
FGC: An Efficient Constraint Based Frequent Set Miner

Russel Pears and Sangeetha Kutty

School of Computer and Information Sciences

Auckland University of Technology, Auckland, New Zealand

rpears@aut.ac.nz

Abstract

Despite advances in algorithmic design, association

rule mining remains problematic from a performance

viewpoint when the size of the underlying transaction

database is large. The well-known Apriori approach,

while reducing the computational effort involved still

suffers from the problem of scalability due to its reliance

on generating candidate itemsets. In this paper we

present a novel approach that combines the power of pre-

processing with the application of user-defined

constraints to prune the itemset space prior to building a

compact FP-tree. Experimentation shows that that our

algorithm significantly outperforms the current state of

the art algorithm, FP-bonsai.

1. Introduction

The problem of incorporating user-defined constraints

into association rule mining algorithms has received a

great deal of attention recently. It has been recognised that

embedding constraints into the mining process leads to

both performance gains and higher levels of user

interaction [8, 14, 17]. Performance improves as itemsets

that violate an anti-monotone constraint can be pruned

from the search space as any supersets of these itemsets

are guaranteed to violate the constraint as well. On the

other hand, monotone constraints have been shown to be

effective in trimming the transaction database of items that

violate the monotone constraint. Constraints also promote

a higher level of user involvement as users can precisely

specify what ietmsets that they are interested in. For

example, a user interested in mining dairy products and

may specify that all frequent itemsets containing dairy

products whose total value exceeds $100 be returned.

Various approaches such as the ExAnte [5] and FP-

bonsai [6] embed both monotone and anti-monotone

constraints into base association rule mining algorithms

such as Apriori [3] and FP-growth [20]. Although these

constraint embedding techniques have produced

significant performance gains in base algorithms there still

exists room for improvement from a performance point of

view due to the ever-increasing size of databases.

Basically the performance of any association rule

mining algorithm is limited by the sheer number of 1- and

2- frequent itemsets present in the dataset, especially when

mining at low support thresholds [19]. The FOLD-Growth

approach [10] overcomes this limitation by making use of

a pre-processing structure, the SOTrieIT (Support

Ordered Trie Itemset), to identify 1- and 2- frequent

itemsets with minimal cost. However, it does not exploit

the use of constraints in pruning itemsets and relies purely

on the use of pre-processing to speed up the process of

frequent itemset generation.

In this paper we propose an approach that combines

the strengths of pre-processing together with a constraint

embedding technique that prunes itemsets that survive the

pre-processing phase. We show that anti-monotone

constraints are very effective when applied to the

SoTrieIT structure and that monotone constraints play an

important role in pruning the transaction dataset.

The contributions that we make are as follows. Firstly,

we attempt to bridge the gap between specialised

association rule mining methods and work done in

constraint-based mining by providing a high performance

mining algorithm that combines strengths from these two

areas. Secondly, we study the nature of monotone and

anti-monotone constraints and exploit them deep inside

the algorithm. We then study the impact of each type of

constraint on our new algorithm. Finally, we carry out a

systematic analysis to assess the sensitivity of factors that

impact on performance such as constraint selectivity,

support threshold and dataset type.

The rest of the paper is organized as follows. In section

2 we present a formal definition of the problem. A review

of related work is discussed in section 3. Section 4

contains a description of the FGC algorithm, while section

5 presents a performance comparison of running the FGC

algorithm against an implementation of FP-bonsai

algorithm [6]. The FP-bonsai algorithm was chosen as the

baseline as it is the state-of-the-art algorithm in the area of

association rule mining. We conclude in section 6 with a

presentation on some ideas for future work.

2. Problem definition

Let I = {I1, I2, I3, ……,In} be the universal set of items.

