contribute to 

such a reduction.  
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     Figure 8a: FGC on dataset D1 

 

FGC Mining Time vs Selectivity by Constraint Type

17500

18000

18500

19000

19500

20000

20500

21000

21500

22000

22500

23000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T

im
e
 (
m
s
)

Monotone Anti-monotone

 
 

      Figure 8b: FGC on dataset D2 
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        Figure 8c: FGC on dataset D3 
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          Figure 8d: FGC on dataset D4 

 

6. Conclusion and future work 
 

In this paper we have discussed an approach for 

efficiently embedding constraints into the mining process 

and evaluated its performance on both synthetic and real-



life datasets. We have shown that by pre-processing the 

transaction database and exploiting constraints, 

significantly better results than the current state-of-art 

algorithm can be obtained. We also systematically studied 

the effects of each constraint type on performance.  

One possible direction for future work would be to 

extend the approach to other types of constraints, such as 

succinct and convertible constraints. Another possibility 

would be to incorporate constrained closed frequent 

itemsets into the FGC algorithm.  The concept of closed 

frequent itemsets have been shown to be very effective on 

its own [7] and it would be interesting to test its effect in 

conjunction with pre-processing and constraint 

exploitation. 
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