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Preface to ”AI Applications to Power Systems”

The energy system of the future is a work in progress. Many countries around the world have

made a target for their energy system to be completely renewable. How the power system eventually

forms, such as the business models, the key players, and its architecture, as well as how it works, will

be dependent on the outcomes of trends, forces, regulations, and strategic actions by many diverse

players in the energy sector.

The digitalisation of the traditional generation plan and transmission has been proposed.

However, there is no existing work in the literature on the digitalisation of wind turbine generation

or solar photovoltaic farms. Future power systems will be very complex due to the multiple forces

affecting various levels of the system, especially the distribution network level. The systems are

composed of thousands of local distribution areas operated by distribution operators (suppliers) on

top of the consumers, etc. Thus, although it may not appear too different, the power flows are no

longer just one way, going from the bulk power system to the consumer end. In fact, the power flow

will be very hard to trace because it can be from one consumer to another, the consumer to the grid,

or the grid to the consumer, and some will be mobile/random due to the charging/discharging of

electric vehicles. These types of renewable energy resources (solar PV and wind turbine generation)

are incredibly dependent on nature (wind speed, wind direction, temperature, solar irradiation,

humidity, etc.). Thus, the outputs are highly stochastic in nature. Data science techniques for handling

real-time big data will ideally fit this stream. Furthermore, integrated systems modelling methods

and concepts are needed for the study of the self-organisation, complexity, emergent properties,

and dynamical behaviour of complex systems for their holistic understanding, management, and

development based primarily on neural networks, fuzzy and soft systems/fuzzy cognitive maps,

network modelling, and mathematics. Other advanced applications in computational early detection

of mastitis and computer-based decision support systems for complex systems are also needed. Due

to the scale of the network and the amount of data that needs to be digitised, new techniques in data

mining and AI approaches are needed in order to analyse and predict the behaviour of these complex

systems.

I would like to thank the staff and reviewers for their efforts and input. The task of editing and

selecting papers for this collection was found to be both stimulating and rewarding [1,2,3,4,5,6].

Tek Tjing Lie

Editor
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Abstract: This Special Issue consists of the successful invited submissions to Energies on the very
topical subject area of “AI applications to power systems”.

The energy system of the future is a work in progress. Many countries around the
world have made a target for their energy system to be completely renewable. How the
power system eventually forms, such as the business models, the key players, and its
architecture, as well as how it works, will be dependent on the outcomes of trends, forces,
regulations, and strategic actions by many diverse players in the energy sector.

Digitalisation of the traditional generation plan and transmission has been proposed.
However, there is no existing work in the literature on the digitalisation of the wind turbine
generation or solar photovoltaic farms. The future power system will be very complex
due to the multiple forces affecting various levels of the system, especially the distribution
network level. The systems are composed of thousands of local distribution areas operated
by distribution operators (suppliers) on top of the consumers, etc. Thus, although it may
not appear too different, the power flows are no longer just one way, going from the bulk
power system to the consumer end. In fact, the power flow will be very hard to trace
because it can be from one consumer to another, the consumer to the grid, or the grid
to the consumer, and some will be mobile/random due to the charging/discharging of
electric vehicles.

These types of renewable energy resources (solar PV and wind turbine generation) are
incredibly dependent on nature (wind speed, wind direction, temperature, solar irradiation,
humidity, etc.). Thus, the outputs are highly stochastic in nature. Data science techniques
for handling real-time big data will ideally fit this stream. Furthermore, integrated systems
modelling methods and concepts are needed for the study of the self-organisation, com-
plexity, emergent properties, and dynamical behaviour of complex systems for their holistic
understanding, management, and development based primarily on neural networks, fuzzy
and soft systems/fuzzy cognitive maps, network modelling, and mathematics. Other
advanced applications in computational early detection of mastitis and computer-based
decision support systems for complex systems are also needed. Due to the scale of the
network and the amount of data that need to be digitised, new techniques in data mining
and AI approaches are needed in order to analyse and predict the behaviour of these
complex systems.

I would like to thank the staff and reviewers for their efforts and input. The task
of editing and selecting papers for this collection was found to be both stimulating and
rewarding [1–6].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In recent years, machine learning applications have received increasing interest from power
system researchers. The successful performance of these applications is dependent on the availability
of extensive and diverse datasets for the training and validation of machine learning frameworks.
However, power systems operate at quasi-steady-state conditions for most of the time, and the
measurements corresponding to these states provide limited novel knowledge for the development
of machine learning applications. In this paper, a data mining approach based on optimization
techniques is proposed for filtering root-mean-square (RMS) voltage profiles and identifying unusual
measurements within triggerless power quality datasets. Then, datasets with equal representation
between event and non-event observations are created so that machine learning algorithms can
extract useful insights from the rare but important event observations. The proposed framework is
demonstrated and validated with both synthetic signals and field data measurements.

Keywords: change detection; data analytics; data mining; filtering; machine learning; optimization;
power quality; signal processing; total variation smoothing

1. Introduction

The application of machine learning algorithms has expanded noticeably in many
fields in the last few decades, especially due to the increased power and reduced expense of
computation, the growth of field data collection and the advent of novel techniques to pro-
cess and analyze large datasets. This trend has also been observed in power systems, where
most machine learning applications are related to distributed energy resources (such as
solar, wind, and storage) and smart grid control. Such examples include the following: load
and demand forecasts [1,2], electricity production forecasts [2], solar radiation forecasts [1],
wind speed/power forecasts [3], automated control of smart grids [2], management of
electric vehicle fleets [1], predictive maintenance [4], fault detection and location [3,5,6]
and power quality disturbance classification [3].

Data for machine learning applications in power systems can be acquired from mul-
tiple sources. A common source of field data measurements is power quality monitors
(PQM), which record instantaneous voltage and current waveforms with a high time resolu-
tion (hundreds of samples per cycle). The latest version of these devices allows the addition
of precise and synchronized time stamps to the measured data, expanding the suitability of
the recorded data to more advanced applications [7]. Traditionally, PQMs employ a limited
set of triggering features to detect disturbances within the dataset and, once they have been
detected, store a few waveform cycles as individual events [8]. More recently, however,
a triggerless data acquisition approach has emerged, where all waveform samples are
stored for further analysis.

The main advantage of this approach is that even inconspicuous disturbances are suc-
cessfully captured [9]; on the other hand, triggerless PQMs generate voluminous datasets

Energies 2021, 14, 463. https://doi.org/10.3390/en14020463 https://www.mdpi.com/journal/energies
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and require large data storage capabilities [10,11]. Further, most of the data correspond to
the steady-state operation of the power system, whereas only a small part of the recorded
data shows disturbances. In other words, the dataset is highly unbalanced, with the steady-
state observations heavily outnumbering the disturbance observations, which, as will be
discussed later, can cause performance deterioration in most machine learning algorithms.
Thus, one of the focuses of this paper is dataset rebalancing, such that the disturbance and
non-disturbance classes are equally represented in the input dataset prior to its use by a
machine learning algorithm.

1.1. Disturbance Detection in Power System Datasets

Multiple techniques have been proposed over the years for detecting disturbances in
PQM data, and they are broadly classified into two categories: in the first category, the trig-
ger mechanism is based on the magnitude of a time series (e.g., overvoltage, overcurrent,
signal rate of rise and root-mean-square (RMS) voltage variations) [12] or employs time–
frequency and time–scale transformations to decompose the signal into several subbands
(e.g., short-time Fourier transform and wavelet transform) [13,14]; the second category is
composed of methods based on prominent signal residuals, which are obtained through
time-varying mathematical models (e.g., autoregressive (AR) models and Kalman filters)
or direct data comparison (e.g., point-by-point or cycle-by-cycle comparison) [15].

It has been shown that these techniques are effective for detecting conspicuous dis-
turbances (i.e., cases where the underlying system event causes transients in the voltage
and/or current waveforms) [16]. On the other hand, they are unable to detect most incon-
spicuous disturbances [17,18], hindering their suitability for the processing of triggerless
PQM datasets. Further, they might be sensitive to harmonics, sampling frequency and other
user-selected parameters (such as a mother wavelet for the detector based on a wavelet
transform). These drawbacks often result in disturbances being missed by the detector,
especially those that are very short and/or subtle.

Although waveforms collected by PQMs are valuable assets for power system analysis,
these raw measurements might not directly provide useful information for disturbance
identification and classification [12]. In fact, various power system events might not cause
conspicuous disturbances in the PQM waveforms; instead, they are characterized by an
abrupt step change in the RMS voltage profile. Common examples of power system events
that belong to this category include capacitor switching de-energizing [19], transformer
tap-changing, voltage regulator operation and switching of large loads [13].

Thus, RMS voltage step changes have been proposed as an alternative triggering
feature to detect events (both conspicuous and inconspicuous) within PQM datasets [8,12].
This task, however, is complicated by the fact that the magnitude of these RMS voltage
step changes is often quite small (even less than 0.5% of the nominal voltage). Moreover,
the presence of rapidly varying fluctuations in an RMS voltage profile hinders the detection
of RMS voltage step changes. Therefore, prior to being used in the disturbance identifi-
cation process, the RMS voltage profile must be processed to remove those rapid voltage
fluctuations. The desired output of this process is an RMS voltage profile with a high
signal-to-noise ratio and sharp edges during the step changes [8], which is another focus of
this paper.

1.2. Contributions

This paper proposes a framework for the detection of RMS voltage step changes and
rebalancing of highly unbalanced PQM datasets. Its main contributions are as follows: (a)
the proposal of a strategy for filtering RMS voltage profiles such that rapidly varying noise
is removed or significantly attenuated, whilst preserving the steep edges of the RMS voltage
profile caused by switching events; (b) the automatic detection of RMS voltage step changes
in the filtered RMS voltage profile, so that both conspicuous and inconspicuous events
within a PQM dataset are identified; and (c) the proposal of a framework for rebalancing
highly unbalanced PQM datasets.

4
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All optimization problems presented in this paper are implemented and solved in
Pyomo [20].

1.3. Article Organization

The remainder of this paper is organized as follows. Section 2 discusses the effects
of highly unbalanced datasets in machine learning training and proposes a strategy for
rebalancing highly unbalanced PQM datasets. Section 3 presents a literature review on the
filtering of RMS voltage profiles and detection of RMS voltage step changes. Section 4 de-
scribes the proposed approaches for RMS voltage profile filtering and dataset rebalancing,
as well as presenting the PQM datasets analyzed throughout this paper. Section 5 demon-
strates the performance of the proposed framework through field data measurements and
Section 6 addresses some final considerations.

2. The Problem of Unbalanced Datasets in Machine Learning Training

The main goal of any machine learning algorithm is to learn patterns directly from the
data through some computational methods, without relying on a predetermined physical
model or some other strong assumptions about the data features. In general, the perfor-
mance of these algorithms improves as the amount and variability of available samples
increase [21,22]. The growth in popularity of machine learning applications is a direct
consequence of the rise in big data, as most rule-based models are inadequate to extract
insight from such large, complex and ever-changing datasets. Some real-world machine
learning applications already in use include such diverse fields as the following [23]:

• Computational finance, for credit scoring and algorithmic trading;
• Image processing and computer vision, for face recognition, motion detection and ob-

ject detection;
• Computational biology, for tumor detection, drug discovery and DNA sequencing;
• Energy production, for price and load forecasting;
• Automotive, aerospace and manufacturing, for predictive maintenance;
• Natural language processing.

Machine learning methods are broadly classified into two categories: supervised
learning, where the algorithm tries to establish a mapping between input features and
output targets so that it can be used to predict the output target for future input features;
and unsupervised learning, where there is no output target and the goal is to group and
interpret the data based only on its input features. As will become clear in the following
discussion, the focus of this paper is on supervised learning—either in terms of classification
(i.e., the output variable is categorical/discrete) or regression (i.e., the output variable is
continuous).

A machine learning application is often divided into three stages—training, validation
and testing—with the input dataset split into three corresponding subsets as well [21,22].
Figure 1 represents the general workflow of a typical machine learning application. First,
the training set (which usually is the largest of the three subsets) is used to train a ma-
chine learning model. The performance of the resulting model is then evaluated using
the validation set. If its performance is satisfactory with respect to some metric, the cur-
rent model is considered as the final version of the machine learning model; otherwise,
an iterative loop of successive training and validation stages is executed to incrementally
improve the model’s predictive power until the desired performance is achieved. This
training/validation loop consists of hyper-parameter tuning (if the selected algorithm has
any hyper-parameters) or even the selection of an entirely different algorithm. Due to
the large number of machine learning algorithms, this step involves some trial-and-error,
as there is no one-size-fits-all approach in machine learning (i.e., there is no algorithm that
outperforms all other counterpart algorithms for all types of application, datasets size and
types of data or desired insights).

5
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Figure 1. General workflow of a typical machine learning application.

Once the final machine learning model has been selected, the test set is used to produce
its performance metrics. It is important to emphasize that the test set should not overlap
with the training and validation sets, as the goal in this evaluation step is to estimate the
predictive power of the final model on samples that have not been used to fine-tune the
model’s parameters.

In this paper, we focus on a pre-processing step to be employed prior to any of those
three stages in an attempt to improve the performance of the machine learning algorithm.
More specifically, our focus is on the handling and processing of highly unbalanced input
datasets; i.e., cases in which the observations in the training dataset belonging to one
class heavily outnumber the observations in the other class. A general overview of this
pre-processing step is shown in Figure 2; the components of the dataset rebalancing block
are detailed in Figure 5.

Figure 2. General overview of the work presented in this paper.

Highly unbalanced datasets in machine learning training might influence the model
performance and often result in a phenomena called the accuracy paradox. This occurs
when the accuracy measure simply reflects the underlying class distribution, rather than
learning the actual patterns present in the dataset. Most standard machine learning
algorithms are developed under the assumption that the class distributions are roughly
balanced. When presented with unbalanced datasets, these algorithms fail to capture the
effects of severe class distribution skewness [24], as well as experience difficulties learning
the concepts related to the minority class [25].

For example, consider a binary classification problem where the training dataset is
composed of 95% of observations for Class 1 and only 5% of observations for Class 2.
Most of the machine learning algorithms tend to be biased toward the majority class. If an
algorithm classifies a new observation based only on the majority class in the training
set (Class 1 in this case), its accuracy would be 95%, which is an excellent value for most
practical applications. This approach, however, does not take into account the features of
each observation; i.e., there is no actual learning during the training stage, and the final
machine learning model is likely to have low predictive accuracy on new observations.

The drawbacks caused by unbalanced datasets might be even worse than is appar-
ent [26]. For example, consider the study presented in [27], where the goal is to predict
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voltages throughout a distribution network. Not surprisingly, most of the target values in
the training dataset are around 1.0 pu, with only a few observations for which the target
value is less than 0.95 pu or greater than 1.05 pu. However, prediction accuracy is more
important for these scenarios with extreme voltage values (the minority class) than scenar-
ios with voltages around 1.0 pu (the majority class). This difference in prediction accuracy
importance is due to the fact that the scenarios with very low or very high voltages are
those in which a voltage control device has to operate.

There are multiple practical examples in which class unbalance is quite common
and even expected to occur. The minority class often represents rare but important
events [25]. A well-known example is represented by the datasets of credit card transac-
tions, where nearly all transactions were authorized by the card holder (not-fraud class),
while only a few transactions belong to the fraud class. A similar situation is observed
in power system measurements: most of the measurements correspond to steady-state
conditions (non-event), while only a few of them are events.

Multiple strategies have been proposed for handling unbalanced datasets, including
the following [24,28,29]:

• Collect more data;
• Explore alternative performance metrics, such as the confusion matrix, precision,

recall, F-score, Cohen’s kappa and receiver operating characteristic (ROC) curves [30];
• Resample the dataset (either through under-sampling or over-sampling, depending

on the dataset’s initial size);
• Generate synthetic observations;
• Investigate penalized models, where additional costs are imposed on the misclassifica-

tion of the minority class during training and a higher cost of prediction is associated
with rarity [31];

• Reconstruct the training dataset, where the minority observations are identified
through anomaly or change detection.

This paper employs the resampling and change detection approaches to construct
balanced training datasets. Given an RMS voltage profile, a training dataset is constructed
as follows:

1. Partition the input profile into multiple equal-length segments and determine which
contain significant changes in the RMS voltage levels; a significant change is defined
as an RMS voltage step change greater than a pre-specified threshold, which will be
introduced in later sections. Each one of these selected segments corresponds to one
observation of the minority class (event) in the training dataset—let nE denote the
number of such observations;

2. Among the segments without a significant change in the RMS voltage level (non-
event), randomly select nE segments to form the majority class (non-event) in the
training dataset.

Note that the minority and majority classes are used in the steps above only for
consistency with the previous discussion. In fact, the newly created training dataset is
evenly balanced between the two classes.

3. The State-of-the-Art

As mentioned in Section 1, this paper focuses on the detection of substantial changes
in RMS voltage profiles, so that datasets with a more balanced ratio between events and
non-events can be obtained for use in the training and validation stages of a machine
learning application pipeline. The most straightforward method to detect such changes in
an RMS voltage profile is based on RMS voltage gradients. There are also other alternative
detectors proposed in the literature, and these are discussed below.

7
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3.1. The RMS Voltage Gradient Profile Detection Approach

Let the vector V ∈ R
n represent an RMS voltage profile with a one-sample time

resolution; then, the corresponding RMS voltage gradient profile is defined as

ΔVk = Vk − Vk−pN , for k = pN + 1, . . . , n (1)

where N is the number of waveform samples per cycle. The quantity pN controls which
RMS voltage values are compared to each other; it is recommended to adopt p ≥ 2 [13] so
that there is at least a one-cycle gap between the waveform samples used to compute Vk
and Vk−pN . Otherwise, the magnitude of the RMS voltage gradient might be smaller than
the true magnitude of the step change when those sets of waveform samples contain a mix
of both event and non-event data, possibly causing the event to be undetected [12]. On the
other hand, adopting p ≥ 2 guarantees that any waveform transients lasting less than one
cycle will have dissipated and that at least one value in the ΔV profile captures the true
magnitude of the step change. The computation of the RMS voltage gradient profile is
illustrated in Figure 3 for p = 2.

Figure 3. Illustration of the root-mean-square (RMS) voltage gradient profile computation for p = 2.

In the RMS voltage gradient approach, an event is detected whenever the following
condition is satisfied:

|ΔVk| > δstep, for k = pN + 1, . . . , n (2)

where δstep is a pre-specified threshold for the triggering criteria. The chosen value for this
threshold has great impacts on the detector’s performance, as unsuitable values might
cause multiple false positives (δstep is too small) or false negatives (δstep is too large).

In this paper, δstep is selected based on well-known characteristics of power systems;
more specifically, we consider switching events that cause the most subtle change in RMS
voltage profiles, as described below:

• Voltage regulators are devices that adjust the voltage level by changing the tap po-
sitions in an autotransformer. In general, they provide a −10% to +10% regulation
range with 32 steps, where each step represents ±0.625% of the nominal voltage [32].

• Switched capacitor banks cause voltage variations, the magnitudes of which de-
pend on the capacitor bank size and the short-circuit capacity at the bank location.
For practical scenarios, the voltage variation falls between 0.36% and 4% of the
nominal voltage [19,32–34].

Based on this discussion, we adopted δstep = 0.0018 pu, which follows the rule of
thumb of setting the threshold as half of the minimum-expected step change [35]. This
detection technique has been shown to achieve high accuracy, especially in cases where
the signal-to-noise ratio of the RMS voltage profile is high (i.e., low noise levels) [12,36].
On the other hand, this detector fails if the RMS voltage profile has high noise levels or it
has not been properly filtered.

8
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3.2. Alternative Standard Detector

In the 2015 update, the International Electrotechnical Commission (IEC) added the
concept of a rapid voltage change (RVC) to one of its standards [14]. An RVC is defined
as an abrupt transition between two RMS voltage values, and its detection is performed
as follows:

1. Compute the arithmetic mean of the immediately preceding RMS voltage values:

Vk =
1

2 f

k

∑
p=k−2 f+1

Vk (3)

where f is the system frequency (either 50 or 60 Hz).
2. Flag a new RMS voltage value as part of an RVC if it deviates from Vk by more than a

given threshold δRVC: ∣∣Vk − Vk
∣∣ > δRVC =⇒ Flag as RVC (4)

The RVC threshold δRVC is set by the user according to the desired application; the
standard recommends considering values in the range of 0.01 pu to 0.06 pu. Due to the
computation of arithmetic means, this detection approach behaves similarly to linear
filtering, which, as discussed in the next section, has the drawback of blurring out the steep
edges of the signal.

3.3. RMS Voltage Profile Filtering

The event detectors described previously can exhibit great performance degradation
if the RMS voltage profiles are contaminated with noise. In the context of this paper,
the following are factors that contribute to noise corruption:

• Noise introduced by the measurement device;
• Varying system frequency, which results in incorrect RMS voltage computations, as N

waveform samples do not correspond to an integer number of cycles [36,37];
• Small load variations, which create intermittent variations in the RMS voltage profile

and have the potential to hinder the detection of the events of interest.

Thus, a low-pass filtering technique must be applied to the RMS voltage profiles as a
pre-processing step [35]. Linear filters, such as a moving average filter, have been shown to
be effective in removing or attenuating rapidly varying noise while preserving the slowly
varying signal. However, they blur out any steep edges of the signal [8,38,39], such as RMS
voltage step changes, making this type of filter unfit for applications based on the detection
of switching events [8].

On the other hand, median filters are well-known as suitable options for signals that
contain sharp edges [39,40]. The performance of median filters can be further improved
through an iterated and multiscale filtering approach, where multiple median filters are
applied sequentially from a fine scale (narrow window) to a coarse scale (wide window).
The goal of this process is to increase the signal-to-noise ratio at each stage such that the
advantages of median filtering can be leveraged at increasingly low noise levels [12,39].
Previous work has compared the performance of single-stage and three-stage median filters
applied to RMS voltage profiles around capacitor switching instants. It has been shown
that both filters successfully attenuate the signal noise while preserving the RMS step
changes in most cases; however, the three-stage median filter provided a faster transition
between the steady-state levels prior and posterior to the switching instant [12]. This study
also presented scenarios in which median filtering (both single- and three-stage) fails; for
example, if the signal varies linearly (i.e., not a constant value) immediately before the step
change, median filtering is not able to accurately track the signal.

9
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4. Methodology

As mentioned in Section 1, techniques for properly filtering RMS voltage profiles are
one of the main contributions of this paper. This section describes the proposed filtering
approach, which is demonstrated through test signals.

4.1. Problem Setup

This subsection presents the data analyzed in the paper (both field measurements and
synthetic signals), as well as definitions and formulations that are used in later sections.

4.1.1. Data

Field Measurements
The field measurements analyzed in this study consisted of 28-minute continuous

power quality data (voltage and current waveforms) collected at the feeder head of a 25 kV,
60 Hz radial distribution system with multiple parallel feeders. The power quality monitor
was installed immediately downstream of the substation transformer, and its sampling
frequency was 7.68 kHz (i.e., 128 waveform samples per cycle). The entire monitoring
period contained eight major switching events: four capacitor energizing operations and
four capacitor de-energizing operations. Further, some relatively large load switching
events were also observed, although they had a smaller impact on the RMS voltage profile
compared to capacitor switching events.

Synthetic Signals
Synthetic signals were also used in this study because they contained information

about the true RMS voltage value without noise contamination at each time instant. The fol-
lowing signals are analyzed in later sections:

• Signal 1: The voltage level in a distribution system was in a quasi-stationary condition
at 0.996 pu for 1 second. At that time instant, a capacitor bank was energized, instan-
taneously increasing the RMS voltage to 1.0 pu. After another 1 second had elapsed,
the capacitor bank was de-energized and the RMS voltage level returned to 0.996 pu.

• Signal 2: The voltage level in a distribution system was in a quasi-stationary condition
at 1.0 pu for 1 second. At that time instant, the load size connected to the system in-
creased gradually over 1 second, causing the RMS voltage to drop linearly to 0.996 pu.
This voltage drop triggered the energizing of a capacitor bank, instantaneously in-
creasing the voltage level back to 1.0 pu. Note: this is the scenario in which median
filtering was unable to track the original signal, as mentioned in Section 3.3.

These synthetic signals represented RMS voltage profiles with a half-cycle time resolu-
tion, so that each second contained 120 RMS voltage values (for a 60 Hz system). Further,
each signal also contained additive noise originating from a normal distribution with zero-
mean and standard deviation equal to 0.00025 pu. Figure 4 depicts both synthetic signals.

Figure 4. Synthetic signals analyzed throughout this study (both before and after noise addition).

10
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4.1.2. RMS Profile Computation

Let a sampled waveform signal be represented by a vector z; then, its RMS value at
instant k, Zk, is defined as

Zk =

(
1
N

k

∑
s=k−N+1

z2
s

)1/2

(5)

where N is the number of samples per cycle in the waveform signal. Industrial standards
recommend updating an RMS voltage profile every half-cycle (N/2 samples) [14,41];
profiles with this time resolution will be indicated as Z(1/2) in the rest of this paper.

On the other hand, computing a new RMS value once every waveform sample be-
comes available might result in hundreds or thousands of updates per second. The high
computational burden involved in this approach is often pointed out as a drawback of
having RMS profiles with such a high time resolution [13,14]. However, it has been shown
that a recursive approach eliminates such issues [36]. In the recursive approach, the RMS
value at instant k is computed as

Zk =

[
Z2

k−1 +
1
N

(
z2

k − z2
k−N

)]1/2

(6)

This recursive approach will be employed throughout the paper wherever RMS profile
computation with a high time resolution is necessary.

4.1.3. Vector Norms

For a given vector z ∈ R
n, its l1-norm (Manhattan norm) and l2-norm (Euclidean

norm) are defined according to Equations (7) and (8), respectively:

‖z‖1 =
n

∑
i=1

|zi| (7)

‖z‖2 =

(
n

∑
i=1

z2
i

)1/2

(8)

Note that in the following sections, the squared Euclidean norm ‖z‖2
2 is preferred over

‖z‖2 in order to avoid the square root operator.

4.2. Proposed Approach

Figure 5 depicts an overview of the PQM dataset rebalancing framework proposed
in this paper. First, the input voltage waveforms were converted into the corresponding
RMS voltage profiles (Section 4.1.2), which were filtered to remove/attenuate additive
noise (Section 4.3). The filtered RMS voltage profiles were segmented into fixed-length,
non-overlapping windows (in this study, we set each window length to 1 s). Each one of
these segments was classified as an event or non-event, using the RMS voltage gradient
profile approach that was introduced in Section 3.1. After all segments were classified into
one of the two categories, dataset rebalancing was performed as described in Section 2.
Finally, the resulting dataset could be used for the training/validation of machine learn-
ing algorithms.

11
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Figure 5. Overview of the power quality monitor (PQM) dataset rebalancing framework proposed in this paper.

4.3. Data Filtering

This section describes the filtering of time series through optimization techniques.
Consider a signal represented by the vector x ∈ R

n, where each coefficient xi represents the
signal value sampled at the i-th time instant and the sampling interval is fixed. Without loss
of generality, it is often assumed that the signal does not vary too rapidly for most of the
time, as was the case for the signals analyzed in this study, so that xi ≈ xi+1.

As commonly observed in field measurements, the signal x is corrupted by an additive
noise ν, i.e., xcor = x + ν. Note that xcor is observable by measurement devices, whereas the
true underlying signal x is unknown. The additive noise ν can be modeled based on known
characteristics of the process under study; however, for generality, it will be assumed that
it follows an unknown distribution, has a small amplitude and varies much more rapidly
than the signal x [42].

The objective of time series filtering is to produce an estimate x∗ of the original signal
x, given the corrupted signal xcor; this process is also called signal reconstruction or de-
noising. The reconstructed signal x∗ should be similar to the corrupted signal and smooth;
i.e., the rapidly varying noise is removed or significantly attenuated. The closeness between
the corrupted and reconstructed signals is often measured with respect to the l2-norm,
and a penalty function φ is used to assess the non-smoothness of the reconstructed signal.
Thus, this signal filtering problem can be formulated as a convex vector optimization
problem [42], as follows:

x∗ = argmin
x̂∈Rn

F(x̂, xcor) (9)

where the objective function

F(x̂, xcor) =

[‖x̂ − xcor‖2
φ(x̂)

]
(10)

is a vector. Its first component, F1 = ‖x̂ − xcor‖2 represents a measure of fit or consistency
between the corrupted and estimated signals, whereas the second component, F2 = φ(x̂),
measures the roughness or lack of smoothness of the estimate x̂. The function φ : Rn → R

is convex and often given as some norm. Note, however, that F1 and F2 do not need to be
measured with respect to the same norm, and this fact will be exploited later to produce
better estimates for x∗. In problems involving l2-norms, it is common practice to consider
the corresponding squared norms [42], so that the nonlinearities caused by square roots
are removed from the problem formulation; thus, we will adopt F1 = ‖x̂ − xcor‖2

2.
The formulation presented in Equation (9) corresponds to a multi-objective optimiza-

tion problem, where each component can be interpreted as different scalar objectives.
The goal is to minimize each one of these components; however, they represent competing
objectives, and a decrease in F1 is accompanied by an increase in F2 and vice-versa.

A standard approach for solving such optimization problems is called scalariza-
tion or regularization, where the objective function in Equation (9) is reformulated as

12
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λTF(x̂, xcor) = λ1‖x̂ − xcor‖2
2 + λ2φ(x̂) for any weight vector λ > 0 [42]. Note that

λTF(x̂, xcor) is scalar-valued and convex, since it is a weighted sum of convex functions [43].
Therefore, the reformulated problem is an ordinary scalar convex optimization problem,
which can be solved easily.

The weight vector λ has a great influence on the filtering process as it controls the
smoothness level of the output signal, and choosing a suitable value is critical to achieving
the desired level of noise removal [44]. In general, each choice of λ results in a different
estimate x∗ [42]. Let λ = [1, δ]T, for some δ > 0; as δ varies over [0, ∞), the solution of the
equivalent scalar optimization problem traces out the optimal trade-off curve (or Pareto
curve) between minimizing each component F1 and F2 separately. Figure 6 depicts a typical
Pareto curve for a bi-criterion vector optimization problem, where values of components
F1 and F2 are plotted on the horizontal and vertical axes, respectively.

Figure 6. Typical Pareto curve for a bi-criterion vector optimization problem.

For any δ, the slope of the Pareto curve represents the local optimal trade-off between
the two objectives: if the slope is steep, small changes in F1 are accompanied by large changes
in F2, and vice-versa [42]. In other words, a Pareto curve allows us to determine how large
one of the objectives must be in order to have the other one be small. Thus, the filtering of
signals with a low signal-to-noise ratio (high noise levels) requires a larger δ [44].

In the extremes of a Pareto curve, we have the following interpretation:

• δ = 0: there is no penalty associated with the roughness of the output signal; thus, no
smoothing is performed and x∗ = xcor. This scenario corresponds to the endpoint at
the left in the Pareto curve, and it represents the smallest possible value of F1 without
any consideration of F2.

• δ → ∞: a stronger emphasis is placed on the smoothness of the output signal, at the
expense of disregarding the similarity between the corrupted and estimated signals;
for a sufficiently large δ, x∗ becomes a constant signal. This scenario corresponds to
the endpoint at the right in the Pareto curve, and it represents the smallest possible
value of F2 without any consideration of F1.

Choosing a suitable δ is a compromise between F1 and F2. In practice, its value is
chosen empirically by analyzing the Pareto curve and selecting a value such that a small
decrease in one objective is accompanied by a small increase in the other objective [42].
The δ values that satisfy this requirement form the knee of the Pareto curve.

In the next sections, we present different strategies for quantifying the smoothness
of the filtered signal; i.e., we present formulations for the component F2 = φ(x̂) of the
objective function.

4.3.1. Quadratic Smoothing

The most straightforward roughness measure of a signal is given in terms of the sum
of squares of differences. The quadratic smoothing function is defined as

F2 = φquad(x̂) =
n−1

∑
i=1

(x̂i+1 − x̂i)
2 = ‖Dx̂‖2

2 (11)
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where D ∈ R
(n−1)×n is the bidiagonal matrix

D =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎥⎦
(n−1)×n

(12)

and represents an approximation to the first-order differentiation operator. As φquad(x̂)
is defined in terms of a l2-norm, its squared value is used in the optimization problem,
as discussed previously.