A k-frequent itemset F is some subset of I such that

cardinality (F) ≥ min_supp, where min_supp is the support

threshold. We are interested in the set of all frequent

itemsets that satisfy user-defined constraints. In this

research we focus on monotone and anti-monotone

constraints.
The frequent itemset mining problem in the presence of

monotone and anti-monotone constraints requires the

identification of all itemsets P⊆I such that cardinality(P)≥

min_supp and CAM(P)= true and CM(P) =true, where CAM

and CM are anti-monotone and monotone constraints

respectively. Henceforth in this paper we will use CAM(P)

as a shorthand for CAM(P) = true, and likewise CM(P) as a

shorthand for CM(P) =true.

3. Related research

Research in association rule mining has spanned over a

decade due to its application in a wide variety of areas

such as identifying correlations, multi-dimensional

patterns, partial patterns and periodicity. The seminal

work by Agrawal [2] resulted in the Apriori algorithm

which sparked a flurry of research in this area. The

algorithm uses a simple property called the Apriori

heuristic that limits the number of candidate itemsets that

need to be tested. The basic intuition is that any subset of

a frequent itemset also has to be frequent. This eliminated

the need for testing every possible combination of items

and thus the time for generating the frequent itemsets was

speeded up significantly.

The main drawback of the Apriori approach is that it

requires repeated scans of the transaction database and the

accompanying effort involved in candidate generation.

Apriori works in a level-by-level fashion and to compute

the 2-frequent itemsets it has to scan the entire transaction

database, identify the 1-frequent itemsets and use the

Apriori principle to generate the candidate 2-frequent

itsemsets. These candidates then need to be checked

against the transaction database to verify whether they

qualify as 2-frequent itemsets. Thus to generate k-frequent

itemsets a total of k database scans will be needed in

general, with each scan requiring generation and testing of

candidate itemsets.

In recent years, the FP-growth algorithm was proposed

to eliminate the major bottleneck of repeated database

scanning and candidate generation inherent in Apriori-like

algorithms [11, 12]. FP-growth uses a new compact data

structure, the FP-tree, to store transactions in a trie-like

structure with every item having a linked list representing

each transaction. This algorithm does not use the

generate-and-test paradigm employed by Apriori-type

algorithms, rather it uses a divide-and-conquer technique

and thus represents a radical departure in strategy.

Frequent itemset generation requires only 2 scans of the

transaction database. In the first scan all 1-frequent

itemsets are identified. The infrequent items are discarded

and the 1-frequent items are sorted in support descending

order. A second scan over the transaction dataset is

conducted and a branch in the FP-tree is created for each

transaction. Transactions that have a common item prefix

share a common sub-tree that is rooted at the shared item.

If many transactions share the same items, the FP-tree will

represent a compact version of the transaction database.

Each time a branch is traversed the support counts for all

items along the branch are incremented by 1. Once the

FP-tree has been constructed the transaction database can

effectively be discarded. A tree traversal of the FP-tree

can then be performed to generate frequent itemsets

without the need for further scanning of the transaction

database.

In comparison with Apriori, FP-growth performs well

on dense datasets, where the former suffers due to the

huge overheads of candidate generation, resulting in

memory overload [12]. In spite of FP-growth’s efficient

data structure and mining techniques, there has been a

significant amount of criticism levelled at it. The

criticisms refer to FP-growth as a complex algorithm [22,

16] and one that has been tailored to dense datasets [13].

Indeed, the performance improvement over Apriori is not

impressive for sparse datasets having short length

transactions [13, 20]. This has resulted in a number of

attempts to improve the performance of FP-growth on

sparse datasets.

One such attempt is the FOLD-growth algorithm [23],

which not only aims to provide an improved version of

FP-growth but also distributes the mining effort over time

by using a pre-processing data structure called the Support

Ordered Trie Itemset (SOTrieIT). The first level of the

SOTrieIT contains a node for every unique item that

appears in the transaction database. The nodes in the first

level are sorted in support decreasing order and each node

is split into child nodes which represent items that appear

in combination with the parent item in the transaction

database.

The SOTrieIT structure supports the identification of 1

and 2- frequent itemsets by a simple tree traversal. For

example, to identify itemsets which have a minimum

support threshold of 3, Figure 1 shows that only nodes C

and A with their corresponding children need to be

examined.

The effectiveness of the SOTrieIT stems from two

factors: firstly, as mentioned before the major bottleneck

in association rule mining is the identification of the 1-

and 2-frequent itemsets. Given a support threshold these

itemsets can be found very quickly without the need for

candidate generation and testing by a simple tree traversal

of the relevant portion of the pre-processed tree structure.

Secondly, the SOTrieIT, unlike the FP-Tree does not have

to be re-built if the support threshold changes. This makes

it very attractive from a performance viewpoint as the

structure can be incrementally maintained without the

need for major reorganization. Once the 1 and 2-frequent

itemsets are identified the FOLD-Growth method trims

the transaction database by removing items which are not

included in the 1- and 2-frequent itemsets. The trimmed

dataset is then used to build a compact version of the FP-

tree, which is then mined to produce the required frequent

itemsets.

Figure 1: SOTrieIT constructed from sample

database

In parallel with improvements in mining frequent

itemsets a considerable amount of research has been

devoted to the subject of constraint-based mining. All

previous research in this area has focused on embedding

constraints into either Apriori type algorithms [18, 4] or

the FP-tree algorithm [6, 21].

The FP-bonsai approach [6] prunes using both

monotone and anti-monotone constraints, extending the

ideas of Ex-Ante [4] to an FP-growth algorithm. The

advantage of this algorithm is that it uses monotone

constraints to complement anti-monotone pruning of the

candidate itemsets and the input database. The major

strength of this algorithm is that it performs very well for

dense datasets. However it performs less efficiently at

higher selectivities. Its performance on sparse datasets is

also poor due to the time spent in building the FP-tree [6].

The ExAMiner [4] algorithm on the other hand uses

anti-monotone pruning efficiently. However, due to its

Apriori-like framework it suffers heavily in performance

for dense datasets. The higher efficiency of ExAMiner in

sparse datasets clearly indicates that FP-bonsai would

have benefited from a more efficient strategy of exploiting

anti-monotone pruning.

From previous research it is clear that neither the

Apriori nor the FP-tree algorithms by themselves are

efficient vehicles for exploiting the full power of

constraints. The impressive gains in performance made by

the FOLD-GROWTH algorithm encouraged us to

investigate the effect of applying constraints to the pre-

processed SOTrieIT structure to further reduce the itemset

space prior to frequent itemset mining.

4. Constraint-based algorithms

We first examine, with the help of a running example,

the performance of the FP-bonsai algorithm which

exploits constraints but does not make explicit use of pre-

processing. We then present our algorithm, called FOLD-

Growth with Constraints (FGC) that exploits constraints

during both pre-processing phase (involving the

SOTrieIT) and mining phases.

We make use of the following transactional database to

illustrate the working of each algorithm. Figure 2 (a)

shows a sample database with the itemcode-price file for

the items in the sample transactional database. We will

use min_supp = 4 and use Sum(Price)>10 and

Sum(Price)<25 as the monotone and anti-monotone

constraints respectively.

4.1. Mining with FP-bonsai

In FP-bonsai, the database is first scanned to identify

the 1-frequent itemsets. The anti-monotone constraint is

then applied to identify 1-frequent constraint satisfied

itemsets. For each transaction, items that do not appear in

the 1-frequent itemset are removed. Figures 2 (a) and (b)

show that items F and H are infrequent, and D, though

frequent, does not satisfy the anti-monotone constraint.

Items D, F and H are thus eliminated from all transactions.

The remaining items are then arranged in support

descending order. Thereafter, a root node labelled null is

used to connect the first level nodes. Each transaction is

checked against the tree for matching nodes. If at a given

node a branch containing the itemsets exists, then the

support of that node is incremented by 1, otherwise, a new

branch representing the transaction is inserted at that

node. Finally, the nodes in the tree are linked to the

corresponding items in the header table. Figure 2(c) shows

that there are 17 nodes in the resulting FP-tree.