The estimate x∗ is the solution to the following unconstrained scalar optimization
problem:

minimize
x̂∈Rn

‖x̂ − xcor‖2
2 + δ‖Dx̂‖2

2 (13)

where δ > 0 parametrizes the optimal trade-off curve between ‖x̂ − xcor‖2
2 and ‖Dx̂‖2

2. This
formulation corresponds to a quadratic problem, which can be solved very efficiently [42].

Figure 7a shows the Pareto curve for δ ∈ [0, 500] for the synthetic signal 1 defined in
Section 4.1.1, where it can be observed that δ ≈ 2 is the optimal weight. Figure 7b depicts
three smoothed signals on the optimal trade-off curve:

• δ = 0.2 (under-filtering): the weight associated with the output signal roughness is
too small; although the steep edges in the signal are preserved, there is almost no
reduction in the signal noise.

• δ = 2 (optimal): this scenario represents the optimal trade-off between corrupted
and estimated signals similarity and noise reduction; however, the noise level in the
filtered signal is still quite high.

• δ = 100 (over-filtering): an excessive weight is placed on the signal smoothness,
resulting in over-filtering; the similarity between the corrupted and estimated signals
is rather low.

Figure 8 shows the filtering results for the synthetic signal 2, and the discussion
presented above is also valid for this test case.

This analysis shows that quadratic smoothing either removes the rapidly varying
noise or preserves the steep signal edges, but not both; in fact, quadratic smoothing behaves
as a low-pass filter. Thus, this technique is not suitable for the category of signals analyzed
in this paper.

4.3.2. Total Variation Smoothing

Given the limitations of quadratic smoothing discussed previously, this section de-
scribes a smoothing function that is effective at removing/attenuating the signal noise,
while still preserving the steep edges of the original signal [45,46]. In this case, the signal
smoothness is measured according to the following function:

F2 = φtv(x̂) =
n−1

∑
i=1

|x̂i+1 − x̂i| = ‖Dx̂‖1 (14)

which is called the total variation of x̂ ∈ R
n. Note that, compared to φquad in Equation (11),

φtv is not squared, as it is given in terms of a l1-norm and there are no square root terms to
be removed.
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Figure 7. Results of filtering the corrupted synthetic signal 1 through quadratic smoothing. (a) Pareto curve. (b) Estimated
signals representing under-filtering (δ = 0.2), optimal filtering (δ = 2) and over-filtering (δ = 100).
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Figure 8. Results of filtering the corrupted synthetic signal 2 through quadratic smoothing. (a) Pareto curve. (b) Estimated
signals representing under-filtering (δ = 0.2), optimal filtering (δ = 2) and over-filtering (δ = 100).
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The estimate x∗ is the solution of the following unconstrained scalar optimization
problem:

minimize
x̂∈Rn

‖x̂ − xcor‖2
2 + δ‖Dx̂‖1 (15)

The optimization problem in Equation (15) cannot be easily solved because the l1-
norm is non-differentiable [47]. The following problem reformulation is based on [43]. First,
for simplicity, we introduce a new variable yi = x̂i+1 − x̂i, ∀i = 1, . . . , n − 1, so that
φtv(x̂) = ∑n−1

i=1 |yi|.
Let yi = y+i − y−i , ∀i = 1, . . . , n − 1, where y+i and y−i are variables constrained to be

nonnegative. It can be shown that these two variables cannot be simultaneously nonzero;
i.e., at least one of the variables y+i and y−i is zero for each index i. Therefore,

yi =

{
y+i , if yi ≥ 0 (y+i ≥ 0, y−i = 0)
−y−i , if yi < 0 (y+i = 0, y−i > 0)

=⇒ |yi| = y+i + y−i (16)

By replacing |yi| in Equation (15), the following alternative formulation is obtained:

minimize
x̂,y,y+ ,y−∈Rn

‖x̂ − xcor‖2
2 + δ

n−1

∑
i=1

(
y+i + y−i

)
subject to yi = x̂i+1 − x̂i, i = 1, . . . , n − 1

yi = y+i − y−i , i = 1, . . . , n − 1

y+i ≥ 0, i = 1, . . . , n − 1

y−i ≥ 0, i = 1, . . . , n − 1

(17)

which is a constrained, convex and differentiable optimization problem.
Figure 9 demonstrates the filtering of synthetic signal 1 through total variation smooth-

ing. Figure 9a shows the Pareto curve for δ ∈ [0, 5], where it can be observed that δ ≈ 0.004
is the optimal weight. Figure 9b depicts three smoothed signals on the optimal trade-
off curve:

• δ = 0.0002 (under-filtering): the weight associated with the output signal roughness
is too small, meaning that there is almost no reduction in the signal noise.

• δ = 0.004 (optimal): this scenario represents the optimal trade-off between corrupted
and estimated signal similarity and noise reduction.

• δ = 0.2 (over-filtering): an excessive weight is placed on the signal smoothness,
resulting in over-filtering; due to the large penalty associated with variations in the
signal, the magnitude of the step change in the filtered signal is much smaller than
the magnitude of the true step change.

Figure 10 shows the filtering results for the synthetic signal 2, and the discussion
presented above is also valid for this test case. Further, unlike median filtering, total
variation smoothing was able to track this piecewise linear signal.

This analysis shows that total variation smoothing exhibits great performance in noise
reduction without blurring the sharp transitions of the original signal, as long as the weight
δ has been properly selected.

4.3.3. Quadratic vs. Total Variation Smoothing

As discussed in the previous sections, total variation smoothing shows better perfor-
mance in the filtering of RMS voltage profiles when compared to quadratic smoothing.
In this section, we explore and compare the characteristics of these two smoothing operators
in order to justify the superiority achieved by total variation smoothing.

Both φquad and φtv, which were defined in Equations (11) and (14), respectively,
assign large penalty costs to rapidly varying x̂. However, the quadratic smoothness func-
tion assigns a relatively small penalty to small values of |x̂i+1 − x̂i| [48]. For example,
if |x̂i+1 − x̂i| = 0.001, then the penalties assigned by the quadratic and total variation
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smoothness functions are 10−6 and 10−3, respectively. In other words, the quadratic
smoothing operator tolerates some variation in the filtered signal, whereas the total varia-
tion smoothing operator is subject to a much larger penalty if such signal variations exist,
meaning that it enforces |x̂i+1 − x̂i| ≈ 0 for almost all i’s.
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Figure 9. Results of filtering the corrupted synthetic signal 1 through total variation smoothing. (a) Pareto curve.
(b) Estimated signals representing under-filtering (δ = 0.0002), optimal filtering (δ = 0.004) and over-filtering (δ = 0.2).

In general, the following characteristics are observed in the solutions of optimization
problems with penalty functions [42]:

• l2-norm penalty: ‖Dx̂‖2 has many non-zero small entries and relatively few larger ones;
• l1-norm penalty: ‖Dx̂‖1 has many zero or very small entries and more larger ones.

The optimization problem scalarized with an l1-norm is a heuristic for finding a
solution in which ‖Dx̂‖1 is sparse. As D represents an approximation to the first-order
differentiation operator, total variation smoothing is biased toward solutions in which the
filtered signal is linear or piecewise linear.

This behavior can be observed in Figure 11, which depicts the histogram of |xi+1 − xi|
for the filtered signals computed in Section 4.3.1 (Figure 7b, quadratic smoothing with
δ = 2) and Section 4.3.2 (Figure 9b, total variation smoothing with δ = 0.004), respectively.
As expected, quadratic smoothing allows some |x̂i+1 − x̂i| to be greater than zero, which
correspond to the smooth transition around the steep edges of the original signal. On the
other hand, almost all |x̂i+1 − x̂i| in Figure 11b are approximately zero, except for two
values that correspond to the two step changes present in the original signal.
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Figure 10. Results of filtering the corrupted synthetic signal 2 through total variation smoothing. (a) Pareto curve.
(b) Estimated signals representing under-filtering (δ = 0.0002), optimal filtering (δ = 0.003) and over-filtering (δ = 0.1).

x̂i+1 − x̂i
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x̂i+1 − x̂i
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Figure 11. Histogram of the first derivative amplitudes for the filtered synthetic signal 1 using the
optimal δ value for each scenario. (a) Quadratic smoothing with δ = 2. (b) Total variation smoothing
with δ = 0.004.
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5. Results

This section demonstrates the application of the proposed framework (i.e., total varia-
tion smoothing) using field data collected at the feeder head of a 25 kV radial distribution
system, which is described in Section 4.1.1. Based on the results in Section 4.3.2, we adopted
δ = 0.0035. Figure 12a shows the unfiltered and filtered RMS voltage profiles for the en-
tire 28-minute measurement interval, whereas Figure 12b shows the corresponding RMS
voltage gradient profiles. Using the triggering threshold δstep = 0.0018 pu (Section 3.1), all
RMS voltage step changes were successfully detected without any false positives. The root
causes of the detected RMS voltage step changes were capacitor de-energizing (events 1,
2, 5 and 6) and capacitor energizing (events 3, 4, 7 and 8). Further, the unfiltered RMS
voltage gradient profile did not create any false positives either; however, the gradient
values were much larger compared to the filtered cases (as large as 0.0015 pu), indicating
that the unfiltered profile might create false positives for some datasets.

(a)

(b)

Figure 12. Results from the field data. (a) Unfiltered and filtered RMS voltage profiles; the filtered profile was obtained
through total variation smoothing with δ = 0.0035. (b) Unfiltered and filtered RMS voltage gradient profiles, where the
numbers in circles represent event IDs.

Detailed views of the unfiltered and filtered RMS voltage profiles are shown in
Figure 13 for four scenarios: capacitor de-energizing, capacitor energizing, load energizing
and steady-state. Note that the filtered profile did not contain rapidly varying noise and its
step changes were not affected, as initially desired. The unfiltered RMS voltage profile in
Figure 13b contained a spike immediately after the RMS voltage step change, which was
due to high-frequency transients in the voltage waveform caused by a capacitor energizing
operation. On the other hand, total variation smoothing successfully removed this spike.
This is an important advantage of using the filtered profile, as the magnitude of the step
change might be one of the features employed by the machine learning algorithm (the
magnitude given by the unfiltered profile is about 50% larger than the correct value).

Both unfiltered and filtered RMS voltage profiles were segmented into non-overlapping
1 s windows and classified as an event or non-event, as described in Section 4.2. Table 1
shows the distribution of classes before and after the rebalancing of the PQM dataset.
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Table 1. Class distribution for the PQM dataset before and after rebalancing.

Before Rebalancing After Rebalancing

Majority class (Event) 1672 (99.52%) 8 (50%)
Minority class (Non-Event) 8 (0.48%) 8 (50%)

(a)

(b)

(c)

(d)

Figure 13. Detailed view of the unfiltered and filtered RMS voltage profiles for the field data.
(a) Capacitor de-energizing (event 1). (b) Successive capacitor energizing (events 7 and 8). (c) Load
energizing (between events 3 and 4). (d) Steady-state (between events 4 and 5).
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Before dataset rebalancing, less than 0.5% of the observations in the input dataset
corresponded to power system disturbances; in this case, machine learning algorithms are
very unlikely to be able to extract any useful information about the minority class. On the
hand, the dataset was perfectly balanced using the framework proposed in this paper.
It should be noted, however, that the rebalanced dataset contained only 16 observations,
which is often considered too small for successfully training machine learning algorithms.
One solution would be to select more observations for the majority class, as long as
the resulting dataset does not become highly unbalanced. Another solution consists of
collecting more PQM data; the field data considered in this paper represent only 28 minutes
of measurement, whereas utilities have access to much longer measurement intervals (days,
weeks or even months).

6. Conclusions

The RMS voltage profile filtering proposed in this paper was shown to be robust for
removing/attenuating rapidly varying signal noise without blurring out the RMS voltage
step changes due to switching events. By combining filtering and step change detection
techniques, both conspicuous and inconspicuous events present in a PQM dataset can be
successfully identified. Detecting such events is the basis for rebalancing highly unbalanced
PQM datasets, consequently improving the performance of machine learning algorithms
that use these datasets in their training and validations stages.

As observed in Figures 7b, 8b, 9b and 10b, the parameter δ has a great effect on the
RMS voltage profile filtering process. Further, the optimal value for δ depends on the noise
level present in the signal; i.e., scenarios with a higher signal-to-noise ratio (low noise
level) require a lower δ value. Therefore, the optimal δ value adopted in this paper might
not be the most suitable choice for field measurements collected at other locations, as the
signal-to-noise ratio might be different.

Future research directions include the development of techniques for automatically
determining the optimal δ for each dataset. For example, for a given RMS voltage profile,
such techniques would first analyze only a short segment of the profile for multiple δ
values in order to construct the Pareto curve. Then, the optimal δ would be the value
corresponding to the knee of the Pareto curve, as shown in Figure 6. Once this optimal
value has been determined, the whole RMS voltage profile would be filtered through total
variation smoothing. It is important to emphasize that optimization applications based
on the Pareto curve in all fields—and not only power systems—empirically determine
the optimal δ by visually inspecting the Pareto curve. Thus, a technique for automatically
determining this value would represent a meaningful contribution.
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Abstract: Power system steady-state security relates to its robustness under a normal state as well as
to withstanding foreseeable contingencies without interruption to customer service. In this study, a
novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS)
based online situation awareness method regarding steady-state security was proposed. A CCN-
based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block
was applied after the CCN prediction block to generate the security level of the power system. The
security status of the power system was visualized online through a geographic two-dimensional
visualization mechanism for voltage magnitude and load flow. In order to test the performance of
the proposed method, three types of neural networks were embedded in CCN cells successively
to analyze the characteristics of the proposed methodology under white noise simulated small
disturbance and single contingency. Results show that the proposed CCN and HCRFS combined
situation awareness method could predict the system security of the power system with high accuracy
under both small disturbance and contingencies.

Keywords: steady-state security assessment; situation awareness; cellular computational networks;
load flow prediction; contingency; fuzzy system

1. Introduction

With the development of grid interconnection, the structure of modern power systems
is expanding. It is constantly developing in the direction of high voltage, long distance,
and large capacity, and becoming more complex. At the same time, the proliferation
of highly permeable renewable energy sources, such as wind and solar energy, makes
the electricity market impose loads on the grid in a more unpredictable, uncontrollable,
and dynamic way. It is difficult to predict power grid information with an increasingly
large geographic area and more dynamic load. Because of that, it is insurmountable for
controllers to see the full picture of the power grid situation under a fault or contingency.
Therefore, fast, accurate, and predictive estimation of the system security status has become
a major concern for dispatchers.

Power system security estimation problems can be classified in dynamic security
analysis and static security analysis [1]. At present, due to the long sampling time of su-
pervisory control and data acquisition (SCADA) system, online security analysis is mainly
conducted from the perspective of static security analysis, regarding voltage, current, ac-
tive, and reactive power security, etc. However, the extensive deployment of a phasor
measurement unit (PMU) provides a possible solution for fast online security situation
awareness. Since dynamic security analysis is based on a steady-state initial value, a fast
online updated static state can be used as an initial state of dynamic security analysis.
Even static state tracking which is fast enough can be considered as a dynamic security
analysis [2].
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Various research studies have been conducted on steady-state security awareness
using traditional methods. Literatures [3,4] have evaluated the voltage and load flow secu-
rity using the situation awareness method. Xiao et al. [3] proposed a situation awareness
method based on a static voltage security region of a large power system integrated with
wind farms. Netto et al. [4] presented an efficient voltage security region construction
tool using probabilistic reliability evaluation to solve a situational awareness problem.
This probability-based voltage security assessment algorithm provides richer visual in-
formation about the system safety level and has the potential for real-time application.
Sun et al. [5] proposed a steady-state operation situation awareness method based on the
dynamic power flow method of the active distribution network to study the operation
state of the power grid under time changes. The traditional methods can supply a fair
result for the system situation, but most of them require the exact system model and are
highly computational.

Wide applications of artificial intelligence (AI)-based power system security analysis
reveal that AI technology is an effective tool for power systems model building, time saving
during power flow computation, and online situation awareness. Fuzzy logic is an intelli-
gent algorithm with natural rules which is closer to human thought than traditional logic
systems. A particle swarm optimization combined K-means fuzzy algorithm was addressed
in [6] for the power system security assessment. Both static and transient security could be
classified as secure or insecure under given states and outages. The fuzzy logic clustering
technique was adopted in [7] by Matos and so forth to evaluate global multi-contingency
steady-state security. Literatures [8–10] proposed a fuzzy logic-based contingency ranking
method instead of the conventional performance index approach to overcome the mask
problems for power system static security analysis. Marannino et al. [10] proposed a
neuro-fuzzy method for the voltage collapse risk classification. Halilčević et al. [11] used
fuzzy membership functions of power system elements to estimate the system security
level online. Later, Halilčević et al. [12] used the deterministic and fuzzy inference method
to continuously estimate the security, adequacy, and reliability of power system current
operation. Kalyani et al. [13] generated synchronized phasor measurements to construct a
neuro-fuzzy network for online voltage security monitoring. Zhao et al. [14] proposed a
hierarchical model for survival situation awareness using variable fuzzy set technology
to estimate system survivability. Various applications of fuzzy logic-based power system
security analysis reveal that fuzzy technology is a highly promising tool for translating
the operator’s linguistic experience to executable machine language which can make the
operator aware of the security state of power networks. The use of the fuzzy set theory of
variables improves the accuracy and objectivity of the evaluation results.

Besides fuzzy logic, other AI methods have been applied in literatures [15–19] regard-
ing power system security awareness. Fan et al. [15] proposed a data-driven system voltage
prediction model based on the generalized regression neural network to dig in-depth
power system operation big data to enhance system situation awareness. Literature [16]
proposed a real-time safety assessment tool based on PMU and a decision tree to estimate
potential safety hazards after failure: Voltage amplitude fluctuation, temperature limit
violation, voltage stability, and transient stability. Literature [17] formulated post-outage
reactive power flow analysis as a nonlinear constrained optimization problem of a bounded
network to be solved by the genetic algorithm (GA). Literature [18] assessed the static
security of the power system using an enhanced radial basis function (RBF) neural network.
Literature [19] proposed a novel steady-state contingency screening method combining the
feed-forward neural network (FFNN) and the fast Fourier transform (FFT). The effective-
ness of the AI methods has been verified through selected research cases and predetermined
schemes. However, because of the time-consuming problem during online neural network
training, the above AI-based methods are not suitable for online application.

CCN is a distributed scalable neural network architecture composed of a computing
element (neural network or other) in each cell, which is suitable for describing complex
nonlinear network systems whose actual model is not available, and learning its dynamic
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characteristics in time and space [20]. As a distributed dynamic recurrent neural network,
the CCN architecture has the advantage of high scalability, effective nonlinear model-
ing, and easy computation parallelized. The CCN has good performance in solving the
problems of transient stability prediction [21], load flow inferencing [22], state estima-
tion [23], dynamic state prediction [24], wide area measurement (WAM) [25], and situation
awareness (SA) [26] using measurements from PMUs. In the previous research by the
author [27,28], different kinds of neural network-based CCN were applied as an effec-
tive tool for power system state estimation. In literature [27], the multi-layer perceptron
(MLP)-based CCN was applied to bus voltage prediction. MLP is a traditional neural
network which is simple and easy to train. Even though it has not taken advantage of
contextual information, the results are acceptable for voltage prediction. In literature [28],
recurrent neural network (RNN)-based CCN was applied to state estimation. The results
showed that the introduction of the CCN technique to the power system state prediction
made it possible for online security analysis application, as the distribute structure of CCN
could estimate the operation state with less time consumed. This paper proposed an online
situation awareness method considering power system static security using echo state
network (ESN)-based CCN and fuzzy logic. Different from MLP and other RNN neural
networks which are hard to converge during the learning process, ESN is an effective tool
for prediction even based on the simplest line regression training method. To validate the
validity of the proposed ESN-based CCN method, MLP- and RNN-based CCN were also
applied in this publication to compare with the results in literatures [27,28].

This paper is organized as follows. Section 2 introduces the design of the situation
awareness system using the proposed method. The situation awareness was realized
through 4 levels (perception level, comprehension level, projection level, and visualization
level). Section 3 shows the perception and comprehension levels. In the design of the
comprehension level, a two-layer CCN-based state prediction is proposed. Section 4 focuses
on the projection level with the design of a hierarchical cellular rule-based fuzzy system
(HCRFS)-based system security assessment. Section 5 shows system security visualization
utilizing web-based computer language. Section 6 provides the discussion and results
under small disturbance and contingency. Finally, Section 7 presents conclusions and
suggests potentially promising future work in this field.

2. System Architecture

For modern intelligent power system, fast and accurate situational awareness is
particularly important for power system security. When contingency occurs, it can provide
an effective judgment basis for the operator in the control room the first time, and avoid
wrong operation, missed operation, or delayed operation, which may lead to cascade
failures, and even system blackout. The research of the power system situational awareness
technology is still in its infancy. It mainly improves the power grid perception ability
through information integration, overall control strengthening of power grid, system
reliability enhancement, and operator misoperation decrease. Power system situation
awareness is to accurately and effectively grasp power grid security situation through three
levels: Perception, comprehension, and projection. This paper implemented a CCN and
HCRFS combined online situation awareness method regarding power system steady-state
security. The proposed situation awareness architecture is shown in Figure 1.
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Figure 1. The cellular computation network (CCN)- and hierarchical cellular rule-based fuzzy system
(HCRFS)-based power system security situation awareness.

Perception level: 12-bus power system model built in real-time digital simulation sys-
tem (RTDS) benchmark to generate synchronized power system measurements from PMU.

Comprehension level: CCN-based two-layer online state prediction and estimation
using PMU data.

Projection level: A HCRFS-based power system voltage and power security level
assessment using prediction states.

Visualization level: A scheme to dynamically visualize the voltage and load flow situ-
ation in geographic environment is proposed using the forecasting system security levels.

As shown in Figure 1, in the perception process, PMUs were applied on a 12-bus power
system to generate synchronized data. In the comprehension part, the voltage magnitude
and load flow were predicted with a two-layer CCN-based mechanism using PMU data.
In the projection step, the predicted voltage magnitude and active power were used to
assess the power system security level using a HCRFS-based mechanism. Finally, buses
and the system security level were displayed geographically two-dimensionally by the
data visualization tools. The system architecture shown in Figure 1 is illustrated in detail
in Sections 3–5.

3. Perception and Comprehension

The perception and comprehension levels of the proposed situation awareness tech-
nology regarding steady-state power system security are illustrated in this section.
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3.1. PMU Based Data Generation of 12-Bus Benchmark (Perception)

As an early tentative study, a 12-bus power system was applied to test the steady-state
power system security. The 12-bus power system model was built in a real-time digital
simulation system (RTDS) benchmark. PMUs were deployed on each bus to generate
synchronized power system measurements, like voltage magnitude, voltage angle, cur-
rent magnitude, and current angle. Voltage violation and load overflow under contingency
are common static security problems. In order to fully use the PMU data, the bus volt-
age and line current measurements were used to predict the bus voltage violation and
load overflow.

The selected 12-bus power system had different types of generators and loads, and the
network size was suitable for the initial CCN application. The 12-bus platform included
4 generators (Generator G1 was connected to an infinity bus). The generators’ and loads’
active power capacity are shown in Table 1, while other details of the test power system
can be seen in [29]. As shown in Table 2, there were 13 types of component contingencies
in the 12-bus system: 8 transmission line contingencies, 2 transformer outages, and 3
generator trips.

Table 1. The 12-bus power system parameters.

Load/Gen. No. Active Power/MW

Generator G1 (infinity Bus) 289
Generator G2 500
Generator G3 300
Generator G4 400
Load on Bus2 280
Load on Bus3 320
Load on Bus4 320
Load on Bus5 100
Load on Bus6 440

Table 2. The 12-bus power system line information.

Line No. From Bus To Bus Rating/MW

Line1_2 1 2 250
Line1_6 1 6 250
Trans1_7 1 7 1000
Line2_5 2 5 250

Line3_4_1 3 4 250
Line3_4_2 3 4 250
Line4_5 4 5 250
Line4_6 4 6 250
Line7_8 7 8 500
Trans8_3 8 3 1000

G2 10 2 700
G3 11 3 500
G4 9 6 500

3.2. CCN-Based Two-Layer State Prediction (Comprehension)

In the comprehension process of the proposed situation awareness mechanism, a
two-layer CCN-based method was proposed for state prediction. In Figure 1, the voltage
magnitude of each bus is predicted with the top right CCN layer using PMU data, while the
load flow of each transmission line is forecasted based on the top left CCN panel utilizing
PMU data and the prediction from the voltage layer. ESN was applied in each cell of the
two-layer CCN.

From Figure 1, regarding the voltage prediction layer, there were 11 buses that had
been simulated, except the infinity bus of the 12-bus power system. ESN was implemented
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in each cell representing each of the 11 buses. The relationship of each cell in CCN was
a direct mapping of the connections of each bus of the test power system. In each cell,
the one-step-ahead voltage magnitude prediction of the bus is defined as below:∣∣∣V̂i(t + 1)

∣∣∣ = f
{
|Vi(t)|, θi(t),

∣∣∣V̂n(t)
∣∣∣} (1)

where |Vi(t)|, θi(t) are the voltage, magnitude, and angle of bus i at time t.
∣∣∣V̂n(t)

∣∣∣ is the
one step delayed voltage prediction values of the neighbors that are connected to bus i.

In the load flow prediction layer, ESN was implemented in each cell representing
each line. From Table 2, there are 13 lines in the 12-bus power system. The relationship of
each cell in CCN was a direct mapping of the connections of each line of the test power
system. In each cell, the predicted active load flow of line j is P̂j(t + 1) which is shown in
Equation (2).

P̂j(t + 1) = f
{∣∣∣V̂i(t)

∣∣∣, θj(t), Ij(t)
}

(2)

where
∣∣∣V̂i(t)

∣∣∣ is the time-delayed voltage prediction values of bus i generated from Equa-
tion (1). θj(t) is the current angle of line j at time t from PMUs. Ij(t) is the line current
magnitude at time t of line j.

3.3. The Online Learning of the ESN in Each Cell

ESN is one type of recurrent neural network which uses a dynamic reservoir to
simulate the nonlinear relationship between the input and the output.

In an ESN with K inputs, N units in reservoir, and L outputs, the reservoir states are
updated following the equation below:

X(i + 1) = fres

(
WinU(i + 1) + WX(i) + Wf bY(i)

)
(3)

where Win is the weight between the input layer and reservoir units, W is the weight in
the reservoir layer and the output layer, while Wfb is the feedback weight. fres is the active
function of the reservoir layer (usually the logistic sigmoid or the tanh function). X(i) is
the reservoir state, U(i) is the K dimension input signal, and Y(i) is the L dimension output
signal. The output is obtained from Equation (4):

Y(i + 1) = fout(Wout(U(i + 1), X(i + 1), Y(i))) (4)

where weights Wout is the readout weight matrix between the reservoir layer and fout is the
output activation function (typically the identity or a sigmoid).

In order to obtain the Wout, Win and W were randomly initialized and Equations (3)
and (4) were activated with input and output signals. After that, the Wout readout weights
matrix could be trained by the line regression method in Equation (5) [30]:

Wout = (pinv(M) ∗ T)Trans (5)

where M is [(U(i + 1), X(i + 1), Y(i)] and pinv(M) is the pseudo-inverse of M. T is the
inverted of the output active function f out−1(Y(i + 1)). Trans is transpose.

The online training of ESN using Equations (3)–(5) in each cell of the CCN is shown in
Figure 2. In Figure 2, there are two modes (training mode and prediction mode) in each cell
of the two-layer CCN model. For example, in the voltage prediction layer, the prediction
mode worked for continuous voltage prediction using updating weights Wout(k + 1).
The training mode, which was a mirror reflection of the ESN structure in the prediction
mode, was activated if the mean square error (MSE) was larger than the expected tolerance.
Each ESN/cell was trained with the line regression method in Equation (5) using a dynamic
database which was updated with prediction data and target value.
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Figure 2. The online training of the echo state network (ESN) in each cell.

In the training mode of Figure 2, the fitness function is the MSE between the prediction
value and real value of all the k training data points. The MSE is an effective measurement
for forecasting the error of a prediction method in statistics.

MSE =
1
k

k

∑
i=1

|Acti − Predi|2 (6)

It is defined as the mean of the square of the error between the actual value and
prediction value. Where Acti is the actual value and Predi is the prediction value, and k is
the number of the data points.

4. Projection

This section shows the projection process which was developed using an HCRFS-
based power system security-level classification. The predicted voltage magnitude and
active power from the comprehension part were used to assess the power system security
level here.

4.1. Voltage Security Assessment

The voltage may violate beyond its limitation under disturbances such as load vari-
ations. A definition of voltage collapse, instability, and security introduced by IEEE [31]
concluding the power system voltage stability may be threatened in the presence of a
variety of single or multiple contingencies. Real-time voltage fluctuation can be performed
using the security index [32] below:

Indexv(t) =
p

∑
i=1

ωi.(Δ|Vi(t)|)m (7)

where Δ|Vi(t)| = |Vi(t)| − |Vli|, Δ|Vi(t)| is the voltage magnitude violation at time t. |Vi(t)|
is voltage magnitude of load bus i at time t. |Vli| is the voltage magnitude limit of load bus
i. p is the load bus number. ω is weight factor and m is exponent factor.
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4.2. Active Power Flow Security Assessment

A possible way to express the real-time security level of overload is the power secu-
rity index:

IndexMW(t) =
k

∑
j=1

γj.
(

Rj(t)
)n (8)

where Rj(t) =
(

Pj(t)
)
/Plj, Rj(t) is the active power overload ratio at time t. Pj(t) is the

branch j load at time t, and Plj is the overload limit. k is the number of branches. γ is
weight factor and n is exponent factor.

The above Equations (7) and (8) denote that the voltage magnitude violation Δ|Vi (t)|
and active power rating ratio Rj(t) are potential variables to formulize system security
indices. The proposed HCRFS-based security assessment was performed via the predicted
voltage magnitude violation Δ

∣∣∣V̂i(t + 1)
∣∣∣ and active power rating ratio R̂j(t + 1).

4.3. HCRFS Based System Security Assessment

From Figure 1, the voltage security assessment was designed via predicted voltage
magnitude Δ

∣∣∣V̂i(t + 1)
∣∣∣. Meanwhile, load flow security analysis was realized with an active

power rating ratio, R̂j(t + 1). The fuzzy controller transformed the expert knowledge into
an automatic control strategy through fuzzification, inference engine, rule base, and de-
fuzzification structure mode. In each designed HCRFS, there were two layers. The first
layer was a single bus or line security assessment; meanwhile, the second layer was system
level security analysis.

From the HCRFS for voltage security in Figure 1, it is clear that the input was
Δ
∣∣∣V̂i(t + 1)

∣∣∣, which was the predicted voltage magnitude violation of 11 buses, and the

output was the system voltage security level V̂Ssys(t + 1). The proposed HCRFS fuzzy
index for voltage security was performed by:

V̂Si(t + 1) = f uzzy
(

Δ
∣∣∣V̂i(t + 1)

∣∣∣) (9)

V̂Ssys(t + 1) = f uzzy
(

V̂Si(t + 1)
)

(10)

Δ
∣∣∣V̂i(t + 1)

∣∣∣ = |̂V i(t + 1)
∣∣∣−|Vli|(i = 1, 2 . . . .11) (11)

where V̂Si(t + 1) is the voltage security assessment of bus i.
∣∣∣V̂i(t + 1)

∣∣∣ is the first step
ahead predicted voltage magnitude of bus i from CCN which is shown in Equation (1).
|Vli| is the voltage magnitude limit of load bus i.