4.2. Mining with the Fold Growth with

Constraints (FGC) algorithm

The FGC algorithm works in three phases. In phase 1,

the SOTrieIT structure enables us to find 1 and 2-frequent

constrained satisfied itemsets (CSI12) quickly as the

structure has been pre-built and contains just two levels.

As shown in Figure 3, the surviving items are then used to

trim the transaction database prior to building the FP-tree

in phase 2. Items not present in the 1 and 2 frequent

itemsets are removed from each transaction. Finally, the

FP-tree that is built in phase 2 is mined in phase 3 to

produce the constraint satisfied n-frequent itemsets.

TID Items

100 AC

200 BC

300 AC

400 ABCD

ROOT

D(1)

C(4) A(3) B(2) D(1)

C(3) B(1) D(1) C(2) D(1)

Figure 2: Mining with FP-bonsai

Figure 3: Overview of the FGC Algorithm

Figure 4 shows the results of mining the SOTrieIT and

trimming the transaction database of items that do not

satisfy either the support threshold or the anti-monotone

constraint. Since all 1- and 2-frequent constraint satisfied

itemsets have already been identified, any transaction

containing less than 3 items can be ignored. This helps to

further reduce the number of transactions to 4, as only

transactions 1, 3, 10 and 11 now meet the criteria. As

shown in Figure 4, these transactions give rise to a tree

with just one branch and 3 nodes, which is minimal when

compared to the 17 nodes generated by the FP-bonsai

algorithm.

We now present an outline of the FGC algorithm.

Figure 5 details the algorithm used in phase 1. The

rationale behind mining the SOtrieIT is to apply the most

effective constraint types first. The support and anti-

monotone constraints both enable entire branches to be

pruned if they are violated. We first use the support

constraint to filter nodes at level 1. The existence of the

anti-monotone constraint is then checked, and if it exists it

is applied to all surviving nodes. Thereafter the monotone

constraint is applied if it is present. With the monotone

constraint children of nodes that do not satisfy the

constraint need to be checked, unlike with the anti-

monotone constraint type.

Figure 6 illustrates the algorithm used in phases 2 and

3 of FGC. Figure 6a illustrates that 2-frequent itemsets are

used to trim transactions in addition to the 1-frequent

itemsets. This is one of the advantages of FGC over the

FP-bonsai approach and is a direct result of mining the

SoTrieIT. A further advantage is the fact that FGC only

requires one scan of the transaction database, as opposed

to FP-bonsai that requires two as the latter does not

exploit any pre-processed data structures.

Figure 6b illustrates the dual roles played by the

monotone and anti-monotone constraints. The monotone

constraint is very effective at trimming transactions in the

conditional databases (line 3), while the anti-monotone

constraint is effective at reducing the search space (line

6).

Figure 4: Mining with FGC

We now briefly analyse the space and time complexity

of the FGC algorithm. With regards to space complexity,

there are two structures to consider: the SOTrieIT

generated in Phase 1 and the FP-tree used in phases 2 and

3. The worst-case space complexity of the SOTrieIT has

been shown to be O(n2) in [10], where n represents the

total number of items to be mined. The worst case space

complexity of the FP-tree generated in Phase 2 is O(d),

Tid Itemsets
for
FP-tree

1 BGC

2 BAE

3 BGCE

4 GAE

5 GCE

6 BCAE

7 BGA

8 BC

9 BGE

10 BGC

11 BGC

Item
code

Suppo
rt

Price

A 4 5

B 9 3

C 7 14

D 7 30

E 5 23

F 2 15

G 7 6

H 3 12

B 9

G 8

C 7

E 6

A 4

Tid 2- frequent

constraint-

satisfied itemsets

1 BG, GC

2 BA

3 BG, GC

4 GA

5 GC

6 BC

7 BG

8 BC

9 BG

10 BG, GC, BC

11 BG, GC, BC

B 4

G 4

C 4

Hea

(a)

Phase1:

Mine
SOTrieIT

Phase 3:

mining of
itemsets with

length ≥3

Phase 2:

FP-tree

construc
tion

B:4

G:4

C:4

null

 A:1

(b)

CSI12

Hea

B:9 G:2

C:2
G:6

G:6
E:1

A:1 E:1
A:1

C:4

E:1

E:1

A:1

C:1

C:1

E:1

E:1
(c)

where d is the size of the database after trimming of the

transactions that contain infrequent items and/or those

items that do not satisfy the anti-monotone constraint.

This corresponds to the case where there is no sharing of

nodes whatsoever in the FP-tree, which is almost always

not the case in practice and thus the estimate is a

pessimistic one.

If t the number of transactions in the database, then the

worst case time complexity for mining of the SOTrieIT is

O(nt), as t scans are needed of the SOTrieIT. In practice,

this is also a pessimistic estimate as the number of items

to be mined is < n, as some of the items will fail either the

support or anti-monotone constraint. If m is the number of

items surviving Phase1 and p is the average number of

items in a transaction after database trimming, then the

worst case time complexity of mining the FP tree in

phases 2 and 3 is O(plog(p))+O(tp)+ ,)(
1

supp∑
=

m

i

ia where

supp(ai) is the support of item ai. The first term represents

the time needed to sort each transaction in support

descending order, while the second term represents the

effort needed to scan the database. The last term accounts

for the effort needed to insert nodes into the tree in the

worst-case situation where there is no sharing of nodes.

Simplifying the above expression, we get the worst case

complexity as O(tp) as .and)(supp

1

tpta

m

i

i ≤≤∑
=

Mine SOTrie(const_type, min_supp)

{ /* CSL1 and CSL2 denote the 1 and 2-constraint satisfied

 sets respectively. */
 for every node x under ROOT

 if supp(x)≥min_supp // min_supp is the min support threshold

 {
 if (multiple) // if anti-monotone constraint is present use it

 for all x where Cam(x)

 { // apply the anti-monotone constraint to prune branches
 add x to CLS1 where Cm(x);

 for all children y where Cam(xy) add xy to CSL2 if Cm(xy);

 }

 else if (anti-monotone)

 for all x where Cam(x)
 {

 add x to CLS1;

 for all children y add xy to CSL2 where Cam(xy);

 }

 else

 add x to CSL1 where Cm(x); // check for monotone

 for all children y add xy to CSL2 where Cm(xy);

 else break,// no more nodes need to be explored

 }
}

Figure 5: Mining the SOTrieIT in Phase 1 of FGC

If there are no items the 1-frequent itemset CSL1 ,

then Terminate algorithm

Else {

 Build a FP-tree using the transaction database, D with a

 root node, R and label it as “null’;

 for every transaction, T ∈ D {

 // trim transaction database prior to building the FP-tree

 remove transactions that do not satisfy the constraint Cm

 reduce support value of all affected itemsets in CSL1

 and CSL2;.

 if the support value of an itemset is less than the threshold

 then {

 remove the item/itemset from CSL1 and CSL2;.

 remove items from T not present in CSL1 or CSL2;

 select and sort the items in T in the order CSL1;.

 recursively insert all items in T into the tree;

 }

 // now use the constraints to prune the FP tree during the

 // mining stage. D’- Trimmed Transaction Database;

 //FCI – list of frequent constraint satisfied itemsets

 To mine the constructed FP-tree call the function

 (Constrained FP Growth) as CFP(D’, CSL2,, FCI, Cm ,Cam);

 }

Figure 6a: Phase 2 of FGC

Function CFP(DB, flist, FCI, Cm,, Cam)

Parameters: DB: conditional transaction database; FCI: set

 of frequent itemsets found so far

 for every element ai in flist

 {

 identify all transactions which contain ai as ai‘s

 conditional database;

 remove trans in ai‘s conditional database which do not

 satisfy the constraint Cm;
databaseconditonalsainitemsfrequentlocalofsetflist iai