The proposed HCRFS-based overload security assessment which is shown in the left
bottom panel of Figure 1 can be formulized below:

P̂Sj(t + 1) = f uzzy
(

R̂j(t + 1)
)

(12)

P̂Ssys(t + 1) = f uzzy
(

P̂Sj(t + 1)
)

(13)

R̂j(t + 1) =
P̂j(t + 1)

Plj
(j = 1, 2 . . . , 13) (14)

where P̂Ssys(t + 1) is the fuzzy index for system load flow security. P̂Sj(t + 1) shows the
load security level of line j. R̂j(t + 1) is the predictive active power rating ratio. P̂j(t + 1) is
the predicted active load flow of line j from CCN which is shown in Equation (2). Plj is the
active power rating.
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4.4. Cellular Based Rule Base of HCRFS Block

The fuzzy implication of the first layer in the HCRFS was a multi-input–multi-output
(MIMO) system:

Rule i: If a1 is A1i . . . and ar is Ari, then b1 is B1i . . . , and bn is Bni.

where i is the number of rules, r is the input number and n is the output number.
The fuzzy implication of the second layer in the HCRFS follows multi-input–single

-output (MISO) systems:

Rule j: if x1 is A1j . . . , and xr is Arj, then y is Cj.

where i is the number of rules, r is the input number.
In the 12-bus power system, ideally to classify the power system states “Secure”,

“Alert”, or “Emergency”, it requires abundant combinations of input levels. Assume each
of the 11 voltage inputs is classified by five levels (corresponding membership functions are
NB, NM, Normal, PM, PB); this would mean 511 = 48,828,125 voltage level combinations.

In order to overcome the rule explosion, an idea of the cellular-based rule base is
inspired by the CCN structure. CCN is a cellular computational network consisting of
a neural network in each cell that can be used to implement networked power systems.
In the design of the voltage magnitude prediction layer, CCN was applied to implement the
connection of the 11 buses. Each cell/bus of the CCN could be trained and used separately
only considering the information of the nearest neighbors. Similarly, as the status of the
system security had a tight relationship with contingency cases who may lead to voltage
violation or overload, different types of contingencies were considered in developing rules
process for the cellular concept based fuzzy system.

In the design of the cellular-based rule base, only the buses directedly connected to
the contingency were considered. For example, if there was a line contingency between
bus 1 and 2, only 2 primary buses (buses 1 and 2) were considered in the “IF” condition
part, instead of all the inputs.

From Table 2, there are 13 outages. If the cellular-based fuzzy rules were applied for
each outage using only 2 primary buses, the rule cases reduced to 52 = 25 voltage level
combinations for each outage, and 13 outages meant 13 × 25 = 325 rules. Finally, it is more
than 1 − (325 ÷ 48,828,125) = 1 − 0.00066% = 99.99% reduction in the number of rules.

5. Visualization

After the projection process, the buses and system security level were displayed
geographically two-dimensionally using web-based computer language.

5.1. Bus Voltage and Line Load Flow Security Visualization

With the application of computer language, the security level of each element and
the power system could be vividly displayed to the operation staff. As shown in Figure 1,
all the predicted security information from the HCRFS block is displayed geographically
two-dimensionally. The displayed information includes the voltage magnitude security
level of each bus, the load flow security of each line, and the overall power system security
level from the viewpoint of the whole power network.

The power system security states were characterized in three modes from the view of
the power system operators, which were Secure, Alert, and Emergency:

• Secure: All the buses are in normal states, which means there is no alarm being
presented and none of the contingency would cause overload or voltage violations;

• Alert: There is an alarm or contingency which needs the operator to pay attention;
• Emergency: It is indicated that a serious alarm appears, and the system is seriously

insecure, or there is a contingency that may lead to system blackout which needs the
operator to act immediately.
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The voltage magnitude security of each bus was shown geographically above the
position of each bus in the 12-bus power system as in below:

 (15)

The positive “+” and negative “−“ showed the voltage magnitude was above or below
1 pu. The diameter of the symbol increased with the rise of the security level to make it
more noticeable.

The overload situation of each line was displayed in a circular arrow manner above
that line using different colors.

 (16)

5.2. Power System Security Level Visualization

The prediction of the power system security level from HCRFS was visualized in a
meter to make it easy to read. Secure, Alert, and Emergency were labeled on the pane of
the meter as a reference for the pointer to show the security level.

6. Results and Discussion

From Section 3, the voltage and active power flow prediction was carried out based on
the two-layer CCN model. The power system steady-state security related to its robustness
under the normal state, as well as to withstanding foreseeable contingencies without
interruption to customer service. Thus, the CCN-based power system security analysis
was done from two aspects: 1. Voltage and active power prediction with pseudorandom
binary sequence (PRBS) signals on generators or load to simulate normal disturbance of
the 12-bus power system; 2. voltage and active power prediction under single line outage
to test the power system security in the event of unforeseen contingency. The details of
the simulation cases are shown in Table 3. Case A is a training case with PRBS signals
applied on generators G2, G3, G4 to simulate the small noise and disturbance in the power
system. The 0.5, 1, and 2 Hz PRBS signals were fluctuated positive and negative 15%,
which were simulated voltage magnitude violations under the steady-state. Cases B to E
were test cases.

Table 3. Simulation cases under different disturbances and outages.

Case No. Disturbance Type

Case A PRBS signals on G2, G3, G4 (for batch training)
Case B PRBS signals on loads of Bus2, Bus3, Bus5, and Line5_4 outage
Case C PRBS signals on load of Bus2 and generator G3
Case D PRBS signals on loads of Bus2, Bus3, Bus5, and Line2_5 tripped

In order to see the performance of ESN-based CCN, the MLP- and RNN-based CCN
predictions [27,28] were applied in this paper for comparison. Different from the online
learning of ESN, the weights of MLP/RNN-based CCN were generated from batch training
using dynamic multi-swarm particle swarm optimization (DMSPSO) [33], and later applied
to online prediction. Case A in Table 3 is the batch training data for MLP and RNN. In the
batch training process, PRBS signals were applied on three generators to simulate the
disturbance during actual system operation. The trained weights of MLP and RNN in
each CCN cell were fixed and applied to online prediction in different scenarios. The
parameter settings of the three kinds of neural networks are shown in Table 4. The stop
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iteration numbers for batch training were 3000, but for online training, the stop criteria was
MSE < 1 × 10−2.

Table 4. Parameter settings for different types of neural networks.

Neural
Networks

Type

Training
Type

Training
Method

Max Iter.
Search
Range

Group
Num.

Particle
Num.

MLP Batch
training DMPSO 3000 [−1.5

1.5] 4 3

RNN Batch
training DMPSO 3000 −[2 2] 5 3

ESN Online
Training

Line
regression MSE < 1 × 10−2 [−2 2] - -

6.1. Voltage Prediction with PRBS Signals on Generators (Case A)

In Figure 3, 1 s ahead voltage prediction results under PRBS signals on generators G2,
G3, and G4 can be seen. The solid blue line indicates PMU measurements from the 12-bus
RTDS model (real data), the green dot-dash line is voltage predictions from MLP, the black
dashed line shows results of RNN, and the red dotted line indicates voltage prediction of
ESN. The panels in Figure 3 include voltage prediction results for three generator buses
(BusG2, BusG3, and BusG4) and three load buses (BusL4, BusL5, BusL6). The oscillations on
the red dotted line within 0 to 200 ms of Figure 3 come from the initiation process of ESN
online training. From comparison, all three kinds of neural networks can follow the voltage
change trend with a slight time shift.

Figure 3. The 1 s voltage prediction near generator buses and load buses.

6.2. Voltage Prediction with PRBS Signals on Load Buses and Line Contingency (Case B)

Besides PRBS signals, transmission line contingency was also applied for several
seconds and restored in this part for testing. Figure 4 shows voltage prediction results
under PRBS signals on load buses (BusL2, BusL3, BusL5) and Line5_4 (which connected
bus4 and bus5) outage. Because Line5_4 tripped, loads on bus4 and bus5 experienced
slightly low voltage. As BusL6 and BusG4 were close to generators, the load on Bus6 and
generator on BusG4 performed better with small oscillation when contingency occurred and
disappeared. From Figure 4, the MLP- or RNN-based voltage prediction had a steady-state
error, while the ESN prediction had the advantage of fast reaction and small overshoot
when contingency occurred and was restored.
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Figure 4. The 1 s voltage prediction on load buses and generator bus G4 under pseudorandom binary
sequence (PRBS) noise and Line5-4 outage.

6.3. Load Flow Prediction with PRBS Signals on Generator and Load Buses(Case C)

A scheme with PRBS signals on load Bus3 and generator G2 was proposed here to
see the performance of the active power prediction. In Figure 5, the performances of three
kinds of neural networks were similar except for small differences. The MLP prediction
performed better on peak values, while the online ESN method needed an adjusting
time (simple 200 to simple 300) for initialization. The green dot-dash line in the Line4_3
panel looks like an average line in the horizontal direction. This phenomenon shows the
MLP-based active power prediction cannot converge on Line 4_3.

Figure 5. The 1 s load flow prediction of Line2-5, Line4-3, Line5-4 (near load buses), Line9-6, Line10-2,
and Line11-3 (near gen. buses).

6.4. Load Flow Prediction with PRBS Signals on Load Buses and Line Contingency (Case D)

Figure 6 indicates the power flow change under load disturbance and Line7_8 break.
The Line1_2 and Line2_5 undertook half of the loss led by the Line7_8 fault. The 1 s load flow
forecast illustrated that the ESN method had excellent performance in line disconnection
circumstances. From the comparison of all three methods, the online training ESN method
overmatched the fixed weight RNN and MLP method as the online learning mechanism
could update the weights of ESN in each cell timely, according to the situation change such
as load noise of abrupt line off.
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Figure 6. The 1 s ahead active power prediction on load Bus3, Bus4, Bus5, and generator BusG3 under
PRBS signals on generators and Line7-8 outage.

6.5. Performance Evaluation

As the performance of different neural networks was similar in Case A and Case C,
the MSE errors between real values and predictions are shown in Table 5 for performance
evaluation. It is reasonable that MLP/RNN performed better in Case A than ESN as Case
A was a batch training case, while ESN needed initialization time for online training. But in
Case C, ESN had better prediction results as the online training method could change the
neural network weights with the situation change.

6.6. HCRFS based Power System Security Awareness

From Section 4, the two-layer HCRFS block could estimate the whole system security
situation including component (bus and transmission line) security and system security.
In the application of web-based computer visualization technology, the output voltage and
load flow security level of the HCRFS could be vividly displayed to the operation staff in a
visual manner. Figures 7–9 are the visualization results.

Figure 7 is the web-based graphic user interface under a normal operation state.
The left graph is the component visualization (voltage security on each bus and load
flow security on each line). The right meter is the corresponding system security display.
From Figures 7–9, different colors indicate different security states of the system. It is
defined in Equations (15) and (16) that green means the Secure state, orange shows the
Alert state, while red indicates the Emergency state. The pie shapes represent the voltage
security of each bus geographically. The circular arrows illustrate the load flow security
level of each transmission line with various colors. Normally, the system is in the Secure
state (Figure 7). The green pies on the buses and green circles on the lines show that the
bus voltage and line load flow are all fluctuating within a secure range.

The security situation of the power system changes under disturbances, as shown
in Figures 8 and 9. To highlight the main parts, Figures 8 and 9 remove style designs
including title, background, and logo, zooming in on the geographic two-dimensional
based component security and system security meter.

6.6.1. Bus Voltage and Line Load Flow Security Awareness under Small Disturbance

The visualization of each bus and transmission line under PRBS signals are shown
in Figure 8a. Because of the disturbances (PRBS signals) on generators G2, G3, and G4,
there were some Alert states compared with the initial Secure states (Figure 7). In Figure 8,
the yellow negative pies above the buses reveal that Bus3, Bus4, Bus 5, Bus 6, Bus 8, Bus 9,
and Bus11 are slightly below the rated voltage. At the same time, yellow circles above the
transmission line1_6, line 1_7, line7_8, and line 8_3 indicate slight overflow on those lines.
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Table 5. Mean square error (MSE) between real values and predictions of different neural networks.

Neural
Networks Type

Case A Case C

Max. MSE Min. MSE Mean MSE Max. MSE Min. MSE Mean MSE

MLP 9.5594 × 10−4 8.7512 × 10−5 5.2308 × 10−4 0.0067 1.1533 × 10−4 0.0015
RNN 0.0011 4.5032 × 10−5 4.6935 × 10−4 0.0047 1.1528 × 10−4 0.0011
ESN 0.0012 4.7166 × 10−5 5.2835 × 10−4 0.005 8.7193 × 10−5 9.9694 × 10−4

 

Figure 7. Graphic user interface of the situation awareness system (initial state).

(a) 

 
(b) 

Figure 8. Graphic user interface under PRBS signals disturbance. (a) The components’ security
awareness of the 12-bus power system, (b) The system security state.
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(a) 

 
(b) 

Figure 9. Graphic user interface state under PRBS signals and line1_2 contingency. (a) The compo-
nents’ security awareness of the 12-bus power system, (b) The system security state.

6.6.2. Bus Voltage and Line Load Flow Security Awareness under Small Disturbance and
Line Contingency

Both PRBS signal and Line1_2 contingencies are applied in this simulation in Figure 9.
Compared with the entire green in Figure 7, the 11 buses have 1 Alert state (yellow pie)
and 5 Emergency states (red pie), while the 13 transmission lines have 5 Emergency states.
Because Line1_2 is tripped, generator G3 and transmission lines Line1_6, Line1_7, Line8_3,
and Line7_8 are seriously overloaded (red circle). The five red pies show that because of
the disturbance and Line1_2 contingency, the power system is instable, and Area 3 is in a
serious sub-voltage situation.

6.6.3. Power System Security Level Visualization

The system security was defined in a meter considering all the buses’ and transmission
lines’ secure state. The different states in the meters of Figures 7b, 8b and 9b were in
accordance with the bus and line secure state from Figures 7a, 8a and 9a. The pointer in
Figure 7b indicates that the system security level is Secure, which is consistent with the
initial Secure state of the buses and transmission lines. Alert states on 7 buses and 4 lines in
Figure 8a indicate that sub-voltage and overload appeared on the system. That is why the
indicator points to Alert in Figure 8b at that time instant. The system security in Figure 9b
is in Emergency level, corresponding to the 5 serious buses voltage violation and 5 severe
lines’ surcharge in Figure 9b.
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7. Conclusions

This paper has presented how to implement power system security awareness using a
CCN and HCRFS combined methodology. From the results presented, it can be seen that
the ESN-based CCN bus voltage and line load flow prediction could estimate the state
of the power system online better than MLP- and RNN-based CCNs, with a mean MSE
lowered to 9.9694 × 10−4 under new events or contingency. The proposed HCRFS system
reduces the number of rules in the rule-base dramatically by 99.99%. The two-dimensional
visualizations could vividly display the bus voltage security levels, transmission line power
flow security states, and the system security situation synchronously to the control room
operator. The predicted security level could inform the system operator to react in advance
to prevent a cascaded contingency and even a system blackout. Multiple results show
that the proposed CCN and HCRFS combined visualization method could predict the
security of the power system with acceptable accuracy under both small disturbance and
line contingency. Future work includes: Improving the prediction accuracy, the dynamic
security could be considered later, and parallel computing could be applied to improve the
training efficiency. Furthermore, the proposed CCN and HCRFS combined system security
level prediction and visualization technique can be applied to a 68-bus system to study the
scalability of the proposed CCN- and HCRFS-based approach.
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Abstract: An accurate monitoring of power system behavior is a hot-topic for modern grid operation.
Low-frequency oscillations (LFO), such as inter-area electromechanical oscillations, are detrimental
phenomena impairing the development of the grid itself and also the integration of renewable sources.
An interesting countermeasure to prevent the occurrence of such oscillations is to continuously identify
their characteristic electromechanical mode parameters, possibly realizing an online monitoring
system. In this paper an attempt to develop an online modal parameters identification system is done
using machine learning techniques. An approach based on the development of a proper artificial
neural network exploiting the frequency measurements coming from actual PMU devices is presented.
The specifically developed offline training stage is fully detailed. The output results from the dynamic
mode decomposition method are considered as reference in order to validate the machine learning
approach. Some results are presented in order to validate the effectiveness of the proposed approach
on data coming from recordings of real grid events. The main key points affecting the performance of
the proposed technique are discussed by means of proper validation scenarios. This contribution is
the first step of a more extended project whose final aim is the development of an artificial neural
networks (ANN) architecture able to predict the system behavior (in a given time span) in terms of
LFO modal parameters, and to classify the contingencies/disturbances based on an online training
that has memory of the passed training samples.

Keywords: inter-area oscillations; modal analysis; reduced order modeling; dynamic mode decomposition;
machine learning; artificial neural networks

1. Introduction

It is a matter of fact that the actual ever-demanding environmental policies are forcing the
worldwide power grids to integrate a rising amount of renewable sources, thus leading the grids
themselves to become more and more interconnected, complex, and also prone to be stressed in their
ordinary functioning.

Modern power systems have the fundamental need to deliver the largest electrical power over
long distances. However, such systems should also be able to take into account the presence of
renewable sources, characterized by very low inertia, which constitutes an impairment in terms of
system’s stability since they introduce rapidly changing electrical dynamics.

Under this scenario, the power grid utilities are often operated at the edge of their capacity and
stability limits, where the possible presence of small disturbances due to switching or line operation
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events can negatively affect the reliability of the entire power system. Electromechanical inter-area
oscillations constitute an inherent dynamic property of electric power system [1]. Such oscillations
cannot be entirely suppressed and some of them are unavoidably excited by the mentioned disturbances.
This kind of oscillatory phenomena is usually characterized by modal frequencies (named “inter-area”
oscillations or modes) in a range between 0.1 and 0.8 Hz while other low-frequency oscillation (LFO)
phenomena are characterized by relevant modes in a frequency range between 0.8 Hz and 2 Hz.
These last oscillations are the so-called “local-area modes.” The LFOs are mainly due to the swinging
of one or more units at a specific generating station, or few generating stations that are geographically
close, with respect to the rest of the power system; they can be mitigated through the use of local
stabilization agents such as power system stabilizers (PSS), automatic voltage regulators (AVRs),
FACTS devices, etc., [2]. Inter-area oscillations, instead, are associated to the swinging of many
generating units or power plants belonging to one or more zones of the system that are geographically
far from each other, against the units in the remaining parts of the power system. Thus, because of
their global nature and to the very low frequencies involved, they are hard to be controlled and hence
damped. It must be said that there is no strong definition of well-damped low-frequency oscillations,
but a generally accepted rule of thumb defines an oscillation as sufficiently damped if the damping
ratio is above the range 3–5% [3]. Under-damped or undamped oscillations can lead to large power
swings or also to the tripping of protection relays and subsequent disconnection of parts of the grid
and/or loads.

Therefore, by considering the issues induced by LFO, and in particular by the electromechanical
inter-area oscillations, the possibility to monitor the power system in real-time in order to guarantee safe
and reliable grid operation is a relevant need. Nowadays, the role of wide-area measurements systems
(WAMS) are getting more and more attention, for what concerns the use of phasor measurement units
(PMUs), for identifying hazardous LFO modes because of inter-area oscillations. Identification of such
LFO is a big challenge for the network operators. The identification of LFO modes has been widely
studied in the past as the problem of identifying the characteristic parameters of exponentially damped
sinusoids (EDSs) [4,5]. Many techniques have been proposed for this scope in several application
fields [6–8], leading to promising results.

Even though the topic has been extensively studied, this problem still receives very wide
attention [9–12], especially in the field of power systems [13,14]. The identification techniques are
mainly classified as model-based techniques and measurement-based techniques or, in some cases,
as parametric and non-parametric methods. Model-based techniques are based on the use of a
proper system modeling of the power grid, and the subsequent extraction of the mode parameters by
eigenvalues decomposition (EVD) analysis. Generally, they can achieve a relatively high accuracy;
however, they are not completely suitable for online monitoring purposes because of some limitations
in terms of computational burden and inherent uncertainties in system modeling. Measurement-based
techniques (also referenced as “mode meters”) seems to be more appealing in order to realize a real-time
LFO monitoring system, since they are based only on proper signal processing methods, thus they can
be considered to be model-free and inherently data-driven. The set of available measurement-based
methods is quite large since there exists a certain number of basic estimation algorithms that have been
further extended in order to overcome the specific weakness.

Among this huge set of techniques, the most popular methods can be considered those based on
Fourier transform [15], Prony algorithm [16], Tufts–Kumaresan algorithm [17], Kalman filtering [18],
wavelet analysis [19], Hankel singular value decomposition-variable projection method [20]
and techniques based on Hilbert–Huang transform [21] and its related refinements based on empirical
mode decomposition [22,23]. A set of recent works have focused on such kind of techniques, by exploring
extensively their capabilities and drawbacks [23–25].

However, it seems that, as of today, the major good point of measurement-based methods is that
they are inherently data-driven. In effect, some works have already explored the possibility to use
these techniques in the context of a wider and more complex machine learning framework based on
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the use of artificial neural networks (ANNs), such as [26–30], either for LFO identification or EDSs
characterization. In the above mentioned papers, the measurement-based estimation techniques are
combined with ANN-based methods in order to identify the LFO mode parameters in real-time, or to
extract other useful power grid information (like the system operating conditions or the generator
coherency). In other applications, the data extracted from the ANN are also used to control and to
damp the LFO phenomena [28,31]. It must be remarked that a key point inside the listed approaches
is the need to operate a dimensionality reduction of the huge amount of data coming from PMUs.
This is due to the fact that the use of machine learning techniques for modal analysis requires an
offline training of the ANNs that depends, in terms of time required, on the size of the network and
the size of the input data. Plenty of dimensionality reduction techniques are present in literature that
can be suitable for this scope. Some very popular are the principal component analysis (PCA) [32],
the independent component analysis (ICA), the dynamic mode decomposition (DMD) [33,34], and their
further extensions and modifications.

This work is part of a global on-going research project whose final aim is the development
of an ANN architecture able to predict and classify LFO phenomena based on an online training
approach that keeps memory of the passed training samples. The present contribution focuses on the
development of the ANN architectures and their validation by an offline training. The online strategy
and associated algorithm development is still under investigation.

Differently from other recent approaches, in this paper an ANN-based strategy for the online
monitoring of inter-area LFO modal parameters is presented. The DMD technique is explored and
used as a dimensionality reduction method. Section 2 summarizes the relevant features of the DMD
technique applied to the PMUs measured data. In Section 3 the architecture of the proposed ANN and
the issues related to its training are discussed. Section 4 is devoted to the discussion of the numerical
results and their comparison with some measurement in order to validate the proposed approach.
Finally, in Section 5, some conclusions are drawn by discussing the advantages and limitations of the
proposed method and possible research directions.

2. Modal Decomposition of Frequency Oscillations in Electric Power Systems

As already stated, the identification of LFO phenomena in power grids has been performed
in previous research works following several different valid approaches. A mainstream class of
techniques accounts for the execution of a modal analysis of the data measured and collected by the
PMUs (i.e., as [24,25]). In this works the instantaneous frequency measurements coming from some
PMUs are processed using some modal estimation techniques in order to extract the characteristic
parameters of the main electromechanical modes, such as frequency, damping ratio, and amplitude.
With this information, it is possible to identify the characteristics of a certain number of modes and
hence also the dominant one. As a subsequent identification step, it is also possible to verify the
presence of a hazardous inter-area oscillation by looking at the frequency range of the dominant mode
and the values of its damping ratio.

For the purposes of this paper, we use as modal estimation technique, the DMD method, since it
is capable of both identifying the modal parameters of LFO and to operate a dimensionality reduction,
thus enabling an efficient design and training of the ANN-based LFO identification strategy.

The dynamic mode decomposition method was first introduced by Schmid [33] as a numerical
procedure capable to extract dynamical features from flow data. It has been later enhanced and
refined [34–36] in order to be used as a modal analysis technique capable to extract the modal
parameters of EDSs.

The DMD theory is based on the collection of input data as a snapshot sequence of the
following form:

XN
1 = {x1, x2, · · · , xN} (1)
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where xi is the i-th snapshot and XN
1 is a data matrix whose columns represent the collection of the

different snapshots, from the first up to the N-th. If each snapshot xi is composed of M spatial samples,
XN

1 is a M-by-N matrix.
The DMD method [33] is essentially founded on the assumption that the snapshots are related to

each other via a linear mapping, defining a linear dynamical system as in (2).

xi+1 = Axi (2)

Equation (2) is supposed to be approximately invariant during the time period between
the two snapshots. Based on this, any collection of snapshots XN

1 can be split into two subsets,
XN−1

1 = {x1, x2, · · · , xN−1} and XN
2 = {x2, x3, · · · , xN} for which the following relationship holds:

XN
2 = AXN−1

1 + r (3)

In (3) the term r denotes the vector of residuals accounting for the dynamic behaviors that
cannot be completely described by the linear mapping. The eigenvalues of matrix A are referred to as
“DMD eigenvalues” and the eigenvectors of A as “DMD modes.”

There are different algorithms suitable to implement the DMD method. In this work the one based
on the singular value decomposition has been selected based on a similarity transformation and an
eigenvalue decomposition (known as “DMD with SVD approach”). The principal steps to be followed
in this case can be resumed according to [35]:

(1) Arrange the input data snapshots XN
1 into two time series XN−1

1 and XN
2

(2) Compute the SVD of XN−1
1 as XN−1

1 = UΣWT

(3) Build the matrix S̃ = UTXN
2 WΣ−1 and compute its eigenvalues λi and eigenvectors vi

The i-th DMD eigenvalue is λi and the associated DMD mode is U vi. The DMD eigenvalues can
be used to extract the modal parameters of the EDSs oscillatory behavior embedded inside the input
data, enabling us to identify the nature of electromechanical LFOs based on a collection of measured
data from PMUs.

A very interesting feature of the DMD estimation technique is that the dimension of the matrix S̃
can be much lower than the original dynamic matrix A. Thus, even though the spatial sampling can be
done on many PMU locations (e.g., M locations), the number of estimated modes can be much lower.
This is a very important key point for the proposed approach because it allows to associate, for any
arbitrary number of PMU measurement locations, a limited number of estimated electromechanical
modes obtaining an efficient dimensionality reduction similar to what can be obtained by PCA-based
techniques [26].

In all the cases analyzed in this paper, the input data to be fed to the DMD modal decomposition
algorithm are constituted by a collection of measurements of the grid frequency taken by the Italian
Transmission System Operator (TSO) TERNA at various PMU locations. The output of the DMD
estimation method is constituted by the modal parameters of the LFO detected in the power grid.

It is worthy to note that, in the proposed approach, the extraction of the LFO modal parameters
through the DMD estimation acts as a preliminary and necessary step to obtain a correct and efficient
training set of data required by the ANN-based approach, as discussed in the next section.

3. Prediction of Low-Frequency Oscillations Modal Parameters by an Artificial Neural Network

The proposed ANN-based method to estimate the LFO modal parameters consists in the proper
designing and training of an artificial neural network in order to be able to recognize the modal
parameters associated to the LFO. This task is accomplished by considering the frequency measurements
collected on the grid by a certain set of PMU devices. It must be remarked that the number of PMU
measurement locations can be chosen arbitrarily; however, it must be set as a fixed parameter at the
beginning of the procedure.
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At a high-level description, as depicted in Figure 1, the raw frequency data coming from the PMU
measurement system over a certain number of grid nodes should be preliminarily pre-processed in
order to:

• Filter out the noise coming from the PMU measurements; this can be done with a properly tuned
digital filter (for instance a classical low-pass FIR filter or a Hilbert filter);

• Detrend the data;
• Divide the overall measured input data stream in a certain number of data frames

(i.e., “data windows”) suitable to be used for the training stage of the ANN and to feed the neural
network during the online LFO modal parameters identification process.
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Figure 1. High-level schematization of the proposed low-frequency oscillations (LFO) modal parameters
estimation technique.

After the pre-processing stage, the filtered data are given as the input to the ANN by using
the sequencing defined by the data windows, such that the ANN is fed by using a sliding
window mechanism.

For each data window gathered from the input data stream the ANN provides, as output,
the estimated values of the LFO modal parameters; the parameters considered in this work are
frequency (fi), damping ratio (αi), and amplitude (ai) for each i-th electromechanical mode identified.

As illustrated in Figure 1, the ANN will provide, for each data window defined by the PMU and
presented as its input, a triplet of values for each identified mode. As already mentioned, the number
of modes to be identified can be selected arbitrarily by the user but, once it has been chosen, it has to
be maintained as a constant parameter all along the calculations. In this paper, the number of modes of
interest, based on the heuristic TSO experience, is equal to four.

3.1. Architecture of the Artificial Neural Networks

Among the many types of available artificial neural network architectures, the present study has
focused its attention on the regression/estimation capabilities offered by one of the simplest types of
ANN: the feed forward (FF) architectures. The reason for this choice is based on the final aim of the
overall research project (not yet addressed in the present work): the ANN should be fed in real-time
by the data coming from the PMUs and its output (the estimation of the LFO parameters) should
be obtained within the shortest processing time. With the increasing of the complexity of the ANN
structure, the training stage becomes more and more time-consuming, preventing the development of
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a machine learning framework capable to re-train the employed ANNs in a sufficiently short time
period. Furthermore, it is known that the increase in complexity of a ANN is not a sufficient condition
for an increase of its accuracy. On the contrary, there is the actual possibility to obtain the negative
effect of overfitting, which would play in the present applications a fairly detrimental role.

For the actual application to LFO, two main classes of ANN architectures are considered,
as depicted in Figure 2: the feed forward (FFNN) class and the cascade feed forward (CFNN) class.

 
(a) 

 
(b) 

W

b
 

Nh_1

W

b

No

 

Hidden Layer 1 Output Layer

+ +
W

b

Nh_n

Hidden Layer n

+
Input Output

n_outn_in

Hidden Layers

Feed-Forward Neural Network

W

b
 

Nh_1

 

Hidden Layer 1

+

Nh_n

Hidden Layer n

Input Output

n_outn_in

Hidden Layers

Cascade Feed-Forward Neural Network

W

b

Nh_2

Hidden Layer 2

+

W

W

b

+

W

W

From layer 
n-2

From layer 
n-1

From input

Nh_n

W

b

+

W

W

From layer 
n-1

From layer
 n

From input
W

Output Layer

From layer
2

Figure 2. Proposed artificial neural networks (ANN) architectures: (a) feed forward and (b) cascade feed
forward classes.

The motivation to explore two different kinds of ANN architectures is linked with the fact that,
even though the FFNN class is already acceptable in order to get a baseline estimation performance,
the CFNN class shows a faster learning rate. Therefore, it can be usefully compared with the FFNN
class, in particular in terms of estimation accuracy. Table 1 summarizes the main design parameters
(number of hidden layers, number of neurons for each layer, etc.,) for the proposed configurations that
deserve to be investigated. Their values come from the experience and from a campaign of tests that
are not described herein.

Table 1. ANN configurations and architectural parameters.

Configuration ID
Nr. of Hidden

Layers
Nr. of Neurons
for Each Layer

Hidden Layers
Transfer Functions

Nr. of Neurons in
the Output Layer

Output Layer
Transfer Function

FFNN#1 2 10 TanSig 4 Linear
FFNN#2 3 10 TanSig 4 Linear
CFFNN 2 10 TanSig 4 Linear

3.2. Training of the Artificial Neural Networks

As appropriate for supervised learning architectures, the developed ANN must be trained to
provide suitable regression (i.e., in this case estimation) features. The basic scheme reported in
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Figure 3 illustrates how both types of ANN should be trained to be able to correctly identify the modal
parameters of the LFO contained in the PMU measured data.
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Figure 3. Overall scheme for the training stage of the ANNs.

The development of the input/target training set pair for the ANN starts from the PMU dataset
that is suitably divided based on the mentioned sliding windows.

The input training set are the pre-processed PMU data. The corresponding target set are the
output of the DMD procedure when its input are the pre-processed PMU data.

Once both the ANN target values and inputs have been obtained, the ANN training algorithm
can be started. However, for this specific application, a point of attention should be further considered:
since the input data originates from real PMU measurements, it happens sometimes that the gathered
values can assume special non-numeric values (e.g., NaN values) because of events directly linked
to the data acquisition system. In addition, NaN values can be also be numerically generated in our
scenario when applying the DMD procedure, specifically when the DMD estimation algorithm finds
some modes with frequencies lying outside a predefined frequency range.