=

};{ iaiflistE a ∪=

 // use the anti-monotone constraint to prune search space

 for all itemsets ai ∈ E such that supp(aiaj)≥min_supp and

 Cam(E) and j≠I
 {

 ; jiDB databaseonditionalcreate a c aa

 ;
jiji
aaaa DBms in equent itel local fr set of al flist =

 ;to FCIa ad) then ada(aCif jijm i

);,,,,(ammajaja CCFCIiflistaiDBCFPcall

}

 }

Figure 6b: Phase 3 of FGC

5. Experimental results

In our experimentation we used three synthetic datasets

and one real-life dataset. All three datasets were generated

using the [9] synthetic dataset generator. By varying three

major parameters such as average size of the transaction,

number of unique items and the number of transactions,

three different datasets (D2, D3 and D4) were generated.

A real life dataset, (D1) supplied by an anonymous

Belgian retail store was also used. There are 88,163

transactions with over 16,470 items. D2 is typical of those

used in data mining and has been used in previous

research [22, 14, 15, 23] for benchmarking performance.

On the other hand, D3 is based on the study done by

National Association of Merchandisers which discovered

that, on an average, retail customers buy a maximum of

two items per transaction (2000). Dataset D4 to test the

scalability with respect to both number of transactions and

number of unique items. The price information needed to

define the constraints was generated using a Gaussian

distribution. Table1 shows the parameters involved.

In section 5.1 we present the results of running FGC

against the FP-bonsai algorithm at different support

thresholds for the real-life dataset D1. We then go on to

analyze the sensitivity of FGC on constraint type in

section 5.2.

Table 1: Parameter settings for datasets used

5.1. Performance of FGC against FP-bonsai

 To benchmark FGC against FP-bonsai we ran both

algorithms on the real life dataset (D1) at two different

support thresholds, 0.1% (low) and 10% (high). The 0.1%

support threshold was chosen as this was the smallest

level of support that enabled us to run the FP-bonsai

algorithm in a reasonable amount of time; lower support

levels caused an exponential increase in the timing for FP-

bonsai. Constraint selectivity was varied in the range 10%

to 90% and the mining time in milliseconds was measured

for each algorithm. Figures 7 (a) and (b) illustrate the

results for the low and high support thresholds

respectively.

Figure 7 (a) illustrates that FGC clearly outperforms

FP-bonsai throughout the selectivity range for both types

of constraints. Both algorithms take advantage of

selectivity, but FGC has the added advantage of pre-

processing that trims the transaction dataset of items and

pairs of items that do not meet the support and selectivity

criteria prior to mining the FP-tree. Figure 7 (b) shows

that the two algorithms perform very differently from each

other at the higher support level. At this level of support

FP-bonsai is virtually insensitive to constraint selectivity

whereas there is a dramatic drop in mining time for FGC

at just over 50% selectivity. This sharp drop in time can

be explained by the Table 2 that shows that the number of

FP-tree nodes halves at this selectivity value and that the

number of 3-frequent constraint satisfied itemsets drops to

zero at this point, which means that FGC terminates

almost immediately when executing phases 2 and 3 of its

mining process.

FGC vs FP-bonsai

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T
im

e
 (
m
s
)

FP-bonsai monotone FP-bonsai anti-monotone

FGC monotone FGC anti-monotone

Figure 7 (a): mining at low support level (0.1%)

FGC vs FP-bonsai

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T
im

e
 (
m
s
)

FP-bonsai monotone FP-bonsai anti-monotone

FGC monotone FGC anti-monotone

Figure 7(b): mining at high support level (10%)

Table 2 Variation in the number of FP-tree nodes

Dataset Avg size of

transaction

No. of

unique

items

No. of

transactions

D1 13 16K 88K

D2 25 10K 100K

D3 2 32K 640K

D4 25 32K 640K

Constraint

Selectivity

Number of

FP-tree
nodes

Number of 3-

frequent
itemsets

10% 10 25

20% 10 25

30% 10 25

40% 10 25

50% 5 0

60% 4 0

70% 2 0

80% 1 0

90% 1 0

5.2. Sensitivity of FGC on Constraint Type

Having established the superiority of FGC over FP-

bonsai in the previous section we now turn our attention to

examining its behavior with respect to the different

constraint types. For each constraint type (e.g. monotone),

we varied its selectivity in the range 10% to 90% while

keeping the selectivity of the other constraint type (anti-

monotone) fixed at 0%. This enabled us to measure the

effect of each constraint type on mining time separately.

In this group of experiments we used the synthetic

datasets (D2, D3 and D4), in addition to the real-life

dataset, D1.

As mentioned previously the two constraint types each

have their own role to play and we were thus interested in

isolating the effects of each constraint type on

performance. Figures 8a to 8d illustrate the performance

of FGC over the 4 different datasets that we tested.

The graphs show that both types of constraints are

influential in reducing mining time across the selectivity

range. This is true across all datasets tested. However,

with D3, the smallest of the datasets, the reduction in

mining time across the selectivity range was much smaller

in proportion to the other three datasets. This is to be

expected as the average transaction size is only 2 and a

very large proportion of the frequent itemsets would be

discovered during the pre-processing phase, which

identifies the 2-frequent itemsets.

Another consistent trend is that both types of

constraints perform equally well at low selectivity, but as

the degree of selectivity increases the anti-monotone

constraint starts to exert more influence over mining time.

At higher degrees of selectivity, the anti-monotone

constraint enables more aggressive pruning of branches of

the SOTrieIT structure, resulting in smaller FP-trees that

need to be built prior to mining in phases 2 and 3, unlike

with the monotone constraint which does not contribute to

such a reduction.

FGC Mining Time vs Selectivity by Constraint Type

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T
ii
m
e
 (
m
s
)

Monotone Ant-monotone

 Figure 8a: FGC on dataset D1

FGC Mining Time vs Selectivity by Constraint Type

17500

18000

18500

19000

19500

20000

20500

21000

21500

22000

22500

23000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T

im
e
 (
m
s
)

Monotone Anti-monotone

 Figure 8b: FGC on dataset D2

FGC Mining Time vs Selectivity by Constraint Type

0

5000

10000

15000

20000

25000

30000

10 20 30 40 50 60 70 80 90

Selectivity (%)

M
in
in
g
 T

im
e
 (
m
s
)

Monotone Anti-monotone

 Figure 8c: FGC on dataset D3

FGC Mining Time vs Selectivity by Constraint Type

0

20000

40000

60000

80000

100000

120000

140000

160000

10 20 30 40 50 60 70 80 90

Selectivity

M
in
in
g
 T
im

e
 (
m
s
)

Monotone Anti-monotone

 Figure 8d: FGC on dataset D4

6. Conclusion and future work

In this paper we have discussed an approach for

efficiently embedding constraints into the mining process

and evaluated its performance on both synthetic and real-

life datasets. We have shown that by pre-processing the

transaction database and exploiting constraints,

significantly better results than the current state-of-art

algorithm can be obtained. We also systematically studied

the effects of each constraint type on performance.

One possible direction for future work would be to

extend the approach to other types of constraints, such as

succinct and convertible constraints. Another possibility

would be to incorporate constrained closed frequent

itemsets into the FGC algorithm. The concept of closed

frequent itemsets have been shown to be very effective on

its own [7] and it would be interesting to test its effect in

conjunction with pre-processing and constraint

exploitation.

7. References

[1] (2000). Annual Survey Results, National Association of
Recording Merchandisers.

[2] Agrawal, R., T. Imielinski, et al. (1993). "Mining
association rules between sets of items in large databases."

SIGMOD Record (ACM Special Interest Group on Management

of Data) 22(2): 207-216.

[3] Agrawal, R., H. Mannila, et al. (1996). Fast Discovery of
Association Rules. Advances in Knowledge Discovery and Data

Mining. U. M. Fayyad, G. Piatetsky-Shapiro and R.

Uthurusamy, MIT Press.