As consequence of the presence on the NaN values it is mandatory, for the development of the
present ANN-based LFO analysis technique, the proper handling of their occurrence in order to prevent
that their presence alters the significance of the training set and could have a negative impact on the
ANN-based performance. For this reason, during the training stage of the ANNs (both FFNN and
CFFNN), a training data selection step is implemented. The NaN values are handled in the following
manner:

• When the NaN value comes from the original PMU input data (i.e., it is inside the ANN inputs),
the related data sample is excluded from the sliding window to which it belongs;

• When the NaN values come from the DMD estimation procedure (i.e., it is inside the ANN targets),
the related target vector is treated as a “don’t care” target, meaning that the network performance
function is not updated during the training process for that specific target value.

The overall available PMU input data set is segmented in two parts: one used for training and one
used as input for the estimation of the LFO ringing parameters. In turn, as usual for the supervised
learning schemes, the training part is subdivided as 70% of samples used for training, 15% of them
used for testing, and the remaining 15% used for validation.

4. Results and Validation

In this section some results obtained by using the proposed strategy of an ANN-based approach
are presented in order to identify the LFO parameters characterizing oscillatory phenomena occurring
in real power grid operation.
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4.1. Validation Scenarios, Data Origin, and Details of the Considered Datasets

The overall data exploited to validate the effectiveness of the ANN approach for the estimation of
the LFO modal parameters consists of three different datasets coming from real PMU measurements.
Such data are collected by the Italian TSO TERNA from different electrical substations, and under
different grid operating conditions. The three datasets can be described in the following way:

• Dataset 1 (in the following DS1): it contains the data coming from the measurements of an LFO
oscillatory event (time range: 10 min), taken at 22 PMU measurement locations;

• Dataset 2 (in the following DS2): it contains the data coming from the measurements of a second
LFO oscillatory event (time range: 20 min), taken at 30 PMU measurement locations;

• Dataset 3 (in the following DS3): it contains the measurement data collected from a 24 h recording
of rated grid operation taken at 18 PMU locations.

All the data recordings have been obtained by using a sampling time of 100 ms and the
corresponding samples have been collected into proper data files. According to what is already
mentioned in Section 3, the datasets have been arranged for a proper windowing. Each data window
is extracted from the original dataset considering a proper data frame length (this quantity is indicated
as TDF in the following), such that each dataset is composed of a different number of data windows.

A high-level outlook of the three datasets employed for this study is given in Figure 4. The first
two datasets (Figure 4a,b) are characterized by ringing phenomena of the frequency measurements,
especially at certain PMU locations. The third dataset instead is similar to the recording of nominal
(also named as “ambient”) conditions where some spurious frequency deviations occur from time
to time.

(a) 

Figure 4. Cont.

50



Energies 2020, 13, 6410

 

(b) 

 

(c) 

Figure 4. Overview of the data contained in the considered three datasets: (a) DS1: oscillatory event
#1, (b) DS2: oscillatory event #2, (c) DS3: 24 h frequency recordings from nominal or “ambient”
grid operation.

The duration of the data frame that is initially considered is equal to 20 s; this is the value that was
found more relevant for this kind of analysis, based on the on-field experience acquired by the TSO.

Furthermore, each input data stream from the three datasets is pre-processed with a Hilbert
filter having the parameters reported in Table 2, according to what is already mentioned in Section 3.
The parameters listed in Table 2 specify the order of the filter, N, and the frequency edges of the
transition bands of the filter, given by the parameters: f1, f2, f3, f4. The order of the filter is chosen
depending on the length of the data frame.

Table 2. Parameters of the considered Hilbert filter.

Parameter Value Units

N 64 -

f1 0.05 Hz

f2 0.1 Hz

f3 0.5 Hz

f4 0.55 Hz

In order to assess the results obtained with the proposed ANN-based approach, a proper set
of validation scenarios are proposed, where either the three considered datasets or the different
architectures of the developed ANNs are systematically explored. An overview of these validation
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scenarios is reported in Table 3, where validation scenario VS#1 is considered for the assessment of
the performance obtained by the ANN-based approach among the three different datasets. The other
two validation scenarios VS#2 and VS#3 are considered to assess the performances of different ANN
architectures over the same dataset, and to check the impact of the data frame length, respectively.

Table 3. Validation scenarios: datasets and ANN configurations.

Validation Scenario Dataset ID Network Configuration Dataframe Length (TDF) [s] # of Windows

VS#1
DS1 FFNN#2 20 29
DS2 FFNN#2 20 60
DS3 FFNN#2 20 4321

VS#2
DS1 FFNN#1 20 29
DS1 FFNN#2 20 29
DS1 CFFNN 20 29

VS#3
DS1 CFFNN 30 19 (*)
DS1 CFFNN 60 9 (*)

(*): Values subject to the effect of rounding on the number of windows considered.

4.2. Results of the LFO Modal Analysis and Impact of the Network Structure

As a first step, the capability of the ANN-based approach is evaluated to accurately extract the
LFO parameters. Validation scenario VS#1 is considered for this scope. Figure 5 reports the comparison
between the LFO parameters estimated by the ANN-based approach with respect to those obtained by
applying the DMD method, as the reference technique. The plots are limited to the first two modes for
the sake of simplicity, since they are the most relevant in terms of energy values.
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Figure 5. Cont.
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(c) 

Figure 5. Comparison of the estimates produced by dynamic mode decomposition (DMD) versus the
estimates produced by the ANN approach for the case of Dataset DS1: (a) frequency; (b) damping,
(c) amplitude.

The LFO parameters estimated by both the DMD method and the ANN-based method are in good
agreement, as can be seen from Figure 5. For the specific test case of DS#1 in Figure 5c, it is clear that
the ANN is able to identify the principal contribution to the LFO phenomenon occurring in the grid,
since it is in good agreement with the identification performed by the DMD technique. From Figure 5c,
the principal mode is detected as the mode #2 (i.e., the one characterized by the greatest value of mode
amplitude). Figure 5a shows as both the ANN and the DMD evaluate the modal frequency of the
principal mode (mode #2) at around 0.15 Hz. This value is in agreement with what is already known
from the theory about inter-area electromechanical oscillations, and from the consolidated know-how
of the TSO for that specific grid event.

The ANN LFO parameter estimation accuracy continued within the validation scenario VS#1;
Figure 6 reports the analysis of the parameters for the grid event captured in dataset DS2.

The proposed ANN-based approach is able to provide estimates of the LFO parameters having a
good degree of confidence, if compared to those provided by the DMD method. This is confirmed
especially if we look at the evaluations provided by the ANN for the inputs lying outside its training
set, thus the estimates provided from the second half of each DS (specifically from window 30 up to
window 60 in all the cases of Figure 6).

In this second test case the estimated mode amplitudes, provided by the ANN-based approach,
indicate that mode #1 is the one contributing more to the LFO, which is an inter-area oscillation
characterized by a frequency value around 0.3 Hz. Also, in this case the frequency value agrees with
the theoretical background and with the data experienced by the TSO about this kind of inter-area
oscillation phenomena.

This second test case deserves a specific focus: the ANN-based approach is capable to give a
correct estimate of the LFO parameters also when the DMD method is not able to do so. This happens
when NaN values (coming from the PMUs) are input to the DMD method. In correspondence of these
special inputs there are no DMD outputs as shown in Figure 6a–c when purple markers are missing.

53



Energies 2020, 13, 6410

 

(a) 

 
(b) 

 
(c) 

 F
re

qu
en

cy
 [H

z]
[%

]

Figure 6. Comparison of the estimates produced by DMD versus the estimates produced by the ANN
approach for the case of Dataset DS2: (a) frequency; (b) damping, (c) amplitude.

The last dataset to be explored in order to complete the analysis of validation scenario VS#1, is the
one related to the 24 h recording of rated grid operations, namely DS3. In this particular test case the
ANN has been trained on a data segment that is smaller than an half of the overall recording. This is
due to the fact that, after several tests, the use of 50% or more of the data does not contribute to a better
estimation. The training windows accounted for this scenario are only 50 out of 4381. The results are
reported in Figure 7.

Figures from Figure 7a–c show the ANN and DMD results for all the 4381 windows. Although not
easily distinguishable, they offer an overview of the overall trend of the ANN estimation and their
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comparison with the reference DMD. Figure 7d–f makes a focus on only 100 windows; also in this
case the estimations provided by the ANN-based method closely follow those provided by the DMD
method. The agreement between ANN and DMD results is very good for mode #1, the mode with less
energy (blue line vs. light blue markers) and acceptable for the dominant mode #2 (dashed red line vs.
purple markers). One aspect that should be underlined is that, even though there is a close tracking
of the main trend of the estimates produced by the ANN with that of the DMD procedure, there are
small difference between the two outputs. It is worthy to note that the estimations generated by the
ANN-based approach are characterized by a smoother variation of the mode parameters, close to what
happens in the real phenomenon.
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Figure 7. Comparison of the estimates produced by DMD versus the estimates produced by the ANN
approach for the case of Dataset DS3: (a,d) frequency; (b,e) damping, (c,f) amplitude.
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Because of the highly variable nature of the results in Figure 7, a further good figure of merit to
assess the agreement between the ANN-based approach and the reference DMD is the mean value.
Figure 8 shows the comparison of the ANN output for the dominant mode #2 (dashed red line) with
the average value of the reference DMD output (purple thick line). The ANN estimates of the LFO
mode #2 frequency and amplitude fit well the reference average (Figure 8a–c). The ANN estimates of
the mode #2 damping factor (Figure 8b) is significantly off from the DMD average and, at this stage,
no explanation is found.

 

(a) 

 
(b) 

 
(c) 

Figure 8. Comparison of the mean value of the estimates produced by DMD (purple thick line) versus
the estimates produced by the ANN approach (dashed red line) for the case of DS3 and with a 20 s data
frame: (a) frequency; (b) damping, (c) amplitude.
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The aim of the validation scenario VS#2 is to assess the performances, in terms of LFO parameters,
of different ANN architectures. Figure 9 shows the comparisons among the reference DMD results for
the two modes (mode #1 light blue markers, mode #2 purple markers) and the corresponding ANN
output for the three different ANN configurations described in Section 3.1 and Table 3.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Comparison of the results obtained on the same dataset with different ANN architectures,
according to the validation scenario VS#2: (a) frequency, (b) damping, (c) amplitude for mode #1
(left column) and mode #2 (right column).

The aim of the validation scenario VS#2 is to assess the performances in the estimation of the LFO
parameters of different ANN architectures. Figure 9 shows the comparisons among the reference DMD
results for the two modes (mode #1 light blue markers—left column, mode #2 purple markers—right
column) and the corresponding ANN output for the three different ANN configurations described
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in Section 3.1 and Table 3. The visual inspection of the graph offers an immediate perception of the
general agreement between the output results of the proposed ANN architectures and the DMD results
with a better degree of accuracy for the mode #2. For a quantitative evaluation, the root-mean-square
error (RMSE) between the reference DMD results and the results from each architecture and for each
mode has been computed and reported in Table 4.

Table 4. Calculated root-mean-square error (RMSE) for the different ANN architectures of validation
scenario VS#2.

Architecture
Estim.
Mode

Calculated RMSE
(Frequency)

Calculated RMSE
(Damping)

Calculated RMSE
(Amplitude)

Mean
RMSE

FFNN#1 1 0.0202 0.0163 0.0030 0.1267
FFNN#1 2 0.0189 0.0324 0.0050 0.1781
FFNN#2 1 0.0178 0.0169 0.0030 0.1205
FFNN#2 2 0.0166 0.0246 0.0041 0.1430
CFNN 1 0.0129 0.0150 0.0028 0.0968
CFNN 2 0.0121 0.0174 0.0024 0.1024

4.3. Impact of the Data Window Lenght

The last validation scenario VS#3 is dedicated to the assessment of the effects, on the output
results, of using different lengths of data windows. In this section the proposed ANN-based approach
is implemented using time windows of 30 s and 60 s of DS1. The results obtained are reported in
Figure 10. Basically, the use of a time frame of 30s does not heavily affect the ability of the ANN to
recognize the three LFO parameters and, as expected, they match quite reasonably with those produced
by the DMD method. However, two side effects should be considered in this study. First, the ANN
performance outside the training set is degraded as the time window increases. Since the number
of data is constant, longer time windows means less training set to be used in the training stage.
Second, also the DMD results are negatively affected by this increase of time length. Although the
demonstrated capability of both ANN and DMD to identify the correct dominant mode (mode #2)
frequency at around 0.15 Hz (Figure 10a), the computed amplitude of mode #2 tends to be very close to
that of mode #1 (see Figure 10c). This makes more difficult to identify the dominant mode. When each
data window becomes longer than 60 s (Figure 10d–f) or more, the accuracy decreases even further.

 
(a) (d) 

Figure 10. Cont.
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(b) (e) 

 

(c) (f) 

Figure 10. Estimates produced by DMD versus the estimates produced by the ANN approach for the
case of dataset DS1 for a length of the data frame of 30 s: (a) frequency, (b) damping, (c) amplitude.
Same comparisons evaluated for a length of the data frame of 60 s: (d) frequency, (e) damping,
(f) amplitude.

5. Conclusions

This paper is the first step of a more extended project whose final aim is the development of an
ANN architecture able to predict the system behavior (in a given time span) in terms of LFO modal
parameters, and to classify the contingencies/disturbances based on an online training that has the
memory of the passed training samples.

This contribution presented an ANN-based approach to estimate the mode parameters of LFO
phenomena. The proposed technique is based on the development, offline training, and use of a
suitably developed ANN architecture. The input and training data are real grid PMU frequency
measurements provided by the Italian TSO. The development of the ANN training set is done through
a preliminary pre-processing stage and by adopting a target vector selection policy, that is necessary
in order to eliminate the detrimental effects induced by the occurrence of missing information in the
PMU data stream in the form of NaN values.

The proposed technique has been validated using three main validation scenarios, in order
to study the effectiveness of the method to recognize the LFO parameters, evaluate the best ANN
architecture to be used, and assess the impact of data frame length.

From the obtained results it follows that the proposed method is capable to estimate, with a
good degree of confidence, the three main LFO parameters for test case scenarios related to three
real grid-recorded events. In this context, it seems that the best architecture to be used is the cascade
feed-forward one, which offers the estimation with the lowest RMSE values.
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In the perspective of the final target of the abovementioned project, the presented approach
represents the proof of concept that the estimation and identification of LFO modal parameters from
real PMUs measurement data streams can be reliably and efficiently performed by suitable ANN
architectures, still trained offline, for each grid event under consideration. Overcoming this critical
point is the actual object of the ongoing research efforts.
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Abstract: Automatic peer-to-peer energy trading can be defined as a Markov decision process and
designed using deep reinforcement learning. We consider prosumer as an entity that consumes
and produces electric energy with an energy storage system, and define the prosumer’s objective
as maximizing the profit through participation in peer-to-peer energy trading, similar to that of the
agents in stock trading. In this paper, we propose an automatic peer-to-peer energy trading model
by adopting a deep Q-network-based automatic trading algorithm originally designed for stock
trading. Unlike in stock trading, the assets held by a prosumer may change owing to factors such as
the consumption and generation of energy by the prosumer in addition to the changes from trading
activities. Therefore, we propose a new trading evaluation criterion that considers these factors
by defining profit as the sum of the gains from four components: electricity bill, trading, electric
energy stored in the energy storage system, and virtual loss. For the proposed automatic peer-to-peer
energy trading algorithm, we adopt a long-term delayed reward method that evaluates the delayed
reward that occurs once per month by generating the termination point of an episode at each month
and propose a long short-term delayed reward method that compensates for the issue with the
long-term delayed reward method having only a single evaluation per month. This long short-term
delayed reward method enables effective learning of the monthly long-term trading patterns and the
short-term trading patterns at the same time, leading to a better trading strategy. The experimental
results showed that the long short-term delayed reward method-based energy trading model achieves
higher profits every month both in the progressive and fixed rate systems throughout the year and
that prosumer participating in the trading not only earns profits every month but also reduces loss
from over-generation of electric energy in the case of South Korea. Further experiments with various
progressive rate systems of Japan, Taiwan, and the United States as well as in different prosumer
environments indicate the general applicability of the proposed method.

Keywords: automatic P2P energy trading; Markov decision process; deep reinforcement learning;
deep Q-network; long short-term delayed reward

1. Introduction

In energy markets, the number of prosumers, i.e., the entities that generate and consume electric
energy, has been increasing owing to the proliferation of distributed energy resources (DERs), such as
photovoltaic (PV) systems, owned by traditional energy consumers. Accordingly, the proportion of
microgrids in the power system has been expanding. In response, the incorporation of information
and communication technology into existing power grids is becoming more important, and the
core technologies of smart grid systems such as energy storage systems (ESSs), power conversion
systems, mobility, and energy monitoring systems have advanced dramatically. In addition, studies on
peer-to-peer (P2P) energy sharing or trading based on these core technologies between prosumers have
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been increasing [1–11], among which studies on P2P trading based on reinforcement learning (RL) [12]
are actively being conducted [13–16]. Chen and Su [13] highlighted to the role of energy brokers in
the localized event-driven market (LEM) because small-scale electricity consumers and prosumers
typically take a long time to search for trading partners, and, therefore, pure P2P mode is not suitable.
Nevertheless, these brokers aim to maximize profits in the LEM and determine the optimal action by
using the Q-learning algorithm of RL [13]. In addition, it was suggested that the LEM participation
strategy for energy trading can be modeled as a Markov decision process (MDP) and solved through a
deep Q-network (DQN) [14]. Similarly, Chen and Bu [15] proposed a solution to the decision-making
problem of microgrids in the LEM through a DQN-based P2P energy trading model of deep RL (DRL),
and Liu et al. [16] applied a DQN for autonomous agents in the consumer-centric electricity market.

As such, recent studies on P2P energy trading define the strategy for participating in the trading
as an MDP and apply RL or DRL to find the optimal trading participation strategy. This is because it
is important to choose a reasonable and effective trading strategy in P2P energy trading. Therefore,
the performance of RL, which is responsible for presenting the trading strategy, is very important for
automatic P2P trading. However, most previous works [13–16] only applied RL or DRL to solve the
MDP on energy trading, but did not consider the network modification of RL as they only considered
the characteristics of energy trading to effectively solve it.

We aim to maximize the profits of the prosumer through automatic P2P energy trading, which is
the same as that of stock trading algorithms. Therefore, we use the RL-based automatic trading
algorithm used in stock trading to implement the automatic energy trading model. Our model provides
optimal trading action based on independent prosumer ESS information, electricity generation,
and consumption information for each designated trading time unit. Assuming that there exists a
mechanism for the physical transaction of the P2P energy trading results, we present an implementation
of an RL-based trading model for the automation of P2P energy trading and an effective network
configuration by considering the unique factors of P2P energy trading.

In this paper, we propose a long short-term delayed reward (LSTDR) method that improves the
existing delayed reward method of the RL network. LSTDR is a method that utilizes both short-term
and long-term delayed rewards, enabling effective analysis of the long-and short-term patterns of
trading environment information. To effectively analyze time-dependent information, we use a DQN
based on a long short-term memory (LSTM) as the training model. The proposed method focuses
on maximizing individual prosumer’s profit based on noncooperative game theory [17] without
considering the optimization of the overall benefits of all prosumers, so it is not directly related to
Pareto optimality [18,19]. It does not consider the gain of consumers who do not generate electric
energy either. Nevertheless, individual prosumers can benefit from adopting the proposed trading
strategy at the same time reduce the overall energy generation of the grid which may potentially
benefit consumers as well.

The remainder of this paper is organized as follows. Section 2 discusses the background
information of the global energy market and P2P energy trading based on DRL and the existing
works. Section 3 explains the difference between stock trading and energy trading, discusses the
schemes for the modification of the automatic trading network by considering them, and proposes
a new evaluation criterion for the trading strategy of LSTDR for RL. Section 4 presents the trading
environment and experimental data for the performance evaluation of our proposed model. Section 5
discusses the experimental results. Finally, Section 6 concludes this paper.

2. Background and Related Works

2.1. Global Energy Market

Most countries fall into the category of energy producers which can produce energy from energy
sources such as coal, oil and gas, or from renewable energy sources (RES). Energy produced in each
country covers each domestic energy demand, and additionally needed or remaining energy after
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production is imported or exported to other countries, which activates the global energy markets [20].
In the scenario of the International Energy Agency (IEA)’s “World Energy Outlook 2019 (https://
www.iea.org/reports/world-energy-outlook-2019)”, the demand for primary energy in the global
energy market will continue to increase every year, led by emerging economies such as China and
India, while demand for primary energy will decrease in the developed countries, while the share of
renewable energy will increase gradually for a low carbon emission to cope with the climate change.
In addition, among the energy markets, the demand for electricity in the global electricity market will
show the similar pattern, and the proportion of renewable energy in the supply is expected to increase
significantly. The expansion of supply and demand for renewable energy in the electricity market may
lead to the advancement of renewable energy generation technologies and the spread of supply [21],
and increase the number of prosumers participating in the energy market for small-scale electricity
generation through RES.

Each country provides benefits through various policies to promote electricity consumers to
become prosumers. Most developed countries provide an environment where prosumers can generate
profits by reducing electricity bills by increasing their self-consumption rate through self-generated
electricity, or by selling it [22]. However, since the methods of electricity rate systems applied to
each country are not all the same, even if prosumers in different countries have the same amount
of consumption and generation, their profits can differ. For example, in two different countries
with progressive rate system, if one country has a narrow range of progressive stages and a higher
progressive rate compared to the other, the prosumers included in this country may gain less profits
than those in the other country, even if they have less consumption and more electricity generation.
This is an example of South Korea and the United States. In South Korea, the rate at the first progressive
stage is lower than in the United States, but the progressive range is very narrow compared to the
United States and the rate of increase in progression is much higher, resulting in higher electricity bills
in South Korea compared to the same amount of electricity used in summer. Thus, the strategies of
prosumers participating in trading in the electricity market should vary from country to country.

2.2. Peer-to-Peer Energy Trading

In P2P energy trading, the main agent is the prosumer, who produces and consumes energy and
exchanges with other prosumers for surplus electricity that is overproduced after consumption [23].
Such P2P energy trading takes place in small DERs such as dwellings, factories, schools, and offices [6,7].
Unlike in the indirect trading method of conventional energy trading, where trading is performed
through brokers offering wholesale or bundled services, in P2P energy trading, prosumers can trade
directly with other prosumers (or consumers). Underscoring the strength of P2P energy trading,
Tushar et al. [4] suggested that the development of this type of trading can lead to potential benefits
for prosumers, such as earning profits, reducing electricity bills, and lowering their dependency on the
grid. They also mentioned the importance of modeling the prosumer’s decision-making process, noting
that the system for energy trading requires reasonable modeling of each participant’s decision-making
process that can generate greater benefits for the entire energy network while considering human
factors such as rationality, motivation, and environmental affinity for the trading. Therefore, it is
important for P2P energy trading to set the direction and to model a strategy, and game theory [24]
can be applied to this. Game theory can be divided into two main concepts: noncooperative game
theory [17] and cooperative game theory [25]. In P2P energy trading, a noncooperative game sets
a strategy with the goal of maximizing its own profits without the need to share and collaborate
with other prosumers participating in the trading during the decision-making process. In contrast,
in a cooperative game, for the benefit of all independent prosumers, they become the subject,
share strategies and coordinate their own strategy choices. Therefore, even in the same energy
trading environment, the game theory applied according to the purpose of the prosumer is different.
In this study, we model the trading strategy on the basis of the noncooperative game theory that
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maximizes profits from the individual prosumer’s point of view. Figure 1 compares the structures of
non-P2P energy trading and the P2P energy trading.

(a) (b)

Figure 1. Comparison of the structures of (a) non-P2P energy trading and (b) P2P energy trading.

2.3. Markov Decision Process

The MDP is a discrete time probability control process that mathematically models and analyzes
decision making, and it is designed according to the first-order Markov assumption that the current
state is affected only by the previous state [26]. P2P energy trading is a decision-making problem in
which a decision to participate in a trading can be defined as an MDP in an environment containing
high-dimensional information. The MDP can be defined by the following five elements:

• State Space S: This is the set of states s of the agent, which is the decision maker of a given
environment E. In P2P energy trading, it is the state of the prosumer, which is the agent in a
given trading environment, and includes the environmental information of the prosumer, such as
energy generation, consumption, and energy reserves.

• Action Space A: This is the set of all actions that the agent can select in a given state s. In P2P
energy trading, the set of actions that a prosumer can select in a given state includes the actions
for participating in the trading, such as buy, sell, and hold.

• Reward R: This is the reward that the agent obtains from each action in a given state. Reward is
typically a scalar, and depending on how the condition is set in each state, the reward obtained
by the agent varies. There are two types of rewards: immediate reward, which is rewarded for
the outcome of the next state, and delayed reward, which is rewarded for future results that are
affected by the current behavior [27].

• State Transition Probability Matrix P: State transition probability is the probability of transitioning
from one state to another (or to the same state) and P is the matrix that defines the state transition
probabilities in all states.

• Discount Factor γ: This is an element that plays a role in making the reward value of the future
viewed from the present smaller according to the time distance from the present, considering
that the future behavior is less affected by the present state as it returns with time. It has a value
between 0 and 1.

Finally, a policy π to solve the MDP can be expressed through the above five elements and can be
obtained through dynamic programming [28] or RL. Figure 2 shows the basic process of the MDP.
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Figure 2. Markov decision process.

2.4. Deep Reinforcement Learning

DRL is a method that utilizes deep learning (DL) in RL algorithms [29]. RL algorithms optimize
a policy using various approaches to find the optimal policy for the given goal. Representative
algorithms of RL include SARSA [30], policy gradient [31], and Q-learning [32], and these algorithms
update the main learning parameters using a function approximator to find the optimal policy [33].
DRL optimizes the policy by replacing this function approximator with DL. Accordingly, it is possible
to effectively learn from a huge amount of data, and this has the advantage of improving the learning
performance by applying various DL methods.

2.4.1. Deep Q-Networks

DQN [34] is a DRL algorithm that combines a deep neural network (DNN) with a Q-learning
algorithm of RL. For Q-learning, a policy is recorded in the Q-table so that it can output the optimal
action in each state of the agent [32]. However, this tabular recording of policy requires more memory
as the amount of data increases or the dimension of the data increases. To solve this problem, function
approximator is used to define the Q-function through parameters other than the table. The DQN
uses the DNN as the function approximator [34] and applies the experience replay method to improve
the data learning efficiency. To reduce the inefficiency of learning due to the correlation of adjacent
learning data, the experience replay method stores the information about the agent’s actions and the
resulting state changes and rewards as a tuple-type transition in a buffer called replay memory and
uses it for sampling during training. Therefore, it is possible to prevent a situation that falls into a local
minimum by randomly selecting and using the transitions obtained in various environments during
training. Algorithm 1 shows the overall algorithm structure of DQN proposed in [34].

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = maxa Q ∗ (φ(st), a; θ)
Execute action at in the emulator and observe reward rt and input xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample a random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

⎧⎪⎨⎪⎩rj for terminal φj+1

rj + γ maxa0 Q(φj+1, a0; θ) for non-terminal φj+1

Perform a gradient descent step on (yj − Q(φj, aj; θ))2

end for
end for
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2.4.2. Long Short-Term Memory

LSTM is a recurrent neural network (RNN) model in DL; it is effective for analyzing time-series
data and is used for solving the gradient vanishing problem that occurs in vanilla RNN [35]. LSTM has
a structure in which one memory cell ct and three gates (i.e., input gate it, forget gate ft, and output
gate ot, all at time t) that control the information flow are added to the vanilla RNN structure, so that
long-term information can be effectively handled. Each gate operates in a different role [36]. The input
gate determines how much the current information is reflected and stored in the memory cell, and the
forget gate determines how much past information is forgotten and transferred to the memory cell.
The output gate determines how much information is reflected and outputs the information currently
stored in the memory cell. The operation of these gates is determined by an activation function σ

(typically sigmoid or hyperbolic tangent) in each state. In this way, it is possible to effectively deal
with time-series information because the information is updated by determining the importance and
association of the information over time at each gate. The overall operating structure of LSTM can be
expressed by the following equations [35]:

it = σg(wixt + Uiht−1 + bi), (1a)

ft = σg(w f xt + Uf ht−1 + b f ), (1b)

ot = σg(woxt + Uoht−1 + bo), (1c)

ct = ft ◦ ct−1 + it ◦ σc(wcxt + Ucht−1 + bc), (1d)

ht = ot ◦ σh(ct). (1e)

For the input sequence x = {x1, x2, x3, ..., xT} in Equation (1), xt represents the input at time t; Ui, Uf ,
Uo, Uc, wi, w f , wo and wc are the weight matrices; and bi, b f , bo, and bc are the bias vectors, all of which
are the parameters that are updated during training. Finally, ct and hidden layer output ht, which is
the information transmitted to the next state, are calculated through the Hadamard product (◦), which
is the element-wise product of the output of each gate and information ct−1 and ht−1 transmitted from
the previous state. Figure 3 shows the architecture of LSTM.

Figure 3. Architecture of LSTM.

3. Proposed Approach

Stock trading is the buying and selling of stocks. It is a nonphysical type of trading as there
is no exchange of physical products. In stock trading, the agents participating in the trading aim
to maximize their gains through trading at the optimum time using the market price of stocks that
fluctuate in real time. Accordingly, whether or not the agents will participate in the trading mostly
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depends on the market price of the stock. Figure 4 shows the algorithm of automatic stock trading
based on DRL.

Figure 4. Stock trading algorithm based on deep reinforcement learning.

Unlike stock trading, energy trading has additional factors that affect the trading conditions.
First, the electricity subject to energy trading can be generated and consumed by the prosumers;
therefore, its reserves can change in real time even when they are not traded, unlike stocks whose
reserves change only by trading. Therefore, it is necessary to redefine the evaluation criterion of energy
trading to make it different from that of stock trading, which uses the portfolio of the sum of only
the currency values of the assets held. Second, unlike stocks, which are virtually traded, electricity
is physically traded, and, therefore, there is a trading time until a trading is made and terminated.
Third, when electricity is charged or discharged, losses occur depending on the ESS efficiency, and,
therefore, the actual trading result will be different from the initial trading volume. Considering these,
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we propose strategies for designing a model suitable for automatic P2P energy trading. The automatic
energy trading model adopts the existing automatic stock trading algorithm and modifies it to match
the specifics of energy trading.

3.1. Definition of the P2P Energy Trading Evaluation Criterion

The electricity reserves in the ESS resulting from the energy generation and consumption of
prosumer constantly change even if there is no trading, and the energy trading determines the trading
action according to the reserves in the ESS changed by the previous trading, consumption, or generation.
Therefore, if the currency value of the assets held in stock trading is used as an evaluation criterion of
the trading, it is impossible to accurately evaluate the trading results owing to the changes in energy
generation and consumption. Therefore, we define an evaluation criterion as the sum of the gains from
participating in P2P energy trading compared with not participating in it.