[4] Bonchi, F., F. Giannotti, et al. (2003). ExAMiner:

optimized level-wise frequent pattern mining with monotone
constraints. Third IEEE International Conference on Data

Mining, 2003(ICDM 2003).

[5] Bonchi, F., F. Giannotti, et al. (2005). "ExAnte: a

preprocessing method for frequent-pattern mining." Intelligent

Systems, IEEE [see also IEEE Intelligent Systems and Their
Applications] 20(3): 25-31.

[6] Bonchi, F. and B. Goethals (2004). FP-Bonsai: The Art of
Growing and Pruning Small FP-Trees.

[7] Bonchi, F. and C. Lucchese (2004). On closed constrained
frequent pattern mining. Proceedings of the Fourth IEEE

International Conference on Data Mining, 2004. ICDM 2004.

[8] Boulicaut, J.-F. and B. Jeudy (2000). Using constraints

during set mining: Should we prune or not? In Actes des

Seizime Journes Bases de Donnes Avances BDA '00, Blois,
France.

[9] Cristofer, L. (2001). ARMiner Project. Boston.

[10] Das, A., Ng, W.-K., & Woon, Y.-K. (2001). Rapid
association rule mining. Proceedings of the tenth international

conference on Information and knowledge management (pp.

474-481). Atlanta, Georgia, USA ACM Press.

[11] Han, J. and J. Pei (2000). "Mining frequent patterns by

pattern-growth: methodology and implications." SIGKDD

Explorations. 2(2): 14-20.

[12] Han, J., J. Pei, et al. (2000). Mining frequent patterns
without candidate generation. Proceedings of the 2000 ACM

SIGMOD international conference on Management of data,

Dallas, Texas, United States, ACM Press.

[13] Hipp, J., U. Güntzer, et al. (2000). "Algorithms for

association rule mining — a general survey and comparison."

SIGKDD Explor. Newsl. 2(1): 58-64.

[14] Jia, L., R.-Q. Pei, et al. (2003). Using constraint technology
to mine frequent datasets. International Conference on Machine

Learning and Cybernetics, 2003.

[15] Jia, L., R. Pei, et al. (2003). Tough constraint-based

frequent closed itemsets mining Proceedings of the 2003 ACM
symposium on Applied computing Melbourne, Florida ACM

Press: 416-420

[16] Kosters, W. A., W. Pijls, et al. (2003). Complexity

Analysis of Depth First and FP-Growth Implementations of

APRIORI.

[17] Lakshmanan, L. V. S., C. K.-S. Leung, et al. (2003).

"Efficient dynamic mining of constrained frequent sets." ACM
Trans. Database Syst. 28(4): 337-389.

[18] Lakshmanan, L. V. S., R. Ng, et al. (1999). Optimization of
constrained frequent set queries with 2-variable constraints.

Proceedings of the 1999 ACM SIGMOD international

conference on Management of data. Philadelphia, Pennsylvania,

United States, ACM Press: 157-168.

[19] Park, J. S., M.-S. Chen, et al. (1997). "Using a hash-based

method with transaction trimming for mining association rules."

IEEE Transactions on Knowledge and Data Engineering 9(5):
813-825.

[20] Pei, J. (2002). Pattern-growth methods for Frequent pattern
mining. School Of Computing Science. Burnaby, British

Columbia, Canada, Simon Fraser University: 147.

[21] Pei, J., J. Han, et al. (2004). "Mining sequential patterns by

pattern-growth: the PrefixSpan approach." Knowledge and Data

Engineering, IEEE Transactions on 16(11): 1424-1440.

[22] Woon, Y.-K., W.-K. Ng, et al. (2001). Fast online dynamic

association rule mining. Proceedings of the Second International
Conference on Web Information Systems Engineering, 2001.

[23] Woon, Y.-K., W.-K. Ng, et al. (2004). "A support-ordered

trie for fast frequent itemset discovery." Knowledge and Data

Engineering, IEEE Transactions on 16(7): 875-879.