The total profit from participating in the P2P energy trading proposed in this paper is defined
as the sum of four gains. The first gain is the change in the electricity bill. When energy trading is
completed, since the result of the trading changes the amount of electricity held in the ESS, the amount
of electricity available to the prosumer in the ESS is changed, and the amount of electricity supply
used is also changed accordingly. For example, if the amount of electricity held in the ESS is less than
the amount consumed, the electricity bill can be reduced by purchasing electricity through P2P energy
trading rather than through the supply electricity. Conversely, while the amount of electricity held in
the ESS is greater than the amount consumed, selling through P2P energy trading can result in profit,
although it may involve the use of supply electricity, which may increase the electricity bill. Therefore,
if only the gain from the trading is considered without the electricity bill, there may be a situation
in which additional electricity bills are paid more than the gain from the trading, resulting in loss.
The gain from the change in electricity bill can be expressed as follows:

Gbill(Sp(t)) = Bo(So(t))− Bp(Sp(t)), (2)

where t = 1, 2, 3, . . . , T; Bo(So(t)) is the electricity bill paid by the prosumer who does not participate
in P2P energy trading in state So(t) and Bp(Sp(t)) is the electricity bill paid by the prosumer who
participates in P2P energy trading in state Sp(t). In both situations, the difference in electricity bills is
Gbill(Sp(t)), which is the gain from the change in the electricity bill for participating in energy trading,
where t is the number of states that have elapsed from the start of the electricity bill calculation to
the hour-by-hour period, and T is the total number of states from the time the final electricity bill is
calculated. We assume that the time before the trading is established, the electricity is transferred,
and the ESS is completely charged/dischargid is within 1 h, thereby setting the trading participation
decision interval to 1 h. Therefore, t increases in units of 1 h. The second gain is the trading gain from
P2P energy trading. When a prosumer participates in a P2P electricity trading, the prosumer takes one
of three actions: buying, selling, and nonparticipation, and the prosumer’s assets change as a result of
the trading. The amount of change in these assets is equal to the gain achieved only through trading,
and it can be defined as

0 ≤ Qb(Sp(t)) ≤ 1/η · Emax, (3a)

0 ≤ Qs(Sp(t)) ≤ η · Emax, (3b)

Mb(Sp(t)) = (1 + ξ) · (P(Sp(t)) · Qb(Sp(t))), (3c)

Ms(Sp(t)) = (1 − ξ) · (P(Sp(t)) · Qs(Sp(t))), (3d)

Mtrade(Sp(t)) =
t

∑
k=1

Ms(Sp(k))−
t

∑
k=1

Mb(Sp(k)), (3e)

Gtrade(Sp(t)) = Mtrade(Sp(t))− Mtrade(So(t)), (3f)
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Gtrade(Sp(t)) = Mtrade(Sp(t)), (3g)

where Emax represents the maximum storage capacity of the ESS, and η represents the efficiency
of the ESS. Qb(Sp(t)) and Qs(Sp(t)) represent the trading purchase and sale volume, respectively,
and P(Sp(t)) represents the trading price. Mb(Sp(t)) and Ms(Sp(t)) represent the cost spent on
purchases and the profits from sales, respectively. At this time, ξ represents the trading fee.
Mtrade(So(t)) and Mtrade(Sp(t)), which are the total amount of asset changes through trading,
are calculated as the difference between the total amount of revenue and the expenditure up to
t. When the prosumer does not participate in P2P trading, the asset changes through trading
Mtrade(So(t)) are zero, and, therefore, the gain from the P2P energy trading Gtrade(Sp(t)) is equal
to Mtrade(Sp(t)). Since the trading is based on the ESS, the amount of electricity that can be traded is
limited. Therefore, the trading volume should consider the amount of electricity held in the ESS or the
remaining storage capacity of the ESS, and it cannot exceed the maximum ESS capacity. In addition,
trading fees may also be considered in P2P energy trading, which should be further considered in the
settlement of trading costs. The third gain is for virtual losses from over-generation. If electricity is
generated while the electricity in the ESS is fully charged, the generated electricity cannot be stored in
the ESS, resulting in losses. However, this can be prevented through the sales from P2P energy trading
before these losses occur. Therefore, it is possible to perform an efficient trading action considering the
electricity generation by the prosumer and the losses from over-generation depending on whether or
not P2P energy trading is involved. The gain on virtual losses from over-generation can be expressed
as follows:

Vgain(Sp(t)) = η · (Lo(So(t))− Lp(Sp(t))) · P(Sp(t)), (4a)

Gvirtual(Sp(t)) =
t

∑
k=1

Vgain(Sp(k)), (4b)

where Lo(So(t)) and Lp(Sp(t)) are the amount of electricity loss from over-generation, and Vgain(Sp(t))
is the instantaneous gain on the currency value of the virtual loss in state Sp(t). Gvirtual(Sp(t)) is the
cumulative gain from reducing over-generation. Setting up a trading strategy in such a way as to
reduce losses from over-generation not only can reduce the losses of prosumers but also can have the
effect of reducing the total amount of supply electricity on the power system. The fourth gain is the
change in the currency value of the amount of electricity held in the ESS. The electricity held in the ESS
is the result of consumption, generation, and trading, and it includes the result of the changes due to
the trading actions. The gain from the change in the currency value of the amount of electricity in the
ESS can be expressed as follows:

Cg(So,p(t)) = η · Generation, (5a)

Dc(So,p(t)) = −1/η · Consumption, (5b)

Cb(Sp(t)) = η · Qb(Sp(t)), (5c)

Ds(Sp(t)) = −1/η · Qs(Sp(t)), (5d)

E(So(t)) = E(So(t − 1)) + Cg(So(t)) + Dc(So(t)), (5e)

E(Sp(t)) = E(Sp(t − 1)) + Cg(Sp(t)) + Dc(Sp(t)) + Cb(Sp(t − 1)) + Ds(Sp(t − 1)), (5f)

Gess(Sp(t)) = η · (E(Sp(t))− E(So(t))) · P(Sp(t)), (5g)

where Cg(So,p(t)) and Dc(So,p(t)) respectively represent the amount of ESS charged and discharged
owing to the generation and consumption of the prosumer from state So,p(t) to state So,p(t − 1).
Moreover, Cb(Sp(t)) and Ds(Sp(t)) respectively represent the amount of electricity charged and
discharged by the prosumer through P2P energy trading. E(So(t)) and E(Sp(t)) represent the amount
of electricity in the ESS. In addition, because the effect (charge or discharge) of the trading result in state
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Sp(t − 1) is not immediately apparent but is shown in the next state Sp(t), the amount of electricity in
the ESS E(Sp(t)) after the prosumer’s P2P energy trading utilizes the trading volume in the previous
state Sp(t − 1) rather than the current trading volume in state Sp(t). Gess(Sp(t)) represents the gain
from the currency value of the electricity held in the ESS. Finally, the profit G(Sp(t)) for participating in
P2P energy trading, which has been redefined as the trading evaluation criterion, is defined as follows:

G(Sp(t)) = Gbill(Sp(t)) + Gtrade(Sp(t)) + Gess(Sp(t)) + Gvirtual(Sp(t)). (6)

3.2. Long Short-Term Delayed Reward

MDPs that have a continuous environment such as automatic trading do not have exact
termination points, unlike MDPs that have an episode’s termination point, such as mazes, Atari games,
and CartPoles [37]. Therefore, in the case of the existing RL-based stock trading [38], the RL structure
is designed to generate the termination points of learning by providing a delayed reward [27] when
a certain amount of portfolio gain or loss is achieved during the trading. However, we considered
various external factors affecting energy trading when defining the evaluation criterion for energy
trading in Section 3.1 and utilized the gain from electricity bills. The electricity bill is set according to
the amount of electricity used each month. Accordingly, we aimed to determine the monthly gains,
and, for this purpose, we set the time that the delayed reward is the output of automatic energy trading
at the end of the period when the electricity price is set so that the termination point of the episode
is generated every month. Similarly, most of the papers on energy trading set the trading strategy
by designating a certain size (period) for an episode [13,14,39,40], and the policy is updated by using
the immediate rewards that occur in every state in episode and the delayed reward generated at the
termination point of the episode. The delayed reward value only determines the end point of the
episode to proceed with the policy update, but is not directly used for policy update. The policy update
reflects the impact on the future by applying a discount factor to each of the immediate rewards from
the current state to the state in which the delayed reward occurred.

Such a one-month delayed reward assignment, however, can make learning difficult for short-term
patterns that occur within a month. To compensate for this, we design an additional delayed reward
to include the case when an increase or decrease in the profit that we defined occurs above a certain
threshold as in the stock trading method. At this time, the delayed reward is not provided whenever
an increase or decrease occurs above a certain threshold, such as in stock trading, but is added to
the final delayed reward by utilizing the number of occurrences of the increase or decrease within
a month. Finally, the delayed reward information is utilized when deciding on the action in each
state to ensure that the outcome of a month’s trading affects the learning direction in the training.
For this, the obtained delayed reward is added to the Q-function updated through the neural network.
By applying the delayed reward method of stock trading to energy trading, we enable the DNN in
RL at the beginning of the learning to focus on very short-term patterns (because of the generation
of batch data based on the delayed reward that occurs every short period of time) and then to find
that the monthly pattern is important while finding the overall training direction only after a great
deal of training has progressed. However, to do it, we can set the monthly term as a unit of training
(which results in a delayed reward every month) so that we can train from the beginning of the training
in a way that fits our goals. In addition, the ratio of the profit and the number of trades was utilized to
add to the final delayed reward. By doing so, when delayed reward occurs owing to a profit above a
threshold, we can direct the trading model to effectively maximize the profit while giving a higher
score continuously to a situation where more gain is obtained instead of the same delayed reward
score. Therefore, we propose an LSTDR method for delayed reward by considering long-term patterns
of 1 month and short-term patterns in the long-term. Figure 5 shows the structure of the proposed
automatic P2P energy trading scheme. Algorithm 2 shows the overall algorithm structure for the
energy trading with LSTDR method.
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Algorithm 2 Energy trading with the LSTDR method

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for epoch = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
Initialize Gtotal (total gain) to zero and Gbase (base gain) to non-zero
Initialize Cs (count value for the occurrence of non-zero Rs (short-term delayed reward)) to zero
Initialize Ss (cumulative value of Rs) to zero
Initialize Pm (cumulative value of the unit trading price) to zero
Initialize Ntrade (number of times prosumer participated in the trading) to zero
Initialize Ns (count value for the number of states in a month) to zero
Set gs (threshold value of the short-term profit) to user’s desired value (we set it to 0.2)
Set gm (threshold value of the monthly profit) to user’s desired value (we set it to 0.25)
for t = time of the first training data, time of the last training data do

Ns+ = 1
With probability ε select a random action at
otherwise select at = maxa Q∗(φ(st), a; θ)
Execute action at in the emulator and observe immediate reward rt and environment xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Update Gtotal with Gbill , Gtrade, Gess and Gvirtual
Update Bo (prosumer’s current electricity bill when not participating in the P2P trading)
Update Pm and Ntrade
if Gbase is equal to or greater than zero then

if Gtotal is equal to or greater than (1 + gs) · Gbase then Rs is 1
else if Gtotal is greater than (1 − gs) · Gbase and less than (1 + gs) · Gbase then Rs is 0
elseRs is -1
end if

else
if Gtotal is equal to or greater than (1 − gs) · Gbase then Rs is 1
else if Gtotal is greater than (1 + gs) · Gbase and less than (1 − gs) · Gbase then Rs is 0
elseRs is -1
end if

end if
Ss+ = Rs
if Rs is not zero then Cs+ = 1 and Gbase = Gtotal
end if
if t is the end of the month then

Ra = ((Gtotal − Gvirtual)/Ntrade) · (Ns/Pm)
if (Gtotal − Gvirtual) is equal to or greater than Bo · gm then

Rl (long-term delayed reward) is Ra + 1
else if (Gtotal − Gvirtual) is greater than zero and less than Bo · gm then Rl is Ra
elseRl is Ra − 1
end if
Rtotal is α · Rl + (1 − α) · (Ss/Cs) (α is a weight factor between 0 and 1)
Initialize Gtotal , Gbase, Cs, Ss, Pm, Ns, Ntrade

elseRtotal is zero
end if
if Rtotal is non-zero then

Sample a random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

⎧⎪⎨⎪⎩rj + Rtotal for terminal φj+1

rj + γ maxa0 Q(φj+1, a0; θ) + Rtotal for non-terminal φj+1

Perform a gradient descent step on (yj − Q(φj, aj; θ))2

end if
end for

end for
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Figure 5. Energy trading algorithm based on LSTDR.

4. Experiments

In our work, we defined the trading environment for the evaluation of the proposed P2P automatic
energy trading model and generated the experimental data accordingly. The experiment was conducted
under the assumption that P2P energy trading exists in South Korea, and the public data in South Korea
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were utilized for the data generation. In the experiment, we verified the validity of the proposed LSTDR
method and confirmed the profit that the prosumer would gain by participating in the trading through
the proposed P2P automatic energy trading model. In the first experiment, we compared the results
of three delayed reward methods: the short-term delayed reward (STDR) method [27], which is a
delayed reward method used in stock trading; long-term delayed reward (LTDR) method [13,14,39,40],
which generates a termination point every month to provide delayed reward at that time; and the
LSTDR method, which utilizes both of these methods and is the one proposed in this paper. The second
experiment compared the prosumers who did and did not participate in the trading to confirm the
benefits of participating in P2P energy trading. In the last set of experiments, we confirmed whether
the proposed P2P energy trading model is applicable to the various electricity rate system in other
countries as well as the changes in the energy consumption and generation of the prosumers.

4.1. Definition of the Trading Environment

For the creation of the datasets and the conduct of the experiments, we first assumed that P2P
energy trading exists in South Korea and prosumer was defined as a three- to four-person household
whose electricity bill is set at the end of each month in the progressive rate system. Table 1 shows the
information on the progressive rate system applied to the household.

Table 1. Information on the progressive rate system applied to the household.

Season Consumption (kWh) Basic Rate (USD) Progressive Rate (USD/kWh)

0–300 0.78 0.08
Summer (July, August) 301–450 1.37 0.16

451– 6.23 0.24

0–200 0.78 0.18
Others 201–400 1.37 0.24

401– 6.23 0.28

In addition, it is assumed that the general household, which is a prosumer, has an ESS and can
obtain information such as electricity generation and consumption in real time through a smart meter
and the amount of electricity held in the ESS. As an external requirement, it is assumed that the
distribution lines with other prosumers are connected in advance, so that there is no need to perform a
follow-up work after the trading is completed, and that the full charging or discharging of electricity
in the ESS is assumed to occur within 1 h after the trading is completed. The environmental factors
and setup information based on these assumptions are listed in Table 2.

Table 2. Setup for the trading environment.

Environmental Factor Setup Information

Country South Korea
Prosumer Three- to four-person household

Electricity bill Progressive rate system
Generation method PV system
Generator capacity 3 kW

Average daily consumption Less than 10 kWh
Smart meter Installed

ESS Installed
ESS storage capacity 8 kWh
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4.2. Definition of the Dataset

We generated a dataset according to the assumptions made in Section 4.1, and the generated
dataset contains three types of information. The first information is time information. Time information
is represented as month, day, and hour in three channels, all in integer form. Table 3 shows the
definition of time information in the dataset.

Table 3. Definition of time information in the dataset.

Time Information Definition Range

Month information Month information of the date, expressed as an integer
starting from January to December. 1–12

Day information Day of the week information of the date, expressed as an
integer starting from Monday to Sunday. 1–7

Hour information Hour information of the date, expressed as an integer in
hours from 00:00 (midnight) to 23:00 hours (11:00 pm). 0–23

As described above, by providing the time information on a daily basis, we enable the neural
network in RL to effectively learn the pattern information depending on the time of day in a trading
environment. The second information is weather information because electricity generation and
consumption are sensitive to weather conditions. Therefore, by using weather information, we could
effectively predict the generation and consumption of prosumer, and to make trading decisions
by considering this information. We used 21 types of weather information provided by the Korea
Meteorological Administration (KMA) (https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?
pgmNo=36) on an hourly basis. Therefore, the weather information in the dataset consists of
21 parameters as listed in Table 4.

Table 4. Definition of weather information in the dataset.

Factor Unit Factor Unit

Temperature ◦C Wind direction ◦
Wind speed m/s Precipitation mm
Humidity % Vapor pressure hPa
Dew point ◦C Local atmospheric pressure hPa

Sea-level pressure hPa Sunshine duration h
Solar radiation MJ/m2 Snowfall cm

Total Cloud 10 quantiles Low-middle level cloud 10 quantiles
Height of lowest cloud 100 m Visibility 10 m
Ground temperature ◦C (5 cm) Underground temperature ◦C

(10 cm) Underground temperature ◦C (20 cm) Underground temperature ◦C
(30 cm) Underground temperature ◦C

The final information is prosumer information, which consists of two dimension of prosumer
electricity generation and consumption. We previously defined a prosumer as a general three- to
four-person household and set it up to generate electricity only through a PV system. Based on this,
the KMA’s sunshine duration information was utilized to generate the virtual information for the
electricity generation by the prosumer. In addition, demand forecast data for domestic pricing plans
and average monthly electricity usage information for three- to four-person households were utilized
to generate information on the virtual electricity consumption of the prosumer. Figure 6 shows the
data for the generated virtual electricity consumption and generation.
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(a)

(b)

Figure 6. Generated data for electricity consumption and generation of a three- to four-person
household: (a) consumption and (b) generation.

In addition, we used the electricity bill rate and the demand forecast data for the domestic pricing
generation plan to generate the prosumer’s desired trading price information in proportion to the
electricity demand, and the generated data are shown in Figure 7.

Figure 7. Generated data for the desired trading price of the prosumer.

As a result, the generated dataset consists of a total of 27 dimension, and we generated data for a
total of 3 years from 2016 to 2018. Among them, the data for 2016 and 2017 were used for the training
and those for 2018 were used for the testing.

77



Energies 2020, 13, 5359

4.3. Hyperparameters for Learning

In DRL, hyperparameters are the factors that affect the operation of various algorithms in the
model; thus, they greatly affect the model performance. The hyperparameters in DQN we used as a
trading model can be divided into hyperparameters for RL and those for DL, and our hyperparameter
settings are shown in Table 5.

Table 5. Hyperparameter settings.

Algorithm Hyperparameter Value Explanation

DL

Learning rate 0.0001

The value that affects the optimization speed of the DL
model during training. It determines the degree of update
of the parameter in the process of reaching the optimal
point for the learning goal.

Hidden layer size 256
The number of nodes in the hidden layer in the DL model.
The input data of the hidden layer is expressed as a new
feature value for each node.

Optimizer Adam
Parameter optimization model. It allows parameters to
be updated in a direction that matches the goal during
training.

Epoch 200 A unit of learning in which all data from the training
dataset are used.

RL

Replay memory size 8760
The number of transitions that can be stored in DQN’s
replay memory. The number of states is equivalent to
one year (24 × 365).

Epsilon 0.5

The probability of random exploration in the decision of
action. It enables the exploration of various environments
so that they can learn strongly about environmental
changes. The epsilon value decreases as the epoch
increases in the training of DL.

Discount factor 0.99 The value that reflects the degree of future impact on the
reward.

4.4. Experiment Environment

We used TensorFlow and Keras as the DRL framework for the experiment and a workstation with
a high-performance GPU. The details are as follows:

• CPU: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz (32 cores)
• GPU: Tesla V100
• OS: Ubuntu 16.04.5 LTS
• TensorFlow Version : 1.14.0
• Keras Version : 2.3.1

5. Results and Discussion

5.1. Validation of the Proposed Delayed Reward Method

In Section 3.2, we presented the difficulty of applying the STDR method used in stock trading
as a delayed reward method for the energy trading model and the approaches to compensate for it.
To verify the effectiveness of the proposed method, we compared the results by applying the following
methods to each trading model: the STDR method; the LTDR method, which is a delayed reward
method that considers the electricity bills; and the LSTDR method, which complements the LTDR
method, as the latter cannot learn short-term patterns well. This experiment utilized the contents and
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dataset defined in Section 4. Figure 8 shows the patterns of the monthly profit change for each delayed
reward method.

(a)

(b)

(c)

Figure 8. Comparison of the patterns of the monthly profit change according to the delayed reward
method: (a) STDR, (b) LTDR, and (c) LSTDR.
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Figure 8a shows the change in profit for monthly trading when STDR is used as a delayed reward
method. The change in monthly profit generally shows a pattern of steady increase. This is because
there is no designated termination point of a episode, and when a profit change over a certain threshold
occurs, the episode can be terminated to learn various short-term patterns. However, because there is
no designated termination point of a episode, if the model is not well trained for short-term patterns
through sufficient exploration, it may not generate profits every month. The results showed that
most, but not all, of the months have high profits. On the contrary, in Figure 8b, which is the result
of using the LTDR method, it can be seen that profits are generated in all months, but are much less
than those of the STDR method. This can generate a profit for each month because the LTDR method
generates the termination point for an episode every month; however, it is difficult to learn short-term
patterns because delayed reward occurs once a month. Therefore, it can be seen that the model has not
been trained in the direction of steadily increasing profit. Figure 8c shows the result of solving the
problems in the previous two delayed reward methods and of achieving a higher profit every month.
Therefore, it is concluded that a more effective energy trading model can be generated through LSTDR,
which scores the number of STDRs occurring within a month and reflects them in the results of the
LTDR method.

5.2. Comparison of Gains from Participating in P2P Energy Trading

We defined profit in Section 3.1 as a criterion for evaluating the trading results by including
various gains. In this section, the gains of participating in P2P energy trading are identified and the
resulting profit is finally identified. The experiment was conducted using the content and dataset
defined in Section 4 based on the proposed LSTDR energy trading model. Figure 9 shows a comparison
of the electricity bills of a consumer who does not generate and consumes only, a non-trading prosumer
who does not participate in the trading, and a trading prosumer who participates in the trading.

Figure 9. Monthly electricity bills.

Figure 9 shows the result of the prosumer’s participation in P2P energy trading, where it
pays additional electricity bills. This is because if the prosumer does not participate in the trading,
most consumption can be covered by the electricity stored in the ESS after the electricity generation;
however, if it participates in the trading and sells it, the number of situations in which the consumption
cannot be covered through electricity in the ESS increases and, therefore, the amount of supply
electricity used increases. The reason for this trading strategy is that the trading price is higher
than the supply electricity price. In the generation of the experimental dataset, we did not generate
the prosumer’s trading price separately for the purchase and sales, but, instead, we generated it as
one trading price in proportion to the electricity demand. The trading price generated in this way
is higher than the first-stage rate of the progressive rate and is lower than the second-stage rate.
Therefore, the prosumer tends to maximize gains by selling electricity in the ESS and using cheap
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supply electricity when the first-stage rate is applied. In response, when the prosumer participates in
the trading, it shows the result of using the supply electricity in a way that does not go beyond the
first stage of the progressive rate in every month.

We assumed that the prosumer sets the average daily consumption below 10 kWh and uses a
PV system with a capacity of 3 kW. Therefore, daily electricity generation is larger than consumption.
However, the ESS’s capacity is set at 8 kWh, resulting in lost electricity from over-generation. For this
situation, we mentioned that P2P energy trading can reduce the amount of electricity lost from
over-generation, and the experimental results to confirm this are shown in Figure 10.

Figure 10. Currency value of the monthly virtual loss from over-generation.

Figure 10 shows the currency value of the monthly virtual loss arising from over-generation.
If the prosumer does not trade in the over-generation condition, it loses a large amount of virtual
losses per month. However, by participating in the trading, the prosumer can sell the electricity that
is over-generated, and, therefore, electricity that is lost can be minimized. In addition, although this
study has set the goal of generating a trading strategy for its own gains, the sale of electricity through
energy trading may also result in further reduction of the use of electricity in the power grid. In this
experiment, it was shown that it is possible to avoid the situation of over-generation through trading,
thus showing no virtual loss every month.

We identified four gains that we defined to obtain a profit for participating in energy trading.
Figure 11 shows the monthly gains of the prosumer by participating in energy trading.

As shown in Figure 11, prosumer tends to be more profitable when participating in P2P energy
trading, although they must pay a higher monthly electricity bill; despite the latter, there are many
gains from trading and a reduced virtual loss. In fact, the result of the gain on virtual loss is implied
in the trading gain. This is because it has gained from the trading in as much as there was no loss.
Therefore, when considering the profit to be earned at the end of each month, we do not need to
additionally consider the gain on virtual loss. Figure 12 shows the monthly profit that the prosumer
ultimately earns by participating in P2P energy trading.
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Figure 11. Monthly gains of the prosumer by participating in energy trading.

Figure 12. Monthly profit of the prosumer by participating in energy trading.

In Figure 12, total profit shows the profit including the gain on virtual loss and real profit shows
the profit actually gained by prosumer as the sum of other gains except the gain on virtual loss.
Prosumer has shown positive results for both profits by participating in P2P energy trading, and most
profits have been obtained by selling lost electricity that cannot be stored after generation because the
ESS capacity is fully charged.

5.3. Comparison of Various Rate Systems

We applied the proposed model to various rate systems based on the prosumer’s trading
environment defined in Section 4.1. First, South Korea does not adopt a fixed rate system, but in order
to compare it with the progressive system applied in the previous experiment, the situation of the
fixed rate system was defined and the results were confirmed. The rate of the fixed rate system was set
to a value higher than the first-stage rate of the progressive system and lower than the second-stage
rate, and Figure 13 shows the monthly total profits of the progressive and fixed rate system in the same
trading environment.

82



Energies 2020, 13, 5359

(a)

(b)

Figure 13. Monthly total profits comparison of (a) progressive rate system and (b) fixed rate system.

As shown in Figure 13, the patterns of the total monthly profits for the progressive and fixed rate
systems are very similar, with the former being higher than the latter. This is because when the amount
of generation is greater than the amount of consumption, the progressive rate does not change, and the
progressive system is applied like a fixed rate system. However, it can be seen that the first-stage rate
of the progressive system is lower than that of the fixed rate system, so that more profits are obtained.

Secondly, by applying the compositions of the progressive systems of other countries to the rate
system, the monthly total profits were compared. We used the progressive rates of the United States,
Taiwan, and Japan provided by Korea Electric Power Corporation (KEPCO) (http://cyber.kepco.co.
kr/ckepco/front/jsp/CY/H/C/CYHCHP00302.jsp) to the experiment, which is shown in Table 6.
Figure 14 shows the comparison of monthly total gains for each country and Figure 15 shows the
pattern of changes in total monthly gains for each country.

83



Energies 2020, 13, 5359

Table 6. Information on the progressive rate system applied to the household in each country.

Country Season Consumption (kWh) Progressive Rate (USD/kWh)

USA All 0–1000 0.0915
1001– 0.1002

Taiwan

0–120 0.072
121–330 0.10

Summer 331–500 0.15
(June–September) 501–700 0.19

701–1000 0.21
1001– 0.23

Others

0–120 0.072
121–330 0.092
331–500 0.12
501–700 0.15
701–1000 0.17

1001– 0.18

Japan All
0–120 0.18

121–300 0.24
301– 0.28

Figure 14. Monthly profit of the prosumer by participating in energy trading.

(a)

Figure 15. Cont.
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(b)

(c)

(d)

Figure 15. Monthly total profits comparison of (a) South Korea, (b) Japan, (c) Taiwan, and (d) USA.

As shown in Figure 14, proposed model was able to gain monthly profits even when applied to
rate systems in various countries. Also, as shown in Figure 15, almost similar trading strategies are
being created for prosumers with the same trading environment, because the progressive rate of all
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countries is fixed at the first-stage due to the amount of generation more than consumption. In this
regard, in order to effectively confirm the trading strategy that changes according to the composition
of the progressive rate system, we doubled the consumption of prosumers and changed the PV power
generation capacity from 3 kWh to 750 Wh, so that progressive rate changes can occur well. Figure 16
shows the patterns of monthly total profits for the changed energy consumption and generation of
the prosumer.

(a)

(b)

(c)

Figure 16. Cont.
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(d)

Figure 16. Monthly total profits comparison of (a) South Korea, (b) Japan, (c) Taiwan, and (d) USA.

As shown in Figure 16, it can be seen that different trading strategies are created according to the
change of the trading environment to maximize profits. In this experiment, higher progressive rate
is applied in countries other than the United States because of the higher consumption. As a result,
even if most prosumers take loss in advance, they purchase electricity through tradings, and later
benefit from staying in the lower bracket of the progressive rate of the billing system. This indicates
that the proposed model is capable of creating different trading strategies for each country owing to
the different progressive rate compositions. These results indicate that the proposed model can be
applied well to various trading environments.

6. Conclusions

In this paper, we proposed an LSTM-based DQN model with the LSTDR method as an effective
automatic P2P energy trading model; we also proposed a new evaluation criterion that can effectively
learn the long-term and short-term patterns of the trading environment. We set the goal of a
noncooperative game theory-based trading strategy that maximizes the prosumer’s profit through
participation in P2P trading. The profit is defined as the sum of four gains, and each gain is obtained
by comparing the case where the prosumer does not participate with the case where the prosumer
participates in the trading.

A comparative experiment was conducted with the STDR method, which is a delayed reward
method used in stock trading, and the LTDR method, which can learn a specific long-term patterns
of information by designating the termination point of the episode. By using the proposed LSTDR
method, we were able to solve the problem of the STDR method, which does not obtain the profit
every month, and the issue with the LTDR method, which can obtain a profit every month but not a
large amount of it.

We set up a virtual energy trading environment by designating a three- to four-person household
in South Korea that generates electricity through a PV system as a prosumer, and we conducted
experiments using the LSTDR method-based energy trading model. In the experiment, we confirmed
each of the gains we defined and finally confirmed the profits that prosumer would earn by
participating in P2P energy trading. The proposed trading strategy tended to generate trading
gains through continuous sales, without deviating from the progressive rate of the electricity bill that
is cheaper than the trading price, resulting in losses due to the payment of additional charges for
the electricity bill gain. Nevertheless, it was able to achieve the highest trading gain. In addition,
by trading, the prosumer could reduce the amount of electricity lost from over-generation. The same
trend can also be found with the fixed rate system. Finally, the prosumer was able to earn a profit
every month, showing that it can benefit from participating in P2P energy trading.
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Further experiments with different progressive rate systems in Japan, Taiwan and the United
States as well as the changes of the energy consumption and generation of the prosumers indicate the
general applicability of the proposed method. However, prosumers may belong to a variety of trading
environments other than the rate systems, and may participate in trading for different purposes. In the
future, we plan to build a trading environment that is closer to a real-world by considering the situation
of various prosumers and enabling trading between prosumers through trading matching.
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17. Başar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory; SIAM: Philadelphia, PA, USA, 1998.
18. Chinchuluun, A.; Pardalos, P.; Migdalas, A.; Pitsoulis, L. Pareto Optimality, Game Theory and Equilibria;

Springer: Berlin/Heidelberg, Germany, 2008; Volume 17. [CrossRef]
19. Alam, M.R.; St-Hilaire, M.; Kunz, T. Peer-to-peer energy trading among smart homes. Appl. Energy 2019,

238, 1434–1443. [CrossRef]
20. Blazev, A.S. Global Energy Market Trends; The Fairmont Press, Inc.: Lilburn, GA, USA, 2016.
21. Pazheri, F.; Othman, M.; Malik, N. A review on global renewable electricity scenario. Renew. Sustain.

Energy Rev. 2014, 31, 835–845. [CrossRef]
22. Camus, C. Economic benefits of small PV “prosumers” in south European countries. In EEIC2016 Scientific

Session; inesc-id: Lisbon, Portugal, 2016.
23. Lüth, A.; Zepter, J.M.; del Granado, P.C.; Egging, R. Local electricity market designs for peer-to-peer trading:

The role of battery flexibility. Appl. Energy 2018, 229, 1233–1243. [CrossRef]
24. Myerson, R.B. Game Theory; Harvard University Press: Cambridge, MA, USA, 2013.
25. Branzei, R.; Dimitrov, D.; Tijs, S. Models in Cooperative Game Theory; Springer Science & Business Media:

Berlin, Germany, 2008; Volume 556.
26. Fosler-Lussier, E. Markov Models and Hidden Markov Models: A Brief Tutorial; International Computer Science

Institute: Berkeley, CA, USA, 1998.
27. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, Psychology Department, University of

Cambridge, Cambridge, UK, 1989.
28. Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [CrossRef]
29. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep

reinforcement learning. arXiv 2018, arXiv:1811.12560.
30. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; University of Cambridge,

Department of Engineering: Cambridge, UK, 1994; Volume 37.
31. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning

with function approximation. In Proceedings of the Advances in Neural Information Processing Systems,
Denver, CO, USA, 27–30 Nov 2000; pp. 1057–1063.

32. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
33. Busoniu, L.; Babuska, R.; De Schutter, B.; Ernst, D. Reinforcement Learning and Dynamic Programming Using

Function Approximators; CRC Press: Boca Raton, FL, USA, 2010; Volume 39.
34. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari

with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.
35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
36. Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network:

A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural
Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810.

37. Nechchi, P. Reinforcement Learning for Automated Trading; Mathematical EngineeringPolitecnico di Milano:
Milano, Italy, 2016.

38. Lucarelli, G.; Borrotti, M. A deep reinforcement learning approach for automated cryptocurrency trading.
In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations,
Hersonissos, Crete, Greece, 24–26 May 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 247–258.

39. Gao, G.; Wen, Y.; Wu, X.; Wang, R. Distributed Energy Trading and Scheduling among Microgrids via
Multiagent Reinforcement Learning. arXiv 2020, arXiv:2007.04517.

40. Kuate, R.T.; He, M.; Chli, M.; Wang, H.H. An intelligent broker agent for energy trading: An mdp approach.
In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China,
3–9 August 2013.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

89





energies

Article

Distributed Generators Optimization Based on
Multi-Objective Functions Using Manta Rays
Foraging Optimization Algorithm (MRFO)

Mahmoud G. Hemeida 1,*, Salem Alkhalaf 2, Al-Attar A. Mohamed 3, Abdalla Ahmed Ibrahim 3

and Tomonobu Senjyu 4

1 Department of Electrical Engineering, Minia Higher Institute of Engineering, Minia 61111, Egypt
2 Department of Computer Science, Arrass College of Science and Arts, Qassim University, Qassim 51431,

Saudi Arabia; s.alkhalaf@qu.edu.sa
3 Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81511, Egypt;

attar@aswu.edu.eg (A.-A.A.M.); draaibrahim@aswu.edu.eg (A.A.I.)
4 Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami,

Okinawa 903-70213, Japan; b985542@tec.u-ryukyu.ac.jp
* Correspondence: mahmod_hmeda2000@yahoo.com or mahmod_hmeda2000@aswu.edu.eg

Received: 16 June 2020; Accepted: 24 July 2020; Published: 27 July 2020

Abstract: Manta Ray Foraging Optimization Algorithm (MRFO) is a new bio-inspired, meta-heuristic
algorithm. MRFO algorithm has been used for the first time to optimize a multi-objective problem.
The best size and location of distributed generations (DG) units have been determined to optimize three
different objective functions. Minimization of active power loss, minimization of voltage deviation,
and maximization of voltage stability index has been achieved through optimizing DG units under
different power factor values, unity, 0.95, 0.866, and optimum value. MRFO has been applied to
optimize DGs integrated with two well-known radial distribution power systems: IEEE 33-bus and
69-bus systems. The simulation results have been compared to different optimization algorithms
in different cases. The results provide clear evidence of the superiority of MRFO that defind before
(Manta Ray Foraging Optimization Algorithm. Quasi-Oppositional Differential Evolution Lévy
Flights Algorithm (QODELFA), Stochastic Fractal Search Algorithm (SFSA), Genetics Algorithm
(GA), Comprehensive Teaching Learning-Based Optimization (CTLBO), Comprehensive Teaching
Learning-Based Optimization (CTLBO (ε constraint)), Multi-Objective Harris Hawks Optimization
(MOHHO), Multi-Objective Improved Harris Hawks Optimization (MOIHHO), Multi-Objective
Particle Swarm Optimization (MOPSO), and Multi-Objective Particle Swarm Optimization (MOWOA)
in terms of power loss, Voltage Stability Index (VSI), and voltage deviation for a wide range of
operating conditions. It is clear that voltage buses are improved; and power losses are decreased in
both IEEE 33-bus and IEEE 69-bus system for all studied cases. MRFO algorithm gives good results
with a smaller number of iterations, which means saving the time required for solving the problem
and saving energy. Using the new MRFO technique has a promising future in optimizing different
power system problems.

Keywords: optimization techniques; manta ray foraging optimization algorithm; multi-objective
function; radial networks; optimal power flow

1. Introduction

Distributed generation (DG) represents the production of electrical energy from distributed
units near the consumers with a small capacity. DGs may be renewable or nonrenewable resources
such as: wind turbine, solar Photo Voltaic (PV) geothermal, hydro, and diesel generators [1]. In the
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future, the shape of electrical power systems is expected to be one of four types. These types are
centralized integrated with distributed generation, centralized with increased decentralization, partially
decentralized, and fully decentralized. This shape will be formed based on many factors that may be
summarized into three main categories. Firstly, high level of uncertainty that includes social factors,
demand response, regulatory, policy and political factors; secondly, medium level of uncertainty
that includes system challenges and technology requirements, and; finally, low level of uncertainty,
which includes geographical, climatic considerations, availability of natural resources, population
density and distribution, and existing infrastructure [2].

Attention towards DGs is increasing rapidly due to their effectiveness in solving overloading
capacity problems and reducing the capital cost of the system. Furthermore, they require a small
area, they are easy to construct within a small time and reduce greenhouse gases. Recently, DGs have
gained much more interest due to the developed technologies of DG, restrictions applied for installing
new transmission lines, increasing demand, liberalization of the electricity market, and concerns
about greenhouse emissions [3]. Conventional energy resources such as thermal, hydro-power plants,
have many limitations such as high investment costs for construction and transmission over a long
distance; they are complex and inefficient. Distributed generations (DGs), which are decentralized
power plants, are used to eliminate these limitations [4]. DGs can be categorized into two classifications:
dispatchable DG, which includes all controllable generation types, such as gas turbine, combined heat
and power, hydro, and biomass; and non-dispatchable DG, which includes generators characterized
by uncertainty and whose generated power cannot be accurately predicted, such as wind turbines and
photovoltaic cells [5].

Sizing and allocation of DG is an important issue to improve system efficiency, reliability, and power
quality [6]. Allocating DG inappropriately increases system losses, and, consequently, increases total
cost [7]. On the other hand, a properly sized and located DG provides many technological and
economic benefits. For technological advantages, it could minimize line losses, improve power,
minimize emissions of CO2, increase security, provide better power standard, and prevent transmission
and distribution congestion. For economic advantages, it saves the investment required to upgrade
the services, minimizes maintenance and operation costs, reduces expenditure required for curing
environmental damages, reduces fuel rate, and security costs for important loads. The use of an
unsuitably placed or improperly sized DG has an adverse effect on system performance. Adding two
or more DGs provides more advantages both economically and environmentally [8]. Renewable energy
(RE) based DGs have been optimized for many objective functions such as: minimization of power
losses, maximization of voltage stability, keeping stability margin, minimizing voltage deviation,
minimizing total harmonic distortion, minimization of total costs, maximization of system reliability
(minimizing system failures), maximizing RE penetration, and minimizing CO2 emission. In order to
assure system limits, some constraints are used. For instance, bus voltage limits, power flow equality
constraint, overloading constraint, and DG capacity constraint [9].

A renewable energy (RE) based DG has been studied extensively during the last two decades.
The effect of the Wind Turbine (WT)generator’s uncertainty on DG has been studied using different
algorithms [10]. The DG-based PV cell has been overviewed taking into account optimization
techniques, constraints, and optimization techniques [11]. Hybrid combinations of WT and PV cells
have been studied in order to minimize power loss and total cost and to reduce CO2 emissions [12,13].
WT and PV generators have also been combined with other types of renewable and nonrenewable
DGs such as: micro turbine, fuel cell, biomass, battery storage system, and capacitor bank in order
to enhance power quality and to increase benefits of these hybrid combinations [14–17]. In real life,
the multi-objective optimization problem has been applied to residential homes to maximize profits
and minimize electricity charges by utilizing an energy storage system (ESS), heat pump, and an
electric vehicle [18]. On the microgrid level, also, hybridization between PV, WT, ESS, and a fuel
cell has been applied on a remote island in Japan in order to overcome the intermittent nature of a
renewable energy system, reduce energy costs, and to improve system performance [19]. Due to load
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variance and the need to meet load demand, an ESS has been introduced as an effective solution to
the optimal unit commitment problem to minimize operating costs, maximize profits, and to assure
system reliability [20].

Optimization problems can be solved using single or multi-objective functions. Multi-objective
problems may be solved using one of two methods. The first is to convert the multi-objective
problem into a single-objective problem using weight factors which gives a single dependent solution.
Any change in the parameter’s weight, even if it is very small, causes a significant change in the
prediction of the DG’s size and location. The second method is to develop meta-heuristic algorithms in
order to generate a set of Pareto-optimal solutions which are non-dominated solutions [21–23].

Many optimization techniques have been used to optimize the DG site and size. These techniques
are categorized as follows: analytical approach, classical (non-heuristic) approach, meta-heuristic
optimization approach, hybrid approach, and some other assorted approaches. The performance
of the analytical and classical (non-heuristic) approach is effective for simple systems, but not for
complex systems. Meta-heuristic algorithms offer fast convergence with high accuracy and suitability
for complex and large systems. Hybrid optimization techniques provide better performance with
higher accuracy and are more suited to complex multi-objective problems. Distribution Network
(DN) contains uncertainties resulting from the variable output of DG, load variation, and energy cost.
This produces a complex system that is not easy to optimize. Meta-heuristic and hybrid techniques
provide a better solution for optimizing the allocation and capacity of DGs [6]. Meta-heuristic
algorithms are a powerful tool in optimizing a wide range of problems. They are problem-independent
algorithms. Meta-heuristic algorithms are categorized into two divisions: evolutionary algorithm
(EA), and swarm intelligence algorithms (SI). The evolutionary algorithm contains many types of
algorithms such as: genetic algorithm (GA), evolutionary strategy (ES), evolution programming
immune algorithm (AIA), and Jaya algorithm (JA). Swarm intelligence algorithms represent the biggest
category that contains particle swarm optimization (PSO), shuffled frog leaping optimization (SFLO),
ant lion optimization algorithm (ALOA), ant colony optimization (ACO), firefly algorithm (FFA),
grey wolf optimizer (GWO), dragon algorithm (DA), whale optimization algorithm (WOA), and social
learning PSO (SLPSO) [24]. Meta-heuristic algorithms can also be classified into four main sections:
methods based on an evolutionary algorithm, methods based on physics, methods based on swarm
algorithms, and methods based on human activities [22].

Based on the type of objective function (single or multi-objective) and optimization techniques,
DG integrated with DN has been extensively studied. Minimizing power losses as a single objective
function has been studied widely through different optimization techniques and different constraints.
Teaching-learning-based (TLBO), WOA, DA, and Moth-Flame Optimization Algorithm (MFO)
optimization algorithms have been applied to allocating and sizing DG to minimize power loss [25,26].
Determination of the size and location of the DG and capacitor bank has been studied to minimize
total power loss using a hybrid approach based on GA and Artificial Bee Colony Algorithm (ABC) [27].
The coyote algorithm (COA) has effectively minimized power losses through determining the size and
location of DGs, the results have also been compared to that of many types of algorithms (Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search (CSA), Fireworks Algorithm
(FWA), Stochastic Fractal Search (SFS), Harmony Search Algorithm (HSA), and Salp Swarm Algorithm
(SSA)) [28]. The size and location of DG integrated with a 15 and 33 bus system have been optimized
using the whale optimization algorithm (WOA) to enhance power loss reduction [29]. The Loss
Sensitivity Factor (LSF)) and PSO have been used to minimize power loss using the exact loss’ formula
as a result of optimizing the size and location of the DG [30]. Compared to three types of optimization
techniques (PSO, Improved Analytical (IA) method, hybrid approach), the genetic algorithm (GA)
minimizes total power losses in 33 and 69 bus systems through optimizing the site and size of DG
integrated with the two systems [31]. Allocation and sizing of DG connected to 33, 69, and 118-bus
systems have been investigated to minimize power losses using chaotic stochastic fractal search
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(CSFS) [32]. Differential evolution (DE) and moth swarm algorithms (MSA) have been successfully
used to optimize distributed energy resource allocation to reduce power loss and voltage deviation [33].

Multi-objective non-dominating solution based algorithms have been used to solve optimization
problems as an effective strategy. Different objective functions have been studied, many types of
optimization techniques have been used, and various kinds of constraints and limitations have been
applied in the optimization of DG connected to the grid. Power losses and cost functions have
been simultaneously minimized by finding the optimum size and location of PV- and WT-based
DG through applying the non-dominated sorting genetic algorithm II (NSGA-II) [34]. Sizing and
allocation of multiple DGs with unity power factor and capacitor bank have been adjusted to optimize
different objective functions. Three objective functions are optimized in parallel: total power loss,
voltage deviation, and load-balancing using multi-objective (hybrid weight improved particle swarm
optimization (WIPSO)-gravitational search algorithm (GSA)) or (WIPSO-GSA) [35]. The multi-objective
particle swarm optimization (MOPSO) algorithm has been applied to optimize two different objective
functions simultaneously: cost function, and the total power losses during failures [36]. Grid-based
multi-objective harmony search algorithm (GrMHSA) has been used to determine the optimal location
and capacity of DG. This is to minimize multi-objectives simultaneously, total voltage deviation, active
and reactive power loss [37]. Active power loss and Fast Voltage Stability Index (FVSI)) have been
simultaneously minimized using multi-objective chaotic mutation immune evolutionary programming
(MOCMIEP) through determining the best size and location of distributed generation photovoltaic
(DGPV) [38].

The voltage deviation at any bus is the difference between the source voltage (reference
voltage) and node voltage at each bus. It would be preferred that it be minimized. The voltage
deviation index is expected to be one of the most important indices for safe operation, power quality,
and increasing demand; it may result gradually in deteriorating voltage stability; the voltage may
collapse, and increasing node voltages may reduce reactive power losses in the system [39,40].

Voltage instability has a damaging impact on the power system which in some cases may lead to
partial or total blackout. Voltage Stability Index (VSI)is an indication of the voltage level at any bus,
that level must be maintained within acceptable limits. It must be always greater than zero. VSI is
mainly used to determine the most sensitive buses which have the lowest VSI. The maximizing voltage
stability index has been introduced as an objective function in optimizing the size and location of DG
in many pieces of research. DG must be allocated at buses with the lowest VSI (most sensitive) in order
to increase system stability at that point in the system [41,42].

Due to the importance of power system efficiency and fixed voltage level, minimizing power
loss and improving system voltage is expected to be a major objective function. Many pieces of
research added some objective functions besides power loss and voltage profile. The most known
objective functions besides power loss and voltage profile are reactive power loss, voltage stability
index, investment cost, operational cost, total harmonic distortion, and system load ability, which have
been introduced as a weighted sum multi-objective function to determine best site and size of DG
integrated with DN [43–50].

Not all optimization algorithms are suitable for solving multi-objective problems. The weight
sum method is suitable to modify multi-objective functions into a single objective one. It makes
matters easy for different types of algorithms to cope with multi-objective problems. This method
provides a dominated solution based on pre-determined weight factors. The decision-maker should
accurately determine weight factors to achieve good results. Many optimization techniques have
been used to optimize size and location in order to improve voltage profile and minimize power
loss. Applying three different objective functions such as minimizing power loss, maximizing voltage
stability index, and minimizing voltage deviation provide good results in improving power quality and
enhancing system efficiency. Many optimization techniques have been applied based on these three
objective functions. These techniques are the quasi-oppositional differential evolution Lévy flights
algorithm (QODELFA), a novel stochastic fractal search algorithm (SFSA), genetics algorithm (GA),
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a comprehensive teaching learning-based optimization (CTLBO) technique, ant-lion optimization
algorithm (ALOA), improved Harris Hawks optimizer (IHHO), and multi-objective improved Harris
Hawks (MOIHHO) [51–58].

Bio-inspired optimization algorithms are artificial intelligence algorithms based on the
characteristics or behaviors of living creatures. They are mostly inspired by the behaviors of insects,
birds, fish, or any group-living animals. Many complicated industrial and engineering problems have
been solved using bio-inspired optimization techniques. They also have many features that can be
extensively used. For instance, they are flexible, simple, easy to understand and implement; they have
the ability to avoid trapping in local optima. Swarm intelligence (SI)-based algorithms are types of
bio-inspired meta-heuristic algorithms that consider that a group of individuals (SWARM) provides a
better solution compared to that of separate individuals. Compared to the evolutionary type algorithm,
swarm intelligence has fewer operators, fewer parameters, memorization of best results, and ease of
implementation. The manta ray foraging optimizer (MRFO) is one of the swarm intelligence (SI) based
algorithms that imitate foraging behaviors - chain, cyclone, and somersault of manta rays [59].

MRFOA is a new powerful optimization algorithm. In this paper, the MRFO algorithm has
been applied for the first time to optimize multi-objective problems. The multi-objective problem
is converted into a single objective one using the weight sum method. Optimizing power loss,
voltage deviation, and voltage stability index have been achieved through optimizing the size and
location of DG units connected to the radial power system. Two radial distributed power systems are
integrated with three DG units, 33-bus, and 69 bus systems. The efficiency of the proposed technique
is investigated through optimizing DG units with different power factors. The rest of the paper is
organized as follows: Section 2, the foraging strategies of manta ray, especially those simulated in the
MRFO algorithm, are explained briefly. Then, the problem is formulated in Section 3, i.e., power flow
analysis, objective function; and constraints are explained in Section 3. The mathematical model of
MRFO is simulated in Section 4. The simulation results, the parameters of power systems, and the
parameters of the optimization algorithm are described in Section 5. Finally, the conclusions and future
work are listed in Section 6.

2. Manta Ray Foraging Strategies

Manta rays are one of the biggest deep-sea creatures. Their body is flat with two pectoral fins.
They swim smoothly like birds in the sky. They have a huge terminal mouth behind two extended
vertical lobes. Their main food is plankton which does not require sharp teeth. Manta rays and the main
parts of their body are shown in Figure 1 [60]. Feeding strategies of the manta ray can be classified into
eight types according to the number of rays and their swimming behavior. These strategies are: straight,
surface, chain, piggy-back, somersault, cyclone, sideways, and bottom. They can also be divided into
group and individual feeding. Individual feeding strategies are straight, surface, somersault, sideways,
and bottom. The group foraging strategies are chain, cyclone, and piggy-back. Chain, somersault,
and straight foraging are the dominant foraging behaviors at 40.7%, 29.47%, and 24.21% respectively.
Piggyback foraging comes next with 2.46%, followed by cyclone foraging 2.11%. Finally, surface
and sideways foraging have the lowest percentages at 0.7% and 0.35% [61]. The MRFO algorithm
imitates the feeding attitude of manta rays that include chain, cyclone, and somersault foraging [60].
Only chain, cyclone, and somersault foraging strategies are going to be explained as a preamble to the
MRFO algorithm.
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(a) (b) 

Figure 1. Manta rays and the main parts of their body: (a) Manta ray; (b) Manta rays’ physical construction.

2.1. Chain Feeding

A group of manta rays forms a line head-to-tail moving horizontally. They open their fins in front
of their mouth and move forward and backward through the same area. Feeding runs sometimes
extend to several hundred meters based on prey’s concentration and distribution. At the end of feeding
runs, they keep their line formed around prey and each of them updates its position slightly above or
below the one in front. The group may expand to form a line of over 40 individuals at large feeding
events. Six samples of manta rays’ chain foraging are shown in Figure 2 [61].

. 

Figure 2. Manta ray chain foraging strategy.

2.2. Cyclone Feeding

This foraging type is used when the prey is extremely concentrated in a limited area (plankton-rich
water). Each individual in the mantas’ line (feeding chain) circulates around itself until dragging
prey into a large feeding circle. This circle’s diameter is proportional to the number of animals
joining the circle, approximately 15–20 m. The manta rays spiral motion lasts for a few minutes on
average. The cyclone always rotates anticlockwise. The mantas’ movement creates a vortex and the
rotating movement of prey creates a current that draws prey outside the feeding circle towards them.
The cyclone foraging technique is introduced in Figure 3 [61].
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Figure 3. Cyclone foraging strategy.

2.3. Somersault Feeding

Somersault feeding is always backward. When the concentration of prey is high, the manta ray
performs a backward feeding somersault completing a loop that has a diameter less than its body
width. This type of feeding is usually performed when the prey is concentrated near the surface to
restrict the prey’s movement and increase feeding efficiency. During somersault feeding, they open
their mouths widely and position their fins in front of their lower jaws. Figure 4 introduces different
pictures that demonstrate the somersault foraging strategy [61].

 

Figure 4. Somersault foraging strategy.

3. Problem Formulation

Load flow analysis plays an important role in finding an accurate solution for system parameters.
This will definitely affect finding the optimal solution for the DG installation problem [62]. The radial
distribution network (RDN) has a radial structure that consists of a large number of buses and the ratio
of R/X is high, which leads to a considerable voltage drop. Conventional methods such as Gauss Siedel,
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Newton Raphson, and fast decoupled are not efficient or fast enough. They need a large number
of iterations to provide good results [63,64]. Backward/Forward Sweep BFS load flow analysis is
considered to be the most efficient method used to analyze RDN. This method is based on Kirchhoff’s
voltage law (KVL) and Kirchhoff’s current law (KCL) [65]. Applying the BFS method includes three
main steps. These three steps are the backward sweep, forward sweep, and nodal current analysis.
This method is based on achieving convergence when the voltages maximum deviation is less than the
tolerance error (0.000001) [66].

3.1. Backward Forward Sweep Power Flow Method

To calculate system parameters using the BFS method, three steps are used. Firstly, identify
the different layers of the system as shown in Figure 5. Secondly, calculate the injected current in
each phase. Then, apply backward sweep. Finally, apply forward sweep. The final step is repeated
until achieving convergence and providing good results [67]. The single line diagram of radial DN is
represented in Figure 6. The mathematical formulation is derived as follows:

 

Figure 5. Layers in the radial distribution network (RDN).

Figure 6. Single line diagram of RDN.

Step 1 define system ‘layers’ and calculate the load current of each bus I in the phase format
depending on active and reactive power and the initial bus voltage using Equation (1).

Step 2 (backward sweep), the total branch currents are calculated starting from sub-lines and
moving towards the main feeder which is represented by node #1, as given in Equation (2).

Step 3 (forward sweep), start to update bus’ voltage from the main feeder at node #1 and move
toward the last node using the mathematical formula shown in Equation (3) [65].

IL,k =

⎛⎜⎜⎜⎜⎝SL,k

Vk

⎞⎟⎟⎟⎟⎠
∗

(1)

IL = IL,k+1 +
∑
p∈M

IL+1 (2)
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Vk+1 = Vk − (Rl + jXl)IL (3)

IL,k represents the load currents of each bus, SL,k represents system apparent power, Vi represents
bus voltage, Iz is the total branch currents, and Ip is the sub-lines current.

3.2. Power Loss Calculation

The magnitudes of active and reactive powers are calculated based on Equations (4) and (5)
respectively. To estimate the value of transmission line voltages, the mathematical formulation of
Equation (6) can be used. Both active and reactive power losses are calculated for any line lth using
Equations (7) and (8) respectively. The total active power losses can be calculated from Equations (9).
To simulate active and reactive power injection in the system at bus k + 1, Equations (10) and (11) are
used [68].

Pl+1 = Pl − PL,k+1 −Rl

⎛⎜⎜⎜⎜⎝P2
l + Q2

l

|Vk|2
⎞⎟⎟⎟⎟⎠ (4)

Ql+1 = Ql −QL,k+1 −Xl

⎛⎜⎜⎜⎜⎝P2
l + jQ2

l

|Vk|2
⎞⎟⎟⎟⎟⎠ (5)

V2
k+1 = V2

k − 2(RlPl + XlQl) +
(
R2

l + X2
l

)⎛⎜⎜⎜⎜⎝P2
l + Q2

l

|Vk|2
⎞⎟⎟⎟⎟⎠ (6)

Ploss(k,k+1) = Rl

⎛⎜⎜⎜⎜⎝P2
l + Q2

l

|Vk|2
⎞⎟⎟⎟⎟⎠ (7)

Qloss(k,k+1) = Xl

⎛⎜⎜⎜⎜⎝P2
l + Q2

l

|Vk|2
⎞⎟⎟⎟⎟⎠ (8)

PT loss =
n−1∑

k = 1

Ploss(k,k+1) (9)

Pk = Pk+1 + PL,k+1 + rk

⎛⎜⎜⎜⎜⎝P2
k + jQ2

k

|Vk|2
⎞⎟⎟⎟⎟⎠− PDG (10)

Qk = Qk+1 + QL,k+1 + xk

⎛⎜⎜⎜⎜⎝P2
k + jQ2

k

|Vk|2
⎞⎟⎟⎟⎟⎠−QDG (11)

3.3. Objective Function

In order to optimize the size and location of DG, we have three different objective functions:
minimization of power loss, minimization of voltage deviation, and maximization of voltage stability index.

3.3.1. Minimization of Total Active Power Loss

The total active power loss could be optimized using the following formula in Equation (12). PL is
the total active power loss described by Equation (9), PLb is the base power system losses [51].

OF1 : Min
(

PL
PLb

)
(12)
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3.3.2. Minimization of Voltage Deviation

Based on the following mathematical formula in Equation (13), voltage deviation is minimized.
The voltage deviation denoted by VD is calculated using Equation (14). Base voltage deviation is
denoted by VDb, whereas Vi is the bus number, and Vr is the rated voltage (1.0 p.u.) [51].

OF2 : Min
(

VD
VDb

)
(13)

VD =
n∑

i = 1

(Vi −Vr)
2 (14)

3.3.3. Maximization of the Voltage Stability Index

The voltage stability index is calculated using Equation (15). Then, the maximization of the
voltage stability index (VSI) is turned into minimization using Equation (16). Finally, the objective
function could be formulated using Equation (17) whereas VSIb is the voltage stability index of the
base case [51].

VSIj = |Vi|4 − 4×
(
PjXk −QjRk

)2 − 4×
(
PjRk + QjXk

)
× |Vi|2 (15)

Max
(
VSIj
)
= Min

(
1

VSIj

)
(16)

OF3 : Min
(

VSIb
VSIj

)
(17)

3.3.4. The Overall Objective Function

In order to use the MRFO algorithm to solve multi-objective problems, the single-objective
functions are combined together using the weight sum method as shown in Equation (18) [51].
The weighting factors are taken as ω1 = 1, ω2 = 0.65, ω3 = 0.35 [51–53].

F = Min (ω1 ×OF1 +ω2 ×OF2 +ω3 ×OF3) (18)

3.4. Operational Constraints

In order to simulate the system accurately, some constraints must be applied to the system.
Three constraints must be achieved while optimizing our objective functions in this work described
as follows:

3.4.1. Equality Constraints

The active and reactive power flow Equations (19) and (20) are used as equality constraints [51].

P0 +
NDG∑
i = 1

PDG(i) =
k∑

i = 1

PLi(y) +
nb∑

j = 1

Ploss( j) (19)

Q0 +
NDG∑
i = 1

QDG(i) =
k∑

i = 1

QLi(y) +
nb∑

j = 1

Qloss( j) (20)

P0 and Q0 stand for the base active and reactive powers of the system respectively. PLi(y) and
QLi(y) are active and reactive powers supplied from the reference bus. NDG is the number of distributed
integrated units.
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3.4.2. Inequality Constraints

• Bus voltage constraints
The magnitudes of voltage for all buses must be restricted in the range (0.95: 1.05)per unit,
according to Equation (21) [51].

Vmin ≤ Vi ≤ Vmax (21)

• DG sizing limits
The distributed generators’ active and reactive powers must be within limits according to Equations
(22) and (23) [51].

PDG,min ≤ PDG,i ≤ PDG,max (22)

PFDG,min ≤ PFDG,i ≤ PFDG,max (23)

4. Mathematical Model of MRFO

The MRFO algorithm starts to position individuals randomly using the following Equation (24):

Xi, j(:) = Lbi, j + r(:).
(
Ubi, j − Lbi, j

)
∀i ∈ Npop&& j ∈ Nvar (24)

The position of manta rays is expressed by Xi, j(:); also, lower and higher boundaries are denoted
by Lbi, j and Ubi, j respectively; while Npop and Nvar represent the number of populations and the number
of variables respectively [69]. Manta rays have no sharp teeth; their main foodstuff is plankton which is
a microscopic animal living in the water [60]. Manta rays have many foraging techniques. According to
their swimming position, these techniques can be categorized into eight types. These types are: straight,
surface, chain, piggy-back, somersault, cyclone, sideways, and bottom [61]. Only three strategies are
simulated using the MRFO algorithm, which are chain, cyclone, and somersaulting foraging [60,69,70].
Chain and cyclone foraging are group-based techniques, but somersault foraging is an individual-based
technique [61].

4.1. Chain Foraging

Plankton is not concentrated in one area. Manta rays look for their prey, i.e., plankton, and after
locating its location, they swim directly towards it. Of course, the best position is that which comprises
the highest plankton concentrations. Manta rays line up head-to-tail forming a chain. According to
the prey’s best position so far, manta rays change their position. Manta rays update their position
following the mathematical formula of the next Equation (25) [60].

xd
i (t + 1)

=

⎧⎪⎪⎨⎪⎪⎩ xd
i (t) + r.

(
xd

Best(t) − xd
i (t)
)
+ α.
(
xd

Best(t) − xd
i (t)
)

i = 1

xd
i (t) + r.

(
xd

i−1(t) − xd
i (t)
)
+ α.
(
xd

Best(t) − xd
i (t)
)

i = 2, . . . . . . .., N

(25)

α = 2.r.
√∣∣∣log(r)

∣∣∣ (26)

The updated position is expressed by xd
i−1(t). Iteration number and dimension are expressed by t

and d respectively. xd
i (t) is the current position of ith individual; r is a random vector extended in the

range of [0–1]. The weight coefficient is denoted by α; the best position is expressed by xd
Best(t).
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4.2. Cyclone Foraging

The movement of each manta ray is restricted by two factors: the position of food, and the position
of the one in front. Manta rays move towards plankton taking a spiral motion. This spiral-shaped
movement can be simulated following a mathematical formula represented in Equation (27) [60].

{
Xi(t + 1) = Xbest + r× (Xi−1(t) −Xi(t)) + ebω × cos(2πω) × (Xbest −Xi(t))
Yi(t + 1) = Ybest + r× (Yi−1(t) −Yi(t)) + ebω × sin(2πω) × (Ybest −Yi(t))

(27)

where ω represents a random number extended along the range of [0–1]. This motion is extended to an
n-D space formula which simulates cyclone foraging. After this modification, the cyclone foraging can
be expressed using the mathematical formula in Equation (28) [60].

xd
i (t + 1)

=

⎧⎪⎪⎨⎪⎪⎩ xd
best + r×

(
xd

best(t) − xd
i (t)
)
+ β×

(
xd

best(t) − xd
i (t)
)

i = 1

xd
best + r×

(
xd

i−1(t) − xd
i (t)
)
+ β×

(
xd

best(t) − xd
i (t)
)

i = 2, . . . . . . .., N

(28)

β = 2er1
Tmax−t+1

T × sin(2πr1) (29)

where β stands for a weight coefficient; Tmax is the maximum number of iterations; r1 is the random
number in the interval [0–1] The cyclone foraging improves both exploration and exploitation because
each individual updates its position relying on the food position which varies randomly. A new
random position is introduced as a new reference. As a result, the global best position is improved.
This part of the optimization technique can be expressed using Equation (31), where the random
position is represented by xd

rand [60].

xd
rand = Lbd + r×

(
Ubd − Lbd

)
(30)

xd
i (t + 1)

=

⎧⎪⎪⎨⎪⎪⎩ xd
rand + r×

(
xd

rand(t) − xd
i (t)
)
+ β×

(
xd

rand(t) − xd
i (t)
)

i = 1

xd
rand + r×

(
xd

i−1(t) − xd
i (t)
)
+ β×

(
xd

rand(t) − xd
i (t)
)

i = 2, . . . . . . .., N

(31)

4.3. Somersault Foraging

Somersault is an individual feeding strategy. Each individual moves toward the planktons’ position
then somersaults to a new position. Manta rays always swim around a higher food concentration area
and update its position accordingly. Somersault foraging strategy can be derived from mathematical
Equation (32) [60].

xd
i (t + 1) = xd

i (t) + S×
(
r2 × xd

best − r3 × xd
i (t)
)
, i = 1, . . . . . . . . . . . .N (32)

where, the somersault factor is expressed by S which decides the somersault range. Both r2 and r3 are
random numbers extended in the range of [0–1]. Each individual is free to swim between its current
position and the global best position determined so far. After some iteration, all individuals come
closer to the optimum solution in the search space. As a result, increasing the number of iterations will
decrease the range of somersault (inversely proportional) [60].

4.4. General Procedures of the MRFO Approach

The MRFO flow chart is demonstrated in Figure 7 and can be explained through the following
steps [60,69].
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1 - Formulating the optimization problem and determining boundary limits.
2 - Inserting control parameters, number of iterations (Tmax), number of populations (Npop),

and somersault factor (S).
3 - Initially positioning individuals randomly and calculating the fitness of each to determine the

best solution so far.
4 - Starting the main loop for i = 1: Npop, If the stop criteria is not satisfied.
5 - If Rand is >0.5, then apply cyclone foraging.

• If t/ Tmax is < Rand, then update location using Equations (31)
• Else update location using Equation (28)
• End if

6 - Else (if Rand is <0.5) apply chain foraging.

• Update location using Equation (25)
• End if

7 - Evaluating the fitness value of each individual and updating position according to the best position.
8 - Then, update location using somersault foraging Equation (32)

Figure 7. Manta Ray Foraging Optimization (MRFO) flow chart.
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5. Results and Discussion

The MRFO algorithm has been applied to optimize three DG units integrated with two test systems:
the IEEE-33 bus, and 69-bus systems. The power flow analysis is achieved using the backward-forward
sweep method (BFS). The two systems are optimized based on three objective functions, minimizing
APL, VD, and VSI−1. DG units could be categorized based on the capability of injecting active and
reactive powers, in other words, (operating power factor). Some types could provide only an active
power such as photovoltaic and fuel cells; that means that they are operating at unity power factor.
DG operating based on synchronous machines delivers both active and reactive power, and they are
operated at non-unity power factor [51].

To investigate the performance of the proposed algorithm, four different cases have been studied
for each system based on the operating power factor of the DG units. These four cases are unity,
0.95, 0.866, and optimum power factors operating conditions. For each case, the resulting power
loss at each branch, the voltage magnitude at each bus m, and the voltage stability index (VSI) at
each branch have been compared to that of the base case (without connecting DGs). The objective
function is simulated using weight sum method with the following factors ω1 = 1, ω2 = 0.65, ω3 = 0.35.
The parameters of MRFO are defined as follows: the MRFO algorithm was simulated at 50 search
agents and 50 maximum iteration numbers and the somersault factor (S) = 2. The system was simulated
using MATLAB 2014b running on a system core i7, 2.7GHZ, 4.0 GB ram. The studied cases are divided
into two cases based on the power system and each case divided into four sub-cases based on different
power factor operating conditions.

5.1. IEEE 33-Bus System

IEEE 33 bus-system is a standard electrical power system. It has a total load demand of 3.715 MW
and 2.300 MVAR at 12.6 KV [54]. In this case, we have five subcases:

• Three DG units operating at a unity power factor
• Three DG units operating at 0.95 power factor
• Three DG units operating at 0.866 power factor
• Three DG units operating at an optimum power factor
• Comparing results for different power factors

5.1.1. Three DG Units at Unity Power Factor

The simulation results of power loss, voltage magnitudes, and VSI for the whole system are
compared to the results of the base case and represented by Figures 8–10, respectively. Looking at
Figure 8, the power loss is decreased significantly around every branch. The maximum power loss
recorded at bus 2 equals 52.0726 and is minimized to be 14.0135; the minimum power loss recorded at
branch 2 equals 0.0132 and is minimized to be 0.0115. The voltage at bus 18 was the minimum value
of 0.90378 and is maximized to be 0.98; the maximum voltage at bus 2 is maximized to be 0.99909
as shown in Figure 9. The VSI is simulated as shown in Figure 10. The minimum value recorded at
branch 17 equals 0.6672 and is enhanced to be 0.9182; the maximum VSI at branch 1 equals 0.9881 and
is improved to be 0.9963.
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Figure 8. Characteristics of power loss at unity pf.

Figure 9. Characteristics of voltage at unity pf.

Figure 10. Characteristics of VSI at unity pf.

Table 1 shows the results obtained by the MRFO algorithm to allocating and sizing three units
of DGs operating at the unity power factor. Additionally, a comparison is carried out between
those results and the results obtained by nine different recent optimization techniques [51–57].
Three objective functions are considered: power loss minimization, voltage deviation minimization,
and voltage stability index maximization. The weight factors are 1, 0.65, and 0.35 respectively [51,52].
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The MRFO algorithm improves the overall system performance and provides better results compared
to those obtained by other techniques. The optimum bus locations for DG units obtained by the
MRFO algorithm are 30, 24, and 13; the same results are obtained by QODELFA, SFSA, and CTLBO
(ε constraint) [51,52,54]. The active power loss is minimized to 77.3793 kW with a power loss reduction
equal to 63.32%. The obtained result for power reduction is better than that obtained from all other
techniques. In addition, the voltage deviation is minimized to be 0.0063 more than the lowest value
obtained by the GA with 0.0056, which is a very small value [53]. The voltage stability index (VSI) is
maximized to 0.9182 which is the same for QODELFA and SFSA, but it is a lower value compared to
other techniques. The highest VSI obtained by the GA and CTLBO (ε constraint) in [53,54], but with
the highest power loss values of 95.8 and 96.17 respectively.

Table 1. 33 bus system, three DG units, at unity Power factor (pf)

Reference Method Location
Size
kW

APL
kW

VD VSI
LR
(%)

Proposed MRFO
30 1302.5

77.3793 0.0063 0.9182 63.323924 1136.4
13 962.292

[51] QODELFA
13 964.7

77.408 0.00621 0.9182 63.3124 1133.4
30 1301.7

[52] SFSA
13 964.7

77.410 0.006232 0.9182 63.3124 1133.7
30 1301.8

[53] GA
25 909.0

95.8 0.0007 0.9701 54.630 1684.0
13 1658.0

[54] CTLBO
13 1036.4

85.9595 0.0026 0.9481 59.2625 1163.1
30 1521.7

[54] CTLBO
ε constraint

13 1.1926
96.1732 0.0009 0.9638 54.424 0.8706

30 1.6296

[56] MOHHO
13 1207

92.95 0.002 0.9654 55.9425 763
31 1400

[56] MOIHHO
14 1223

92.25 0.0019 0.9580 56.2724 1144
31 1290

[57] MOPSO
12 1200

83.99 0.0053 0.919 60.1925 949.8
33 1142.7

[57] MOWOA
14 1021.6

79.72 0.0045 0.9249 62.21424 1200
31 1200

5.1.2. Three DG Units at 0.95 Power Factor

Three basic characteristics, namely power loss, bus voltage, and VSI, are simulated as shown in
Figures 11–13 as a comparison between DGs operating at 0.95 power factor and the base case. This is
to investigate the effect of installing DG units and the validity of the MRFO algorithm. Figure 11
represents the system power loss. The maximum power loss recorded at bus 2 is reduced to be
3.1636 kW; the minimum power loss at branch 32 is decreased to be 0.0113. The minimum voltage
magnitude evaluated at bus 18 is maximized to be 0.9943 as shown in Figure 12. The minimum VSI
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recorded at bus 17 is maximized to 0.9773 as shown in Figure 13. The provided results are better
compared to the previous case.

Figure 11. Characteristics of power loss, 33-bus system, 0.95 pf.

Figure 12. Characteristics of bus voltage, 33 bus system 0.95 pf.

Figure 13. Characteristics of VSI, 33-bus system at 0.95 pf.
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Optimization of three DG units operating at 0.95 lagging power factor based on the MRFO
algorithm; and the data obtained by different techniques are shown in Table 2. The MRFO algorithm
determines the best location for DG units, namely 30, 24, and 13, which are similar to results obtained
by QODELFA, SFSA, and MOIHHO techniques [51,52,56]. The MRFO algorithm minimizes the total
power loss to 29.13 with a total loss reduction of 86.19% which is the best value compared to all
other techniques. The VSI provided by the proposed techniques is 0.966; it is lower than the highest
value obtained by MOIHHO [56] with approximately 0.0128 which is a very small value. The voltage
deviation optimized based on MRFO is minimized to 0.0008, which is higher than the best deviation
obtained by MOIHHO with 0.0004. The overall performance is better than the results provided by the
previous case.

Table 2. 33-bus, three DG units at 0.95 lag pf.

Reference Method Location
Size APL

(kW)
VD VSI

LR
(%)(kW) (KVAR)

proposed MRFO
30 1297.20 426.36

29.1317 0.0008 0.9662 86.192224 1098.00 360.88
13 911.31 299.53

[51] QODELFA
13 916.9 301.3

29.386 0.0007 0.9698 86.0724 1146.6 376.8
30 1316.7 432.7

[52] SFSA
13 917.4 301.5

29.383 0.000673 0.9697 86.0724 1146.3 376.8
30 1315.7 432.4

[56] MOHHO
13 1008.0 331.0

31.4 0.0005 0.976 85.117125 910.0 299.0
30 1334.0 439.0

[56] MOIHHO
13 924 304

30.6 0.0004 0.979 85.496324 1312 431
30 1356 446

5.1.3. Three DG Units at 0.866 Power Factor

Compared to the base case, three DG units are optimized and the simulation results of power
loss, voltage magnitude, and VSI are shown in Figures 14–16. The maximum power loss at branch 2
is minimized to 0.4296 kW as represented in Figure 14. The minimum voltage recorded at bus 18 is
maximized to 0.9964 as shown in Figure 15. The minimum voltage stability index recorded at bus 17 is
improved to 0.9856 as described in Figure 16. This case provides results better than in the previous
two cases.

Figure 14. Characteristics of power loss, 33-bus system at 0.866 pf.
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Figure 15. Characteristics of bus voltages, 33-bus system at 0.866 pf.

Figure 16. Characteristics of VSI, 33-bus system 0.866pf.

Table 3 lists the data obtained for optimizing three DG units operating at 0.866 lagging power
factor. MRFO algorithm is compared to the QODELFA algorithm [51]. MRFO determines buses 13,
24, and 30 as the best location similar to results obtained by QODELFA. MRFO could not provide a
significant improvement. But MRFO only takes 50 iterations to achieve optimum results, which is
one-fourth of the number of iterations taken by QODELFA. The obtained results are almost the same
for the two algorithms. The overall performance is improved compared to the former cases.

Table 3. 33-bus, three distributed generator (DG) units, 0.866 pf.

Reference Method Location
Size APL

(kW)
VD VSI

LR
(%)(kW) (KVAR)

proposed MRFO
13 792.710 457.72

15.4956 0.00035 0.9763 92.655424 1039.7 600.35
30 1239.6 715.75

[51] QODELFA
13 791.1 456.7

15.498 0.0003 0.9764 92.6524 1041.1 599.1
30 1243.1 717.8

5.1.4. Three DG Units at Optimum Power Factor

Unlike the fixed power factor operation in the previous cases, the three DGs units optimized are
operating at an optimum power factor which is not fixed. Compared to the former cases, this one gives
the best results. As shown in Figure 17, the maximum power loss at bus 2 is minimized to a very low
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value of 0.3347 kW. The minimum voltage recorded at bus 18 is maximized to 0.9960 as demonstrated
in Figure 18. Finally, the VSI which records its minimum value at bus 17, is maximized to a higher
value of 0.9839 as shown in Figure 19.

Figure 17. Characteristics of power loss, 33-bus system at optimum pf.

Figure 18. Characteristics of bus voltage, 33-bus at optimum pf.

Figure 19. Characteristics of VSI, 33-bus system at optimum pf.
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The MRFO algorithm is used to optimize DG units’ size and location based on three different
objective functions, namely APL, VD, and VSI; the obtained results are compared to those of the other
three techniques, namely SFSA, MOHHO, and MOIHHO [52,56] as listed in Table 4. Buses 13, 30, and 24
were determined to be the best locations to install DG units operating at optimum power factor. The same
locations were obtained by SFSA [36]. The optimum power factors obtained by the MRFO algorithm
are 0.8916, 0.7258, and 0.8963. The reduced power factor values mean that much more reactive power is
injected into the system. As a result, the simulated characteristics are highly improved. Compared to
the previous three cases, this one gives the best performance. The results obtained by MRFO and SFSA
are almost the same and provide better results compared to the other two techniques, namely MOHHO
and MOIHHO [56]. Although SFSA provides better loss reduction compared to our MRFO-almost 0.5%,
MRFO takes only 50 iterations to get optimum results, which is half the number of iterations taken
by SFSA.

Table 4. 33-bus, three DG units at optimum pf.

Reference Method Location
DG Capacity and PF APL

(kW)
VD VSI

LR
(%)(kW) (KVAR) (Pf)

Proposed MRFO
13 809.9112 411.27 0.8916

11.918 0.000338 0.9760 93.855930 1072.4 1016.2 0.7258
24 1079.0 533.9 0.8963

[52] SFSA
13 834.0 391.6 0.905

11.911 0.000334 0.9763 94.3524 1064.8 531.4 0.895
30 1059.2 1025.9 0.718

[56] MOHHO
12 951 516 0.88

18.8 0.0005 0.978 91.089225 786 436 0.87
30 1381 809 0.86

[56] MOIHHO
12 916 576 0.85

15.0 0.0003 0.978 92.890324 1088 386 0.94
30 1171 830 0.82

5.1.5. Comparing Results Obtained for Different Power Factors

Table 5 is considered to be a collection of the previous four cases to investigate the effect of
operating DG units at various power factor values. For the first objective function, the total active
power loss reaches its minimum value of 11.918 with a total reduction of 93.86% when the DG units
were operated at an optimum power factor. In addition, the second objective function, the voltage
deviation, was minimized to 0.000338 as the lowest value for all four cases when the DG units were
set to an optimum power factor. Finally, the voltage stability index was maximized to 0.976 as the
highest value obtained by the optimum and 0.866 pf. SFSA [52] achieves results better than the MRFO
algorithm; the total loss reduction is about 0.49% more than the loss reduction achieved by MRFO.
Decreasing the operating power factor from unity to the optimum value improves the performance of
the power system significantly due to increasing the injected reactive power suitably with the system
conditions and the objective functions needed to be optimized.
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Table 5. Comparing results for different power factors.

Case Location
DG Capacity and PF APL

(kW)
VD VSI

LR
(%)(kW) (KVAR) (Pf)

Optimum pf
13 809.9112 411.27 0.8916

11.918 0.000338 0.976 93.855930 1072.4 1016.2 0.7258
24 1079.0 533.9 0.8963

0.866 pf
13 792.710 457.72 0.866

15.4956 0.00035 0.976 92.655424 1039.7 600.35 0.866
30 1239.6 715.75 0.866

0.95 pf
30 1297.20 426.36 0.95

29.1317 0.0008 0.9662 86.192224 1098.00 360.88 0.95
13 911.31 299.53 0.95

Unity pf
30 1302.5 0 1

77.3793 0.0063 0.9182 63.323924 1136.4 0 1
13 962.292 0 1

5.2. IEEE 69-Bus System

IEEE 69 bus-system is an electrical standard power system. It has a total load demand of 3.8 MW
and 2.69 MVAR at 12.6 KV [54]. In this case, we have five subcases:

• Three DG units operating at a unity power factor
• Three DG units operating at 0.95 power factor
• Three DG units operating at 0.82 power factor
• Three DG units operating at an optimum power factor
• Comparing results for different power factors

5.2.1. Three DG Units at Unity Power Factor

According to the objective functions, three characteristics of the power system are described,
namely power loss, voltage profile, and voltage stability index (VSI). The MRFO algorithm optimizes
the system to improve system performance. Power loss is shown in Figure 20; the maximum power loss
recorded at branch 56 equals 49.6782 kW and is minimized to 14.8851 kW. The voltage characteristic
is shown in Figure 21; the minimum voltage at bus 65 equals 0.90919 and is maximized to 0.98785.
The minimum voltage stability index recorded at bus 64 equals 0.6833 and is maximized to 0.9522 as
shown in Figure 22.

Figure 20. Characteristics of power loss, three DGs at unity pf.
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Figure 21. Characteristics of voltage, three DGs at unity pf.

Figure 22. Characteristics of VSI, three DGs at unity pf.

MRFOA and eight other algorithms are compared to each other in optimizing three DG units based
on the pre-determined objective functions, APL, VD, and VSI for the IEEE 69-bus system as shown
in Table 6. The MRFO algorithm determines the optimum locations to be 19, 11, and 61 respectively;
the same as SFSA [52]. The total active power loss is minimized to 71.02 with loss reduction equal to
68.427%, which is better than the results of all other techniques. Although the voltage deviation is
minimized to 0.0022, it is not the minimum deviation value. It is 0.0019 higher than the minimum
value reported by CTLPO (ε constraint), [54] but the second method estimated the total capacity for
DG units as 3329.4 KW which is higher than that provided by MRFO, 2923.7 with approximately
405.7 kW. The voltage stability index is maximized to 0.94 lower than the best values obtained by
CTLPO and CTLPO (ε constraint) 0.977, but those techniques provide higher power loss,76 kW, 37 kW,
and 79.66 kW respectively, and that makes sense.

113



Energies 2020, 13, 3847

Table 6. 69-bus system, three DG units at unity Power Factor (PF)

Reference Method Location
Size
(kW)

APL
(kW)

VD VSI
LR
(%)

Proposed MRFO
19 473.1375

71.0207 0.0022 0.9402 68.426811 591.3010
61 1859.3

[51] QODELFA
11 629.4

72.295 0.00150 0.9525 67.8720 438.6
61 1953.7

[52] SFSA
11 570.3

72.445 0.001434 0.9537 67.8019 466.1
61 1967.4

[54] CTLPO
11 560.3

76.372 0.0008 0.9770 66.047818 427.4
61 2153.4

[54] CTLPO
ε constraint

12 965.8
79.66 0.0003 0.9770 64.586125 230.7

61 2133.6

[56] MOHHO
20 643.6

81.0 0.0008 0.9720 63.990460 971.4
61 1328.2

[56] MOIHHO
18 796.2

80.8 0.0007 0.978 64.079361 1447.1
64 707.5

[57] MOPSO
21 383.6

82.79 0.0015 0.9455 63.194661 1770.8
66 1450.2

[57] MOWOA
20 558.8

75.56 0.00083 0.9643 66.408853 784.9
61 1970.1

5.2.2. Three DG Units at 0.95 Power Factor

MRFO algorithm is applied to optimize three DG units operating at 0.95 power factor to optimize
the proposed objective functions. The power loss is optimized as shown in Figure 23, i.e., the maximum
power loss at branch 56 is reduced to 3.7085 kW. The minimum voltage magnitude recorded at bus 65
is maximized to 0.9963 as shown in Figure 24. The minimum value of VSI at branch 64 is maximized to
0.9855 as demonstrated by Figure 25. The obtained results are better compared to the previous case.

Figure 23. Characteristics of power loss at 0.95 pf.
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Figure 24. Characteristics of voltage at 0.95 pf.

Figure 25. Characteristics of VSI, 0.95.

The IEEE 69-bus system is integrated with three units of DG. These DG units are optimized to
improve system performance using the MRFO algorithm. The obtained results are compared to that
of four other techniques and the data is recorded in Table 7. The selected buses to install DG units
are 11, 18, and 61; this is similar to results obtained by QODELFA [51]. The results obtained by the
MRFO algorithm and QODELFA are almost the same. The total power loss is minimized to 20.7702 kW
which is the minimum value compared to other techniques. The total installed capacity 2919 kW and
959.65 KVAR close to QODELFA, 2915 kW, and 958 KVAR [51]. The voltage deviation is minimized
to a value slightly higher than that for QODELFA with about 0.00001. The voltage stability index is
maximized to 0.9772 which is the best value of all. The MRFO algorithm could not provide a significant
improvement compared to the QODELF technique. However, MRFO is better as it takes one-fourth of
the number of iterations taken by QODELF to achieve optimum results.

The obtained results are better compared to the previous case (unify power factor).
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Table 7. 69-bus, three DG units at 0.95 lag pf.

Reference Method Location
Size APL

(kW)
VD VSI

LR
(%)(kW) (KVAR)

proposed MRFO
11 598.0106 196.5566

20.7702 0.00016 0.9772 90.7718 425.9067 139.9888
61 1895.7 623.1016

[51] QODELFA
11 579.7 190.5

20.774 0.00015 0.9770 90.7718 434.0 142.6
61 1901.3 624.9

[52] SFSA
11 5435 1786

20.727 0.000330 0.9772 90.7917 4132 1358
61 1.8728 6156

[56] MOHHO
23 519 171

30.2 0.001 0.98 86.574260 1176 387
62 1179 387

[56] MOIHHO
13 1083 341

28.9 0.0003 0.98 87.152161 799 263
63 1229 404

5.2.3. Three DG Units at 0.82 Power Factor

In this case, the injected reactive power is higher compared to previous cases. The obtained results
are improved significantly. The power loss characteristics shown in Figure 26 show an improved
performance. The power loss at branch 56 is minimized to 0.0091 kW. The minimum voltage recorded
at bus 65 is maximized to be 0.9976 as shown in Figure 27. Finally, the VSI simulated in Figure 28
demonstrates that the minimum VSI at branch 64 is maximized to 0.9905. This case provides better
performance of the power system due to the increment of reactive power injected into the system.

Figure 26. Characteristics of power loss at 0.82 pf.
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Figure 27. Characteristics of voltage at 0.82 pf.

Figure 28. Characteristics of VSI at 0.82 pf.

.
Table 8 shows the results of optimizing DG units based on MRFO and QODELFA techniques.

The given results show the effectiveness of the proposed algorithm and the other ones. The selected
buses to install DG units are 11, 61, and 18. Power loss is minimized to be 4.2952, with a total
loss reduction of 98.09%. The voltage deviation is minimized to its minimum value, namely 0.0001.
Finally, the voltage stability index is enhanced to reach 0.9773 slightly higher than that for QODELFA.
The MRFO algorithm provides almost the same results obtained by QODELFA with no superiority.
QODELFA seems to be as good as MRFO, but it takes four times the number of iterations taken by MRFO.
Increasing the number of iterations means increasing the total time of simulations, which decreases the
effectiveness of the algorithm.
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Table 8. 69-bus, three DG units, 0.82 pf.

Reference Method Location
Size APL

(kW)
VD VSI

LR
(%)(kW) (KVAR)

proposed MRFO
11 505.5087 352.8473

4.2952 0.00010 0.9773 98.0961 1692.7 1181.5
18 382.3651 266.8925

[51] QODELFA
11 505.8 353.1

4.297 0.00010 0.9771 98.0918 385.9 258.9
61 1693.9 1182.3

5.2.4. Three DG Units at Optimum Power Factor

The main power system characteristics, power loss, voltage magnitude, and voltage stability
index optimized by the MRFO algorithm are compared to the base case. The obtained results are
demonstrating that MRFO is a powerful algorithm. The power loss for each branch is shown in
Figure 29. The maximum power loss recorded at branch 56 is maximized to be 0.0056 kW. The new
maximum power loss recorded at branch 48 with value 1.6312 kW. The minimum voltage magnitude
recorded at bus 65 is enhanced to 0.9975 as shown in Figure 30. The minimum VSI recorded at branch
64 is maximized to 0.99. The new minimum VSI recorded at branch 49 has a value of 0.9773 as shown
in Figure 31. This case gives the best solution compared to the former cases.

Figure 29. Characteristics at power loss at optimum pf.

Figure 30. Characteristics of voltage at optimum pf.
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Figure 31. Characteristics of VSI at optimum pf.

The final sub-case in the IEEE 69-bus system is optimizing the size and location of three DG units
operating at an optimum power factor. The results obtained by MRFO and three other techniques are
listed in Table 9. The best locations determined using MRFO are 17, 11, and 61 which are completely
different from the results of other techniques. The maximum power loss is minimized to 4.2775 kW with
a total reduction of 98.0984% which is the best-obtained value. The voltage deviation also provided by
the MRFO algorithm is the minimum value of 0.0001. Finally, the voltage stability index obtained by
the MRFO algorithm is almost the same as the results obtained by SFSA. MRFO and SFSA techniques
provide the best results compared to others. The MRFO algorithm takes a smaller number of iterations,
namely 50, to achieve the optimum solution, unlike SFSA that takes double the number of iterations,
100. That gives superiority to the MRFO algorithm.

Table 9. 69-bus, three DG units at optimum pf.

Reference Method Location
DG Capacity and PF APL

(kW)
VD VSI

LR
(%)(kW) (KVAR) (pf)

Proposed MRFO
17 388.009 254.684 0.8360

4.2775 0.000106 0.9773 98.098411 494.701 365.035 0.8047
61 1680.9 1203.00 0.8132

[52] SFSA
11 566.9 397.0 0.819

4.298 0.000116 0.9773 98.089221 336.0 222.7 0.833
61 1675.2 1178.8 0.818

[56] MOHHO
15 332 846 0.37

21.8 0.0008 0.98 90.308560 314 838 0.35
61 1784 335 0.98

[56] MOIHHO
13 1064 779 0.81

13.9 0.0005 0.991 93.820649 1235 403 0.95
62 1610 1181 0.81

The former four cases are compared to each other to investigate the effect of varying power factor
on the performance of the system. Table 10 provides results obtained by the MRFO algorithm and
represents the operating DG units at different power factors. The overall performance of the system is
enhanced when moving from the unity power factor towards the optimum values. When all the DG
units operate at an optimum power factor, the power loss was at its minimum of 4.2775 kW. In addition,
the voltage deviation was at its minimum value of 0.0001. Finally, the voltage stability index was
maximized to its higher value of 0.9773, the same as for 0.82 power factor operating conditions.
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Table 10. Comparing results for different power factors.

Method Location
DG Capacity and PF APL

(kW)
VD VSI

LR
(%)(kW) (KVAR) (Pf)

Optimum pf
17 388.009 254.684 0.8360

4.2775 0.000106 0.9773 98.098411 494.701 365.035 0.8047
61 1680.9 1203.00 0.8132

0.82 pf
11 505.5087 352.8473 0.82

4.2952 0.00010 0.9773 98.0961 1692.7 1181.5 0.82
18 382.3651 266.8925 0.82

0.95 pf
11 598.0106 196.5566 0.95

20.7702 0.00016 0.9772 90.7718 425.9067 139.9888 0.95
61 1895.7 623.1016 0.95

Unity pf
18 530.0261 0 1

72.7496 0.0016 0.9522 67.658211 619.4599 0 1
61 1920.7 0 1

6. Conclusions and Future Work

A new meta-heuristic algorithm inspired by nature, namely the manta ray foraging optimization
algorithm (MRFO) is applied to optimize the size and location of three DG units. Two standard power
systems, 33-bus and 69-bus, are optimized based on three objective functions: power loss, voltage
deviation, and voltage stability index. The proposed MRFO was tested successfully on the IEEE 33-bus
system, and the IEEE 69-bus system to improve the voltage stability index, reduce voltage deviation,
and decrease power losses. To investigate the performance of the proposed technique, four cases
are applied to each power system categorized based on the operating power factor of the DG units.
The MRFO algorithm has been compared to other techniques for the same operating system and the
same operating conditions. It can be concluded that the MRFO algorithm is an effective and powerful
technique. Compared to other techniques, such as: QODELFA, SFSA, CTLPO, CTLPO (ε constraint),
MOHHO, MOIHHO, MOPSO, and MOWOA, it provides superiority in two cases: unity and 0.95
lagging power factor. In addition, the MRFO algorithm provides almost the same results for lagging
power factor and optimum power factor for the 69 bus system. Like all other techniques, the MRFO
algorithm could not provide superiority in all cases; SFSA provides better results in optimum power
factor for the 33 bus system. Taking into consideration the number of iterations for all optimization
algorithms, superiority would be assigned to MRFO. MRFO takes only 50 iterations to achieve an
optimum value which is half and one-fourth the number of iterations taken by SFSA and QODELFA
respectively. Operating DG units at unity power factor gives the worst results of all cases due to the
lack of injected reactive power. Decreasing power factor means increasing injected reactive power
which improves the system performance. But decreasing power factor must not exceed the optimum
values of power factor to avoid over-voltage. When the DG units operate at an optimum power
factor, they give the best results of all. Although the weight sum is an effective method to deal with
multi-objective problems, it must be constrained to bigger objective functions such as cost function, in
order to be easily compared with different references. The MRFO algorithm is a powerful technique
that must be evaluated for much more complicated power systems especially a real type one.
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Abstract: Numerous online methods for post-fault restoration have been tested on different types of
systems. Modern power systems are usually operated at design limits and therefore more prone to
post-fault instability. However, traditional online methods often struggle to accurately identify events
from time series data, as pattern-recognition in a stochastic post-fault dynamic scenario requires fast
and accurate fault identification in order to safely restore the system. One of the most prominent
methods of pattern-recognition is machine learning. However, machine learning alone is neither
sufficient nor accurate enough for making decisions with time series data. This article analyses the
application of feature selection to assist a machine learning algorithm to make better decisions in order
to restore a multi-machine network which has become islanded due to faults. Within an islanded
multi-machine system the number of attributes significantly increases, which makes application of
machine learning algorithms even more erroneous. This article contributes by proposing a distributed
offline-online architecture. The proposal explores the potential of introducing relevant features from
a reduced time series data set, in order to accurately identify dynamic events occurring in different
islands simultaneously. The identification of events helps the decision making process more accurate.

Keywords: self-healing grid; machine-learning; feature extraction; event detection

1. Introduction

Self-healing is a lucrative feature in the service restoration process of a power system which in
turn improves system resiliency. Power system resiliency often refers to the capacity of a system to
maintain stability after a high impact events with minimum interruptions [1]. Such resiliency is key
to achieve the objectivity of developing a Self-healing structure [2]. In the recent studies, under the
category of post-fault islanding scenarios, self-healing mechanism is getting significant attention [3].
The prominent trend in addressing self-healing is established through the local or distributed control.
It is because distributed control is quite effective in faster decision making. However, applying local or
distributed control is quite dependent on the dynamic characteristics of the network under analysis.
On the other hand, dynamic characteristics are heavily influenced by the pre-contingent stochastic
parameters, fault analysis, demand response (DR) and also the performance of the algorithms assessing
power system security [2,4].

In previous studies, different methods and systems have been investigated for fault detection,
isolation, and service restoration (FDIR). Some of these methods are Central Controller, Distribution
Automation System (DAS), Automatic Controlled Switching (ACSs), Fault Passage Indication (FPI),
Corrective Voltage Control (CVC), Emergency Demand Response Program (EDRP) and more [5].
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Most of these approaches are data-intensive programs. On the top of that, in a modern grid, the
integration of renewable energy makes it quite impossible to comprehend the security of a system,
on an online basis for all possible scenarios. Thus self-healing function can be considered a prime
candidate by the systems based on machine learning algorithms, such as Artificial Neural Network
(ANN), Support Vector Machine (SVM), Random forest. If the underlying events during any critical
contingency are properly identified [6], the identification can lead towards developing intelligent
self-healing strategies. The process can be developed through expert systems, with a large scenario
based dataset. However, machine learning systems are affected by processing time and memory.
Which, in a fast restoration system is not desired, especially for those grids that require adaptive
online decision making. Besides, for a large network, performing the dynamic security assessment
(DSA) is an increasingly complex problem affected by numerous criteria [7,8]. Under these contexts,
the traditional applications of machine learning algorithms are progressively being less effective.

The modern trend dictates that the machine learning algorithms should be trained offline basis
and implemented online [9]. But multi-machine systems generate large scale data. For many online
DSA programs, this approach is unattractive. Therefore, previous studies often recommend alternate
solutions such as dimensionality reduction, feature selection [10–12]. Feature selection process is
implemented to modify a data set to increase the accuracy of prediction [13,14]. However, it adds
redundancy in the algorithmic steps [15]. In a large-scale power system, such redundancy will be
affected by the curse of dimensionality [12]. Reference [14] mitigates this problem using an energy
function based feature selection. The proposed method outperforms the method that uses raw
inputs to train the machine learning algorithms, considering a smaller dataset for both the cases.
This strategy proves to be highly effective, but a smaller dataset is insufficient while addressing
multiple stochastic scenarios. Because in a hybrid grid, stochastic parameters make it challenging to
assess dynamic security using analytical approaches. One solution to address this challenge is a Monte
Carlo-based simulation method. This approach can establish the stability boundary of a grid with
multiple stochastic parameters [16]. Once the stability boundary is established for a coherent group of
stochastic parameters, a limited data set can be used for online DSA programs. Another approach to
address the curse of dimensionality is to implement dimensionality reduction based event detection
methods [10]. This method can successfully differentiate oscillatory and non-oscillatory scenarios.
However, the loss of other valuable information, makes it difficult for such a simplistic approach alone
to address the problem of event-detection in a hybrid system [9,17].

Due to such reasons, this work proposes a method of adding a layer of extracted features
from the reduced data set. The underlying motivation is to bridge this gap between dimensionality
reduction and loss of information. The power system data is collected from the available generators
and transmission lines under different contingencies. The data is then reduced and features are
extracted. The features are then used as attributes to train a machine learning algorithm. These features
help the machine learning algorithm make accurate classification under those stochastic scenarios.
The performance of the algorithm has been tested through an event-based decision making process to
restore a segmented grid that significantly improves system reliability. The novelty of the process has
been further justified by comparing the proposed algorithm with some existing methods. In summary,
the overall contributions of this work are as follows:

1. Development of a feature selection based event detection algorithm for a multi-machine based
grid, that can be sectionalized under duress. The proposed algorithm is prepared for the
segmented power system used in this study. Despite not being a generic solution for all types of
grids the algorithm introduces novelty in the decision making process.

2. In larger systems, the curse of dimensionality poses a bigger threat in applying machine learning
algorithms, specially for making decisions. The proposed method, by implementing feature
extraction on a reduced data set, addresses those challenges and enables an effective decision
making scheme.

126



Energies 2020, 13, 3494

2. System Under Consideration

An IEEE-39 bus 10-machine test system as shown in Figure 1 is used in this study [18]. During a
rotor angle instability the 39-bus test system can be divided into several independent islands. In this
study these islands are considered as independent and locally controlled multi-machine systems when
disconnected. In order to establish a relationship between the generator model and the constant
impedance load model, classical energy functions were used [14];

Mi
d2δi
dt2 + Di

dδi
dt

= Pi −
m

∑
j=1,j �=i

(Cij sin δi j + Dij cos δij), (1)

where Pi is the active power of the i-th machine, Mi is the moment of inertia of the i-th machine, Di is
the damping co-efficient, m is the number of synchronous generators. δi is the rotor angle of the i-th
generator. Cij and Dij are the function of transfer conductance and susceptance of the reduced network.
The per unit inertia constant of each of these generators is H = 1

2 Mω, where ω is the synchronous speed.

Figure 1. The sectionalized grid model. By disconnecting the transmission lines multiple areas can
be created.

The proposed power system does not to have any energy storage. It considers a conventional
droop characteristics for the primary frequency and voltage control. The primary control in a
standalone grid that does not have any storage unit, may cause frequency deviation even if the
system remains at a steady state condition. Therefore, a secondary control is also imposed that acts on
the deviations observed over the primary control and tries to balance the system. The secondary control
has a slower dynamics than the primary control, the idea behind that is to introduce a decoupling
mechanism between these two [19].

In order to do data analysis the dynamic data is produced from the synchronous generators.
The generators are controlled by a multi-band power system stabilizer (PSS) model and a
governor [20,21]. The governor of each generator is modeled as a tandem-compound steam prime
mover system. The overall simulation is carried out using Matlab-Simulink [22,23]. PSS are the local
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controllers on synchronous machines. These are quite effective in eliminating system oscillations.
However, tuning the set-points for a PSS, is usually carried out via analytical calculations. In a
hybrid system, where the distributed energy generation and consumption are rapidly varied, a critical
three-phase fault can easily disrupt the process of damping the oscillation. It is because analytical
calculations often do not capture the stochastic nature of standalone system. Therefore, a three tier
hierarchical control, where the top layer deals with the probabilistic nature of a system, can bring
significant improvement [19]. In this study, a supervised secondary control scheme is implemented
that modifies the reference for active power generation in the turbine governor. This action helps
reducing the rotor speed deviation, which is crucial for the pre-tuned set-points of the multiband-PSS,
to yield result in a post-contingent scenario. The proposed supervised controller is based on machine
learning algorithms. The supervised secondary controller has been implemented on each generator
through a distributed architecture. This distribution is based on the machine data available in a
post-contingent segment. The initial feedback data to trigger the supervised secondary control is taken
from the deviation in rotor angle of the individual machine [24].

The system is designed to have rotor angle instability during a critical contingency. When such
a contingency is noticed, the system can be divided into multiple operation-autonomous islands,
which is necessary to eliminate the instability [25]. The method applies an unsupervised machine
learning based controlled islanding mechanism that utilizes coherency based grouping from historical
database. The method is further discussed in the later sections of this study.

The synchronous generators in each area implement real power frequency and reactive power
voltage droop control. To represent non-dispatchable energy generation, a wind power plant based on
an induction generator is considered and connected in bus-36, which is closer to the Generator-7 [26].
The system considers two types of loads, critical invariant and non-critical variable load which can
be shed if required. The wind power generation and the non critical loads are considered as the key
stochastic parameters. The variable load is lumped in buses-8, 24, 32 [27]. In order to create a system
wide rotor angle instability, a critical short circuit fault have been introduced close to the bus-16 and
bus-17 [28]. It makes the generators, swing against each other in groups. The event is captured in
Figure 2. The top half of Figure 2 shows the rotor angle in one of the generators, during the occurrence
post fault instability. The bottom half of Figure 2 shows the generator speeds right after the short
circuit fault.

The energy function dictates that if a critical disturbance occurs in the system, mechanical and
electrical power go out of balance. Depending on the disturbance, the change in rotor angle may
introduce a rotor angle instability. In turn, the rotor angle instability introduces large voltage fluctuation
in the transmission lines. The transmission line voltage fluctuations can also be spotted from the
terminal voltage of the generators affected by this instability. In this study, the terminal voltage data
has been used to develop an optimized active power corrective control (CC) to eliminate the rotor
angle instability in each of the islands. The corrective control parameters or the active power from
different generators varies with the available wind power and load [29–32].

The machine learning algorithm developed is based on different power system events associated
to FDIR. Within the time-line of different events, by analyzing the dynamic data collected from the
generators, a distributed supervised secondary control scheme is developed; to achieve dEG

dt → 0 (EG =

Generator terminal voltage); after a major disturbance. The supervised secondary machine control
is a process that includes the above mentioned CC technique. The proposed method is a modified
and extended approach carried out in Reference [33]. The modification is brought by introducing
a feature extraction method. The system is designed to have both normal operating mode and self
healing mode, in this study only the self healing mode is considered. The self healing mode is invoked
once a rotor angle instability is observed, right after a critical fault is cleared. After a large number of
offline simulations, for this model it is observed that, the rate of change in between −5◦/ to +5◦/s in
rotor angle deviation indicates a critical rotor angle instability where the grid has to be operated in
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the self-healing mode. The observation is shown in Figure 3. After 1-second or 50 samples of the fault,
the breach in threshold is clearly visible in the figure.

Figure 2. Top figure: Rotor angle instability observed once the critical fault is cleared. Bottom figure:
Rotor speed fluctuation observed right after the three phase fault

Figure 3. Top figure: High fluctuation in rotor angle due to the critical fault. Mid figure: K-means
cluster of two groups of generators. Bottom figure: K-means cluster of three groups of generators.

The model in Figure 1 is used to generate time series dynamic data for training and testing the
machine learning platform for the proposed supervised secondary controller. The proposed model is a
modified IEEE-39 bus system, which is suitable for stability analysis. The demand and wind speed
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are randomly varied in order to do a Monte Carlo based simulation to prepare a stability database
with the synchronous generator data. The dynamic parameters chosen are in per unit quantity and
these are rotor speed ω, rotor angle deviation dδ, active power generated PE, and terminal voltage
EG. For simplicity, only the cases where the system can be stabilized and restored by dividing it
into two segments are considered. During any contingencies these parameters from the generator,
affected nodes is collected. These parameters are timeseries in nature. During the contingency from
their dynamic behaviors, patterns in form of features are extracted. For example, the magnitude of a
generator terminal voltage is considered dynamic during the contingency. Feature extraction is applied
on that time series data in order to develop training and testing data for the next phases. A matrix of
444, 037 × 36 is developed from the nine synchronous generators. Generator-2 is considered as the
reference bus for calculating dδ, therefore, the supervised control is not applied on this generator.

3. The Proposed Supervised Control

3.1. Controlled Islanding

Controlled islanding mechanism can be an effective way to mitigate system-wide instability and
help restoration [25]. The method proposed in this study, applies an unsupervised machine learning
algorithm on rotor-speed data in order to develop a coherency based grouping [25,34]. Power system
can be modeled as a set of coupled differential algebraic equations as functions of rotor speed. Due to
the nature of such coupling, rotor speed can often be used as an indicator for detecting coherent groups.
An unsupervised clustering can be used as a tool to detect such groups [17]. At first, the process
randomly selects centers for each cluster. The number of clusters is pre-defined. The membership of
each data point is decided based on the objective function, that minimizes the Euclidean distance of
each data point yik with the corresponding centroid zi. Through this objective function the sum of all
the Euclidean distances between every data point to their cluster-centroids.

D(yik.zi) =
d

∑
k=1

C

∑
i=1

√
(yk − zi)2 (2)

Here, d is the number of data points, C = 1, 2, 3 depending on the number of islands or no islanding
required, zi is the centroid of i-th cluster and yk is the k-th data point. Once the D is calculated the
centroids are re-selected and the objective function is repeated.

Ci =
1
ni

∑
∀yp∈si

yp (3)

Here Ci is the center of the i-th cluster, ni is the number of data points which in this case is the
rotor-speed observed within an 1-second data window after an instability is detected. yp is the data
vector after p − th iteration. 1-second data window is observed to be sufficient, to detect the coherency.
The group is prepared, once the three phase fault is cleared but no restoration process or islanding
has been implemented yet. In the Figure 3, the clusters are shown in three colors with their centroids.
In middle section of the figure it is shown that, based on the coherency observed, two sets of generators
have been prepared. cluster-1 consists of {G1-G3, & G8-G10}, represents Area-1 and cluster-2 consists
of {G4-G7}, represents Area-2. The areas are created by disconnecting the transmission lines between
node-(16&17) and node-(14&15). Similar clustering is also shown in the bottom part of the figure,
with three groups of generators. The number of clusters are selected based on the available empirical
data. During the training phase the clusters are prepared based on the coherency observed.

3.2. The Corrective Control

The primary control in an isolated grid may not be sufficient as it may cause frequency deviation
after a non critical fault. Therefore, the secondary control is required, which implements a slower
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dynamics to fine tune the control parameters and prevents the frequency fluctuations. However,
under a critical fault when the system wide rotor angle instability is observed, a secondary control
often fails to stabilize the system [30,31]. This study implements a machine learning driven supervised
secondary control during the post fault scenarios, where secondary control cannot maintain stability
after a critical fault. The supervised secondary control is considered as the topmost part of a hierarchical
control scheme [19,33,35].

The conventional droop characteristics satisfies the condition DPiPNi = Δωmax and DQiQNi =

ΔEmax [3]. Where, i is the i-th stochastic scenario, N is the number of synchronous generators, P and
Q are the generated active and reactive power, Δωmax and ΔEmax are angular frequency and voltage
deviations allowed. This study only considers scenarios where the allowed Δωmax is exceeded.
The dynamic response can be further understood through a linearization of the active and reactive
power equations through a set of small signal models.

ΔP(s) =
G

s + DPG
Δω∗(s) (4)

ΔQ(s) =
H

1 + DQ H
ΔE∗(s) (5)

Here, the coefficients, G and H depend on the nominal terminal voltage and the rotor angle of
the generators and the transmission line voltages where power is transmitted. The secondary control
scheme is evoked if the threshold of the Δdθmax is crossed after a short circuit fault, as shown in
Figure 3. At steady state conditions, under different stochastic scenarios, the voltage magnitudes
and the angular differences between one generator and the point of common coupling is kept within
a boundary by the PSS and governors. It results in a list of ΔP and ΔQ. Therefore, a Monte Carlo
based simulation strategy is developed to prepare a stochastic database of the aforementioned PNi,
QNi, ΔP and ΔQ. During a rotor angle instability the supervised controller changes the active power
references and keeps the active power generation fixed through the turbine governor. Due to this
action the Δω decreases and ΔP falls within the boundary suitable for the pre-tuned PSS. The database
for optimized active power reference for different stochastic scenarios, is developed using genetic
algorithms [2]. Overall this process is considered as the Corrective Control (CC). The CC is based on
the following objective function:

Objective : min(εV f ault =
M

∑
j=1

[Vpre f ault − Vpost f ault(i)]2). (6)

If the steady state εV f ault ≤ εthreshold, the supervised control scheme is stopped. Here, j is the
current data sample and M is the total number of data samples in that segment. For this study
M = 300 equivalent to a five-second data window has been chosen. The objective function is subject
to the constraint 0 ≤ PN ≤ PN,max, 0 ≤ Pls where, N refers to the number of synchronous generators.
Pls refers to the minimum temporary load shed. The overall system load is divided into two parts,
variable demand and fixed demand. The temporary load shedding is carried out from the variable
demand to maintain the energy balance; ∑

ng
i=1 pgi + ∑nwind

i=1 pwindi = Pdp f l + PTloss + Pls. Where, Pdp f cl
is post fault load, PTloss is the transmission line loss, pwindi power generated from the wind power
plant, ng is number of synchronous generators, nwind = 1. Once the system becomes stable the load
is also restored. In this study, island area-1 requires temporary load shed when the wind power is
relatively high. The overall workflow for the CC based control is shown in Figure 4. The workflow is
divided into two phases, offline and online. The offline phase is based on a test and trial approach.
The process initially starts with different stochastic scenarios. The CC is then applied to stabilize each
segment and restore the grid. The CC is an optimization technique and the dynamic data obtained
from the generators after CC has been applied is used for feature selection. These features represent
different events and also the optimized decision parameters under that stochastic scenario. Once the
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machine learning algorithm is trained, it is then used in the online phase for making decisions for the
CC. Being stochastic in nature, some of the predictions yields misclassification errors. Those data are
used for further training.

Figure 4. Workflow of the proposed method. This method is applied in a distributed architecture on
each of the synchronous generators

Figure 5 shows the proposed model of the secondary control system. The supervised control is
based on machine learning algorithms trained under different stochastic scenarios on the feature data
to perform the proposed corrective control (CC) followed by islanding. The features are introduced in
the consequent sections.

Figure 5. The governor and exciter control with an added functional block for the proposed
secondary control.

3.3. Power System Events

Based on different wind power, loads, fault locations and number of faults; several cases have
been observed. In each of these cases one or multiple critical three phase faults and consequently
system wide rotor angle instability have been introduced. Based on these criteria the system has been
either divided into two, three islands or no island at all. Table 1 shows a list of probable contingencies
leading to three different islanding schemes.
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Table 1. List of stochastic contingencies.

Decisions Wind Speed (m/s) Variable Demand (MW) Contingencies

1 10 546 Loss of Genearator-4. No
segmentation is required

2 12 609 Loss of Genearator-9. No
segmentation is required

3 8 405 Three phase fault at Bus-16. Two
area segmentation

4 12 35 Three phase fault at Bus-19. Two
area segmentation

5 8.2 662 Three phase fault at Bus-16 and
Bus-25. Three area segmentation

... ... ... ...

... ... ... ...

n 11.2 408
Three phase fault at Bus-25 and
loss of Generator-4. Three area
segmentation

Each of these cases has further been divided into multiple events namely, Fault, Post fault rotor
angle instability, Supervised control and Post restoration. If the proposed system, fails to restore the grid,
then the scenario-data is fed back to the offline training stage.

From the four above scenarios three time-lines are chosen, time-line for detecting post fault rotor
angle instability, time-line for CC to stabilize the islanded network, and time-line representing the post
restoration period. The two latter periods can either be stable or unstable. In Figure 6, all the different
time-lines have been shown. Time-line-1 data is the candidate for decision making, time-line-2 is for
applying CC and time-line-3 is the candidate data for evaluating the performance of the algorithm.
Here, for a better understanding, terminal voltage of generator-7 has been chosen to demonstrate
the events.

Furthermore, Figure 7 shows an example of the terminal voltage at Generator-7 under different
scenarios (wind power and load), during the rotor angle instability. The similarity in the time series data
is overwhelming, and that makes the application of a machine learning algorithm quite difficult [36].
However, each scenario has its own events and therefore, features can be used for distinguishing those
events in each scenario.
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Figure 6. Top three figures are showing the three different time-lines. The bottom figure represents
time-line-2&3 in the case when the proposed algorithm successfully restores the system.
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Figure 7. Top figure: Time series data of Generator-7 under different scenarios. Bottom figure:
Normalized 1st principle component of ‘timeline-1’under three different contingencies.

Like Figure 7, a similar variation in the phasor-signals is also observed in rotor speed and rotor
angle from each synchronous generator. Such similarities in data makes it difficult to select a candidate
for feature selection. Therefore, to retain information that can be crucial for the feature selection
process, principle component analysis is carried out on these three types of phasor time series data [6].
The Principle Component Analysis (PCA) finds out the first component accounted for the most of the
variations in generator data matrix. The variability is around 75%. The data matrix X has m number
of observations with n = 3 number of attributes. The m-number of orthonormal basis functions are
represented by W which is of n ∏ n dimensions. The data matrix is then represented as X = TW ′,
where T is (t1,i.....tm,i), which is used to form the coherent clusters for identifying principle components.
Figure 8 shows that a significant variation in signal magnitudes and widths can be spotted in the
reduced data (1st principle component) among different events. It further justifies that, the use of PCA
for reducing the generator data and using that data for extracting features, is meaningful.
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Figure 8. Variation Observed in the normalized 1st-PCs obtained from different events in generator-1
data. Each PC shown here, represents the near-end stage of one power system event.

3.4. Available Observed Features

As shown in Figure 8, the principle components have unique distinction in their shapes under
different events. However, due to the nature of time series data, overlapping magnitudes confuses
the learner. One solution is to use a large dataset for training. On the other hand this problem can
significantly be overcome with the use of features [14,37]. Base on the discussion presented in earlier
section, in this study three features, distinguishing each event, have been chosen. The selection
process is mostly inspired by the observed variations in magnitude. Another motivation is drawn
from the fact that, the inherent properties of a power system can provide significant information
on a set of dependent variables based on a set of argument variables. This understanding is quite
effective in detecting online phenomenon such as sensitivity. For example, active power can be
used as a dependent-variable and node-voltage can be used as argument-variable to understand
the voltage stability of a system [1]. Therefore, sensitivity data holds useful information. Moreover,
feature extraction is a computationally expensive mechanism [37]. Thus, a set of simple and predefined
features based on domain knowledge can reduce the computation burden. Keeping these issues in
mind, this study selects the following three features:

1. Prominence of local maxima in terminal voltage [38–40]
2. Available frequencies in the time series voltage data [41]
3. Sensitivity ∂PE/∂Vf . Where, Vf is the voltage at the fault bus and ∂PE is the active power

generation from the subject generator [16].

Event detection and decision-making based on time-series data is not a predictive, rather a
prescriptive analysis. In order to associate a feature with the underlying events in the time series
data, a frame of reference has to be used. In this study the frame of reference is developed by using
a sliding window technique on the time series data and recording the features. To do so, a 1-second
transition-window is selected to extract features and then those features are converted to different
‘factors.’ By ‘factors’ this study refers to a quantity that can represent a window using only one
number. This action is necessary to represent the sliding windows using row vectors. After calculation,
those factors are stored in the data-table. As mentioned earlier, each row signifies one attribute window.
This table is later used to train the machine learning algorithm.

To prepare the features in each data window, sixty samples per second have been considered.
The variation in magnitude of the first principle component has been considered as the first feature.
The method followed here is inspired by Reference [40]. A normalized window of 1-second duration in
the time series data is chosen to carry out the feature extraction.

First, a lowest contour line in the 1-second data window circulating a local maximum point has
been detected. Then the height of that point is measured and a ratio is prepared in terms of that contour
line. Figure 9 shows the method of finding prominent local maxima from a normalized window of the
principle component of one of the generators. For clarity of vision a 2-second data window is selected
for Figure 9. Once several prominent peaks are detected, the maximum available prominent peak is
considered as a feature-factor for that data window and stored in the training data table.
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Figure 9. Peak prominence and width inside a predefined data window of the Terminal voltage
of Generator-1.

The second feature is based on the available frequencies in the first principle component,
observed in the 1-second data window. This feature is extracted through a Discrete Fourier
Transformation (DFT) technique; x[n] = ∑N−1

n=0
1
N X̃[k]e−jk(2π/N)/n, K = 0, 1, ....N − 1. Here, X̃[k]

is the amplitudes and x[n] is the linear combination of the complex exponentials with that amplitude.
Decision making based on frequency data has often been observed in the field of harmonics and power
quality analysis [41]. In this study, a frequency spectrum of the first 30 Hz has been chosen as the
featured attribute as shown in Figure 10 (with a small displacement in the X-axis for the purpose of
visualization). As the sampling rate used in this study is 50 samples/seconds, according to the so
called ‘Nyquist-theorem’ DFT can observe upto 30 Hz. Once the magnitudes of those frequencies
are calculated, the magnitudes are summed up to be used as a feature-factor for that data window,
∑30

i=1 Mi. It is called a frequency factor.

Figure 10. Available frequencies. The sum of all the available frequencies is presented as the
frequency factor.

A sensitivity data, based on the voltage at fault bus and the active power generation from the
subject generator is considered as the third feature [1].

In Figure 11, which is inspired by Liapunov’s direct method, three sensitivity curves of the
generators {G7, G1, G8} are shown in terms of the fault bus voltage at bus-16. It clearly shows the
aperture of the curve varies depending on the impact of fault. The figure refers to the idea that, less
sensitive relations have a larger aperture. To calculate the aperture, trapezoid method of numerical
integration is used. The limit of each response curve is considered between two extreme points over
the X-axis or the ΔVf bus axis. Two extreme points develops a convex (Upper) and a concave (Lower)
perimeters. Then the area under the curves are calculated. The overall area of the aperture is then
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assumed by subtracting the area under the concave curve from the convex; Area = Aconvex − Aconcave.
This area of aperture is then used as the feature-factor that represents the data window.

∫ V2

V1
f (xconvex)dx ≡ V2 − V1

2N

N

∑
n=1

( f (xn) + f (xn+1)) (7)

∫ V2

V1
f (xconcave)dx ≡ V2 − V1

2N

N

∑
n=1

( f (xn) + f (xn+1)). (8)

Once the training data-table is prepared, it is used to train a multiclass classifier. Overall,
the training process only considers data that ensures system stability. It means the classification
algorithm is trained based on the concept of resiliency. The decisions leading towards post fault
stability that returns to pre-contingent state are considered accurate decisions.
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Figure 11. Sensitivity ∂Pm/∂Vf bus Curve.

3.5. Multiclass Classifier

The chosen Multiclass classifier is an ensemble of bagged decision trees trained using the stochastic
parameters and the features. The bagged decision trees weigh and reweigh the predictor variables
and their estimates. For example; a function estimate ĝens = ∑M

k=1 ck ĝk(.) is obtained based on the
k − th reweighed data with the combined linear estimation co-efficient ck. This method is deployed
to eliminate classification error due to estimation variance and also statistical bias, specially in a
stochastic scenario [32,42]. The ensemble method implemented in this study is prepared using one
hundred fully grown trees by splitting the attribute data into one hundred training sets, D1, D2, ..., D100.
This approach helps to obtain an improved composite model. Mi(1 ≥ i ≥ 100) classifiers vote by
predicting a class and the ensemble selects the final class from those votes. The overall technique
along with Random Forest and Random Subspace also includes Bagging and Boosting [36]. Depending on
the number of controlled islands observed in each contingency, different values of the features are
obtained. Three separate tables Tables 2–4 are shown below based on the number of islands. Each
table shows the attributes wind speed, Variable Demand, Snsvt which is the feature-factor derived after
sensitivity analysis, Prmn is the prominent maximam peak obtained from the principle component,
FF is the frequency-factor derived from the DFT of the principle component. The tables are prepared
from the data collected from generator-4. The classifier has a target attribute named Decisions. The
decisions are combination of active power reference (0-1 P.U.) for the governor of the generator and the
amount of temporary load shedding required in the Area-1. Both the information has been collected
from the offline simulation after conducting the CC on each of the generators. n-number of decision
combinations are observed and it is different for different generators, for example, for a two-area
solution; in case of generator-1 n = 4 and for generators-4&7 n = 7. The control parameters are unique
for each generator however the amount of load shedding required in each scenario is considered
through a voting based on statistical mode [2]. To synchronize the voting process the load required to
be shed is represented as segments of 100 MW, 200 MW, 300 MW up to 500 MW. An example of the
decisions is shown in Figure 12. The upper figure shows the combination of two parameters observed
in the decisions in a generator. The figure shows how the voting process and the active power reference

137



Energies 2020, 13, 3494

are related in one generator under multiple scenarios. Both the estimations are carried out by the
multiclass classifiers placed in each generating stations. The lower figure shows an instance of the
voting process from the 10 synchronous machines in one scenario. As segment-4 got the maximum
vote 4 × 100 MW load is temporarily shed from the Area-1.

Figure 12. A set of example decisions: Observed from individual generator under different scenarios
and an instance of statistical voting observed from all the generators under one scenario.

The decision trees, prepared from the above mentioned method, are shown in Figure 13 with a
small example data set. The upper tree shows the decisions for selecting the amount of load shedding
required in Area-1 . Data of the right tree is collected from all the synchronous generators and is
used for the voting process for the purpose of load shedding, as shown in Figure 12. The left tree
shows the active power reference set in that generator. The trees are prepared using generator-4 and
time-line-1 data.

Figure 13. An instance of the proposed classification process in Generator-4. (a) The tree that selects
active power reference using features (b) The tree that carries out priority voting.

The classification accuracy is measured against the system resiliency during low probability
high disruptive events. If the classification algorithm can predict decisions that lead towards a stable
pre-contingent state the algorithm is considered to be accurate.

Table 2. Distributed decision table for generator-4. Contingencies leading to a two area solution.

Decisions Wind Speed (m/s) Variable Demand (MW) Snsvt (Sensitivity) Prmn (Prominence) FF (Frequency Factor)

1 12 35 0.1384 34.1 197.4
2 6 145 0.1333 0.659 34.48
3 8 405 0.1636 0.0566 7.5878
.. .. .. .. .. ..
.. .. .. .. .. ..
n 11 790 0.1424 0.593 25.2
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Table 3. Distributed decision table for generator-4. Contingencies leading to a three area solution.

Decisions Wind Speed (m/s) Variable Demand (MW) Snsvt (Fault-1) Snsvt (Fault-2) Prmn (Prominence) FF (Frequency Factor)

1 8.2 662 0.8770 1.0195 0.4374 13.7012
2 10 372 0.9349 0.9910 0.7647 178.1212
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
n 11.2 408 0.8515 0.2779 0.7099 32.4

Table 4. Distributed decision table for generator-4. Contingencies are not followed by multiple area
segmentation.

Decisions Wind Speed (m/s) Variable Demand (MW) Snsvt (Sensitivity) Prmn (Prominence) FF (Frequency Factor)

1 9.9965 252 0.2192 0.0008 46.7454
2 10 546 0.2119 0.2541 46.8115
.. .. .. .. .. ..
.. .. .. .. .. ..
n 12 609 0.1547 0.1291 9.56

4. Results

Figure 14 shows three scenarios of the three proposed solutions under multiple contingencies
and operational decisions as explained in the earlier sections. One interesting observation can be
made that, in different stochastic scenarios the duration as well as the sequences of the timelines
vary, specially for the scenarios where multiple faults lead towards a three area solution. The system
resiliency is considered based on the post restoration terminal voltages. If the consumers are restored
and the system voltage remains stable, the algorithm is considered to be improving resiliency.

,

Figure 14. Three cases of grid restoration. (a) No segmentation solution, (b) Two-area solution,
(c) Three-area solution.
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Each of these time-lines has been assessed using Monte Carlo based simulation strategy by
randomly generating wind power and demand. Based on these randomly selected stochastic scenarios,
ni decisions have been identified in this study, where ni means n combination of decisions for the i-th
generator. These decisions can maintain a post restoration stability. For example; for the two-area
based solution, the Monte Carlo based simulation is carried out for a limited 1560 scenarios. Where,
1000 scenarios have been used for training the algorithm and rest of the 560 scenarios have been used
for testing. Figure 15 shows a comparison of the average prediction accuracy between the proposed
method with features as well as the prediction without features. Only the first principle component
has been used as raw data where no feature has been extracted. If the system is completely restored
the accuracy is considered ‘1’ else ‘0’. The overall performance shows around 95% prediction accuracy
with the features. With a limited 1000 scenarios, feature data has been proven to be quite helpful to
reach such high degree of accuracy. The proposed accuracy is also a marker for symbolizing system
resiliency. If the therefore, 95% accuracy also refers that in 95% cases the system remains resilient.

Figure 15. Prediction accuracy with the test data (two-area solution). The comparison shows a clear
improvement with the proposed feature-base method.

The rest of the 5% cases where the algorithm misclassified the decisions, the system recovery
could not be achieved. Once the areas are restored through the transmission line the overall system
became unstable.

The proposed algorithm has also been compared with the similar methods proposed for the
purpose of power system event detection in the previous literature [10,17]. Table 5, shows the
comparison of accuracies in identifying ‘timeline-1’ under three different scenarios. The three scenarios
are randomly selected among three-area solutions, two-area solutions and the no-segmentation
solutions. Due to having additional information in the form of features, the proposed algorithm
is demonstrating superiority. Figure 7 can be brought as a point of reference for explaining such
performance. The overlapping magnitudes of the principle components, makes it difficult to trace
out a linearized distinction between different events. The features introduces that linearity in data
segmentation for the decision trees.

Table 5. Comparison in accuracies for Timeline-1 in Percent %.

Generator Proposed
Method

Ensemble of Clusters
and Decision Tree

ANN PCA and Decision Tree

4 96.2 89.4 <40 83.71
5 96.4 96.4 <40 82.02
6 94.64 94.56 <40 84.2
7 95.08 93.33 <40 65.72
8 94.32 90.17 <40 67.23
9 95.48 92.8 <40 66.49
10 93.8 91.1 <40 89.7

The ramifications of voting for load shed has also been speculated. It has been observed that,
if the required load shedding is not carried out the system could not be fully restored. Figure 16 shows
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a comparison between these cases. In the top figure a comparison is shown, where in one scenario
the algorithm successfully identified the right decision and in the next the algorithm could not. In the
lower half of the figure, three incidents are shown where the load shedding is not carried out based on
the majority voting. In each of these cases the system has moved back towards instability.

In the Figures 14–16 the superiority of the proposed method can be observed. One critical
observation regarding the scenarios having multiple faults is that, only the faults occurring
simultaneously have been considered. In future studies different times of fault-occurrence can
be analyzed.

Figure 16. Ramifications of the ‘Classification Error’. Top figure: Misclassification in active power
referencing. Bottom figure: Misclassification in load-shedding; (a) Instability observed after grid
restoration, (b) Instability observed after islanding, (c) Instability observed after the load has
been restored.

5. Conclusions

The proposed method to predict suitable decisions for post fault restoration, has shown promising
results. The method works with high accuracy despite limited number of training data has been
provided. IEEE-39 bus test system, which is a large enough dynamic system, has been used to
demonstrate the capabilities of the proposed method. Furthermore, the proposed algorithm is tested
with high degree of stochastic influence in the network. This study is highly significant for a stand
alone system where multi-machine dynamics can be observed. Based on the data analysis carried out
in this study it can be concluded that, simplified features based on domain knowledge can be highly
effective for the purpose of service restoration.

One critical observation is that, with an increased number of faults, the system needs to be divided
into more than two areas. Under those cases the proposed algorithm heavily relies on the number
of training data set provided. It is because, the optimization process in this case has to consider the
sequence of operations. Thus, in case of new data sets with multiple fault scenarios, the accuracy of
the algorithm decreases compare to those of the single contingency scenarios. In the author’s future
experiments, the role of a centralized control scheme to address the problem of sequence control
would be analyzed and compared with the proposed distributed method. Overall it can be stated that,
the proposed method is showing significant promise in the filed of grid restoration techniques.

The algorithm is tested online basis. However, it is not tested on a real-time platform. Therefore,
the time consumption for the decision making process varies case by case. In future studies it would
be more comprehensive to apply the method on a real-time platform to address time-consumption by
the system and its impact on a real-time decision-making process.
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